
  

Stein’s Paradox in Statistics 

The best guess about the future is usually obtained by computing 
the average of past events. Stein’s paradox defines circumstances 

in which there are estimators better than the arithmetic average 

strikingly contrary to generally 
held belief even though an obvi- 

ously valid proof is given. Charles Stein 
of Stanford University discovered such 
a paradox in statistics in 1955. His result 
undermined a century and a half of 
work on estimation theory, going back 
to Karl Friedrich Gauss and Adrien Ma- 
rie Legendre. After a long period of re- 
sistance to Stein’s ideas, punctuated by 
frequent and sometimes angry debate, 
the sense of paradox has diminished and 
Stein's ideas are being incorporated 
into applied and theoretical statistics. 

Stein’s paradox concerns the use of ob- 
served averages to estimate unobserv- 

able quantities. Averaging is the second 
most basic process in statistics, the first 
being the simple act of counting. A base- 
ball player who gets seven hits in 20 offi- 
cial times at bat is said to have a batting 
average of .350. In computing this sta- 
tistic we are forming an estimate of the 
player’s true batting ability in terms of 
his observed average rate of success. 
Asked how well the player will do in his 
next 100 times at bat, we would proba- 
bly predict 35 more hits. In traditional 
Statistical theory it can be proved that 
no other estimation rule is uniformly 
better than the observed average. 

The paradoxical element in Stein's re- 
sult is that it sometimes contradicts this 
elementary law of statistical theory. If 
we have three or more baseball players, 
and if we are interested in predicting fu- 
ture batting averages for each of them, 
then there is a procedure that is better 
than simply extrapolating from the 
three separate averages. Here “better” 
has a strong meaning. The statistician 
who employs Stein’s method can expect 
to predict the future averages more ac- 
curately no matter what the true bat- 
ting abilities of the players may be. 

G sik! a mathematical result is 

Besebal is a sport with a large and 
carefully compiled body of statis- 

tics, which supplies convenient material 
for illustrating the workings of Stein's 
method. As our primary data we shall 
consider the batting averages of 18 ma- 
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jor-league players as they were recorded 
after their first 45 times at bat in the 
1970 season. These were all the players 
who happened to have batted exactly 45 
times the day the data were tabulated. A 
batting average is defined. of course, 
simply as the number of hits divided by 
the number of times at bat; it is always a 
number between 0 and 1. We shall de- 
note each such average by the letter y. 

The first step in applying Stein’s meth- 
od is to determine the average of the 
averages. Obviously this grand average, 
which we give the symbol 7, must also 
lie between 0 and 1. The essential proc- 
ess in Stein’s method is the “shrinking” 
of all the individual averages toward 
this grand average. If a player’s hitting 
record is better than the grand average, 
then it must be reduced; if he is not hit- 
ting as well as the grand average, then 
his hitting record must be increased. The 
resulting shrunken value for each player 
we designate z. This value is the James- 
Stein estimator of that player’s batting 
ability, named for Stein and W. James, 
who together proposed a particularly 
simple version of the method in 1961. 
Stein’s paradox is simply that the z val- 
ues, the James-Stein estimators, give 
better estimates of true batting ability 
than the individual batting averages. 

The James-Stein estimator for each 
player is found through the following 
equation: z = ¥ + c(y — J). The quantity 
(y — 3) is the amount by which the play- 
er’s batting average differs from the 
grand average. The equation thus states 
that the James-Stein estimator z differs 
from the grand average by this same 
quantity (y— ¥) multiplied by a con- 
stant, c. The constant c is the “shrinking 
factor.” If it were equal to 1, then the 
equation would state that the James- 
Stein estimator for a given player is 
identical with that player’s batting aver- 
age; in other words, y equals z. Stein's 
theorem states that the shrinking factor 
is always less than 1. Its actual value is 
determined by the collection of all the 
observed averages. 

In the case of the baseball data, the 
grand average jis .265 and the shrinking 

factor ¢ is .212. Substituting these values 
in the equation, we find that for each 
player z equals .265 + .212() — .265). 

Because ¢ is about .2, each average 
will shrink about 80 percent of the dis- 
tance to the grand average. and the total 
spread of the averages will be reduced 
about 80 percent. 

