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ABSTRACT

The Bayesian logic of probability, evidence and decision
is the presumed rule of reasoning in analytical models
of accounting disclosure. Any rational explication of the
decades-old accounting notions of “information content”,
“value relevance”, “decision useful”, and possibly conser-
vatism, is inevitably Bayesian. By raising some of the proba-
bility principles, paradoxes and surprises in Bayesian theory,
intuition in accounting theory about information, and its
value, can be tested and enhanced. Of all the branches
of the social sciences, accounting information theory begs
Bayesian insights. This monograph lays out the main logical
constructs and principles of Bayesianism, and relates them
to important contributions in the theoretical accounting
literature. The approach taken is essentially “old-fashioned”
normative statistics, building on the expositions of Demski,
Ijiri, Feltham and other early accounting theorists who
brought Bayesian theory to accounting theory. Some history
of this nexus, and the role of business schools in the develop-
ment of Bayesian statistics in the 1950-1970s, is described.
Later developments in accounting, especially noisy rational
expectations models under which the information reported
by firms is endogenous, rather than unaffected or “drawn
from nature”, make the task of Bayesian inference more

David Johnstone (2018), “Accounting Theory as a Bayesian Discipline”, Foundations
and Trends® in Accounting: Vol. 13, No. 1-2, pp 1-266. DOI: 10.1561/1400000056.



difficult yet no different in principle. The information user
must still revise beliefs based on what is reported. The extra
complexity is that users must allow for the firm’s perceived
disclosure motives and other relevant background knowledge
in their Bayesian models. A known strength of Bayesian
modelling is that subjective considerations are admitted and
formally incorporated. Allowances for perceived self-interest
or biased reporting, along with any other apparent signal
defects or “information uncertainty”, are part and parcel of
Bayesian information theory.
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Introduction

This monograph introduces Bayesian theory and its role in statistical
accounting information theory. Its intended audience includes accounting
PhD students and researchers. The Bayesian statistical logic of proba-
bility, evidence and decision lies at the historical and modern epicenter
of accounting thought and research. It is not only the presumed rule
of reasoning in analytical models of accounting disclosure but also the
default position for empiricists when hypothesizing about how the users
of financial statements think:

Based on Bayesian decision theory research (e.g. DeGroot,
1970) that shows that loss-minimizing investors place less
weight on noisier (i.e. more uncertain) information, we
expect to observe more muted initial market reactions to
unexpected earnings signals that have higher information
uncertainty. (Francis et al., 2007, p. 408)

Bayesian logic comes to light throughout accounting research. It is
the soul of most strategic disclosure models, for the reason that any
other model of investor behavior implies an incoherence or inconsistency
in beliefs and actions by which the investor will overall surely lose to a
more coherent market or opponent:

3



4 Introduction

In theory-based, economic analyses, reliance on Bayes rule
is so routinized an assumption as rarely to warrant any
justification. The compelling feature of Bayes rule is that it
implies the most efficient use of information. Consequently,
in market settings, investors who use information more
efficiently (i.e. Bayesians) should be able to exploit and
dominate their less efficient counterparts. (Verrecchia, 2001,
p. 123)

Bayesianism is similarly a large part of the stated and unstated
motivation of empirical studies of how market prices and their implied
costs of capital react to better financial disclosure. Investors are taken
to impose discount rates or costs of capital consistent with their best
possible (i.e. most rational) probability assessments.

Summarizing their philosophical position, Chen and Schipper (2016)
argued for theory to play a greater part in accounting PhD programs
and in empirical research designs. Their view of accounting is overtly
Bayesian. They highlight the role of accounting measurements as infor-
mation for fundamental analysis, which is understood as the formation
of beliefs about the firm’s cash flows and risks, culminating in financial
investment decisions:

Analyses of different accounting measurement attributes (for
example, fair value and historical cost) illustrate the poten-
tial benefit of using theory to discipline empirical analysis. A
general question that accounting researchers are interested
in is whether accounting measurements matter, in the sense
of whether different accounting measurement attributes for
the same item lead to differences in investors’ assessment of
firms’ fundamentals and therefore affect investors’ decision-
making. (Chen and Schipper, 2016)

Similarly, Barth (2006b) notes an array of market effects that are
indicative of accounting information having met its objective, namely
to alter investors’ beliefs and thus actions:

Some [empirical research] designs use capital market metrics,
other than equity market value, such as trading volume,



cost of capital estimates, and bond ratings. These studies
help to provide insights into the role of accounting in capital
markets. Beaver (1968) is the seminal paper in this literature
and shows that accounting information changes investors’
beliefs by showing that trading volume increases at earnings
announcement dates. (Barth, 2006b, p. 95)

It could be argued that using information for decision-making — and
hence logical (i.e. Bayesian) reasoning — all goes without saying. The
retrospective provided by Chen and Schipper suggests otherwise. They
explain that even theoretically formal and rigorous valuation models,
like the Ohlson residual income model, are essentially non-Bayesian,
because they feed accounting information into a finance-based valuation
model rather than feeding Bayes theorem. Any implicit belief revision
upon the Ohlson framework is not brought to light:

This valuation approach does not model how investors use
accounting information to update their beliefs about firms’
future dividends. Therefore, the value relevance literature
circumvents what some might view as a basic question
to be asked about differences in accounting measurement
attributes, namely, do the different measurements indeed
result in differences in information used by investors. Fur-
thermore, because the valuation model is silent on what
“information content” and “value relevance” mean and how
they are affected by different measurements, it has limited
ability to guide research designs and to help researchers draw
meaningful inferences. Consequently, much of the existing
literature has relied on ad hoc specifications, and focused
on assessments of explanatory power and assessments of
regression coefficients linking accounting outcomes such as
earnings to market outcomes such as price or return. Absent
a theory or at least an analytical structure explicitly con-
sidering investors’ use of information (e.g., investors’ prior,
Bayes updating), the interpretations of these results must of
necessity be ad hoc. ... We are not implying that the residual
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income frameworks revived by Ohlson (1995) and others
have no value. In fact, we believe this research provides
useful insights on the role of accounting measurement. Our
point is that this research is not suitable to answer questions
related to how investors use accounting data to update their
assessments of estimates of future cash flows. (Chen and
Schipper, 2016)

Any attempt to explicate the decades-old accounting notions of
“information content”, “value relevance”, “decision useful” and the like,
is inevitably a Bayesian task. It is fair to say that in the human logic
of reasoning under uncertainty, probability theory (and thus Bayes’
theorem) is the only candidate (we would not draw balls from an urn,
and make inferences about its contents, on any formal understanding
other than the laws of probability).

Frequentist or “classical” statistics, which we have probably all
studied, refuses to play that game. It is not permitted under frequentist
statistical theory to put a probability of any description on a proposition
or “hypothesis”. We can write f(data|hypothesis), provided that we
interpret f as frequency, but we cannot write f(hypothesis|data) on
any interpretation of f. So, for example, we cannot use accounting
data to come to an assessed probability of a firm going bankrupt,
which of course means that we cannot revise that probability when new
accounting data arrives.

Subjectivist Bayesian inference supports inferences drawn from
accounting “measurements” or “numbers” and does not need input
observations/signals to have any substantive meaning other than as
merely a “signal”. Just as we can use a barometer to give an “indicator”
of what weather to expect, while not necessarily giving that reading of
barometric pressure any deeper scientific interpretation, Bayesian theory
shows that extensibly “meaning-free” or merely “hard to interpret”
accounting disclosures (and non-disclosures) can be decision-useful
indicators of economic fundamentals. That understanding of Bayesian
belief revision and decision-making was brought to accounting theory
by Feltham, Demski and others in the 1960s and 1970s, and mirrored
the rise of neo-Bayesianism in other fields in the 1950s-1960s, which in



turn followed a burst of statistical work in decision theory, operations
research and code breaking during WWII.

The approach taken in this monograph is a Demski-like treatment
of “accounting numbers” as “signals” rather than as “measurements”.
It should be of course that “good” measurements like “quality earnings”
reports make generally better signals. However, to be useful for decision-
making under uncertainty, accounting measurements need to have more
than established accounting measurement virtues, of the types that
early theorists like Paton, Bell and Sterling might have advocated, and
which recently resurfaced in the 1960s/1970s-like normative discussion
in Hodder et al. (2014) and Dechow et al. (2010). Chen and Schipper’s
view is that accounting measurements need to possess enough technical
Bayesian information attributes to materially influence users’ beliefs
and consequent investments. This monograph is really about explaining
what those Bayesian information attributes are, where they come
from in Bayesian theory, and how they apply in statistical accounting
information theory.
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Bayesianism Early in Accounting Theory

Bayesian accounting theory emerged remarkably early in the rise of
modern Bayesianism in statistics. That wider Bayesian movement arose
partly from work done during WWII and took root in US Universities
during the 1950s and 1960s.

The following brief history first describes how Bayesian methods were
rediscovered in statistics, and how the newly enthused and influential
Bayesian school, including leaders like L.J. Savage, went into dispute
with the conventional frequentist doctrine that had risen and dominated
statistical theory in the period between the wars. Then comes some
detail of how a Bayesian movement arose in US business schools, most
clearly at the Harvard Business School.

The final piece of this short historical picture remarks on how the
rise of Bayesianism in a few very influential US statistics departments
and business schools, quite simultaneously, gave rise to a new and rich
view of accounting theory, whereby accounting disclosures, or accounting
“numbers”, were interpreted not only as “measurements” but ultimately
as “signals” evaluated by their relevance and effect on users’ Bayesian
beliefs and Bayesian decision-making.
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2.1 Rise of Bayesian statistics

Historians of statistics note that once upon a time there was only
Bayesian statistics.! Inductive inference was called “inverse probability”
and Bayes theorem was the only way.? That changed strongly in the
1920s and 1930s with the ingenious mathematical developments of
frequentist theoretical tools, mainly by R.A. Fisher, Jerzy Neyman and
Egon Pearson.

Fisher developed his theory of “significance tests” and Neyman
altered and re-interpreted that theory as one of “hypothesis tests”. The
testing method that emanated out of a fierce disagreement between
the two avowedly non-Bayesians was a hybrid model of testing which
nowadays is known interchangeably by the two names and mixes up their
methods and interpretations in ways that camouflage their historical
disagreement, see Johnstone (1986), Johnstone (1987b), and John-
stone (1987a). There are many excellent surveys of this philosophical
dispute. Its importance to real-world statistical practice brought it
to the attention of philosophers of science, see particularly Howson
and Urbach (2005) for an overview. See also Berger (2003) for a
retrospective.

The next great shift came after WWII when other legendary names in
the field returned to Bayes theorem as the logical law of inference under
uncertainty and rejected on principle the Fisherian and Neyman—Pearson
logic of statistical tests. That rebellion caused a deep philosophical and
political divide in statistics as a discipline, and gave rise to disputes
that were both personal and professional, and which influenced the way
statistics was taught all over the world.

Neyman had fallen out with Fisher and gone to the US from
Cambridge. At Berkeley he founded the first statistics department
in the US and through his PhD students, who did the same at other
US schools, Neyman in effect taught generations of American students
strictly frequentist, strictly Neyman—Pearson, methods.

'For some detailed history, see Fienberg (2006).
2Keynes’s lesser known treatise, “A Treatise on Probability” (1921), gives a
detailed history of Bayes theorem and induction before the rise of frequentist statistics.
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David Blackwell, whose name is well known in accounting theory,
was also at Berkeley and was in today’s terms a staunch “Bayesian”, at
least by the time that he wrote his introductory textbook, Blackwell
(1969).3 A measure of the unfamiliarity and likely also contentiousness of
Bayesianism at the time is that this book, which advocates the elements
of Bayesian reasoning, did not use the word Bayes (DeGroot, 1986, p.
44).

The UK remained less strictly anti-Bayesian, beginning from Fisher’s
interpretation of statistical tests being substantially more Bayesian than
frequentist. He interpreted a p-level as a measure of inductive evidence
regarding a null hypothesis, which is the same “type of interpretation” as
Bayesians put on their posterior probability of that hypothesis (although
the calculations themselves are very different). That interpretation was
a large part of how he and Neyman disagreed so deeply. Neyman had
another interpretation that disallowed any mention of weight of evidence
or belief.*

The net result of Neyman’s move and prodigious abilities was that
statistics departments in the US were originally dominated by frequen-
tist teachings. But in the midst of this long period of mathematical
advances in frequentist statistics, the famous names of von Neumann,
Savage, Blackwell, Pratt, Roberts, Raiffa, Schlaifer, Zellner and others
rediscovered Bayesianism and reformed the theory of Bayesian inference
and decision analysis as a mathematical calculus deduced from axioms
of rationality.

In the UK the same neo-Bayesian movement already existed in
the work of now celebrated, yet still widely unknown, Harold Jeffreys,
and around the same time I.J. Good and D.V. Lindley, both of whom
came to Bayesianism on “conceptual grounds” and were influenced by
working at Bletchley Park with “the man who won the war”, Alan

3Fienberg (2006, p. 18) writing about Blackwell: “David Blackwell’s pioneering
work with Girshick brought him close to Bayesian ideas, but he [Blackwell] has
observed: ‘Jimmie [Savage] convinced me that the Bayes approach is absolutely the
right way to do statistical inference’”

1At the end of this chapter, I describe that interpetation, which was essentially
“non-scientific” in Fisher’s view, and has often been disparaged by Neyman’s Bayesian

critics.
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Turing.® Underlying all this, and later to become perhaps the most
celebrated Bayesian theorist of all, was de Finetti (1937/1964/1964),
first published in French and later in English. See also de Finetti’s
(1974/5) textbook. Before them, and later to gain great respect, the
Cambridge mathematician Ramsey (1926) had already discovered a set
of axioms of rational betting that would prompt later proofs by Savage,
DeGroot and others of the principle of maximizing expected utility as
the subjectivist rule of economic rationality.®

2.2 Bayes in US business schools

Summing up, we may say that Bayesianism was at least
“in the air” [in 1960-1961] in the Department of Statistics
of places like Carnegie, Chicago and Stanford which also
happened to host the leading business schools of the new,
“scientific” kind. Harvard Business School may also be added
to the list, thanks to the teaching of scholars like Raiffa,
Schlaifer and, later, John Pratt. While of course the conjec-
ture awaits further confirmation (say, by examining MBA
curricula and reading lists, or by investigating personal rela-
tions between economists and Bayesian statisticians in those
very universities), it may provisionally be concluded that
the dramatic change underwent by management teaching in
the second half of the 20th century has probably played a
major role in the spreading of Bayesianism in general, and
of SEUT [subjective expected utility theory] in particular,
within contemporary economics. To reword Marschak’s dic-
tum once again, it was not that homo economicus directly
became a Bayesian statistician, but, possibly, that, first,

®See Banks (1996) for a fascinating account of how Bayesian calculations were
invented by Turing and others in war time and while working on Enigma. Works by
Good that resulted include Good (1950), Good (1952), and Good (1965). Lindley,
who was younger, came later with Lindley (1965, Parts 1 and 2). A popular account
is Mcgrayne (2011).

SRamsey died at only 26, which along with Savage’s early death, and later
DeGroot, are regarded as greatly affected what would have been the development
and takeup of subjective Bayesian thinking.
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homo managerialist was taught to behave that way, and,
then, that economic agents came to be modeled as Bayesian
corporate managers. .. As far as Stanford is concerned, it
may be added that Robert Wilson, the giant of contempo-
rary game and decision theory who has been at Stanford
Business School since 1964, learned his Bayesian skills under
Raiffa at HBS. The list of Wilson’s students and colleagues
at Stanford reads like a who’s who in the application of
Bayesian methods to modern economics. (Giocoli, 2013, p.
92)

Business schools in the US can rightfully claim to have been close
to the forefront of the Bayesian uprising in the 1960s. Several of the
most influential ever Bayesian theorists spent their careers employed
at Harvard Business School. Harvard had Raiffa and Schlaifer and
Pratt. L.J. Savage, whose work was as much economics as statistics,
worked with Friedman and Pratt and had immense cross-disciplinary
influence.” Savage (1954) published his Foundations of Statistics and
Schlaifer (1959) followed with an applied book, ostensibly for MBA
students, called Probability and Statistics for Business Decisions.

The basic ideas of statistical decision theory were conceived
by Schlaifer independently of the work of L. J. Savage
or de Finetti, and early on he saw that those ideas were
broadly applicable to problems in decision making under
uncertainty. He was a pioneer in the practical assessment
of subjective probabilities and utilities. (Robert Winkler
quoted; presenting the 1992 Decision Analysis Society Frank
P. Ramsey Medal to Schlaifer)

Another Bayesian founder who spent a career at the University of
Chicago’s Business School was Arnold Zellner. The Bayesian activity at
HBS drew Lindley from the UK to spend sabbaticals with Savage and
Pratt, and later, although not in the business school, with Blackwell

"See Lindley (1980) and Fienberg (2006).



2.2. Bayes in US business schools 13

at Berkeley.® Much of the Bayesian history of the Harvard Business
School is recounted in Fienberg’s (2008) conversation with Howard
Raiffa. Fienberg, another celebrated Bayesian statistician, remembered
the business school being ahead of the statistics department in its
development of Bayesian thinking:

In 1964 I arrived as a graduate student at Harvard and in my
first class on statistical inference, a faculty member, whose
name I will not mention, began teaching inference from a
Neyman—Pearson perspective, that is, hypothesis testing
and confidence intervals. ...I asked around the department
about what alternatives were available to me and someone
said: “On Monday they have a seminar at the business school
across the Charles river.” ...I recall that it was one of the
most animated and heated discussions I had engaged in. ..
(Fienberg, 2008, p. 137)

Accounting theorists will be interested in how, at the business school,
Raiffa came to see himself as a Bayesian decision analyst rather than
mere statistician. Raiffa explained as follows:

In the academic year 1961-1962, .. .1 was a second reader of
a thesis proposal by Jack Grayson, a student in the Business
School . .. Grayson was interested in financial decisions of oil
wildcatters. ... The drilling of an exploratory well was simul-
taneously a terminal-action and an information-gathering
move. How should they form syndicates for sharing risks?
This leads to decision problems galore, and the problems did
not easily conform to the classical statistical paradigm . ..
Schlaifer agreed with me and we began to think of ourselves
more as decision analysts than as statisticians. With my new
orientation I saw problems all over the place in business, in
medicine, in engineering, in public policy, where the decision
problems under uncertainty did not fit comfortably into

8¢In the early 1960s we had a series of distinguished Bayesians (Lindley, Box
and Tiao), who each spent a semester at the Harvard Business School” (Howard
Raiffa quoted in Fienberg, 2008, p. 145).
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the classical mold. ...and we started the Decision Under
Uncertainty Seminar that you, Steve, referred to earlier.
(Raiffa quoted in Fienberg, 2006, pp. 12-13)

The Bayesian crusade at Harvard Business School was not all a
success, which might explain why it is only now, more than 50 years
later, that Bayesianism has become in many circles almost conventional
and easily accepted:

In the mid-1960s Robert [Schlaifer| introduced a required
course in the first year of the MBA entitled Managerial
Economics. All 800 students were exposed to cases that
featured decision making under uncertainty. It was a heroic
effort that was not universally appreciated ... At semester’s
end the students burned one of Robert’s books, one that I
believed deserved a prize for innovation. (Raiffa quoted in
Fienberg, 2006, p. 13)

The Bayesians at Harvard are credited by Fienberg as the second
major force in the development of the Bayesian school, following, in both
time and importance, the statistics department at Chicago, which in the
1950s included Roberts and Wallace, and Pratt. DeGroot was a graduate
student, and Lindley was a visitor. It was here and in this period that
the word “Bayesian” first began to appear. Fienberg (2006, p. 18) holds
along with others that the Bayesian movements at Chicago and Harvard
Business School arose largely independently, and it is widely claimed
that Schlaifer at Harvard came to invent Bayesian decision theory from
the ground up, after being dissatisfied with the frequentist principles’
inapplicability to business decision-making under uncertainty.

From the start, the Bayesian paradigm and the classical or frequentist
orthodoxy did not warm to each other, and that dispute was part of
Raiffa’s ending up in the Harvard Business School in 1964. In his
personal account Raiffa wrote as follows:

It’s not surprising that the rumblings against the Neyman-—
Pearson school were most pronounced at the University of
Chicago, the home of the Cowles Commission, which mixed
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together mathematical economists (like Jacob Marschak
and Tjalling Koopmans) with statisticians (like Jimmy
Savage, Herman Chernoff, and Herman Rubin). It was the
articulation of Rubin’s sure-thing principle in a paper by
Chernoff (1954) that led me to embrace the subjective
school. My religious-like conversion did not come lightly,
since all T was teaching about (tests of hypotheses, confidence
intervals, and unbiased estimation) was, in my newly held
opinion, either wrong or not central. But my colleagues in
the statistics departments were so violently opposed to using
judgmental probabilities that I became a closet subjectivist.
To them, statistics belonged in the scientific domain, and
the introduction of squishy judgmental probabilities where
opinions differed did not belong in this world of hard science.

The seminal book by Savage (1954) did not so much convert
me to the subjectivist camp — I was already converted
intellectually by the time I read this bible — but it convinced
me that I was on the right track. (Raiffa, 2002, p. 180)

2.3 Early Bayesian accounting theorists

The early (circa 1945-1960) accounting subjects at HBS were oriented
to management control and accounting and statistical methods were
treated as “scaffolding” or technical foundations (Zeff, 2008). Theorists
including Raiffa, Schlaifer and Harry Roberts, who are known today as
founders in Bayesian statistics, were directly involved in the teaching of
financial decision-making;:

But it was a difficult job to find instructors who could teach
both accounting and statistics. Robert K. Jaedicke, who
was an assistant professor at Harvard Business School in
1958-61, recalls, “Howard Raiffa and Bob Schlaifer used to
teach us statistical theory so we could teach it to the first
years!!” (Zeff, 2008, p. 186).

Statistics as a discipline has a way of celebrating its pioneers and
personal favorites. The journal Statistical Science was set up with that
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partly in mind, and perhaps because of its early strong orientation
towards Bayesian statistics, under the editorship of DeGroot, whose
textbook on decision theory is widely cited in Accounting, we have
learnt a great deal about the influences and personalities that affected
celebrated Bayesians like those at Harvard.

There is not yet quite as much detail available about our early
Bayesians decision theorists in accounting, although it seems clear that
many of those who studied in MBA and PhD programs at Harvard
and equally ranked US business schools must have gained much of their
Bayesian direction indirectly, or directly, from the Bayesian statisticians
and economists who were on the rise in the 1960s and 1970s.

From my reading of the accounting literature, the first “modern
Bayesian” works in accounting information theory were, in no particular
order, by Feltham (1968), Demski (1969), Feltham and Demski (1970),
Demski and Feltham (1972), Gonedes and Ijiri (1974), Gonedes (1975)
and Gonedes (1976), Ng (1978), Lee and Bedford (1969) and Theil
(1969).

Swieringa et al. (1976) note the simultaneous rise of Bayesian work
in other branches of accounting research, listing many papers and
reinforcing the impression that there was much evangelism about the
potential of Bayesian methods in the 1970s:

Research in financial accounting, managerial accounting,
and auditing has reflected increased use of Bayesian decision
theory. ... A major feature of Bayesian decision theory is
its reliance on subjective probability, which it regards as
the quantified opinion of an idealized person faced with
uncertainty. The subjective probability of an event is defined
by the set of bets about the event such a person is willing to
accept, and an internally consistent (or coherent) subjective
probability can be derived for the person if his choices among
bets about this event satisfy the axioms of the theory. A
major contribution of Bayesian decision theory to accounting
research is that by embedding a subjective interpretation of
probability in a general theory of rational decision making,
it provides for explicit recognition of uncertainty. Instead of



2.3. Early Bayesian accounting theorists 17

focusing on models in which decision variables have known
values or are treated as certainty equivalents, accounting
researchers have tried to focus on models that incorporate
the random nature of decision variables. (Swieringa et al.,

1976, p. 159)

This quote is essentially saying, correctly by the modern Bayesian
outlook, that Bayesian methods treat unknown parameters as uncertain
or “random” quantities rather than as fixed unknowns, and therefore
make them subjects of subjective probability distributions. Another
early indicator of the invention of statistical accounting theory came
in the application of probabilistic information theory to accounting by
Theil (1969) and Bedford and Baladouni (1962). See Ross (2016) for
details.

Bayesian expositions in the US accounting literature appeared very
early in the rise of modern Bayesianism in statistics and information
economics, and anticipated much of what was yet to become a much
more widely appreciated theoretical framework.? It could be argued
that the paper by Demski and Feltham (1972) sets out essentially all
of the same Bayesian subjective probability and decision paradigm as
still obtains, including a prelude to the current initiative of stating
forecasts not as points or intervals but as probability statements. It is
another interesting part to the history of Bayesian ideas in accounting
theory that both Gonedes and Ijiri (1974) and Scott (1979) wrote
about the use of probability scoring rules. Scoring rules are decidedly
Bayesian in their philosophy and origins, and were largely invented by
de Finetti. They are only now becoming well known and widely applied
in economic forecasting and forecast evaluation (see later discussion).
Indicative of the overlap during this period between Bayesian theorists
and accounting, Gonedes and Ijiri (1974) is essentially a study on
Bayesian subjective probability and forecast evaluation, citing all the
Bayesian “names” listed in this monograph.

9Beck et al. (2012, p. 72) claim that the first articles using Bayes theorem in the
Journal of Finance appeared in 1972. Formal Bayesian portfolio theory began in the
1970s with Winkler (1973), Winkler and Barry (1975) and Barry and Winkler (1976).
Other early Bayesian studies on parameter risk and portfolio choice include Brown
(1979) and Klein and Bawa (1976). Bawa et al. (1979) summarized this literature.
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Feltham (2007), in his tribute to Demski, cites his own PhD disserta-
tion and those of Butterworth and Mock as the first works at Berkeley
applying decision analysis in accounting theory. See Butterworth (1972)
and Mock (1971) and Mock (1973). Mattessich (2003) credited Feltham’s
own 1967 PhD thesis as the first of the modern information economics
ilk.10

All of the early Bayesian work in accounting appears to have been in
the US and done by US-trained researchers, which can be attributed to
the roles and influence of Savage and other Bayesian statistical theorists
within the major US Business Schools. There was no parallel outbreak
of Bayesian accounting theory in the UK or elsewhere.

The Bayesian revolution in accounting theory is summed up in
one conceptual shift, namely, the treatment of accounting reports or
“accounting numbers” not as measurements, but as statistical signals.
Rather than a variable like earnings being treated as a measure or
representation of some underlying physical reality, it becomes merely
an “information event” from which to form revised Bayesian beliefs,
upon which to rest current decisions.

When viewed this way, the quality of the information is not a matter
of whether it is an accurate measurement of something “true”, not that
we would ever know for a quantity like accounting earnings. Rather, it
is just one signal or input among others on which to update probability
beliefs. Its “accuracy” is never known or possibly even of interest, apart
from being reflected vaguely in the accuracy of the user’s probability
beliefs, as assessed after the event, or in the realized profits of the
investor’s actions based on those beliefs.

The information perspective, the notion that accounting
is designed to provide information, views accounting as
using the language and algebra of valuation but for the
purpose of conveying information. The distinction is subtle
but profound. ... The information content school ... views

10See Mattessich (2006) for a fascinating history and overview of the development
of accounting information theory, including Bayesian decision analysis. He notes also
the overlooked quality of the books in German by Ewart and Wagenhofer, which
are equivalents to Christensen and Feltham (2003). Further history is provided by
Verrecchia (1982).
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the financial measures as measures of information events,
not value. (Christensen and Demski, 2003, pp. 4-5)

Under such an instrumentalist decision—theoretic model of financial
accounting “numbers”, normative accounting theory virtually disappears.
The only normative framework is the rational Bayesian decision model,
and obeyance of the laws of probability, assumed of the user.'! The input
information can be a valuation, cost, depreciated cost or whatever most
assists the Bayesian user to reach accurate posterior beliefs, from which
to make hopefully profitable investment decisions. A priori directions,
or any pragmatic thoughts, about how best to value assets or match
costs and revenues, or any other traditional accounting debate, are
not disallowed or irrelevant. They are encouraged and later evaluated
where possible by whether the resulting information assists Bayesian
probability revision and ensuing investment outcomes.

My own first introduction to Bayesian thinking in an accounting
textbook was via George Foster’s (1978) seminal textbook on financial
statement analysis. Its early chapter on Bayesian inference and the
value of imperfect information was written to set the grounds for all
that follows to do with markets and investors rationally construing
information about the firm’s uncertain business prospects from the
limited disclosures in its financial statements. I see this chapter as a
carryover of the influence on accounting academics and PhD programs
of the early Bayesians in US Business Schools.

2.4 Postscript

The strict theoretical interpretation of Neyman—Pearson methods is
most easily understood when directed at confidence intervals, which are
easier to pin down than hypothesis tests. According to Neyman, a 95%
confidence interval is not an interval that can be considered to be true
with probability or degree of belief 0.95. Instead, very long windedly, it

HThe “rationality” generally presumed of Bayesian inference and decision traces
more deeply to the axioms of logically coherent choice and probability beliefs. Such
axiomatizations trace to at least Ramsey (1926) and de Finetti (1937/1964) and
were made better known by Savage (1954) and DeGroot (1970). See Fishburn (1986).
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is an interval generated by a mechanism that produces 95% confidence
intervals that are indeed true 95% of the time (on the assumption of a
true underlying model). Although that distinction between the interval
and the mechanism generating it sounds obscure, and not very helpful,
there is a reason for it. The interval in question, perhaps because it
is based on an apparently “unrepresentative” but still strictly random
sample, may be clearly unreliable and not worth 95% confidence in
any natural sense. That would be the case when the random sample
in question happens by bad luck to include a clearly “biased looking”
subset of the population in question. To avoid this and the closely related
issue of ancillary statistics,'> Neyman focussed on producing intervals
and test results that are justified solely in terms of long-run error rates
in repeated applications of the same procedure. Despite much criticism,
Neyman stuck tight to his rule that the single confidence interval or
test result is just one of a long run, and is not important of itself or
worth any special interpretation in its own single case. That roundabout
and evasive interpretation has caused many a new student of statistics
bemusement and “wrong” answers in exams, see Perezgonzalez, 2015 for
a tutorial on interpreting hypothesis and significance tests. See Berger
and Wolpert (1988), Berger (2003), Howson and Urbach (2005) and
Johnstone (1987a) on the interpretation of Neyman—Pearson hypothesis
tests.

12An ancillary statistic a is a sample statistic that of itself does not carry
information about the unknown population parameter, but the test statistic is
x has a different distribution under the unknown parameter # when it is conditioned
on the observed value of a; that is, f(z|0,a) changes with a. The most obvious
ancillary statistic is the sample size, but other more subtle examples occur and cause
breakdowns in Neyman—Pearson statistical logic.
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Survey of Bayesian Fundamentals

There is a vast literature in statistics, decision analysis, philosophy and
applied fields on Bayesian logic and philosophy. This chapter introduces
the language and philosophy of Bayesian methods, covering the main
points of what makes “Bayesian”. Concepts and principles are gathered
from key references in Bayesian statistics and decision theory. Published
overviews of Bayesian theory are largely of one mind, which can be
attributed to the internal consistency, general applicability and intuitive
appeal of Bayesian logic and method.

Source references are provided and categorized at the end of this
chapter, for readers interested in the origins and a better explanation
of the various “Bayesianisms” is discussed.

3.1 All probability is subjective

There has long been philosophical dispute about how to interpret
probability. Is it a physical entity, is it a relative frequency in a reference
set, does that set have to be existent or infinite, is it a deeply hidden

logical relation between proposition and the evidence.!

'De Finetti famously in Bayesian theory said that “probability does not exist”.
The usual interpretation of this statement is that there is no such thing as a “true”

21
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The elegant and workable Bayesian solution to this is to regard all
probability as subjective. Some probabilities are merely “less subjective”
than others in the sense that more people would have a roughly similar
belief. For example, we might all believe that a die bought at the first
shop we pass will have a probability of coming up “six” of about 1/6, but
we will not agree as closely on whether company profits will increase.

3.2 Inference comes first

A Bayesian starts with an inference problem, even when ultimately
the task is to make a decision or choice between actions (one of which
might be inaction or “to wait”). She? has an “unknown” in mind,
like a population parameter, or an outcome like whether it will rain
today. She wants to “know” (i.e. judge subjectively) its probability
distribution.

If the unknown in question is 6, she forms a probability distribution
f(0)z) based on observation x. In fact, she forms f(6|xz, BK) using both
x and all her relevant background knowledge BK. From now on, BK
is presumed but generally suppressed in the notation, because it is
always implicitly there. It is essential because it includes information
concerning the source or reliability of x.

A distinctively Bayesian step is to treat population parameters as
uncertain, “stochastic” or “random” quantities, rather than as fixed
“deterministic” unknowns, and to make parameters the subject rather
than always the condition in probability statements.

3.3 Bayesian learning

To form a new belief or “learn” from x, Bayes theorem updates a prior
distribution f(6) to a posterior distribution

fOlz) o f(0)f(x10),

or “physical” probability. Think of the probability of red on the spin of a wheel. The
wheel has physical properties like its size and weight, but the probability of it coming
up red does not exist as a physical attribute.

2Bayesian inference is “personal” and it helps in exposition to use the personal
pronoun “she” or “he”, or sometimes “you” or “we”.
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or, more specifically,

fore) - L0
[f(0)f(x|0)do

That calculation is usually not the hardest part of the inference. Instead,

the hardest part is specifying a subjective “likelihood function” for x

f(z[0),

which is a statistical description of how x is affected by 6.

3.4 No objective priors

Attempts to let the data “speak for themselves” or to be “objective”
suggest that inference should start from a prior distribution that is
uniform over the whole parameter space. A uniform prior is meant to
represent ignorance, but in fact it does not. If the parameter in question
is 0, the uniform prior over # implies that 1/6 is almost certainly close
to zero, because that holds for most of the possible 6 values on the real
line. If the parameter is a Bernoulli probability, the uniform prior says
that E[f] = 0.5 and also that values of # above and below are equally
likely. And then there is the issue of whether we are really interested in
6 per se or more interested practically in say 1/6 or v/#. If the latter,
then the “objective” prior might be uniform over 1/6 or say v/0 which
entails a different belief about 6. So no objectivity is achieved. The
uniform prior is justified subjectively when that’s what’s believed, but
not as an “objective” starting point.

3.5 Independence is subjective

Outcomes A and B are independent if p(A|B) = p(A) and p(B|A) =
p(B). Like everything else in Bayesian probability, independence is a
subjective judgment rather than a physical fact. Obviously when making
that judgment, there will often be consideration of apparent physical or
causal connections between A and B, but ultimately that connection
will exist only in the decision maker’s subjective judgment, and under
current background knowledge BK.

Similarly, A is conditionally independent from B, given C, if
p(A|B,C) = p(A|C). That says merely that we believe that, when C
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holds, the probability of A is not influenced by B. That is a judgment
under BK, and may prove wrong with further knowledge.

3.6 No distinction between risk and uncertainty

No distinction occurs between risk and uncertainty. Rather, all prob-
ability distributions are treated as subjective, to a greater or lesser
degree, even when they appear to have an objective basis in nature
(e.g. spins of a wheel) or in empirical evidence (e.g. the frequency
of bankruptcy). Part of the reason is that even in the case of phys-
ical apparatus, the physics can still be wrong or misapplied (e.g. a
mechanical or electronic casino game may have a bug or have been
tampered with), and even if physical probabilities truly “exist” they
are unobservable and can only be assessed by subjective (human)
means. Similarly, observed frequencies must be conditioned on sub-
jectively relevant factors (e.g. in the case of solvency — industry,
inventory levels, debt levels, etc.) and are subject also to sampling
error.

There can be no objective probability distribution for something
like a cash dividend, which is not to say of course that, in forming a
probability distribution subjectively, a decision maker cannot absorb all
“objective” looking sample evidence; e.g. recent empirical estimates of
distributional shapes and parameters. However, when making empirical
considerations that seem objective, there are usually many embedded
subjective inputs (e.g. selection of a sample period that seems best
representative of the future). The Bayesian position is that subjectivity
is inevitable and is best treated when made visible and used to advantage
by integrating them into the model.

3.7 The likelihood function (i.e. model)

The likelihood function f(x|6), or really f(z|f, BK),* is “the model”. It
describes the probability process by which x is understood to have

3BK is an unwritten condition in all Bayesian probabilities. Any valid probability
expression remains valid when the same condition is added to every term in that
expression.
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occurred. For example, z might be understood to have a normal

2

distribution with mean p and variance o=, in which case the likelihood

s = e |5 (5) |

In Bayesian inference, if any of the parameters is unknown, it will

function is

also be given a probability distribution, which often involves one or
more other parameters, and on it goes. That is the start of what is
called a hierarchical model and is why Bayesian computation often
requires numerical methods like Monte Carlo simulation of posterior
distributions.

3.8 Sufficiency and the likelihood principle

It follows directly from Bayes theorem that evidence = is summarized
sufficiently by its likelihood function f(xz|€). To a Bayesian, the actual
observed z is irrelevant once we know f(z|f) for that observed z. Put
another way, the “likelihood principle” holds that two observations x;
and xo carry exactly the same evidence about 6 if they have proportional
likelihood functions

f(x1]0) = ¢ f(x2]0). (¢ >0)

Information & might be reported in the form of a summary or
statistic ¢ = g(z). That statistic is sometimes a sufficient summary of
x for inference about 6. By expansion

f(x|0) = f(g10)f (z]g,0).

But the distribution of = given g might not depend on 6, implying
f(x10) = f(g10)f(xlg),

in which case g = g(z) is a sufficient statistic for x with respect to 6, in
the sense that the posterior distribution of 6 is the same given either x

or g(x).
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The proof is as follows:

The idea of a sufficient summary is that no evidence in x about 6
is lost, so inferences are the same whether made from = or from its
summarized expression g.

3.9 Coherence

A Bayesian can “have” whatever probability beliefs she feels — on one
condition. That condition is “coherence” and requires simply that the
agent’s probability beliefs are mutually consistent, they must relate to
each other correctly in the laws of probability.

The basic laws are the addition law, the multiplication law and
Bayes law, which itself is easily obtained from the multiplication law.
The only other basic law, which follows from the others, is the law of
complete probability. It says simply that the probability distribution of
x is its weighted average distribution across all possible states 6

- / £(0) f(x]6)d8

Part of the essence of Bayesianism is that the unknowns include both
parameters (e.g. a population mean) and variables (e.g. a sample
observation). So it makes no difference whether 6 or z is the parameter
or the observation, and hence we can equally write

/f f(0|x)dx

simply interchanging the two in the expression above. Both expres-
sions hold, and coherence means that results found from one can be
substituted into the other and cross-checked. In a coherent Bayesian
calculation, everything ties together. See for example the inter-related
calculations in the later illustration of Simpson’s paradox.
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3.10 Coherent means no “Dutch book”

Coherence is not merely for personal internal consistency or for some
normative ideal. The practical reason for coherence is that coherent
probabilities cannot be subjected to a Dutch Book.

Imagine a bookmaker who sets prices or probabilities that add up
to less than one. If the gambler bets cleverly across all the horses in
the race, she can make a book (portfolio) of bets by which she will
necessarily win, whichever horse wins. Similarly, if the bookmaker sets
prices (probabilities) that add to more than one, then by selecting which
bets he will accept and which he won’t, he can bet against the market
so as to be sure to make a profit overall, whichever horse wins.

A book or set of bets that is guaranteed to win is a Dutch book,
and if you are not coherent, you can have a Dutch book made against
you.

The Bayesian principle of “no Dutch book”, or coherence, is essen-
tially also the principle of no arbitrage. Like coherent probabilities, asset
prices that prevent arbitrage need not be “accurate” in the sense that
they approximate any fundamental value or truth, since accuracy is
not required for coherence. Coherence is a necessary but not sufficient
condition for avoiding losses when betting or investing.*

3.11 Coherent is not necessarily accurate

Coherent beliefs can be inaccurate and even ridiculous, their coherence
makes them merely mutually consistent, and not open to a Dutch book
(arbitrage). The ideal of Bayesian inference is to reach probabilities that
are both coherent and accurate.

3.12 Accuracy is relative

A common but misplaced criticism of Bayesian thinking occurs when the
weather forecaster reports that the probability of rain tomorrow is 0.5.

4The notion of coherence is the linchpin of Bayesian theory and the theory of
economic rationality. The idea was developed by Ramsey (1926) and taken up by
Savage (1954). Rigorous further development came with DeGroot (1970).
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That sounds on the surface like a coin toss and the height of vacuousness
or ignorance. A Bayesian perspective is much more forgiving. If rain at
this time of year, and in these conditions, is subjectively unlikely, then
it is quite a statement to predict rain with 50% probability. Moreover,
if in fact it rains, that probability will have proven very accurate, at
least relative to a model or forecaster who gave rain say a 5% chance.
And if it does not rain, that single statement will be proven relatively
inaccurate.

Similarly, a model that produces bankruptcy probabilities might be
relatively accurate even when it gives firms that went bankrupt only
small probabilities of failing. If the average rate of bankruptcy is say
5% per year, then a probability of even 10% attached to a bankrupt
firm represents a more accurate probability than the average.

3.13 Odds form of Bayes theorem

FEmphasizing the role of the likelihood function in Bayesian learning,
Bayes theorem is sometimes written in odds form. The odds expression
of a probability p is p/(1 — p) or “p to (1 — p) in favor”. Let 6§ belong
to a parameter space © and suppose that the problem is to assess the
probability of Hy : 8 € ©p where the alternative is H; : § € ©1, and
© = Og U ©1. By Bayes theorem,

p(©olz) _ p(B0) p(x]O0)
p(©1]z)  p(©1) p(x|©1)’

which can be summarized as

posterior odds = prior odds x likelihood ratio.

Thus, information x alters the Bayesian’s odds only through its likeli-
hood ratio, here %.

The log odds form of Bayes theorem is also insightful, showing how
the statistical information content in the prior and the likelihood ratio

can be understood as additive
p(x|O9)

p(Golz) log r(©o) log

8 @) ~ % p(@r) T8 p(a]@)
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3.14 Data can’t speak for itself

Bayes theorem says that if the task is to infer the probability of a
proposition of general form 6§ € ©g, then the evidence carried by z
favors 6 € O over its complement 6 € O, if and only if the likelihood
)
(@) > 1.

f(z[©1)

Evidence x supports, albeit does not prove, whichever proposition or

ratio

hypothesis gives it greater probability of having occurred. There is
always a subjectively chosen model and some temporal background
knowledge lurking within the likelihood function, f(z|6) = f(z|0, BK).
That function could equally be written as f(x|6, model N BK) so as to
emphasize that it is dependent on a given model. The mere fact that
we see x as depending on the parameter 6 shows that we have a some
model in mind.

Hence, data does not have any particular Bayesian meaning without
a model and without conditioning its interpretation on any relevant
related evidence and background knowledge. Thus, data does not easily
“speak for itself”.

3.15 Ancillary information

Sometimes to find the likelihood f(x|0) we know only f(x|6,y), but
y of itself is uninformative about 6. Being uninformative means that
f(yl®) = f(y), that is, the distribution of y is unaffected by 6 so the
observed of y says nothing about 8. So by Bayes theorem,

1Ol y)
O = T 50y a0y o

and thus there is no difficulty caused by knowing only f(x|0,y). The

information brought by y is used in the calculation, but it is “ancillary”.
Sometimes y is the “source” of z, like a set of experimental conditions
or a state of nature, and implies nothing about 6 of itself, but does
make a difference to the probability of x given 6.
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3.16 Nuisance parameters “integrate out”

When modelling the effect of population parameter 6 on observation z,
is typical that another parameter a plays a role in producing x. The
likelihood function is then f(x|6,«) and by Bayes theorem

f0,alx) o< f(0,0) f(]0, ).

To reach an inference about # unconditional on «, or, in other words,
averaged over «, the “nuisance parameter” « is “integrated out”,

f@@%=/f&a@Mm

Illustrating the internal consistency of Bayesian probability calcu-
lations, a could equally be integrated out of the likelihood function

f(z]0,a), giving
$(alt) = [ £(al6.0)f(alb)do.

The Bayesian method of integrating out nuisance parameters is
essential in any inference problem where interest concerns the (average)
effect of just one particular parameter, or say a particular pair of
parameters, within a model containing many parameters. Typically, for
example, inference might focus on an unknown population mean, but
in the context of an equally unknown population variance.

3.17 “Randomness” is subjective

Since probability is not physically existent, neither is randomness.
Randomness, like probability, is a subjective assessment, and of course
will be more easily made in some situations than others.

The Bayesian term equivalent to “random” in conventional statis-
tics is “exchangeable”. Rather than saying that a sample observation
is a random draw from a population, the Bayesian term is that it is
exchangeable with any other element of that population. In effect, that
is like saying that it is viewed as iid with any other member of the
population. Tosses of a given coin are typically viewed as exchangeable
with each other, but the events of whether two different stocks go up
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or down are not. The difference is that we typically regard the coin
as having a fixed Bernoulli parameter 6, and regard every toss as iid
given 6. Stocks on the other hand are not usually regarded as iid all
with the same 6.

According to the Bayesian subjective notion of exchangeability, an
observation or element of a population does not need to be drawn using
a physical randomizer to be regarded as having the same probability
distribution as other elements of the sequence or population, or to be
viewed as validly “representative” of that population. Rather, exchange-
ability requires only a subjective judgment that the observation in
question is “unbiased” or “representative”, or not distributed in a way
other than the rest of the population.

Two main points follow, both of which depart substantially from
much statistical convention. First, if the observation in question does
not seem exchangeable or representative, then it is no help that it was
drawn with a randomizer.

Second, a subjectively representative looking observation is exchange-
able however it was drawn. For example, the proceeds from a bet on
number 13 in roulette are subjectively representative of any other bet
on the roulette wheel, regardless of whether number 13 was chosen
using a randomizer (such as by spinning another roulette wheel) or
perhaps because it is the gambler’s lucky number. This is not saying that
every number on the roulette wheel has the same physical probability
of occurring, rather it says that in usual circumstances we view the
wheel that way, and have no evidence suggesting that the probabilities
are any different. Hence, a random bet on one segment of the wheel
is exchangeable in our judgment with a bet on any equally large
segment.

In Bayesian theory, randomization is neither sufficient nor necessary
as the basis for probability calculations. But nor is it harmful of itself.
Indeed, some Bayesians see randomizers as a good way to ease the
difficulty of the main task, namely the making of a judgment of
exchangeability. A randomizer takes away the sampler’s discretion,
which might otherwise have introduced a hidden bias.

