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In signal restoration by Bayesian inference, one typically uses a para-
metric model of the prior distribution of the signal. Here, we consider
how the parameters of a prior model should be estimated from observa-
tions of uncorrupted signals. A lot of recent work has implicitly assumed
that maximum likelihood estimation is the optimal estimation method.
Our results imply that this is not the case. We first obtain an objective
function that approximates the error occurred in signal restoration due
to an imperfect prior model. Next, we show that in an important special
case (small gaussian noise), the error is the same as the score-matching
objective function, which was previously proposed as an alternative for
likelihood based on purely computational considerations. Our analysis
thus shows that score matching combines computational simplicity with
statistical optimality in signal restoration, providing a viable alternative
to maximum likelihood methods. We also show how the method leads
to a new intuitive and geometric interpretation of structure inherent in
probability distributions.

1 Introduction

1.1 Empirical Bayes and Signal Restoration. An approach that has
gained increasing acceptance in machine learning, computational neuro-
science, and signal processing is based on hierarchical Bayesian modeling.
The typical setting for modeling the observed multivariate continuous-
valued data vector, denoted by x, is as follows. The vector x follows a
distribution with probability density function (pdf) p(x |s), where s is a
vector of latent variables or parameters. The vector s in its turn follows
a prior distribution p(s | #), where 6 is a vector of (hyper)parameters.
Typically, x is a somehow corrupted or incomplete version of s, which is
the real quantity of interest, and 8 gives some kind of features. The joint
probability is obtained by concatenating these probabilities:

p(x.s.0) = p(x | $)p(s | 0). (1)
where we assume a flat prior for 6.
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The central idea is that in such methods, the hyperparameters or features
6 are not set subjectively but are estimated (learned) from the data. Meth-
ods in which the hyperparameters are estimated from the data x are usually
called empirical Bayes. In this letter, we consider a setting that is slightly
different from conventional empirical Bayes. We assume that a separate
sample of s, denoted by s(1), ..., s(T), can be observed, and the hyperpa-
rameters @ are estimated from such a sample. The prior p(s | #) is then used
for Bayesian inference of s when an x is observed for unknown s. (In what
follows, we shall simply call p(s | #) the “prior” and @ the “parameter”
vector, omitting the prefix “hyper.”)

There are many applications in which such a formalism with observed
s has been applied. The prime example is signal restoration (see, e.g.,
O’'Ruanaidh & Fitzgerald, 1996; Chipman, Kolczyk, & McCulloch, 1997;
Johnstone & Silverman, 2005). The vector x corresponds to a corrupted ver-
sion of a signal, and s corresponds to the original uncorrupted signal. In
many cases, we can observe a sample of the distribution of p(s | ) by mea-
suring the signal under circumstances where the corrupting process is not
present. For example, when denoising natural images, it is not a problem
to find practically noise-free natural images (Simoncelli & Adelson, 1996;
Hyvarinen, 1999); the same applies for restoration of audio signals (Godsill
& Rayner, 1995). A prior estimated from noise-free signals can then be used
for denoising noisy signals.

Another application can be found in Bayesian perception, where the
s correspond to some perceptual quantities of a scene (e.g., speed and
direction of motion, depth) that are sometimes difficult to instantly infer
from the data x that are measured by the retina (Knill & Richards, 1996).
However, if such scenes are observed for a longer period of time and infor-
mation from different perceptual cues is combined, the perceptual system
can often obtain virtually exact observations of those latent quantities, and
these can be used, in the long run, to learn the model parameters. The prior
with these parameters can then enhance the performance of the system in
more difficult situations where few cues are available or the observation
period is very short.

1.2 Point Estimates Versus Full Bayesian Treatment. The goal in such
inference is typically to obtain a point estimate of s. This is because in
practical applications, the posterior must typically be output as a point
estimate (e.g., a denoised image). The typical, and computationally most
feasible, point estimate to summarize the posterior of s is the maximum a
posteriori (MAP) estimator (see below).

If computational resources were not an issue, one could use the
theoretically sound treatment based on integrating out the parameters,
considering their full posterior distributions. That is, the full posterior
p(@ |s(1),...,s(T)), given the separate sample of s, is used to compute
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the posterior of s as in

p(s [x.s(1).....s(T)) Z/P(X |s)p(s [ 0)p(0 | s(1),....s(T))do/p(x),

where the normalizing constant equals

P00 = [ pix| p(s 1) ds ao. (13)

The problem is that the computation of equation 1.2 requires multidimen-
sional integration, which is computationally most demanding. In order to
reduce the computational load by avoiding multidimensional integration,
many methods use a point estimate for . In the context of signal restora-
tion, this means fixing the signal features and other parameters to a single
value, which is obviously a widespread approach.

Thus, we consider here a computationally simplified setting where a
point estimate # of parameters is first obtained, and it is used in MAP esti-
mation of s. MAP estimation simply means finding the value that maximizes
the posterior density of s, given an estimate 8:

Suar(®, %) =argmax p(x | 5)p(s | §)

=argmaxlog p(x | s) + log p(s | 0), (1.4)

where the notation with # and x in parentheses emphasizes that the es-
timate is a function of both the observed data x and the (previously) ob-
tained parameter estimate #. Such a framework is often used with very
high-dimensional data where computational considerations are of central
importance.!

1.3 Optimal Approximation of Prior. The question we attempt to an-
swer in this letter is how the parameters in 6 should be estimated from a
sample of uncorrupted signals s(1), ..., s(T) in this context.

