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Abstract

The psychology of verbal reasoning initially compared performance with

classical logic. In the last 25 years, a new paradigm has arisen, which fo-

cuses on knowledge-rich reasoning for communication and persuasion and

is typicallymodeled using Bayesian probability theory rather than logic.This

paradigm provides a new perspective on argumentation, explaining the ratio-

nal persuasiveness of arguments that are logical fallacies. It also helps explain

how and why people stray from logic when given deductive reasoning tasks.

What appear to be erroneous responses, when compared against logic, often

turn out to be rationally justified when seen in the richer rational framework

of the new paradigm. Moreover, the same approach extends naturally to in-

ductive reasoning tasks, in which people extrapolate beyond the data they

are given and logic does not readily apply. We outline links between social

and individual reasoning and set recent developments in the psychology of

reasoning in the wider context of Bayesian cognitive science.
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INTRODUCTION

Psychologists have studied adult verbal reasoning for more than half a century, initially viewing

binary logic, in which propositions can only be true or false, as the appropriate standard of cor-

rect inference. Typical experiments focus on a small range of verbal inferences using the logical

terms of natural language such as and, or, not, if…then, all, some. Participants might be given some

premises—for example, if the key is turned, the car starts, and the key is turned—and then asked

whether they endorse the conclusion that the car starts. Here, if they are reasoning using classical

logic, they should endorse the conclusion. Such narrow logical reasoning tasks gain wider signif-

icance if thought, in general, is viewed as logical inference over beliefs encoded in a language of

thought [as in symbolic artificial intelligence (AI) and classical cognitive science; see Fodor 1975].

Over the last 25 years,what Over (2009) has called the new paradigm in reasoning has emerged,

a shift especially associated with switching from binary logic to Bayesian probability theory as the

standard of good inference (Oaksford & Chater 1994). Some have interpreted this shift as merely

swapping one normative, equally logical, theory of reasoning for another (Elqayam&Evans 2011).

Yet the new paradigm embodies two other fundamental changes: (a) It focuses on knowledge-rich

inference based on content and background knowledge, not just structural reasoning based on

logical form, and (b) it prioritizes the social role of reasoning in communication, argument, and

persuasion (Hahn & Oaksford 2007; Mercier & Sperber 2011, 2017; Oaksford & Hall 2016). In

this article, we review argumentation before individual reasoning, despite its later emergence in

the new paradigm.

We begin with an overview of the transition to the new paradigm in the psychology of reason-

ing in the 1990s, introducing the main themes in its later development. The next sections focus

in turn on social and individual reasoning and consider how these interact. We finish by setting

these developments in the context of broader transformations in the cognitive and brain sciences,

before describing challenges and future directions. This review is by necessity highly selective,

excluding many important topics (e.g., dual processes, meta-reasoning, and causal and counter-

factual reasoning) and focusing on what we see as the central themes of the new paradigm and its

place in the cognitive sciences.
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NEW PARADIGMS FOR REASONING

New paradigms emerge in reaction to previous paradigms. Hence, we begin by introducing the

logical paradigm implicit in the early psychology of reasoning and still active today.

The Logical Paradigm

The logical paradigm uses classical binary logic as its normative theory. For example, consider the

conditional (if p then q) inference relating antecedent, p, to consequent, q.

Proposition 1.

If I turn the key,

the car starts.

If p then q (A)

The key is turned. p (B)

Therefore The car starts. q (C) A & B, by MP

In binary logic, the conclusion, the car starts, follows by the logical law of modus ponens (MP).

This inference is logically valid: That is, if the premises A and B are true, so must be the conclusion

(C). Such inferences are converted into experiments using what Evans (2017; see also George

1995) calls the assumption-based paradigm. Participants are instructed to assume the premises

are true, even if they do not believe them, and to draw the inference with those, and only those,

assumptions (we shall see later that these instructions may be highly unnatural for participants).

The twomost prominent old-paradigm theories make different assumptions about mental rep-

resentations and processes.Mental logic (e.g., Rips 1994) proposes that the mindmirrors syntactic

representations and the application of logical rules, as above. By contrast, mental models theory

(MMT) ( Johnson-Laird 1983, Johnson-Laird & Byrne 2002) assumes that people reason over

representations that attempt to capture what the premises mean. For propositional reasoning, a

mental model is equivalent to what logicians call the disjunctive normal form (DNF) of a com-

plex proposition (one that relates more than one variable, e.g., p and q). For example, the DNF

of a conditional if p then q is (p and q) or (¬p and q) or (¬p and ¬q), where ¬ = not. In MMT, the

inference in Proposition 1 follows because, in the only disjunct in which p is true, q is also true.

Problems for the old paradigm. Problems for old-paradigm approaches emerge if we consider

our conditional (A) more carefully. If we are told that the car did not start, another logical law,

modus tollens (MT), invites us to infer that I did not turn the key. However, if the car not starting

were mentioned in conversation, the opposite conclusion would be drawn: that I did turn the key,

but the car failed to start (Oaksford & Chater 2007, 2013). This implication is based both on our

understanding of relevant aspects of the world (cars do not start spontaneously, they are mostly

immobile, etc.) and on the norms of conversation (Sperber &Wilson 1986).We infer the existence

of a failed key-turning attempt; otherwise, the car not starting would not be worth mentioning.

Note, though, that listeners thus spontaneously infer a counterexample to the very rule that

is being implicitly applied. From a conventional logical standpoint, this would involve rejecting

the conditional as false and no longer using it to guide our future actions. However, the very

statement that the car did not start this morning only gains significance on the assumption that the

rule is generally reliable: Cars normally start when their keys are turned, but this one did not. So,

even in the simplest conditional inference, our reasoning depends not on pure principles of logic,

but on a combination of background knowledge and conversational principles.

This example also highlights a violation of a fundamental logical law presumed to govern con-

ditionals: strengthening of the antecedent, which proposes that if if p then q is true, then if p and
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r then q must also be true. However, if I turn the key, the car starts certainly does not imply that if

I turn the key and the gas tank is empty, the car starts.This ubiquitous pattern in everyday inference

is known as nonmonotonicity, which raises the specter of computational intractability: nonmono-

tonic reasoning in AI often requires explosive amounts of computation (e.g., Oaksford & Chater

1991, 2007).

Five fundamental problems.There are, we suggest, five fundamental problems for the old

paradigm:

1. Logical reasoning is knowledge poor, depending only on the logical forms of the premises.

However, this leads to endorsing bizarre inferences, such as from the moon is not made of

cheese to if the moon is made of cheese, then life exists on other planets.

2. Any background knowledge (added as additional premises) must be consistent, on pain of

inferential explosion: In classical logic, and many other logics, any proposition follows from

a contradiction by the logical law of ex falso quodlibet. However, consistency is very difficult

to achieve, let alone verify.

3. There can be no learning. If inductive learning were based on logical entailment (Carnap

1945), “it would in fact be impossible to learn from experience” (Salmon 1967, pp. 731–32).

4. Logical reasoning is monotonic, so how is people’s normally nonmonotonic inference to be

captured rationally?

5. The old paradigm concentrates on individual reasoning. However, as in our car-starting

example, inference often makes sense only in a conversational context.

Each of these problems is cast in a new light if we see reasoning as primarily social: as a process

of argumentation and persuasion, which is prior to understanding individual reasoning (Hahn &

Oaksford 2007, Mercier & Sperber 2011). Moreover, as we shall see, the new paradigm may also

help resolve the problems we have just raised.

The Probabilistic Paradigm

A probabilistic Bayesian viewpoint sees belief as inherently uncertain and reasoning as concerned

with updating our uncertain beliefs. Thus, we can rarely be certain of the truth of the premises

over which we reason. Moreover, the function of evidence and argument is to change our belief

in a conclusion, and such conclusions might form the basis for action (Harman 1986). Degrees of

belief can be captured by probabilities (this is the subjective, or Bayesian, interpretation of proba-

bility); probability theory is the mathematical theory of how to reason with degrees of belief. The

general form for the probability of a proposition, p, is Pr(p|B), that is, any probability assignment

is conditional on background knowledge B (though we omit the |B below). Consequently, the new

paradigm is knowledge rich from the outset (problem 1 above).