Remember again, all Bayesian probabilities are conditioned on what
background knowledge BK is known, they are not claimed as “true”
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or necessarily even “close”, they are merely coherent under and with
current BK.

Interestingly, this Bayesian position ratifies much of what happens
in empirical research using frequentist statistics. Samples are not in fact
often drawn with physical randomizers, but they are usually considered
for whether the seem representative. Another related point is to do
with “ambiguity aversion”, which is not a Bayesian notion. People
are reluctant to bet on a binary event when they don’t “know the
probabilities”, but in that case bets on “A” or “B” are exchangeable, in
the same way as if we knew for sure that they each had probability of
0.5 (which we never do).

3.18 “Exchangeable” samples

A Bayesian spinning a well-engineered red and black roulette wheel
would see a sample {R, R, R, B, B, B} as exchangeable with {R, B, B,
R, B, R}. When trying to infer the probable value of § = p(Black), the
Bayesian would not care about the order of the Reds and Blacks, because
that ordering, and any apparent pattern, is viewed under BK as an
irrelevant chance outcome from a wheel with “no memory”.

Consider a process that switches unobservably between two regimes,
like two different “wheels” with unequal parameters 61 and 6. If we
judge that the two regimes or wheels have probabilities p(61) = p and
p(f2) = 1 — p, then any sample of size n is exchangeable with any
other sample of size n because every observation is, on what (little)
we know, an independent draw from a process with average parameter
0 = p 0 + (1 —p) O5. That assessment holds because we have no
indication of which wheel our realized observations were drawn from.
In that case, if we want to infer the value of 0, every sample of size
n is “the same” and exchangeable in our eyes, even though we know
that in any given sample there might be more draws under 6; or more
under 6.

Even though the individual observations in the realized sample
are not known to have come from the two wheels in the given mix-
ture proportions p and 1 — p, the sample is nonetheless subjectively
exchangeable with any other, and remains so until we learn otherwise
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(as would happen if it was revealed that one particular sample came
from a different mixture of 6; and 6).

To see the practical importance of exchangeability, consider the
following inference problem. Suppose that we use the words occurring
in text as a way to infer who wrote them. If the “bag of words” in
the sample is {economy, growth, arbitrage,..., asset} we might well
see that sample as exchangeable with another sample with common
business words, like {company, tax, bond..., invest}. If so, then we are
saying that we would be equally happy to use either sample, and also
that we would be happy to merge the two samples much like tosses of
the same coin. But if the sample contained {business, multinationale,
client, ..., vendeur}, we would not believe that the two samples are
reflective of the same population/author.

Note that the fact that two samples are “iid” in the frequentist sense
does not make them exchangeable subjectively. The judgment that they
are exchangeable requires a readiness to see them as representative of
the same population. A sample drawn using a randomizer and thus “iid”
from all sales transactions in August might contain sales of mainly one
product and hence not be exchangeable with another sample of August
sales that contains a more representative looking sample of sales of all
the firms’ products.

3.19 The Bayes factor

Bayes theorem in the case of hypothesis Hy : 6 € ©g versus complement
H;i : 0 € ©1 can be written as,

f(©o) f(x|©0)
T®0le) = 560y wl00) + 7(01) Fon)
3 £(©1) f(x1©1)17"
= [” £(®0) f(ﬂf|9o)]
[, fe) 177!
= [“ £(G0) B} !

where

g {&60) _ Joco, f(0)f(x]0)do
F(@61) ~ Joco, F(0) f(x]0)d0
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is the “Bayes factor” or “weighted likelihood ratio” of the evidence x
supporting Oy.

Evidence z enters calculations only via the “Bayes factor” B, which
is the ratio of the average probability of 2 under hypothesis 6 € O
to the average probability of z under the alternative § € ©1. Bayes
factors are widely suggested by Bayesians as a coherent alternative to
conventional measures of evidence, particularly p-values.

3.20 Conditioning on all evidence

Bayesian coherence requires that all probability assessments be made
under all of the evidence. The principle of conditioning on all available
information is sometimes stated as “no relevant subsets”, and amounts
to the same requirement as “exchangeability”. A relevant subset occurs
when the observation can be described more fully, in a way that changes
its subjective probability. For example, x > x. is one description of
T = x., but the more specific description narrows the reference set of
observations within which it is viewed as exchangeable, and gives the
observation a different subjective probability based on a new but still
not necessarily “true” reference set.

The rule of no relevant subsets has a long history in the logic
of inductive inference, and is formalized mathematically in Bayesian
statistics by the requirement of exchangeability. “Exchangeability” and
“no relevant subsets” are essentially the same requirement and are both
subjective assessments. For example, an insurance company might see
a client as exchangeable in risk of motor accident with other 40-50-
year-old males living in the same city, but if he seems to belong to
an apparently relevant subset, like those males with good driving
records, the subjective probability of accident will change and so of
course might the insurance premium (see later analogy with the cost
of capital).

3.21 Bayesian versus conventional inference

To sum up Bayesian theory, it helps to identify the main ways that
Bayesian logic departs from “conventional” statistical thinking.
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The debate between Bayesian and “frequentist” statistical methods is
decades old and has lately, especially in disciplines like computer science,
genetics and forensic science, swung the Bayesian way. Interestingly,
economic decision theory (a la Savage) and subfields like noisy rational
expectations models of information disclosure have from their onset been
Bayesian, albeit not by any ideological choice other than the economic
assumption that individuals act rationally in their own self-interest —
and thus internally consistently or “coherently”. Bayesian inference is
seen by many statistical theorists to be based on a more defensible
logic than frequentist methods. That conclusion stems from simple
methodological comparisons like those set out below.

Likelihood ratios, not p-levels

The p-level of observation x5 is by definition the probability Pr(z >
Zops|Ho) of sample z falling in tail-area x > 1z, conditional on
hypothesis Hy, where the symbol > implies “as or more discrepant
with”. That probability cannot be interpreted in terms of evidence
under Bayes theorem without knowing the probability of the same
result under the alternative hypothesis. If the associated likelihood

ratio,
p(l‘ > xobs|HO)

p(fU > -Tobs|fll)7
is less than one, then the observation summarized as x > x. supports
Hj rather than Hj, even when its p-value or p-level, p(z > x.|Hy), is
arbitrarily low. According to Bayes theorem, therefore, the p-level of
observation x = . cannot be interpreted without knowing the other
half of the relevant likelihood ratio,

p(m > l‘obs|H1)'

Conditional probabilities, not long-run frequencies

An application of the unconditional long-run frequency approach hap-
pens when a randomized mixture of two hypothesis tests, each with
its own conditional error frequencies {«, 5} has apparently “better”
error frequencies than either of the two tests individually. For exam-
ple, suppose that the randomizer is a coin toss and the tests have
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{a=0.05,4=0.1} and {a =0.005,3 = 0.4}. The mixture test then
has {a = 0.0275, 5 = 0.25}, which for some users or loss functions is a
better compromise between o and [ than either constituent single test.

To claim those preferred error frequencies, the user must intentionally
ignore the fact that the test selected by the randomizer, and thus actually
run, is known. If it’s not known which test was run, a Bayesian would
use the mixture probabilities too, and that is why it is often suggested
that frequentist statistics works best logically when some information
is ignored.

The conditional versus long-run frequency distinction comes to light
in many contexts. Suppose that a random sample is drawn, correctly
randomly by spinning a wheel, and yet the resulting sample turns
out to be “not a typical looking random sample”. From a conditional
perspective, some post-sample reconsideration is necessary, but from a
long-run frequency approach there is no issue, because in the long run
all such biased samples average each other out. In fact, all such samples
must be included in the reference set so as not to introduce a bias that
changes those long-run error frequencies.

The two famous frequentist statisticians, Fisher and Neyman, and
their schools, fell out over this very issue. In essence, Fisher adopted a
Bayesian-like conditional single-case approach and Neyman took refuge
in long-run frequencies under repeated applications.

Likelihood function versus error frequencies

We wish to compare two possible test signals x; and x2, as would occur
when evaluating their ex ante values of information. Each test can return
a signal z; € {U, F, N}, indicating unfavorable, favorable or neutral,
and the state of natureis V=0o0r V = 1.

xr1 — U F N xro — U F N
Pr(z1|V = 0)]0.9 [0.05 [0.05 | [Pr(z2V =0)]0.26 |0.73 |0.01
Pr(xz1|V =1)]0.09]0.055|0.855 | | Pr(z2|V =1)0.026|0.803|0.171

The Bayesian view of the two signals is that whatever the signal
observed, U, F' or N, the likelihood functions of the two test signals
are proportional, and hence each leaves the same posterior probability.
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For example, if the signal x; is F, the likelihood ratio is
p(x; =F|V=0) 0.05
P = F[V =1) _ 0.055 _ 90909
and the corresponding likelihood ratio of signal x9 = F' is the same
p(ze = F|V=0) 0.73
pra=FV=1) 083
It does not matter which signal is observed, the evidence is the same

= 0.909009.

under both tests, and hence the two test signals are of equal value ex
ante and ex post.

That conclusion does not agree with a frequentist interpretation.
The frequentist interpretation has both null and alternative hypotheses,
say

Hy:V =0 and H; : V =1,
and error probabilities

a = p(reject Hyo|Hpy) and 8 = p(accept Ho|Hq).

The error characteristics of a test depend on its “rejection region” which
is discretionary. Suppose that we regard x € F U N as favoring the
higher value V' = 1. If x; falls in that region, we reject Hy : V = 0. On
that test design, signal x; has error probabilities

ay =p(ry € FUN|V =0)=0.05+0.05=0.1

and

ﬁl = p(l’l € U|V = 1) = 0.09.
These seem like “good” error probabilities, which raises the question of
whether the second signal, which has the same likelihood function, is
equally good?

To a frequentist, the answer is no, because its error probabilities
are easily seen to be as = 0.74 and 2 = 0.026. The Bayesian and
frequentist depictions of the same two tests are therefore contradictory.

To seek some remedy, perhaps, it is possible to change the rejection
region of the test, to reject V' = 0 only if + = F. The two tests
error probabilities are then {a; = 0.05, 51 = 0.945} and {ae = 0.73,
B = 0.197} respectively, which puts the “same test” in a yet another
frequentist light but does not solve the problem that the Bayesian
interpretation views the two tests as intrinsically identical in every way.
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Stopping rules

Let 6 be the probability of “heads” in a coin toss, and suppose that we
use data from actual tosses to test whether the coin is fair Hy : 8 = 0.5
against the alternative that it is biased upwards H; : 6 > 0.5. Two
experiments are run. The first takes pre-fixed n = 12 observations and
produces 9 heads and 3 tails. The second draws randomly until 3 heads
are observed, and coincidentally produces 3 heads also in 12 tosses. Is
there any difference in the evidence coming from these two tests?

This is a well-known problem, and is revealing because the Bayesian
and frequentist answers are so at odds. A quick summary goes as
follows.”

Take the Bayesian approach first. In the first test, with predesignated
n = 12, the likelihood function is the usual binomial probability

fi1(z|6) = (Z) 6%(1 — 6)"% =220 x 6°(1 — )3,

In the second test, which requires sampling until exactly 3 tails, which
happens to occur at n = 12 tosses, the likelihood function is found using
the negative binomial distribution, and is given as

fo(z]0) = (” +£ - 1) 6=(1 — 0)" = 55 x 0°(1 — 6)>.

So it follows Bayesianly that the two test outcomes offer the same
evidence exactly, because their respective likelihood functions are pro-
portional. The evidence is simply 9 heads in 12 tosses, regardless of why
sampling stopped at that point.

The frequentist approach is more complicated. Its p-level of z =9
in the first test is

p-level; = p(z > 9|6 = 0.5,n = 12) = 0.075.
Similarly, the p-level of x = 9 in the second test is
p-levely = p(z > 9|0 = 0.5)
= £2(9]0 = 0.5) + f2(10]6 = 0.5) + - - - = 0.0325.

®See Lindley and Phillips (1976) for the original exposition, and especially the
Berger (1985) explanation.
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Note that the numbers were chosen in this example so as to show how
the same observation, x = 9 in n = 12, can be either “significant at 5%”
or “not significant”, depending only on how sampling came to stop.

Illustrations like this one are used to show how frequentist methods
interpret the very same data differently depending on how they were
drawn, which raises the disconcerting possibility that an experimenter
seeking a given p-level might fudge, not by faking the data, but by faking
the stopping rule. Other similar criticisms are that data should not be
interpreted on the basis of the experimenter’s unobservable intentions,
and how can data be interpreted if no one knows or can remember why
sampling stopped?®

A good illustration by which to understand the Bayesian position
is to think of red and black balls dropping apparently “randomly”
from a bucket. The Bayesian watches this process and sees a flow
of perfectly acceptable exchangeable (“iid”) observations, and hence
evidence accumulating. Each draw is valuable and is merely one more
observation. But suppose that a frequentist, who has been watching and
calculating a p-level, demands a halt in the sampling at the point of say
N observations. The Bayesian sees the result as merely N exchangeable
observations falling from the bucket, no different to any other draw
of N observations. The frequentist might have obtained the p-level
desired and wanted a stop, but the Bayesian is interested only in
the posterior probability from what evidence exists, quietly wishing
for a few more observations, as might have been obtained had the
frequentist used a different stopping rule (e.g. a lower desired level of
significance).

The frequentist has managed to manufacture the desired p-level but
had no influence over the observations themselves. They were affected
only by random sampling and the true proportions of red and black
balls in the bucket, neither having been tampered with, thus leaving N
untainted observations from the Bayesian viewpoint.

SCriticisms like this are obviously highly damaging or at least contentious, and
help explain why there was once much animosity between some Bayes and non-Bayes
practitioners.
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Lindley’s paradox

Consider a simple test of Hy : 4 = 0 versus H; : p = 1, where the
population is X ~ N(u,0 = 1). The sample size is n and the pre-test
perspective is that higher n is preferred because a test of given size
a (say a = 0.05) has greater power when n is higher, and therefore
has greater chance of rejecting Hy if indeed it is wrong. The test is
two-sided and has fixed o = 0.05, so the critical level of the sample
mean is T. such that f(|Z| > |Z.| |Ho) = 0.05.

Now suppose that the test observation ;s is marginally significant
at 5%, so Tops = Te. Hence, in each case the null hypothesis is rejected
at a = 5%, in frequentist terms. The question that arises is how to
interpret that rejection of Hy with regard to the sample size.

One answer is that the sample size makes no difference to the
meaning of the result, because it is accounted for in the calculations
already. That answer does not hold up well, however, once we look at the
orthodox frequentist confidence interval that corresponds to “rejection
at 5%” (or p-level = 5%) with given n. The confidence intervals shown
in Table 3.1 below become tighter and “nearer in mass” to p = 0 as
n increases, suggesting intuitively that the evidence is less and less
supportive of values of j well away from the null value of = 0.7

Hence, it can be argued that if we want to truly discredit or “reject”
Hy, we might prefer ex post (after the test) to have run a test and
obtained a rejection with lower power, not higher power. Rejection of H
is made more likely ex ante with higher n, but “means less” evidentially
ex post with higher n.®

"Frequentist confidence intervals often show evidence more revealingly than
p-levels, but unlike p-levels are not widely reported in empirical research. Confidence
intervals reveal more of the size or “economic significance”, or otherwise, of the effect
observed. Critics of “statistical significance” as an evidential standard have often advo-
cated a shift to reporting observed confidence intervals rather than significance levels.

8The distinction between pre-test and post-test interpretations of the same test
was made by Savage (1962) under the heading “initial versus final precision”, and
is explained in principle and by examples in Berger (1985). A short explanation is
that while a random sample might promise to be informative ex ante, the drawn
sample x might have an observed characteristic or sample statistic a(x) that makes
it different from other mechanically “random” samples (of the same size) in the
sense that knowing its property a(x) changes its likelihood function f(z6,-). See
the discussion on ancillary statistics.
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Table 3.1: Frequentist confidence intervals conditional on fixed p-level = 0.05.

Power f(@ops|Ho)/
N Tobs = T¢ f(|f| > |§C| |H1) 95% CI f(fobs|H1) PT(HO|fobsan)

1 1.96 0.1685 (0, 3.92) 0.232 0.188
5 0.8765 0.6087 (0, 1.75) 0.152 0.132
10 0.6198 0.8854 (0, 1.24) 0.302 0.232
20 0.4383 0.9940 (0, 0.88) 3.44 0.775
o0  0.2772 1 (0, 0.55) 68920 1

This disturbing result is usually known as Lindley’s paradox, and
was shown in Bayesian terms by Lindley, and others including Jeffreys,
by comparing the achieved frequentist significance level of 5% with the
corresponding Bayesian posterior probability of Hy, allowing for n.

In the simple test described, the likelihood ratio is the ratio of two
normal densities, and simplifies to

feciny = sy [ (3 %)

Note how this ratio, which carries all the Bayesian evidence, depends on

just the critical value T. obtained and the sample size n, thus showing
how the Bayesian interpretation does call on n, even though n was used
to find Z..

The value of the likelihood ratio is shown in the table for each sample
size n, along with the resulting posterior probability, Pr(Hy|Zps), given
Pr(Hp) = 0.5. Observe how the posterior probability of the “rejected”
null hypothesis tends to one when n becomes large enough.? That is
the famous paradox. See Lindley (1957) and Berger and Sellke (1987)
and Robert (2007) for a fuller explanation and some qualifications.!”

This clash of statistical cultures is largely overcome when frequentists
report confidence intervals rather than statements like “reject the null

9As explained by Lindley (1957, p. 189): “5% in to-day’s small sample does not
mean the same as 5% in to-morrow’s large one”.

Harvey (2017) in his presidential address to the AFA emphasized Lindley’s
paradox as a fundamental issue for logical statistical inference.



42 Survey of Bayesian Fundamentals

hypothesis”. In terms of confidence intervals, higher n is unambiguously
desirable, because the interval is narrower for any given confidence level,
100(1 — a)%. That “solution” goes only part way towards a Bayesian
test interpretation, because the resulting confidence interval remains
to be interpreted, and Neyman did not allow confidence intervals any
Bayes-like interpretation in terms of evidence or beliefs.

3.22 Simpson’s paradox

Simpson’s paradox is not really a paradox, but rather a natural occur-
rence when conditioning probabilities to allow for “relevant subsets”.
Consider the data below, which is taken from a very large sample and
shows the recovery rate of patients when they are treated and when
they are not.

Patient recovery rates

Yes (R) No (N) Recovery rate
Treatment (T) 20 20 40 50%
Control (C) 16 24 40 40%
36 44 80

The data above suggests that the treatment works in the sense that
a patient has a 50% chance of recovery if treated and only 40% if not
treated. That is, p(R|T") > p(R|C). To narrow down and possibly better
identify why the treatment seems to work, it helps to break the data
into two sub-populations;, Males (M) and Females (F).

Yes (R) No (N) Recovery rate

Males

Treatment (T) 18 12 30 60%

Control (C) 7 3 10 70%

25 15 40

Females

Treatment (T) 2 8 10 20%

Control (C) 9 21 30 30%

11 29 40
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The curious fact is that although treatment seems to work overall,
raising the unconditional recovery rate from 40% to 50%, treatment
does not seem to work for males or for females, both having lower
recovery rates when treated.

The first point to make before explaining how such a paradoxical
looking result can occur is that the Bayesian and commonsense per-
spective is to take the conditional probabilities as the relevant ones. For
males, without treatment, 70% recover, and with treatment only 60%
recover. And for females, 30% of those without treatment recover, but
only 20% of those with treatment recover.

So why does treatment appear to work when there is no conditioning
on gender? The answer is that the treatment group includes 30/40 = 75%
males, most (60-70%) of whom would have recovered whether treated
or not, thus making treatment “look” relatively effective. The overall
recovery rate under treatment is a weighted average

p(Male|T')p(R|T, Male) + p(Female|T)p(R|T, Female)
=0.75x 0.6 +0.25 x 0.2
= 0.50.

So the 60% recovery rate of the treated males biases the overall recovery
rate of the population up to 50%, which of course hides the fact that
treated males recover in lower proportion than untreated males.

In terms of exchangeability, males and females are usually seen as
“relevant subsets” and hence not exchangeable. It is wrong therefore in
Bayesian inference to apply the 50% overall population recovery rate
to either males or to females specifically. Conditioning is required on
gender, or so it clearly seems on what is known (the required level of
conditioning is always knowledge dependent, and subjective).

Bayesian conclusions are sensitive to further conditioning and hence
to relevant background knowledge. It may be that if we were to condition
on not just gender but on some other covariate like age, a relevant sub-
subset of say young healthy females might be found to respond very
favorably to treatment.

The ability of a finer level of conditioning to reverse previous conclu-
sions shows why randomization has a role, at least after stratification.
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Suppose that we believe that males with some suspected albeit yet
unidentified characteristic are very different in their response rates
to treatment than females generally. By selecting the males in the
experiment randomly, and allocating them to treatment and control
groups randomly, the hope is to avoid having a hidden unrepresentatively
large proportion of those “unresponsive” males in the treatment group.
That approach holds even when we do not know which males might
have that physical characteristic, nor even what it is. Similarly, of course
for females.

It may always be that more knowledge removes what previously
seemed to be a relevant covariate. For example, gender might be
irrelevant to recovery rates once those rates are conditioned on some
deeper human genetic characteristic, but until then gender defines a
subjectively relevant subset. That is how probabilities change, up and
down, taking certainty up and down.

3.23 Data swamps prior

Typical of the intuitively agreeable logic of Bayesian inference is the
way that Bayes theorem reacts to new information. Ultimately, as the
amount of observation or information increases, different Bayesians who
have the same model but different prior beliefs about the values of
the parameters in that model, all come to the same posterior beliefs.
Enough information about a parameter can bring strong agreement,
even across different models involving that same parameter.

The Bayesian process by which “the data swamps the prior” is a
response to claims that Bayesianism is “too subjective”, but it also
shows the inbuilt Bayesian ability to “go backwards”, in the sense
that the arrival of more data will sometimes reduce the Bayesian prior
certainty about a parameter’s value, or even about the model itself, and
can lead to new results quite contrary to prior beliefs.

Bayesian inference is open to new information changing beliefs in
any way at all. Ideally, there is enough data to reach strong conclusions,
but a large set of data might merely alter prior beliefs just enough to
leave the user much less certain, and hence more in need of still more
data.
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3.24 Stable estimation

Robust conclusions are obviously assisted by more data, but another
property of Bayesian inference that makes the job easier is “stable
estimation”. In brief, if the likelihood function is relatively peaked, then
the posterior density has the same peak and conclusiveness, provided
that the prior distribution is fairly flat in the region where the likelihood
function is peaked. That follows from the fact that the posterior density
is proportional to the product of the prior density and the likelihood.
Hence, in any region where the likelihood density is very small, the
prior density usually makes little difference to the posterior. Thus, the
general shape and location of the prior mass outside the region where
the likelihood function is peaked is largely immaterial.

More data remains, of course, desirable. In fact, the likelihood
function will tend to be sharply peaked only with a sufficiently large
sample. A robust posterior distribution is then a combination of the
two effects.

3.25 Cromwell’s rule

Bayesian methodology does not welcome any probability assessment of
precisely 0 or 1, because utter certainty can never be undone. With prior
probability of 0 or 1, no evidence or likelihood ratio is strong enough to
change that belief. When there exists virtual certainty, the inference
maker will invoke a probability of very slightly less than 1, so as to
admit Bayesian learning but still have little effect on any conclusion
or decision. That method follows Cromwell’s advice to the Church of
Scotland “to always allow that it might be wrong”.

3.26 Decisions follow inference

Coherence is required of both inference and decision-making. The
simplest depiction of rational decision-making assumes that there is
a quantity or parameter 6 (like sales units) and an action d (like
inventory) which as a pair produce utility u(d, 8). Since 6 can sometimes
be affected by d, the probability distribution of ¢ is written as f(6|d).
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The decision maker’s expected utility from action d is then

/f(0|d) u(d, 0)db,

which is maximized by choice of d.

Design of experiments

Before taking any action d, the decision maker might design an experi-
ment e to produce sample information x, so as to update her probability
distribution for parameter . The expected utility from action action
d=d(z) is

[ £(@1d@) udw). 6)ao.

which allows for the possibility that d affects . This expectation is
maximized by setting d = D, where D is best written as D(x) because
it is the best action, given evidence x.

The evidence x comes from an experiment e. If the consequence of
running experiment e and choosing action D(x) is utility u(D(x), 6, e),
then the decision maker’s expected utility from experiment e given
observation x is

u(e,x) = /f(ﬁ]e,x,D(x)) u(e, D(z),0)do.

Note that the utility u(e, D(x),0) allows for the cost of running experi-
ment e.

Experiment e is chosen so as to maximize expected utility, allowing
for all possible experimental results z,

ale) = / F(zle) Tle, x)dz.

In effect, we choose e that produces = that prompts the decision D(x)
that yields on average, according to ex ante beliefs, higher utility than
any other e.

3.27 Inference, not estimation

Bayesian theory gives little direct importance to the frequentist proper-
ties of estimators. Even the fact that an estimator is unbiased is not
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always desirable of itself. Rather, the estimate with highest expected
utility, when it is used to revise beliefs and make a decision, can
sometimes be a very biased estimator in the frequentist sense.

Similarly, the role of maximum likelihood estimation is played down.
In frequentist methods, the maximum likelihood estimator gmle has been
shown to have many good frequentist properties, like being unbiased
and efficient, but those properties of themselves are not appealing to
a Bayesian. Rather, if the likelihood function f(z|@) is quite flat, the
maximum likelihood estimate 8 of parameter 6 is easily over-ruled by
even relatively vague prior knowledge. If the decision maker were to act
“as if” é\mle is the true parameter, she will often take an action far from
the action that a Bayesian would take on the same data z.

A good summary is that both Bayesian and frequentist statistical
methods see the likelihood function f(x|6) as the natural expression
of the data in the context of the model, but the two frameworks make
vastly different use of that function. Frequentists might use it to find a
point estimate §mle but Bayesians use it to find its inverse, the posterior
probability distribution f(8|z).!!

3.28 Calibration

A level of calibration is an ex post quality of a set or probability assess-
ments relative to a set of outcomes. Probabilities are “well calibrated”
if proportion p of all propositions given ex ante subjective probability p
are found to be true, for all p. Calibration is emphasized in Bayesian
literature as a desirable attribute, but is not required in the way that
coherence is. When combined with high resolution, calibration implies
highly “accurate” probabilities. Of itself calibration is not compelling.
For example, if it rains on average on 10% of days, a forecaster can
merely state p = 0.1 everyday and hence be well calibrated over a long
enough run, yet provide no incremental information.

In decision-making under uncertainty, the investor who acts on well-
calibrated highly-resolved probabilities has an “accuracy” edge over any

171t should be noted that there is a camp of statisticians who leave the likelihood
function as the end result, interpreting it as evidence of parameter values that best
explain the data. See for example Royall (1997) and Aitkin (2010).
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lesser combination of those two well-defined attributes. One without
the other is generally a great disadvantage in investment contexts (see
later discussion on economic Darwinism).

3.29 Economic scoring rules

Economic decision-making based on subjective probability assessments,
which, in turn, are based on information, is generally more successful
when those probabilities are more “accurate” relative to actual outcomes.
To assess the accuracy of past probability assessments, meteorologists
and Bayesian statisticians developed formal mathematical probability
score functions, or “scoring rules”.

One well-known scoring rule is the log score. If the event E €
{B, NotB} is binary like B (“bankrupt”) or NotB (“not bankrupt”),
then the score attached to a bankruptcy probability p is

S(p) = log(p) if F=B
"~ llog(l —p) if E= NotB.

This is score is known to be “strictly proper” in the sense that someone
who believes bankruptcy probability r but states probability p, will
maximize her personal expected score,

rlog(p) + (1 — r)log(1l — p),

if and only if she reports her true belief. That is, she reports truthfully
p = r. Proper scoring rules are akin to conventional utility functions
in the sense that decision makers wanting to maximize their own ex
ante expected utilities must act “as if indeed they do believe their own
beliefs”.

Probability scoring rules can have direct economic interpretation, for
example, consider a decision maker qua gambler who believes probability
p and bets against a market maker (bookmaker) who quotes market
probability ¢. If the gambler has utility log(w) for money wealth w, her
realized utility if she begins with wealth wyq is

log(p/q) if =B
log(wg) + {log [(1-p)/(1—¢q)] if E= NotB.
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So the economic quality of her score is captured by the difference
between her log score and the bookmaker’s log score,

log(p) — log(q) if B=B
log(1 —p) —log(1 —¢q) if B = NotB.

3.30 Market scoring rules

The theory of scoring rules developed by Bayesian statisticians overlaps
directly with betting markets, which are essentially markets for “binary
options”. Suppose that there are n probability forecasters with respec-
tive probability beliefs {p1,pa,...,pn}, respective wealth endowments
{wy,ws, ..., w,} and all with log utility log(w). It is easily shown that if
each investor “bets her belief”, so as to maximize her personal expected
log utility, her realized utility is

log(p) — log(p) if £E=B
1
og(w) + {log(l —p) —log(l—p) if E= NotB,

where the equilibrium (market-clearing) asset price is the wealth-
weighted belief of the n gamblers

(w1p1 + wap2 + -+ + Wypn)
>_Dpi

Note that p might be interpreted loosely as a “market consensus’

probability, but does not have any Bayesian justification. It is a weighted

“average” of the different Bayesian beliefs of the gamblers, but is not

ﬁ:

)

itself formally Bayesian, and may not coincide with anyone’s Bayesian
belief. This is interesting in terms what constitutes an efficient market,
because it shows how “market beliefs” can be driven by individuals’
rational Bayesian beliefs and yet not themselves be Bayesian. That is, a
market of strictly Bayesian investors is not by that fact itself Bayesian.

3.31 Measures of information

Shannon invented a measure of the information contained in the user’s
current probability distribution. Consider a distribution over unknown
X which can take possible values X = z;. Current information makes
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us believe probability distribution Pr(X = xz;) = p;. Our stock of
information or “negative entropy” is defined as

> pjlog(p)),

J
which is minimum when p; is uniform, and is maximized when one
of the p; equals 1 (and the others zero). Importantly, note that the
stock of information can increase or decrease. If the user’s probability
distribution over X becomes less peaked or flatter with new information
arrival, its “entropy” or level of uncertainty

—> pjlog(p;),
J

increases. That will occur when the new information about X is
unexpected or improbable based on our previous beliefs about X (i.e.
when the new information contradicts the user’s previous beliefs).

There is an intimate relationship between Shannon’s entropy (with
base e) and natural log utility. Information measures could be based
on other utility functions, but the log measure has been found to have
many desirable theoretical and intuitive properties. In particular, log
information is additive in the sense that the log odds gained by learning
something in two (or more) steps is the sum of the two increments (e.g.
we might learn the result of rolling a die by first learning that it is an
even number, then that it is not “four”; ....).

3.32 Ex ante versus ex post accuracy

Any new information source or proposed experiment has positive
expected utility merely because new beliefs always make the old ones
seem wrong. Put another way, when the user has new beliefs, she does
not expect on those beliefs that her earlier beliefs are more accurate.
They nonetheless might be, as measured ex post by comparison with
the event actually realized. Suppose, for example, that the new belief
is that it will rain with probability 0.6, whereas that probability was
previously only 0.8. If in fact it rains, then the earlier belief is more
accurate relative to the outcome, and would generally have brought
higher profits or lower losses for investors.
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3.33 Sampling to forgone conclusion

An established property of most conventional significance tests is that
they can hypothetically be driven to a forgone conclusion. Suppose that
the model says that variable X is normally distributed with unknown
mean 6 and known unit variance. By the law of the iterated logarithm,
it is guaranteed that by drawing enough observations the sample mean
will sooner or later obtain statistical significance at any chosen “critical
level” (greater than zero). Thus, if we set out to obtain 5% statistical
significance in a two-sided test, we can draw until |Z| > 1.960 (= 1.96),
and that will eventually occur simply by continued sampling.

In Bayesian eyes, if a frequentist adopts this method of “sampling
to a foregone conclusion”,'? she is not tampering with the data, she is
merely drawing more of it, and is thus paying the cost of more sampling
rather than altering anything about the data’s relevance or validity.

No Bayesian foregone conclusions

While a frequentist can always in theory (with an infinite budget)
sample to a foregone significance level, it is not possible to sample
to a guaranteed small posterior probability. The two objectives are of
different evidential consequence. If a desirably small significance level
is achieved only with a very large sample, it is effectively evidence
supportive of the hypothesis tested (see Lindley’s paradox), so a true
null hypothesis cannot truly be discredited merely by obtaining more
and more data.

By comparison, a small posterior probability, with any sample size,
does discredit the hypothesis tested (the sample size is taken into account
in the calculation of that probability). It is logical and reassuring
therefore that an arbitrarily small posterior probability cannot be
guaranteed by prolonging sampling, but instead can only come by the
evidence falling that way.

Examples exist where the experimenter sets out to sample to a given
small posterior probability. Depending on the input assumptions, that

12Quch an approach actually breaks frequentist rules, because it affects the sample
space in a way that is not used in the calculation of the p-level. All samples in the
sample space have p-level less than or equal to the target.
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result is usually possible ex ante but far from guaranteed, the task is
much like someone who decides to hitchhike and just walk until picked
up; a ride might come early or never.

Suppose that in Bernoulli sampling the Bayesian tests Hyp : 8 = 0.5
against H; : 0 = 0.6, assuming equal prior probabilities f(Hp) =
f(H1) = 0.5. Let 6 be the probability of “red”. To obtain a posterior
probability of v for Hy, the required observation must be a pair (n, s)
for which the likelihood ratio

0.5%(1 —0.5)"* <
0.65(1—0.6)"=5 — 1 —~"

The process is to draw from the null distribution # = 0.5 until the first
(n, s) arrives for which p(Hy|n, s) < =, and then stop and report. If that
target is not reached, sampling continues in the hope that it will, until
in effect n becomes “infinite”. Simulation of this process shows that the
chance of “succeeding” at level v is as shown in the following table.

v p(Target Met)

0.05 4.54%
0.10 9.95%
0.20 23.4%

So there is only a 4.54% chance of obtaining a posterior belief of
5% in Hy, when in fact Hy is correct. In the other 94.6% of attempts,
the sample size becomes too huge without success to allow any possible
turnaround, and the probability of Hy goes to one. The Bayesian view
of this unorthodox sampling method is again that there is no problem
with the observations, they are all genuine, untainted and exchangeable.
A problem occurs however if there is no report issued whenever the
target posterior is not met, since in effect that conceals data strongly
supportive of Hy.

Non-reporting is an instance not of falsifying data but of not
reporting data that is both known and highly informative, which is

another form of what has long been called the “file drawer problem”.'3

13The file drawer is reputed to contain data that did not suit the experimenter’s
preferred position, and can be viewed as a widespread principal-agent problem in
statistics.
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3.34 Predictive distributions

A common problem is to use the Bayesian posterior distribution
f(O)z1, o, ..., x,) to forecast, in the form of a probability distribution,
the next observation z,41. That requires “integrating out 6” or
“averaging” over the possible values of parameter 6,

f(xn+1|x17 Z, ... ,.I‘n)

= /f(xn+1|9,x1,x2, coos ) fO|lxy, 20,y .. 2p)dO

:/f(ggn+1|9)f(9]:r1,:v2,...,xn)dG,

since generally f(xn41]0,x1,22,...,25) = f(Xn4+1]0).

Mathematical difficulties typically arise when there is more than one
parameter, and the available solutions are only by numerical (simulation)
methods. '

3.35 Model averaging

Models are said to be always wrong. Bayesian inference sees the model
as just another unknown and treats it like a parameter by attaching
a probability to each possible model and using data to update beliefs
about not only the parameters in the model but also the whole model.
Ultimately, the probability distributions attached to predictions of
variables like whether it will rain are the averages of the within-model
beliefs across those models. That is called model averaging, and avoids
the more conventional approach in statistics of “assuming” a model and
either staying with it or discarding it completely for another model.
Suppose that the model is m € M and the parameter specified with
m (the same in all m) is € O, and the information observed to date
is Zops, then the next value of unknown X has probability distribution,

F(X[2ops) = 3 Pr(m]zops) / FO1, Zops) (X 1,8, o) 6,
M C]

14 Advancements in numerical computation techniques in recent years have made
Bayesian statistics practical in very realistic contexts, which is a large part of why
there has been a boom in Bayesian applications in “big data” science, robotics and
other fields.
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which is called the predictive distribution of X, and amounts to the
“average” probability of X across the different models considered, where
each model is weighted by its posterior probability given past observation
Zops- Under this approach, any new data allows the user to update her
within-model beliefs about parameter 6, f(0|m,zus), and also her
beliefs, f(m|zos), about which model is more probable on all the
information received so far. That is essentially a model for all statistical
inference, because it allows for learning not only about a model’s
uncertain parameter(s) but also about the model as a whole, as if m is
merely another uncertain parameter.

3.36 Definition of a subjectivist Bayesian

It helps to sum up the most fundamental distinguishing features of
subjectivist Bayesianism. This summary follows directly from the crys-
tal clear writing of philosopher /statistician Seidenfeld (1985).'% Sub-
jectivism requires at a minimum: (i) coherence, i.e. all probabilities
understood as degrees of belief are mutually consistent under existing
knowledge K; (ii) the law of total evidence, i.e. all knowledge K existing
at time ¢ is included in the coherent beliefs formed at that time; and
(iii) conditionalization, i.e. if new evidence e arrives, all probabilities
are re-conditioned onto K Ne.

These three requirements may seem too obvious to state, but if that
were the case there would not have been so much antagonism towards
the openly subjectivist theory of Bayesian statistics advanced by Savage
and others. For a similar depiction of Bayesian statistical rationality in
information economics, see Hirshleifer and Riley (1992).

3.37 What makes a Bayesian?

The following quotes from distinguished Bayesians will be of interest to
anyone whose understanding of statistical theory and its rival schools

151t may come as no surprise that the fundamental issues of Bayesianism versus
frequentism, all the way from inference to decision, have their own long standing
and highly developed literature in the logic and philosophy of science. See Seidenfeld
(1979) and Howson and Urbach (2005) for an introduction.
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and origins is somewhat patchy or accidental, rather than learned by
specific attention to the foundations of statistical methods and the
literature in statistics and philosophy on methodological and philo-
sophical foundations. They give a very frank and easy to understand
idea of why someone might regard themselves as “Bayesian” and how
they show that. The quotes are from a statement by Cowles, Kass
and O’Hagan posted on the authoritative Bayesian website operated
by the International Society for Bayesian Analysis (ISBA). See https:
// Bayesian.org/ what-is- Bayesian-analysis/

There are many reasons for adopting Bayesian methods,
and their applications appear in diverse fields. Many people
advocate the Bayesian approach because of its philosophical
consistency. Various fundamental theorems show that if a
person wants to make consistent and sound decisions in the
face of uncertainty, then the only way to do so is to use
Bayesian methods. Others point to logical problems with
frequentist methods that do not arise in the Bayesian frame-
work. On the other hand, prior probabilities are intrinsically
subjective — your prior information is different from mine —
and many statisticians see this as a fundamental drawback
to Bayesian statistics. Advocates of the Bayesian approach
argue that this is inescapable, and that frequentist methods
also entail subjective choices, but this has been a basic source
of contention between the ‘fundamentalist’ supporters of the
two statistical paradigms for at least the last 50 years. In
contrast, it is more the pragmatic advantages of the Bayesian
approach that have fuelled its strong growth over the last
20 years, and are the reason for its adoption in a rapidly
growing variety of fields. Powerful computational tools allow
Bayesian methods to tackle large and complex statistical
problems with relative ease, where frequentist methods can
only approximate or fail altogether. Bayesian modelling
methods provide natural ways for people in many disciplines
to structure their data and knowledge, and they yield direct
and intuitive answers to the practitioner’s questions.


https://Bayesian.org/what-is-Bayesian-analysis/
https://Bayesian.org/what-is-Bayesian-analysis/
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It is essential to the honesty of this monograph that Bayesianism is
not understood as a completely unified practice. Its strictest or most
developed tools go all the way from subjective priors to subjective
utility functions and personal optimal decisions under the rule of
maximizing expected utility. The utility axioms in economics show that
rationality requires the individual to act as if he or she is maximizing
a proper utility function. The axioms however do not necessitate that
probabilities are subjective. Subjectivity occurs only because there
is no alternative when decisions have to be made in contexts where
there are no probabilities that even resemble “objective” or “physical”
probabilities. Of the different creeds of Bayesiansim described in the
following quote from Cowles, Kass and O’Hagan, the one that has been
put into effect by Demski, Feltham, Dye and others in accounting theory,
and is my approach in this monograph, is the uninhibited version of
subjective expected utility maximization (often abbreviated to SEU in
the Bayesian literature):

There are many varieties of Bayesian analysis. The fullest
version of the Bayesian paradigm casts statistical problems
in the framework of decision making. It entails formulating
subjective prior probabilities to express pre-existing informa-
tion, careful modelling of the data structure, checking and
allowing for uncertainty in model assumptions, formulating
a set of possible decisions and a utility function to express
how the value of each alternative decision is affected by
the unknown model parameters. But each of these com-
ponents can be omitted. Many users of Bayesian methods
do not employ genuine prior information, either because
it is insubstantial or because they are uncomfortable with
subjectivity. The decision-theoretic framework is also widely
omitted, with many feeling that statistical inference should
not really be formulated as a decision. So there are varieties
of Bayesian analysis and varieties of Bayesian analysts. But
the common strand that underlies this variation is the basic
principle of using Bayes’ theorem and expressing uncertainty
about unknown parameters probabilistically.
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After a lifetime’s Bayesian work, Kadane’s (2011) summary of the
subjectivist Bayesian ethos is that Bayesian probability theory, or really
just probability theory, of which Bayes theorem happens to be integral,
is merely a language with rules by which to tie together and express
mutually consistent beliefs:

In my view, probability is like a language. Just as gram-
mar specifies what expressions follow the rules that make
thoughts intelligible, the rules of coherence specify what
probability statements are intelligible. That sentences are
grammatical says nothing about the wisdom of what is
expressed. (Kadane, 2011, p. 447)

3.38 Rise of Bayesianism in data science

Big data and machine learning has boosted awareness and practical
application of Bayesian logic (Murphy, 2012). Computer science is
essentially now a Bayesian field. One obvious reason for this is that
when looking for empirical flags or indicators about some unknown
outcome or parameter, the intuitive way to grasp what data x “suggests”
regarding H is to think of whether x would likely occur if H were true,
and whether it is equally likely, or more/less likely, under not-H. The
ratio of those two assessments is the likelihood ratio used in Bayes
theorem, and the observations that are the clearest suspects to be good
machine indicators are ones with empirical likelihood ratios approaching
0 or oo.

Machine learning allows a search, not for individual indicators, but
for joint indicators (z,y,z,...) that have pronounced (high or low)

likelihood ratios, either of themselves directly,

f(x7y’z7"' |H)
f(z,y,2,...|not-H)’

or in some functional combination defined by a model, m(x,y, z, .. .),

flm(z,y,2,...)|H)]
flm(z,y, z,...)|not-H)]’
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The best indicator is usually not any one factor of itself but its
combination with others, very much like the way that variables con-
tribute partial correlation to a regression equation. Such combinations
of indicators are effectively searched out by algorithms designed for that
purpose. Their more or less explicit use of the likelihood ratio is their
Bayesian base.

Different families of machine-learning algorithms are more or less
Bayesian internally, depending on their “logic”, and they all offer
different results. By averaging beliefs over the different models, there is
a much reduced risk of over-fitting or “model risk”. Frequentist statistics
does not have the Bayesian capacity to formally merge the results that
are found under different models, nor do they produce probabilities of
propositions. Results therefore tend to be model-specific and “unhedged”.
Machine-learning methods do not commit to any particular “causal”
view of the world. The Bayesian approach keeps all models “in play”
and allows each model to gain more or less influence as data arrive
and are better explained by some models than others. This approach
is philosophically consistent with a “wisdom of crowds” or combined
opinion approach, supported by the success of averages over individuals
in many real-world contexts.

Bayesian model averaging has been used to study heart
attacks in medicine, traffic congestion in transportation
economy, hot hands in basketball, and economic growth in
the macroeconomy literature. In finance, Bayesian model
averaging facilitates a flexible modeling of investors’ uncer-
tainty about potentially relevant predictive variables in
forecasting models. In particular, it assigns posterior proba-
bilities to a wide set of competing return-generating models
(overall, 2 models). It then uses the probabilities as weights
on the individual models to obtain a composite-weighted
model. This optimally weighted model is then employed
to investigate asset allocation decisions. Bayesian model
averaging contrasts sharply with the traditional classical
approach of model selection. In the latter approach, one
uses a specific criterion (e.g., adjusted R?) to select a single
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model and then operates as if that selected model is correct.
Implementing model-selection criteria, the econometrician
views the selected model as the true one with a unit proba-
bility and discards the other competing models as worthless,
thereby ignoring model uncertainty. Accounting for model
uncertainty, Avramov (2002) shows that Bayesian model
averaging outperforms, ex post out-of-sample, the classical
approach of model-selection criteria, generating smaller
forecast errors and being more efficient. Ex ante, an investor
who ignores model uncertainty suffers considerable utility
loses. (Avramov and Zhou, 2010, p. 38)

Bayes Neon Sign at Autonomy Corporation PLC, Cambridge, UK 1996
(now HP Autonomy)

Textbooks on Bayesian Theory

The following is a list of some important Bayesian reference texts,
categorized according to their general content and style.
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Springer.
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Case Study: Using All the Evidence

This case study re-examines Burgstahler’s (1987) method for drawing
Bayesian inferences from frequentist empirical test results. The findings
apply not only to the original application of interpreting the results in
empirical research studies, but also far more generally to interpreting
any ill-defined or incomplete signal or statement of evidence.

The following analysis reveals how Bayesian interpretations of data,
or of the translation of data that is actually reported to the user, are
not merely subjective, but are also often highly sensitive to the Bayesian
user’s probability model, background knowledge or basic assumptions.
In general, the more subjective the analysis, the wider its range of
possible inferences, yet the more realistic its approach. The antidote to
subjectivity is usually “get more data”, but often there is a decision to
make that cannot wait, or there is no possibility of more data, or other
researchers want a conclusion.

That limitation is deeply understood in the information economics
models used in accounting theory. Accounting, of all applications, will
often leave the information user with a less than complete report, and yet
needing to act or form beliefs on what is reported, despite its perceived
weaknesses. In the “worst” cases, the user is left to act in the face of
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no express report at all, and to interpret that non-report for what it
implies. See for example Dye (2017), Dye and Hughes (2018) and the
corresponding analysis set out later in this monograph.