Most work on Bayesian inference in signal restoration and computational
neuroscience seems to implicitly assume that maximum likelihood estima-
tion (MLE) is the optimal way of estimating the parameters. However, this

ISince the analysis developed below uses the mean-squared error, it might be sug-
gested that the minimum mean-squared error (MMSE) estimator should be used instead.
The main justification for our choice of the MAP estimation is that it is often much simpler
computationally and therefore much more widely used.
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does not follow from the classic optimality criteria of MLE. The main jus-
tification for MLE is that it is, under certain assumptions, asymptotically
Fisher efficient; that is, it gives asymptotically the most exact estimates for
parameters in terms of squared error (Schervish, 1995). In our case, this
would mean that the error in the estimate of @ is as small as possible.

However, what we want to minimize here is the error in the MAP esti-
mate of s, and not the error in 6. It is possible that some estimation methods
give a large error in @, but this error does not induce a large error in s.
As a common example of a related situation, consider multicollinearity in
prediction by linear regression: if the predicting variables are highly corre-
lated, their individual regression coefficients have large estimation errors,
yet the prediction might be quite good. So if we are not interested in the
values of the parameters themselves, but only the quality of the Bayesian
inference that they provide, estimation errors in # may be irrelevant, and
there seems to be no reason to consider MLE of  optimal.

Furthermore, the prior model p(s | #) might be only a rough approxima-
tion of the true prior distribution of s; the real prior might not belong to the
family p(s | 8). In such a case, which is actually the target of the analysis in
this letter, any considerations of squared error in # may be of little use and
even ill defined. In fact, the error in this case may not have anything to do
with Fisher efficiency, because even in the limit of an infinite sample, when
the variance of the estimator goes to zero, the prior model will not be equal
to the distribution of the data. Then, estimation of @ should be based on a
direct measure of how good the ensuing MAP estimation of s is.

Information theory provides another justification for MLE in terms of
optimal compression (see, e.g., Cover & Thomas, 1991). However, such con-
siderations seem to be irrelevant if the goal is Bayesian (MAP) inference of s.

In this letter, we analyze the performance of the MAP estimator of s.
This is a function of the parameter value 0 used in the prior, which is
assumed tobe estimated froma samples(1), ..., s(T). We derive a first-order
approximation of the error and show that it consists of two parts. Only one
of those parts depends on the §. Optimal estimation of parameters should
thus be based on minimization of the objective function given by that part.
Such an objective function is quite different from likelihood. Interestingly,
a special case of the objective function leads to the score-matching distance
previously proposed in Hyvarinen (2005) based on a completely different
motivation. Furthermore, we give a geometric interpretation of the resulting
estimation process and show how this is related to a measure of structure
of probability distributions.

2 Optimality Criterion for Estimation

2.1 Hierarchical Data Model. We first rigorously define the whole pro-
cess of data generation and parameter estimation in a hierarchical model
where a separate sample of uncorrupted signals can be observed:
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1. Estimation of parameters: A sample s(1), ..., s(T) is generated from
a prior distribution py(s). From this sample, we compute an estimate
0 for 8, using a method to be specified.

2. Generation of s underlying for observed data: A single vector s is
generated from the prior distribution py(s).

3. Generation of observed data: A data vector x is generated from the
data distribution p(x | sp).

4. MAP inference: Using 8 and x, an estimate § for s, is obtained by
MAP estimation as in equation 1.4.

In step 4, the data-generating process p(x | s) is assumed known,; its estima-
tion would be a completely different problem. The prior distribution py is
approximated by a parameterized family of pdf’s, p(.|#). We do not assume
that py belongs to the family p(.|9).

The goal now is to minimize the error ||As|| = ||§ — so|| that is due to
the error in the approximation of the prior py(s) by p(s | #). Even with
a perfect estimate for the prior, there will, of course, be an estimation
error in § due to the randomness in the process of sampling the data
from p(x | sp), which corresponds to the process corrupting the signal.
However, we will see below that it is possible to separate these two kinds of
erTorS.

2.2 Goals and Limitations of the Analysis. We emphasize that it is the
error in 8 and not in § that we fundamentally want to minimize. Actually,
the error in # is not even a properly defined quantity because the prior
po(s) need not belong to the family p(s | #) used in its approximation. Thus,
we shall ultimately define the optimal method of parameter estimation, or
prior approximation, as the one that minimizes the error in §.

An important choice we make in this analysis is that we completely
neglect finite-sample effects; in other words, we assume that we have an
infinite sample of s. Thus, there is an error in the approximation of py by
our model p(.|#) simply because py does not belong to the model family,
and not because of random fluctuations in the estimator 8. This approach
is quite realistic in the case of neural computation and signal processing,
where the number of observations can often be made arbitrarily large
(e.g., by sampling more image patches) but the distributions are extremely
complex and any model is only a rough approximation. This is, in fact, why
we prefer to call this problem “approximation” of signal priors instead of
“estimation.”

A limitation that was already pointed out in section 1 is that we assume
we can access an uncorrupted sample of the original signals s. This may be
easy in some cases but impossible in others. Many empirical Bayes methods
actually estimate parameters from corrupted signals, so our analysis is not
applicable to them. Some examples on this are methods based on Stein’s
unbiased risk estimation (see section 4.3).
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2.3 Analysis of Estimation Error. First, we need some notation. Denote
the derivatives of the log-pdf of s given 6 by

dlog p(s|0)
—EER= (s | 9)

veslo=| = i |=Vogpiie)
Dlog pls10) Yn(s | 6)

and the corresponding Hessian matrix by

dlog p(s|9) dlog p(s|0)
35151 e 9815y

H(s|9) = : = V(s | 0)".

dlog p(s|6) dlog p(s|6)
05,51 e 95,5,

Similary, denote by ¥(x | s) and H(x | s) the gradient and the Hessian
matrix of log p(x | s), where the differentiation is still done with respect to
s, and denote by ¥ (s) and Hy(s) the corresponding gradient and Hessian
of log po(s). In the following, we use the shorter notation § = 8,14p (8, x).