As an example consider the late Ro- 
berto Clemente, who was the leading 

batter in the major leagues when our 
Statistics were compiled. For Clemente 
y is equal to .400, and z can be deter- 
mined by evaluating the expression 
z= .265 + .212(.400 — .265). The re- 
sult is .294. In other words, Stein's theo- 
rem states that Clemente’s true batting 

ability is best estimated not by .400 but 
lies closer to .294. Thurman Munson, 
in a batting slump early in the 1970 sea- 
son, had an average of only .178. Sub- 
Stituting this value in the equation, we 
find that his estimated batting ability is 
substantially increased: the James-Stein 
estimator for Munson is .247. 

Wwricr set of values, » or z, is the 
better indicator of batting ability 

for the 18 players in our example? In 
order to answer that question in a pre- 
cise way one would have to know the 
“true batting ability” of each player. 
This true average we shall designate 
with @ (the Greek letter theta). Actually 

it is an unknowable quantity, an abstrac- 
tion representing the probability that a 
player will get a hit on any given time at 
bat. Although @ is unobservable, we 
have a good approximation to it: the 
subsequent performance of the batters. 
It is sufficient to consider just the re- 
mainder of the 1970 season, which in- 
cludes about nine times as much data as 
the preliminary averages were based on. 
The expected statistical error in such a 
sample is small enough for us to neglect 
it and proceed as if the seasonal average 
were the “true batting ability” @ of a 
player. That is one reason for choosing 
batting averages for this example. In 
most problems the true value of @ can- 
not be determined. 

One method of evaluating the two es- 
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BATTING AVERAGE ERROR SQUARED 

— BATTING ABILITIES of 18 major-league baseball players are estimated more accurately by the method of INITIAL AVERAGE Charles Stein and W. James than they are by the individual batting averages. The averages employed as estima- r tors are those calculated after each player had had 45 times at bat in the 1970 season. The true batting ability _ || SEASON AVERAGE of a player is an unobservable quantity, but it is closely approximated by his long-term average performance. Here the true ability is represented by the batting average maintained during the remainder of the 1970 season. JAMES-STEIN For 16 of the players the initial average is inferior to another number, the James-Stein estimator, as a predictor ESTIMATOR of batting ability. The James-Stein estimators, considered as a group, also have the smaller total squared error. 
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timates is by simply counting their suc- 
cesses and failures. For 16 of the 18 
‘players the James-Stein estimator z is 
closer than the observed average y to the 
“true,” or seasonal, average 0. A more 

quantitative way of comparing the two 
techniques is through the total squared 
error of estimation. This is measured by 
first determining the actual error of each 
prediction, given by (6 — y) and (6 — z), 
for each player. Each of these quantities 
is then squared and the squared values 
are added up. The observed averages y 

have a total squared error of .077, 
whereas the squared error of the James- 
Stein estimators is only .022. By this 
comparison, then, Stein’s method is 3.5 
times as accurate. It can be shown that 
for the data given 3.5 is close to the ex- 
pected ratio of the total squared errors 
of the two methods. We have not just 
been lucky. 

Grppose a statistician makes a random 
sampling of automobiles in Chicago 

and finds that of the first 45 recorded 
nine are foreign-made and the remain- 
ing 36 are domestic. We want to esti- 
mate the true proportion of imported 
cars in Chicago, a quantity represented 
by another unobservable @. The ob- 
served average of 9/45 = .200 is one es- 
timate. Another can be obtained by sim- 
ply lumping this problem together with 
that of the 18 baseball players. Substi- 
tuting the value .200 in the equation 
used in that problem gives a James-Stein 
estimator of .251 for the imported-car 
ratio. (Actually the addition of a 19th 
value changes the grand average j and 
also slightly alters the shrinking factor c. 
The changes are small, however; the 

amended value of z is .249.) 
In this case intuition argues strongly 

that the observed average and not the 
James-Stein estimator must be the bet- 
ter predictor. Indeed, the entire proce- 
dure seems silly: what could batting av- 
erages have to do with imported cars? It 
is here that the paradoxical nature of 
Stein’s theorem is most uncomfortably 
apparent. The theorem applies as well to 
the 19 problems as it did to the original 
18. There is nothing in the statement of 
the theorem that requires the compo- 
nent problems to have some sensible re- 
lation to one another. 