4.1 Interpreting “p-level < o”

The Bayesian theory of experimental design applies to the ex ante
planning of experiments or “signal design”. It is recognized however
that often the user or decision maker does not design the signal, nor
know all about how it was produced, yet must still interpret it as best
possible. Even a signal which is known to be imprecise or biased can
still change rational Bayesian beliefs, sometimes substantially, and can
still be highly informative.

The following case study based on Burgstahler (1987) illustrates how
a given statistical signal can have quite contrary interpretations under
different levels of Bayesian conditioning, or essentially under different
levels of subjectivity.

The inference problem raised by Burgstahler (1987) is to use the pub-
lished report “significant at a” to revise belief in the null hypothesis Hy
against alternative H;. Without introducing an alternative hypothesis
it is not possible to calculate the probability of Hg, because there exists
only one half of the likelihood ratio.! The idea of Burgstahler’s analysis
is to help empirical researchers interpret classical (i.e. frequentist)
statistical evidence in a Bayesian way, so as ultimately to assess the
probability of the null hypothesis, which is theoretically disallowed in
Neyman—Pearson classical statistics. Burgstahler correctly notes that
the usual non-Bayesian way of calculating and interpreting significance
levels does not admit any statement about the probability of Hy.?

There are at least three possible meanings to “significant at a”.
If all three are plausible, the Bayesian posterior belief is a mixture
or probability-weighted average of the three corresponding posterior

'Neyman found the lack of an explicit alternative to be a weakness in Fisher’s
logic of significance tests. For a fascinating journey through the history of statistical
tests, see Neyman (1950) for his reconstruction of Fisher’s famous tea lady test.
Then see Lindley’s (1984) “Bayesian Lady Tasting Tea” for the “final episode”.

2 A significance level is a probability of the data conditional on the null hypothesis,
not the null hypothesis conditional on the data.
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distributions. The three possible meanings and their associated Bayesian
interpretations are examined individually below.

To match standard textbook hypothesis testing models, I assume
a point null hypothesis Hy : # = 6y against a composite alternative Hj :
0 # 60y, and let Hy have non-zero prior probability my. The remaining
prior probability is distributed over § # 6y as f(6), so [ f(0)dd = (1—mp)
and f(0|H1) = f(0)/(1—m). Burgstahler considered a point alternative
hypothesis, but that case is subsumed in the following model.

Meaning 1: Burgstahler’s result

Report “significant at a;” might be taken to imply no more and no less
than its literal meaning, namely, that the observed p-level is less than or
equal to av. Letting S; denote “significant at «;”, implying f(S1]60) = a.
The posterior odds against Hy are

fUL[S) _ fH) f(S11H))
f(HolS1)  f(Ho) f(S1|Ho)
_ S S01H1) f(5:10, H1)do
mo f(S1160)
J f(O1Hy) f(5110, H1)do

T (1 .

Now, as the sample size n — 0o, the power of the experiment with

respect to any 6 in Hi,
f(5110, Hy)
goes monotonically to one, for any fixed oy > 0, and hence the limiting
odds against Hy as n — oo are
JfO|H)d) 1—mp 1

o (1 o 041’

which approaches co as a; — 0.
Re-expressing the odds against Hy as a posterior probability gives a

limiting probability

. _ o

Jim f(Ho|S1) =

7T0(11+(1—7T0)7

which approaches zero as a; — 0.
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Whether shown in odds form or probability form, the conclusion
is that “significant at a;”, interpreted literally, constitutes stronger
evidence against Hy as n increases and as fixed a; decreases. That is
the usual intuitive way that statistical significance is interpreted.

Meaning 2: A more Bayesian interpretation

Report “significant at a;” might be understood as code for “significant
at arp but not significant at ais”, where ag < 1. For example, “significant
at 0.05” might imply significant at a1 = 0.05 but not at ap = 0.01.3
Letting S C 51, and writing the intersection of the two tail-areas as
S12, the posterior odds against Hy are

f(Si2|Hy) — f(Hy) f(S2|H)

f(S12|Ho)  f(Ho) f(S12|Ho)
_ JAS(5110, Hi) — f(S210, H1)} f(0]H1)do
B mo (a1 — )
As n — oo, both f(51]0,H1) and f(52]0, H1) go to one, and hence
f(S12|H1) approaches zero, implying that the limiting posterior odds
against Hy are zero. Interestingly, therefore, a result known to be
significant at one level but not at a lower level (greater than zero)

)

carries less weight against the null hypothesis Hy as n — oco. The
limiting probability is

Jim f(Ho|S12) = 1.

Meaning 3: Lindley’s paradox

Report “significant at o” might be just a conventional or rhetorically
appealing way of saying p-level = «. Bayesian interpretation of this infor-
mation follows immediately from the results above, because p-level = «
implies “significant at a1 but not at as, where as is infinitesimally less
than «;”. Hence, remarkably,

Jim f(Holp-level = o) = 1,

3The “stars” system of reporting significance levels is of this explicit form, where
for example two stars might signify “significant at 0.01 but not at 0.001”. See Ohlson
(2015) and Ohlson (2018).
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implying therefore that any arbitrarily small fixed p-level represents
stronger and stronger evidence in favor of Hy, not against it, as n
increases.

That result is one of the main points in the Bayesian critique of
conventional frequentist statistical tools, and is widely known as Jeffreys’
or Lindleys’ paradox. See Lindley (1957). Johnstone and Lindley (1995)
give example calculations by which to interpret “significant at «” in the
common test of a normal mean with a normal prior.

4.2 Bayesian interpretation of frequentist reports

The end result is that the report “significant at «” can induce quite
opposite inferences depending on what is read into those words, and
on the (usually known) sample size of the test. A subjective Bayesian
interpretation would put some weight on each possible interpretation,
and hence average the three posterior probabilities of Hy (this is akin
to what’s called model averaging in Bayesian methodology). Choice of
those weights will naturally involve background knowledge of report-
ing conventions and motivations, and would be innately subjective,
thus making the phrase “significant at «”, when reported in isolation,
ambiguous in terms of its weight of evidence.

That is an important result for empirical accounting research,
but also for accounting theory, where so often the interpretation of
accounting disclosures depends on how they are “read” or what is “read
between the lines”. A direct analogy applies whenever for example the
firm reports that sales are expected to increase by at least 5%. Does
this mean “hopefully 5%” or “at least 5%”, or perhaps “somewhere
close to 5%”7 In a Bayesian inference model, those different plausible
interpretations of statements of the form x > x. can result in very
different posterior beliefs.

4.3 A generic inference problem

Note that the problem of interpreting “p-level < o” is the same general
problem as arises whenever a measurement or report of some variable x
comes in the form z < z., or x > x.. That inference problem arises when
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a measurement instrument has a minimum or maximum reading of z.
and the object measured hits that stop. Similarly, reporting thresholds
often leave a signal known only to belong to an interval. When the firm
is classed as a “going concern”, there is no express statement about how
“going” it is.

In accounting theory, Dye and Hughes (2018) discussed the Bayesian
interpretation of an accounting “non-report” taken as implying that the
not-reported observation in question is somewhere less than a critical
threshold z. (see later Discussion). They make a correct subjectivist
Bayesian point of interpreting this information in context with all of its
surrounding circumstances, including the background motivations of the
reporter. That general approach is common in the analytical strategic
disclosure literature in accounting, and is distinctively “Bayesian” in
its insistence on using all available prior and background information,
even when those extra considerations are highly subjective.



5

Is Accounting Bayesian or Frequentist?

Since uncertainty lies at the heart of accounting, there
is no alternative to describing accounting information in
probabilistic terms. (Dye, 2001, p. 212)

Probabilistic terms can be either frequentist (often called classical,
objectivist, orthodox, non-Bayes or sampling-theoretic) or Bayesian.! It
is hard to categorize the accounting literature as either predominately
frequentist or Bayesian, as there are strands, concepts and language of
both schools of thought inter-mixed across and often within individual
research papers. Nor has there been any significant debate between
Bayesian and non-Bayesian camps, unlike for example the longstanding
debate in psychology over the validity of conventional hypothesis tests
and p-values.? Accounting as a discipline has not entered this debate,

"What’s in the name “Bayesian”, asks Fienberg (2006).

2The dispute in psychology concerning the evidential value of significance testing
began decades ago and has lately blown up into a fight about the scientific validity
of much of the empirical social sciences. The multi-authored paper by Benjamin
et al. (2018) is one of many recent fundamental rejections of conventional hypothesis
testing research practices. Weak reproducibility and concern about the credibility
of new empirical discoveries based on “significant at 0.05” has drawn attention in
social sciences to institutionalized “p-hacking” and overly easy rejection of straw-man

69
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excepting perhaps Lindsay (1995), Basu (2015), Johnstone (1997),
Ohlson (2015), Ohlson (2018), and Dyckman (2016).

Implicit reliance on both approaches is common in empirical research.
The theory component of an empirical paper will usually presume
rational Bayesian investor behavior, and formulate hypotheses based
on Bayesian information-economics models developed in the analytical
accounting or finance literatures. However, when it comes to the empir-
ical section of the paper, the methods and language used are almost
always explicitly frequentist. A common juxtaposition is that Bayesianly
justified hypotheses are tested using frequentist significance tests, but
the results of those tests are interpreted quasi-Bayesianly in terms of
an intuitive degree of evidence.

While it might seem odd that this apparent mismatch has long
become the norm, there is some awareness of the issue and some possible
remedies. Thirty years ago, Burgstahler (1987) raised the issue in
accounting research of how to interpret frequentist hypothesis tests
Bayesianly, and there is a substantial analytical literature in statistics
that looks not only for inconsistencies, but also for possible translations
of p-values to Bayesian beliefs, and for any common ground where
the two approaches lead to qualitatively similar conclusions. See for
example Berger and Sellke (1987) and the series of papers on this
topic by James Berger. Interestingly, Lindley initially set out to “write”
classical statistics in Bayesian terms, but then struck inherent logical
inconsistencies.

One glaring contradiction occurs when conclusions from empirical
testing are based on observed “significance levels” rather than confidence
intervals. That is where “Lindley’s paradox” reveals a real disparity
in the two schools’ conclusions from the same data, and has lately

hypotheses, and a general cultural readiness to overstate the weight of evidence
implied by “statistically significant” results. These authors as a group recommend
at least the patch solution of setting the threshold for new discoveries at p-level <
0.005. They say that this suggestion and all the related critique is decades old,
but that a critical mass of researchers now endorse such a shift in routine practice.
In accounting, this approach would be called “conservatism”, because it requires
heightened evidence to accept a “desired” outcome. There is to date little “official”
recognition in accounting of such unrest in the logical statistical foundations of
conventional non-Bayes methods.
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been the subject of much introspection across many fields, including
finance.?

While empirical researchers in accounting have a choice in what sta-
tistical school of thought they apply, or in how they apply a “Bayes/non-
Bayes compromise”, there is no hesitation within the subset of account-
ing theory that is variously described as “information economics”, “noisy
rational expectations” or “strategic information provision models”. That
body of work is unquestionably Bayesian, because it is built explicitly
on the logic and choice of rational agents.* Often without any conscious
rejection of frequentist constructs, these models take Bayesian inference
and decision-making as axiomatic.

Being “Bayesian”, all such models are “immune” to the specific
criticisms and counter-examples that Bayesian thinking points at fre-
quentist statistics. It is possible, always, to be “more Bayesian”, in the
sense of introducing a higher level of conditioning or subjectivity into
essentially the same Bayesian model, and hence different apparently
equally “Bayesian” models can produce quite different and sometimes
opposite results. An example based on a reconstruction of Simpson’s
paradox is set out later in this monograph. See also the previous example
based on Burgstahler (1987).

3Significance tests are criticized along Bayesian lines for flawed logic, but they are
also criticized for being too easy to “milk” in the sense of finding “significant results”
(a principal-agent problem between researcher and funding agency). That critique is
starting to emerge in accounting, e.g. Basu (2015) and Ohlson (2015) and Ohlson
(2018). Parts of finance came to Bayesian method via the parameter risk literature
in portfolio optimization, and there have been basic criticisms of significance tests
made in that literature. See for example Shanken (1987), Lewellen and Shanken
(2002) and recently Harvey (2017).

4Behavioral finance would see this as a weakness, not in terms of interesting
and revealing modelling, but in terms of the empirical descriptive validity of the
conclusions. There is however a great overlap because of the self-interest assumption
that runs through Bayesian models of strategic disclosure and the like, rather than
for example a more old-fashioned assumption of providing information that is most
informative or in the best interests of the user (not the provider). See also Dye (2001)
responding to any suggestion of modelling information users other than Bayesianly.



72 Is Accounting Bayesian or Frequentist?

5.1 Two Bayesian schools in accounting

Gao (2013a) and Gao (2013b) distinguishes correctly between two
overlapping strands of Bayesian accounting theory. The oldest is the
single agent textbook example, where accounting is understood as
effectively little more than a non-strategic “black box” from which
signals of different apparent Bayesian qualities emerge. Signals are
thus exogenous from the perspective of the user, who merely applies
subjective Bayesian decision theory to interpret and act on them.
Gonedes (1975, p. 847) called these bits of information “signals from
nature”.”

Gao (2010) holds that while treating accounting signals as exoge-
nous is insightful in the ways shown by Demski, Feltham and others,
the full expression of subjectivist Bayesian thinking in accounting
requires strategic disclosure models that allow for signals being partly
endogenous.’ The user, and the contracts that the information user
imposes on the sender, are designed to affect the resulting statistical
information properties, and hence influence the Bayesian meaning of
realized signals. Similarly, Stocken (2013) holds that when the firm
and those who receive information interact strategically, normative
Bayesian information criteria, including Blackwell’s theoretical ranking
of alternative signals, are not sufficient grounds for the firm to choose its
self-interestedly optimal reporting strategy, or for regulators to choose
between different accounting rules:

... Feltham (1968) considered the value of changes in an
information system within a setting containing a single
investor using Bayes’ Theorem as an organizing framework.
He considered information having the attributes of relevance,
timeliness, and accuracy to be desirable. This literature

SHitz (2007) views this version of Bayesian accounting theory as one of two
branches of the “decision usefulness school”, it being the “information theory” branch
and the other branch, which does not involve Bayesian inference or any logic of
inference, being the “measurement school”.

SConedes (1975, p. 615) anticipated this view. He suggested that accounting
standards are likely in place to prevent users of information being sent Akerlof
lemons.
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seems to have suggested the ingredients for the hierarchy
of qualitative characteristics developed in Statement of
Financial Accounting Concepts No. 2 — Qualitative Char-
acteristics of Accounting Information — issued in 1980.
This early work considered the properties of accounting
information within a single decision-maker context. The
revised criteria for evaluating information characterized
in Statement of Financial Accounting Concepts No. 8 —
Qualitative Characteristics of Useful Financial Information
— released in 2010 seem to reflect this view. The financial
reporting environment, however, features several decision-
makers. Investors gather information from various sources,
including a firm, the firm’s competitors, analysts, trade jour-
nals, and government statistical releases. ... management
must be cognizant of the scrutiny of policy-makers and
regulators and also of investors’ rights to take legal action in
the event of fraudulent material misstatement or omission of
required information. In short, the accounting information
environment is populated with many strategic players mak-
ing payoff maximizing decisions. ...Blackwell’s Theorem
does not hold when multiple decision-makers interact strate-
gically. Thus, the notion that providers of capital would
prefer finer information over less fine information offers
little guidance to firms when deciding on their disclosure
policy. In contrast, the extant literature emphasizes that a
firm’s optimal disclosure policy is sensitive to the features of
the information environment. Consequently, in the absence
of precisely characterizing the environment, the desirable
properties of accounting disclosure cannot be characterized.
(Stocken, 2013, pp. 199-200).

Gao’s two Bayesian schools have one essential commonality —
Bayesian logic. Similarly, even in the strategically convoluted environ-
ment well recognized by Stocken, there has to be a logic on which
to interpret what signals ultimately arise. That logic will imply its
own criteria by which signals are useful or not. In the end, whether
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the firm’s signal design and production is influenced or not by the
user, the rational user applies Bayes theorem to interpret it. Focus in
this monograph is on that process of Bayesian interpretation of what
arrives.

The strategic information setting will be reflected in Bayesian
probability revisions, to the extent at least that the signal user can
assemble a sufficiently complicated and realistic model. When a Bayesian
user interprets a signal x so as to make an inference about V in the
form of a probability distribution f(V|x), that posterior distribution
is actually f(Vl]x, BK) where BK represents all of the user’s complex
background knowledge, including for example the terms of the contract
or the accounting rules and conventions under which the signal was
produced, terms which may come within the user’s influence during the
preceding contracting process (which is now history, until next time).
For example, the BK in Bayesian inference models will incorporate
perceived dependencies between the accountant’s measurement and
reporting practices and the state of underlying fundamentals such as
costs and revenues, whereby for example the firm might be more inclined
to conservatism under some conditions than others.

In Gao’s realistic circumstances, where signal arrival and quality
are at least partly endogenous rather than entirely “from nature”, a
Bayesian user must model the reporter as much as modelling the “natural
causes” of payoff V itself. For example, put simplistically, the received
might need to make a probability assessment f(V|x, BK) where BK
includes knowledge that the firm will try to report the value of x that
is “as favorable as possible under the accounting standards”, or “as
favorable as possible while not raising too much doubt about its own
credibility”. Those Bayesian probability assessments are the bread and
butter of strategic accounting information equilibrium models, since
Bayesian logic is required in any economically rational assessment of a
conditional probability regardless of how difficult it is to model and make
that assessment when information providers have individual rewards
apart from merely “satisficing” users.

Although Gao’s and Stocken’s argument is undoubtedly correct in
terms of how accounting as a strategic practice should be realistically
understood, there remain everyday circumstances where a user, like a
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fund manager, has to interpret an accounting signal like an earnings
report over which she has virtually no control, and go on from that
assessment to buy or sell stock at a market price over which she has
virtually no control. She is then in the position envisaged by Feltham,
Demski and Savage. She treats the signal as exogenous, like the weather
forecast on tonight’s news.

That is a typical situation for most shareholders who have no sway
over what signals the firm puts out. They will however collect other
information at their own discretion, most of which is also of a quality
outside their control, and yet belongs in BK as does all that is recognized
about its perceivably poor quality or accuracy.’

Gao (2010, p. 865) looks specifically at accounting conservatism,
and says that its strongest justification in standard setting is that
it counteracts overly-positive reporting tendencies in firms. Its other
possible justification, apparent from Demski, is that a conservative
signal might have “optimal bias” (i.e. maximum expected utility) from
the perspective of a given user’s utility function (see later illustrations
of this). That would be supported by traditional Bayesian decision
analysis, and would motivate that particular user to (try to) pre-ordain,
via contracts, a suitably conservatively biased signal, which is ultimately
Gao’s point. In essence the user might influence the signal, its content
and qualities, but in the end (my point) the user must still weigh and
interpret what she gets.

What information she gets is to some extent the result of prevail-
ing accounting standards. That is similarly the case of consumers of
approved medicines and pharmaceuticals who are given information
about the effectiveness of those products. Agencies regulating that
information are aware that drug companies are motivated to provide
consumers with the most favorable information possible. That reality
leads regulators back to normative considerations of what information
and tests are statistically useful and reliable to users. It should not
be concluded therefore that normative (Bayesian) information criteria

"Reliance on information that is very largely outside the receiver’s influence
will possibly increase with greater use of robots and machine-leaning algorithms in
financial analysis.
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are rendered obsolete in a regulatory environment merely because the
providers and users of information are partly strategic adversaries.

5.2 Markowitz, subjectivist Bayesian

It is probably fair to say that accounting information theory and
empirical research sets its foundations largely in financial theory and
the statistical methods of finance. The following depiction of Markowitz
as a Bayesian advocate in finance will therefore be of interest.

Markowitz, famous for his development of mean—variance portfolio
theory, was one of the first avowed subjectivist-Bayesians in financial
economics. Some of his many convictions to Savage and the neo-Bayesian
movement are as follows.

Of course, none of us know probability distributions of
security returns. But I was convinced by Leonard J. Savage,
one of my great teachers at the University of Chicago, that a
rational agent acting under uncertainty would act according
to “probability beliefs” where no objective probabilities
are known; and these probability beliefs or “subjective
probabilities” combine exactly as do objective probabilities.
(Markowitz, 1991, p. 469)

Markowitz went on to say that it makes no difference whether
the probabilities we have in mind are “objective” or “subjective” —
ultimately they are all personal beliefs and subjective.®

5.3 Characterization of information in accounting

Across much of the accounting literature, especially in empirical research
papers, there is a conventional way of describing accounting information
quality which, on the face of it, seems to be an essentially frequentist

8Interestingly, also, further connecting Markowitz with the Bayesians, it has been
suggested by Rubinstein (2006) and Pressacco and Serafini (2007) that mean—variance
portfolio theory was in fact invented by Bayesian de Finetti, and Markowitz (2006)
has confirmed that possibility.
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notion. Specifically, it is normal to describe information quality in just
one convenient word — “precision”. For example, among many”:

First, we associate earnings quality with precision, in the
sense that higher quality earnings are more precise with
respect to an underlying value-relevant construct that earn-
ings is intended to describe. ... we associate earnings quality
with precise (that is, low variance) information about a
construct that earnings is intended to describe (Francis et
al., 2006)

And then further clarification of how “precision” is a statistical
notion:

We identify quality of information in the capital markets
with a statistical notion, specifically, the precision of a
measure with respect to a valuation relevant construct. For
a given construct, higher quality information is more precise
(contains less uncertainty) with respect to that construct.
(Francis et al., 2006, p. 8)

Just as in these quotes, our accounting vocabulary calls “better”

accounting information more “precise”. That characterization is formal
and statistical, and adopts the term used in frequentist statistics to
describe the variance of an estimator. In frequentist terms, an estimator
is more precise when it has lower variance around the true parameter,
or around its mean if it is biased.'?

An issue with using just this single frequentist notion to depict
information quality is that it does not encompass all of the other ad
hoc frequentist statistical signal characteristics, like bias, consistency,
efficiency and so on, as set out in orthodox non-Bayesian statistics
textbooks. Pre-dating the modern generic use of “precision”, Ijiri and

9Veronesi (2000, pp. 810-11) describes ... the standard “signal equals fundamen-
tals plus noise”.

107t is an issue for frequentist statistics that a biased estimator might be “precise”,
and the term “consistency” was introduced in frequentist theory to describe an
estimator that becomes less biased and more precise as the sample size increases.
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Jaedicke (1966) described the “reliability” of accounting measures as a
combination of their objectivity (meaning variance) and bias, and to be
measured by a mean-squared error. Similarly, in other early works:

There are two basic components of error: bias and variabil-
ity ... (Feltham, 1968, p. 694)

Classical techniques usually assume that the distribution is
constant over the historical period and the future period. The
historical observations represent samples from a population
and this sample information is used to derive “unbiased” and
“efficient” estimates of the parameters of the distribution
which describes the population. (Demski and Feltham 1972,
p. 541)

It seems incongruous that accounting theory relies so much on
the word “precision”, with its statistical overtones of merely variance,
when at the same time accounting research is rightfully occupied with
earnings management, accounting re-statements, fraud and conservatism,
all of which sound like explicit, albeit possibly sometimes desirable,
information biases.

The problems created by adoption of the word “precision” come out
in Francis et al. (2006) when having defined earnings quality repeatedly
in terms of precision or variance, it is later appended as almost a bonus
that information is more valuable if unbiased:

... information is valuable (useful) to the extent it is unbiased
(the mean of the information variable is the same as the
mean of construct described by the information). (Francis
et al., 2006)

Much attention is devoted here to the monograph on earnings quality
by Francis et al. (2006) for the reason that it genuinely attempts to
define what is meant in the accounting literature by “precision”. The
difficulties that arise are an issue traceable to frequentist statistics as
a school. In particular, a biased estimator might also be “precise” or



5.3. Characterization of information in accounting 79

low variance. How can these two competing estimator attributes be
wrapped into a single descriptor?

Statistics textbooks address the issue of combining bias and precision
with another frequentist term, “consistency”. A consistent estimator
is one that becomes less biased and more precise as the sample size
increases, which in some ways is what better accounting information
aspires to do. For example, a closer audit or more scrutiny by the
accountant might draw out a less noisy and less “managed” earnings
report. Accounting might swap the term precision for consistency, except
that consistency is an “asymptotic” property of an estimator rather
than one that always exists in a given degree (like precision).

If the most appropriate frequentist word were chosen to describe
better accounting information, there is an argument for “consistent”,
in the sense that accounting information should improve when more
resources are put into it. However, better still might be the term
“efficient”. An “efficient” estimator is efficient relative to a cost function.
In simple terms, if the estimate is to be used as input to a decision
where the outcome of the resulting action is measured by a cost, the
most efficient estimator is the one that presents minimum expected loss
(Gelman et al., 2004, pp. 111-12). That notion of information quality
is possibly closer to what accounting standard setters have in mind
than mere “precision” or low variance. It not only allows for bias, but
also allows for an estimator to be optimal and yet still be biased, so it
leaves open the possibility that a “conservative” earnings report can be
optimal.

The frequentist criterion of cost “efficiency” seems loosely consistent
with a normative Bayesian experimental design framework, however
there remains a fundamental difference between the two approaches. In
the frequentist model of efficient estimators, there is no Bayes theorem.
Instead, the decision based on the observed estimate is just the estimate
itself. In the simplest case, the cost attached to an estimate = of true
parameter 6 might be just a linear loss |z — 6| or more often a quadratic
loss (z — 0)2. The Bayesian decision model is more developed, and also
more subjective. It finds the expected loss stemming from estimate
x by examining the action D(z) that would have been taken after
calculating the Bayesian posterior belief f(f|z). To a Bayesian z is not
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a “decision” with an objective loss, like (xz — 6)2. Instead, z is merely
information upon which to revise beliefs — and then decide. That is,
actions have losses, estimators do not. That is an essential difference
between frequentist methods, by which estimators have loss functions,

and Bayesian decision analysis.!!

5.4 Why accounting literature emphasizes “precision”

The vernacular or convenient shorthand in accounting of talking rou-
tinely about “precision”, and thus implicitly overlooking bias, can be
traced it seems to two longstanding traditions in accounting literature.

The first explanation is that most formal Bayesian statistical models
of an accounting signal, generally for convenience and mathematical
tractability, assume a statistical information model in which the sig-
nal received or transmitted is normally distributed around the true
parameter and is unbiased (has noise with mean zero) and has known
variance (or precision).!? These assumptions are part of the standard
introductory Bayesian model for inference about an unknown mean
under the assumption of a known population variance. That model has
a very intuitively appealing closed-form distribution for the unknown
population mean, which has been put to use in hundreds of accounting
theory papers. Its simplicity and tractability relative to the same model
with an unknown population variance, and hence unknown sampling
(signal) variance, is its theoretical attraction, belying the fact that in
most applications in accounting, the population variance and the mean
are realistically both unknowns.

By assuming an unbiased normally distributed signal of known
variance, a signal’s variance or precision is its sole advantage over
another signal, because both sources are unbiased. Signal quality is
thus captured entirely and simply by a single parameter — “precision”,
or the reciprocal of its variance — and that has become the accepted

1 Schlaifer and others used the term “decision analysis” to separate the Bayesian
way from the older statistical “decision theory” that traced to Neyman and Wald.
See (Gelman et al., 2004, pp. 543-544).

2There are literally hundreds of papers built on this assumption, too many to
warrant citation.
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way that accounting theory and empirical work commonly characterizes
information quality.

Dye and Sridhar (2007) raise the potential problem of taking
“quality /precision” as “one-dimensional”:

Since the present paper emphasizes the precision of account-
ing estimates, and precision is a measure of the quality
of accounting reports, our paper is also related to the
theoretical literature on information quality. While we take
quality/precision to be one-dimensional, Antle and Demski
(1989) note that the quality of accounting information can
often be a multidimensional concept ... (Dye and Sridhar,
2007, p. 736)

The general consensus seems to be that an express focus on precision,
rather than also bias, is part and parcel of trying to sum up, in a practical
sense, enough of the relevant quality of the signal to serve the purposes
of accounting theory.

Bhattacharya et al. (2012) note that their approach focusses on
precision because analytical accounting theory does:

Because the analytical models we rely on tend to focus
on the precision of information and to view cash flows
as fundamental, we believe our research question calls for
accounting-based earnings measures that capture the pre-
cision of earnings with respect to accounting fundamentals
that are meant to capture the value-generating process of
the firm, especially cash flows. (Bhattacharya et al., 2012,
p. 458)

There are some models that specifically examine the economic costs,
or possibly benefits, of accounting bias, in which case a different Bayesian
model appears. Such models, implicitly at least, allow for signal qualities
that include bias and precision. An example is a model of a binary signal
that can have discretionary Type I and Type II error probabilities, and
hence clearly different inherent biases.!?

131n using the terms “Type I” and “Type II” error probabilities, usually denoted
by « and 3, we risk upending Bayesians who set out to use only their own language.
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Models of that binary form can be insightful because of their
flexibility; see the discussion later in this monograph. Accounting theory
has rightly drawn heavily on the elegance and Bayesian insightfulness
of models involving a binary parameter (state) and a binary signal.
References include Gox and Wagenhofer (2010), Ewart and Wagenhofer
(2011) and Ewart and Wagenhofer (2017), Wagenhofer (2014), Gao
(2013a) and Gao (2015), Gao and Zhang (2018), Bertomeu (2013),
Bertomeu et al. (2017), Gigler and Hemmer (2001), Chen et al. (2007),
Laux and Stocken (2017) and Smith (2017).

A less likely explanation of accounting information being charac-
terized as more or less “precise” traces to the model of a manager’s
disclosure in Fischer and Verrecchia (2000). In that model, the direction
of suspected bias in a report is unknown, which leaves the mean of the
user’s distribution unchanged. The unknown bias merely adds a noise
term to the disclosure, and leaves it subjectively unbiased. That is like
throwing a dart at a moving target. The throws are unbiased but high
variance. A “random” bias merely adds variance around the same grand
mean.

The second plausible explanation for the literature’s reliance on
“information precision” is that the term “precision” is not meant to be
taken literally or “statistically”, but is merely a primitive term used to
summarize a composite of possibly vaguer information characteristics.
A typical statement, repeated in sentiment throughout the literature,
goes as follows:

A possible explanation for the different stock price response
coefficients is that earnings affect investors’ beliefs to a
greater extent than forecasts because earnings are a more
precise signal of future cash flows than forecasts. (Beyer,
2009, p. 1715)

In Bayesian terms, the probabilities a and [ are “likelihoods”, or probabilities of
data given hypothesis (parameter).

"1indley and other subjectivist-Bayesians hold that it is rarely realistic that a
user would have no inkling whatsoever. In the case of a manager’s unknown direction
of bias, there is usually enough surrounding detail and background knowledge to
make that bias more likely “up”, or more likely “down”, or alternatively that it is
small or large.
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A broadly “better” signal is thus in accounting speak “more precise”,
where “more precise” is an intuitive notion, and is left at that rather
than being given a formal explication.

Information “precision” is thus a shared metaphor in Basu’s (2013)
description of habits and paradigms in accounting research. Typically,
for example, an earnings measure might be understood as “more precise”
if it appears less subject to earnings management. That seems to be

the final and pragmatic understanding reached by Francis et al.:

We note that if quality encompasses any attribute that
makes information more valuable to capital market partic-
ipants, then a full characterization of information quality
is surely empirically intractable. Our focus on precision as
the construct that underlies information quality is based on
the (previously discussed) applicability of precision to many
types of information and on its wide use in the accounting
literature. (Francis et al., 2006)

... the choice of auditor affects investors’ perceptions of the
credibility of earnings. ...earnings credibility (which we
associate with quality, because more precise earnings should
be more believable). .. Francis et al. (2006)

In what follows, I argue a familiar Bayesian claim, namely that the
Bayesian way of thinking supersedes all of the patchwork of ad hoc esti-
mator criteria that frequentist statistics throws up. Bayesian logic avoids
the intractable tangles that arise when trying to sum up information
qualities in any single frequentist dimension (like “precision”).

A Bayesian view of why accounting uses the word “precision” as an
overall summary of information quality is that accounting has met a
problem that is endemic in frequentist statistics. Bayesian theorists refer
to the “adhockery” of frequentist methods, concepts and criteria (that
description came from de Finetti; see O’'Hagen, 1994, p. 20). Specifically,
frequentist textbooks list several estimator characteristics, like bias,
precision, consistency, and BLUE-ness, which all seem desirable per se
but are not easily weighted against one another, cannot be subsumed
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into one well-defined measure of signal quality, and do not arise from any
unifying principle.'® Faced with such a bundle or signal characteristics,
accounting took up the single word “precision” as the summation of
signal quality.

As a last note on the depiction of information quality in the
monograph by Francis et al. (2006), it stands out that despite references
throughout to “decision usefulness”, “value relevance” and the “value
of information”, no explicit Bayesian theory is discussed or referred to.
That is a notable departure in terms of exposition, rather than position,
from the early works in accounting information theory by Feltham,
Demski and others, where the entire opus is explicitly Bayesian and
information qualities are described technically—statistically using explicit
Bayesian concepts.

A general subordination of a formal Bayesian decision framework
is apparent in the common definition of accounting “value relevance”
as merely empirical correlation between information and market out-
comes (e.g. prices), rather than information influencing outcomes via a
mechanism of belief formation and then action:

The key commonality in the definitions is that an accounting
amount is deemed value relevant if it has a significant
association with equity market value. (Barth et al., 2001, p.
79)

Bayesian theory came to play a lesser role in accounting than it
did in the 1960s and 1970s. The rise of empirical “capital markets”
accounting research, which adopted frequentist statistical methods
(p-levels) and available software, took attention away from Bayesian
theory in PhD programs. The Bayesian critique of significance tests that
16

arose in empirical psychology in that era,”® was not raised or possibly

5Wagenhofer (2011, pp. 232-233), notes the deficiency of any single parameter
characterization of earnings quality: “. .. there is a large set of accounting recognition,
measurement, and disclosure rules that jointly determine reporting quality. Collapsing
these financial reporting choices into a single parameter does not allow generating
insights into the delicate mix of instruments a regulator has available.”

'6See Morrison and Henkel (1970). Wagenmakers et al. (2018) offers partly
psychological explanations beneath empirical researchers’ continued loyalty to
conventional frequentist methods and language.
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widely known. It remains still that while accounting theorists ignore
non-Bayesian logic and tolerate only Bayesian logic as the foundation
of uncertain inference from limited data or information (see later
references), most empirical research method and reporting follows the
same unchanged frequentist statistical culture and philosophy as in
previous decades.

5.5 Bayesian description of information quality

The alternative to frequentist adhockery offered by Bayesian theory is
a single mathematical representation of signal quality — the likelihood
function. A clear illustration of how the likelihood function reveals the
character of a signal and its innate strengths and weaknesses is provided
in Figure 5.1.

Two signals are compared. Both are sample means Z, of amount
T = 50, drawn from a population with unknown mean 6 and known
standard deviation ¢ = 50. The likelihood function of 7 is

f(@l0,0,n) = \/gexp [_Z (x;H)Z],

The signal depicted by the dotted line is an unbiased sample mean of

sample size n = 5. The other signal is a sample of size n = 30.

f(x=50|8)

e - 8
=20 20 40 60 80 100 120

Figure 5.1: Likelihood functions f(Z = 50|6) of two signals.
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The idea of the plots is to show how even a quick look at the
likelihood function of the data tells much about what the signal says
and how strongly it says it. A sharply peaked likelihood function implies
strong evidence for parameter values around that peak, and strong
support against parameter values for which the likelihood is near zero.
An unbiased signal is peaked at the true parameter value, and a larger
sample size makes the peak sharper.

Note that the plot may look familiar but is not what is usually seen
in a frequentist exposition on estimators. Usually on the horizontal axis
would be Z, and the plot would show the probability distribution of &
centred around some true 6. Our plot instead has 6 on the horizontal
axis and shows the probability of observing the realized value of T (here
7T = 50) conditional on different plausible or admissible 6 values. The
two plots “look” the same but are not. The frequentist version shows a
conditional distribution over a range of possible Z, and the Bayesian
one shows a conditional distribution over a range of possible 6.

5.6 Likelihood function of earnings

Bayes theorem summarizes information z by its likelihood function of =,
f(z]0) over the class of all possible 0 or states of nature. The location
and sharpness of that function feed into Bayes theorem and, jointly
with the prior f(), drive the posterior belief distribution f(6|z).

Any Bayesian representation of accounting information and its qual-
ities will necessarily be built on likelihood functions and the underlying
Bayesian principle of sufficiency. Less formal notions of information
properties, like the “asymmetric timeliness” of accountants’ readiness
to recognize revenues versus expenses, must be expressed in a likelihood
function to have a clear Bayesian definition.

As an exercise (see below), the task of translating traditional
accounting information qualities into likelihood functions imposes a
conceptual rigor on how these properties are understood. Ultimately,
they need to be understood in likelihood terms if their “decision
relevance” is to be demonstrable within the accepted rational framework
for decisions under uncertainty. That level of specification of signal
characteristics is the accepted standard in disciplines such as medicine.
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Accounting information, and its strengths and weaknesses, can be
characterized by Bayesian likelihood functions in ways that formalize
many existing accounting concepts. Given the wide importance in
accounting of notions like “earnings quality”, the Bayesian way of
representing general signal quality through the likelihood function seems
to be the natural conceptual approach for accounting to adopt as
its theoretical ideal. Desirable “accounting information properties”,
including possibly conservatism, will show up in well-specified likelihood
functions in ways that imply either a stronger signal or a signal that
has higher expected utility to at least a subset of decision makers.

Consider the likelihood function f(x|u) of reported earnings x,
conditional on “true earnings” u. Possible subjective likelihood functions,
as might occur in the inference model of a user of reported earnings,
are shown in the Figure 5.2.

Let the realized earnings be x = high, meaning that reported
earnings are “high”, and hence the relevant likelihood function is f(x =
high|p), or really f(x = high|u, K) where K is the often important

f(x = highlp)
o

-----
..........
-----------------------------------

v
=

Figure 5.2: Subjective likelihood functions f(z = high|u).



88 Is Accounting Bayesian or Frequentist?

background information (K being suppressed for convenience in the
notation).

Likelihood function A (i.e. signal A) represents a perception of
uniformly less conservative accounting than comparable function B,
because it gives higher probability to high reported earnings across the
entire spectrum of feasible true earnings; cf. Basu (1997).

Function C is indicative of a type of “conditional conservatism”
in that it attributes locally reduced probability to a high earnings
announcement when the true earnings are low.

Function D is the most peaked. It implies that the observation
x = high amounts to virtual Bayesian proof of high true earnings,
because that signal has virtually zero probability of occurring under
low true earnings (this is an extreme form of conditional conservatism).

Function F is completely diffuse, indicating that there is something
apparently so dubious or deficient about x = high to the point that
it carries no subjective weight whatsoever, and thus has no affect on
Bayesian beliefs.

There is any number of other possible shapes and a Bayesian user is
allowed (indeed required) to specify beliefs about the properties of the
earnings announcement, no matter how these are perceived, because
without a likelihood function there can be no revision of beliefs upon
reported earnings.

This exercise in Bayesian thinking about signal qualities offers a
formal way to characterize any aspect of accounting “earnings quality”.
Many earnings attributes are conceivable and can be pictured in simi-
lar functional shapes and locations, including shapes consistent with
earnings bias, imprecision and intentional misstatement.

Articulating earnings properties by way of possible likelihood func-
tions brings home the level of specification and flexibility that the
Bayesian formalism encourages. A complete Bayesian explication of
the perceived “quality” or failings of an earnings measurement regime
requires specification over all feasible parameter values u for all feasible
observations z. More conveniently, if earnings can be considered in
qualitative levels like “high” and “low”, as in the illustration above, the
task is simpler. To make Bayesian calculations on observing qualitatively
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“high” earnings, x = high, we need only consider f(z = high|u) over
the feasible set of u values.

It is generally not hard to capture the suspected deficiencies in a
signal x, even vague feelings of what might be wrong with z. For example,
suppose that the user is worried that, although all seems “normal”, the
reported earnings figure might in fact be fraudulently inflated. This
concern is formalized by placing higher personal probability f(z =
high|p) over the interval of (very) low u. Another approach is to
model f(z = high|p,fraud) and f(x = high|p,no fraud) separately,
and then average posterior probabilities over the two possible worlds
according to their respective subjective probabilities f(fraud|z = high).
This is a standard Bayesian method of allowing for “model risk” or
model averaging. Specifically, f(ulx = high) o« f(u)f(x = high|w)
where

f(z = high|p) = p(fraud|p) f(z = high|fraud, p)
+p(no fraud|p) f(x = high|no fraud, p).

Bayesian logic has many nice subtleties that can be used to capture
well-known accounting characteristics. For example, suppose that an
auditor is known to be stringent and rarely allows the sorts of earnings
management that boost earnings to a “high” level. With that auditor,
a report of high earnings really means something, it rarely occurs. An
auditor like this would have a likelihood function resembling D. But
there is a downside, because an auditor with this same virtue has the
weakness that she reports “medium” earnings most of the time when
true earnings are in fact high. So in terms of the likelihood ratio, it can
be that the report “medium” is as indicative of true earnings being high
as of them being medium, that is,

f(z = “medium”|p = medium)

f(z = “medium”|pu = high)

Hopefully the likelihood ratio is greater than one, but it may not be
sufficiently greater than one to allow an accounting report of “medium”
earnings to help the Bayesian user infer whether true earnings are much
more probably medium than high.
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The general characteristic of information under Bayes theorem is
that different realizations of the same signal (e.g. the same auditor) can
carry very different amounts of information.'” An auditor can be known
to be reliable when reporting a highly unfavorable result, but not when
reporting a favorable result. That is, a potential Bayesian basis for some
results or announcements having a greater effect on the market’s beliefs
and prices than others. Note that it also shows how an assumption of
constant signal precision under all possible true parameter values can
be highly unrealistic.

Another helpful feature of Bayesian inference is that in assessing
the likelihood function f(z|u), it is not necessary that “true earnings”
w1 are observable. Nor indeed is it necessary that earnings quality is
observable. Ultimately, the assessor or user adopts a personal subjective
likelihood function f(x|ux) when forming her Bayesian posterior belief
f(p]z), and then comes to a decision, the utility or money outcome of
which is the only available indicator or “validation” of f(x|u).

5.7 Capturing conditional conservatism

Likelihood function F' in the first plot below captures a form of “con-
ditional conservatism” in the sense that it becomes more conservative
when true earnings are low. At higher earnings it is more lax, and has
the same readiness to be “high” as the earnings depicted by likelihood
function G.

All sorts of conditional conservatisms are possible in this Bayesian
characterization of earnings quality. In the bottom plot in Figure 5.3, I
is more stringent about reporting “high” when true earnings are high.
However, it becomes more lax than H when true earnings are low.

Drawing likelihood functions for earnings is a good route to Bayesian-
ism. It makes the user think very hard about the earnings signal’s
statistical properties and provides a mathematically rigorous expression
of any number of different signal behaviors.

Note that in these examples, in the simple case where the firm
reports either “high” or “low” earnings, the likelihood function of “low” is

'"The boy who cried wolf lost credibility for his calls of “wolf” because they
occurred too frequently when there was no wolf.
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p(x = highlw)

-~

G
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p(x = high|w)
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Figure 5.3: Subjective likelihood functions f(x = high|u).

implied by the plots we have, because f(z = low|u) = 1—f(x = high|u).
If alternatively there were say three categories of earnings, we would need
to think again to find f(z = low|u) and f(z = medium|u), although
once we have two of the functions, the last is implied.

This exercise in drawing likelihood functions reveals how much more
there is to a general Bayesian depiction of earnings quality than the
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common simplification in accounting, whereby an accounting signal
is modelled as an unbiased point estimate with fixed “precision”, and
where precision is generally not conditioned on (does not change with)
the true parameter or underlying state of the firm (which is here denoted
by ). A measure like earnings has many different drivers and is not
likely to stay unaffected in either its frequentist precision or bias by
the true state of the firm and its underling operations. Ultimately, as
a methodological stance in accounting theory, there comes a choice
between subjective reality and mathematical tractability. In any field
where actual decisions and outcomes hinge on this methodological
choice, and knowledge is put to the test in real-world implementation,
tractability will usually be readily foregone when reality is clearly better
represented by a less easily computed model.

The likelihood function of a normally distributed mean or signal that
is assumed unbiased and of known fixed precision is easily written down,
but more general depictions of signal characteristics via subjective like-
lihood functions like those in Figures 5.2 and 5.3 offer a more satisfying
articulation of the traditionally understood (good and bad) properties
of accounting signals. They allow the assessed degree and direction of
signal bias, and precision, to change continuously and simultaneously
at different rates over the full domain of feasible population parameter
values.
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Decision Support Role of Accounting
Information

Accounting theory has long understood that one role, often the main
role, of financial reports is to assist investors and others in their decision-
making. Statements to that effect usually have a strong Bayesian flavor.
They allude to beliefs, judgments, decisions, uncertainty and sometimes
explicitly Bayesian decision-making. The Bayesian decision-analytic
standpoint coincides with the FASB conceptual framework, and a large
part of both the analytical and empirical accounting literature:

...we note that a capital market participant who receives
financial reporting information is typically using that infor-
mation, along with other information, to make a judgment
(e.g. about default risk, or about the divergence between
an outcome and a prediction) and/or a decision (e.g. about
where and how much to invest). Therefore, we take as given
that the primary purpose of financial reporting information
in the capital markets is to support certain judgments and
decisions. Financial reporting quality is of interest, then,
primarily because of the view that high quality financial
reporting information is more decision useful than low qual-
ity information. (Francis et al., 2008)

93
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In Bayesian eyes, accounting standard setting is closely akin to “the
design of experiments” in statistical theory. To be rigorous, experimental
design or ex ante signal optimization must make clear the decision logic
presumed of the user, because ex ante information quality, and even
the mere concept of “information”, is hard to define without reference
to at least the main principles of a formal theory of statistical inference
and decision-making. It was Feltham (1968) and Demski (1973) who
imported a mathematical-statistical way of thinking about experimental
design to its natural application in designing and evaluating accounting
signals.