The new paradigm developed from two research strands in the mid-1990s. One strand

originated in Anderson’s (1991) rational analysis program, which attempts to describe human

behavior as optimally adapted to the environment. The environment is captured by prior proba-

bilities; new information updates these priors using Bayes’ theorem, an approach closely aligned

with Bayesian philosophy of science (e.g., Howson & Urbach 1989). Bayes’ theorem provides a

normative account of learning (problem 3). In the psychology of reasoning, this approach was first

applied to confirmation bias inWason’s selection task (Oaksford & Chater 1994), an experimental

analog of testing scientific hypotheses that we will discuss later. The second strand originated

from philosophical concerns about the adequacy of classical binary logic to characterize human

reasoning, given the uncertainty of the real world (Edgington 1995). Related concerns arose
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because classic logic is monotonic, whereas everyday reasoning is nonmonotonic (Oaksford &

Chater 1991). Empirical studies confirmed that premise uncertainty (e.g., Do cars invariably

start when one turns the key? Was the key really turned?) had predictable effects on conclusion

evaluation (e.g., George 1995, Stevenson & Over 1995). Moreover, work on causal conditional

reasoning (Cummins et al. 1991) had already demonstrated examples of nonmonotonicity called

suppression effects (Byrne 1989).

These two strands converged on the interpretation of the most important logical term in

natural language, if…then: Both adopted what Edgington (1995) christened the Equation: that

the probability of the conditional Pr(if p then q) is the conditional probability Pr(q|p). Logicians

call such a conditional a probability conditional. Strengthening the antecedent is not valid for

the probability conditional [i.e., Pr(q|p&r) can be less than Pr(q|p)], leading to nonmonotonic-

ity not allowed in classical logic (problem 4). The Equation also permitted the generalization of

the new paradigm to quantified syllogistic reasoning, involving the logical terms all, some, none,

and some…not (Chater & Oaksford 1999), and to so-called polarity biases created by negations

in conditional sentences (Oaksford et al. 2000). Moreover, several studies have confirmed the ef-

fects of premise uncertainty on conditional reasoning (Politzer & Carles 2001, Stevenson & Over

2001) and provided direct empirical evidence for the Equation (e.g., Evans et al. 2003, Oberauer

& Wilhelm 2003).

The generalization to quantified syllogistic reasoning (Chater & Oaksford 1999) embodied

many recent developments, defining a notion of (a) probabilistic or p-validity (Adams 1998) that

relied on (b) deducing a coherence interval for the conclusion (Coletti & Scozzafava 2002), assum-

ing that the premises defined (c) a dependency graph (Pearl 1988). All of these elements feature

in the later development of the new paradigm.

In the logical paradigm, the natural extension is to further logical terms, retaining the focus on

individual and intrapersonal reasoning (for example, Hinterecker et al. 2016). By contrast, Hahn

and Oaksford (Hahn &Oaksford 2007,Oaksford &Hahn 2004) generalized the new paradigm to

argumentation, setting reasoning in its broader social context (problem 5; see Mercier & Sperber

2011, 2017).

The Social Character of Reasoning

The brain has only shallow and fragmentary knowledge to deal with a continual stream of new

situations and urgent decisions (Oaksford & Chater 2007, Rozenblit & Keil 2002). Reasoning

begins from fragmented knowledge: that cars normally start when we turn the ignition key, that

they typically need gas, that our car did not start as expected this morning, and so on. Normative

theories of reasoning, such as logic and probability theory, can spell out under what conditions

there are contradictions between these fragments—for example, some fragments imply that when

we turn the key, the car starts; others tell us that it does not. Normative theories tell us something

about what counts as resolving a contradiction—for example, realizing the car had no gas rec-

onciles the general rule and the specific counterexample. However, these theories cannot tell us

which of the many possible ways of reconciling contradictions should be preferred (e.g., we could

conclude that the key was not turned or that the general rule is false).

The gaps and inconsistencies in our individual knowledge are partially ameliorated by the

social distribution of knowledge (Sloman & Fernbach 2017) and the exchange of information

in communication (Oaksford & Hall 2016). For example, if the car does not start, we will often

not know why, or how to fix it; we will call a local mechanic.More generally, we do not individually

need to repair all the gaps and contradictions in our fragmentary knowledge; we understand and

cope with the world collectively (addressing problem 2).
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The communicative aspect of reasoning is also embodied in the very interpretation of the

statements over which we reason (Hilton 1995). Suppose you say I turned the key, but the car did

not start. There is no contradiction with background knowledge unless the key is the ignition key

of your car, was turned when in the ignition, and in the right direction. Both speaker and listener

must do substantial inferential work to agree on interpretations of the relevant linguistic terms.

Sometimes the result of an argument is to uncover misaligned interpretation (e.g., “Oh I see, that

was the key to the other car!”). In any case, verbal reasoning only begins when we have settled

issues of interpretation (Stenning & Cox 2006).

Language facilitates argumentation through which we can resolve disagreements by filling in

our fragmentary and shallow knowledge. Argumentation involves persuading an audience of a

disputed claim by offering a series of rational moves that support or refute it (Van Eemeren &

Grootendorst 2004). Argumentation is knowledge rich: Whether new evidence or reasoning is

convincing depends on what we already know. Moreover, argumentation is local and dynamic:

Interlocutors are attempting to win a local game by repelling specific counterarguments. So the

focus is on the local disagreement, in the light of global background knowledge. Language and

argumentation allow isolated individuals to reduce their ignorance and resolve disagreements.

Language and argumentation may have culturally coevolved in a way that can hint at the ori-

gins of our norms of reasoning. As hunter-gatherer groups grew larger and more complex, they

needed to forage more widely and to bring back information about the location of food sources

(Tomasello 2014). Of course, the waggle dance of honeybees communicates similar information

about the location of food to the group (hive), which responds reflexively by sending more bees to

the location. However, in a hominid group, other members may query the information conveyed

by the returning foragers [Bennett 1989 (1964)] or provide counterarguments (e.g., “We have

been there and found nothing,” or “There was danger”). This response is what Bennett [1989

(1964)] referred to as reasoned denial. Resolving what to do provides the key ingredients for ra-

tional debate: understanding negation (“No, we should not go there”), providing reasons (“There

is danger”), and, in particular, acknowledging the principle of noncontradiction [one cannot be-

lieve both that we should and should not go to this location, i.e., ¬(p and ¬p)]. Adherence to this

principle is implicit in initiating the disagreement that subsequent discussion must resolve; and,

as Millikan (2006, p. 125) argued, this “is a form of rationality that it seems less likely that non-

human animals can achieve.” For Aristotle, the principle of noncontradiction was a self-evident

axiom, and in binary logic, it is a tautology. Yet the members of our imagined hominid band have

taken up contradictory positions that must be resolved by providing reasons. They are compelled

to engage in argumentation.

The reasons provided in the ensuing argument may not all be, at least prima facie, rationally

related to the conclusion to take one course of action over another. Perhaps one side includes a

feared warrior. In argumentation research, this is called the fallacy of the argumentum ad baculum:

the argument from force.

SOCIAL REASONING: ARGUMENTATION

Although the study of argumentation spans many disciplines and theoretical perspectives, here we

focus on the contributions of the new paradigm. This approach has primarily considered how and

when so-called fallacies of informal argumentation are actually good arguments that should lead

to changes in degrees of belief (Hahn & Oaksford 2007, Oaksford & Hahn 2004). The fallacies

have accumulated in logic textbooks since Aristotle’s Sophistical Refutations. They are arguments

that are logically invalid, though persuasive.

By definition, the old-paradigm logical approach cannot account for these fallacies: They are

fallacies because they are logically invalid. In MMT, if people find them persuasive they must be
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seen as victims of cognitive illusions (Khemlani & Johnson-Laird 2017). In contrast, the Bayesian

new paradigm shows that, far from suffering an illusion, people often appropriately change their

degree of belief in a conclusion given such arguments. This smooth generalization to the argu-

mentative fallacies is, we suggest, one of the new paradigm’s most important achievements, and

one of the greatest challenges for the logical paradigm.