Our main result is given in the following theorem, proven in appendix A:

Theorem 1. Assume that all the log-pdf’s in equation 1.4 are differentiable. As-
sume further that the estimation error As = & — sg is small. Then the first-order
approximation of the error is

IAsl? = 1€ + &1 + o(IM ™" As|?), (2.1)
where

&= M [¥o(s0) — ¥(s0 | B)] (2.2)

& = M [¥o(s0) + ¥(x | 50)] (2:3)
with

M = Hy(sp) + H(x | sp). (2.4)

Now, the matrix M and the error vector in &, are functions of sy and x
only (i.e., the data-generating parts—steps 2 and 3, above). Thus, they do
not depend on our estimate for 6. In contrast, ¥,(so) — ¥ (so | 0) in & does
depend on 8, which is a function of the samples(1), ..., s(T) (step 1 above).
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If the errors & and &, were orthogonal, we could decompose the expected
error as

E{||As|I*} = E{I&11*} + E{I&N%) + o(IM ' As|?), (2.5)

and we would see a clear decomposition of the error in two parts (the
definition of the expectation will be specified later):

® The first part, E{||& 1%}, is the error in the estimate § due to an error in
our approximation p(.|#) of the prior py. In fact, if the approximation
of the prior is exact, ¥y(so) = ¥ (so | 0) for any sg, and this term is zero.

® The second part, E{||&|*}, does not depend on the sample
s(1),...,s(T) or @ at all. It is related to the error that the MAP es-
timator has even when the prior pg is known perfectly. This can be
seen from the fact that if sy were equal to the MAP estimator using
a perfect prior model, & would be zero (because, according to the
definition of the MAP estimator, the sum of these gradients has to be
Z€ero).

Although the two errors do not seem to be orthogonal in general, we do
have an orthogonality result in an important special case, which is infinites-
imal gaussian noise. This shall be treated in section 4 and theorem 3. Thus,
we do have some justification for considering the two errors independently
from each other: & would be dependent only on the model and not on the
estimator 8, in which case computation of § should be based on &; alone.

3 Proposal of Optimal Estimator

3.1 Direct Minimization of Approximate Restoration Error. Based on
theorem 1, we propose to minimize [|£;]|* in order to minimize the esti-
mation (restoration) error in s. Such an estimator should be optimal in the
sense of minimizing squared error, at least if the two errors in the theorem
are orthogonal enough.

One further problem is that [|€;]|*> depends also on py(s) via ¥, and
Hy, whose estimation may be very difficult. For reasons that will become
apparent later, the occurrence of ¥ is actually not a problem. Regarding
Hy, we use a first-order approximation, replacing it by its estimate H(s | §).

Thus, taking the expected value of the error ||£; | over all s with respect
to po, we arrive at the following objective function:

JO) = %/PO(S)II [H(s |6)+ H(x | 8)] "' [¥o(s) — ¥(s | )] I°ds. (3.1)
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Since we have a sample of s, the practical estimation will use a sample
version, which equals

T
J)= %ZII[H(S(D | 0)+H(x | s()] ' [¥ols(t)—¥(s(t) | O)]I7. (3.2)
t=1

So we conclude that optimal estimation of the parameters is based, at
least approximatively, on minimization or J with respect to 6:

0 =arg n}gin J@).

Basically, the objective function is a weighted squared error between the
gradient of the log density ¥ of the sample s(t) and the gradient of the log
density given by the model, ¥(.|). This is actually rather natural because
the definition of the MAP estimator, equation 1.4, implies that the sum of
the gradients of the log densities p(x | s) and p(s | ) must be zero; only
the latter gradient depends on the parameter estimate #. So to minimize
the error in the MAP estimator, one should find an 6 that gives an accurate
model of that gradient.

3.2 Simple Computation of Objective Function. It may seem that the
objective function J is computationally intractable because it uses ¥, (s(t)),
which depends on the unknown prior po. However, it turns out that the
objective function is very closely related to the score-matching objective
function proposed in Hyvarinen (2005); see also (Pham & Garrat, 1997;
Taleb & Jutten, 1999). Here, we present a generalization of the result in
Hyvirinen (2005) that allows simple computation of 7. This is given by the
following theorem:

Theorem 2. Denote the i, jth element of the square MM of the premultiplying
matrix [H(s | 8) + H(x | s)]~! in equation 3.1 by Gij(s). Assume some regularity
conditions on the Hessians.> Then the objective function in equation 3.1 can be
expressed as

7e)= [ m(s){ S 80i(s 1 0)Gij(5) + vi(s | 8)3Gis(5)

ij

+%Gij(s)1p,-(s [ 0)yi(s | 0)} ds + const. (3.3)

2The regularity conditions are: G;; is differentiable and po(s)G;;(s)¥i(s) vanishes when
Is|l = oo for alli, j, and the integrals given in equation B.2 are finite.
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where 9; denotes differentiation with respect to the ith element and the constant
term does not depend on 6. Moreover, this holds for any arbitrary functions G;;,
fulfilling the regularity constraints.

The theorem is proven in appendix B (see also Dawid & Lauritzen, 2005,
for a related result).

Obviously the sample version of this expression for the objective function
is obtained as

T

J0)=>"> " a:yi(s(t) | 0)Gi;(s(t)) + Vi(s(t) | 0)3;Gi;(s(t))

=1 ij
1
+5Gij(sO)ils(t) | 0)¥(s(t) 1 ), (34)

where we have omitted the irrelevant constant. Here we see the remarkable
fact that this sample version is easy to compute: it contains only sample
averages of some functions, which are all part of the model specification
and can be simply computed, provided that the model is defined using
functions log p(.|#) whose derivatives can be given in closed form or
otherwise simply computed.