The FASB framework is silent about how decision makers reason
logically. The framework leaves the decision maker to her own means
and tries to define good information properties in an ecumenical wordy
way, but not with any firm mathematical or statistical-logical footing.
Christensen and Demski (2007) find fault with the FASB’s hierarchy
of somewhat ad hoc qualitative and sometimes competing information
criteria. Their position is that by skirting around a logical (Bayesian)
way of understanding decision-making and information qualities, the
conceptual framework is essentially unscientific:

GAAP, as promulgated by regulatory authorities, amounts
to regulation of an information source. The conceptual
framework, however, substitutes qualitative characteristics
of the financial statement information (i.e. the primary
qualities of relevance and reliability) for specification of
the finer details of the decision or control problem that
the user of the financial statements is facing... Qualitative
characteristics are designed to keep the finer details at bay,
to gloss over them, so to speak, by inviting them into the
analysis in a reduced form. But this reduced form cannot
carry all the essential economic details of the underlying
resource allocation exercise. From an economic perspective,
reliance on qualitative characteristics is, by its very nature,
prone to error. (Christensen and Demski, 2007, pp. 352-353)

There may be some reticence in accounting theory to opening
discussion about Bayesian versus frequentist foundations. That would
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be understandable, given the level of cultural and personal acrimony
that the Bayes versus frequentist debate once brought. It is well known
in Bayesian legal theory that, in the US, courts and lawyers have been
highly resistant to arguments based on explicit Bayesian logic (Fenton
et al., 2016). However, logical inference under uncertainty is required,
and in Bayesian literature there is a saying after Savage that you “cannot
make a Bayesian omelette without breaking Bayesian eggs”.

Some accounting papers are manifestly Bayesian without actually
making any express statement of that stance. Even Demski’s (1973)
Bayesian paper, which cites and uses Savage’s subjectivist Bayesian
philosophy, does not use the word “Bayes”. Another telling sign of an
apparent standoff-ishness in accounting research is that there are very
few citations to any of the Bayesian statistics literature proper. This
pattern might go back as far as Blackwell, who Demski, Feltham, Dye
and others rely on often. Blackwell’s work is now very celebrated as that
of a leading Bayesian, but was not originally written up by Blackwell

as being “different” or “Bayesian”.!

6.1 A formal Bayesian model

In a formal and necessarily simplified model, the objective of accounting
information z is to assist investors assess a subjective probability
distribution

f(Viz) = f(Vi, Vo, ... x ),

which represents the subjective joint probability distribution of all the
individual one-period payoffs V; of the firms j = 1,2,..., N in the
market.

The simplest yet still insightful model is of a single Bayesian decision
maker in a one-period stock market, made up of N correlated assets
or firms. This is the common model, and a clear example articulated
in Bayesian terms is Lambert et al. (2007). A mean-variance model
of decision-making under uncertainty is conventional, at least as a
starting point. It allows identification of the value-relevant parameters

!See Chaloner https://mathalliance.org/wp-content/uploads/2013/12/
Bayesian-Statistics.pdf, and references to Blackwell elsewhere in this monograph.
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of the belief distribution f(V'|z), and therefore yields insights into
how information acts via those parameters to alter individual stock
prices along with the value (market cap) of the market, as well as the
associated price-implied required rates of return, including the overall
risk premium on the market portfolio. Johnstone (2017) derives this
same model in an explicitly subjectivist decision analysis framework.

6.2 Parallels with meteorology

Meteorology or weather forecasting works with information and models
in the face of natural uncertainty. It is a highly evolved statistical
discipline, exemplified by its readiness to provide outputs that are crys-
tallized as probability distributions f(Rain|z), just like the distribution
f(V|x) presumed of investors in Lambert et al. (2007).

Probabilities and probability distributions are very concrete and
have measurable accuracy ex post, so fields that express forecasts so
clearly and rigorously are open to acute scrutiny of their expertise. If
before each day we place a probability on rain, or on the stockmarket
going up, it becomes quickly evident whether we have expertise beyond
what a naive forecast would say. In the stockmarket, we could simply
write down, every day, p = 0.55 or the long-run empirical average, but
that would be the naive forecast and would not show any fundamental
expertise. In meteorology, that forecast is called the “climatological
probability” of rain, and forecasting models are evaluated against it
and against other models.

Of all fields, the work done by meteorologists can be viewed as
“fundamental analysis”. Accountants do not usually get so far as to
produce explicit probability distributions, although there have been
suggestions over the years that this would be a good way to present
random or uncertain quantities like sales dollars or asset values. Instead
accountants produce numbers that are merely part of the “a” in users
probability assessments of f(V|x).

Interestingly, the full expression of Bayesian statistics for decision
makers is that a user, when assessing her subjective probability of
rain, p = p(rain|x), will condition that probability on all the available
information including the weather forecaster’s stated assessment of
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the same probability. As in Demski and Feltham’s understanding of
Bayesian accounting theory, any signal or “number”, like someone else’s
stated probability assessment, or an accountant’s reported depreciation
assessment, can be a useful input into the decision maker’s final personal
(subjective) probability distribution.

Parallels between accounting and meteorology arise often in this
monograph and provide insights into how another decision-support pro-
fession thinks and assists users. Weather models are advanced sufficiently
that forecasts emerge as probability distributions over physical outcomes.
Accounting valuation models, as far as they exist, produce “accounting
numbers”, or point estimates of future-oriented outcomes, with names
like “depreciation” and “fair value”. The difference in concreteness of
the two fields is obvious, as might be inevitable given that one deals in
“physical” phenomena, and the other deals more with human processes
(like costs, sales and market values).

The potential, nonetheless, for accounting to take insights from
another Bayesian field is evident. The following quote from the Bayesian
forecasting literature emphasizes the cross-disciplinary nature of the
Bayesian toolset, and might whet the appetite:

Subjective probability forecasting is now well established
among meteorologists, particularly in the United States
(Murphy and Winkler 1977). Weather forecasters routinely
make predictions such as “the precipitation probability
for Denver today is 30 percent”; they have also experi-
mented with credible interval temperature forecasts of the
form “the probability is 75 percent that today’s maximum
temperature in Denver will be between 63° and 67°F”.
The probabilities quoted refer to the forecasters’ subjective
“degree of belief,” given their information at the time of
the forecast. This information may include the “objective
forecast” output from a climatological analysis, or a com-
puter forecasting system; however, no explicit modeling
process need be involved in arriving at forecast proba-
bilities. Such probability forecasting fits neatly into the
general Bayesian world-view as conceived by de Finetti
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(1975). The coherent subjectivist Bayesian can be shown
to have a joint probability distribution over all conceivably
observable quantities. Forecasting then is merely a matter
of summarizing the conditional distribution of quantities
still unobserved, given current information. In this article
we shall, for definiteness, talk mainly in terms of weather
forecasting, but it should be understood that the scope of
the discussion is much wider, taking in all applications in
which a subjectivist makes repeated probability forecasts.
(Dawid, 1982, p. 605)

6.3 Bayesian fundamental analysis

The inference-plus-CAPM approach in Lambert et al. (2007) depicts
a Bayesian framework for “fundamental analysis” truly so-called. It
reveals, in one asset-pricing world, how information logically drives
market beliefs and market outcomes (specifically firm stock prices
and the price-implied costs of capital). A seminal paper for a payoffs
understanding of CAPM, and the Bayesian effects of information and
information quality according to CAPM, is Coles et al. (1995).

The CAPM derivation in Lambert et al. (2007) and Johnstone (2016)
and Johnstone (2017) rests on a model of investment appraisal and
decision-making by individual Bayesian investors. It presumes rational
expected utility maximization under conditions where expected utility is
a function of just two parameters, payoff mean and payoff (co)variance.?
Lambert et al. (2007) is essentially a Bayesian pro forma for fundamental
security analysis under CAPM. Investors deduce from the CAPM the
particular statistical payoff or cash flow parameters that they need to
consider, and apply Bayesian statistical logic to make inferences about
only those value-relevant payoff parameters.

The conceptual advantage of the Lambert et al. (2007) approach
is that it is built on cash payoffs rather than returns. Most related

2Johnstone and Lindley (2013) re-examine mean-variance decision-making from
the point of view of its logical “coherence”, finding ultimately that under severe
restrictions, mean—variance finance methods have a direct analogy with expected
utility.
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finance models are written in terms of returns, for the reason that they
will be tested empirically using stock market returns data. Returns
expressions are not suited however to understanding the effects of
belief distributions about future cash flows or payoffs. The fundamen-
tal problem, circumvented by Lambert et al. (2007), is that returns
are the endogenous results of exogenous random cash flows, or of
investors’ probability beliefs about largely exogenous future cash flows.
The methodological advantage of understanding Bayesian information
effects using an exogenous payoffs CAPM are explained by (Coles and
Loewenstein, 1988, p. 281) and Clarkson et al. (1996).

The market makes cash flow forecasts, in the form of probability
distributions, and re-prices the firm accordingly, thus creating an
observable return (i.e. a change in price divided by price).

Equivalent Bayesian models of security analysis and investment
under uncertainty can of course assume different asset pricing models.
For example, investors might be assumed to have log utility or power
utility, under which expected utility is maximized over the same asset
set at different asset prices, under the same information.

The logical constant, however, in any rational asset pricing model,
is Bayesian probability belief revision.
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Demski’s (1973) Impossibility Result

Demski (1973) brought a subjectivist Bayesian end to the notion of
“normative” accounting standards, by explaining how, in a Bayesian
decision model following Savage (1954), the signal preferred by one
decision maker can have quite different statistical error properties to
that preferred by another. In effect, different users prefer different biases.
Demski’s opening statement is so clear and timeless that it is worth
quoting at length:

A primary goal of accounting theory is to explain which
accounting alternative should be used (in some particular
circumstance). Numerous attempts to develop such a theory
have, of course, been offered through the years. Most of
these attempts have, in turn, relied on standards, such as
relevance, usefulness, objectivity, fairness, and verifiability
to delineate the desired alternatives. ...Moreover, these
standards are usually viewed in terms of, or applied to, the
accounting measurement process, the environment in which
the measurements are taken and/or used, and perceptions
regarding that environment. But any such application that
is removed from individual preferences — in the slightest

100



7.1. Example: binary accounting signals 101

manner — creates an insurmountable difficulty. In particu-
lar, no normative theory of accounting can be constructed
using any such set of standards; the standards are bound
incompletely and/or incorrectly to rank the accounting
alternatives — thus leading to an incorrect or undefined
accounting specification. (Demski, 1973, p. 718)

The analysis below exemplifies Demski’s general finding, in a com-
mon and highly insightful inference model in accounting theory. Part
of its mathematical result is that there is no general decision theoretic
argument for conservatism in accounting, nor for “neutrality”, nor any
other apparently normative discrete setting.

7.1 Example: binary accounting signals

Accounting signals in their simplest imaginable form are binary. The
signal is “rounded” in its representation of data z to just 4+ or —,
i.e. “favorable” news or “unfavorable” news in the same sense as Dye
and Sridhar (2002) and Verrecchia (1990). News can be about one key
item (e.g. whether the firm writes-off a capital expense or carries it as
an “asset”), or about accounting earnings, or it can be an overriding
accounting summation of firm prospects.

In common models involving binary states of nature, the precision
or information qualities of binary signals are represented by their Type
I and Type II error probabilities, usually denoted by a pair {«, 5}.
Models of that form in theoretical accounting literature include Ewart
and Wagenhofer (2011), Bertomeu (2013), Gao (2013a), and Gigler and
Hemmer (2001) and many others.

In most statistical models, decision makers have the same broad
preference for “stronger” evidence. Differences between users arise over
the evidential value! of a given signal attribute or over how the cost
of acquiring information is allotted towards improving the various
competing quality attributes of that information.

'Remember that in Bayesian theory evidence cannot clearly “speak for itself”,
and its value usually depends on prior information and surrounding information and
beliefs.
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An advantage of the binary hypothesis testing model is that sta-
tistical signal quality is exhaustively summarized by just two signal
attributes, a and 8 (albeit they must come as a pair, as one without the
other does not allow Bayesian probability revision). A difficulty faced
in Ewart and Wagenhofer (2017) and Smith (2017) is that there is in
general no scalar amalgam of o and 8 by which to sum up signal quality.
That is a methodological research issue for binary signals when compared
with the other common accounting setup that assumes an unbiased nor-
mally distributed signal of given variance. The assumption of zero bias
effectively hides a relevant parameter and gives that setup the apparent
advantage that it captures signal quality in just a single parameter.

The ultimate appeal of the binary (a, 3) signal model is that there
is no need to artificially assume an unbiased signal. Instead, any change
in (o, B) implies simultaneous changes in the “bias” and “precision” of
the signal, and everything else about it too.

The Bayesian binary decision (investment) model set out below
leads to a closed-form measure of signal quality that combines o and
£ and which gives insights into how they interact to make a signal
more or less valuable to a given user. Ultimately, however, despite the
assumptions made to achieve this theoretical composite of o and £,
even it fails as a normative measure of signal quality. The purpose of
this example is to show, by making a serious attempt to combine o and
B into an objective (user-free) measure of signal quality, that it is not
possible to get around Demski’s impossibility result.

The investment decision

A single-person investor? receives a binary signal x € {+, —} and uses
that information to invest in a market containing a single risky asset

2In elementary Bayesian decision theory the information user or decision maker
and the experimenter, who generates the information, is a single entity. Unification
of purpose allows normative insights into raw decision usefulness, which can of
course inform noisy rational expectations, game-theoretic, models, where players are
assumed to act normatively relative to their own self-interests (i.e. to generate the
best possible information for their own decisions). The desire to self-optimize actions
and outcomes in a physical way, as in maximizing expected (average) payoffs, is
apparently covered by what Gao (2015) calls objective ex post statistical efficiency.
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and a risk-free asset. The investment period is short enough that the
risk-free rate is negligible. The risky asset is a binary asset paying at
termination either .S,, when “up” or Sy when “down”.

The investor, who trades the underlying asset, is a price taker and
can buy or sell that risky asset at its initial market price, S. To preclude
arbitrage, S, > S > S3 > 0. The market is regarded as large enough
that the single investor’s trade quantity has no impact on the market
price (as explained in (Christensen and Feltham, 2003, p. 17).

An investor who buys one unit of the risky asset at unit price S
effectively risks a net money loss of (S — S;) in an attempt to win a
net profit of (S, — ). The market implied probability of outcome S,, is
then g_g

0 = ﬁ, (0<f<1)
and the investor effectively makes a bet against odds of /(1 — 6).3
Trading the stock can be restated as betting against a market probability
of 6, or equivalently as trading an asset (long or short) that will be
worth at expiry either V =1 or V = 0, and which is priced now at 6.*

Note that 6 has the outward appearance of a probability but is not
necessarily anyone’s actual belief and is not Bayesian. It is a “probability”
akin to the betting price or odds quoted by a market maker or prediction
market. Market makers, like bookmakers, set prices to maximize their
own expected utilities, not to indicate their personal beliefs.®

3Note that if there is time to expiry and we wish the opening stock price and the
terminal price to be expressed in “constant dollars”, the implied probability would
be 0 = 5(1;;7_1‘)&:5017 which is often called the “risk-neutral” probability. Note that
since 7 is the risk-free rate, S(1 + ry) captures S in period-end dollars.

4The replica strategy of buying one unit at price 6 is to hold Sy in cash and bet
(S — Sq) on “up” against a bookmaker whose probability of “up” is 6. That pair will
produce net money amount S, in the case of “up” and Sg in the case of “down”. So
by buying an arbitrary number of units of the stock, the investor effectively bets a
corresponding arbitrary amount on “up”.

®Note that the prices observed in prediction markets for 0-1 payoff assets (“Arrow
Debreu securities”) are widely taken as “market probabilities” and then compared
with the actual relative frequencies of the events in question, so as to test the accuracy
and calibration of the market as a probability forecaster. This is a technique common
in the “wisdom of crowds” literature.
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The mechanism and types of information by which the market arrives
at 0 is not relevant to the individual price-taker’s investment decision
(trade size). From her perspective, § is exogenous, which of course
simplifies her strategic decision problem. Specifically, it avoids the game
theoretic effect that would occur in a smaller market place, whereby
her trade size influences her realized trade price. Note importantly that
the market price 6 is not assumed to behave as a Bayesian. The only
presumed Bayesian is the individual investor, who must simply decide
how many units of the binary asset to buy (or sell) at market price 6.

The rational investor makes her own probability assessment, p(V =
1|x) and trades against §. The information z is taken as a private signal
in the sense that it is the investor’s personal “reading” of what data
exists. The investor uses her personal (“private”) inference model and
all of her public and private background information, combined with
her signal z, to form a personal belief about the probability of V' = 1.
Ideally, her inference model or method is “more accurate” than the
market, since she wants to “beat the market”.

The investor always expects a priori to be “more accurate” than
the market, and hence to make a profit, because she views the future
through her own beliefs rather than by the true probabilities. In her
beliefs, whenever p(V = 1|z) is not equal to market price 6, that price
is “wrong” and she expects to profit, otherwise she would not trade.

Two point likelihood function

As in Gao (2013a) and Gao (2015), accounting evidence is akin to a
Bayesian hypothesis test. Formally, under Bayes theorem, and based on
background knowledge K,

p(V = e, K) oc p(V = 1K) pla], V = 1, K).

For convenience in notation, K is suppressed. Similarly, there is no
express recognition in the notation for the investor’s model. Instead the
model appears only by its effect on the investor’s personal likelihood
function

p(z|V =1)=p(z|,V =1, K).

The likelihood function “is” the model, in the sense that it captures all
aspects of the model of relevance to Bayes theorem. The user “chooses”
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her model and hence the likelihood function is a personal assessment.
Its “validity” or “accuracy” is usually what separates statistically
accurate forecasters or economically profitable traders from other less
able competitors, and is of course the only difference between their
inferences when they have the same prior and same signal (assuming
that they are both Bayesian).

Investors’ probability assessments are bound to be affected by the
going market price 6, since 6 is quoted publicly. Like everything else
known to the investor at that time, the going market price 6 is included in
her inference as part of her background knowledge K. This is practically
true of most traders’ stockmarket investment decisions — the trader
uses whatever information she gleans from the quoted price when
deciding, based on all her information, how much to trade at that
price.

An investor’s probability assessment is unavoidably subjective,
and does not have to be close to 6 even when both investor and
market are strongly influenced by one particular signal such as x. To
the contrary, the same observed signal z can have different effects
under different investors’ models (likelihood functions) and different
background knowledge.%

Since different investors make different inferences based on the same
observed signal, it makes no difference whether signal = is public or
private information. We can think of & anyway we like, it can be public
accounting news, or perhaps an analyst’s interpretation of that news,
or it could be the user’s own translation of that news, summarized
Bayesianly by her personal likelihood function, f(z|V).

To a Bayesian investor, the signal x is characterized by subjective
error probabilities, («, 3). The signal is binary x € {+,—} and its
perceived likelihood function is a two-point function

a=plx=4|V=0)
B=plz=—[V=1.

SFor example, if the firm predicts earnings of amount h, the investor might take
h as a worst case or best case, or perhaps even as managers’ “true” estimate, all
depending on how the investor models the firms’ announcements for their honesty
and accuracy. This model is the Bayesian likelihood function, f(h|V).
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Define a = p(+]0) and 8 = p(—|1). That labelling of « and 5 matches
Ewart and Wagenhofer (2011) and Gao (2013a) and Gao (2015). In
Bayesian statistics, the likelihoods («, ) are subjective, thus obliging
the decision maker to “put her own interpretation” on what is reported,
which of course fits naturally with how accounting reports (e.g. earnings)
are often, in someone’s perceptions, seen as noisy, biased or otherwise
unfit to be taken “literally”.

Conservatism a < 3

A signal is defined as conservative if it has oo < 3. This definition might
be justified as follows. Suppose that the accountant runs a test with
error characteristics o/ and 3/, where o/ = ', which makes this test
“neutral”. But suppose that when the test result is +, the accountant
goes one further step, just to make sure. She runs the same test again,
independently, and she reports + if and only if the second test too
results in +, otherwise she reports —. The error characteristics of the
accounting procedure are now

a=dd
B=p2-0).

Since o/, 8’ < 1, the combined two-stage test has improved Type I
error probability, o < o’ but higher Type II error probability 8 > /3.
Also, since o/ = ', a < 3. Thus, by “double verifying” a positive
signal but not a negative signal, the accountant has built a conservative
experiment, albeit at the same time harming the test’s other error
characteristic (its tendency to produce a false negative). The accounting
design question is whether that is an “optimal bias”.

Conservatism in accounting has the intuitive appeal that it might
forestall false hopes, over-confidence and over-trading. The contrary
intuition is that to be most accurate or economically valuable, accounting
information should be “neutral” (ov = /) rather than mechanically biased
or tilted to the negative.

A technical “Demski issue” for accounting is whether, or for what
class of decision makers, conservatism makes a better “experiment” in
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the sense that a more conservative signal increases the ex ante (pre-

signal) expected utility of information.”

Background on conservatism

There are broadly four modes of thinking about conservatism. First
comes an array of different contracting relationships and potential legal
conflicts wherein conservatism is seen to assist and arise endogenously.
The second set of related arguments is built on a wider class of rational
expectations equilibrium models describing the information needs and
mutually respective strategic behaviors of stakeholders, who act in indi-
vidually self-interested anticipation of the others’ actions and objectives.
The third and oldest approach is qualitative-normative. It emphasizes
relatively informal non-mathematical ideas of “decision usefulness” and
“information content”, possibly subject to costs.® Arguments upholding
“neutrality” rather than conservatism are motivated from this qualita-
tive inclination against bias, in favor of accuracy or “representational
faithfulness”, along with a hierarchy of other desirable albeit sometimes
fuzzy and apparently competing information attributes (e.g. FASB
Conceptual Framework)

The fourth approach, which I illustrate here, is Demski’s normative-
subjectivist-Bayesian. It views conservatism, divorced from its historical
and cultural appeal in accounting, as just another possible signal bias,
which, like any other signal characteristic, can add to some decision
makers’ expected utilities and subtract from others’.”

”An obviously related question, little explored in accounting, is how, or whether,
information with higher ex ante expected utility, or better qualities, materializes as
larger ex post money outcomes. See the discussion on “economic Darwinism” in this
monograph.

8Guay and Verrecchia (2006) took up the argument put by Holthausen and Watts
(2001) that conservatism can be justified by agency or contracting benefits, regardless
of whether the resulting information is “efficient” in normative ways such as catering
to equity valuation. Guay and Verrecchia hold, however, that the two perspectives
cannot be separated since part of the agency argument overlaps with stakeholder
information needs, and hence there must be some consideration of information quality
or effiiciency in contracting models.

9The strength of this approach is also its weakness. Specifically, the political,
cognitive and behavioral process of designing, producing and reporting accounting
news has subtleties beyond any single model or methodology. To read a statistical
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Impossible Blackwell ranking

Blackwell ranking is understood as an objective criterion in the sense
that if signal A is “finer” in Blackwell’s terms than signal B, then any
Bayesian decision maker, whatever her utility function, prefers signal A
to signal B.'” See Demski (1980, pp. 35-7), Christensen and Demski
(2003, pp. 109-111), Christensen and Feltham (2003, pp. 94-100), Dye
(1985) and Cabrales et al. (2013) for nice examples of how one signal
can be “finer” than another.

Unfortunately a binary signal, with 0 < a < 1 and 0 < 8 < 1,
cannot generally be Blackwell ranked against another such signal with
error characteristics {a/, 3'}. The best that can be done is to restrict
the admissible tests to those with «a, 5 < 0.5, in which case we can say
that a signal with either {¢/ < a, 8’ < 8} or {/ < a, ' < 8} outranks
{a, B}. Intuitively, by reducing either « or 3, while holding the other
fixed, the signal has less noise. That is essentially what the Blackwell
criterion requires.

Unfortunately, however, it is not possible to Blackwell rank two
binary signals (each with «, 8 < 0.5) for which one has lower a and the
other has lower 3. That ranking comes down to who is the user, in the
way understood by Demski (1980).

Updating beliefs

Bayes theorem is written insightfully following Berger and Wolpert
(1988) in terms of the relevant likelihood ratio

o () G2

Assume that the investor sets the quoted market price 6 as her prior
probability, that is, her assessment is p(1) = 6. Her possible posterior

decision model into this process requires a great amount of abstraction (read
simplification). Its justification comes only by its theoretical statistical insights
into what makes information useful and what accounting motivations arise as a
result.

1%See DeGroot (1986) for background on Blackwell and his Bayesian decision
theory.



ik = [+ (59 G =+ (59 (25)]
b= [+ (59 5] =P+ (5 (5]

Note that p(1|4+) > p(1) and p(1]—) < p(1) for all o, 8 < 0.5,
implying that certainty can naturally increase or decrease, depending

on what signal is observed, not merely on its error properties.

Information z affects posterior beliefs only via its likelihood ratio
p(z|0)
p(z[1)’
by x. It is sufficient in the sense that nothing otherwise is relevant,
and is minimal in the sense that it cannot be reduced without loss of

relevant information.

which is the minimal sufficient summary of the evidence carried

The probability under given error characteristics («, 3) of observing
T =+1is
p(+) =0(1—=p5)+ (1 - 0)a,

and the probability of observing z = — is
p(=) =08+ (1-6)1-a).

There is no point in manipulating p(+) or p(—) merely to produce
“more positives” or “more negatives”. The frequencies or probabilities
with which these occur affect their evidential meaning. If a source
produces more negatives (positives) by combining higher 8 («) with
unchanged « (f3), all that is achieved is that both negative and positive
signals carry less Bayesian weight. Thus, a negative signal brings a
smaller downward revision in p(V = 1|-), and a positive signal brings a
smaller upward revision in p(V = 1]-).

Finding the “best” pair (o, 8) amounts to balancing the frequencies
with which positives and negatives occur against the evidential weight
that each of these carries when it does occur. Lambert (2010) notes the
same inverse relationship between the propensity to report “good news”
and its evidential credibility. See also Ewart and Wagenhofer (2011, p.
147).
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Optimal investment

Assume that the cost to produce a signal with error probabilities («, )
is C(a, ) > 0. The wealth available for investing after having paid for
T is
W =W, - C(a,B)

where Wy is the investor’s initial wealth. Note that wealth at the time of
choosing («, ) is Wy and wealth at the time of investing (after having
paid for and viewed signal z) is W. This distinction matters for any
utility function where the chosen investment, conditioned on x, depends
on the wealth existing at the time of investment, by which point the
preceding cost of obtaining z, C(«, (), is sunk.

The money amount invested by the information user is conditioned
on signal z and is decided with respect to the asset’s price 0. If an
investor bets fraction f of her wealth on outcome V = 1, she buys
fW/0 units of the asset (i.e. she buys fW/# units of the “V = 17
contract).

By betting fraction f of wealth on V' = 1, the possible money payoffs
are

Waa—-f+f/6) itv=1
W(l—f) if vV =0.

The only common class of utility functions for which analytical
results regarding optimal («, 3) are tractable is the CARA exponential
utility function U(w) = 1 — exp[—cw] for wealth w. Numerical results
based on other common utility families are, however, easily obtained,
and are unchanged in all relevant aspects from those found below under
exponential utility.

To find the optimal investment fraction f under exponential utility
and probability p = p(, ) (1]-), we maximize expected utility

p(I—exp[—cW(1—f+f/0)])+ (1 —p) (1 —exp[—cW (1 - f)]), (7.1)

Differentiating Equation (7.1) with respect to f and solving the first
order condition gives optimal betting fraction

1 100= () o (:25) (%)) 0
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Note that f is negative when p < 6. The rational investment is then the
equivalent of selling (rather than buying) | f| worth of “V = 1 contracts”
at unit price 6.

When x = +, the optimal fraction is fT = f(p*), where p™ =
P(a,8)(1]+) denotes the posterior probability of V' = 1 under signal
x = +. Similarly when = —, the optimal fraction is f~ = f(p™),
where p~ = p(q,8)(1|—)-

From Equation (7.2), the optimal number of contracts given belief

D, is
w 1 P 0
22 log (2} —10g [ ——
U c{og<1—p> Og<1—0)}’

and is independent of investor wealth.

Investment fractions

The optimal investment depends on the log likelihood of the information
x, log [g Ei}é” No other test attribute or information characteristic

affects the user’s f. Combining Bayes theorem, written in log odds

o (2) - vu(25) v (220,

with Equation (7.2) gives the two investment fractions

ff=fp") = (C;,) log (1;ﬁ>
=107 = () los (12

The user’s fraction f of wealth bet on outcome V' = 1 upon observing
a positive (negative) signal is (i) decreasing (increasing) in both a and

form,

B, (ii) increasing in the prior probability 6, (iii) decreasing in wealth
(DRRA) and (iv) decreasing in the user’s coefficient of absolute risk
aversion c¢. The physical number of units of the V' =1 contract bought
by the CARA investor at unit price # = Pr(1) is simply

1 1-—
log<ﬁ> ifx =+
c o

1
— log (5) if x =—,
c 11—«
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implying that the user is driven by just her risk aversion ¢ and the
information brought by x, where information is measured by the change

1 1
o (P} (1),
p(0]x) p(0)
Note that a positive test result x = + can be described conven-

tionally, in frequentist terms, as “significant at a”, but the optimal
investment conditioned on that description of z is indeterminate because

in log odds

it embodies only one side, «, of the required likelihood ratio of x = +,
viz. (1 — f3)/c. That is an example of how frequentist tests do not meet
the needs of economically rational decision makers.

Expected Utility

The trader can either buy or sell, that is, she can bet for or against
V = 1. The investor’s unconditional expected utility after observing x
and making the appropriate investment based on x is

EU5) = p(+)EUT +p(—)EU . (7.3)

where EU™ is the expected utility conditional on x = + and EU ™ is
the expected utility when z = —, that is

EUT = p(1[+)(1 = exp[=(W(1 = f* + f7/0))])
+p(0+)(1 — exp[—(W (1 — f1))]),
and
EU™ =p(1]-)A —exp[-(W( = f~ + f7/0))])
+p(0[—=)(1 — exp[-(W (1 = f7))]).

Writing all the various probabilities and associated betting fraction
f in terms of the prior # = p(1) and the error characteristics (a, 3), the
full expression for EU from Equation (7.3) is

EU(%B) =1- exp [—C (WO - C(Oé, ﬁ))]

x{a(lgﬁ)aﬂl—a)(lfa)g}. (7.4)




7.1. Example: binary accounting signals 113

Assuming market uncertainty 0 < 6 < 1 throughout. For any given
starting wealth Wy and fixed information cost C(a, ), expected utility
is maximized at the (o, 3) pair which minimizes the constant

A:a<1;ﬁ>9+(1—a)(lfa>9.

It is easily found that for o, 8 < 0.5 and fixed 6, the derivative
0A/da is higher when either o or 8 is lower. Hence, the marginal
improvement in signal quality (marginal reduction in A) brought by

lower « is greater when either « is already lower, or 3 is lower. Similarly,
the benefit from lower § is enhanced when either g is already lower, or
« is lower.

Counter-intuitively perhaps, and unlike most returns in economics,
marginal “returns” from reducing « or § (or both) are therefore increas-
ing (ignoring cost).!! It is for findings like this that a formal Bayesian
decision theory of accounting information is useful. There are math-
ematical insights that come from formal models that are not evident
intuitively, without that structure. Demski and others called on Bayesian
decision theory so as to gain insights into how accounting information
can better serve investors.

Buyer or seller

The ex ante economic “decision value” of signal x is captured from the
perspective of every investor with CARA utility, regardless of personal
absolute risk aversion ¢, by the same well-defined function A of the
two error characteristics, o and . For any fixed signal cost, expected
utility is (linear) decreasing in A, so A is the CARA measure of signal
“paucity”.

Demski’s result holds nonetheless, for several reasons. CARA utility
investors all measure signal paucity ex ante (i.e. pre-signal) by the same
constant A, however their different levels of personal risk aversion ¢
cause them to arrive at different expected cost—benefit assessments of
any given (o, ) pair. Some would prefer to spend more, or less, for

" This result has a parallel in Bickel and Smith (2006) where information gathering
can show increasing marginal returns.
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different («, $). That holds even when they all have the same cost
C(a, B) for any given («,3) pair. Further, the model assumes that
investors are open to going long or short, based on the information
received, which will not realistically be true.'> The model also assumes
that the trader starts with zero inventory and strictly cash wealth. If
an investor already has a large inventory in the asset, or a related side
bet or hedge, her investment on a given signal will be greatly altered.

Conservatism as an optimal bias

The first-order conditions of Equation (7.4) are not solvable for closed
form optimal o and 3, however by simple inspection of (7.4) it can be
seen that:

(i) The unique case of § = 0.5 implies symmetry between the possible
losses from buying and selling and the ex ante optimal signal is
unbiased, a = .

(ii) For 6 < 0.5 the optimal signal pairing («, 8) has a > 3, and, for
0 > 0.5 (by symmetry), a < (3. Hence, conservatism o« < 3 is
unlikely to be a “desirable bias” other than when the possible loss
from buying the asset, namely 6, exceeds the possible loss from
short selling, namely 1 — 6. The opposite to conservatism, g > «,
might potentially be desirable when the possible money loss is
higher when short selling, that is, when 6 < 0.5 Consideration of
the relative amounts of the possible losses arises also in a model
developed by Bertomeu et al. (2011, p. 862).

(iii) Consistent with (ii), dA/da > dA/dp for all @ = 5 when 6 > 0.5.
Thus, if a = 3, the marginal expected utility gained by reducing

12There seems to be relatively little discussion in the literature of how conservative
accounting practices might privilege stock buyers over sellers. Losses incurred in the
specialist activity of short selling are likely to have been largely overlooked in the
evolution of accounting practices. Note however that the FASB/TASB Conceptual
Framework states explicitly that investment “decisions involve buying, selling or
holding”, and appears to view buyers and sellers as equal stakeholders when designing
information of value relevance or decision usefulness.
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a is greater than by reducing (. Similarly, dA/da < dA/dS for
all @« = 8 when 6 < 0.5, making it better to reduce .

These results (i)—(iii) rest on the assumption that o and 5 have the
same cost. That is, the marginal cost of reducing either error probability
is always the same.

It follows that a decision-theoretic justification for conservatism
requires the equivalent in stock trading of 6§ > 0.5. Put into words,
# > 0.5 implies that the possible money loss from a one-unit buy is
higher than the possible money loss from a one-unit short sale, or
that “stocks go down by greater amounts than they go up”.!® That
condition lacks any obvious justification, empirical or theoretical, but is
the “Demski-like” decision-theoretic consideration for standard setters
when designing information or “experiments” that cater respectively to
buyers and sellers.

Christensen and Feltham (2003, pp. 94-100) explained how “finer
details” of the decision problem, such as the investor’s opportunity set,
risk aversion and so on, alter what makes the best “experiment”. To
that list we can add the differences between investors motivations and
circumstances listed above. An interesting aspect of this illustration of
Demski’s result is that even in the unique case where the signal error
characteristics @ and 8 can be combined into a parsimonious scalar,
there is still no agreement between even that narrow class of investors
with exponential utility about the best (o, 3) signal pair.

Numerical example

Since there are no closed-form results for optimal («, 3), differences
between optimal o and (8 are illustrated by numerical optimization.
Signal cost is taken as

1 1

Cla, B) = (/m+l<:[3)' (k> 0)

13Cuay and Verrecchia (2006) note a similar asymmetry in a debt holder’s view.
There is no upside benefit to a debt holder when the firm becomes more successful
but a large downside loss if the firm fails.
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Figure 7.1: Contour plots of EU = EU(q,g)-

To show how the optimal bias changes with 8, two sets of results are
plotted. The calculations assume, for example only, that Wy = 10 and,
c=1 and k = 100.

Figure 7.1 shows contour plots of the relevant EU function (7.4) and
numerical optimization gives the best ex ante test characteristics («, 3)
in each case. EU is plotted as a function of signal error properties «
and f.

The contour plots show equi-EU lines and the highest EU is in the
“eye” of the plot in both cases. Note that with 8 = 0.49, we find o > 3
but the gap between a and [ is tiny because 6 is so close to 0.5. The
optimal excess of a over [ increases as § — 0 because the potential loss
of (1 — #) from short selling increases. The second plot shows how the
optimal pairing has a < 8 when 6 > 0.5, and the gap increases with
higher 6.

Optimal bias

A revelation in the Demski information economics model that seems
to defy common sense and offend primitive notions of “professional
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RE A

independence”, “impartiality” or “neutrality” in normative accounting
measurement is that the rational user cum investor might, of her own
choice, prefer a “biased” (e.g. conservative or aggressive) signal.

The ideal signal in the frequentist world is a measure of the “true
probability”, or maybe even a 0 or 1 that corresponds exactly to the
eventual true outcome. Setting those conceptions of objective accuracy
aside, as untestable or impractical, the Bayesian model calls for a
practical approach of biasing or optimizing the user’s signal so as
to probably avoid the kinds of errors in beliefs (in either direction
or magnitude) that would probably do most harm, on an ex ante
expectations basis. According to this expression of Demski’s point, the
only possible “neutrality” between individual users is to provide them
all with statistically worse signal error characteristics than they would
choose for themselves.

Ultimately, there is no objective measure of probability accuracy.
There are different possible “scoring rules” that calculate concepts
of “distance” between a probability like p(E = 1) = 0.725 and an
actual outcome like £ = 1, but there is no one such rule (Bickel,
2007). Scoring rules all capture “distance” according to different criteria
(e.g. a differential entropy score might be log(ﬁ)). Cabrales et al.
(2013) support the log or entropy score, but there is no objectively best
measure of information.'* Some scoring rules equate to positive linear
transformations of a utility function, and in essence measure the utility
that the investor would have obtained had the event been £ =1 and
the investor’s belief been 0.725 (i.e. how much would she have bet and
what utility would that bet have produced).!” An economic decision
maker would regard such a score function as an economic measure
of the “accuracy” of the belief, and would hope for probabilities that

141f there were, Demski’s result would not hold as the normatively best signal
would be the one that offers highest expected log score or highest expected reduction
in entropy.

5Savage (1971) interpreted the Brier score economically as a share of the firm.
Murphy (1966), who used de Finetti’s notion of a scoring rule in weather forecast
evaluation, showed that when the “cost-loss ratio” (a common measure in meteorology)
is uniformly distributed, the Brier score is a measure of the expected loss (in money)
from acting on the forecast probability so as to minimize expected loss.
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are “accurate” or do well by that very measure. That is the ex post
perspective explained later in this monograph.

7.2 Conservatism and the user’s risk aversion

The natural presumption is that a more risk-averse investor desires a
more conservative brand of accounting, taking “conservative” as meaning
generally less prone to overstate the firm’s profits. That presumption
is generally not correct (see Birchler and Biitler, 2007, pp. 49-50;
Johnstone, 2011).

If there is more than one signal combination of Type I and Type I1
error probabilities with the same cost, there are situations where a more
risk-averse decision maker prefers a signal balanced less conservatively
between the two error types. Johnstone (2010) illustrates situations
where information properties bringing a marginal increase in the proba-
bility of a favorable payoff has higher marginal certainty equivalent to
a more risk-averse investor. That is, a more risk-averse investor can be
ready to pay more for information with the potential to bring about
higher confidence in the investment succeeding. Intuitively, a most risk-
tolerant investor needs little convincing and has high expected utility
with relatively little information, making it hard for further information
to offer much marginal expected utility.
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Does Information Reduce Uncertainty

The conventional wisdom is that accounting information can, or should
resolve uncertainty. Surely anything that qualifies as “information” must
make some unknown more known than it was? Or does information
sometimes merely add confusion or raise new grounds for concern?

8.1 Beaver’s (1968) prescription

An early prescription of the Bayesian position in accounting literature
was put by Beaver (1968) in his formative paper on the evidential value
or “information content” of accounting earnings announcements. !
Beaver held that earnings have information content only if they
change market beliefs about future firm payoffs. He added to this
definition the proviso that, from an instrumentalist point of view,?
information has content only if it changes beliefs so much as to cause

investors to reverse or modify their investment actions:

...a firm’s earnings report is said to have information con-
tent if it leads to a change in investors’ assessments of

!The Beaver paper and its relevant footnote were pointed out to me by Sudipta
Basu (private communication).
2See Feltham (1968, p. 690) on this instrumentalist definition of information.

119
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the probability distribution of future returns (or prices). ..
Another definition of information states that not only must
there be a change in expectations but the change must be
sufficiently large to induce a change in the decision-maker’s
behavior. (Beaver, 1968, pp. 68-9)

In a footnote, Beaver insists that information does not always reduce
uncertainty, and should not be defined as if it must. To the contrary,
he explains in Bayesian spirit that information can bring more or less
certainty about an unknown state, depending on what exactly that
information says:

As a final parenthetical comment, note that reduction of
uncertainty was not one of the definitions chosen. It should
be apparent that in a dynamic situation (i.e. where prob-
ability distribution assessments are changing over time), a
decision maker might be more uncertain about a given event
after receiving a message about the event than he was before
he received the message. (Beaver, 1968, pp. 69)

8.2 Bayesian basics

Beaver’s Bayesian position is correct, as the following simple example
shows. If the uncertain quantity is say 6, which might be the period-end
state of the firm, then x is “relevant” or “informative” with respect to
0 if p(0|x) # p(#). “Information” is any signal or indication (e.g. what
is not said) that leads the investor to change beliefs about 6.3
Consider the unknown of whether a firm is a “going concern”,
described as G, or not. Suppose that the investor’s prior probability is
p(G) = 0.8. Now consider a signal = that can take one of two values,
say © = x1 or x = xo. This signal has known “likelihoods” or error
probabilities p(x1|G) = 0.6 and p(z1|not G) = 0.8. By observing x = x1,

3Strictly, information x is informative with respect to pre-existing information ¢

if p(0]¢ N ) # p(6]e).
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the investor’s posterior probability becomes
p(G)p(z1|G)
p(z1)
= (0.8 x 0.6)/(0.8 x 0.6 + 0.2 x 0.8) = 0.67.

p(Glar) =

The investor is now less certain that the firm is a going concern, since
p(G|z1) < p(G) = 0.8, i.e. p(G|x1) is closer to 0.5, where uncertainty is
maximum.

In another expression of the same Bayesian thinking, the observation
x1 is more likely if the firm is not a going concern, than if it is. This
ratio, known as the likelihood ratio, is

p(z1|G)

————=0.6/0.8 =0.75
p(x1|not G) / ’

which is less than one, implying that the evidence favors or points to
the firm not being a going concern. In simple terms, the evidence in x
is counter to what was initially believed, and hence makes that belief
less strong. Conversely, if the observed signal had been the confirmatory
signal x2, then the posterior is

p(Glz2) = p(G)p(z2|G)/p(x2) = 0.8(0.4)/0.36 = 0.89,

thus making the user more certain of the firm being a going concern.
An insightful way to think about these calculations is to remember
that today’s probability is today’s expectation of tomorrow’s probability.
Imagine that signal z has not yet been observed. Rather, suppose that
the firm will report tomorrow, and will report either z = 1 or x = xs.
The probability today of observing z; tomorrow is thus
p(z1) = p(G)p(21|G) + p(not G)p(x1|not G)

=0.8x0.640.2 x 0.8 =0.64.

Today’s expected value of tomorrow’s probability is therefore

p(21)p(Glz1) + p(x2)p(Glr2)
=0.64 x 0.67 + 0.36 x 0.89 = 0.8,
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which is today’s probability, p(G), but today the effect on certainty of
tomorrow’s information is unpredictable.

Information must sometimes increase the probability in question
and sometimes reduce it. That must be so, because if we know that
tomorrow’s probability will necessarily be lower, we will have already
arrived at a lower probability.*

8.3 Contrary views in accounting

The position put by Beaver brought no argument at the time, and
is unquestionably the Bayesian position, but it is hard to resist the
natural intuition that information should — by its being “informative” —
reduce uncertainty. Thinking along those lines, accounting theorists
have often posited that accounting information disclosures, like earnings
announcements, can reduce stock market investors’ assessments of risk
and thereby reduce the market’s imposed cost of capital:

...greater disclosure reduces estimation risk arising from
investors’ estimates of the parameters of an asset’s return
or payoff distribution. That is, greater uncertainty exists
regarding the “true” parameters when information is low.
(Botosan, 1997, p. 324)

... we show (not surprisingly) that higher quality informa-
tion reduces the assessed variance of a firm’s cash flow.
(Lambert et al., 2007, p. 387)

Private information about systematic factors affects risk
premiums by resolving uncertainty. .. (Hughes et al., 2007,
p. 706)

...more disclosure reduces the uncertainty about firm value,
which in turn reduces the potential information advantage

41t is interesting therefore that we can sometimes know today that the cost
of capital conditioned on tomorrow’s signal will certainly be lower, or certainly
be higher, than the cost of capital conditioned only on what we know today. See
Johnstone (2015) for proof.
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that an informed trader might have. (Leuz and Wysocki,
2008, p. 7)

Releasing more information and, in particular, more public
information through financial reports and other public dis-
closures by firms reduces the uncertainty about the size and
the timing of future cash flows and, therefore, also the risk
premium. ...if the forthcoming public report will be more
informative, then more uncertainty will be resolved once the
report is released. (Christensen et al., 2010, pp. 817-818)

There are many analogous statements in the contemporary account-
ing literature, and the position taken so succinctly by Christensen et al.
(2010) has been endorsed by financial regulators:

Numerous academic studies have concluded that more infor-
mation in the marketplace lowers the cost of capital. Upon
reflection ...academic studies are not really necessary to
reach this conclusion — it is intuitive. More information
always equates to less uncertainty, and it is clear that people
pay more for certainty. Less uncertainty results in less risk
and a consequent lower premium being demanded. In the
context of financial information, the end result is that better
disclosure results in a lower cost of capital. (Foster, 2003,

p. 1)
8.4 Bayesian roots in finance

The roots of how accounting lost sight of Beaver’s direct instructions
lie in the remarkably advanced Bayesian theory of portfolio investment
that arose in finance in the 1970s.> That highly instructive literature
is often cited cursorily in accounting empirical papers as providing the
theoretical base for claims that more data/information should reduce
uncertainty and the risk premium imposed by investors (e.g. Botosan

®See Kalymon (1971), Klein and Bawa (1976) and Klein and Bawa (1977), Barry
(1978) and Barry and Brown (1985).
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and Plumlee, 2002; Bhattacharya et al., 2012, p. 455; Core et al., 2015,
Leuz and Wysocki, 2016). A review of this estimation risk literature
related to accounting information is provided by Artiach and Clarkson
(2011).

Rather than simply “plugging” into portfolio optimization models
the empirical frequentist point estimates of each firm’s mean return and
the covariance matrix of returns — as if those finite sample estimates
were the “true” returns parameters — Bayesian portfolio theory adopted
the subjectivist method of forming prior distributions for the unknown
returns parameters and updating those distributions from historical
empirical data. The technical result that recurs over much of the
Bayesian “estimation risk” literature in finance is that by admitting
formally that the parameters of the joint returns or payoff distribution
are uncertain, the probability distribution of next period’s return is
revealed to have two sources of uncertainty: (i) even after collecting
data, there remains posterior uncertainty about the distribution mean,
(ii) there is innate variance in the population around its true mean, so
even knowing that true mean would not bring certainty.®

The general effect of the Bayesian “parameter uncertainty” literature
set out in the seminal papers cited in accounting is that uncertainty is
understood as being:

(i) higher, merely by being made Bayesian, due to the formal recog-
nition of parameter uncertainty,

(ii) decreasing in the amount of data or returns sample size n (samples
are assumed unbiased).