The same disconcerting indifference 
to common sense can be demonstrated 
in another way. What does Clemente’s 
.400 observed average have to do with 
Max Alvis, who was poorest in batting 
among the 18 players? If Alvis had had 
an early-season hitting streak, batting 
say .444 instead of his actual .156, the 
James-Stein estimator for Clemente’s 
average would have been increased 
from .294 to .325. Why should Alvis’ 
success or lack of it have any influence 
On our estimate of Clemente’s ability? 
(They were not even in the same league.) 
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JAMES-STEIN ESTIMATORS 

JAMES-STEIN ESTIMATORS for the 18 baseball players were calculated by “shrinking” the 
individual batting averages toward the overall “average of the averages.” In this case the grand 
average is .265 and each of the averages is shrunk about 80 percent of the distance to this value. 
Thus the theorem on which Stein’s method is based asserts that the true batting abilities are 
more tightly clustered than the preliminary batting averages would seem to suggest they are. 

It is questions of this kind that have 
been raised by critics of Stein's method. 
In order to reply to them it will be neces- 
sary to describe the method rather more 
carefully. 

TL kine an average is an easy and fa- 
miliar process that seems to need no 

justification. Actually it is not obvious 
why the average is so often useful in 
estimating the true center of gravity of a 
random process. The explanation lies in 
the distribution that the values of the 
random variable tend to assume. 

The distribution most common in sci- 
entific work is the “normal” distribu- 
tion, described by a bell-shaped curve; it 
was first investigated in depth by Gauss 
and is sometimes called the Gaussian 
distribution. It is constructed by assum- 
ing that the random variable can take on 
any value along some axis; the probabil- 
ity that it falls within any given interval 
is then made equal to the area under the 
same interval of the bell-shaped curve. 
The curve is completely specified by two 
parameters: the mean, 9, which lies at 
the peak of the curve, and the standard 
deviation, which measures how closely 
the values are distributed around the 
mean. It is customary to assign the stan- 
dard deviation the symbol o (sigma). 
The larger the standard deviation is, the 
more widely dispersed the data are. 

In probability theory a known mean 
and standard deviation are employed to 
predict future behavior. A problem in 
statistics proceeds in the opposite direc- 
tion: from observed data the statistician 
must infer the mean @ and the standard 
deviation o. 

Suppose, for example, the measure- 
ment of some random variable x yields 

the five successive values 10.0, 9.4, 10.3, 
8.6 and 9.7. Suppose further the values 
are known to be part of a normal distri- 
bution with a standard deviation of 1. 
What is the value of the true mean 6? In 
principle the mean could have any val- 
ue, but some values are more likely than 
others. A mean of 6.5, for example, 
would require that all five values be un- 
der the extreme tail of the curve and that 
none be found near the center. Gauss 
showed that among all possible choices 
for the mean, the average X of the ob- 
served data (which in this case has a val- 
ue of 9.6) maximizes the probability of 
obtaining the data actually seen. In this 
sense the average is the most likely esti- 
mate of the mean: in fact, Gauss con- 
structed the normal distribution just so 
that it would have this property. 

There is a further justification, also 
pointed out by Gauss, for choosing the 
average as the best estimator of the un- 
observable mean 6. Gauss noted that the 
average of the data is an “unbiased” esti- 
mator of the mean, in the sense that it 
favors no selected value of 6. To be 
more precise, the average is unbiased 
because the expected value of X¥ equals 
the true @ no matter what 6 may be. 
There are infinitely many unbiased esti- 
mators of 6, none of which estimates 6 
perfectly. Gauss showed that the expect- 
ed squared error of estimation for the 
average X is lower than that for any oth- 
er linear, unbiased function of the obser- 
vations. In the 1940's it was demonstrat- 
ed that no other unbiased function of the 
data, whether it is linear or nonlinear, 
can estimate @ more accurately than the 
average, in terms of expected squared 
error. An essential contribution to that 
proof had been made in the 1920's by 
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R. A. Fisher, who showed that all the in- 

formation about @ that can possibly be 
found in the data is contained in the av- 
erage x. 

i the 1930's a mathematically more 
rigorous approach to statistical infer- 

ence was undertaken by Jerzy Neyman, 
Egon S. Pearson and Abraham Wald: 
the ideas they developed are part of 
what is now known as statistical deci- 
sion theory. They discarded the require- 
ment of unbiased estimation and exam- 
ined all functions of the data that could 
serve as estimators of the unknown 
mean 6. These estimators were com- 

pared through a risk function, defined as 
the expected value of the squared error 
for every possible value of 6. 