3.3 Relationship to Score Matching. In fact, in Hyvarinen (2005), a
special case of our estimation method was proposed based on purely com-
putational considerations. The problem considered in that article was what
to do if the normalization constant of the pdf is not known. In other words,
the prior pdf is defined using a function 4 in a form that is simple to com-
pute, but g does not integrate to unity. Thus, the pdf is given by

p(s|0) q(s; 9),

VZ0)

where we do not know how to easily compute Z, which is given by an
integral that is often analytically intractable:

Z(0) = /q(s; 0)ds.

Now, the derivatives of the log density (“score functions”) with respect to
the s; do not depend on Z at all, so the problem of computing the normal-
ization constant disappears when we consider only the score functions. It
is natural to try to estimate the model by looking at the Euclidean distance
between the score function of the data and the score function given by the
model. This leads to a special case of the present objective function, where
the matrix M is replaced by identity. In Hyvarinen (2005), it was further
proven that such an estimator is (locally) consistent.
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Thus, we see that our proposed estimator combines statistical optimality,
in the sense discussed in this letter, with computational simplicity, in the
sense that the prior model p(s | ) does not need to integrate to unity, as
was originally shown in Hyvarinen (2005) for a special case. In the next
section, we will see that this special case emerges when we take a particular
form for p(x | s).

4 Case of Gaussian Infinitesimally Small Noise

4.1 Simplification of the Estimator. A very interesting special case is
obtained when x is equal to s plus infinitesimally small gaussian indepen-
dent and identically distributed (i.i.d.) (white) noise:

1 n
log p(x | s) = —?Hx —s|? - 5 10g2m72, (4.1)

where 7 is the dimension of both x and s and we consider the limit of

a2 > 0. 4.2)

Such additive gaussian noise is an important practical case in signal process-
ing and computational neuroscience. It can also be considered a theoretical
archetype of signal corruption. In this case, the matrix M is of the form

M= Ho(S[)) — él. (43)

Taking the limit of 0> — 0, we see that M approaches the identity matrix
multiplied by —1/0. Our objective function is thus simplified to the Eu-
clidean distance of the score functions if we ignore the scaling by 1/02.
This simplifies the computations very much and gives the original score-
matching distance proposed in Hyvarinen (2005) and discussed in the pre-
ceding section. The sample version of the objective function, in the present
notation, is then given by

T
TO) =3 0i(s(0) 10)+ vi(s(0) | 0)- (44)

t=1 i

4.2 Exact Orthogonality of Errors. In the case of infinitesimal gaussian
noise, we also have exact orthogonality of the two errors &£ and &, in
theorem 1. In appendix C we prove the following:

Theorem 3. Assume that p(x | s) is as in equations 4.1 and 4.2. Then we have
for any so:

Ex{(€1. 80y =0 foralls. (4.5)
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That is, the two errors in theorem 1 are orthogonal, and equation 2.5 holds when
the expectations are taken over x given any so.

Thus, this theorem gives some justification for considering the & and &,
separately and estimating parameters by simply minimizing &;.

4.3 Relation to Stein’s Unbiased Risk Estimator. In the case of in-
finitesimal gaussian noise, we also see an interesting connection to Stein’s
unbiased risk estimator (SURE).3

Let us consider the following problem. Assume that the random variable
x follows a normal distribution with unit variance and unknown mean .
We consider estimators of u of the following form,

A=x+g), (4.6)

for some function g to be chosen. This can be interpreted in terms of denois-
ing by considering u to be the original signal and x a noisy observation.
Stein (1981) showed that in this case, an unbiased estimator of the risk (i.e.,
expected squared error) of the estimator is obtained as

Ef(x + g(x) — p)*} = 1+ Ex{g*(x) +2¢'(x)}. (4.7)

To see the connection with our framework, assume that the estimator is
obtained by MAP estimation using a prior p(.|#) for i, with parameters 6.
Further, assume that the noise is infinitesimal with respect to the signal;
since equation 4.7 assumes that noise variance is unity, this means that we

assume that the variance of u is very large. Then a first-order approximation
of the MAP estimator gives (Hyvarinen, 1999)

f=2x— (log p) (x | 0). 48)
In other words, MAP estimation leads to

g0(x) = —(log p) (x | 6) = —¥/(x | 6), 49)
where /(.|0) is the derivative of the logarithm of the prior pdf of x, which

depends on the parameters §. Now, Stein’s risk estimator gives, when av-
eraged over the distribution of u,

ELEx{(x 4+ go(x) — )} =1+ E,EL{y*(x | 0) +2y/(x | 6)}.  (4.10)

3T am grateful to an anonymous referee for pointing out this connection.
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Since the variance of x is infinitesimal compared to the variance of u, the
expectation with respect to x can be ignored, and we can simply take x = p.
Thus, minimization of this risk is equivalent to minimizing

E, {%W(M 10)+ v/ (1| 0)} : (4.11)

which is nothing else than the original score-matching objective proposed
in Hyvarinen (2005). For notational simplicity, we considered here the one-
dimensional case, but the result holds in n dimensions because we simply
need to take the sum of the errors (risks) in different dimensions. Thus,
SURE provides another way of deriving score-matching estimation as the
optimal prior in the special case of infinitesimal gaussian noise.

SURE can be estimated from noisy samples; it assumes noise variance
is known, but this can usually be estimated. It was applied for wavelet
shrinkage by Donoho and Johnstone (1995). The connection between score
matching and SURE was pointed out by Raphan and Simoncelli (2007) in a
rather different framework.

5 Interpretations as Projection and Structure

In this section, we propose two intuitive interpretations of the estimation
performed by score matching. The interpretation is based on two ideas:

¢ The score-matching estimator is obtained by minimizing a Euclidean
distance, which leads to an interpretation as projection.