Bayesian Approaches to the Fallacies of Informal Argument

How can the fallacies sometimes be seen as justifiable?We consider four key examples: arguments

from ignorance, ad hominem arguments, slippery slope arguments, and circular reasoning.

The argument from ignorance. Both propositions below are arguments from ignorance.

Proposition 2. Ghosts exist, because no one has proved that they do not.

Proposition 3. This drug is not toxic, because we can find no toxic effects.

Although Proposition 2 is intuitively weak, Proposition 3 is the standard mode of inference

in product testing. The Bayesian approach distinguishes Propositions 2 and 3 by considering the

degree of belief in the conclusion (C) to which an argument (a) should lead, using Bayes’ theorem:

Pr(¬C|¬a) =
Pr(¬a|¬C) Pr(¬C)

Pr(¬a|¬C) Pr(¬C) + Pr(¬a|C) Pr(C)
. 1.

The strength of the conclusion in Proposition 3, Pr(¬C|¬a) (the drug is not toxic given no toxic

effects were found), depends on the priors, Pr(C), and on the likelihoods, Pr(a|C) (i.e., sensitivity)

and Pr(¬a|¬C) (i.e., specificity). The force of an argument, that is, how much our belief in the

conclusion changes, can be indexed by the likelihood ratio Pr(a|C)/Pr(a|¬C). Proposition 2 is

weaker than Proposition 3 because tests for toxicity are presumably far more reliable than tests

for the nonexistence of ghosts. So, for toxicity, we obtain Pr(a|C) ≫ Pr(a|¬C), and argument force

is high; conversely, it seems hard to see howwe could prove the nonexistence of ghosts, irrespective

of whether they exist, so Pr(a|C) ≈ Pr(a|¬C), and argument force is low.

Hahn & Oaksford (2007) argue that in typical real-world settings Pr(C|a) > Pr(¬C|¬a), and

consequently, positive arguments should be perceived as stronger than negative arguments. This

prediction, and people’s sensitivity to priors and likelihoods, has been confirmed experimentally

(Hahn &Oaksford 2007,Hahn et al. 2005,Oaksford &Hahn 2004) and replicated across cultures

(Karaaslan et al. 2018).

These experiments used a third-person argument evaluation paradigm. In this paradigm, par-

ticipants are shown an argument between two interlocutors, say, Mary and John, and are told that

Mary has a certain prior degree of belief in conclusion C (e.g., fairly convinced). John presents

Mary with an argument, and participants must judge what degree of belief Mary should now have

in C. The arguments are therefore placed in a social context where participants evaluate others’

reactions to an argument.

The Bayesian model also captures the so-called epistemic closure version of the argument

from ignorance: for example, that we may conclude that the book is in the library (C) because the

online catalog does not say it is on loan, Pr(C|¬“¬C”). This form is perhaps closer to Proposition 2.

Modeling this case requires introducing a third possibility that the catalog says nothing (n) about

whether the book is in the library or on loan.Most databases are not epistemically closed, in which

case the probability of saying nothing is greater than zero: Pr(n|C) > 0.When this is the case, not

saying that the book is not in the library (¬“¬C”) is not equivalent to saying it is in the library

(“C”), as the database may say nothing about the book’s status. Experimentally varying the degree
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of closure [Pr(n|C)] leads to results predicted by the Bayesian model (Hahn et al. 2005), with good

quantitative data fits (Hahn & Oaksford 2007). People also regard Proposition 2 as weaker than

the library example (Hahn & Oaksford 2007, experiment 3). Saying nothing (n) also arises in the

“damned by faint praise” argument (Harris et al. 2013).

An important feature of argumentation is audience evaluation of the reliability of the person,

newspaper, or government proposing the argument (Hahn et al. 2009, 2013). The probability

that a source is reliable, Pr(R), can be factored into the likelihoods in Bayes’ theorem [e.g., Pr(a|C)

becomes Pr(a|C,R)Pr(R)+ Pr(a|C, ¬R)(1 – Pr(R)], which caps argument strength (Bovens &Hart-

mann 2003). Manipulating source reliability has predictable effects on the strength of arguments

from ignorance; higher reliability leads to greater argument force and hence stronger conclusion

endorsement (Hahn & Oaksford 2007, Karaaslan et al. 2018).

The argument ad hominem.The ad hominem fallacy attacks the person proposing the argu-

ment, not the argument itself. In court, for example, the testimony of character witnesses is clearly

viewed as having probative value. Moreover, the fallacy has more and less compelling versions, as

here.

Proposition 4. Candidate Jones has no right to moralize about the family since

a. he was once seen arguing with his wife;

b. he cheats on his wife.

The continuation in part b of Proposition 4 is stronger than in part a. This fallacy has been

modeled in a variety of ways (Bhatia & Oaksford 2015, Harris et al. 2012, Oaksford & Hahn

2013). We might initially view Jones’s moralizing as credible if we assume by default that people

are reliable. This assumption is undermined strongly by part b of Proposition 4, but barely at all

by part a. Part b of Proposition 4 makes us question Jones’s reliability and reduces the credibility of

the conclusions of his moralizing (Oaksford & Hahn 2013). Experimentally varying reliability in

different ways has shown the predicted effects on this argument (Bhatia & Oaksford 2015, Harris

et al. 2012, Oaksford & Hahn 2013), and a Bayesian model provides good parameter-free fits to

the data (Harris et al. 2012).

The slippery slope argument.The slippery slope argument (SSA), widely deployed from law to

bioethics, also has weak and strong versions.

Proposition 5. If we allow gay marriage, then people will want to marry their pets.

Proposition 6. If voluntary euthanasia is legalized, then involuntary euthanasia will be.

Both have been advocated in popular debate. Although Proposition 5 is intuitively absurd,

variants of Proposition 6 are influential. The Bayesian approach treats SSAs as consequentialist

arguments based on a cost-benefit analysis (Corner et al. 2011,Hahn&Oaksford 2007): Do not act

(p = allow gay marriage) unless the benefit associated with the action [U(p)] exceeds the expected

cost [Pr(q|p)U(q)] of the consequences to which it may lead (q= allowing interspecies marriage). In

this respect, SSAs are similar to warnings or utility conditionals more generally (Bonnefon 2009)

(see section titledUtility Conditionals). In contrast to Proposition 6,Proposition 5 is weak because

whatever we think of the merits of interspecies marriage [U(q)], the probability that allowing gay

marriage will have this consequence [Pr(q|p)] is so low that the expected cost is negligible.

A crucial feature of SSAs is that the slipperiness of the slope [captured by Pr(q|p)] may depend

on the flexibility of our categories (Hahn & Oaksford 2007). Proposition 5 can be character-

ized as the argument that if we categorize gay marriage (a) as allowable (Fa), this will lead to us
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categorizing interspeciesmarriage (b) as allowable (Fb).Thus, the similarity between a and b should

(and does) affect people’s willingness to assign them to the same category and hence to endorse

the corresponding SSA (Corner et al. 2011; see also Rai & Holyoak 2014 on moral hypocrisy).

Circular reasoning.Circularity (Hahn 2011) is an oddity among the fallacies because certain

formulations are logically valid (if p then p is a tautology). As usual, the fallacy has strong and weak

variants.

Proposition 7. God exists because the Bible says so and the Bible is the word of God.

Proposition 8. Electrons exist because they make 3-cm tracks in a cloud chamber.

Proposition 8 is a standard form of inductive inference in science concerning unobservables

and is intuitively stronger than Proposition 7. A good argument should change our belief in the

conclusion (Harman 1986).With vicious circularity (God exists because God exists), which simply

restates the premise in the conclusion, no such change occurs: The conclusion simply inherits the

credibility of the premise. Propositions 7 and 8, in contrast, are self-dependent but not vicious,

and they can potentially change our degree of belief in a conclusion (captured in a hierarchical

Bayesian model; see Hahn 2011, Hahn & Oaksford 2007). The perceived strength of a circular

argument varies predictably with the number of possible interpretations (Hahn &Oaksford 2007,

experiments 1 and 2), which explains our intuitions about the strengths of Propositions 7 and 8.

There are more credible interpretations of who wrote the Bible (Proposition 7 is weak) than there

are of what caused a 3-cm track in a cloud chamber (Proposition 8 is strong).