The effect (i) of “going Bayesian” disappears only when the sample size
N — o0, since with that much evidence the empirical parameter esti-
mates are also the certain Bayesian beliefs (making the big assumption
that the model is correct). However, more appealingly, the related result
(ii) implies that uncertainty is reduced with better/more information.
It was by (ii) that accounting claimed that better financial information
should reduce investor uncertainty.

5In more realistic models, the population returns variance is also treated as
unknown, adding further uncertainty.
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Background

It will help to recap how the above results (i) and (ii) arose in the
literature. The following is a simplified summary of Kalymon (1971)
who introduced explicit Bayesian mean—variance portfolio theory. In
Kalymon’s model, the uncertain variables of interest are stock returns.

Assume that one-period returns r» = (r1,r2,...,7,) of n firms in
the market are joint normal r|u, 3 ~ N(u, X) with an n x 1 vector p
of means and an n X n covariance matrix 3. To introduce parameter
uncertainty, imagine somewhat artificially that 3 is known but p is
unknown. The uncertainty about w is represented by a joint normal
prior distribution p|¥ ~ N (o, Ag). In addition to prior information,
the market observes an iid random sample y of N observations on firm
returns r

y={(r,r2,...,m)1, (ri,r2, - )2, o, (11,72, TR)N T

By a standard result presented in Bayesian textbooks, the posterior
distribution ply, ¥ ~ N(pn, An) is joint normal with mean vector

A%Mo +L&y
BN="7"T"N
AT
and known precision
L_1.N
Ay Ay X

Hence, (i) the posterior mean of unknown p is a weighted average of
the prior mean and the sample mean, where the respective weights are
the prior precision matrix 1/A¢ and the sample precision matrix N/3,
and (ii) the posterior precision of the belief distribution for g is the
sum of the prior and sampling precisions.

Having found the posterior distribution of uncertain parameter pu,
it remains to form a probability distribution f(7|y,X) for the next
random observation 7. This is the posterior predictive distribution and
is found by

(rly, = /f rlp, X)) f(ply, X)dp,

following the general Bayesian approach of integrating out nuisance
parameters.
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By another standard Bayesian result, this distribution 7|y, ~
N(pn,X + Ap) is joint normal with mean vector gy and covariance
matrix X + Ay.

Influence on accounting

The main finding above is that while the population covariance matrix
of r is known (by assumption) to be 3, the covariance of the predictive
distribution of 7 is X + A . Hence, the predictive covariance is greater
than the conditional (on wp) covariance (assuming positive prior and
sample covariances). This added variation occurs for the reason that
when predicting the next observation 7 of r we don’t know the mean
of r. Rather, we know that r has a true covariance matrix X, but we
don’t know what p is. Hence, the wider or more diffuse the posterior
belief distribution f(u|y), the wider the predictive distribution of 7,
and thus the greater its predictive variance or covariance.

This result and a series of parallel results in the estimation risk
literature are taken to imply that admitting Bayesian recognition of
parameter uncertainty makes perceived returns (co)variances higher,
and hence adds to the perceived overall market return variance and
the market cost of capital. However, as the sample size N — oo,
the empirical parameter estimates converge on the “true” returns
parameters; i.e. the Bayesian posterior distributions become points
at those values, so the Bayesian method and the frequentist “plug in”
method come to agree.

More generally, the Bayesian implication, picked up in accounting
research, is that a higher sample size N brings lower predictive returns
variances and covariances. That intuitive finding proved irresistible to
accounting theory and empiricists. It implies in a rigorous mathematical
way that information reduces uncertainty or risk — and that more
information reduces risk more, thus raising the possibility that better
accounting can monotonically drive down investors’ perceived risk and
thus the firm’s cost of capital.

The problem, however, is that models like the one just rehearsed
are too narrow in their assumptions to yield any general law of how
more information affects Bayesian uncertainty.
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The first problem is that the result shown depends on the returns
population covariance matrix ¥ being known (with just g unknown).
Once both parameters are admitted as unknown, the model becomes far
more complicated (as noted by Harvey and Zhou, 1990, p. 226) and it
becomes theoretically possible to learn from the empirical data that the
stock covariances are probably wider than was expected before seeing
that data.

Coles et al. (1995, p. 348) raise this oversimplification:

.... the prior literature generally relies on the artificial and
unrealistic assumption that, while the vector of mean returns
or payoffs must be estimated the associated covariance
matrix is known.

The second problem is that the model is really only a stationary
“urn” model. There is no guarantee under nonstationarity or regime
shifts that certainty will ever be reached, no matter how much data is
collected (Barry and Winkler, 1976; Barry, 1978; Lewellen and Shanken,
2002). Indeed, it is possible that the most recent (i.e. most relevant)
empirical observations might indicate that a jump or shift has occurred
in the mean or the natural volatility of the returns or payoff process, in
which case a Bayesian observer may become far less certain about the
future value of the firm than she was beforehand.

Assumptions of stationarity are often disparaged as unrealistic in
the estimation risk literature (e.g. Barry and Winkler, 1976; Barry, 1978;
Avramov, 2002; Avramov and Zhou, 2010). This reality is captured in
the Bayesian model of investor learning in Du and Huddart (2017) who
find that, within their model, Bayesian learning in markets does not
have a predictable path:

Because the accounting signals are imperfect indicators of
the underlying state of the firm and the state can change
from one period to the next, the stock price does not stabilize
or settle down. (Du and Huddart, 2017, p. 1)

Further detracting from the early finance Bayesian literature as
a general foundation for our understanding of Bayesian inference in
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accounting, it must be accepted that the Bayesian literature is itself
narrow in that it rests on models designed primarily for their mathemat-
ical tractability rather than descriptive validity. That methodological
defect was emphasized by Winkler (1973, p. 402) and Barry and
Winkler (1976) who noted that standard closed-form models involve
certain tractable forms of prior and likelihood distributions, rather than
capturing practical concerns such as asymmetry, fat tails, regime shifts
and other real-world distributional properties.

In essence, the optimistic view that emerged in accounting of
information naturally resolving some amount of uncertainty traces to a
mathematically tractable but not realistic Bayesian model. A general
Bayesian formulation of the problem must allow uncertainty to rise and
fall in the way, for example, that perceived volatility rises and falls in
derivatives markets, or that growers become more or less sure of a good
crop as the weather changes.

8.5 The general Bayesian law

Bayesian portfolio theory models apply to hypothetical stockmarket
returns where data are treated as if being drawn daily “from an urn”,
and further data can be drawn as required. In the usual frequentist
way, samples are assumed to be random and iid from the same popu-
lation.

The inference problem in accounting is much less well structured
than the urn model assumed in finance. The investor might observe just
one new signal, like this year’s earnings announcement, “drawn” from
an ill-specified probability distribution f(V]-) over a future cash flow
V', and then set out to revise f(V]-) on that one item of information
and with whatever comes with it (like the notes in financial reports).

In such a general inference problem, where all probability distri-
butions are subjective and of no simple parametric form, the only
Bayesian law that necessarily holds is the law of total variance, and its
equivalent for covariance. See Johnstone (2015) and Johnstone (2016)
for introduction to these two “distribution-free” laws.

Taking the latter, it is immediately evident that the covariance of
asset payoff V; and asset payoff Vj, conditional on signal S, cov(Vj, Vi|9),
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can be higher than the unconditional or prior covariance, cov(Vj, V).
cov (V;, Vi) = E|cov (V}, Vi|S) ] + cov(E [V;|S], E [Vi|S]).

Since the covariance of the conditional expectations cov(E[V;]S],
E[Vk|S]) can be negative while the prior covariance cov(Vj,Vj) is
positive, it follows from this identity that the expected conditional
covariance over all the possible signal realizations S € {si,s2,...},
E[cov(V}, Vk|S) ], need not be lower than the prior covariance.

Hence, as a general rule, assuming nothing but probability theory:

(i) the CAPM measure of risk or uncertainty, cov(V}, Vi|-), need not
shift towards zero upon receipt of imperfect information S; and

(ii) prior to observing signal S, the investor’s expectation may be that
the covariance will increase upon revelation of the signal outcome.
This occurs where the sample space (i.e. the set {s1,s2,...} of
all feasible sample observations of signal S) is known before S is
realized, and is such that cov(E [V;|S], E [Vi|S]) is negative, as
would occur if possible realizations of S have somewhat contrary
implications for the means of V; and V.

Intuition about uncertainty

Intuition and the law of conditional covariance are clearly in agreement.
Imagine that data exhibits a much stronger covariance between two
variables than the prior covariance assessment. Data or accounting
information must obviously have potential to bring an increase in the
observer’s subjective assessment of the covariance.

New information can always reveal that two variables have a stronger
common driver than was previously understood, and hence rational mod-
els of statistical inference must sometimes produce a higher subjective
posterior covariance between two random variables.

The same of course goes for the variance, where data or fundamental
analysis must have the facility under Bayesian probability to indicate
that the quantity in question is more variable or volatile than was
previously appreciated. This is no surprise to portfolio managers whose
subjective estimates of firm beta or returns covariance often increase
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with new information, rather than approaching zero. Accounting infor-
mation undoubtedly plays a role in these forward-looking reassessments.
Accounting information should by “doing its job” reveal greater uncer-
tainty when say the firm invests in an inherently less predictable assets
or ventures.

Reductio ad absurdum

The reductio ad absurdum is that if further information takes us
monotonically towards certainty, it would follow that as soon as our
probability of some true/false proposition gets above 0.5, it would
automatically be put at one, because we would know with certainty that
more information is going to take us monotonically in that direction.

8.6 Rogers et al. (2009)

A simpler form of the Kalymon (1971) model is widely leant upon in
accounting literature. It involves inference about an unknown normal
mean in a population with known variance (e.g. among a great many
papers relying on this model, see Dye and Sridhar, 2007, pp. 737—
738). It is sometimes called the normal-normal model because of its
use of a conjugate normal prior and normal likelihood function. Its
specific assumptions, particularly a known population variance, have
the implications that the sampling variance is known (for any given n)
and the posterior distribution of the unknown parameter must always
have a lower variance than the prior distribution. The user is therefore
“obliged” to be more certain after seeing any data. Rogers et al. (2009)
noted this result as really a constraint on beliefs:

...assuming the underlying distribution is held constant, by
providing investors “with more balls from the urn” earnings
guidance increases the rate at which investors learn about
underlying profitability, lowering uncertainty. Other theory
models generate similar predictions. ... Consequently, any
disclosure with precision greater than zero (with any infor-
mation content) reduces uncertainty about firm value. This
class of model thus leads to the conclusion that increased
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disclosure cannot increase investor uncertainty and will
generally reduce uncertainty. (Rogers et al., 2009, p. 92)

Thinking of a wider class of models, Rogers et al. (2009) pre-
empted the recent paper by Dye and Hughes (2018) by describing
how information can exacerbate market uncertainty by indicating a
possible distribution or regime change, i.e. a change from “one urn
to a different urn” with different parameter values, or even different
parameters:

An alternative possibility is that the forecast announcement,
to the extent it is a surprise to investors (either because the
forecast itself is a surprise or because the news it conveys is
a surprise) creates uncertainty . .. larger surprises may create
greater uncertainty in the sense that investors will be unsure
about whether the surprise is an extreme outcome from an
unchanged underlying earnings distribution or whether it
signals a shift in the underlying distribution itself (a “regime”

shift). (Rogers et al., 2009, p. 92)

Uncertainty does not easily resolve. An accounting earnings report
fully resolves uncertainty about that period’s accounting earnings, but
not about the firm’s long-term fundamentals, which is the key unknown
and ultimately why the current earnings report is of interest:

Once earnings are announced, uncertainty about current
period profitability is resolved. Consequently, the only uncer-
tainty that remains is that created by disclosure about under-
lying (long-run) firm profitability. (Rogers et al., 2009, p. 94)

8.7 Dye and Hughes (2018)

Recent work by Dye and Hughes (2018) extends formal Bayesian
strategic accounting information theory to allow for a type of news
or signal that can make the market either more or less certain. The
unknown variable of interest is a future cash flow C and the news that
creates uncertainty is that the firm issues “no report”. That null report
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leaves the observer uncertain about whether there is no news existing
inside the firm or the news indeed exists and is bad enough that the
firm does not opt to report it.

If in fact news exists within the firm, it exists as an observed estimate
x of C. That estimate is inherently informative in the Dye and Hughes
(2018) model because it is specified as correlated and bivariate normal
with the random C.

The completely general law of uncertainty in probability theory
is the law of total variance. Under this law, a random variable like
C can be understood as an “average draw” from all of the possible
distributions of C'. In general, C' can arise out of a different distribution
whenever some underlying state S changes, and, under each of these
state distributions, C' has a different mean and different variance.

Without knowing which state obtains, the prior (unconditional)
variance of C| is given by the sum of (i) the average conditional variance,
E[var(C|S)], and (ii) the variance of conditional means var(E[V]S]).
That is, by the law of total variance

var (C') = E[var(C|S)] + var(E[C|S]), (8.1)

which implies that investors “expect” ex ante (before knowing S) that
their perceptions of the variance of C' will be lower after (or, if) S
becomes known. Statistically, we reason that E[var(C|S)] < var(C)
because by construction var(E[C|S]) > 0. Yet crucially, for some states
S = s, var(Cls) > var(C), implying that knowing the state of the firm
can increase the market’s perceived variance of C.

It follows from Equation (8.1) that any hint that changes the
investor’s belief about which S obtains can add to, or subtract from,
certainty (O’Hagen, 1994, p. 86). That is, the statistical law on which
the Dye and Hughes (2018) model is based. It opens up the possibility
within the model that uncertainty might increase with even very good
information, contrary to the “conventional” understanding in accounting
research:

This contrasts starkly with the conventional statistical result
that were the manager to disclose her private information,
then this always causes investors’ perceptions of both the
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variance of the disclosing firm’s CF [cash flow] and the covari-
ance between the disclosing firm’s CF to shrink toward zero
relative to investors’ prior beliefs. (Dye and Hughes, 2018)

In the Dye and Hughes (2018) model, there are just two possible
states or conditional distributions. When there is no information inside
the firm, C is a draw from f(C'), which is the prior distribution of
C applicable when no news exists. When there is information and
the firm fails to report, C is a draw from the conditional distribution
f(Clz < x.) where x = z, is the cutoff below which the firm omits
to report x even when it exists. An equilibrium solution for z. allows
observers to infer enough about z. that non-reporting at x < x. is
informative. The unconditional distribution of C given a null report is
the mixture distribution of f(C) and f(C|z < z.), and its variance is
given by Equation (8.1).

By applying standard results for a bivariate or jointly normal
distribution, Dye and Hughes (2018) derive probability distributions
for C' conditional on either knowing x or knowing only that z < z..
These are conditional probability distributions, and so are automatically
Bayesian posterior distributions.

A general model

The following model can be interpreted as a generalization of the
inference model in Dye and Hughes (2018). Their model was built on
the assumption of a bivariate normal distribution between the payoff
of interest and the firm’s signal. My model extends the usual Bayesian
“normal-normal” model based on a normally distributed payoff and an
unbiased normally distributed signal of known variance. Its essential
features are:

(i) the average effect of information or news is to reduce uncertainty.
“Over time” or with more news, certainty tends to increase, albeit
not monotonically and not necessarily in any hurry.

(ii) “bad news”, including evidence of the firm being more probably
in a “bad” state, can be highly precise and yet might still add to
investor uncertainty.
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In the Dye and Hughes (2018) model, the worst possible news is “no
news”. The event of “no news” is worrying because it adds to the
probability that = exists inside the firm but is too unfavorable to report.
In the more general model below, all news is represented by a reported
point observation x, actually a sample mean Z, of arbitrary (possibly
high) precision. Bad news is any reported or inferred T that shifts
probability mass to the left.”

The main addition in my version of the normal-normal model is that
it allows for there being two possible regimes or states of the firm, rather
than a single assumed “population”. The investor uses the observed
sample mean to infer which regime or population is in effect. Note that
the possibility of two regimes might be “physical” or merely subjective.
As usual in Bayesian modelling, physical reality is never revealed for
certain, all that is known is the user’s subjective beliefs.

By introducing the possibility of two regimes, the Bayesian model
becomes more realistic, because it allows the observed sample mean to
sometimes leave the user less certain about the next payoff than before
making that observation.

The model proceeds as follows. Suppose that the firm has two
possible states S, “Normal” (S = N) and “Distress” (S = D). Distress
can be highly improbable (later we assume a probability of 5%) but
remains a possibility and is therefore admitted into the market’s prior
beliefs.

Let the firm’s uncertain future cash flow be X. Market prior beliefs
hold that if the firm is in its Normal state, (i) X ~ N(0,0?), (ii) o2 is
known, (iii) @ ~ N(u1,0?) with specified values p1 and o7. Note that
(iii) is the prior distribution of @, given that the firm is in Normal state.
This is a standard Bayesian model of an unknown mean 6 and known
variance o2, and has the characteristic that information is not only
expected to reduce uncertainty about 6, it always does.

My assumption (i) of known ¢? guarantees that the sampling
variance o2/n is known (rather than an unknown quantity) and is
necessary to obtain a closed-form solution for the posterior distribution.

"There are realistic contexts suited to both models. Often in business, “silence”
calls for the Bayesian interval interpretation explored by Dye and Hughes (2018).
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The Dye and Hughes model makes this same assumption of a known
sampling precision (and known zero bias). In my model, the known
sampling precision changes with sample size n, whereas in the Dye and
Hughes model it is fixed.

The remaining part of my model allows for Distress, in which case the
firm’s cash flow has the same prior distribution as above, X ~ N (6, 0?),
except that @ ~ N(up1,0%,), where up; and 0%, are specified, and
naturally pupi; < p1.

Taken as a whole, the market’s prior beliefs are that cash flow X is
drawn from a mixture distribution across the firm’s two possible states,
one state of which can be highly improbable ex ante (i.e. prior to any
sampling or observation).

Before arriving at posterior beliefs about the next cash flow X, the
market observes a signal, . That signal has the character of a statistical
sample or sample mean T = > (x1 + 29 + ---,)/n,% with arbitrary
sample size n, and hence arbitrary sampling precision. By admitting
n > 1, the model’s conclusions can be adjusted to allow for information
of different qualities or precisions.

By a standard result for normal distributions, the likelihood function

p(a10) = [ g e [—Z (= 9)] .

The posterior distribution of 6 conditional on the firm being in

of T given 0 is

Normal state is, by standard Bayesian results, § ~ N (u2, 02), where

1 1 n
o3 o2 o2
and .
1 Nz
= toeT
2= 1 n
o7 T

8For clarity observed z’s are lower case and random unknown X’s are upper
case.
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By the same equations, the posterior distribution of # conditional on
the firm being in Distress is 0 ~ N (uup2, 03,), where

1 1 n n
2 T 2 2
Op2 Op1 O
and .
——[p1 + 5T
D1 g
HUD2 = 1 i n
O'%)l 0'2

If we know what state the firm is in, uncertainty is reduced by any
new sample evidence, because both 02 < 07 and 0%, < 0%,. It remains
uncertain, however, even after observing T, whether the firm is in its
Normal state or a state of Distress. That remaining uncertainty must
be allowed for and can sometimes have the effect that the amount of
the next cash flow X becomes more uncertain after the evidence than
it was prior to the evidence.

The observation T gives some indication of which state the firm is in,
because lower values of T are relatively more probable under Distress.
More specifically, the likelihood ratio,

p(T|N)
p(z|D)’

generally decreases with (sufficiently) lower Z.
To find the likelihood ratio, we need to obtain

p(@lN) = [ pl6lMp(alo)dp
and .
p(Z|D) = /_ OOP(G\D)p(T\G)dH.

Note that these expressions assume from the model that T is independent
of S once given #; that is,

p(@|0, N) = p(z|0, D) = p(|0).

We know already that under state N, 0|Z ~ N(ug,03), and under state
D, 0]T ~ N(upa,0c%s), so, by the usual formula for the probability
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density of a normal distribution?

B 1 1/60-— 2
p(9|x,]\f):\/@exp lQ( 02#2)] (8.2)

and

B 2
P07, D) = ———exp [—; (9052[’2> ] (8.3)

We now know that the predictive distribution of the next cash flow X
conditional on the firm being in state N is

p(XIN) = [ p(Ofz, Mp(X|6)ds

—o
© ] 1/6— 2
—o0 /2703 02

L] 1(X—9)2 "
exp |—= | —
V2mro? P17 o

1(X — p2)?

S S, [_2<2M22>

21 (03 + 02) (03 +02)

)

which is a normal distribution with mean py and variance (o3 + o2).

In this calculation, we use the sample observation T to revise the
probability distribution of 6, or more specifically the distribution of 8
given N. Once we have that new distribution p(0|z, N) for 6, we have
new probabilities for each possible # under N, and we use them to find
the revised predictive distribution of the next payoff X given N.

By identical calculations, the posterior predictive distribution of the
next cash payoff X given D is

p(X|D) = )exp [1()(_“5)2)2

Y

2 (0hy +0?)

which is normal with mean pps and variance (0%, + 02).

9Note that

\/2172 and 1 — are normalizing constants designed to make the
T, \/27r(7D2

integrals of Equations (8.2) and (8.3) over the real line equal to one.
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The unconditional predictive distribution of X is a probability-
weighted mixture distribution of the two conditional predictive distri-
butions. The mixture weights are the posterior probabilities of the two
states, namely, p(N|Z) and p(D|Z).

Given p(Z|N) and p(Z|D) above, we find the probabilities of the
two possible states, conditional on the sample observation T. Letting
the prior probability of Normal be p(N) = 1 — p(D), the posterior
probability of Normal is

p(N)p(z|N)

PINIE) = W@ + p(D)p@ID)

We now have all the ingredients to find the unconditional posterior

predictive variance of the next cash flow X.
The parameters of this mixture distribution are, by the law of
complete probability,

fmjz(X) = p(N[T) 2 + p(D[T) D2,
and, by the law of total variance,
a?nﬁ(X) = E[var(X|9)|z] + var(E[X|S]|Z), (8.4)
where E[var(X|S)|z] is the posterior average of the two predictive
variances across the two states, that is,

Elvar(X|9)[z] = p(N7) (o3 + 02) + p(D[z) (ohy + 0?)
= o®+ (p(N[z)o3 + p(Dlz)ody) ,
and var(E[0|S]|T) is the variance of the two posterior means, that is,

var(E[X|S][Z) = p(NT) (12 = ptm)? + p(DIT) (02 — pim)?.
Note that the posterior predictive variance of 6, denoted by afn&(ﬁ),
is
afnﬁ(O) = Elvar(0|S)|z] 4+ var(E[0|S]|Z)
= (p(NIZ)o3 + p(D[T)o )

+ (P(MIZ) (12 = pm)? + P(DIT) (1102 = 1m)?)
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which allows us to rewrite Equation (8.4) neatly as

02 (X)=0%+ 02 (0). (8.5)

Observe from Equation (8.5) that there are two sources of uncertainty
affecting our final uncertainty about cash flow X. First, even if we knew
6 for certain, X still has known variance o2, because the model holds
that X ~ N(6,0?). Second, despite observing F we don’t know 6. In fact,
despite potentially narrowing down what state the firm is in, we don’t
know for certain the state or distribution from which 6 is drawn. Rather,
f is drawn from a mixture distribution and its posterior predictive

2 (). Conveniently, the sum of these two uncertainties is

variance is o,

captured correctly by the sum of the two variances, shown in Equation
(8.5).

For explanation of these two sources of variance see Winkler (2003,
p. 181), who notes that the predictive variance “takes into account both
uncertainty about # and uncertainty about X given 6.

Note that although the mixture distributions of # and X are mixtures
of normals and so are not normal, their predictive variances are found
nonetheless by the law of total variance, which is a general law and
distribution-free, see Gelman et al. (2004). Importantly, also, note that n
does not appear explicitly in Equation (8.5), for two reasons. First, this
is the predictive variance of just a single observation X, and, second,
n has been incorporated into the assessed variance of the mixture
distribution of 6, afn‘x(H).

To understand the possible effects of information on investor cer-
tainty, we can now compare the posterior predictive variance (8.5) with
the prior predictive variance

02 (X) =%+ 02,(0). (8.6)

m
which is found the same way as Equation (8.5) but without the influence
of the new observation Z. Specifically, o2,(#) is the prior predictive
variance of 6, which is the variance of the mixture distribution of 6
across the two states. That is,

02,.(0) = E[var(6|S)] + var([E[0]S]),

m

where

Elvar(0]8)] = p(N)ot + p(D)oy
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and
var(E[0]S]) = p(N) (1 — pm)® + p(D) (D1 — pm)>-
and
pom = p(N)pp1 + p(D)pep1-

It is obvious that Equations (8.5) and (8.6) have a common ingredient
in 0. They differ therefore only to the extent that J?nﬁ(e) differs from
o2,(0).

Interestingly, it can occur that 072n|5(9) > 02 () implying that the
sample observation T can add to investor uncertainty about # and the
next cash flow X. That can occur if T adds sufficiently to uncertainty
about which state NV or D obtains.

Intuitively, suppose that the distributions of X are far apart under
the two different possible states. Information that leaves the user’s
beliefs mid-stream between the two states means that she sees a very
wide range of feasible X outcomes, even if the conditional (upon 7)
variances within each of the states are in her assessment low.

A clearer depiction of how information T affects investor uncertainty
about X is obtained by looking at numerical examples. Figure 8.1 plots
the posterior predictive variance for the next X against the observed

var (X | &)
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Figure 8.1: Posterior predictive variance var(X|z) = afn@(X) of cash flow X, given

observed signal T with p(N) = 0.95, 0 = 50, u1 = 150, o1 = 25, up1 = 50, op1 = 20,
n=1.
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sample mean T under some assumed input values. The horizontal line
shows the prior predictive variance of X, calculated from Equation
(8.6). For the sake of illustration, we start with prior probability p(D) =
0.05, which is roughly in line with the empirical probability of US
bankruptcies.

Note that in Figure 8.1, uncertainty reacts to the observed T in
an S-shape and there is a range of T for which uncertainty about X

actually increases, that is,

var(X|T) = afn@(X) > var(X) = 02,(X).

That happens when the observed mean 7 is “lowish”, dragging the
probability of Distress higher from its prior of 0.05 and hence adding
sufficiently to uncertainty about which state the firm is in.

Figure 8.2 presents the same example as Figure 8.1 but the sample
size is increased from n = 1 to n = 5. That increase in sampling precision

implies better information and has the effect of reducing each of the

var (X | &)
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Figure 8.2: Posterior predictive variance var(X|z) = afn‘E(X) of cash flow X, given

observed signal T with p(N) = 0.95, 0 = 50, u1 = 150, o1 = 25, up1 = 50, op1 = 20,
n = 5.

10A firm in Distress need not end up bankrupt, and conversely a firm in Normal
state can end up bankrupt. Bankruptcy would occur with “high” probability if
the next cash flow X is sufficiently low (say near zero or negative), because that
observation would imply that the firm is probably in Distress state.
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conditional variances of X sufficiently that the posterior predictive
variance var(X|Z) is always lower than the prior predictive variance
var(X) for any observed value 7.

8.8 Why a Predictive Distribution?

Predictive distributions were devised in Bayesian statistics by Zellner
and Chetty (1965) and were brought into the information uncertainty
literature in finance by Barry (1978) and Brown (1979).

There has been little application of Bayesian predictive distributions
in accounting theory, however Dye (1990, p. 6) correctly applied the
main idea by distinguishing between two separate risk premia, one for
the known variance of a payoff around a given “true” parameter value,
and the other for uncertainty about the actual value of that unknown
parameter. The latter can be viewed as “parameter risk”.'!

Predictive distributions apply usefully when the task is to predict
— in the form of a probability distribution — the next outcome of a
statistical process, such as the very next cash flow C or say the monthly
stock return or the firm’s sales units or costs.

There is a difference between inference about a parameter, like a
population or process mean ¢, and inference about the next observation
that comes out of that stochastic process. The intrinsic value of a firm
might be better considered as a parameter ¢, because ¢ captures the
firm’s fundamentals, like a population parameter. The next cash flow
is a single random outcome of a process characterized by ¢, and may
vary widely around ¢. That extra variation is captured in the predictive
distribution. The next outcome is conceptually a “draw” from the
predictive distribution.

As an example, suppose that the firm is a Bernoulli distribution
producing random Y € {0, 1} with parameter ¢, where ¢ is unknown
(0 < ¢ < 1). Our prior distribution for ¢ is discrete with Pr(p = 0.4) =
Pr(¢ = 0.8) = 0.5, so E(p) = 0.6 and var(¢) = 0.04. We can use this
prior knowledge to work out the mean and the variance of the next
observation Y. Its mean is obviously E[Y]| = E[E[Y|¢]] = 0.5(0.4) +

"There is similarly a Bayesian posterior predictive distribution, calculated on
results from DeGroot, in Dye and Sridhar (2007, p. 738).
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0.5(0.8) = 0.6. And given that F[var(Y|¢)] = 0.5[(.4)(.6) + (0.8)(0.2)],

its variance is
var (Y) = E[var(Y|p)] + var(E[Y |¢])
=0.2+40.04

> var(yp).

The main point of this discussion is the need to distinguish between
uncertainty about a population parameter like ¢ and the uncertainty
that exists about random outcome Y even if ¢ were known (which
usually it is not).

That Bayesian distinction is fundamental to the concept of cash flow
uncertainty. The model outlined above, adding to the Dye and Hughes
discussion, has the advantage that it treats the next cash flow as driven
by a “random” (i.e. uncertain) parameter. The predictive distribution of
Y accounts for both the uncertainty surrounding parameter ¢ and the
uncertainty about Y given ¢, therefore absorbing all of the underlying
uncertainties that determine how precisely we can forecast Y.

A methodological issue for analytical accounting research is that
predictive distributions, being mixtures, are not normal even when the
distributions being mixed are normal. That creates a problem for the
usual mean—variance equation for the equilibrium price of an uncertain
future cash flow, as used in Lambert et al. (2007) and many other
accounting theory papers. That equation presumes exponential utility
and a normally distributed payoff. An alternative that will not change
the equation substantially is to use the comparable mean—variance asset
price equation derived under quadratic utility, which does not need a
normal payoff. See Johnstone (2016) for that derivation.!?

8.9 Limits to certainty

Examples of information and analysis that add to doubts rather than
resolving them are as inevitable in financial reporting as in other fields.

12An important methodological point is that the asset price of a mixture
distribution is not found by a mixture (weighted average) of the conditional asset
prices.
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Observed monthly sales volumes or costs or cash receipts may sometimes
cast great doubt over the sustainability of a firm or product. These
figures are not inaccurate or imprecise. Provided that measurement is
credible, even the most common types of accounting data can shake
investor confidence, while nonetheless leaving investors more accurately
informed about fundamentals and less likely to make unprofitable
investment decisions.

Activity-based-costing (ABC) advocates have long made this kind
of argument. They hold that a more refined costing system might
expose previously unseen doubts over a firm’s or product’s economic
sustainability. Any similar enhancement that leads to more timely loss
recognition is likely to dent investor confidence. Firms may wish not
to divulge information of this ilk, which is why nondisclosure is often
viewed as a negative signal (Verrecchia, 1983; Verrecchia, 2001).

Accounting information might reveal the full exposure of the firm to
derivatives or foreign exchange rates, which could suggest jointly that
(i) the probability distribution of future profits has a peak in the far
left tail that was not recognized and (ii) the firm’s beta or dependence
on market-wide factors is higher than previously understood. At any
time in its reporting sequence, the subject firm can take on inherently
more risky activities. Even its existing assets or income streams might
then be at higher risk. Relevant accounting information should not
hide or ignore that risk, or purport to resolve it. Put another way, the
ability of accounting information, or accountants, to predict cash flows
is naturally limited, thus limiting the facility of accounting to lessen
the firm’s cost of capital.

These examples are sufficient to suggest that even very “good”
accounting should not by its nature always assist the firm by lowering
its cost of capital. To the contrary, better disclosure or measurement
systems can produce signals that lead an analyst to simultaneously
downgrade expected earnings and raise the required return on equity,
thus bringing about a big price fall.

This point is well made by Leuz and Wysocki (2008) in rela-
tion to accounting restatements, which are Bayesianly just another
transmission of accounting information. Similarly, Rogers et al. (2009)
explain how some earnings forecast releases, particularly those bringing
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unexpected negative news, can “create uncertainty” rather than resolve
it. Accounting “restatements” or corrections to previous reports are
seen as concerning and hence contributors to market uncertainty. Hribar
and Jenkins (2004) find that:

...overall information uncertainty is increased following a
restatement, causing investors to require a higher rate of
return (Hribar and Jenkins, 2004, p. 339)

If a restatement of an accounting result can add to uncertainty, so
presumably should any form of adverse accounting news, or adverse news
about the company delivered by the managers through the accounting
statements. '3

Realistically, the accountant does not have the capacity to produce
signals that by necessity make uncertain business outcomes (e.g. cash
flows including costs and revenues) more predictable. That would be
akin to a stock analyst who always makes users more certain of whether
the firm will succeed or not.

Sometimes the most technically advanced indicator leaves an expert
analyst less certain of the underlying state of nature or of future
outcomes. This is not to say of course that such information is not
worth paying for ex ante. Rather, it merely acknowledges that a test or
signal with high expected information value, and hence clearly worth
its cost ex ante, will not always, when realized, bring about greater
certainty ex post.

In some scientific fields, it is possible to set up a test or signal
with known theoretical error characteristics (or a sharply peaked likeli-
hood function). In others, such as medicine, test error properties are
well known from the accumulation of empirical evidence. In principle,
accounting theory and practice faces the same signal design task as other
fields, however there is generally less theory and laboratory technique
by which to work. This inherent difficulty is reflected in decades of
academic and professional dispute about accounting standards and

131n principle good news will also add to uncertainty, if it contradicts a strong
belief that the firm is for example insolvent or failing. In general, any news that
contradicts strong prior beliefs adds to uncertainty.
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fundamental questions such as how to value assets in the balance sheet
(historical cost, current cost, “fair value” etc.). Similarly, there are many
unresolved issues in the empirical literature regarding how to explicate
and measure “earnings quality” (Dechow and Schrand, 2004; Dechow
et al., 2010; DeFond, 2010).

In medicine, tests exist that tell the technician whether cells are
infected or not, generally with very low error rates, but there is not the
same technology available to accountants when the unknown quantity
is whether a firm is a “going concern” or not, or whether a product
or a new costing system will succeed. For one thing, the mechanisms
modelled in medicine are, it would seem at least, much more station-
ary and “urn like” than changeable accounting and financial market
contexts.

Many economic events “are” or appear on present knowledge to be
“as random” as spins of a wheel. In those contexts, information of any
practically achievable quality should usually leave the investor feeling
unable to beat the odds. Obvious examples might include weather or
political events on which the firm’s cash flows hinge. Many economic
outcomes have a stochastic or “pure chance” element. They can depend
on technological breakthroughs, demand shifts, regulation changes,
competitors actions and many micro-variables such as the variable
skills, efforts and insights of managers and employees.!* These are
contexts where the main danger is over-certainty and overstatement
of the analyst’s or forecaster’s capacities. The practical difficulties
of accurate economic forecasting and probability assessment are well
known and long documented. They trace to innate uncertainty about
future cash flows and are just as troublesome for accounting valua-
tion.

To allow for intrinsically highly random or uncertain events, Bayesian
inference models like Dye and Hughes (2018), that do not constrain
the user to become more certain after observing more data, but instead
permit uncertainty to sometimes increase, and perhaps never decrease
much even with more information, are theoretically essential to how we

1 Accidental outcomes like the Iridium satellite collision are raised in finance
textbooks as things that are pure chance and uncorrelated with known variables.



8.10. Lewellen and Shanken (2002) 147

frame the normative ideals and practical limits of accounting information.
A philosophical stance (see later) is that investors are often best served
by clearer revelation of a firm’s riskiness.

8.10 Lewellen and Shanken (2002)

The Bayesian logic of inference-then-decision is exemplified in a paper
on learning in markets by Lewellen and Shanken (2002). They take
an expressly anti-frequentist approach, for the reason that rational
investors will lose money if they base their investments on assumed
parameter values rather than probability distributions over parameter
values, because their beliefs about parameter values will inevitably be
wrong and their investments will be unhedged against parameter risk.
The following is a short summary of the Lewellen and Shanken (2002)
depiction of Bayesian inference in a stock market.

Investors are modelled as having two characteristics. First, they
have the rationality to be Bayesian. Secondly, they have a finance
logic in mind, particularly an asset-pricing model. That is essential
to Bayesian decision-making, because investment decisions hinge on
probability assessments over future asset prices, requiring the investor
to anticipate how the market mechanism will react to new information.
Thus, successful investment by a Bayesian requires a wider class of
theoretical acumen than merely Bayes theorem (this monograph is
mostly confined to the subtleties of Bayesian thinking, of itself).

Following Markowitz and others, investors are assumed to act on
their subjective probabilities, not on the exogenous unknown “true”
probabilities. Parameters are modelled as uncertain “random variables”,
because they are never known with certainty. Even after much data,
Bayesian investors never fully learn a “true” distribution, especially in
a non-stationary environment.

By merely facing up to parameter uncertainty, investors reveal for
themselves greater uncertainty. In a stationary environment, investors
can in some models learn about parameter values over time, but the

15The NBER Working Paper 7699 that preceded this publication was decidedly
more critical of the frequentist approach and the Bayesian mistakes that it brought
to the finance literature.
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real economy and firms evolve over time, with unobservable shocks
to parameters, meaning that parameter uncertainty will not disap-
pear.

The investor plays a game of “blind man’s buff”, because in the
empirical dividend stream she sees only a noisy representation of a
changing underlying payoff or returns process. In the investor’s vision,
the underlying payoff parameters seem to fluctuate randomly over time,
even when they do not. She sees little bits of empirical evidence indicative
of the underlying parameter values, but even as data accumulates she
may never veer close to the true distribution of returns in her assessment
of a continually revised but still lagging subjective distribution.

The actual returns process might shift one way in its mean or its
variance, while, at the same moment, based on last period’s data, the
investor might update her beliefs in exactly the opposite direction.
Investors can have a less true picture of the current underlying payoff
or returns process after even a long observation period.

8.11 Neururer et al. (2016)

Neururer et al. (2016) summed up three types of Bayesian thinking in
accounting about the effect of information on uncertainty:

This paper investigates alternative Bayesian models of learn-
ing to explain changes in uncertainty surrounding earnings
announcements. Specifically, we examine three alternative
scenarios reflecting how the magnitude of a performance
signal affects investors’ posterior variances. The first scenario
we investigate is that additional signals of firm performance
reduce investor expectations of posterior variances - that is,
lead to declines in uncertainty (Lewellen and Shanken, 2002,
e.g.). Under these models, the magnitude of the signal plays
no role in the extent to which uncertainty is resolved. This is
predicated on the notion that a firm has a fixed distribution
of outcomes and that the release of the signal helps to reveal
this distribution, thereby reducing uncertainty about future
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firm value. We label such models as “Constant Uncertainty
Resolution.”

The second scenario is that the magnitude of the signal
plays a role in the uncertainty resolution surrounding a
signal’s release (Rogers et al., 2009, e.g.). We label this as
“Uncertainty Resolution Conditioned on Signal Size.” Under
these alternative Bayesian models, while the release of a
signal helps to provide information about the distribution
of outcomes (and thus leads to reduced uncertainty), the
extent to which the signal deviates from expectations affects
the amount of uncertainty resolution. However, note that
the models under this scenario allow for attenuation — but
not net increases — in uncertainty due to signal size.

The third scenario we investigate is that sufficiently large
signals cause a net increase in uncertainty, or a “regime shift”
(Pastor and Veronesi, 2009). We label this as “Bayesian
Learning with Increased Posterior Uncertainty.” Critically,
such models of Bayesian learning allow for signals, which
deviate sufficiently from expected values, to lead to increased
uncertainty. In other words, these models allow that some
signals are large enough to increase investors’ posterior
variance. (Neururer et al., 2016, p. 401)

Ultimately the authors find evidence supporting the last and most
obviously realistic of the three underlying models. If we are interested
in the probability that the firm’s costs will be high next month or year,
we will of course be influenced not only by the sample size of previous
monthly costs, but also by the dollar amounts of those costs. And if last
month, costs were much higher than previously, then previous confidence
in continued low costs will be generally reduced. Any Bayesian model
of the effects of accounting earnings, or similar disclosures, that ignores
these realities is bound to mislead in principle and can only exist for
its simplicity or mathematical convenience rather than methodological
validity. Again, we are led back to the caveat in Beaver (1968) that
information must be “allowed” to heighten rational users’ uncertainty.



150 Does Information Reduce Uncertainty

8.12 Veronesi (1999)

Veronesi (1999) developed a dynamic stochastic model of belief revision
and market re-pricing in a market where the underlying regime changes
between two states and decision makers infer the probabilities of the
states from past dividends. This model is revealing but should not
be considered to be “Bayesian” because the homogeneous investors’
probability that the market is in a given state evolves by an assumed
diffusion process or “law of motion” rather than by Bayesian updating.
There is no connection explained via Bayes theorem between dividends
and users’ inference. Specifically, there is no likelihood function. Instead,
users are assumed to “estimate” the probability of the state, rather
than “reason” it by Bayes theorem.

Veronesi’s model can be considered as a stylized time series of how
a Bayesian probability might evolve dynamically with information, but
it does not delve into how investors would reason when forming their
beliefs. For example, by what likelihood function would they form
beliefs about next period’s dividend from last period’s dividend, or
from say a run of successive dividend increases? Ottaviani and Sorensen
(2015) show that market aggregates, unlike possibly their individual
traders, are not naturally coherent Bayesian updators, in the sense that
equilibrium prices do not evolve as if “the market” has a prior belief
shown in the last price and a corresponding Bayesian posterior belief
shown in the next price.
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How Information Combines

Under Bayes theorem, information y interacts with information z in
ways that are not always predictable. It can occur for example that
F(Alz) > F(A) and f(Aly) > F(A) but f(Ala,y) < f(A), implying that
the “meaning” of x is quite different “of itself” than in combination
with y, and vice versa.

Similarly, a signal can be weak of itself but very strong, in the
same direction, when combined with another signal. It does not matter
whether x or y is received first, the sequence of updating beliefs will
arrive at the same end result f(A|x,y) either way. The only difference
is that the intermediate probability, either f(A|z) or f(Aly), will be
different, which in a way shows how the belief path contains random
ups and downs, leaving the probability held at any moment a matter of
“luck”, since the arrival of observations is usually “random”.

Synergies and interactions between information sources give a
Bayesian basis to the proverb, “a little knowledge is a dangerous thing”.
The apparent meaning of a given signal can be reversed when another
condition or signal is added to the information pot. See Penman (2010)
on how accounting can add utility by being more independent of other
financial information. Similarly, Francis et al. (2006) note that users
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must account for “statistical associations” between earnings quality
and other items of market information:

...interactions among components of capital market infor-
mation undoubtedly exist and are potentially important for
understanding financial reporting quality. (Francis et al.,
2006)

The interaction between information sources is a major issue for
accounting standard setting. An analogy exists with portfolio theory, in
the sense that a signal is more valuable cet.par. when it is uncorrelated
with the other signals. Put another way, like stocks in a portfolio its
apparent individual value depends on what it is combined with. In
the literature on combining probability forecasts from different sources,
there are formal arguments for why it can assist to add forecasts that
are less accurate of themselves if they contribute by adding independent
and possibly often contrary opinion. See for example Grushka-Cockayne
et al. (2017) and Winkler et al. (2019). Underlying this argument is a
notion like Penman’s that it helps to introduce different prior opinion,
expertise, training, methods, experience, biases or vested interests, and
other sources of individuality, into the mix.

9.1 Combining two risky signals

The following is a re-interpretation of the calculations in Pearl (1999),
which were used to illustrate Simpson’s paradox. My re-interpretation
is in terms of how the meaning of a given signal sometimes switches
to the opposite when its likelihood function is conditioned on another
more or less correlated signal. On Simpson’s paradox in its general form,
see Lindley (2014) and Kadane (2011).

Suppose as above that V; € {0, 1} is binary with prior probability
p(1) = 0.45. Consider two risky binary signals from different sources.
The first signal 7 € {+, —} has error probabilities, p(+|0) = 15/44 and
p(—|1) = 11/36, in which case it follows that p(+) = 0.5, p(1]+) = 0.625
and p(1|—) = 0.275. The second signal k € {F, U} has error probabilities
p(F]0) = 5/11 and p(U|1) = 4/9, in which case p(F) = 0.5, p(1|F') = 0.5
and p(1|U) = 0.4.
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On the face of these assessments, a positive signal from the first
source and a favorable signal from the second source would seem to each
add evidence supportive of V = 1, and thus apparently corroborate one
another when they occur together.

That intuition does not allow, however, for the risk of correlated
errors. To see how Bayesian allowance for this risk affects beliefs, imagine
that the perceived error probabilities of signal x when conditioned on
signal 7 are as shown in the two contingency tables in Table 9.1.

Given the joint probabilities in Table 9.1, the conditional error
probabilities of signal x are p(F|1,4+) = 18/25, p(F|1,—) = 2/11,
p(U|0,4) = 12/15, and p(U|0,—) = 8/29. The resulting posterior
probabilities under different levels of conditioning are then as shown in
Table 9.2 (see the Appendix for calculations).

The paradoxical result apparent in Table 9.2 is that signal « has
one evidential interpretation when received by itself and the opposite
interpretation when taken in conjunction with signal 7. Specifically,
k = F by itself adds evidence favoring V' = 1, yet contributes evidence
against V = 1 when it occurs jointly with 7, no matter whether 7 = + or

Table 9.1: Joint probabilities p(V, |T).

When 7 = + When 7 = —
V=1|V=0 V=1|V=0
k=F | 9/20 3/10 k=F | 1/20 1/5
k=U | 7/40 3/40 k=U | 9/40 | 21/40

Table 9.2: Conditional probabilities of V' = 1.