¢ The amount of noise that can be removed from data is dependent on
the amount of structure inherent in the data vector. Such structure
is often associated with information-theoretical quantities such as
(neg)entropy, but our analysis provides an alternative measure of
structure.

The word structure is used loosely in what follows; intuitively, it means
a lack of complete randomness in the data distribution. This is similar to
the intuitive principle of information theory, in which the structure present
in the data distribution allows it to be represented more compactly (i.e.,
compressed). Here, we show how the proportion of gaussian noise that can
be removed from noisy observations leads to a similar measure of structure.

5.1 Definition of Geometry. We begin by defining basic geometrical
concepts based on the score functions. Consider the space S of probability
density functions that are sufficiently smooth in the sense that the assump-
tions given in the theorems above are fulfilled. Assume that ps in S is fixed
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once and for all. Given any two pdf’s p; and p, in S, we define their dot
product as

(p1, pa)s = / ps(€) {Z wl,,-(wz,,-(e)} ds, (5.1)
i=1

where ¥ ; denotes the ith element in the score function of p;, and likewise
for v ;. (For a bit more mathematical rigor, we use £ as the integrating
variable instead of s.) The norm of a pdf is then given by

Ip1llz = (pr, p1)s = / ps(€) [Z wl,i(s)z} d&
i=1

=/ psE)lv1(6)1%d8, (5.2)

where the notation |.||, without a subscript, in the right-most integral de-
notes the ordinary Euclidean norm.

The norm we have just defined is closely related to Fisher information.
The multidimensional Fisher information matrix is defined here as

Ir(s) = E{¥(s)¥(s)"}. (5.3)

Strictly speaking, this is the Fisher information matrix with regard to a
hypothetical location parameter. Obviously we have

Ipsl? = tr(I(s)) (54)

Using the norm, we can also naturally define the distance:
dis(p1, p2) = / Po(®) [Z(m,i(&) - wz,i(s»z} d
i=1

= / ps©) Y1 (§) — ¥ (§)I1°dE. (5.5)

Basically, we are defining something similar to a Hilbertian structure in
the space of score functions ¥. Now we proceed to show how these geo-
metric concepts can be interpreted as measures of the structure of a prior
distribution in Bayesian inference.

5.2 Denoising Capacity Using a Perfect Model. The norm ||.||s defined
in equation 5.2 is closely related to denoising capacity. In previous work,
we proved the following:
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Theorem 4. Assume that p(x | s) is a gaussian distribution with mean s and
covariance o> I. The quadratic error of the MAP estimator 8, when the distribution
ps is exactly known, is given by

tr(E{(s — 8)(s — 8)"}) =no? — a*||ps||2 + terms of higher order in o

(5.6)
where o2 is the noise level.

This is a simple corollary of theorem 2 in Hyvarinen (1999).

Thus, we can interpret || ps||2 as the amount of structure that is present in
the data vector s. It determines the amount of noise reduction that we can
achieve by MAP estimation when we have a perfect model of the distribu-
tion of s. (The dominant term 102 does not depend on the distribution of the
data, so it is irrelevant as a measure of structure.) The case of an imperfect
model will be considered in the next section. Now we show some examples
of different distributions and the amounts of structure they contain.

Example 1. A flat distribution
ps(§) =cforall§ e R" (5.7)

has no information that could be used in denoising. In fact, it corresponds
to a score function that is identically zero, so the norm || p s is zero.

Example 2. The gaussian distribution has minimum structure in the sense
of ||.||s for a fixed covariance structure (Cover & Thomas, 1991). This holds
for both our Fisher-information-based measure and the more widely used
Shannon entropy.

Example 3. Take any s with smooth pdf. Consider the variable rescaled
variable os. When o — 0, the || ps||s goes to infinity. The structure becomes
infinitely “strong” in the sense that we then know that s does not take any
values other than zero. Conversely, if ¢ — oo, || ps|ls goes to zero, because
the limit is the flat prior. Translating the distribution as s 4 v for a constant
v does not change |.|s.

5.3 Denoising Capacity Using Imperfect Model. In practice, we do not
have a perfect model of ps. Denote by p our approximation of ps. A simple
combination of the proofs of theorems 1 and 4 gives the following general
result:

Theorem 5. Assume that p(x | s) is as in theorem 4. Assume we use p as the
approximation of the prior p(s | 0) in the MAP estimator defined in equation 1.4.
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The denoising error can then be decomposed as

tr(E{(s = §)(s = 8)" ) =no” — ol ps|lg + o dists(p, po)
+ terms of higher order in o*. (5.8)

We see that the error is increased proportionally to the distance dist?(p, ps).
Thus, it is this distance between p and p; that gives the reduction of denois-
ing capacity due to an imperfect model. This enables us to interpret this
distance as the amount of structure of s that is not modeled by p. Thus, the
metric we have defined is the metric of optimal estimation if the purpose is
to construct a prior model of the data to be used in Bayesian inference such
as denoising.

5.4 Orthogonal Decomposition in Exponential Families. A particu-
larly illustrative decomposition can be obtained for exponential families.
Assume our model comes from an exponential family,

k
log p(s | ) = 29 gi(s) +log Z(9), (5.9)

i=1

where the parameter vector § can take all values in R* and Z is anormalizing
constant that makes the integral equal to unity. The score functions are
simply obtained:

k
Y(s|0)= Z@‘Vgi(s), (5.10)

which shows that the space of score functions in the model family is a linear
subspace. This implies that estimation by minimization of dist2(p(.|9), ps)
is an orthogonal projection. In an orthogonal projection, the residual is
orthogonal to the result of the projection. Denote the estimator minimizing
Il.Ils by p. Then this orthogonality means

<fj - p57 ﬁ)s = 07 (511)

and it also implies the following Pythagorean decomposition:

psl? = dist?(p, ps) + || Plls- (5.12)
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This decomposition has a very interesting interpretation. We have by
theorem 5 and equation 5.12,

tr(E{(s — 8)(s — 8)" ) =o?n + o*[dist2 (P, ps) — I pslis] + 0(c?)
=o’n—o*|pl? +o(c?). (5.13)

So we see that the terms in equation 5.12 can be intuitively interpreted so
that the decomposition reads

Ipsl2 = dist (. ps) + P13 5.14)
Structure in data = Structure not modeled + Structure modeled ’

The interpretation of the first two terms here has already been discussed.
The third term in equation 5.14 measures, according to equation 5.13, the
denoising capacity when p is used as a model of the data. This is why, in
general, we call it the amount of structure modeled. However, this decompo-
sition is strictly true only in the case of the exponential family.