Argument schemes and Bayesian networks. Bayesian networks (Pearl 1988, 2000) provide a

useful framework for representing not just circularity but a wide variety of argument schemes

proposed in the argumentation literature (e.g.,Walton et al. 2008). For example, in the argument

from authority or expert opinion, an argument scheme might consist of questions like, “Is this

expert opinion consistent with other expert opinions?” “Are the opinions independent?” and so

on. Bayesian networks provide a natural way of implementing different argument schemes (Hahn

&Hornikx 2016,Hahn et al. 2013,Harris et al. 2016) and a normative account of how to combine

expert judgements, levels of expertise, and trustworthiness that fits the experimental data (Harris

et al. 2016).The behavior of social networks of Bayesian agents has also been explored inmodeling

appeal to popular opinion and related arguments (e.g., Cook & Lewandowsky 2016, Hahn et al.

2018), further emphasizing the social dimension of reasoning in the new paradigm.

Further Approaches to Argumentation

Other researchers have addressed human reasoning from a social, argumentative perspective, rein-

terpreting apparent biases (e.g., Mercier & Sperber 2011, 2017). For example, confirmation bias

makes sense from an argumentative standpoint: Like any courtroom lawyer, we will of course

adduce evidence for, not against, the position we advocate (Mercier & Sperber 2011). In argu-

ment evaluation, as in the experiments we reported earlier, people are persuaded by rational argu-

ments and not merely by the most confident group member (Trouche et al. 2014). Moreover, the

correctness of initially counterintuitive reasoning rapidly persuades groups when they can argue

(Claidière et al. 2017). However, when producing arguments, we may be biased and cognitively

lazy (Trouche et al. 2016).This strand of argumentation research eschews formal normative frame-

works, arguing that people’s reasoning makes evolutionary sense on a case-by-case basis (Mercier

& Sperber 2017). Nonetheless, Mercier has argued that some norms of reasoning used in argu-

mentation are universal (Mercier 2011, Mercier et al. 2015; see also Karaaslan et al. 2018), so
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that differential levels of adherence to the principle of noncontradiction by Eastern and Western

cultures (Peng & Nisbett 1999) may be illusory. In summary, both the argument-based and the

Bayesian approach to reasoning agree that argumentation and its social function are primary, and

they disagree only on particulars (e.g., the role of normative theories and cognitive modularity).

INDIVIDUAL REASONING: DEDUCTION AND INDUCTION

We have seen how fallacies of argumentation provide a typology of argument forms that can be

strong or weak dependent on their content. Logical arguments, though often treated separately

since Aristotle, are no different: Valid arguments, like MP, or logical fallacies, like affirming the

consequent (AC) (i.e., if p then q; q, therefore p), can also be strong or weak depending on content

and context (see Eva & Hartmann 2018). Reasoning is a subtype of argument, whose purpose

is evaluating not logical validity but change in belief (Harman 1986). We begin with deductive

reasoning, highlighting recent work in the new paradigm and referring to older research only

when required.

Deductive Reasoning

We look at both propositional (and, or, not, if…then) and quantified (all, some) deductive reasoning.

For the former we focus on the conditional if…then, looking also at reasoning with causal and

utility conditionals.

Propositional reasoning. Patterns of reasoning about the logical connectives—and, or, not, and,

in particular, if…then—have been intensively studied experimentally and theoretically. One ap-

proach is probability logic, which assigns probabilities to propositions so that they respect the

laws of probability (Coletti & Scozzafava 2002, Pfeifer & Kleiter 2009). Such an assignment is

probabilistically coherent, the probabilistic analog of logical consistency. In the new paradigm,

researchers have investigated a set of closely related probabilistic concepts, including probabilistic

validity, Bayesian and Jeffrey conditionalization, and dynamic inference, which we now introduce.

Probabilistic coherence. Wefirst showhowcoherence applies to theMPinference inProposition 1.

Proposition 9.

If p then q Pr(q|p) = a (A′)

p Pr(p) = b (B′)

Therefore q Pr(q) = [ab, ab + (1 – b)] (C′)

As we have seen, the Equation (Edgington 1995) identifies the probability of a conditional,

Pr(if p then q), with the conditional probability, Pr(q|p). The conditional probability is determined

from background knowledge by the so-called Ramsey test: Add the antecedent to your stock of

beliefs (assume that the key is turned), adjust to accommodate this belief, and read off the probability

of the conclusion (the car starts) from your adjusted stock of beliefs. Thus, the conditional premise

A′, if I turn the key, the car starts, has an associated degree of belief (a) determined by the Ramsey test.

The categorical premise B′, the key is turned, is also assigned a degree of belief (b) depending on how

it was learned. If we are uncertain of A′ or B′ (a and b are <1), then by the law of total probability,

we can logically deduce a coherence interval for the probability [Pr(q)] of the conclusion (C′) that

the car starts:

Pr(q) = Pr(q|p) Pr(p) + Pr(q|¬p)
[

1 − Pr(p)
]

. 2.
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This formula has a parameter, Pr(q|¬p), the probability that the car starts without turning the key, not

fixed by the premises. If Pr(q|¬p) = 0, then we have the lower bound, ab. If Pr(q|¬p) = 1, then we

have the upper bound, ab + (1 – b). Researchers have developed intuitive methods for calculating

coherence intervals (Politzer 2016).

As we observed earlier (see section titled The Probabilistic Paradigm), the Equation has been

experimentally confirmed (e.g., Evans et al. 2003,Oberauer &Wilhelm 2003, Politzer et al. 2010).

In the old binary logical paradigm, the conditional merely rules out counterexamples (p, ¬q), so

that Pr(if p then q) = 1 – Pr(p, ¬q) = Pr(¬p) + Pr(p, q); this is never observed experimentally. The

Equation also survives philosophical triviality arguments (Lewis 1976); experimental participants

reject the key step in such arguments (Douven & Verbrugge 2013).

For MP, when a and b are varied, people’s degrees of belief in the conclusion reliably fall into

the relevant coherence interval at above-chance levels (Cruz et al. 2015, Evans et al. 2015, Pfeifer

&Kleiter 2009,Politzer &Baratgin 2016, Singmann et al. 2014).This work also looked atMT and

the logical fallacies, AC and denying the antecedent (DA) (i.e., if p then q; ¬p, therefore ¬q), which

also have associated coherence intervals. Thus, it can be rational to endorse these fallacies to some

degree. Coherence was above chance for DA, but not reliably for MT or AC. Cruz et al. (2015)

suggested that this may arise from excessive task complexity and tested eight simple one-premise

arguments (e.g., p or q; therefore, if ¬p then q), finding above-chance coherence in each.

p-validity. The probabilistic analog of logical validity is p-validity (Adams 1998). As logical valid-

ity relies on consistency, so p-validity relies on coherence (Coletti & Scozzafava 2002, Pfeifer

& Kleiter 2009). An argument is p-valid if and only if the uncertainty of the conclusion [1 –

Pr(conclusion)] cannot coherently be greater than the sum of the uncertainties of the premises:
∑n

i [1 − Pr(premisesi )]. In Proposition 9, if a = 0.9 and b = 0.5, the sum of the premise uncertain-

ties is 0.6, and at the lower bound of the coherence interval, the uncertainty of the conclusion is

0.55, while at the upper bound, it is 0.05. MP is p-valid. Although DA has a well-defined coher-

ence interval, it is not p-valid. To see why, one should note that if the premise probabilities are

both 1, then the sum of their uncertainties is 0; however, the uncertainty of the conclusion ranges

between 0 and 1, that is, higher than the sum of the premise uncertainties.

The concept of p-validity is theoretically useful but perhaps not psychologically significant:

People are interested in the degree to which an argument should change their degree of belief in

a conclusion and not in whether it is valid (Harman 1986). However, p-validity is useful in dis-

criminating between theories. Many rules of inference that are logically valid, like strengthening

the antecedent, are not p-valid.