(1) 045 | [p(1) 0.45
p(11) 0625 | | p(1—) | 0275
p(1|F) 0.5 p(1|0) 0.4
p(1l|+,F) | 0.6 p(l|—, F) | 0.2
p(1[,0) [ 0.7 p(1|—=,0) | 0.3
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7 = —. That is, p(1|+, F) < p(1|+) and p(1|—, F)) < p(1|—). Similarly,
k = U by itself presents evidence against V = 1, but adds evidence
favoring V' = 1 when joint with 7, no matter whether 7 = + or 7 = —.
It follows without need for further calculations that the reversals of
evidential direction, which can occur with each new level of conditioning,
flow through to the costs of capital or risk premia of individual securities.
A good way to understand this connection is to go back to the
usual context in which Simpson’s paradox is explained in statistics.
The numerical example above was translated into an “information risk”
context from its original medical context. In the medical analogy, V
is a binary for survival or not (V = 1 indicates survival), 7 € {4, —}
indicates whether the subject is male or female (“+” is male, “—" is
female) and k € {F,U} signifies whether the subject was given the
drug or not (“F” means drug, “U” means no drug). In this context,
the respective probabilities show that the drug had a positive effect
on the average survival rate over the population as a whole, but had
a negative effect for males as a subset and also a negative effect for
females as a subset. So if an insurance company were to see these results,
the life insurance premium would go in opposite directions depending
on whether the subject was viewed as just a person who was given the
drug or whether a two-way partitioning was used, in which case the
drug would be seen as having a negative effect on survival probability.
This is indicative of how a signal can appear to say or mean one
thing of itself, yet when the same signal is observed jointly with a
correlated confounding factor, such as an experimental condition or
another source of information, its meaning can reverse. Or, similarly,
it can be found to be uninformative or to be far stronger than first
thought.! In this sense, we can never be sure that a signal means what
it apparently “says”. The Bayesian approach to this problem, which is
a defence but not a panacea, is to impound in the likelihood function
as many of the conditions associated with any given signal, affecting its
Bayesian meaning or implications, as are known or perceived.

'Related theory, showing how information can combine counter-intuitively, exists
in the Bayesian literature on combining individual probability forecasts of the same
events (e.g. Winkler, 1989).
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Appendix

Here are the calculations for p(F'|1,+).
p(FD)p(+|1, F)
p(+1)

_(5/9)(0.9)
- 25/36 072,

p(F[1,+) =

where
p(H)p(, FI+)
p(1, F)
_ p(+)p(L, FI+)
p(+)p(L, Fl+) + p(=)p(1, F|-)
0.5(0.45)

p(+[1, F) =

= =0.9.
0.5(0.45) + 0.5(0.05)
It follows then that
p(1|+)p(F[1,+)
p(l|+, F) =
A B) === )
.625(0.72
0.625(0.72) 06

~ 0.625(0.72) + 0.375(0.8)

The corresponding conditional likelihoods p(F|1, =), p(F'|0,+) and
p(F'|0,—) are found the same way.
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Ex Ante Effect of Greater Risk/Uncertainty

It is market folklore that “investors abhor uncertainty”, but that is too
simple. What if uncertainties were all resolved? All investments would
be risk-free and no investor could earn more than the risk-free interest
rate. If an entirely risk-free investment were desirable, investors could
do that now, and there might be no stockmarket. So the stockmarket,
and its risky stocks, must be adding to investors’ expected utility, which
suggests in turn that accounting is well served to consider how it can
contribute not to greater certainty per se, or to always lowering the cost
of capital, but to the greater task of maximizing investors’ expected
utility, both ex ante and ex post.

It is essential to differentiate between ex ante utility and ex post
expected utility. Ex ante expectations rest on ex ante probability
assessments, and may never be realized or even close to realized. The
decision maker forms beliefs Bayesianly on all information that seems
worth gathering (based on ex ante expectations). Actions are taken on
those subjective beliefs according to the rule of maximizing ex ante
expected utility. The decision maker knows that actions may or may
not produce the utility “expected”, they are merely the best actions,
given current probability beliefs. The utility actually produced is partly

156
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due to the “accuracy” of her beliefs, partly due to how bold or risk
tolerant she is in that choice of action, and partly due to “luck” since
any random bet, “sure thing” or “long shot”, might or might not payoff.
Ex post expected utility, meaning the decision maker’s actual average
realized utility, is considered in later parts of this monograph. It comes
under the heading “economic Darwinism”, which is the study of the
innate statistical advantages that make financial decision makers “fit”
to survive and prosper over the long term of repeated albeit changing
investment decisions. See for example Blume and Easley (2006).

10.1 Risk adds to ex ante expected utility

Bertomeu (2013), Cheynel (2013) and Gao (2010) raise the possibility
that an increase in market risk or the cost of capital can be favorable
to investor welfare. The following analysis leads to a conclusion that
more risk, when correctly “priced”, adds to the prospective investor’s
ex ante expected utility.

If there are two stockmarkets offering the same mean payoff and
differing only in their level of certainty, which market of itself offers
higher ex ante expected utility to a potential new investor who buys
the rational portfolio of the risky market and holds the remainder of
her wealth in a risk-free asset?

A simple way to investigate the consequences of greater ex ante
certainty is to work with the usual mean—variance CAPM equation,
following Lambert et al. (2007), for the price of the stock market
1
Ry
where V) is the aggregate market payoff, and c is the premium imposed
by the market for the risk (variance) of Vs (and ¢ is the risk-free rate).

Py [E[VM] — CV&I“(VM)], Rf = (1 + Tf) (10.1)

The stockmarket can be considered as a single unit of a single risky
asset that pays random amount Vjs at period-end, and trades at unit
price Py at period-start. Its ex ante market price is Pys (which is the
sum of the individual prices of the risky assets in the market). See Fama
and Miller (1972) for this “payoffs” expression of CAPM.

We wish to take the viewpoint of a prospective investor, who can
choose to buy into the risky market. Think of her as having the same
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risk aversion as “the market”, noting that the market chooses to hold
amount Py of its initial wealth Wy in a risky asset that pays uncertain
cash payoff Vi;. From here I use these amounts to represent the rational
portfolio weights of our single investor.

If Vi is ex ante more certain, meaning lower var(Vyy), its price Pys
is higher, provided that the expected payoff E[Vj,] is held constant.
Higher Pp; implies that the investor holds more of initial wealth Wy in
the risky asset, leaving a smaller amount (Wy — Pyy) in risk-free cash.

That larger holding in the risky asset is expected to earn a lower
rate of return, since E[Rys] = E[Vas]/Par is lower when Py is higher,
given that E[V)] is constant. So what result does that combination
of higher P, invested at a lower expected rate of return have on the
prospective investor’s overall expected utility?

The answer to this question under CAPM is that in a market
with greater certainty, i.e. lower var(V)s), the ex ante expected utility
obtained by taking a CAPM rational portfolio of risky and risk-free
assets is lower, which sits well with the basic intuition that we do not
want all assets to be risk-free.

The following simple proof, under exponential utility U(W) =
1 — exp(—cW), assumes that Vi has a normal distribution, Vs ~
N (E[Va], var(Var)).

The terminal realized cash from investors’ overall portfolio is

Wi =Vuy + (Wo — P)Ry,

where again Ry = (1+7y) is the risk-free return factor, which is assumed
to be constant. Define the mean and variance of terminal wealth W as
respectively p and o2.
Hence,
p=p(Wh) = E[Va] + (Wo — Pu) Ry,
and
o? = a?(Wy) = var [V + (Wy — Py)Ry]

= var(Vy),

since Py is a constant given constants E[Vjs] and var(Vyy).
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Assuming exponential utility U (W) = 1 —exp(—cW) for cash wealth
W, the equilibrium market price Pj; consistent with the usual CAPM
is shown in Equation (10.1).

Substituting for Pjs in the equation above for u gives

p=~FE

Var + (W - Ri B[V — cvar(VM)]> Rf]
f

= WoRy + cvar(Var),

revealing that the investor’s expected aggregate payoff Wi is dependent
only on var(Vys). The expected payoff of the risky asset E[Vj] is netted
out in the price Pys paid to buy that asset, so makes no difference to
the final cash wealth Wj.

By a standard result for exponential utility 1 — exp(—cW), the
expected utility of normally distributed terminal wealth Wy ~ N (u, %)
can be written as

EU =1—exp {—c <,u — 202”.

Substituting for y and o? gives

EU =1—exp {—c (Wo + cvar (Vi) — gvar (VM)>]

=1—exp [—c <W0Rf + gvar (VM)>] (10.2)

This result says that the expected utility from an optimal weighted
portfolio across the risky and risk-free asset depends on the variance
of the risky payoff, and increases with that variance. Hence, the mar-
ket with higher ex ante payoff variance, var(Vyy), affords prospective
investors a higher ex ante (forward-looking) expected utility.

Investors in that market have a lower amount P of risky investment,
but that dollar amount Pj; earns a higher ex ante expected percentage
return. That pairing of lower Py; and higher E[R;], alongside a higher
residual amount (W, — Pys) earning risk-free interest, yields a total
random cash payoff W7 with higher ex ante expected utility.

If there were no risky asset, the investor’s expected utility would be
only what is obtained by investing all initial wealth Wy in the risk-free
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asset, that is,

EU =1 — exp [-cWyRy]
<1—exp [—c (WORf + gvar (VM)H

And, conversely, if there exists a risky asset, its price Py; would not
exceed zero unless its existence added to expected utility.

Numerical example

The following example illustrates the findings above, and replicates them
by calculating expected utility directly by integrating over a normal
probability density, rather than by using the mean—variance shortcut
expression of expected utility.

The normally distributed random market payoff is Va; and its ex
ante parameters are E[V] and var(V). Its probability density is then

(Ve — E[VM])2>'

FVar) = 2m var(Vay) P <_ 2var(Var)

The utility obtained from the overall portfolio is

U(Vy)=1—exp [—C (Vi + (W — PM)Rf)},

where as above Py = Rif (E[Var] — evar[Va]).

Hence, the market expected utility is

EU = /_OO U(Var) £ (Var) dV

=1—exp [—c (WoRf + gvar(VM)ﬂ ,

which is exactly as above. Again, the risky market asset adds to expected
utility as long as var(Vas) > 0. To be sensible, var(Vys) is constrained
relative to E[Vi] so as to ensure that the price of the market Py,
calculated according to Equation (10.1), is positive.

Expected utility (10.2) is plotted in Figure 10.1 against the standard
deviation of Vjs, shown in the plot as y/var[Vj;]. The calculations assume
Wy = 100, Ry = 1.1 and ¢ = 0.05. There is no need to assume any
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Figure 10.1: Plot of EU obtained from optimal portfolio of risky and risk-free assets
as a function of /var[Vas).

particular value for the mean market payoff, as it makes no difference.
It disappeared in the algebra, and is accounted for in Py;.

Note that for the case of var(Vas) = 0, there is in effect no risky
asset available and the investment portfolio is entirely risk-free, leaving
its expected utility at

1 —exp[—cWoRs] =1 — exp[—c100(1.10)] = 0.996,

as shown in Figure 10.1 at /var[Vjs] = 0.
The main point is that higher perceived ex ante risk makes for a

higher expected utility investment portfolio, provided that investment is
understood as a portfolio of the market and the risk-free asset. Expected
utility approaches one (satiation) asymptotically as the risk (variance)
of the market payoff gets larger. It is the utility expected from the
combined investment that determines ex ante welfare.

10.2 Implications for Bayesian decision analysis

The intuition reached is that rather than trying to eliminate risk or
uncertainty, ex ante, the role of information, including accounting
information, is to assist investors to assess risk and take advantage of it.
Given fixed E[V)y], the prospective investor who is best placed ex ante
is the one who can invest in a CAPM-priced market that has a higher
payoff variance. Rather than hoping to eliminate risk or uncertainty,
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and thus also opportunity, the ideal is to assess (i.e. “price”) existing
risk accurately and thereby gain utility from investing in it.

The investor benefits from more risk under CAPM because the
price of the risky market is actually less than the risky asset’s certainty
equivalent. The correct (in utility theory) certainty equivalent of the
market payoff, given the utility function U(W) = 1 — exp(—cW), is'

CEy = (BWar - § vty

but the CAPM equilibrium market price is

1

Py = —
M Rf

(E[Va] — evar [V]).

So the market pricing mechanism trims the certainty equivalent by

];f (; var[VM]>,
thereby making investment in the market a positive expected utility
action. Note that if the investor paid the full certainty equivalent of the
asset, the marginal expected utility would be, by definition, zero.

To understand why the CAPM market price Py is lower than the
certainty equivalent C'E)s, remember that (under CAPM equilibrium)
capital which could otherwise be left invested at the risk-free rate is
diverted to buy the risky asset only up to the point of zero marginal
expected utility on the last $6 — 0 invested.? All of the previous
(Pyr — 6) invested was invested with positive marginal expected utility.

The matter of what results are actually realized from actual (i.e.
error prone) ex ante expectations is the subject of the next chapter
in this monograph. Maximum ex ante expected utility is cold comfort
if not ever realized. An ex ante highly risky market payoff presents a
prospective investor with high ex ante expected utility under CAPM,
but the investor’s ultimate objective is not higher ex ante utility but
higher ex post utility.

!e.g. see Christensen and Feltham (2003, p. 54). The numerator (risk-adjusted
payoff) in the payoffs form of CAPM is colloquially called a “certainty equivalent”
but that is an abuse of the term by the strict utility theory definition.

2Johnstone (2017) derives the CAPM explicitly by this criterion.
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10.3 Volatility pumping

In portfolio optimization in finance, the strategy called volatility pump-
ing takes advantage of the variance (volatility) in the risky asset, and
show how without variance (risk) there is no opportunity. Volatility
pumping, explained by Luenberger (1998, pp. 421-438), is an optimiza-
tion strategy based on the assumption of log utility and given fixed
volatility. The investor balances a portfolio of the risky market and
the risk-free asset so as to maximize expected capital growth (which
objective coincides mathematically with maximizing expected log utility;
see the next chapter in this monograph). The CAPM investment strategy
does the same except that it maximizes a mean—variance expected utility
function, such as exists under the combination of exponential utility
and normal distributions. The effect of that utility function is that
investment is less risky but lower in its ex ante expected capital growth
than the log utility strategy.



11

Ex Post Decision Outcomes

I have not here discussed what the basic probability distribu-
tions are supposed to come from. In whose mind are they ex
ante? Is there any ex post validation of them? (Samuelson,
1965, p. 48)

Realized profits, not maximum profits, are the mark
of success and viability...those who realize profits are
the survivors; those who suffer loses disappear. (Alchain,
1950)

The “value of information” is understood in archetypal Bayesian
models, like the oil wildcatter (e.g. Raiffa, 1968), as an ex ante
assessment. But information or experiments with high ex ante
expectations are known to be only a means to an end. The proof
of the pudding or eventual test of the user’s information, model,
posterior beliefs and decision rule is her realized utility. Ultimately
Bayesian decision analysis must include methods of review, including
for example the formal probability “scoring rules” that were invented
by de Finetti, Savage, Lindley, Good and others specifically for that
purpose.

164
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The end, or ex post perspective, is how signals actually perform
for users in terms of “making money” or realized capital growth. That
ex post view of information quality gives rise to questions about how
“good”, and in what sense of “good”, information has to be for a user
with a given decision rule (or utility function) to accumulate investment
profits?

Can information that leaves relatively little certainty be sufficient?
Less likely perhaps, can information that brings lower certainty, and
hence smaller risky investments, yield higher capital growth? In essence,
what does a rational decision maker need of information to “make
money”?!

The stream of accounting theory beginning with Demski and based
on Bayesian statistical decision theory does not focus on what makes
information and information systems good ex post. Ex ante optimization
is the main focus, and ex ante expectations are implicitly presumed to
be borne out on average.

One exception is Feltham, who defined “ex post relevance” by
whether the realized signal changed the user’s decision, but did not
consider the outcome of that changed decision:

...if a signal changed the decision then the information
provided by that signal was relevant. (Feltham, 1968, p.
691)

The ex post perspective in Bayesian statistics goes to the next step
of asking whether users’ revised beliefs and decisions work out well in
accord with the user’s objectives.

The large Bayesian literature on probability “scoring rules” sets out
a theory of ex post evaluation of probability assessments. See DeGroot
and Fienberg (1982) and DeGroot and Fienberg (1983), Lindley (1982a)
and Lindley (1982b), Jose et al. (2008) and Johnstone (2011). The
literature on economic Darwinism, discussed below, looks at how users

'Ex post, utility and money are the same thing in the sense that utility is
increasing monotonically in money. Hence, ex post results can be measured in money.
That does not mean however that the ex ante objective can be written as maximizing
expected money. That would imply risk neutrality. It is only ex post that the two
perspectives coincide.
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translate information to beliefs, to actions, to profits (or losses). The
objective of this literature is to identify the ex post characteristics of
beliefs that help investors to “beat the market” or “make money”.

Empirical accounting research does something that is equally “ex
post” by examining the observed stock price reactions and apparent
changes in the cost of capital ensuing after changes in accounting
methods and earnings quality. These studies are in essence an ex post
evaluation based on outcomes, rather than ex ante expectations. That
empirical research approach is, however, more focussed on market-level
averages than the specific decision outcomes of specific accounting
information users.

11.1 Practical investment

When supporting a mean—variance decision theory rather than a more
general expected utility theory, Tobin (1969) held that a business
decision maker will hardly be amused by the prescription that:

... he should consult his utility and his subjective probabili-
ties and then maximize. (Tobin, 1969, p.14)

Contrary to Tobin’s disregard, there is much theoretical and empir-
ical study devoted to portfolio selection by optimization of expected
utility functions, both directly and by their expression through higher
moments.? A hallmark of this work is its attempt to make expected util-
ity methods practical in modern portfolio management. The statistical
mathematics of utility maximization of portfolios go back to the famous
works of Latane, Shannon, Kelly and Thorpe, and more recently Ziemba,
who assumed that the natural investment objective is to achieve an
agreeable compromise between capital growth and volatility.? In effect,
that objective function amounts to making acceptably few large losses
along a path of average compound growth — which is essentially what
a suitably risk-averse utility function is meant to achieve. Any utility

2See for example MacLean et al. (2005) and Cremers et al. (2005).
3The realized Sharpe ratio of an investment fund captures how well the fund
actually performed in its pursuit of growth against volatility.
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function that is increasing and concave implies the same general ex ante
desire to “make money” while avoiding risks that are too large or too
probable for what growth they offer.

The mathematics of capital growth (Kelly, 1956) became the basis
for the statistical theory of economic “Darwinism”, developed by Alchain
(1950), Blume and Easley (2006) and Sandroni (2000), and in a series of
papers co-authored by Maclean and Ziemba and others (see references).
A retrospective is provided by Hakansson and Ziemba (1995).

There is disagreement among Bayesians, because the “growth opti-
mal” strategy, which favors growth at the cost of higher volatility, and
is commonly known as “Kelly betting”, calls for investors to adopt log
utility, whereas the fully “personal” subjectivist Bayesian position allows
the investor to “have” or choose her own utility function, whatever its
risk appetite.

In the practical end, there is no issue. Theorists who have explored
growth optimal investment know in great detail its strengths and
weaknesses. They make allowance for more risk-averse investors by
identifying desirable tradeoffs between growth and “safety” achieved
by practical decision rules like “half-Kelly”. MacLean et al. (2005) and
Kadane (2011) show general conditions for correspondence between
fractional-Kelly investment rules and power utility functions of differing
risk aversions. For a subjectivist Bayesian critique of this approach, see
Kadane (2011).

A fundamental insight emphasized by Ziemba in the growth-safety
tradeoff literature, but applicable to all investment, is that errors in
investors’ subjective probabilities that lead to over-betting are more
costly than errors that lead to under-betting. In other words, subjective
over-confidence, reflected in the direction and amount of the bet, is
the most costly mistake or bias in investment. The implication for
accounting standard setters from this literature is that investors do
not benefit, and may in fact be bankrupted, by inaccurate probability
beliefs (e.g. over-certainty).

Ziemba’s argument contains practical notions of under- and over-
betting that do not explicitly involve any particular utility function or
decision rule. All that comes into calculation is the fraction of wealth
p invested in the risky asset, irrespective of how p is chosen. The
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investor’s expected exponential return is explored as a function of p,
without needing to consider how p was chosen by the investor, or what
utility function or decision rule drove it.*

11.2 Economic Darwinism

Take the most elementary investment context. Suppose that the decision
maker invests (bets) some proportion of her wealth on the proposition
that a firm will succeed. The firm pays V' = $1 per share if it succeeds
and V = 0 otherwise.” The current share price is (say) ¢ = 0.50. Let
the “true” probability that the firm succeeds be 7 = p(V = 1) = 0.55,°
and imagine that the decision maker uses proportion p = p(p) of her
capital to buy shares in the firm, where p is her subjective belief in the
firm’s success.

The proportion p(p) is fixed by the investor’s utility function and is
generally higher for a less risk-averse individual.” The user’s investment
is driven by her probability belief p and hence by the information she
receives and the meaning she places on it. Implicitly, better accounting
information makes for a more accurate assessment p, which (as we see
below) does not call for greater resolution or p nearer certainty (0 or 1).
Instead greater certainty and more accurate beliefs are often conflicting
ideals.

It is easily found by simple algebra that her realized or “physi-
cal” expected compound interest (exponential) return factor from the

4Ziemba holds that any p or “over-betting” beyond that for which the expected
exponential return is maximum is “irrational” because it produces the unfortunate
pairing of greater volatility and lower expected capital growth. Subjectivist decision
analysts do not respect this maximum. They hold that the utility function of a
risk-averse rational investor might permit bigger risks than those accepted by a
growth optimal (log wealth) investor.

5This asset exists and is traded on major exchanges including the Chicago Board
Options Exchange (CBOE) and NYSE American.

S Alternatively, 7 can be defined as the actual proportion of outcomes V =1 in
the same actual set of bets. See Lewellen and Shanken (2002) for distinction between
the physical or true probability distribution and a subjective distribution believed
under available information by the market or by the single investor. In accounting,
Francis et al. (2006) refer to the “true distribution” of earnings.

"See Johnstone (2011) for specific fractions under different HARA utility
functions.
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investment p = p(p) is

exp <7r log [(1 —-p)+ Z] + (1 —m)log[l — p])

For example, if she bets p = 10% of her wealth, she will return on
average a factor of approximately 1.005, implying a compound return
of approximately 0.5% per trial, which is the highest expected capital
growth physically feasible under 7 = 0.55 and ¢ = 0.5.

Figure 11.1 shows the expected return factor (per trial) as a function
of the proportion p of wealth invested. Note that if the investor risks
more than a 20% proportion of her wealth, her expected return factor
falls below one, and she therefore loses wealth on geometric compound
average. The size of this expected loss increases rapidly with greater
over-betting, implying a rapid stochastic path to ruin (note how quickly
the average return factor falls away as p increases). Over-betting
and over-confidence have essentially the same appearance in terms of
realized outcomes (mathematical theorists in gambling advise investors
to purposely “under-bet” relative to their beliefs, so as to allow for
potential over-confidence in those beliefs; see for example MacLean
et al., 1992, MacLean and Ziemba, 1999, MacLean et al., 2004).

This simple example reveals that even when the investor has suffi-
ciently good information to bet “in the right direction” (long or short),
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Figure 11.1: Expected return factor versus fraction invested.
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she can still over-invest or over-bet and lose heavily. In other words, it
is possible to “bet too much on under-priced stocks”.

She “bets” in the right direction, by going “long” on the asset,
since the market price of 0.5 is less than the probability 7 of the firm
succeeding (paying $1 per share), so she has “an edge” that can be
exploited. The problem however is that she errs by investing too heavily
in that direction. Physically, her resulting losses are not outweighed by
her gains, and she loses money on average, despite being onto a good
thing. Remarkably, an information advantage or “edge” is converted
to a financial loss, despite the fact that the investor buys an asset at a
market price lower than its intrinsic or true value.®

The potential of the investor’s decision rule to convert an information
advantage to a money loss is rarely discussed. That “mistake” occurs
quite rationally in the example above under any risk-averse utility
function for which p > 0.1987 ~ 20%. Rational decision theory, i.e.
subjective expected utility theory, allows the user to have such low-
risk aversion, so even homo economicus can lose by maximizing the
expectation of a sufficiently risk-tolerant utility function, despite being

given sufficiently good information to win.’

11.3 Bayesian Darwinian selection

Discussion of economic Darwinism in accounting started with Verrec-
chia (1979) and came out of questions about how an investors’ belief
distributions compared with the “true” distribution.

For any investor, accurate probability assessment is a footing on
which to make money, suggesting reason of itself to “be Bayesian”.
In arguing for why it makes sense to model the agents in strategic

8When Thorp realized that in blackjack he had an edge in some situations against
the casino, he introduced Kelly’s (1956) log utility decision rule as a way to maximize
expected capital growth from that information advantage. Modified versions of the
Kelly rule convert an advantage to slightly slower average capital growth but with
much less volatility. That is essentially the subject of the “Ziemba” papers in finance
and management science.

91f a rational investor with risk-averse utility believes probability 0.55 against
the market’s 0.5, her investment fraction approaches 100% as her utility function
approaches linearity (risk neutrality).
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information disclosure models as Bayesians, rather than to adopt any
behavioral finance depiction of decision makers and inference makers,
Dye (2001) stated the Bayesian’s case as follows:

In a competitive market setting, the presence of non-
Bayesians does not directly influence any Bayesian investor’s
actions, since in a competitive setting, no single investor
believes that he, or anyone else, has an impact on market
prices. That is, competitive settings are like single person
decision settings in which everyone perceives himself as
acting in isolation of everyone else. Now in any single person
decision setting, the best information processor always wins!
Thus, Bayesians must generate higher operating profits than
non-Bayesians in competitive markets. (Dye, 2001, p. 213)

Similarly, Verrecchia (2001) puts the Darwinian hypothesis as
follows:

... Bayesian investors make statistically correct portfolio
rebalancing decisions (on average) in the presence of dis-
closure, whereas heuristic investors make inferior portfolio
rebalancing decisions. Consequently, over time Bayesian
behavior should outperform heuristic behaviors, and, for
this reason, presumably drive heuristic behaviors from the
market. (Verrecchia, 2001, p. 126)

Underlying both Darwinian statements is the natural assumption
that the rational Bayesian will not negate his probability advantage
by over-betting or by applying an overly bold decision rule. That is
perhaps a highly realistic assumption where survival is in play, because
an investor who has the cognitive ability to judge the correct direction
in which to bet (long or short) will presumably adapt equally adeptly if
she is over-betting, or at least she will if she can separate that mistake
ex post from any thought that she must be getting the probabilities
badly wrong, and provided as well that she survives for a sufficient
while to adjust.
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The interesting mathematical fact of economic Darwinism is that
a non-Bayesian might beat a Bayesian merely by having a better
“chemistry” between her probability assessment skill and her trading
rule. Indeed, rank ignorance can beat an over-betting Bayesian, as
occurs in the example calculations above, where an informed trader
(call him a Bayesian), with an edge, bets on a binary event against a
market probability of 0.5, yet succeeds only in losing overall by betting
too much. A market probability of 0.5 is the “ignorance probability”
in a binary event, and is often sufficient to beat a better informed but
incautious investor.!?

Dye’s and Verrecchia’s presumption of the market “selecting for
Bayesians” surely holds true when learning is allowed. In a stationary
game, the Bayesian’s probability edge over any non-Bayesian will tend
to increase trial-by-trial, albeit not always monotonically. A final point
is that in any competition between different Bayesians all with the
same decision rule, their respective sources of information, and their
decisions about what information to obtain and how much to pay, should
be the decider. On this point, (Dye, 2001, p. 215) explains how less
well-informed traders can survive in a market:

...perhaps their decision not to become better-informed
was optimal: the extra trading profits they have foregone by
not becoming better-informed might have been offset by the
information acquisition costs they have not incurred. (Dye,
2001, p. 215)

That explanation anticipates an important part of the modern
finance literature on the “limits to arbitrage”, which reveals practical
aspects of why less well-informed investors, or investors too “lazy” or
“miserly” to obtain information, or not good at informed analysis, might
well survive and even prosper.

In the end, being both Bayesian and making money still requires
an element of “luck”, and that might in some bets be the luck of

YBlume and Easley (2006) describe the interaction effect of an investor’s
probability assessment ability and decision rule as her “entropy”. I would suggest
that a better term is “chemistry”, for how the two react with each other to make
the end result.
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having less information. Certainty must rationally rise and fall with
new information, at least in the short run, and hence the final piece of
information might be the one that caused the Bayesian to bet in the
direction and amount that she did. If she lost the bet, it was that extra
bit of information that effectively “lost it”.

An interesting moral of this story is that the investor who
receives the best “Blackwell-ranked” signal, because of its one extra
degree of “fineness”, is bound to be sometimes the trader who bets
in the ex post wrong direction. That is because the probability
assessment p(V|xi,ze,...,Tn_1,2,) can be higher or lower than
p(V|z1,x9,...,2n_1), thus leading to not only a different size of bet,
but a bet potentially in the opposite direction, as would occur when
the market probability 7 lies in the interval between p(V|..,z,-1) and

p(V|..,xpn_1,2n).
11.4 Good probability assessments

There are statements throughout accounting literature suggesting that
accounting information is meant to assist decision makers to form
and revise subjective probabilities. For that reason, the literature in
Bayesian statistics on what makes a “good probability” assessment is of
direct and fundamental interest. See for example de Finetti (1937/1964)
and DeGroot and Fienberg (1982) and DeGroot and Fienberg (1983).
The issue of good probability assessment, and how to assist that task,
has been studied theoretically and empirically in meteorology, and the
messages coming from that highly developed decision-theoretic literature
apply almost verbatim in accounting.

A very quick summary, clarified and illustrated empirically by
Gneiting et al. (2007) and Gneiting and Raftery (2007), is that the
best probability assessment is the “sharpest” (most resolved) subject
to calibration. Suppose, for example, that the task is to assess the
probability that firms will go bankrupt (before set time T'). Good
probabilities are (i) calibrated in the sense that f(Bankrupt|p) = p for
all p, where f represents a relative frequency, and (ii) sharp, in the
sense that they are nearer 0 or 1.
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Note that calibration is a joint property of probabilities and realized
events, whereas sharpness is a property of the probabilities of themselves.
By emphasizing ex ante information value rather than ex post outcomes,
accounting theory gives precedence to sharpness and implicitly ignores
calibration. Empirical accounting research allows for both, because it
looks back at the apparent correlation between information qualities
and ex post outcomes.

In economic contexts, it is possible to imagine that ex post invest-
ment success comes from a blend of calibration and sharpness. Proba-
bility scoring rules, as introduced to accounting by Scott (1979), merge
the two probability assessment characteristics into a single score, which
can be tailored to match a given user’s utility function.

This picture of what makes a good probability assessment can be
integrated into accounting theory. As in meteorology, the objective is
to generate information that facilitates good probability assessments
and assists good probability assessors.

“Good” in this context is a measurable concept related to ex post
outcomes. Although Bayesian subjective probability theory rejects much
of frequentist theory, one unifying element is the Bayesian use of observed
frequencies as an indicator of probability accuracy. See (Gelman et
al., 2004, pp. 111-112) on ex post frequency evaluations of Bayesian
inferences.

11.5 Implications for accounting information

Rather than needing always more resolution, users benefit from any
information that reveals how unreliable and hence uncertain the firm’s
cash flow is — or is not. Revelation, rather than resolution, of uncertainty
might seem like the antithesis of accounting expertise, and will not satisfy
firm management’s usual desire for greater shareholder confidence. On
the other hand, misplaced investor over-certainty is a sure way to
economic loss.

There is no suggestion that the accountant should influence the way
that users convert information or beliefs p into investment portfolio
weights, p(p). The proportion of wealth risked on a given probabil-
ity belief p, or on given information, is understood as at the user’s
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prerogative, and is merely assumed to be rational by the user’s own
personal utility function. Rather than counselling the investor, the FASB-
envisaged role of the accountant is presumably to facilitate “accurate”
or better founded beliefs p, even when that service requires a blow to
investor confidence.

A “going concern warning” or a large asset write-down or drop in
reported profit might of itself serve that purpose. Similarly, notes to
accounts that state explicitly that there is reason for concern about the
viability of any part of the firm’s business or assets, or that there is
insufficient evidence to be confident of their success, might often assist
users to form more propitious probability beliefs about the firm’s future
cash flows. Every “Enron” is an instance of how doubts and evidence of
financial difficulties could have been valuable if raised in the accounts,
rather than dispelled, concealed or not apparent.

The most fundamental message of the economic Darwinism literature
in management science and economics is that decision makers are
obviously better served by information that incites beliefs that prove
accurate ex post, rather than by information that is perceived valuable
ex ante. Any information that changes ex ante beliefs seems valuable
ex ante, but need not prove valuable ex post. The ideal is to achieve
both, but if that is not possible, high ex ante certainty can prove very
costly ex post.
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Information Uncertainty

The term “information uncertainty” does not arise in Bayesian theory
and sounds like a contradiction in terms. To a Bayesian theorist like
Savage or Lindley, information is not a type or description of uncertainty,
but is the antidote and only possible way out of uncertainty (albeit that
is not guaranteed).

Outside Bayesian theory, in both the accounting and finance lit-
eratures, the terms “information risk” and “information uncertainty”
are used largely interchangeably, but neither has an agreed or formal
definition:

One impediment to empirical work in this area has been the
absence of any guidance as to what constitutes “information
risk” and when, or whether, it should be priced. (Lambert,
2010, p. 5)

Loosely, “information risk” and “information uncertainty” describe
perceptions about given signal w, with respect to given unknown V/,
that preclude conclusive inference from w to V' (e.g. a broker says “Buy”
but it is perceived that brokers nearly always say “Buy”, so there is
little added confidence about a stock price increase).
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Definitions of information uncertainty (or risk) in accounting litera-
ture reveal numerous facets of accounting information that researchers
recognize as defects and potentially detrimental to the stock price and
cost of capital. Descriptive non-technical definitions of information
uncertainty include the following;:

(i) “the likelihood that firm-specific information is of poor quality”
(Francis et al., 2005),

(ii) “ambiguity with respect to the implications of new information
for a firm’s value” (Zhang, 2006),

(iii) “‘value ambiguity,” or the degree to which the firm’s value can
reasonably be estimated by the most knowledgeable investors”
(Jiang et al., 2005)

(iv) “imperfect information causing forecasts to be risky” (Healy and
Palepu, 2001),

(v) noisy or incomplete information as when earnings quality is low

(Yee, 2006),
(vi) earnings manipulation (Strobl, 2013),

(vii) “the [in]ability of investors to ascertain the valuation parameters
underlying a particular asset” (Riedl and Serafeim, 2011).

The most common technical definition of information risk appeals
to the concept of estimator precision (sampling variance) from classical
frequentist statistics. Risky or less than perfect information is charac-

” 92

terized as being “imprecise”, “high variance”, “unreliable”! or “noisy”.
One clear statement is as follows:

'"Dechow and Schrand (2004, p. 8) state that a “reliable” number is one that
does not involve much judgment and is easily verified by another accountant (e.g.
cash at bank), implying that it has low subjective variance.

*Botosan (1997), Healy and Palepu (2001), Botosan and Plumlee (2002), Beyer et
al. (2010), Cheng et al. (2011) and Core et al. (2015) link the definition of information
risk as precision to the parameter estimation risk literature in finance.
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We identify “quality” of information in the capital markets
with a statistical notion, specifically the precision of a
measure with respect to a valuation relevant construct. For
a given construct, higher quality information is more precise
(contains less uncertainty) with respect to that construct.
(Francis et al., 2006)

Similarly, see for example Veronesi (2000), Francis et al. (2005) and
Francis et al. (2008), Yee (2006), Cheng et al. (2011), Lambert et al.
(2007), Lambert and Verrecchia (2010), Kravet and Shevlin (2010),
Tang (2011), Zhang (2006), Rajgopal and Venkatachalam (2011), Verdi
(2012), Bhattacharya et al. (2012) and Armstrong et al. (2016).

Another accepted way of thinking is to describe, or proxy for,
information risk by its mirror inverse called “earnings quality” or
“accrual quality”. Francis et al. (2005) suggest that for empirical work
“accrual quality proxies for information risk”. Core et al. (2008), Kim
and Qi (2010) and Bhattacharya et al. (2012) adopt this same notion.
Completing the circle, information quality is characterized by Verrecchia
(1990), Ng (2011), Veronesi (2000) and Lambert et al. (2007) in terms
of its low variance (high precision).

By earnings quality, we mean the precision of the earnings
signal emanating from the firm’s financial reporting system.
(Francis et al., 2008, p. 54)

A Bayesian characterization of evidence is sufficiently general to
incorporate all of the information properties that have been men-
tioned, including notions of “signal quality”, “noise”, “reliability”,
“precision”, “ambiguity” and the like. Although these terms have mainly
frequentist /objectivist overtones, and in some cases long established
frequentist meanings, the various definitions of information risk listed
above, and common in accounting, make clear sense Bayesianly and can
be unified and generalized using the pivotal Bayesian construct; to wit,
the likelihood function.

Emphasizing its elegance and the role of the likelihood function,

Bayes theorem is written compactly as

F(V]w, Qo) o f(V]Q0) f(w]V N Q),
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where w is new information and € is pre-existing (prior) information
or background knowledge. The qualities of w with regard to V, to
the extent that they are perceived by the decision maker, must be
described within the subjective likelihood function, f(w|V N ). Any
doubts or risks or unknowns that harm w as an indicator of V' must be
incorporated formally at this point, otherwise they are misrepresented,
with whatever generally costly effect that has on the ex post accuracy
of the user’s posterior beliefs.

Likelihood functions are subjective, like all belief distributions.
Explicit admission of subjectivity is a strength of the Bayesian model,
because it allows the decision maker to incorporate any background
knowledge that matters to the perceived quality, and hence evidential
meaning, of signal w. For example, suppose that the signal is “4” and
the two alternative hypotheses are “up” and “down”. If less faith is
attached to this signal, the two likelihoods p(+|up) and p(+|down) are
set closer to equal. By making them exactly equal, the signal + is

4

depicted as noise and irrelevant to beliefs regarding which alternative is
the more probable.

A conceptual attraction of Bayesian statistical logic is that all aspects
of perceived information quality are encapsulated in one place — the
likelihood function (see the earlier drawings of hypothetical likelihood
functions for “high” earnings).

Frequentist, orthodox or classical methods, by comparison, depict
the quality of an estimate T of an unknown parameter 6 as either
multidimensional, or more arbitrarily as a composite of its various
signal attributes, including its bias, variance and other moments, and
its other (possibly asymptotic) behaviors under repeated sampling. This
aspect of classical statistics causes problems in accounting research
where, for tractability in models, the quality of information is depicted
by a single parameter (Dye and Sridhar, 2007). That parameter is
almost always the precision (variance) of the estimate, thus either
ignoring bias or presuming zero bias, notwithstanding the vast lit-
erature on accounting conservatism and earnings management and
manipulation.

There is no objective way to order or weight the relative importance
of an estimate’s bias, variance, consistency and other singular signal
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attributes.? Note however that, by bypassing this issue, Bayes theorem
does not imply that bias, precision and other classical signal error
attributes are unimportant. Rather, Bayesian logic requires that these
are all considered and given expression within the subjective likelihood
function f(w|V,-). Their relative “weighting” occurs naturally and
implicitly by the way that each such perceived estimator attribute
has some greater or lesser impact on the location and shape of the
likelihood function f(w|V; ).

For example, suppose that w is a reported measurement of V. It
may be known or perhaps merely suspected that w is an imprecise obser-
vation on V, in which case f(w|V, Q) is relatively diffuse. Importantly,
the likelihood distribution f(w|V, ) can be shifted and reshaped to
different degrees for different realizations of w, and may in principle take
different distributional forms for different signal realizations. Highly
informative signals w have characteristically peaked likelihood functions,
and less informative (e.g. more imprecise) signals have relatively flat or
more diffuse likelihood functions.

It is important to note that a peaked likelihood function, while being
Bayesianly informative, is not always representative of a good, honest or
reliable information source. Its information value is nonetheless obvious,
and may in fact be due to its perceived dishonesty (if the firm reports
an earnings result that the analyst knows to be false, the likelihood
function for that report will be positioned and shaped to incorporate
the perceived dishonesty).

In a binary model where V' =1 (good) or V' =0 (bad), a signal “+”
with high Type I error probability f(—|V = 1) = 0.7 and high Type
IT error probability f(+|V = 0) = 0.9 (say) has a highly informative
likelihood f(+|V = 1)/F(+|V = 0) = 0.3/0.9 = 1/3, and gives rise
to a Bayesian conclusion f(V = 1|+) that is strongly in the opposite
direction to the reported signal (with prior f(V = 1) = 0.5, the posterior
is f(V = 1|+) = 0.25). This signal is informative because it leads to a
strong inference about V, but is a very inaccurate indicator if translated
naively or literally rather than Bayesianly.

3See Gelman et al. (2004) for a Bayesian critique of any ordering or hierarchy of
classical estimator attributes.
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Given that the likelihood function is the Bayesian summation
of everything known or merely questionable about information w,
I summarize informal and intuitive existing definitions (see above)
with the following explicitly Bayesian definition of information risk or
information uncertainty.

12.1 Bayesian definition of information uncertainty

With background knowledge Qq, the risk (uncertainty) associated with
information w, regarding unknown state or value V', is any perception
or doubt concerning w that affects its subjective likelithood function
f(w|V, Qo) such that Bayesian conclusions f(V|w, ) conditioned on
w, about V', are contrary to w or generally less influenced by w.

This definition has the distinctly Bayesian aspect that information
uncertainty is understood as a perception or subjective belief, rather
than as a physical property of signal w, thus giving an explicit role to
all relevant background knowledge g (e.g. the awareness that, however
reliable w seems with regard to V', the most subjectively reliable looking
signal can have that appearance merely because of what little we
know).

In this way a Bayesian can allow for errors in w that arise out of
conditions that are not identifiable before the fact. Bayesianism requires
that any feasible error, even if given near zero probability ex ante, be
admitted and accounted for when subjectively assessing the shape and
location of f(w|V,Qp).* Note again that existing “objective” knowledge
about w, including its empirical likelihood function (observed error
frequencies) observed over many repetitions, can have major influence
on the subjective assessed f(w|V, ).

Tt is for this “Black Swan” type reason that Bayesian portfolio theory has gained
wide industry acceptance after the financial crisis. The eminent Bayesian theorist
Dennis Lindley invented “Cromwell’s Principle” (Dawid, 1982), on the basis that
Cromwell told the Church of Scotland to at least countenance a chance that it could
be wrong.
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12.2 Bayesian treatment of information uncertainty

The Bayesian position is that all uncertainty, no matter what its
“type” or source, is assimilated within the posterior joint probability
distribution f(Vi, Va,...,V,|Q), where existing information 2 includes
information about information (e.g. 2 might include the sample obser-
vation x and of course the sample size n, and also collateral information
regarding where x was obtained, under what experimental controls, and
how it might be misleading).

In principle, € contains all existing knowledge, including anything
that may help the decision maker interpret newly observed information,
including any evidence that a particular class of signals is highly
imprecise or unreliable, or the opposite. The net effect is that the
Bayesian posterior distribution f(Vq,Va,..., V,|Q2) makes allowance for
not only the particular signals that have been observed, but also for
information and beliefs about their reliability or about the mechanisms
(e.g. instruments, experts or models) by which they were observed, and
via which they could possibly fail.

There can be no clear separation of “fundamental” uncertainty,
meaning uncertainty “arising from nature”, from uncertainty due only
to perceived imperfections in the signals by which natural processes
are observed (Kalymon, 1971). Ultimately, all that is possible is that
we incorporate what we observe or understand, including what we
perceive about the strength or reliability of that knowledge or data,
into a summary distribution absorbing all elements of our uncertainty
at once.

Suppose that a signal w arises randomly from one of a number
of possible sources indexed by 6, each with its own perceived error
characteristics, making its information qualities random (as in Subra-
manyam, 1996; Wagenhofer, 2011; Ewart and Wagenhofer, 2011). The
total available information 2 = Qy Nw includes signal w, along with
the prior (pre-existing) information 9. Note that Q = Qy Nw is the
intersection of prior information {2y and new information w, meaning
that w can negate or reverse the meaning of part or all of g, and vice
versa.
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Background information, or the conjunction §2 of background infor-
mation and signal w,? might suggest that w was generated by a given
source, parameterized by €, with probability f(6|V,). This distribu-
tion, representing the probability that signal w came from source 6,
is conditioned on V to allow for the possibility that the underlying
state of V affects the source or error properties of the signal (e.g. high
earnings might encourage less manipulation of reported earnings).

The required posterior distribution is then

F(V[Q) f(w|V, Qo)
f(w]0) ’

FVIQ) = f(VIQ Nw) =

where
@]V, Q) = /9 01V, Q0) f(w]V/, D, 0)d0,

and

f(w|0) = /ef(V!QO)f(wW,QO)dG.

In these calculations, @ is a “nuisance parameter” and is integrated out in
the standard way that Bayesian inference eliminates nuisance variables.
Note also that the information risk or perceived “error properties” of
each possible observer state # are embedded within likelihood function
f(w|V,80,0). It can be seen therefore that the Bayesian posterior
distribution incorporates information risk, provided of course that the
decision maker conditions this distribution (as in the example above)
on all that is known or inferred about that risk. That conditioning is
the obligation of the decision maker, not of Bayes theorem.

It is impossible to use information coherently without allowing
for its perceived “information risk” If a weather forecaster reports
“rain”, then we cannot find the probability of a sunny day without
first assessing the likelihoods p(forecast “rain”|sunny) and p(forecast
“rain”|rain), which jointly depict the perceived information risk of
the forecast. Whether these two “error characteristics” capture all
the surrounding information risk as well as possible is a matter for the

5The signal realization combined with background knowledge can often tell much
about its own unknown source, e.g. an apparently overly enthusiastic or bold forecast
can raise immediate doubts about the motives or expertise of its own source.
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decision maker’s subjective assessment. For example, if the decision
maker believes that p(“rain”|sunny, ¢) # p(“rain”|sunny), meaning
that the forecast’s perceived error characteristics change depending
on a condition or parameter 6, then the possibly uncertain state of
f# must be taken into account when assessing today’s likelihood of
forecast “rain”, p(“rain”|sunny, -). That would require a further level of
integration to average over all possible values of 6, allowing for their
subjective probabilities conditioned on all current information.

12.3 Model risk as information risk

If a payoff parameter has a given posterior distribution under Model
A and another under Model B, the Bayesian technique is to integrate
out model uncertainty by weighting each distribution by the probability
of the associated model conditioned on the most up to date available
evidence (including sample data). That technique was used in my
generalization of the Dye and Hughes (2018) model.

The same technique is used in the context of possible regime shift
in the returns process, where each distinct regime is described by a
different model. It goes without saying that if new data suggests that
the firm has shifted its operations to a higher volatility regime, then that
evidence will sometimes add to the predictive market returns variance.