6 Simulations

We performed some simulations to investigate the validity of the approxi-
mations made in deriving our main theorem (theorem 1) and our estimation
method. In our simulations, the one-dimensional quantity s was corrupted
by additive gaussian noise. Four different distribution py(s) were used:

1. A gaussian mixture model with different probabilities for the two
kernels:

3 1
Pofs) = S9(s) + 795 = 5). 61)

where ¢ is the standardized gaussian pdf.
2. A second gaussian mixture model, which has a strong peak due to
the small variance of one of the kernels,

1 1
po(s) = Hfﬂ(s/dl) + E‘P(S -5), (6.2)

where ¢ is the standardized gaussian pdf. The width of the first kernel
was set to o = 0.2.

3. A chi-square distribution with 4 degrees of freedom.

4. The Laplacian (double-exponential) distribution of zero mean and
unit variance, whose pdf is given by

pols) = \% exp(V2s]). (6.3)
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All four distributions were further standardized to zero mean and unit vari-
ance. All these distributions were modeled (approximated) by a smoothed
version of the Laplacian distribution with a location parameter 6 to be
estimated:

log p(s | 6) = —f log cosh(y (s — 0)) — Z(y). (64)

which is a very good model for the Laplacian data but not good for others.
The parameter y controls the smoothness of the pdf: for y = oo, this dis-
tribution becomes the Laplacian distribution of unit variance. We used the
value y = 10.

A sample of 10,000 data points was obtained from each of the four prior
distributions. Thus, any finite-sample effects were reduced to a minimum,
and the effects investigated were almost exclusively due to the fact that
po does not belong to the model distribution family. The parameter 6 was
estimated using score matching, as well as maximum likelihood for com-
parison.

Another sample of 20,000 data points was generated from each distribu-
tion, and gaussian noise of different variances was added to it, which gave
the corrupted data x. The MAP estimator 5)14p for s was then computed for
the two estimates of 6 given by score-matching estimation (SME) and max-
imum likelihood estimation (MLE) and for each of the 20,000 observed x’s.
The squared errors in the denoising inference were computed as (5 — s)? for
the two estimators. The procedure was repeated four times with different
noise levels.

In some cases, the difference between the errors for SME and MLE is so
small that one might doubt its statistical significance (it could be due to the
limited sample used in the simulations). So we performed a t-test on the
differences. (It was checked that the distributions are gaussian enough for
the t-test to be valid.) The test used the null hypothesis that the mean error
in SME is larger than the mean error in MLE. If the p-value is very small
(<0.01), SME is significantly better than MLE, and if it is very large (>0.99),
MLE is significantly better than SME.

To get a better idea of the scale of the errors, we compared the obtained
denoising errors with the one obtained using a perfect prior (i.e., the true
distribution s in the inference). We quantified the denoising performance
using a performance index that was the amount of noise removed (reduction
in squared error), based on either MLE or SME, as a proportion of the
amount of noise removed using the perfect prior, expressed in percentages:

Performance index = 100

Noise variance — Squared error using prior model p(s | )

(6.5)

X : - - : .
Noise variance — Squared error using perfect prior model
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Table 1: Results for the Simulations on Denoising Using MAP Estimation.

Gaussian Gaussian
Denoise by MAP Mixture 1 Mixture2  ChiSquare Laplacian
SM: value of § —0.447 —0.961 —0.505 —0.027
ML: value of —0.335 —0.385 —0.225 0.002
Noise variance = 0.05
SM: squared error in § 0.0451832 0.0437251 0.0475274 0.0458882
ML: squared error in § 0.0458262 0.0539467 0.0481536 0.0458603
PP: error in s 0.0409871 0.0232552 0.0445455 0.0458615
p-value of difference 0 0 1.41838e-08  0.983707
SM: performance index  53.4441 23.4623 45.3304 99.3535
ML: performance index  46.3097 —14.757 33.8515 100.027
Noise variance = 0.1
SM: squared error in § 0.0872924 0.0862113 0.0905881 0.0884577
ML: squared error in § 0.0889856 0.109962 0.0928176 0.0884553
PP: error in s 0.0765966 0.0491676 0.0840644 0.0884539
p-value of difference 0 0 2.22045e-16  0.534107
SM: performance index ~ 54.298 27.1258 59.0617 99.967
ML: performance index  47.0631 —19.5983 45.071 99.9879
Noise variance = 0.2
SM: squared error in § 0.157888 0.175383 0.168148 0.163455
ML: squared error in § 0.162068 0.214278 0.171554 0.163322
PP: errorins 0.141524 0.129202 0.153341 0.163327
p-value of difference 0 0 2.00357e-09  0.989493
SM: performance index ~ 72.0148 34.7715 68.2662 99.6507
ML: performance index  64.8668 —20.1669 60.9658 100.014
Noise variance = 0.5
SM: squared error in § 0.359553 0.495427 0.353038 0.336505
ML: squared error in § 0.363577 0.48297 0.344779 0.33623
PP:errorins 0.331788 0.45787 0.307364 0.336233
p-value of difference 0 0.999999 1 0.984166
SM: performance index ~ 83.4939 10.8552 76.2902 99.8336
ML: performance index  81.1015 40.4231 80.5778 100.002

Notes: For each of the four distributions, the estimates of 6 are first given. Next, for each
of the four noise levels, the errors in estimation of s using § from score matching (SM) or
from maximum likelihood (ML) are given. For comparison, the error for MAP denoising
using the perfect prior (PP) is shown. The p-value is for the null hypothesis that the mean
error for SME is larger than the mean error for MLE; at the same time, it tests the opposite
hypothesis, so that one minus the p-value is the p-value for the null hypothesis that the
mean SME error is smaller. The performance index shows the denoising obtained as a
percentage of the denoising using perfect prior.