In classical binary logic, the conditional if p then q is interpreted as true unless both p is true and

q is false. This material conditional interpretation generates a number of so-called paradoxes: in-

ferences that are logically valid but counterintuitive. So, from the moon is not made of cheese, one can

infer that if the moon is made of cheese, then the car will start, because the material conditional is true

if its antecedent is false. In the old logical paradigm, the paradoxes are valid but pragmatically odd

( Johnson-Laird & Byrne 2002); however, the paradoxes are not p-valid, and people do not endorse

them (Pfeifer&Kleiter 2011).An inference of recent interest is or-introduction (p, therefore p or q),

which is logically valid and p-valid.However, in themost recent version ofMMT (e.g.,Hinterecker

et al. 2016) or-introduction is deemed invalid. This interpretation leads to seemingly absurd con-

sequences (Baratgin et al. 2015), and people do endorse or-introduction (Cruz et al. 2015).

Conditionalization. According to Equation 2, if people learn the key was definitely turned

[Pr(p) = 1], then the probability of the conclusion is the conditional probability a, by Bayesian

conditionalization, which yields a point value, not an interval. Earlier work in the new paradigm

www.annualreviews.org • New Paradigms in Reasoning 315

A
n
n
u
. 
R

ev
. 
P

sy
ch

o
l.

 2
0
2
0
.7

1
:3

0
5
-3

3
0
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

 A
cc

es
s 

p
ro

v
id

ed
 b

y
 U

n
iv

er
si

ty
 o

f 
W

as
h
in

g
to

n
 o

n
 0

2
/0

9
/2

0
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 



used Bayesian conditionalization (Oaksford et al. 2000) and assumed that people recruited

information about Pr(q|¬p) (or an equivalent value) from background knowledge to model MT

and the fallacies. This approach provided good fits to most of the experimental results available

at the time (Oaksford & Chater 2007).

Bayesian conditionalization assumes people have complete certainty [Pr(p) = 1] on learning

that the key is turned. People’s original assessment of this probability, from prior knowledge,

is that key-turning events are rare. Learning that the key was turned consequently changes the

probability from, say, Pr0(p) = 0.01 to Pr1(p) = 1. Such certainty, however, is unusual: Typically,

the categorical premise is at least somewhat uncertain—perhaps the key was not turned after all

(Stevenson &Over 2001). In this case, Equation 2 provides a way of updating our degrees of belief

to create the new distribution below through Jeffrey conditionalization ( Jeffrey 2004):

Pr1(q) = Pr0 (q|p) Pr1(p) + Pr0 (q|¬p) [1 − Pr1(p)]. 3.

Thus, Pr1(q) depends on prior knowledge of Pr0(q|¬p), which is not specified in the premises;

hence, the change of belief depends on background knowledge even for MP [when Pr0(p) <

Pr1(p) < 1]. When participants provide estimates of all the relevant probabilities, their estimates

of conclusion probabilities conform well to Jeffrey’s rule (Zhao & Osherson 2010).

Dynamic inference. When learning some premise information changes some of the other premise

probabilities, an inference is dynamic (Adams 1998; Gilio &Over 2012; Oaksford & Chater 2007,

2013). When we learn that Pr1(p) > Pr0(p), we focus on a particular key-turning event; this does

not alter the general probability of turning car keys, which remains low (Baratgin & Politzer

2010). However, learning some premises may require an update of beliefs about others (Baratgin

&Politzer 2010; Oaksford&Chater 2007, 2013).As we have observed (see section titled Problems

for the Old Paradigm), the MT premise, the car did not start, suggests a counterexample to an im-

plicit conditional:The key was turned, but the car did not start for some reason. Following classical logic,

we should reject the conditional premise as false. Although rejecting this useful action-guiding

generalization violates common sense, some update to our degree of belief in the conditional is

required (Oaksford & Chater 2007). Indeed, when explicitly faced with counterexamples, people

reduce their degree of belief in the conditional premise from their initial assessment (Wolf et al.

2012).

In Equation 3, however, the conditional probabilities associated with the conditional premise

are assumed to be invariant or rigid between the old (Pr0) and the new (Pr1) distribution, that is,

Pr1(q|p) = Pr0(q|p). People respect invariance on some tasks but not others (Zhao & Osherson

2010). The assumption that MT and the fallacies violate invariance also allows better fits to em-

pirical asymmetries between MP and MT and between AC and DA (Oaksford & Chater 2007,

2013). On this account, the premises of MT and the fallacies provide potentially falsifying in-

stances, causing people to update to a lower conditional probability, Pr1(q|p) < Pr0(q|p), before

they draw these inferences.

Dynamic inference is a more radical form of nonmonotonicity that goes beyond rejecting

strengthening the antecedent. Just as we argued that logic could not tell us how to resolve con-

tradictions, Bayesian or Jeffrey conditionalization cannot tell us what the new value of Pr1(q|p)

should be—indeed, both assume invariance. How, then, should people update their beliefs when

invariance does not hold? One approach is to convert dynamic inference problems into an equiv-

alent static problem (Gilio & Over 2012), though this may not be viable for the MT inference

(Adams 1998, Oaksford & Chater 2013). Another option is to use Bayesian model discrimination
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to infer the new conditional probability (Oaksford & Chater 2007, 2013), but this approach seems

unlikely to generalize.

A more general approach is to minimize a distance metric, such as the Kullback-Leibler (KL)

distance from information theory, between the new (Pr1) and the old (Pr0) probability distribu-

tions (Douven 2012, Eva & Hartmann 2018, Oaksford & Chater 2013). Therefore, on learning

a new premise probability, the key was turned [Pr1(p) > Pr0(p)], the other probabilities in the new

distribution are chosen to be minimally different from the old distribution. If the premise is as-

sumed to be certain [Pr1(p) = 1], this approach is equivalent to Bayesian conditionalization. The

approach generalizes to changes in the probability of the conditional premise [e.g., Pr1(q|p) �=

Pr0(q|p)], and hence to a new degree of belief in the conclusion (Douven 2012, Eva & Hartmann

2018, Hartmann & Rafiee Rad 2012). For example, in MT (learning of a nonstarting car), we may

come to suspect the car is less reliable than we thought [Pr1(q|p) < Pr0(q|p)].

Implications for dual processes. Distance minimization has implications for the status of the log-

ically valid inferences and consequently for dual-process or dual-source theories of reasoning,

which postulate a slow binary logical System 2 alongside a fast belief-based probabilistic System 1

(Heit & Rotello 2010, Klauer et al. 2010, Rips 2001, Stanovich 2011). The main evidence for

dual systems of reasoning comes from experiments showing that although most inferential be-

havior depends on our probabilistic beliefs, people prefer logically valid arguments (Evans et al.

1983, Singmann et al. 2016). For example, a model that includes a binary logical component in

which MP and MT are valid significantly improves the fit (from 80% to 86% of the variance)

over Bayesian alternatives, including KL distance minimization (Singmann et al. 2016). However,

there are probabilistic interpretations of MP and MT (unlike the fallacies DA and AC) such that

they always raise the probability of the conclusion (see Eva &Hartmann 2018, theorem 5).Conse-

quently, MP and MT are not only logically valid but also probabilistically reliable, and sensitivity

to this latter distinction may explain the slight improvement in the model fits without positing a

separate logical, analytic System 2. Perhaps, in short, it is probabilities all the way up (Elqayam &

Evans 2011, Oaksford & Chater 2012).

In summary, the new-paradigm probabilistic approach can be purely deductive, deriving a co-

herence interval for the conclusion by simply using the information in the premises.We have sug-

gested that research is required to account for dynamic inference, whereby people recruit more

information than is given explicitly in the premises to update their beliefs about the conclusion.

Thus, the new paradigm will need to address the challenge that people may consider more than

probabilities when updating their beliefs (e.g., including factors like explanatory goodness; see

Douven & Mirabile 2018, Douven & Schupbach 2015b).

Causal conditionals and inferential relevance.Much research over the last 30 years (Byrne

1989, Cummins et al. 1991) has focused on causal conditional reasoning: The antecedent event

(turning the key) causes the consequent event (the car starting). Just as models of argumentation

use causal Bayes nets (CBNs) (Hahn & Hornikx 2016), so do models of dynamic causal inference

(Hartmann & Rafiee Rad 2012). In a CBN, a conditional is represented as an edge in a directed

acyclic graph,whose corresponding causal power (W ) (Cheng 1997) can be computed fromPr(q|p)

and Pr(q|¬p):

W =
Pr(q|p) − Pr(q|¬p)

1 − Pr(q|¬p)
. 4.