To a Bayesian, model risk is just a generalized form of parameter risk.
Not only are the parameters of the assumed model uncertain, so is the
model itself uncertain. Bayesian allowance for model risk must obviously
affect beliefs and the cost of capital, with virtually no exception. The
Bayesian treatment of model risk is in principle as follows. Starting
with a probability distribution for V' under assumed model m = A,
Jfm=a(V|Qp), information w comes to light. Under prior information Q,
w casts doubt on the validity of Model A. Other conceivable models
are m = {B,C,...}. The new predictive distribution for V is then the
weighted average distribution

/ fm(VIQo Nw) f(m|Qo Nw) dm.

This is the same process of integrating out a nuisance variable as
described above. Competing models with positive probability of being
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true are “kept in play” (Kadane, 2011). This approach is a hedge against
the event of a “very different” and low prior probability model being the
“true model”. The different models will put different predictive variances
on the variable of interest, say a payoff, so when we average across
models, rather than simply picking one model, the predictive variance
can rise or fall. That again reveals how uncertainty is hard to tame,
and predict.
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Conditioning Beliefs and the Cost of Capital

Bayesian inference is really no more than conditioning, which is why
Bayesian inference, before it was called Bayesian, was often described
as conditional probability.

Probabilities are revised or conditioned on new information, and
ultimately depend on how far they are conditioned. That is saying
merely that the probability of some event like XYZ Corp. going bankrupt
changes as we add further information or conditions, so, for example:

p(Bankrupt|small firm, gold mining) # p(Bankrupt|gold mining),

noting that the addition of each new condition can increase or decrease
the probability of bankruptcy. Risk assessment is thus a stratification
process of finding relevant conditions and incorporating their effects as
acutely as possible. That is the underlying rationale of experimental
control, and is acutely evident in the calculations surrounding Simpson’s
paradox.

The risk assessment and cost of capital applied to firms in the
stock market is akin to the different risk premia charged to different
individuals by an insurance company. Usually, when new information
comes to light, insurance companies increase the premium charged
to some, and reduce it to others. Based on the insurance analogy, it

186
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seems unlikely that better information, that allows better discrimination
between firms in the market, can reduce the cost of capital for all firms.
A more natural presumption is that the market can benefit from better
financial disclosure in the same way as the life insurance industry uses
better medical tests to identify relevant subsets of the population. A
relevant subset is a subset for which the conditional (i.e. Bayesian)
probability of the event in question is unique to that subset, or differs
from the unconditional probability. See the earlier discussion on the
Bayesian concept of subjective “exchangeability” between individuals
or samples.

By partitioning the population into statistically relevant subsets,
some individuals are seen as materially higher or lower than average
risk, and are priced accordingly. This is akin to the “lemons” example
of Healy and Palepu (2001) where better information allows the market
to discriminate in price between good ideas and bad ideas.

It turns out, however, and is obvious in hindsight, that better
discrimination between firms in the market can either increase of
decrease the cost of capital, not only for individual firms or subsets of
firms but also on average across the whole market.

The following summarized example is from Johnstone (2015). The
assumption is that investors have risk-averse quadratic utility U(z) =
z — 222 for money z (b > 0).

There are just two risky assets, j = 1,2, and each has uncertain
payoff V; € {0,1}. A representative risk-averse investor with quadratic
utility! allocates wealth W in weights wi, we, and (1 — w; — ws)
respectively between the two risky assets and the risk free asset. Starting
with normalized wealth of W = 1, the investor selects risky asset weights
w; = w] and we = wj, subject to given asset prices P; and P, with
the objective of maximizing expected utility,

E [(w1R1 + wo Ry + (1 —wyp — wg)Rf)

b
— §(w1R1 + wo Ry + (1 — w1 — wg)Rf)2 ,

'S0 as to stay with mean-variance, since the asset payoffs are Bernoulli rather
than normal.
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where Ry = V1 /Py, Ry = V3/P5 and Ry = (1 4 ry) are the associated
asset return factors. In the calculations below, it is assumed that Ry =
1.10 and b =1/3.

Letting Rport = (w1 R1 +wiRy + (1 — wy — wa)Ry) represent the
investor’s price-weighted portfolio return, and taking advantage of the
identity

cov(R; — Ry, Rport) = E[(R; — Rf) Rport] — B[R; — Rf]E[Rport]a

the first-order condition simplifies to

beov(R;, Rport)
1 —bE [Rport] ’

from which we can find equilibrium asset prices P; and Ps.

E[R] =Ry + (13.1)

13.1 Numerical example

Asset prices are calculated from Equation (13.1) under four different
sets of information, ®1, ®9, ®3, P4. The purpose of these calculations
is to exhibit how new information can drive the cost of capital up or
down, both for individual firms and for the market as a whole.

Information 1. Under €y, the two assets are perceived as independent
and Pr(V; = 1) = Pr(Va = 1) = 0.6, giving P; = P» = 0.409. The price-
implied expected returns are E[R;] = E[Vi]/P; = 0.6/0.409 = 1.47,
E[Ry] = E[Ri] = 147. The corresponding expected return on
the “market portfolio” containing only the two risky assets is
E[Ry] = EVi+ Vo] /(PL + P2) = 147, or 47%, so the market
risk premium is 1.47 — 1.10 = 37%.

Note that these prices were calculated directly from the assumed
quadratic utility risk premium parameter b = 1/3, and are easily shown
to be consistent with conventional CAPM. Calculations are as follows:

E[Vi] = E[Vi + V3] = 1.2
Py =P+ P, =0.818
cov(Vy, V) = var(Vy) + cov(Vy, V2)
=02440=0.24
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var(Var) = var(Vy) + var(Va) + 2cov(Vy, Va)
=0.24+0.24+0=0.48

and hence
E[Ry] = EVAIR; = 1.47.
E[Vi] — ) (E[Va] — ParRy)

Similarly, E[Rg] = 1.47. The two asset prices P = 0.409 and P, = 0.409
are thus as per CAPM.

Information ®9. Under information ®,, the two assets are identical
but dependent. There is an underlying economic condition which
can be either G (Good) or B (Bad), where p(G) = p(B) = 0.5. The
relevant probabilities are the same for both risky assets. Specifically,
p(Vi =1|G) = 0.85 and p(V; = 1|B) = 0.35 (i = 1, 2). The unconditional
probability is thus, by the law of complete probability

p(Vi =1) =p(G) p(Vi = 1|G) +p(B) p(V; =1|B) =06, (i=1,2)

consistent with €2;. The difference between €2 and 29 is that the two
risky assets are perceived by the investor, under (2o, as dependent with
positive covariance.

Information (3. Information €23 is a further refinement of {29. The new
conditional probabilities are

p(Vi=11G) =09 p(Va =1|G) =08
p(Vi=1B)=02  p(Va=1|B) =0.5.

These “more conditioned” probabilities remain consistent with the less
conditioned probabilities under €29, and hence also €2;. For a random
risky asset j, p(V; = 1|G) = 0.85 and p(V; = 1|B) = 0.35, which
equal the conditional probabilities for both assets under €. Thus, the
“average” (i.e. unconditional) probability p(V = 1) = 0.6 is unchanged
from 2. But there are now two levels of conditioning. The two conditions
are (i) whether the economy is G or B, and (ii) whether the asset is of

type 7 = 1 or type 5 = 2.
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Table 13.1: Asset prices and returns given information &.

Information Set Q)

O Q Q3 Qy
EVi[Q)] 06 0.6 055 055
EVa|Q)] 0.6 06 065  0.65

cov(Vi,Va|Q) 0 0.0625 0.0525 —0.0225
cov(Vi,Viy|) 024 0325 03  0.225
cov(Va, Viy|) 024 0325 028  0.205
P02 0.409 0.362 0.320  0.375
P|Q 0409 0.362 0.423 0477
E[R1|9] 1.467 1.657 1.718  1.467
E[R,|Q] 1.467 1.657 1537  1.363
E[Ry|Q) 1467 1657 1.615  1.408

Information €24. Information set €24 comes from a refinement of 2.
Information sets 4 and €3 are both feasible refinements of ;. The
conditional probabilities under 24 are:

p(Vi=1]G) =07 p(Va=1|G)=0.5
p(Vi=1B)=04 p(Va=1|B)=0.8.

The CAPM (quadratic utility with b = 1/3) equilibrium prices, and
implied results, are listed in Table 13.1.

13.2 Interpretation

The possible effects on firms’ risk premia of conditioning beliefs on
changes to the information set are unpredictable. When new informa-
tion — brought perhaps by application of new accounting standards —
allows the market to better discriminate between individual firms, some
firms can be left with a (much) higher cost of capital.

Contrary to intuition perhaps, the overall market risk premium
E[Rpy) — Ry can increase with better information. In the example, it is
higher under both ®5 and ®3 than under more rudimentary information
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Q1. That tells us that a paucity of information will sometimes cause a
rational market to undercharge, not overcharge, for risk capital. That
is analogous to the insurance company not recognizing how truly risky
a customer is, and charging too little for insurance.

Equally, new or better information can sometimes afford firms a
lower cost of capital. See how E[Rjs] — Ry is lower under €4 than under
Q1. Interestingly, and again showing how easy it is to overemphasize the
cost of capital, existing stock holders in a firm charged a lower required
cost of capital will not be pleased if the better quality information
brought both a lower cost of capital and simultaneously a lower share
price, as would occur of course if that information caused a sufficiently
large drop in the firm’s perceived mean payoff £ [VJ]2

The accounting objective for asset pricing is to provide information
that assists “correct pricing of risk”, rather than necessarily a lower price
of risk. The insurance analogy holds. Some firms, like some individuals
who have life insurance, would rationally be charged a higher-risk
premium if there were better information made available about them.
Better information allows better calibration of risks, and thus better
calibration of the risk premium charged to individual risks.

The ultimate benefit of information that proves ex post to have
led to more accurate beliefs is higher average realized utility, in the
way underpinning the Alchain’s theory of economic Darwinism. Note
however that in practice the accuracy of ex ante beliefs may never
become clear, because beliefs are often about intangibles (like whether
the firm’s management is good and smart). All that is observable is
the growth and volatility of the investor’s portfolio, which reflects the
quality of her beliefs only indirectly.

2According to Lambert et al. (2007) and also Fama (1977), as refound and
explained in Johnstone (2017), the arrival of new information w will induce a higher
cost of capital if Fama’s ratio cov(V, Vas)/E[V] increases.
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Reliance on the Normal-Normal Model

In some simple models, the posterior variance will always
be less than the prior variance, as in the simple normal
model with a normal prior. ..., but this will not always be
true. There will typically be values of = for which var(f|x) >
var(0)... (O’'Hagen, 1994, p. 86)

The theoretical accounting literature could be accused of not giving
Bayesian theory its full effect. In a great majority of published papers,
the variable of interest @ ~ N(u,0?) is assumed normal with unknown
mean /. but with known variance o2. The signal Z (or just x if n = 1) is
the mean of a random sample (x1,x2,...,2,), and is thus understood
as an unbiased noisy measure of u of known fixed variance or precision,
E[(x — p)?] = 02/n. Its precision n/o? is known only because o2 is
assumed to be known. Any sample size n > 1 leads to a Bayesian normal
posterior distribution f(u|Z) with lower variance over p than the prior

variance over p (Winkler, 2003, p. 150).

192
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2 makes for a

The simplifying assumption of known variance o
tractable model at the expense of descriptive validity.! More realistic
Bayesian models allow 2 to be uncertain, like p. They typically involve
dependent rather than independent parameters, and are amenable to
only numerical rather than closed-form results, making them out of
favor in the analytical research culture.

Models that show that information reduces uncertainty give them-
selves an inbuilt advantage by assuming away any uncertainty about
the payoff variance. Bayesian computations for more realistic models, in
which the payoff variance is unknown and is itself the subject of a prior
distribution, have in recent times been made practically applicable by
advances in the numerical methods used to simulate joint and marginal
posterior distributions over combinations of unknown parameters. This
advance in numerical methods is a large part of why Bayesian methods
have gained so much more takeup in applied statistics disciplines. See
Robert and Casella (2004).

14.1 Intuitive counter-example

Christensen and Feltham (2003, p.78) explain that in the normal-normal
model, with an unknown mean and known variance, the location of the
posterior distribution for the unknown mean is affected by the observed
sample mean (or signal) but the variance of that distribution is not
affected by what’s in that sample, even when the sample observations
exhibit much higher or lower variability than was expected:

The latter is only affected by the covariance and variance
characteristics of the signal, not the specific signal. This
feature simplifies analyses that are based on normal distri-
butions. (Christensen and Feltham, 2003, p. 78)

The mathematical convenience of this model is its selling point, but
its essence is that the information user is prohibited from learning about

'Rather than always an unknown mean and known variance, the model could
equally assume a known mean and unknown variance, accepting that this is also
generally an unrealistic setting.
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an unknown variance from what the information “says” about that
unknown variance. That weakness is shown by the following intuitive
example.

Suppose that the market is interested in the firm’s quarterly net
cash flows, for the purposes of valuing the firm by assessing its expected
future cash flow and its risk. Consider two possible samples of past
quarterly results:

0) | {10, 100, 20, 30}
0) | {35, 40, 45, 40}

Sample 1 (n =

4
4

4,7
4,7

Sample 2 (n =

Letting 6 represent the next cash flow or quantity of interest, the
simple model used in accounting says @ ~ N (u, 02) with unknown mean
p ~ N(m,s?) but with already known variance 2. By this model,
Samples 1 and 2, which have the same sample mean T = 40, and the
same sample size n = 4, carry exactly the same information.

Both samples have the same information precision (since they both
have n = 4). Their equal effect is that the revised distribution for u
is shifted right or left by the sample mean T = 40, and is a weighted
average of the prior mean m and the sample mean T, with T weighted
effectively by o2 /n relative to s2.

There is no inference about o2 because it is assumed to be already
known, so there is nothing to learn. Sample 1 seems to indicate that
monthly profit and hence future profit is high variance or high risk, but
that indication of higher o2 is ignored. The in-sample variance, which
is much higher in Sample 1, plays no role in the calculations. The only
aspects of the sample that count are T and n. In effect, Sample 1 is
interpreted as carrying exactly the same evidence about p and about
the amount and risk of the future cash payoff as Sample 2.

Taking this example further, consider a larger (more precise) sample:

Sample 3 (n =8, T = 40) [ {10, 50, 10, 110, 10, 20, 30, 80}

On the standard model, Sample 3, with its obviously high sample
variation, would lead to a lower-risk assessment of the firm, because
the higher sample size and sample precision (n = 8) lead to a tighter
posterior distribution for u, albeit with the same mean (since T = 40 is
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the same for all three samples). Thus, despite the extreme uncertainty
or variation that is so apparent in Sample 3, that data set is interpreted
as giving more assurance about the future payoff than Sample 2, which
obviously exhibits much lower in-sample variance.

That unrealistic intuition or model is endemic in accounting theory.
Even in the recent paper by Dye and Hughes (2018), which shows via the
law of total variance how information can add to perceived risk, there is
a mathematical thread running through the model by which certainty
under set conditions always increases with new information (my earlier
reconstruction of the Dye and Hughes model has the same characteristic).
This “conventional statistical result” (as Dye and Hughes describe it)
is hardly conventional outside accounting-related information theory.?
The assumption at fault in the usual accounting Bayesian model is
its known population variance, o2 (or, equivalently, known sampling
variance o2/n).

A generally more realistic approach would have both cash flow

2 as unknowns, and would attach

parameters, mean p and variance o
prior distributions to them both, or a joint prior, and then work through
to numerical results via simulating posterior predictive distributions for
the cash payoff.

Numerically derived posterior distributions are generally not favored
by accounting theorists, but they are commonplace in Bayesian applied
science, in fields like meteorology, where verifiably accurate forecasts
are given first priority over theoretical elegance and tractability. Closed-
form posterior predictive distributions have become less valuable as
numerical Bayesian methods and the required computing power have

developed.

14.2 Appeal to the normal-normal model in accounting

The workhorse model, with its normal distributions, known population
variance (and hence known sampling variance) along with an presumed
unbiased signal, is lent upon in so much theoretical and empirical

2In meteorology, there is no convention that suggests that better information
will make the possibility of rain today more certain. Better analysis should move
that probability but not in a predictable direction.
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accounting research that it deserves its own name. It is sometimes
referred to colloquially as the “normal-normal” model,® but that does
not sum up its main advantages and disadvantages. It comes early
in the Bayesian textbook for good reason. It is easy to apply and
has a most appealing implication, namely, that more data is not only
desirable, as seems obviously sensible, but that learning is monotonic
in n. It is natural to conclude, therefore, as in Lambert et al. (2007)
and many others, that any and all new information reduces investor
uncertainty.

Intuitively, disclosure reduces uncertainty, . . . (Smith, 2017)

The notion of information always bringing some amount of resolu-
tion fits loosely with our psychological understanding of what makes
“information”. But formally, in terms of the general laws of probability,
that monotonic relationship between more disclosure and more certainty
is highly model dependent. It is contradicted by most other Bayesian
structures, and also as a general law by the Bayesian law of total
variance (as explained already).

Even other elementary Bayesian models show how information can
widen the distribution over the unknown parameter. For example, in
the beta-binomial model, which is the simple standard Bayesian model
when the unknown parameter is a population proportion p rather than
a mean U, the Bayesian posterior of that proportion can have a larger
variance than the prior distribution (Winkler, 2003, p. 141).

Lambert et al. (2007, p. 398) cite the Bayesian theorist DeGroot,
who with Blackwell is a familiar Bayesian name in accounting literature,’
and claim that the simplified formulation of information as an unbiased
“noisy” estimator is in their words “consistent with the way that

3For example Neururer et al. (2016, p. 401). The population is assumed normal
and its unknown mean is given a normal prior distribution, hence normal-normal.

4In accounting, it is altogether natural to think of the announced earnings
revealing aspects of performance and the state of the firm that were unknown. But
the Bayesian point is that earnings might often reveal risks and add to questions
over future payoffs that were not previously noticed or given much weight.

SDeGroot was a revered Bayesian theorist, but he was one of several of his era,
and it seems a habit in the literature that he became the one always cited.
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information is modelled in virtually all conventional statistical inference
problems”. They mention as well that:

It is also consistent with virtually all papers in the noisy
rational expectations literature in accounting and finance.
(Lambert et al., 2007, p. 398)

The first of these claims seems more fitting of conventional frequentist
statistics than Bayesian, because there are standard exceptions in
Bayesian inference. The seminal oil wildcatter problem, dating to the
introduction of Bayesian decision methods in the Harvard Business
School MBA, is an obvious exception, since its error probabilities can
be best biased either way (to maximize the expected utility of the
geological test). Because Bayesian inference and logic culminates in
decision-making, where the user’s loss function is often asymmetric,
a biased signal is often a good tradeoff even when set against a loss
of statistical “precision” or expected information. Demski’s general
model of the expected utility of information allows for a biased and low
precision signal to be optimal.

Fixed sampling precision

A simplified model where the true parameter is 8 and the signal is equal
to 6 + ¢ , with noisy e of fixed distribution ¢ ~ N (0, ¢2), is an obvious
starting point for modelling, but has become, as Lambert et al. (2007)
correctly say, an essential repeated part of analytical research.

A model of information as an “estimator”, and always unbiased,
and of known fixed precision, is inadequate to capture the potentially
desirable Bayesian attributes of information. Typically, for example, if
the information is a normal sample mean Z, then sampling precision
o/+/n will change with the population variance ¢?. That is merely
saying that the more variance in the population, the harder it is to get
an accurate estimate of the population mean.

Apart from discretionary changes in the accountant’s n, sampling
precision will often change with the unknown parameter being estimated.
For example, the innate “precision”, and also level of bias, of reported
earnings is surely affected by the amount of underlying “true earnings”



198 Reliance on the Normal-Normal Model

or the general state of the firm. An analogy is that the variance of error
in guessing the age of a baby will be lower than when guessing the age of
a b0-year old. Models by which the qualities of information change with
the unknown parameter 6 require specification of subjective likelihood
functions like those plotted earlier in this monograph.

The “precision” or general quality of accounting information is
bound to change with the state or circumstances of the firm. Leuz and
Wysocki (2016, p. 541) saw that as a fundamental problem for empirical
research. They explained that changes in accounting quality are likely to
be driven by, and hence correlated with, changes in the firm’s underlying
economics, the two being empirically “inseparable”. More specifically,
what appears, for example, as an increase in “information risk” might
well reflect an increase in the variance or risk of the underlying cash
flow, making it hard to separate the effect of perceived information risk
from the effect of perceived economic risk on market outcomes like the
cost of capital.

14.3 Unknown variance, increasing after observation

If the variance were treated as the only unknown, it would have a
posterior distribution that might lie to the right of the prior distribution,
indicating that the data adds to uncertainty. The following intuitive
explanation of how a perceived variance (or covariance) can increase is

due to Robert Winkler:

Suppose that you’re interested in the payoff that will result
from a particular decision. You’re uncertain about the vari-
ance of that payoff, so you gather more information. That
information could reduce your uncertainty about the vari-
ance, but possibly will cause your probability distribution
about the variance to shift so that the posterior distribution
for the variance is not only less spread out but also has
higher mean. Thus, you have reduced your uncertainty
about the variance, but the higher posterior mean for the
variance implies that your uncertainty about the payoff itself
is increased.
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Winkler goes on to say that its “not a bad thing” that you have

become more uncertain, rather “its better that you know”:

...if the variance is truly larger, for whatever reason, its
better that you know before you make any decisions than
that you have a false sense of security, thinking that the
variance of the payoff is smaller than it really is. (Winkler,
private communication, 2018)

Again the message is that it is generally better to hold “more accu-

a lower and possibly disappointing level of knowledge or certainty.

14.4 Beyer (2009)

be unknowns, consistent with reality:

Unlike most analytical models of earnings management, the
[Beyer] model assumes that investors are uncertain about
the process generating both the mean and the variance
of the firm’s (present value of) cash flows. This seems to
be the realistic case; in practice, investors are uncertain
about many aspects of the distribution of a firm’s cash flows.
In the [Beyer| model, their knowledge of both the mean
and variance of this distribution is affected by the firm’s
management’s earnings forecast and the firm’s earnings
report. Since investors use the information they receive
about the firm’s earnings to update their beliefs about the
unknown mean and variance of cash flows, the manager has
incentives to manipulate his earnings forecast and earnings
report so that investors perceive the firm’s expected cash
flows to be high and the variance of cash flows to be low.

... All of the model’s predictions. .. arise as a direct conse-
quence of investors’ uncertainty about the variance of the

rate” or better informed probability distributions, even if they display

Beyer (2009) notes how rarely models in accounting theory treat the
variance of the quantity of interest (often a future cash flow) as being
unknown. Her model is described to allow both mean and variance to
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firm’s cash flows. If one were to change the model so that
investors knew the variance of cash flows, the predictions
of the model would change significantly. ... This highlights
the importance of taking into account that the variance of
cash flows is unknown. (Beyer, 2009, pp. 1713-1715)

Beyer (2009) makes the vital point that the inference problem
confronting investors is one of updating beliefs about both the variance
and mean of the payoff distribution. Investors, unlike theory models, do
not have the crutch of a known variance, and in reality their problem is
much harder than accounting theory supposes. The extra difficulty is
not simply an extra step of updating two parameters instead of one, it
is theoretically a far less tractable problem.5

The methodologically important conclusion in Beyer (2009) is that,
as an exercise in accounting theory, relaxing the assumption of a known
variance in the normal-normal model changes the answers:

In practice, corporate earnings disclosures do not state
explicitly higher moments such as the precision of a signal
or the variance of a distribution. Instead, investors observe
the earnings realization or a forecast of that realization
and, based on these observations, draw inferences about all
relevant aspects of future cash flows. This analysis attempts
to capture such an updating process that includes both
mean and variance.... The model shows that taking into
account that the variance of cash flows is unknown to
investors significantly affects the equilibrium properties of
management forecasts, earnings reports, and stock prices.
(Beyer, 2009, p. 1716)

Although Beyer stresses the realism of assuming an unknown vari-
ance, the mathematical intractability of this Bayesian inference problem
is not clearly shown. Standard models as set out in Bayesian textbooks
(e.g. DeGroot, 1970; Gelman et al., 2004) call for inference about the

5Tt is well known in Bayesian statistics that revising joint distributions over
multiple parameters leaves very few closed-form solutions.
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joint distribution of the unknown mean u and unknown precision 1/02
of a normal distribution. These parameters are dependent and have to
be modelled jointly, rather than one at a time. Posterior beliefs about p
can be expressed as follows: (i) p has a known normal distribution that
depends on the unknown variance o2, and (ii) precision 1/02 has a known
marginal distribution, that is gamma and depends on the parameters of
the prior distribution for u. The effect of this mathematical complexity
is that the joint posterior distribution of ; and unknown precision 1/0?
can only be produced numerically (by simulation or by drawing from
their joint posterior distribution) and then exhibited as a 2D density
plot or, usually less visually successfully, as a 3D histogram.

This innate Bayesian intractability prevents accounting theory from
widely testing Beyer’s strong view that a model that allows the variance
to be unknown will alter substantive conclusions. Testing would be
possible only numerically, thus making conclusions generally dependent
on input parameters and conditions.

A major repercussion for the literature is that by opting for the
tractability that comes with the assumption of a known variance in the
“normal-normal” Bayesian model, accounting theory is led to overstate
the ability of information, whatever it “says”, to resolve uncertainty.

The Dye and Hughes (2018) paper is realistic because it allows
for the certainty-reducing nature of much relevant information. A
forthcoming paper by Heinle and Smith (2015) opens up discussion
about the methodological problem for analytical accounting research
in the fact that no simple closed-form Bayesian solutions arise for the
normal distribution with both population mean and variance unknown.
They evade this problem by assuming that the firm can at its choice and
extra cost reduce the perceived variance of its payoff, which is a strong
assumption for the reason that greater effort towards revelation of the
“true” variance may well reveal it to be higher than first appreciated (i.e.
a closer look at the firm’s fundamentals might identify new concerns).
They set up their model purposely such that a single (n = 1) realization
of cash flow contains information about the variance as well as the
mean.

Another recent paper by Heinle et al. (2018) attempts to allow for
the natural revision in perceived uncertainty (up or down) that will



202 Reliance on the Normal-Normal Model

arise under new information. But again because of the inherent absence
of any suitable Bayesian closed form model, no Bayesian revision of the
variance occurs. A possible solution or way of letting sample information
alter both the mean and variance of the payoff is to invoke mixture
distributions, as demonstrated earlier in this monograph. That would
require quadratic utility so as to obtain the same mean—variance CAPM
form as for normally distributed payoffs and exponential utility.

Latent benefit to users implied by normal-normal

Models under which information necessarily adds to certainty imply
an embedded benefit to the information user that will be milked
by a self-interested information provider (e.g. by more self-interested
manipulation of the signal). That inbuilt value source is the key to
Armstrong et al. (2016); see below.

A more general Bayesian setup lets the user foresee that she might
end up less certain after viewing the accountant’s report, in which case
she will place compensatory other demands (e.g. lower cost or greater
precision).

By assuming the usual normal-normal model with known variance,
strategic decision models in accounting do not incorporate the natural
real world demands of information users who know that the receipt of
information will sometimes, if not frequently, increase their uncertainty.
The prospect that uncertainty might increase upon information arrival
changes the ex ante expected value of new information, and generally
therefore the equilibrium solution of the model. Typically in business
contexts, “bad news” (e.g. the firm incurs new high cost levels) adds to
investors’ doubts about the firm’s future profitability. As emphasized
throughout this monograph, financial information does not neatly affect
perceptions of just one of the parameters or moments of the firm’s
uncertain payoff.

14.5 Armstrong et al. (2016)

Armstrong et al. (2016) is one of a number of theory papers that exploits
the “normal-normal” Bayesian model for which a more precise signal
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always brings more certainty. Their strategic disclosure model shows
how a manager is motivated to be extra precise in her reporting when
the firm is in a “bad state”. The argument goes that by being more
precise about a result that is expected to lower market perceptions of
the firm’s mean payoff, she will be rewarded for that precision, because
the market will now be more certain of the state of the firm. The drop in
market price caused by the “bad” report will thus be kept to a minimum
by the market now associating a lower (co)variance or market risk with
that payoff, and hence a lower discount rate.

Part of the attraction of this result is that it is so counter-intuitive.
The common intuition is that, when the firm is in the bad state, the
manager will do more to obscure the truth than to advertise it.

In the insurance analogy, the Armstrong et al. finding is equivalent
to saying that a 65-year old man with a weak heart, high blood pressure
and a poor family tree for longevity, might actively ensure that these
facts are made clear to the insurance company, so as to be rewarded
with a relatively lower life insurance premium.

There is an element of plausibility to this in at least one Bayesian
sense. The insurance company may well be impressed with having such
a forthcoming client, not for the news that is handed over, but for the
openness in providing it. For other clients, there may well be a greater
uncertainty and hence concern about what is not on the record, and
hence some extra penalty for “information risk” or the risk of adverse
selection.

The end result, however, is that the Armstrong et al. (2016) model
stands on a strained Bayesian model under which every new data
point brings more certainty, no matter what it “says”, favorable or
unfavorable, and a most unfavorable report can bring a lower cost of
capital. The second aspect of that model is that the firm can choose
its reporting precision. The problem from a Bayesian perspective is
that the precision of an estimate or sample observation depends not
only on the discretionary sample size or investigatory effort (which in
principle the firm can choose), but also on the underlying population
variance, which is usually unknown. It is a simplification to assume that
reporting precision can be set at the firm’s will, and can be set at any
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arbitrary level, regardless of the inherent uncertainty or variance in the
underlying parameter or population.

Consider for example the depreciation on a factory. There is often
a deep question about not just the physical life of the factory but its
economic viability (whether its output will remain saleable, or whether it
can keep production cost at a viable low). That inherent or fundamental
uncertainty is not easily, it at all, reduced by more accounting effort or
“better” accounting practice. The accountant can write down a bigger
or smaller depreciation expense, but that number remains somewhat of
a guess and cannot be forced to be more precise in any clear statistical
sense.

Moreover, as mentioned elsewhere in this monograph, greater effort
in “activity-based costing” could expose a level of “true” production
costs that make the viability of the product less certain, and hence have
the opposite statistical effect on certainty than is supposed to follow
from more accounting “precision”.

14.5.1 Potential Remedy

There is potential, as in Dye and Hughes (2018), that by introducing
mixtures of distributions, each with known variances, that accounting
theory can achieve both elegant closed-form results and also allow for the
practically reality that information often increases users’ uncertainty.
By going beyond the usual normal-normal model and adding a
mixture element, Dye and Hughes (2018) were obliged to shift away
from mean—variance asset pricing, because the mixture distribution is
not normal, however they cleverly applied a market-clearing criterion
to arrive at CAPM-like closed-form equilibrium asset prices under a
theoretical pairing of payoffs with mixture distributions and exponential
utility. The alternative, as suggested elsewhere in this monograph, is
(risk-averse) quadratic-utility asset prices, which for accounting theory
purposes should often suffice, mainly because the primary requirement
for realistic theoretical modelling is that the investor is taken as
plausibly risk-averse. The only difference in the CAPM under quadratic
utility relative to the usual conjunction of normal distributions and
exponential utility is that the variance aversion parameter involves a
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term representing the amount of existing investor wealth. A further
alternative with potential for application in analytical research is to
assume a lognormal payoff and a log utility or power utility CAPM.

Exponential utility is widely used because of its mathematical con-
gruence when combined with normal distributions, but as an economic
model of investor character it is usually not a necessity, and also has its
own defects. See Cheynel (2013) on these (e.g. a billionaire or a pauper
will hold the same dollar value of risky assets).
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Bayesian Subjective Beta

Lambert et al. (2007) define the payoffs from a set of correlated assets
as random variables with joint distribution f(Vi, Va,...V,|Q), where Q
is the available evidence.

In their widely accepted model, assets are priced by CAPM. The
relevant parameters of asset j’s random payoff V; are then the condi-
tional mean E[V;|Q2], and conditional covariance cov(Vj, Var|§2). When
new information arrives, the assumption is that both parameters are
revised.

In the same CAPM context, Lambert and Verrecchia (2010) see
information as assisting the subjective assessment of CAPM beta, with
the objective of:

...a more precise estimate of, say, a forward-looking beta
than can be extracted from historical returns data or other
information. (Lambert and Verrecchia, 2010, p. 5)

Note once more the narrowness of the term “precision” used to
summarize the quality of the beta estimate, ignoring the possibility and
cost to decision makers of a precise but biased estimate.

206
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While Lambert et al. (2007) insist in principle on Bayesian belief
revision, a model that accepts that the mean and covariance! of random
payoff V; are both unknown, for all assets j in the reference set, leads
to a predictive distribution for (Vi, V3, ... V) that is not joint normal,
and requires Monte Carlo simulation. More promisingly, the Lambert
et al. (2007) model of Bayesians doing CAPM asset pricing holds under
quadratic utility, because the predictive distribution f(Vi, Va,...V,|Q)
does not need to be joint normal to justify CAPM under quadratic
utility.

Lambert et al. (2007) is essentially concerned with how the cost of
capital reacts to new Bayesian beliefs when investors are risk-averse.
An assumption of quadratic utility is sufficient for this analysis. An
attraction of quadratic utility for Bayesian asset pricing theory is that
the posterior predictive distribution of asset payoffs can take any form,
and the relevant payoff risk characteristic is still its returns “beta”,
defined as usual as

B0 = cov(rj, rar|§2)
Q= —

var(rar|€2)
COV(V}v VM|Q) PiM
var(Vy|[©?)  P;’

(15.1)

where by definition: (i) the return on any asset 4 relative to its price P,
is r; = V;/P; — 1, and (ii) the market return rys is the price-weighted
average of all assets’ returns, which is equal to Vj;/Py — 1, where
Vi = >;Vi and Py = Y°;P;. See Lambert et al. (2007) for further
explanation of these terms.

The standard mean—variance price equations adopted by Lambert
et al. (2007) for asset j, and for the whole market, are

_ EV;1 — ¢ cov(Vj, Vi |©?)
Ry ’
B[V Q] — ¢ var(Var|9)

Py =
M Rf y

Pj (Rf = 1+T’f)

ie. covariance with the market aggregate of all assets.
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where c is the market’s aversion to payoff variance, and which is merely
a different amount under quadratic utility compared to CARA utility.?
Substituting for P; and Py in Equation (15.1) for beta gives

Fj l—ckFum
Q= 3) — 15.2
i (FM (1—0Fj> ( )
where we define Vi Vg9
covi Vs, Vi
T EV;|Q]

. . V|
implying F = 7‘%]?[(‘/5“91).

This expression (15.3) shows how beta responds to new information.
The arrival of better information can clearly shift the predictive mean
or predictive covariance up or down, and there is no Bayesian model
in which these two parameters will naturally remain in the same ratio
to one another under every information increment. “Bayesian betas”
should naturally therefore go both up and down with new information
arrivals.

The only constant is the market price-weighted average beta, which
stays equal to one, by construction. That is, letting asset j in Equation
(15.2) be the whole market

F M) (1 —cf, M)
Q=(—|———— | =1.
Pu (FM 1—cFu
A thorough exposition of points of CAPM logic related directly
to this chapter is contained in PhD teaching notes made generally
available by Jeremy Bertomeu at: hitps://drive.google.com/ file/d/
OB3RTY2KoMilt TWVFUk1aRG5SU2s/ view.

Bayesian assessment of the covariance

The idea that more information shrinks variances and hence reduces
the cost of capital has proved hard to resist in accounting theory and
empirical research. So much empirical research stems from that a priori

2The only difference is that under quadratic utility, unlike exponential utility,
the variance aversion parameter c is affected by the investors’ initial wealth (see the
quadratic utility equation in Johnstone (2015).


https://drive.google.com/file/d/0B3RTY2KvMiIxTWVFUk1aRG5SU2s/view
https://drive.google.com/file/d/0B3RTY2KvMiIxTWVFUk1aRG5SU2s/view
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hypothesis. Some empirical studies are believed to support it as an
observable correlation, but throughout the literature the evidence is
described repeatedly as “mixed”.

One way to realistically recast the effect of information on beliefs
and the cost of capital is to focus not on certainty (variance) but
on covariance or correlation. What effect should better accounting
information about firms have on investors’ perceptions of how strongly
two firms’ or two industries’ cash flows move together? Clearly, new
information might suggest that the underlying commonalities and
correlation between two cash flows is higher than was previously believed,
or that it is lower. Unlike variance, there is little prior reason to think
that the assessed correlation coefficient between two random variables
should always decrease.

If there are underlying factors or deeply embedded direct relation-
ships between two firms or industries that put them in the same basket
in terms of how they are affected by say wage costs, technology changes,
interest rates, consumer trends, taxes or some other input or output
variable, then better accounting information should usually help to
reveal that source of covariance.

In Bayesian terms, meaning in terms of the laws of probability, the
covariance between the two cash flows, V; and Vj, is

cov(V;, Vi|Q) = pa \/var(V;|Q) var(V|Q),

so even if the variance of one or both cash flows is lower when conditioned
on new information, a higher correlation coefficient pg between them
can lead to a higher covariance, and hence higher cost of capital.
This explanation calls for risk to be understood as ultimately payoff
covariance rather than merely payoff variance.

Covariance between bivariate normal variables

Consider the following practical case of better information about “fun-
damentals” bringing an increase in a perceived covariance. Suppose
that X and Y are two independent normal variables. It follows that the
following two variables

A=aX +bY and B=cX +dY
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are bivariate normal. The covariance between A and B is found as
E[AB] — E[A)E[B] = acE[X?] + bdE[Y?] + (ad + bc) E[XY]
— (a+)E[X]— (b+d)E[Y],

from which it is easy to see circumstances under which changes in any
of the fundamentals a, b, ¢, d can bring a higher covariance between A
and B. The fundamentals a, b, ¢, d might be things like market share
or contribution margins per unit, and can each increase or decrease,
thus bringing either increases or decreases in the covariance between
two firms’ payoffs, A and B. For example, suppose that X is the dollar
sales value of the entire market and a and c¢ are the market shares of
the two firms. If ¢ and ¢ were both perceived to have increased, there
being more than two firms in the market, the covariance between A
and B would increase, cet.par.

15.1 Core et al. (2015)

There is disagreement surrounding the analysis by Lambert et al. (2007),
which used the normal-normal model with known variance to find that
better accounting information will shrink subjective covariances and
hence the cost of capital. Core et al. (2015) summarized Lambert et al.
as follows:

The information effect [in Lambert et al., 2007] occurs
because disclosure quality reduces parameter uncertainty
regarding the estimate of expected returns (e.g. Barry &
Brown, 1984, 1985; Brown, 1979). Specifically, better dis-
closure improves investors’ prediction of cash flows. Since
more of the realization of future cash flows is known, the
covariance between the firm’s cash flows and the cash flows
of stocks in the market portfolio becomes lower, which in
turn reduces firm beta and the cost of capital. This effect
is not diversifiable because it is present for all covariance
terms, and hence lowers systematic risk. ... We note that
this prediction from Lambert et al. (2007) is not without
controversy. For example, Johnstone (2015) shows that if
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information also changes assessments about the mean of
firm value [payoff], the cost of capital can increase when
information precision increases. (Core et al., 2015, p. 4)

I will take the points in this summary one at a time and comment
from a Bayesian statistical viewpoint:

Information and parameter uncertainty

We cannot rely on better information making the “true” underlying
covariance between two random variables lower. Covariances or cor-
relations between firms are often high and must often increase when
firm or market fundamentals change. Better information should at
least sometimes reveal that happening. Better accounting might give
a truer vision of past and future sales dollars, or costs, with the effect
of exposing how closely the firm’s financial performance correlates to
market downturns or upswings.

Better disclosure improves cash flow prediction

In an economic decision framework, where predictions or probability
forecasts are “better” if they turn out to be more accurate, it is false to
assume that greater certainty or lower covariances ex ante will turn out
to be a better prediction (i.e. a more accurate probability distribution).

Knowing part of a previously unknown cash flow leaves the firm’s
long-term future “no closer” and possibly still more unpredictable than
previously. If the realized cash flow was lower than expected, there may
well be a new world of doubt about the future cash flow.

Information risk not diversifiable

This point made by Lambert et al. (2007) against some opposition
in the literature, is correct, because any recognition of additional
or different “types” of uncertainty will change investors’ perceived
covariances and hence change the cost of capital. No well-diversified
portfolio can escape from its market required return being affected
by perceived information quality. Again, however, it is not possible to
generalize about how different uncertainties melt into a single predictive
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distribution for the future payoff. Hence, the principle of information
risk being undiversifiable says merely that the cost of capital will be
affected by assessments of information quality, but not by how much or
in which direction.

From a Bayesian perspective, a “risk” factor or consideration, here
labelled R, is “diversifiable” if and only if the predictive distribution of
the market payoff Vs conditioned on that risk

FWalos By o) o< f(Var[) F (B Vars ) (Ve = 22Vj)

is such that the risk premium on the market portfolio is unchanged.

In principle, it is unlikely that any material or relevant information
about asset payoffs will leave their joint probability distribution such
that there is no change in the composition of the market portfolio and
its expected return. If information risk has any effect on the rational
market portfolio weights, it will virtually always occur that the required
return on the revised market portfolio will have changed (either up or
down).

Effect of information on mean payoff

Better information can clearly shift the perceived mean payoff of the
firm up or down, indeed that is an ex ante desired effect of better
information. Note how from Equations (15.2) and (15.3) information
about the mean payoff affects the subjective beta of that payoff. This is
a little known CAPM fact explained at length in Johnstone (2017).

Lambert et al. (2007) and Johnstone (2015), Johnstone (2016), and
Johnstone (2017) stressed the effect of a revised mean payoff on ex
ante beta and the cost of capital, showing that a lower assessed mean
brings a higher CAPM cost of capital. That part of Lambert et al.
(2007), which is traced by Johnstone (2017) to early work by Fama
(1977), goes widely unmentioned in both accounting and finance, which
is surprising given its influence and citation count. The relatively very
few exceptions include Christensen et al. (2010), Gao (2010), Core et al.
(2015), Amiram et al. (2018) and Larson and Resutek (2017).3

3(Gao, 2010, p. 20) note that Lambert et al. (2007) showed the formal CAPM
effect of the current (post-information arrival) mean payoff on the forward-looking
cost of capital, however “they do not link this result directly to disclosure quality”.




15.2. Verrecchia (2001): Understated influence of the mean 213

It is likely that the effects of information and its perceived qualities
on assessments of mean future payoffs are the most critical input in asset
pricing and portfolio management under a risk-averse utility function.
There is much finance literature (e.g. Best and Grauer, 1991; Chopra and
Ziemba, 1993) suggesting that portfolio outcomes are highly sensitive
to errors in the assessments of mean returns, much more so than to
errors in the assessed covariance matrix.

The statistical literature in Bayesian decision analysis has not
explored the separate effects of the payoff mean and payoff variance on
the certainty equivalent of a future payoff. That is for several reasons,
but mainly because no common expected utility function apart from
quadratic utility can be written in terms of just mean and variance.
It is easy to show, however, for a broad class of risk-averse utility
functions, that the minimum required rate of return implied by an
investor’s certainty equivalent, is decreasing in the mean payoff. That
is the remarkably little considered result that was re-discovered under
CAPM by Lambert et al. (2007), traceable to Fama (1977) and also
clear in Hull (1986).

15.2 Verrecchia (2001): Understated influence of the mean

Accounting literature has over-emphasized “second-moment” effects. In
particular, the cost of capital is treated as if it is driven by a combination
of the assessed ex ante innate payoff variance or covariance and investors’
perceptions of information asymmetry. Both are considered second-
moment effects. More emphasis is given to investors’ uncertainty about
the accuracy of their estimated mean than to the estimated mean itself,
thus fixating on the variance of the estimate rather than on the first
moment effect of a change in the assessed mean.

That omission and many of the critical points raised in this mono-
graph are raised in the caveat at the end of Verrecchia’s (2001) “Essays
on Disclosure”:

Information asymmetry, like many of the economic con-
sequences posited in these essays, is a “second moment”
effect (i.e. a variance effect), and second moment effects may
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be secondary or tertiary in nature when compared against
“first moment” effects (i.e. mean effects). For example, one
would expect to be able to document that, as a “first
moment” effect, “good news” drives prices up and “bad
news” drives prices down. Theory-based models, however,
commonly characterize information asymmetry as a second-
moment effect that is unrelated to means of first moments.
(Verrecchia, 2001, p. 174)

The literature’s focus on second-moments, either as variances or
covariances, goes against what is the far more obvious influence on
prices and discount rates of the mean.* Verrecchia (2001) goes on to
say that accounting has been able to dwell on second-moments because
in normal distributions the mean and variance are independent of one
another. Uncertainty about the mean can thus be separated from the

amount of the mean®:

Information asymmetry is commonly characterized this way
because variables are posited to have a normal distribution,
which implies two independent moments; obviously, for other
(i.e. nonnormal) distributional forms, there may be higher
moments and all moments may be related. The problem with
second-moment effects is that they are too subtle or obscure

to manifest themselves in measurable ways. (Verrecchia,
2001, p. 174)

The last part of this quote is referring to the empirical difficulty of
identifying the effects of information asymmetry when the observed price

41t was explained above that in a payoffs model, the ex ante mean drives the
asset price and its cost of capital. The underlying effect of the mean comes out
in the finance portfolio optimization literature where optimal portfolio weights are
generally far more sensitive to changes in estimated mean returns than estimated
returns covariances (e.g. Best and Grauer, 1991; Chopra and Ziemba, 1993).

Christensen and Feltham (2003, p. 78) state that in this model the investor’s
observed sample mean affects his posterior mean but not his posterior variance. They
say that “this feature simplifies analyses that are based on normal distributions” (p.
78). Verrecchia’s point is that also can mislead researchers to overlook the role of
the observed mean.
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and returns effects are more largely due to changes in first moments
(e.g. good versus bad news about the amount of sales or costs). This is
another way to make my earlier point that the market is influenced by
what the information “says” directly as well as by how “precisely” or
reliably it says it.

Basic insight for accounting research

The following illustration offers a basic insight for all accounting
researchers. It shows, in the simplest possible asset pricing application,
the primary effect of what the information “says”, or specifically in
whether the news about the payoff mean is directly “good” or “bad”.
Very similarly, see Veronesi (1999, pp. 977-978).

The random payoff is V' € {0,1} with a Bernoulli distribution with
index m = p(V = 1). The payoff mean is F[V] = 7 and its variance is
var(V) = m(1 — 7). Let the asset’s ex ante market price V' be

P =FE[V]—-cvar(V), (15.4)

assuming a zero risk-free rate. The price-implied cost of capital is
E[r]=E[V]/P — 1.