This performance index can also take negative values, which means that the
denoising estimator is so bad that it actually increases the noise in the data.

Table 1 shows the obtained results. First, we see that the estimates ob-
tained for 6 are quite different for the two estimation methods. The only
exception is the case of the Laplacian distribution, because it is symmetric
around the mean and both methods are consistent, eventually converging
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to the real location value of 0. Note that because the (smoothed) Laplacian
distribution p(s | 8) is only a very rough approximation for the other three
pdf’s, no “correct” value for 6 is available for them, so the values of 6 cannot
be compared with any ground truth.

The squared errors in § are what we essentially want to compare. For all
the distributions except the Laplacian, SME gives a smaller squared error
for the smaller noise levels, and the difference is statistically significant.
The improvement is typically 5% to 30% of the maximum noise reduction,
as measured by the performance index. In some cases, MLE gives such a
bad approximation that the noise is actually increased, which leads to a
negative value for the performance index. For the largest noise level, MLE
gives a smaller error in some cases. This is because the theory developed
in this letter considers the limit of infinitesimal noise and the first-order
approximations used in the analysis break down at large noise levels.

For the Laplacian distribution, the p-values were some cases close to
significance and in others far from it: The difference in the errors is so small
that even with the 20,000 samples, hardly any significant error can be seen.
Actually, the p-values here are irrelevant from the viewpoint of our analysis,
because in this case, the differences are completely due to finite-sample
effects, since both methods are consistent and converge on the value 6 = 0.
This is the case where py belongs (up to a small approximation error due to
using equation 6.4 with finite y) to the model family p(.|0). A reservation
with respect to the applicability of our theorem is thus necessary: if py
belongs to the model family p(.|6), any improvement obtained by SME is
negligible. This is presumably because the error &; then approaches zero in
the limit of a large sample, whereas & does not. So the contribution of &
becomes negligible, and its minimization has no real effect on the denoising
error. Thus, our method is interesting only when we are approximating the
prior density po, and the approximation does not converge to the right data
distribution even for an infinite sample.

The same results are shown in Table 2 for MMSE inference. That is, the
parameter estimation was done as above, but the denoising was performed
by taking the mean of the posterior distribution of p(s | x). The results
are qualitatively quite similar to those of Table 1, although slightly less
favorable to SME, especially for the largest noise level. Note that there is no
contradiction in MMSE estimation being less favorable to SME, even though
SME was shown to approximately minimize the mean squared error. This
is because SME finds parameter values that minimize mean squared error
for MAP inference, which is different from minimizing mean squared error
for MMSE inference.

Thus, the simulations show that when the data distribution is not very
well approximated by the model and the noise level is small, the average
errors corresponding to SME are significantly smaller than average errors
corresponding to MLE. The difference is significant statistically, and possi-
bly also in practice for some distributions. This confirms the utility of the
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Table 2: Results for the Simulations on Denoising Using the MMSE Estimator.

Gaussian Gaussian

Denoise by MMSE Mixturel  Mixture2  ChiSquare Laplacian
SM: value of § —0.447 —0.961 —0.505 —0.027
ML: value of —0.335 —0.385 —0.225 0.002
Noise variance = 0.05
SM: squared error in § 0.0452207  0.045682 0.0470846 0.0457491
ML: squared error in § 0.0457162  0.052363 0.0475836 0.0457327
PP: error in s 0.0406318  0.0227558  0.044132 0.0457332
p-value of difference 0 0 5.25571e-10 0.968615
SM: performance index  51.0166 15.8492 49.684 99.6284
ML: performance index  45.7274 —8.67333 41.1795 100.012
Noise variance = 0.1
SM: squared error in § 0.0879704  0.0915913  0.0890099 0.0878702
ML: squared error in § 0.0891757  0.103574 0.090115 0.0878727
PP: error in s 0.0742282  0.0434066  0.0829422 0.087871
p-value of difference 0 0 6.7579%e-10 0.446729
SM: performance index  46.6775 14.8582 64.4289 100.007
ML: performance index  42.0005 —6.31553 57.9501 99.9861
Noise variance = 0.2
SM: squared error in § 0.160096 0.185088 0.162824 0.159106
ML: squared error in § 0.16198 0.192796 0.162506 0.159044
PP: error in s 0.128385 0.0957017  0.149551 0.159045
p-value of difference 0 0 0.805858 0.954085
SM: performance index  55.7204 14.2974 73.689 99.8501
ML: performance index  53.0903 6.90742 74.3201 100.002
Noise variance = 0.5
SM: squared error in 3 0.346242 0.455679 0.328342 0.313556
ML: squared error in § 0.343421 0.394174 0.313815 0.313384
PP:errorins 0.278469 0.26963 0.287739 0.313387
p-value of difference 1 1 1 0.979591
SM: performance index  69.4072 19.239 80.8715 99.9093
ML: performance index  70.6803 45.9376 87.7152 100.002

Note: The parameter estimates are identical to Table 1 and repeated for convenience only.

approximation given in theorem 1: using # given by SME leads to smaller
errors in the estimation of s. Nevertheless, it could be argued that the advan-
tage of SME is mainly of theoretical interest since the improvement is rather
small and limited to the smallest noise levels. Future research is needed to
see if the difference is important enough in some practical applications.