In a CBN with two alternative causes in a common effect graph (cause 1 → effect ← cause 2), the

effects are combined using the noisy-OR function (Pearl 1988).
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CBNs have been used to model two key findings: suppression effects (Fernbach & Erb 2013,

Oaksford & Chater 2017) and explaining away (Ali et al. 2011, Hall et al. 2016). If people are pro-

vided with another conditional describing an alternative cause—e.g., if hot-wired, the car starts—

that creates a common-effect structure, they endorse AC less. That is, the AC inference is sup-

pressed: Learning that the car started may not mean that the key was turned, as the car could have

been hot-wired. The precise quantity that best captures suppression is debated (Cummins 2014,

Fernbach & Erb 2013, Oaksford & Chater 2017), but CBNs better explain these effects than pre-

vious probabilistic models (e.g., Oaksford & Chater 2007). In particular, they explain why many

implicitly present alternative causes (Cummins et al. 1991) may yield weaker suppression effects

than a single explicit alternative (Byrne 1989). In the latter case, people explicitly represent the

alternative cause and simulate the effects of its presence (Oaksford & Chater 2017).

To understand explaining away, we again assume the common-effect structure for two condi-

tionals. When the car started is set to 1, as in AC, a CBN assigns a high probability to the key was

turned, which drops when the car was hot-wired is set to 1. Hot-wiring explains away turning the

key as the cause of the car starting, a pattern that is puzzling for the logical paradigm (Ali et al.

2011, Hall et al. 2016).

The paradoxes of material implication in classical logic highlight the importance of the rel-

evance of premises and conclusions (whether causal or not) (Douven et al. 2018). According to

material implication, if the moon is made of green cheese, the car starts is true merely in virtue of the

falsity of its antecedent. However, this seems bizarre because antecedent and consequent seem

utterly unconnected. The numerator of Cheng’s (1997) causal power (see Equation 4), called

delta-P (�P), provides a probabilistic index of inferential relevance (Skovgaard-Olsen et al. 2017).

The probability that the car starts is unaffected by whether or not the moon is made of cheese,

so �P = 0 because Pr(q|p) = Pr(q|¬p). Following the Equation, early indications were that judge-

ments of the probability of the conditional depend only on Pr(q|p) (Over et al. 2007). However,

recent work suggests that inferential relevance plays a moderating role: The Equation holds when

�P> 0,when p and q are positively inferentially relevant, but much less so when they are irrelevant

(�P = 0) or negatively relevant (�P < 0) (Skovgaard-Olsen et al. 2017). There is debate over

whether relevance effects are semantic, part of conventionalized meaning (Krzyżanowska et al.

2017, Vidal & Baratgin 2017), or pragmatic (inferred from discourse context; see Cruz et al. 2016).

Recent evidence suggests that positive relevance is semantic rather than a presupposition or con-

versational implicature (Skovgaard-Olsen et al. 2019), and a recent theoretical model of some

novel experiments on inferential relevance may be compatible with CBNs (Douven et al. 2018).

The logical paradigm lacks the resources even to frame these questions. The complex empiri-

cal picture highlights the pressing need for theoretical integration in the new paradigm, perhaps

through CBNs.

Utility conditionals. Like slippery slope arguments, conditionals can focus on value and action.

Thus, consequential (Proposition 10) and persuasion (Proposition 11) conditionals attempt to

alter commitment to the antecedent action by manipulating the utility of the consequent event

(Bonnefon & Hilton 2004).

Proposition 10. If the CEO admits fraud, he will be sent to jail.

Proposition 11. If the Kyoto accord is ratified, greenhouse gas emissions will be reduced.

Conditional inducements form another distinct class of utility conditionals, including condi-

tional promises (Proposition 12), threats (Proposition 13), tips (Proposition 14), and warnings

(Proposition 15) (e.g., Evans et al. 2008, Ohm & Thompson 2004).
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Proposition 12. If you wash up for me, then I will give you some money.

Proposition 13. If you do not pay up, then I will send the debt collectors around.

Proposition 14. If you revise t-tests, then you will do well in the statistics exam.

Proposition 15. If you park in a private car park, then your car will get clamped.

Factors that distinguish these conditionals include whether the antecedent concerns a third

party (Propositions 10 and 11) or the hearer (Propositions 12–15), whether the consequent action

is by the speaker (Propositions 12 and 13) or not (Propositions 14 and 15), and whether the speaker

values the antecedent positively (Proposition 12) or negatively (Proposition 13). These pragmatic

factors determine how using these conditionals in conversation affects other people’s actions or

beliefs.

Bonnefon (2009) developed a general theory of utility conditionals, using utility grids to repre-

sent these pragmatic factors and utilities. The theory includes a set of folk axioms about how peo-

ple use this information to make decisions, generating testable predictions about the conclusions

invited by a utility conditional. The utility grids create the possibility of generating previously

unexplored utility conditionals and of testing a random sample of these revealed effects predicted

by the folk axioms (Bonnefon 2012). The theory has also been modified to incorporate potential

causal linkage between antecedent and consequent (Bonnefon & Sloman 2013).

Utility conditionals appear to persuade via a philosophically contentious move: deriving an

“ought” from an “is.” For example, the conclusions we are invited to draw from the factual Propo-

sitions 10 and 11 are the modal propositions below (Elqayam et al. 2015).

Proposition 16. The CEO should not admit fraud.

Proposition 17. The Kyoto accord should be ratified.

However, an apparent is-to-ought puzzle is illusory: The relevant utilities are recruited from

our background knowledge. These inferences presuppose that we ought to act to achieve our

valued goals: Thus, positive value is transferred from the consequent (reducing greenhouse gases

is good) to the antecedent (ratifying the Kyoto accord is good).

The strength of these inferences depends on whether the conclusion has positive (Proposi-

tion 11) or negative (Proposition 10) value, the causal strength of the link between antecedent

and consequent, and defeasibility, as tested using the suppression paradigm (Elqayam et al. 2015).

CBNs can model the latter two factors, again emphasizing their possible theoretical importance

in the new paradigm.Moreover, influence diagrams (Howard &Matheson 1981) can incorporate

background utilities in CBNs (Oaksford & Chater 2017).

The same principles help explain reasoning with deontic conditionals (about how people

should behave): for example, if you drink beer, you must be over 18. An enforcer of this rule has

the goal of finding cheaters who are drinking underage (Manktelow & Over 1991, Oaksford &

Chater 1994), and this is sometimes misleadingly viewed as a logical search for counterexamples.

Directives are a further form of utility conditional, which are also deontic: for example, if you see

an unusual blip, then (you should) launch the depth charges (Hilton et al. 2005). The weapons officer’s

goal in uttering this conditional is that an inferior perform the consequent action should the

antecedent conditions arise. Goal structure can alter people’s understanding of directives: Should

the inferior primarily avoid misses (blips but no depth charges launched) or false alarms (no blip

but depth charges launched)? The data show that these factors affect the information examined to

check that the inferior has obeyed the directive; the preferred conditional formulation (e.g., avoid

misses, if p then q, or avoid false alarms, q only if p); and, when these different formulations are

used, people’s comprehension of the implicit goal (Hilton et al. 2005). A directive only succeeds
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if it coordinates the inferior’s actions with the officer’s intentions. As Hilton et al. (2005, p. 403)

observe, “Rationality, here, is thus social and pragmatic, determined by the successful coordination

of the speaker and the hearer to achieve shared organisational goals.”

Quantified inference.These inferences involve the logical quantifiers all, some, some-not, and none,

and the generalized quantifiers most and few. Syllogisms are two-premise arguments using these

terms, as for example in the logically valid syllogism below.

Proposition 18.

All beekeepers (B) are artists (A).

Some chemists (C) are beekeepers.

Therefore Some C are A.