The plot in Figure 15.1 shows curves for the cost of capital under
good news and bad news. Good news is defined as news that makes
7w > 0.5 and bad news is news that makes m < 0.5. The cost of capital is
plotted as a function of var(V') = w(1 — m). The left-hand point where
the two curves coincide occurs at m = 0.5 where the variance is 0.25.
Going to the right in both the curves corresponds to stronger news. For
good news, m — 1 and for bad news m — 0, both sending the variance
towards zero.

This plot shows how the required return on capital is greatly affected
by news about the mean w. With good news (7 rising from 0.5 towards
one), lower variance is associated with a lower cost of capital (be careful
to note that on the horizontal axis variance is reducing towards the
right, as the news becomes stronger).

That positive relationship between variance and the cost of capital
is as usually expected, but gives a false impression. It is not the lower
variance that is driving the lower cost of capital, it is as much or more
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Figure 15.1: Plot of expected return as a function of var[V] = n(1 — 7) (with

¢ =0.25).

the higher mean! We know this from the plot for bad news. In its case,
lower variance brought by 7 heading away from 0.5 towards zero brings
a higher cost of capital, not a lower cost of capital as would be presumed.
The limit of the cost of capital as news worsens is

lim (E][DV]_ )

. T
_ lim ( _1)
0N T —en(1 — )

c
= = 33%.
1—c %

The only parameter that we can rely on for having a monotonic

relationship with the cost of capital is the mean. Specifically, and I
suggest generally throughout investment under uncertainty, the cost of
capital is decreasing in the expected or mean payoff, and is generally, or
at least often, more affected by the payoff mean than by the variance or
risk. This may be contrary to convention, but is easily demonstrated.
For that reason, the caveat in Verrecchia (2001) on the relative
insignificance of second-moments is very well justified. In general,
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Verrecchia is saying that empirical studies of the effect of second-
moment or risk effects are likely to be futile whenever first moment
effects dominate.

Note that the equivalent of my Fama ratio (15.3) for the pricing
equation (15.4) is

var(V)
EV]’
because from Equation (15.4)
_E[V] var(V)]™
BlR = =5 = [ty

Again therefore the cost of capital must be understood as caused by
risk per unit of mean, rather than merely by “risk”.
For the Bernoulli distribution, the risk per unit of mean is
var(V) 7w(1—m)

BV] - w4

which increases whenever bad news brings lower 7. Bad news will
therefore, for this distribution, always bring a higher cost of capital.

Note that a fundamental implication for empirical research is that
it is not justified in theory to posit a universally positive association
between risk and the cost of capital. To test for the effect of risk per
se, it is necessary to control for the effect of the mean, observing that
virtually any relevant information will alter market assessments of both
at once.

As a rough rule of thumb, stronger (i.e. more convincing) negative
news should commonly bring a higher cost of capital, and stronger
positive news should very generally result in a lower cost of capital.
The ideal but likely illusive metric driving the cost of capital in a
mean—variance asset pricing framework is the Fama ratio, or ratio of
variance/covariance to mean.

A highly contrary point for empirical research is that when account-
ing information is seen to be better and the cost of capital lower, that
effect is prone to have been driven not by the higher information quality
or “precision”, but by the information prompting a higher ex ante mean
payoff in the market’s Bayesian probability revisions.
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Leuz and Wysocki (2016)

By allowing for the effect of the mean, the curves in Figure 15.1 show the
cost of capital as a function of uncertainty reduction (information gets
better and resolution greater going to the right). Note how the required
return can be either increasing or decreasing with better resolution,
depending on whether resolution is good or bad news. It would follow
therefore that in general there will be no monotonic or unambiguous
relationship between information quality and the cost of capital.

Leuz and Wysocki (2016) provide a detailed synthesis of the empirical
literature and concede that results are “mixed”:

In sum, the evidence on the relation between disclosure and
reporting and the cost of capital is fairly mixed and still
evolving. The empirical results appear to be sensitive to a
number of factors, including the cost-of-capital measures
(i.e. realized returns vs. ex ante cost of capital), firm size,
and the types of disclosures or earnings attributes. .. (Leuz
and Wysocki, 2016, p. 550)

Compounding the difficulty of isolating the effect of information
quality on the cost of capital is the Bayesian issue that “information
uncertainty” or “information risk” is merely part of investors’ overall
uncertainty about the outcomes of the firm’s economic activities. Not
being able to separate these uncertainties makes the problem of separat-
ing their individual effects harder still. Leuz and Wysocki (2016) describe
the various proxies that have been used as measures of disclosure quality
and conclude that the “separation problem” has plagued the empirical
literature:

...all commonly used proxies for disclosure and reporting
are likely to comingle the firm’s underlying economics and
the reporting (quality) constructs that they are trying to
measure. (Leuz and Wysocki, 2016, p. 541)

... it is possible that these studies do not illustrate the effects
of accruals quality or earnings smoothing, but instead reflect
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differences in firms’ operating and economic risks. (Leuz and
Wysocki, 2016, p.548)

These concessions hark back to the Bayesian tenet that “information
uncertainty” is inseparable from overall uncertainty. When de Finetti
laid the foundations of Bayesian statistics, he said that objective
probability “does not exist”. By that he meant that an uncertain
event does not have some objective or physical uncertainty that can
be separated from our uncertainty about our measurement instrument
(e.g. do we have enough sufficiently representative data, is our model
correct, are we seeing what we think, ... ?).6

Matters which seem to fall under the heading of exogenous or
physical uncertainties are likely in our subjective understanding to be
part of what affects the measurement process and its randomness. For
example, if the firm perceives a “physical” change in its economics, it
might decide on a different reporting mode (e.g. earnings manipulation)
that reacts to that perception, thus letting the underlying “reality”
affect the unobservable quality of its representation:

Making matters worse, managers may endogenously respond
to performance shocks by manipulating disclosures and
reporting numbers, which creates the additional issue of
distinguishing between the properties of manipulated and
“neutral” or “normal” earnings. (Leuz and Wysocki, 2016, p.
541)

Part of the failure of empirical research to identify how users
of accounting disclosure benefit from or respond to “better quality”
accounting must surely be that empirical studies have not controlled
directly for whether the good/bad quality information being reported
is “good”/”bad” in terms of “what it says” (i.e. whether the news is
favorable or unfavorable). That experimental control would categorize
disclosures two-by-two as both “good news”/”bad news” and good/bad
quality. By not controlling for the content (i.e. meaning) as well as

5See Subramanyam (1996, p. 208) on why investors are always uncertain about
the “precision” of the earnings number they receive.



220 Bayesian Subjective Beta

quality (i.e. veracity) of news, empirical research omits the potentially
very dominant “first moment effect” that is correctly raised by Verrecchia
(2001), albeit somewhat late in the piece given as Verrecchia says that
models have for decades dwelt almost entirely on second-moments.

Omission of the mean in the literature

Although Lambert et al. (2007) and several others have explained how
information affects the cost of capital through revisions of the mean
payoff, that effect is very widely unrecognized. In his authoritative
literature survey, Kothari (2001) focusses on the role of accounting
information in fundamental analysis and forecasting of future cash flows.
Like Lambert et al. (2007) his model assumes asset pricing based on ex
ante assessment of the subjective probability distributions of future cash
flows. Rather than looking empirically for an explanation of expected
returns in factors that occur to be correlated with empirical returns,
Kothari (2001) goes back to thinking about the fundamentals of cash
flows (understood as lotteries) and their probability distributions. He
seems to depart however from Lambert et al. (2007) by explaining beta
or systematic risk in terms of solely the payoff’s covariance, with no
allowance for its mean:

Risk here refers to the systematic (or non-diversifiable or the
covariance) component of the equity cash flows’ volatility.
Single- or multi-beta versions of the CAPM imply that
the equity discount rate increases in the equity cash flows’
systematic risk. (Kothari, 2001, pp. 124-125)

This passage represents the everyday understanding of what CAPM
tells researchers about the parameter of the cash flow distribution
that drives the discount rate. It omits to mention the first moment or
mean cash flow, and hence does not present the same CAPM logic as
Lambert et al. (2007). There are a great many similarly incomplete
interpretations in the literature (e.g. Strobl, 2013, p. 465). Indeed,
interpretations centred strictly on variance and never on mean are so
entrenched in textbooks that the Lambert et al. (2007) interpretation
would be seen as “wrong” by most finance students.
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A subtle point of principle is that if Kothari’s description is about the
cash dividends and capital growth flowing to the stockholder, and these
are understood as returns (by being divided by opening equity value),
then the quote is quite correct. Under CAPM equilibrium prices, equity
returns are a function of the conventional returns beta (covariance) only.
That is, the only driver of returns is the returns covariance or risk. It is
only once we go to the more fundamental cash payoff explanation of
CAPM equilibrium returns that we see that equity returns are driven by
both the mean and covariance of the dollar payoff of the firm’s business
activity.

This is not an easy distinction to teach, which may be a large part
of why it is so widely overlooked, and was played down somewhat in
Lambert et al. (2007). It is based on the CAPM equilibrium condition,
under which two results hold together:

(i) a risky asset is priced as a function of its payoff mean and payoff
covariance; and

(ii) the price of a risky asset is such that its price-implied cost of
capital can be written equivalently as either a function of its
returns covariance (standardized as beta) or as a function of its
payoff mean and covariance.

This point of CAPM principle is emphasized because accounting is
concerned with how information affects asset prices and returns, thus
begging the “finance” question of which of an asset’s parameters are
involved fundamentally in determining those economic outcomes.

15.3 Decision analysis effect of the mean

Bayesian decision analysis subsumes mean-variance analysis (Meyer,
1987; Johnstone and Lindley, 2013) and is generally skeptical of finance
models that treat uncertain payoffs as if they can be fully summarized
by just their mean and variance. It is useful therefore to take a general
decision analysis view of whether the mean payoff should affect the
investor’s required return when buying that random future payoff.
Does a mere shift to the right or left in the payoff distribution,
with no change in its shape (e.g. variance) affect the investor’s rational
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required return? A simple but general proof shows how the economically
“natural” required rate of return decreases with a higher mean payoff.

An asset pays V. = 1 or V = 0. The investor has a piecewise
linear utility function U (W) with slope m; below initial wealth Wy and
slope mgy above Wy (under risk aversion m; > mg > 0). The investor’s
indifference price P, given probability assessment p = p(V = 1), is
found therefore by solving

Up =p(Up +ma(1—P))+ (1 —p)(Uyp —miP),
where Uy = U(W). Hence

_ pma
m1(1 —p) —l—pmg’

implying a minimum required expected return equal to

E[R] = EI[DV] _ (1 —p)Z; -I—pmg'

(15.5)

Hence,
dE[R] mo — My

)

dp my
which is negative for all risk-averse bettors (who by definition have
m1 > mg). Thus, a risk-averse bettor will require or willingly accept a
lower expected return ex ante whenever she has a higher probability p
and thus higher mean.

To be clearer, we must allow for the simultaneous effect of that
higher p on var(V'). If we write the required expected return in terms
of the ratio of the payoff variance to the payoff mean (here called f)

_var(V) _p(l=p)P+ (1 —pp* 1 p)
T OBV T P B

Equation (15.5) becomes

E[R}:1+F("“—1>,

ma
proving how the investor’s indifference or minimum required rate of
return is set by her assessment of the ratio of the payoff variance per
unit of mean. Also,
dE[R]

T = (m2 - ml)/m27
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revealing how a more risk-averse investor reacts more strongly to
ratio f.

This simple yet general analysis is reassuring in its consistency with
the Lambert et al. (2007) demonstration of how a higher mean payoff
must be discounted at a lower rate, all else equal. That general finding
is implicit in decision analysis under any risk-averse utility, and is not
unique to CAPM.

As an important economic insight, the effect of the mean and the F
ratio is possibly little known because decision analysis, unlike finance
and accounting, does not focus on price-implied rates of return (implicit
discount rates or “costs of capital”) and is also not generally focussed
on only the first two moments of the payoff distribution (rather than
the whole distribution).
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Other Bayesian Points of Interest

Discussions in the accounting literature sometimes vacillate between
Bayesian and frequentist positions. In this chapter I make comment from
a Bayesian perspective on points that arise commonly in accounting
theory and in motivating and interpreting empirical accounting research.

16.1 Accounting input in prediction models

A good way to grasp the information objective of inducing accurate
probability formation, while still thinking conventionally about account-
ing information, is to imagine accounting disclosures as inputs into a
conventional bankruptcy prediction model, like Ohlson (1980). Any
accounting report that assists the model to attach higher probabilities
of failure to ex post bankrupt firms, and lower probabilities to non-
bankrupt firms, is economically advantageous. Those desirable shifts in
probability assessments will of course sometimes imply that the resulting
probabilities are closer to 0.5 (maximum uncertainty) rather than to 0
or 1.

Note that common forms of bankruptcy prediction model are based
on frequentist versions of logistic regression, like the Ohlson (1980)
model. A Bayesian user’s perspective is that the output from such

224
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models is still “information”, possibly very informative information. The
user might generally prefer that the modelling had been Bayesian from
the start, but if a non-Bayes model or heuristic attached a probability
estimate p to bankruptcy, the Bayesian would work with that “signal”
by finding her subjective probability of bankruptcy, p(Bankrupt|p).
The number p is just a piece of information, as per Demski. Note that
the frequentist properties of the logistic regression would come into the
Bayesian calculation, because the Bayesian would need to know enough
about the origins of p to form a likelihood function, including for example
how often the model attaches high probabilities to non-Bankrupt firms,
and vice versa.

16.2 Earnings quality and accurate probability assessments

Notions of “accrual quality” or “earnings quality” fit easily with an
underlying objective of improving the accuracy of user’s probability
assessments. High-quality “accrual accounting” calls in different circum-
stances for either an increase or decrease in the firm’s income or net
assets, and is not bound to heighten investor certainty or uncertainty.
Earnings “quality” is ultimately a notion of “accuracy” or “truth” or
even “bankability” (Francis et al., 2006; Dechow and Schrand, 2004), to
be compared against related outcomes like future earnings and future
cash flows and stock prices.

Our focus is on earnings quality from the perspective of the
analyst. ... From this perspective, a high quality earnings
number is one that accurately reflects the company’s cur-
rent operating performance, is a good indicator of future
operating performance, and is a useful summary measure
for assessing firm value. (Dechow and Schrand, 2004, p. 5)

The identification of accruals “red flags” in Dichev et al. (2013)
is aimed at improving accounting and financial statement analysis in
ways that will often intentionally add to investor uncertainty about
a firm’s future cash flows or stock price. That occasional increase in
market uncertainty is a natural by-product of “better” or more accurate
information. Accounting, doing its job, will sometimes have that effect.
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16.3 Expected variance as a measure of information

Fischer and Stocken (2001), and also Beyer et al. (2013), suggest that the
“expected precision” from a signal S can be treated as an ex ante measure
of its informativeness. The signal S is designed to be informative about
value or parameter ¢, and its informativeness is assessed by E[var(6|5)].

This approach has an interesting interpretation following from the
law of total variance,

var (§) = E[var(6]S)] 4+ var(E[0|S]).
The implications of this law are:

(i) we always “expect” to gain greater certainty from signal S about
unknown 6, in the sense that on average S brings a lower variance

(ii) the expected reduction in the perceived variance of 6 is

var (f) — E[var(0]S)] = var(E[6]S]).

So, interestingly, the expected reduction in variance equals the variance
of the expected mean, which tells us that a highly informative signal is
one that is expected to bring a large shift in the perceived mean, up or
down. For example, suppose that S has two possible values s; and ss.
The “experiment” is highly informative if var(E[0|S]) is large, which
occurs when the conditional means, E[f|s;] and E[f|ss2], are wide apart.
So a highly informative signal is one that can bring either a “big shift
left” in the mean or a “big shift right” in the mean.

Note that this analysis applies only in contexts like those raised
in the two papers cited, where the posterior distribution is normal,
and hence the relevant notion of “uncertainty” is captured by purely
variance. In other distributional forms, like a beta distribution, for
example, other measures of uncertainty or information, like entropy, are
required.

16.4 Information stays relevant

Today’s Bayesian posterior is tomorrow’s prior, so, for example, an
updated forecast or earnings report does not make the earlier statement
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irrelevant. We might learn that the earlier signal was wrong or was
“misstated” or biased, but that itself is new information and today’s
probability reacts accordingly. Barth et al. (2001) make the following
suggestion, which is questionable in Bayesian principle:

...accounting can be value relevant but not decision relevant
if it is superseded by more timely information. (Barth et al.,
2001, p. 80)

Today’s inference will be a probability distribution f(V|z1,z2) for
the future share price based on an interaction between the earlier signal
x1 and the new one zo. As found in Simpson’s paradox and similar
Bayesian examples, the interaction between two or more information
items can be highly synergistic. For example, zo might suggest implicitly
that x; was fraudulent or fudged, raising new doubts when the two bits of
information occur together, despite neither signal of itself meaning much.
Any correction to an earlier signal can raise doubts over the credibility
of even the latest signal. Similarly, even if both signals are credible
and precise, a reversal or any real change is often informative about
some underlying process variance or volatility, or inbuilt measurement
variation.

The way that different individual signals can combine to reverse or
exacerbate the effect of one another appears in calculations of the value
of information. Howard (1966) showed how the value of two items of
information can exceed the sum of their individual values. Similarly,
Samson et al. (1989) revealed how the values of different signals are not
additive.

16.5 Bayesian view of earnings management

Any form of accrual accounting involves by definition earnings “man-
agement” or “manipulation”, since cash flows are discretionally “allo-
cated” or “matched” into period-by-period accounting “profit” numbers.
FEarnings management and earnings quality are sometimes seen as
incompatible,! however the Bayesian view is that signals that come not

Lo (2008) describes “earnings management” as an accounting research
euphemism for alterations by managers, possibly aided by their accountants, meant
to mislead or reach self-interested contractual benchmarks.
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from nature alone, but via human processes, have the advantage that
they can be tailored to be inherently statistically “better” signals. After
all, optimal signal design with respect to objectives is the subject of the
strategic disclosure literature in accounting.

Accountants and auditors, among all those involved with the firm and
its financial and operating circumstances, are well placed to understand
and invoke notions of “true” or “permanent” income, or to send out
information that is: (i) factually based on the firm’s fundamentals, (ii) rel-
evant to users, and (iii) open about of its own weaknesses, and timely.
Earnings “manipulation” can thus potentially add to the Bayesian value
of an earnings report, which is how accounting practitioners traditionally
imagine their own role and expertise (Dechow, 1994, pp. 4-5).

Barth and Taylor (2010) described accounting discretion similarly,
as not necessarily undesirable:

Wherever there is discretion in accounting — which is essen-
tially everywhere — there is the opportunity for earnings
management. The relation between managerial discretion
and investor welfare is ambiguous and likely varies by setting.
(Barth and Taylor, 2010, p. 32)

Similarly, all the empirical studies in accounting of stock price
reaction to earnings announcement are predicated on accounting having
incremental information content. That is essentially also the Demski—
Bayesian view, despite Demski dismissing in principle the traditional
“normative school”. His effective position is that accounting rules or
standards can be first designed, and then expertly put into effect, so as
to make the reported information broadly useful to its Bayesian users,
but unfortunately not better for every user, or in the same degree.

16.6 Numerator versus denominator news

A distinction is made in accounting research (e.g. Hodder et al., 2014;
Botosan and Plumlee, 2013) between “numerator news” and “denomi-
nator news”, but is not easy to rationalize in a Bayesian model.

The motivation for this distinction is the well-known shortcut used
in finance practice to value an uncertain future cash payoff, where the
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subjective mean cash payoff (numerator) is divided by a chosen discount
factor (denominator). Numerator news is supposed to be news about
the mean payoff and denominator news is about the discount rate. Since
the discount rate depends on the asset’s payoff covariance with the
market of all assets, denominator news is understood as news that alters
that subjective covariance.?

The Bayesian issue is that information that affects the joint payoff
distribution will not usually, or possibly ever, affect only one of the first
two payoff moments. There are so many ways in which both parameters
will move at once, and often dependently. Realistic conditions under
which one will move without any change in the other are not easy to
imagine. For example, if the firm’s expected sales units double, it is hard
to imagine that there would be no change in the subjective variance
or perceived potential for wide swings, and greater sensitivity to the
market. Similarly, any change in the firm’s operations (e.g. operating
leverage) or marketing will affect both parameters, as would a change in
firm management or business strategy. A change in operating leverage
causes naturally disproportionate changes in fixed and variable costs,
so both mean and (co)variance will move.

In some statistical distributions, the two parameters cannot move
independently. For example, in a Bernoulli distribution with index 6,
the mean is 6 and the variance is 6 (1 — €). A similar issue occurs in the
more complicated but standard Bayesian inference model for a normal
distribution where both parameters are unknown. The predictive mean
and variance are dependent.

A Bayesian picture of relevant information about a firm’s cash flows
is that there will virtually always be implications in that information
for the whole payoff distribution, including all of its moments and all of
its covariances with other assets.

Another “more finance” point that came out of Lambert et al. (2007)
is that under a correct rather than shortcut expression of CAPM, the
required rate of return or discount rate on an asset hinges on its mean
payoff as well as on its payoff covariance. Numerator news is therefore

2Denominator news might also include anything that affects economy-wide
discount rates, such as a generally greater reluctance to invest.
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always also denominator news. Cheynel (2013) correctly captures this
CAPM fact by treating payoff risk or variance as “per unit of mean”.

16.7 Mixtures of normals

In mean—variance portfolio theory, the payoff from a weighted portfolio
of assets is a sum of normal variates, which is normal. But in Bayesian
inference and decision-making generally, the usual situation is that the
probability distribution of a payoff from any single asset is best modelled
as a mixture distribution of payoffs. For example, if sales dollars have
one distribution under a cold winter and another under a warm winter,
then the unconditional distribution, relevant to any inference made
before we know how the season turns out, is a mixture distribution of
the two conditional distributions.

The Bayesian issue for much accounting research is not that mixture
distributions are the natural way to understand the variable of interest,
typically for example a payoff. The problem for modelling is that
mixtures of normals are not themselves normal. They are bimodal
and potentially often a very long way from being normal distributions.

There would seem to be many papers that treat mixture distributions
of normals as normal distributions, apparently so as not to lose the
tractability of a Bayesian model based on normal distributions. See
for example Armstrong et al. (2016). That is a mistake of statistics
in the model, but might be excused as an approximation. Whether
results are sensitive to such an approximation is a good research
question, given the general applicability in real-world contexts of mixture
distributions. Baron (1977, p. 1692) and Liu (2004, p. 233) explain
that probability mixtures of different assets or payoffs occur naturally
throughout business.? See also Winkler (1973, p. 399). Barth (2006a,
p. 280) gives a specific example to do with estimating future cash flows
when they depend on whether or not a new contract is entered into,
and the estimated probability of that occurring.

3For discusssion on the behavior of mixture assets on the mean—variance plane,
see Baron (1977) and Johnstone and Lindley (2013).
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16.8 Information content

Verrecchia (1990, p. 365) distinguishes correctly between whether a
signal carries “good” or “bad” news, and whether it carries strong news.
Bad news is often depicted in markets as generally stronger than good,
for lots of reasons (e.g. the firm would not give out bad news if it was
false, whereas good news might commonly be inflated). Verrecchia notes
the mistake of confusing the signal “realization” with its quality per se:

Presumably, information quality involves the distributional
characteristics of an event (e.g. its variance) whereas a real-
ization is simply the outcome of the event itself. (Verrecchia,
1990, p. 365)

In Bayesian calculations, “signal content”, as in the traditional
accounting expression “information content”, is fully evident only once
the observer knows both the signal observed (e.g. this years earnings
are —$20 mill.) and its apparent informational quality.

It is taken for granted in some accounting research that better
quality (“more precise”) accounting information tends of itself resolve
uncertainty and hence bring a lower-risk premium on capital investment,
no matter what that information actually “says”. Johnstone (2016)
explained that the effect of information on certainty (and the cost of
capital) depends not merely on signal quality (e.g. sample size) but
on what the signal says in either its stated amount (—$20 mill.) or at
least in terms of its “direction” (e.g. good news or bad news). Bayesian
“information content” is an inseparable mix of what a signal “says” and
how strongly or credibly it says it.

Statistically, a binomial sample of 100 tosses of a typical coin is
usually quite enough when the observed frequency of heads is 0.505 to
be very certain that the coin’s “parameter” is very close to 0.5, and
hence to remain sure that we are extremely unsure what the next toss
will be. If however the observed frequency of heads in 100 tosses was
90% then we would be much more sure what the next toss will be (i.e.
it will very probably be heads — and the coin is biased).

Information, therefore, brought by a large sample, comes from
a combination of the quality (e.g. unbiased and high precision) of
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the experiment combined with its observed outcome. Much of course
still depends on where the user started in terms of prior knowledge.
Information that contradicts prior beliefs, but not too strongly, will
virtually always add to uncertainty, often frustratingly so. The point
of principle is that by changing users’ beliefs, information proves its
“information content”. That change in beliefs might sometimes be a
confirmation of them, in the sense that the posterior distribution
becomes tighter in the same location (i.e. around the same parameter
value). Confirmation can be as informative as contradiction.

16.9 Fundamental versus information risk

In a Bayesian setting, all uncertainty is homogeneous or fungible, in the
sense that it is impossible to know a difference between uncertainty due
to nature and uncertainty attributable to the observer’s own limitations.
Yee (2006, p. 837) drew a distinction between natural or “physical”
uncertainty in a dividend stream and uncertainty about future dividends
brought by poor information or “earnings quality”. Similarly, Zhang
(2013) separates uncertainty caused by suspected accounting errors
from uncertainty caused by unforeseeable events. However, more in
keeping with the Bayesian view, Francis et al. (2004) and Francis et al.
(2007) and others regard “fundamental risk” and “information risk” as
inseparable.

A Bayesian decision maker forecasting a future cash flow has only
information to go on, she does not observe nature other than through
information or models, so in a sense all her uncertainty is “informa-
tion uncertainty”, particularly given that observers will be generally
uncertain about how “precise” (e.g. reliable) their own received signals
are:

... the market is unlikely to have perfect knowledge of the
signal precision ex ante. ...Note that uncertain precision
does not imply that the market has no ex ante information
regarding signal quality, it merely implies that the market
does not have perfect ex ante information. (Subramanyam,
1996, p. 208)
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16.10 When information adds to information asymmetry

Different levels of conditioning can lead the same piece of information
to have opposite Bayesian implications (e.g. see the discussion on
Simpson’s paradox). Essentially, the finding is that a given signal x; can
have opposite meanings depending on: (i) its perceived correlation
with another piece of information xs, and (ii) the perceived error
characteristics of that other signal. If a third signal is introduced to
the Bayesian analysis, the same kind of reversal can happen to one or
both of the first two signals. In principle, in infinite populations, there
is no end to this possible reversal, as more information is added piece
by piece and all joint error probabilities are assessed and allowed for in
formal Bayesian calculations. Only the limits of current knowledge and
methodological perseverance will decide where conditioning ends, and,
from there, only the results of the ensuing decisions will give a hint of
whether that level of conditioning was adequate.

The arrival of new information can often add to information asym-
metry. Signal xo can mean different things altogether to those users
who already have signal z; relative to those who have only zo, as
was shown disconcertingly by Simpson’s paradox. The possibility of
better information exacerbating information asymmetry is clear in the
Bayesian tenet (Bernardo and Smith, 1994, p. 298) that data cannot
“speak for itself”, but instead might lead to very different conclusions
when combined with prior beliefs and related information.

Different agents with different priors and different additional infor-
mation, possibly even different models and thus likelihood functions,
will not interpret the same data as having the same evidential weight or
necessarily even the same evidential direction. This contradicts the usual
presumption that more or better public information reduces information
asymmetry.

Ultimately, in a stationary world, and where users all have the same
model, they will be brought together by more data (“data swamps
prior”), but in dynamic contexts like the stockmarket, different infor-
mation users’ beliefs can have different foundations and go in opposite
directions and perhaps never converge. Du and Huddart (2017) have
recently made that point.
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16.11 Value of independent information sources

Penman (2009) contests the idea that accounting information, to be
accurate in some sense, should mimic actual market outcomes. For
example, on that proposition it would be held that the firm’s reported
net equity is doing something right if it tends to follow the market value
of the firm’s stock. Penman’s intuition is that accounting information can
be made more valuable by having a conceptual and practical foundation
that is divorced from market valuations and finance methodologies. For
example, old-fashioned “matching” of costs and revenues, and accounting
“accruals” judged on conventional and possibly conservative lines, can
yield the contrarian signal that “saves the day”, or at least moderates
the possibility of an information cascade.?

The Bayesian theory for combining signals is well illustrated in the
task of combining expert opinions, where each opinion is expressed as a
probability forecast, labelled p. Suppose that n forecasters each report
their subjective probabilities of firm X going bankrupt. And suppose
that the empirical frequency of bankruptcy is about 5% per year. If
all of the forecasters report that firm X is in dire bother and has an
80% or more chance of bankruptcy, a Bayesian like Lindley (1982b) and
Lindley (1983) would interpret that combination of forecasts in one of
several very different ways, depending strongly on how independent the
forecasters’ prediction are seen to be.

In the limit, the forecasters might be seen as completely dependent.
Suppose that the probability that expert j says 0.8 is one, for all j,
once it is known that any one of the other n forecasters said 0.8. In
that case, the n forecasts are really only one, and the receiver’s final
assessment will be some Bayesian translation of their agreed 0.8. For
example, if the experts are known to be overconfident, and thus not be
well calibrated, the receiver’s final subjective probability might be only
0.7 or lower.

4One way to describe a Bayesian information cascade is a run of past signals
such that the next signal cannot, whatever it says, change the inference enough to
change the decision, and is therefore never drawn and seen as “valueless”.
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More interestingly, suppose that the forecasters are independent,
and each happens to forecast p = 0.25. To make the calculations easier,
suppose that forecasts are in buckets and all of the forecasters gave a
probability p € (0.2,0.3). Remarkably, that set of forecasts can easily
turn into a final receiver’s probability assessment of nearly one. A simple
Bayesian argument shows how. In a world where the empirical frequency
of bankruptcy is only 5%, it will be a relatively unusual event for a
forecaster to give p in the 0.2 to 0.3 interval. The likelihood ratio of
that event might realistically be something like

f( € (0.2,0.3)[bankrupt)  0.05
f(p € (0.2,0.3)|not bankrupt)  0.02

2.5.

The likelihood ratio when say n = 3 independent identical forecasters
all report p € (0.2,0.3) is then (2.5)% = 15.625 and the corresponding
posterior odds given prior odds of 1/19 are 0.822, giving a posterior
probability of odds/(1 + odds) = 0.822/1.822 = 0.45. If there were five
independent forecasters, that probability is 0.84.

Examples like this are emphasized by Lindley (1982b) as an illustra-
tion of how intuition is often out of step with Bayesian probability, and
how independent information sources can be so much more informative
when combined than when taken individually. The natural intuition
for some users is to feel that there appears to be a confirmed or
consensus belief at a bankruptcy probability of around 0.2 to 0.3, but
that inference does not include information about the past statistical
“error characteristics” of the forecasters, including their covariance.

Note how a probability statement made by an expert is just another
“signal” in a Bayesian analysis, and can be interpreted “for what its
worth”. Its Bayesian interpretation via a subjective likelihood function
can allow for its issuer’s motivations and past record, and any suspicion
of miscalibration, over-confidence or incompetence on the part of the
forecaster. See the Bayesian literature on recalibrating probability
forecasts (e.g. Clemen and Winkler, 1987; Clemen and Winkler, 2007).
Treatment of another person’s probability as just grist for the Bayesian
updating mill is essentially the way that Demski treated accounting
“numbers”.
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16.12 How might market probabilities behave?

An elegant way to picture how a market populated by a good number of
Bayesian learners might behave is to think of the football betting market
raised by Watts (1976, p. 677). Any prediction market will do, and
equally so will the market for binary options, where the normalized asset
payoff is zero or one, and the time to expiry is finite and usually short
(like the length of a football game). Watts (1976, p. 677) conjectured
that the price of a prediction market contract — in an efficient market —
will be a good probability estimate since otherwise a trader with a model
that estimates probabilities more accurately will have an incentive to
trade.

In the decades following Watt’s comments, a vast literature on
the efficiency of betting markets and their ability to aggregate the
information and individual probability forecasts of the traders. In
principle, these are markets in uncertainty reduced to their essence, so
their analogy with the stockmarket is direct and obvious.

I raise this point to introduce Figure 16.1 which plots the price
of a contract paying 0 or 100 on the result of a famous US baseball
game. The main point is to show how during the game, the market
probability (represented by its price) fluctuated widely up and down
with the passage of events and how those events were perceived and
interpreted by traders.

Figure 16.1 displays how there is no natural monotonic path to
certainty. Certainty in any given outcome naturally tends to wax and
wane over time. In the stockmarket, there is no end date, so uncertainty
about the “end result”, or any future dated stock price, is perpetual.

This simple example shows graphically how more information does
not mechanically add to a market’s certainty. What better and more
current information can there be than the real-time state of the game,
and the real-time market consensus probability. That information could
be seen as an accounting ideal.

There are Bayesian models and assumptions by which certainty
accrues with each new single observation, but a real-life market example
shows how those models are not natural in their descriptive validity.
They apply to stationary well-defined problems, like drawing from an
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Figure 16.1: Real-time betting on the Chicago Cubs (vs Florida Marlins) 2003
NLCS, Game 6 (Plot provided by Justin Wolfers).

urn, but not descriptively to many realistic market or asset valuation
contexts.

There can hardly be better information than watching the game
and the running market price, yet certainty about the contract payoff
comes to the market only by the expiry of time, not by any substantive
resolution of which team has better “fundamentals” or of why one team
should win. During the game there are lengthy periods where certainty
is increasing (probability tending towards one or zero) and similar time
intervals during which it is decreasing (towards 0.5).

There is a methodological principle for accounting as an information
source for investors in this betting market price path. If an investor held
a contract on one of these teams winning, and paid for the “fundamental
analysis” of an expert in real time, so that she could constantly re-decide
whether to realize her position before the game ends (like selling a stock
mid-stream), the investor would not fault the expert for becoming
less certain of the final outcome at many times during the game. If
at one point the expert held that the outcome was a “coin toss”, the
investor would not infer that she had no expertise. Expertise need not
bring certainty, indeed it should often bring circumspection and even
deeper uncertainty. Experts or analysts motivated by a need for higher
resolution, rather than more “accuracy” at whatever loss of resolution,
will often be far wrong.
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16.13 “ldiosyncratic” versus “undiversifiable” information

Some attempts (e.g., Gao and Verrecchia, 2012) are made to distinguish
between information about a firm’s idiosyncratic risk and information
about its diversifiable risk. One interpretation is that information about
the firm’s payoff covariance with the market concerns its systematic or
undiversifiable risk, whereas information about its payoff variance that
does not change perceptions of its payoff covariance concerns only its
idiosyncratic or diversifiable risk.

In realistic Bayesian models of the firm’s uncertain payoff, that
distinction will rarely work. In general, any relevant news will affect both
parameters. As a simple example, suppose that the firm’s probability
of success is 6 where 0 is affected by what other firms do. Let there
be two market states, A and B, and let the conditional values of 6 be
04 and Op. If the probability of state A is p then the prior probability
of the firm succeeding is pf4 + (1 — p)fp. So if another firm takes an
action that changes p, then even with fixed #; and 65, the firm has a
new variance and a new covariance with the market, not to mention a
new mean. Similarly, a change in either 6; or 62 will have the same two
effects, of itself.

In everyday terms, there is no realistically fundamental news about
a firm that does not affect rational perceptions of both its own payoff
distribution (variance and mean) and its payoff correlation with the
market. Even for example something as idiosyncratic as a change of
senior management or a new costing-for-pricing system will have at
least some of both Bayesian effects.

Lastly, and possibly most damaging of all, it follows by Lambert
et al. (2007) that any information about the firm’s mean payoff will also
affect its beta, and thus be at least partly “undiversifiable” in the sense
that it affects the cost of capital. That information might concern only
the firm’s idiosyncratic activities (e.g. its peculiar “firm-specific” R&D
products) and might therefore be archetypically “idiosyncratic news”,
but, by affecting the firm’s ax ante mean payoff, it affects its cost of
capital (up or down). This CAPM insight, attributable to Fama (1977)
originally and explained in Lambert et al. (2007), appears to undo a
vast amount of routine finance and accounting discourse.
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Conclusion

Issues of how information affects beliefs, certainty, decisions and rational
risk premia have been the subject of Bayesian theory since the 1950s
when the founding Bayesians wrote the first textbooks on Bayesian
business decision-making under uncertainty. That connection between
Bayesian theory and financial decision-making was cemented in the
early literature on Bayesian portfolio optimization, where fundamental
Bayesian insights such as the use of predictive distributions were applied
to decision problems characterized by innate parameter uncertainty.

Although avowedly Bayesian in principle, accounting theory after
Demski, Feltham and others largely detached itself from the source
Bayesian literature, and even from the Bayesian finance literature. This
monograph is intended to assist PhD students and researchers to re-make
that connection.

A traditional understanding of accounting information under efficient
markets theory says that better information alters investors beliefs and
trades and tends to have a stronger influence, up or down, on the
stockmarket. Even confirmatory evidence fits that description, because
it tightens investors’ belief distributions around the same mean.
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By the traditional view, accounting information serves investors in
the same way as the sports pages serve gamblers on football games.
Investors qua gamblers use the information available to revise their
probability assessments. Their new assessments may not prove to be
more successful in all cases, but on average they assist towards more
profitable betting or investment outcomes.

An appealing viewpoint, underlying much contemporary empirical
accounting research, suggests that better information, such as higher
quality earnings, reduces uncertainty and hence also reduces the risk
premium or market cost of capital. On that understanding, financial
reporting standards are evaluated by whether firms disclosing “more”
or “more precise” information seem to be “charged” a lower cost of
capital. The older and less idealistic Bayesian view is that information
which raises new doubts about an asset’s future viability and payoff,
and causes its ex ante discount rate to increase, is desirable in the sense
that “it is always better to know”.

Bayes fits

Starting with Demski and Feltham, Bayesian logic has been shown to
fit elegantly with the idea of accounting as information for decision-
making under uncertainty. The rules of Bayesian logic are nothing but
the probability calculus, part of which is Bayes theorem. A Bayesian
in the mathematical sense is merely someone who applies the laws of
probability, to revise and reconcile beliefs.

Critics of Bayesian inference traditionally balked at the subjectivity
of the prior belief, usually overlooking the innate subjectivity of any
model. The Bayesian response is that all beliefs have a starting point
and are subjective, so why not express that subjectivity openly and use
it advantageously to incorporate factors in the inference and decision
that would otherwise be relegated to afterthoughts, and possibly go
financially unhedged. As a conceptual framework for understanding
uncertain inference in markets and the value and limitations of infor-
mation, textbook subjectivist Bayesian theory is as good an ideal as
exists.
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“Accurate”, not certain, beliefs

Might accounting have followed a false lead by regarding information
as a way to resolve uncertainty rather than to expose and gauge it?
The premise that information should, merely by being informative,
resolve uncertainty, led appealingly to a proposition that better account-
ing information would be naturally reflected by the market in lower
assessments of risk and lower-risk premia.

Any call for more certainty demands probability assessments that are
“sharper” or higher “resolution”, but does not require those probability
assessments to be “well-calibrated”. As an objective, “greater certainty”
prioritizes certainty and a low discount rate (cost of capital) over
calibration and the “right” discount rate.

The “right” discount rate is analogous to a well-calibrated forecast, it
puts the risky asset in its “natural” cost of capital bracket, whether that
is high or low. Thus, just as a well-calibrated probability forecaster is able
to say accurately that today is a 20-25% day in terms of the frequency of
rain, a “well-calibrated” cost of capital is one that categorizes firms into
perceived risk bins that are borne out by empirical ex post frequencies
(e.g. firm failure rates). For example, of the subset of firms classed as
having about a 10% subjective probability of bankruptcy, about 10%
go bankrupt.

The mistake of seeking an ever lower-risk assessment (and lower
cost of capital) for every firm is evident when it comes to assessing
the probability of a firm defaulting on its debt. Any information which
leads the market to see all firms in the “near zero probability of default”
bracket is not what is expected or even desired by financial information
users. Instead, the user or market seeks to identify those firms that are
(much) more probable to default, so as to buy some and sell others.

A Bayesian view of information is that sometimes, perhaps often, the
more we learn about a risk, the wider or flatter our posterior probability
distribution becomes. From this perspective, which applies to doctors,
lawyers, security analysts, sports pundits and every profession dealing
with uncertain outcomes, not just accounting, the expert (e.g. auditor)
is manifestly not doing her job if her disclosures do not sometimes or
often add greatly to users’ uncertainty and discomfort.
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Economic Darwinism

Probabilities near 0 or 1 are always of interest, and an individual
investor would like to be able to accurately attach either a 0 or 1 to the
probability of each firm in the market staying solvent. But any model
or information source that purports to do anything like that will almost
surely lose out very quickly to a model that produces well-calibrated
probabilities distributed over the full unit interval.

An implication for accounting, with respect to its ability to assist
decision makers, is that an investor encouraged to form unrealistically
confident beliefs will likely quickly lose money. Economic Darwinism
generally rewards more accurate probabilities, not more certain ones,
depending of course on how aggressively the user acts upon those
probabilities.

For example, if the market maker in ignorance posts odds of exactly
one, or a market price of 0.5, on a 0/1 binary outcome, then a log utility
investor with subjective belief 7 = p(1) = 0.8 expects a compound
return from betting against the market maker equal to

exp {ﬂ'ln <8§> +(1—m)ln (8?)] -1,

which will turn out positive on (geometric) average only if the frequency
of 1’s in the realized series exceeds 66.1%. Put another way, if the
frequency of 1’s is just 66.1% and the log utility investor believes any
probability equal to or greater than 0.8, her average realized return
will be negative. This example shows how an investor can assess a
probability nearer to the actual observed frequency than the market
probability and yet still lose. That underlines how essential it is for
decision makers to make accurate probability assessments.

Numerical examples like this clarify and reinforce an ex post per-
spective on the value of information. Our log utility investor, had she
believed probability p(1) = 0.9 ex ante, would have been delighted with
her ex ante expected utility or expected capital gain, but would have
been less well pleased with her compound return ex post.

Accounting theory, understandably given its focus on the design of
accounting rules and disclosure contracts, is pre-occupied with ex ante
expected utility. But decision analysis within the theory of economic
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Darwinism shows how ex ante expectations are only worthwhile if
ultimately realized (in dollars).

A very favorable result for Bayesian users of accounting information
is that an astute investor does not need a great degree of certainty to
“beat the market”. Instead, just a small information edge, played well
in the knowledge that it is only a small edge, is sufficient for capital
growth.

A Bayesian investor is typically accepting of highly uncertain beliefs,
and is often not confident that more information will bring more
resolution. That circumspection can be the key to investment success.

Information about information

“Information uncertainty”, so-called, is merely one contributor to overall
uncertainty. Different “types” of uncertainty are fungible in the sense
that they blur into one predictive distribution when combined using
the laws of probability. Under Bayes theorem, different grounds for
uncertainty do not simply accumulate to more or deeper uncertainty,
but instead combine in sometimes counter-intuitive and unexpected
ways.

Each new cause for uncertainty incorporated in beliefs, including
uncertainty about the accuracy or other qualities of existing information,
amounts merely to another level of Bayesian conditioning or learning.
At each step, further conditioning can reinforce and accentuate pre-
vious beliefs, or leave them unchanged, or possibly even weaken or
reverse them, regardless of how relevant or perhaps irrelevant that new
information appears of itself.

The intuition that information uncertainty must exacerbate funda-
mental uncertainty is misconceived. It holds formally in some limited
and tractable model forms, as is well understood, but it does not hold
as a general Bayesian law. Since information must sometimes increase
uncertainty, allowance for the “information risk” of that information,
or for the possibility that it is wrong, can sometimes restore overall
certainty.

If Bayesian logic is to guide equity investors and others in their
inference and decision-making, allowance has to be made for the reality
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that the variances and covariances between assets’ or firms’ cash flows
are unknown and uncertain. This alone means that better information —
call it reduced “information uncertainty” — can lead to upward revision
of the predictive payoff covariances, and hence greater uncertainty.

Think no further than a strictly Bayesian statistical model in which
a larger data set increases the precision of the estimated population vari-
ance (or covariance), and therefore reduces “information uncertainty”,
but produces a higher posterior mean for that unknown variance. In
principle, we now know the variance more accurately, and we know
that it is higher than previously believed. Analogously, a more expert
fundamental analysis of a firm’s operations, costs and revenues, can
reveal that the firm’s net cash flows are more correlated with market
conditions than was first understood. Note that in both of these cases,
the variance or covariance is treated as an unknown parameter, unlike
in the formative finance parameter risk models where the covariance
matrix is taken as known or given.

Accounting has little choice but to be broad minded in its models
of firm cash flows and investment returns. Firm fundamentals have
all manner of statistical distributions, including natural mixture dis-
tributions. If the payoff from an investment hinges for instance on the
discrete outcome of a regulatory or court decision, then its probability
distribution is inevitably a mixture distribution, and can be more
correlated with the market under one regulatory outcome than another.
Even if its payoff, conditional on a given level of regulation, is normal,
its mixture distribution is not, and none of the distribution parameters
are known with certainty.

Signs of good accounting information

The clearest ex post indication that accounting information is perceived
as relevant and reliable is the stock price change associated with the
disclosure. Asset prices under CAPM are a function of the predictive
distribution of future payoffs and hence are a composite of (at least) the
first and second-moments of that distribution. It would be a deep insight
for standard setters if research were to reveal whether prices are generally
more sensitive to revisions in payoff mean than revisions in payoff
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(co)variance (risk). It has been suggested in the portfolio optimization
literature in finance that optimal portfolios are far more sensitive to
estimated mean returns than estimated covariances. The possible effects
of such an insight on standard setting are clearly complicated, but some
simple conclusions would follow.

For example, if accurate Bayesian assessment of the mean cash flow is
more critical, then investors will be relatively more concerned to correctly
assess the “direction” (i.e. “good” or “bad”)/ of the accounting news,
than its precision. Analysts might quibble over whether the reported
earnings should have been a bit less or a bit more, and the normative
accounting objective of better “earnings quality” might suggest that
the reported figure is (say) insufficiently conservative, but the investor
is basically concerned with whether the earnings report points to a
higher expected future cash flow or a lower one. The task would be one
of getting the “location” of the posterior predictive distribution right,
rather than only shrinking its variance. Put another way, should the
mean be revised up (buy) or down (sell)? That is the primary question
in valuation. The secondary question is “by how much”, and that is
where the perceived variance plays a greater role.
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