7 Conclusion

We considered the estimation problem encountered in Bayesian perception
and signal processing: the estimation of a prior model of a signal, based on
a sample of such signals. Our analysis is based on the assumption that we
can observe a sample of uncorrupted signals to estimate the model.
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If the objective is to have a prior that is optimal in Bayesian inference,
the optimal estimation method is not maximum likelihood—at least not
in the limit of very weak signal corruption that we analyzed. Rather, it
turns out to be a generalization of the score-matching estimator originally
proposed purely on computational grounds in Hyvarinen (2005). Thus, we
see that score matching also has some statistical optimality properties in
signal restoration, in addition to its original motivation, which was compu-
tational simplicity. Our simulations confirmed that signal restoration based
on score-matching estimation has smaller errors when compared to maxi-
mum likelihood estimation, although the difference may be small in practice
and mainly of theoretical interest.

Moreover, the analysis leads to a new geometric interpretation of sta-
tistical estimation, as well as a new approach to the measurement of how
much interesting structure there is in a probability distribution, based on
the capacity of denoising using that structure.

Appendix A: Proof of Theorem 1

Due to the differentiablity of the functions, the gradient is zero at the point
of MAP estimate. We obtain by definition of MAP,

YE10)+y(x|8)=0. (A1)
Trivially, this can be manipulated to give
Vo®) +[¥ (8 19) = ¥o®)] + ¥ (x| 8) =0. (A2)

We make a first-order Taylor expansion with respect to § for the first and
last terms on the left-hand side of equation A.2 to yield

Yoo+ As)+[¥(8 | 0) — ¥o(8)] + ¥(x | so + As)
= ¥o(S0) + Ho(s0)As + [¥(3 | ) — ¥, (3)]
+¥(x | s0) + H(x | s0)As + o(]| As||) = 0, (A3)

which gives, after reordering terms,

[Ho(s0) + H(x | s0)]As =[¥o(8) — ¥ (8 | 9)]
—[¥o(s0) + ¥ (x| s0)] +o(llAs])). (A4)

Now, make a first-order approximation for the first term in brackets on the
right-hand side

Vo3 — ¥ (5 18) = ¥y(so) — ¥(so | 8) +o(llAs]). (A5)
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Thus, we can solve the estimation error by multiplying both sides of equa-
tion A.4 by M. Taking the norm of both side then yields

IAs]? = [ + &I +o(IM T As|?), (A.6)

with & and & as given by the theorem. This holds for a given estimate 0
and a given data sample x, which then define the estimate 8.

Appendix B: Proof of Theorem 2

From equation 3.1, we obtain simply
1
I=5 / po(s)Y_Gij(s)[Wo.i(s)—vi(s | 0)l[wo.j(s)— (s | O)]ds, (B.1)
ij

where v ; denotes the ith element of ¥, thatis, the derivative of log pp with
respect to s;. We will prove the theorem in the general case for any functions
Gi;j that fulfill the regularity constraints. The proof is a simple variant of
the partial integration trick used in basic score matching (Hyvarinen, 2005)
based on earlier work by Pham and Garrat (1997) and Taleb and Jutten
(1999). Simple manipulations give

T=- / po®) Y Gy $)Wo.s()(s | 8)ds
ij

1
+2fpo(s);c,-]-w,-(s | 0)(s | 6)ds + const., (B.2)

where the constant depends on only pp and not on 6. The latter term on the
right-hand side of equation B.2 is clearly equal to the last term of J given
in the theorem. What really needs to be proven is that the first term on the
right-hand side of equation B.2 equals the sum of the first two terms of 7
in the theorem. Now we use partial integration as follows:

V(s | 0)Gij(s)ds

/ Po()Gi;(8) 0. (8) (s | ) ds = / pols) a;’” ole)

os)
= [ an©wi(s10)G; 6 ds
= Po(i(s | 0)GG)], ..

— poSi(s |Gy 6)],_ .



Optimal Approximation of Signal Priors 3109

- / Po()3:(Yi(s | 0)Gi(s)) s

- [ MGGt 10
Gij(s)aii(s | 0)]ds, (B.3)

where the disappearance of the two terms evaluated at infinity is due to
the regularity assumptions of the theorem. (A more rigorous justification
for this partial integration, element by element, is given in lemma 4 of
Hyvarinen, 2005.) In equation B.2, we have a sum of such terms over i
and j. When we take the sum, we obtain the first two terms in braces in
equation 3.3. Thus, we have shown the theorem.

Appendix C: Proof of Theorem 3

Actually, the theorem holds even for gaussian noise that is noti.i.d. We shall
prove the theorem in this general case where

¥(x|sp) =—% "' (x —sp), (C1)

which implies H(x | sp) = —X~'. We assume that £~! grows infinitely large
with respect to some matrix norm, which is a generalization of 02 — 0. We
have

(1. €2) =[Wo(s0)—¥(s0 | §)] [Ho(so)+H(x | s0)] 2 [Wo(s0)+¥(x | s0)]
— [Wols0) = ¥(so 1 9] (E )2 [~ (x — s9)] . (C2)
because the terms with X!, that is, H(x | so) and ¥(x | so), grow to be

infinitely large with respect to the other terms. Now, we can take the expec-
tation with respect to x, given sy, to obtain

A AT _
Exiso{(€1, &)} —> [¥o(s0) =¥ (50 | 9)] =*[-Z7'(s0 —50)] =0, (C3)
because E{x | sp} = sp and no other term except for x in the second brackets
depends onx (i.e., the sampling of the observed data). Thus, we have proven

the orthogonality.
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