The probability heuristics model (PHM) (Chater & Oaksford 1999) assigns a probabilistic

semantics to quantified assertions: all, Pr(y|x) = 1; some, Pr(y|x) > 0; some-not, Pr(y|x) < 1; none,

Pr(y|x) = 0; few, 0 < Pr(y|x) < �; and most, 1 − � < Pr(y|x) < 1, where � is small. There are 64

possible premise pairs, each defining one of four dependency graphs determined by the figure [the

placement of the end (A,C) and middle (B) terms]. For example, Proposition 18 defines the graph

chemists→ beekeepers→ artists. The premises determine some of the parameters of the dependency

graph: Here, Pr(A|B) = 1 and Pr(B|C) > 0.We can then prove whether the premise probabilities

constrain the possible conclusion probabilities, Pr(C|A) or Pr(A|C). In this case, it turns out that

Pr(A|C) > 0 must hold given the premise probabilities, and so a some C are A conclusion follows

p-validly. A syllogism is p-invalid when Pr(C|A) or Pr(A|C) are unconstrained by the premises and

can take any value between 0 and 1. This notion of probabilistic validity is similar to probabilistic

coherence, but it differs from it because dependency graphs introduce additional independence

assumptions.

PHM uses simple heuristics, the two most important of which are the min- and the max-

heuristic. The min-heuristic is defined over an ordering in informativeness of quantified

statements, such that all > most > few > some > none ≫ some-not. This order is justified by the

probabilistic semantics and a rarity assumption (i.e., most predicates apply to a small subset of

objects). The min-heuristic states that the quantifier in the conclusion should be the same as the

least informative premise (in Proposition 18, some). The max-heuristic states that confidence in

this conclusion depends on the expected informativeness of the most informative premise (in

Proposition 18, all). Expected informativeness is ordered such that all > most > few > some >

some-not ≈ none. The expectation is calculated over the conclusions of all the p-valid syllogisms

with that type of quantifier as its most informative premise.

PHM provided as good a fit to a meta-analysis of experiments using logical quantifiers as

old-paradigm mental logic approaches (Rips 1994), but using fewer parameters (six versus nine)

(Chater & Oaksford 1999). Comparing PHM to the other accounts of syllogistic reasoning avail-

able at the time involved identifying key predictions where PHM and these accounts diverged. In

most cases, the results supported PHM. Two experiments also showed that PHM smoothly gen-

eralized to syllogisms using the quantifiers most and few (Chater & Oaksford 1999), which have

still not been captured by nonprobabilistic accounts.MMT and PHM account equally well for ex-

periments linking memory span to syllogistic reasoning (Copeland & Radvansky 2004), but PHM

shows better fits for syllogisms with more than two premises (Copeland 2006), and it captures

the distinction between strong and weak possible conclusions (Evans et al. 1999). In PHM, the

min-heuristic conclusion is the strong conclusion (Oaksford & Chater 2007), whereas, in MMT,

the strong conclusion follows in the first model constructed (Evans et al. 1999). However, for
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multiple-model syllogisms, MMT has no explanation of which model is constructed first or why

it should conform to the min-heuristic (Oaksford & Chater 2007). A recent model comparison

(Khemlani & Johnson-Laird 2012) concluded that no current theory adequately accounts for syl-

logistic reasoning.

The probabilistic representationmodel (PRM) (Hattori 2016) builds on both PHMandMMT.

PRM assumes that people first construct a probabilistic prototype model (PPM). There are eight

possible joint probabilities [e.g., Pr(A, ¬B¸C)] given the three terms in a syllogism, A, B, and C. To

calculate these probabilities, PRM uses two parameters and assumes that end terms are indepen-

dent given the middle term. One parameter is the probability of the middle term, Pr(B), which is

the same for the end terms unless one term is all, when a coverage parameter (c) determines the

degree of overlap between B and A or C. The premises may also imply that some of the joint prob-

abilities will be 0. PRM then randomly samples from the resulting probability distribution—for

example, an artist who is a chemist but not a beekeeper—consistent with the premises in Proposi-

tion 18. PRM represents the sampled individuals in a sample mental model (SMM). A sequential

application of the min-heuristic then determines the conclusion. The min-heuristic selects a con-

clusion type, which PRM tests against the SMM to see if the conclusion is possible. The some

chemists are artists conclusion in Proposition 18 is possible, as long as at least one of the sampled

individuals is both a chemist and an artist. If no such individual is available, PRM checks the next

quantifier down the order and so on. If no conclusion is consistent with the SMM, PRM reports

no valid conclusion. Finally, PRM assesses the degree of confidence in the conclusion using the

max-heuristic introducing four further free parameters.

PRM provides marginally better data fits than PHM or a parameterized MMT. Moreover,

when varying the number of items sampled, six or seven items provide the best fit, consistent with

the capacity of working memory. The model includes important theoretical innovations appli-

cable in other areas of reasoning and decision making. First, PRM assumes people construct a

generative PPM, which depends on the premises and on some assumptions about the world these

premises describe. PRM adopts a set size-balancing principle, assuming that the size of the cat-

egories defined by the terms A, B, and C is the same or symmetrical and therefore the coverage

parameter is high (best-fit value of c = 0.91) (Hattori 2016). There is evidence that people make

this assumption, which can often lead to errors, and that symmetry inferences are uniquely human

(Hattori 2016,Hattori &Oaksford 2007). Second, people sample this generative model to create a

discrete record of each sampled item (SMM) (see also Oaksford & Chater 2017, Oaksford & Hall

2016). This limited sample in memory forms the basis for predicting the conclusion, in a similar

way to how sampling models in judgement and decision making can predict people’s decisions

(e.g., Vul et al. 2014).

Inductive Reasoning

The psychology of reasoning has traditionally emphasized deductive reasoning,where logic seems

most naturally applicable. However, from the standpoint of the new paradigm, reasoning is typi-

cally probabilistic and knowledge rich.Thus, so-called inductive inferences—in which conclusions

extrapolate, often dramatically, beyond the information given in the premises—are continuous

with so-called deductive inference.Almost every aspect of perception and cognition can, in a broad

sense, be viewed as involving induction, and the relevant literatures in psychology, philosophy,

statistics, and AI are vast. Here we briefly review work that focuses on verbal inductive reasoning.

Property induction. Paradigmatic verbal inductive arguments involve generalizing a property

from one or more cases to new cases. For example, we might wonder which of the following

conclusions follows most strongly:
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Proposition 19.

Mice have property X.

Therefore Rats/cats have property X.

Intuitively, similarity plays a role: Mice are more similar to rats than to cats and hence seem

likely to share properties. Recent work finds (e.g., Kemp & Tenenbaum 2009), though, that the

nature of the property, conjoined with background knowledge, is crucial. If property X is having

a virus, and background knowledge tells us that cats may catch the virus by eating mice, then the

generalization to cats may be stronger.

Researchers have also considered multiple premises:

Proposition 20.

Mice have property X.

Rats/fish have property X.

Therefore Dogs have property X.

Here, the diversity of examples seems persuasive (e.g., Heit & Feeney 2005). If mice and rats

have property X, we may suspect it is limited to rodents; if mice and fish do, we may suspect

X is very widespread across animals and most likely includes dogs. Again, though, the specific

property and background knowledge are crucial. As for argumentation and deduction, such infer-

ences are well modeled by hierarchical Bayesian models, which capture such knowledge (Kemp &

Tenenbaum 2009).

Abduction. Abductive reasoning seeks to infer an explanation for given premises, sometimes

known as inference to the best explanation (Harman 1965). Scientists, adult participants, and chil-

dren seem to prefer simple explanations that explain as much as possible (Lombrozo 2016), and

studies with children and adults indicate that they prefer explanations that have the fewest as-

sumptions and are best integrated (Lombrozo & Vasilyeva 2017). For example, participants were

provided with explanations for weight loss and fatigue, either separately in terms of loss of ap-

petite and insomnia or via the additional root cause of depression: The latter, more integrated,

explanation was preferred.

Explanations with broader coverage are also preferred. As with category induction, explana-

tions that capture diverse evidence are preferred (Kim & Keil 2003); indeed, participants prefer

explanations when they have been prompted to consider the variety of evidence they can account

for (Preston & Epley 2005). Moreover, children between three and five years of age also show

enriched inferences about the internal structure of a simple machine when prompted to generate

verbal explanations.

Simplicity and explanatory breadth can be naturally captured within a probabilistic framework

if there is prior bias to simple explanations—indeed, preferences for simple versus probable ex-

planations are identical under some assumptions (e.g., Chater 1996). Whether Bayesian explana-

tion entirely underpins other explanatory virtues continues to be debated (Douven & Schupbach

2015a).

Data selection. Inquiry into the world involves actively choosing which data to consider. Accord-

ing to logic-based approaches in the psychology of reasoning (e.g., Wason 1968), people should

seek falsifications of their conjectures.However, from a probabilistic standpoint, people should se-

lect data expected to provide the most (or most useful) information. These approaches can make
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strikingly different predictions. For example, when evaluating a conditional such as if you eat tripe,

you will be ill (on the assumption the tripe eating and illness are both rare), it seems natural to check

whether any known tripe eaters became ill and whether any ill people ate tripe (i.e., favoring con-

firming, not falsifying, instances of the rule). However, it seems futile to survey non-ill people to

check whether they have eaten tripe: If they have, this will be an informative falsification, but it is

overwhelmingly likely that they have not, and hence no useful information will be gained.

Bayesian optimal data selection formalizes these intuitions and provides a rational analysis

(Anderson 1991) of what was previously viewed as confirmation bias in data-selection tasks, most

famouslyWason’s (1968) card-selection task. Variations of the conditional, by modifying rarity (as

noted above) or introducing negations in the antecedent and/or conclusion, yield different predic-

tions according to the Bayesian framework, but not according to the logical viewpoint (Oaksford&

Chater 1994, 2007). Moreover, different underlying probabilistic models can be explored (Klauer

1999, Oaksford & Chater 1994; for a recent MMT perspective, see Ragni et al. 2018), as well as

sequential information search in both adults and children (e.g.,Nelson et al. 2014; cf.Coenen et al.

2018). The appropriate measure of amount of information is an open question, on both axiomatic

and empirical grounds (e.g., Crupi et al. 2018).

Deductive and inductive reasoning: one process or two? The new paradigm assimilates deduc-

tive and inductive reasoning as probabilistic, knowledge-rich, and context-dependent arguments.

This viewpoint seems incompatible with dual-process accounts in which a slow, logic-based rea-

soning system runs alongside a fast, associative, probabilistic system (e.g., Heit & Rotello 2010,

Klauer et al. 2010, Rips 2001, Stanovich 2011). Recent work using signal detection theory tests

directly whether one or two factors explain inductive and deductive inference, concluding that the

data favor a unified account (Stephens et al. 2018).

FUTURE DIRECTIONS

We first establish further connections between the new paradigm and other areas of the cognitive

and brain sciences, as these are likely to feature prominently in its future development. We then

look briefly at the picture of the cognitive systems this review suggests and outline key challenges

for its future development.

Verbal Reasoning as Part of the Cognitive and Brain Sciences

The new paradigm in the psychology of reasoning has a number of links with accounts of rational-

ity in psychology, philosophy, neuroscience, and AI.The emphasis on probability theory links with

the explosion of interest for Bayesian models of perception, motor control, language processing,

and knowledge representation in psychology (e.g., Chater & Oaksford 2008). In particular, there

are strong connections to Bayesian brain theory (Friston 2009, Oaksford & Hall 2016). The em-

phasis on knowledge-rich reasoning embedded in social interactions links with inferential theories

of communication (Sperber & Wilson 1986). Moreover, the focus on the division of cognitive la-

bor fits with developments in social epistemology (e.g., Goldman 1999), accounts of the collective

rationality of simple agents in finance theory and economics (Farmer et al. 2005), and theories of

cumulative cultural evolution (e.g., Richerson & Boyd 2005; see Karaaslan et al. 2018 on cultural

differences in gullibility in intergenerational knowledge transmission).

The field of verbal reasoning sprang from the project of understanding how far human rea-

soning aligns with logic. In the new paradigm, argumentation, deduction, and induction alike are

modeled within a social, probabilistic framework, and the rationale for seeing verbal reasoning as

www.annualreviews.org • New Paradigms in Reasoning 323

A
n
n
u
. 
R

ev
. 
P

sy
ch

o
l.

 2
0
2
0
.7

1
:3

0
5
-3

3
0
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

 A
cc

es
s 

p
ro

v
id

ed
 b

y
 U

n
iv

er
si

ty
 o

f 
W

as
h
in

g
to

n
 o

n
 0

2
/0

9
/2

0
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 



distinct from the rest of cognition has diminished. What makes verbal reasoning special may not

be its underpinning cognitive machinery, but rather the fact that it is public, and hence open for

debate and challenge (Mercier & Sperber 2017, Oaksford & Hall 2016).

Cognitive Theory and Its Challenges

A social perspective on reasoning may alleviate the need for individual, globally consistent knowl-

edge bases in long-termmemory (LTM) to support reasoning (Oaksford &Chater 2012), which is

consistent with the fact that human knowledge is full of both gaps (e.g.,Rozenblit &Keil 2002) and

contradictions (Oaksford &Chater 1991). Consistency and coherence may be primarily at issue in

particular adversarial exchanges when we make public commitments on which we are challenged.

Individual reasoning may only involve representing locally coherent, small-scale generative mod-

els of the premises, like CBNs or PPMs. The process of constructing these models probably in-

volves highly flexible, analogical generalizations from concrete exemplars in LTM rather than

general principles (e.g., Chater 2018). Estimating probabilities from these models involves sam-

pling the model (Vul et al. 2014) and occasionally creating discrete representations of the samples

(Hattori 2016, Oaksford & Chater 2017). Most of this review has treated the Bayesian framework

at the computational level. However, it is possible to view the proposals concerning CBNs, impli-

cated in many areas of verbal reasoning, at the algorithmic level, as specifying the mental processes

involved in a passage of reasoning. In argumentation, where people disagree, each interlocutor is

attempting to align their discourse partner’s local model with their own. Doing so requires an

understanding of what is common knowledge between interlocutors; an argument cannot begin

without agreement on interpretation that requires such knowledge.

Theories of reasoning must, therefore, confront some significant challenges. For example, in

AI, the processes of reasoning over very large knowledge bases of fragmentary and inconsistent

beliefs, which nonetheless can support the construction of locally coherent models, are not well

understood (Pearl 1988). However, as we have suggested, such coherence is probably achieved by

analogy to specific exemplars rather than by maintaining globally consistent individual knowledge

bases. Moreover, the pragmatic processes involved in the interpretation of the premises and the

conclusion may often involve far more sophisticated reasoning than the verbal inference under

study (Sperber & Wilson 1986). Common knowledge and related notions of common belief

are also extremely subtle (Clark 1996). Indeed, game-theoretic treatments of both common

knowledge and communication are highly sophisticated and computationally complex (e.g.,

Aumann 1976).

CONCLUSION

Verbal reasoning is a social activity in which people communicate and argue. Individual knowledge

is partial and fragmentary; reasoning must deal with probability and the integration of knowledge

across people, via communication and argumentation. Traditional models of reasoning ignore un-

certainty and communicative context and use formal logic as a standard for good reasoning. The

new paradigm in the psychology of reasoning, by contrast, attempts to explain argumentation, de-

duction, and induction in a probabilistic framework, in continuity with models that have become

widespread in the cognitive and brain sciences. Moreover, if collective, rather than individual,

intelligence is primary (Sloman & Fernbach 2017), a key aspect of verbal reasoning may be in

supporting public argument and debate (Mercier & Sperber 2017).While empirical and theoret-

ical challenges remain, the new paradigm in the psychology of reasoning has yielded considerable

progress and provides an integrative framework for future research.
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FUTURE ISSUES

1. How can we embed reasoning in social-communicative contexts?

2. How can we model pragmatic reasoning in communicative exchanges?

3. Are causal and noncausal dependencies (e.g., reasons) modeled in the same way?

4. When do networks of individual reasoners synthesize knowledge rather than herding?

5. How does the fragmentary nature of individual knowledge support argumentation?

6. When do people reason, search for new information, or rely on other people (or

Google)?

7. Is human verbal reasoning continuous with inferences underpinning perception and

action?

8. Is there a Bayesian account of explanatory virtues, like integration,minimal assumptions,

and goodness?

9. What are the origins of, and how do we reason with, common knowledge?
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