Consider three competing estimators: 
the average of the data, x; half that aver- 

age, X/2, and the median of the data, or 

middle value. For both the average and 

the median the risk function is constant: 
that is merely another way of saying that 
their expected squared error in predict- 
ing the mean @ is the same no matter 

what the value of @ really is. Of the two 
constant risk functions, the one for the 
average X is uniformly smaller by a fac- 
tor of about two-thirds; clearly the aver- 
age is the preferred estimator. In the lan- 
guage of decision theory the median is 
said to be “inadmissible” as an estimator 
of @, since there is another estimator 
that has a smaller risk (expected squared 

error) no matter what @ is. (It should be 

mentioned, however, that when the data 
have a distribution other than the nor- 
mal one, it is possible for the order of 
preference to be reversed.) 

For the estimator X/2, which is biased 
toward the value @ = 0, the risk function 
is not constant; this estimator is accurate 
if @ happens be close to zero, but the 
expected squared error increases rapid- 

ly as the true mean departs from zero. 
The risk function describes a parabola. 
with the minimum point at 6 = 0; if the 
mean does happen to be zero, then the 
risk function for x/2 is four times small- 
er than that for the average itself. At 
large values of the mean, however, the 

average X regains its superiority. With 
other estimators we can poke down the 
risk function below that of the average 

at any point we wish to, but it always 
pops up again somewhere else. 

There remains the possibility that 
some other estimator has a risk that is 
uniformly lower than that of the aver- 
age. In 1950 Colin R. Blyth, Erich L. 
Lehmann and Joseph L. Hodges, Jr., 
proved that no such estimator exists. In 
other words, the average X is admissi- 
ble, at least when it is applied to one set 
of observations for the purpose of esti- 
mating one unknown mean. 

Stein’s theorem is concerned with the 
estimation of several unknown means. 
No relation between the means need be 
assumed; they can be batting abilities or 

proportions of imported cars. On the 
other hand. the means are assumed to be 
independent of one another. In evaluat- 
ing estimators for these means it is once 
again convenient to employ a risk func- 

tion defined as the sum of the expected 
values of the squared errors of estima- 
tion for all the individual means. 

he obvious first choice of an estima- 
tor for each of several means is the 

average of the data related to that mean. 
The entire historical development of 
statistical theory from Gauss through 
decision theory argues that the average 
is an admissible estimator as long as 
there is just one mean, @, to be estimat- 

ed. Stein showed in 1955 that the aver- 
age is also admissible for estimating two 
means. Stein's paradox is simply his 
proof that when the number of means 
exceeds two, estimating each of them by 

its own average is an inadmissible pro- 
cedure. No matter what the values of 
the true means, there are estimation 
rules with smaller total risk. 

In 1955 Stein was able to prove this 
proposition only in those cases where 
the number of means, a quantity we 
shall designate k, was very large. Stein's 
1961 paper written in collaboration with 
James extended the result to all values 
of k greater than 2: moreover, it did so in 

a constructive manner. Stein and James 
not only showed that estimators must 
exist that are everywhere superior to the 

  

P
R
O
B
A
B
I
L
I
T
Y
 
—
~
>
 

    

  

    

0-30 0 - 20 a 8-c b 6 - O+0 
(TRUE MEAN) 

. ean |   

95% 

  x AXIS 

d= 2a 04+ 36 

    

  

NORMAL DISTRIBUTION of a random variable around the mean 

value of that variable provides the fundamental justification for esti- 
mation by averaging. The distribution is defined by two parameters, 

the mean, 0, which locates the central peak of the distribution, and 

the standard deviation, 7, which measures how widely scattered the 
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data points are. It is assumed in defining the distribution that the var- 
iable x can take on any value on the x axis. The most likely value of 

x is, by definition, the mean 6. The probability that x lies within any 

given interval on the axis, such as that between the points a and 3d, 
is equal to the area under the bell-shaped curve between those points.
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PROBLEM IN STATISTICS is to deduce from a set of data the 

true mean and standard deviation of the distribution. Even when it is 

known that the distribution is a normal one and that the standard de- 

viation is 1, the mean could in principle have any value. Some val- 

ues, however, are more likely than others. For example, the five data 

averages; they were also able to provide 
an example of such an estimator. 

The James-Stein estimator has al- 
ready been defined in our investigation 
of batting averages.-It is given by the 
equation z = ¥ + e(y — 9), where » is the 
average of a single set of data, y is the 

grand average of averages and c is a 

“shrinking factor.” There are several 
other expressions for the James-Stein es- 
timator, but they differ mainly in detail. 
All of them have in common the shrink- 
ing factor c; it is the definitive character- 
istic of the James-Stein estimator. 

In the baseball problem c was treated 
as if it were a constant. Actually it is 
determined by the observed averages 
and therefore is not a constant. The 
shrinking factor is given by the equation 

ea, k—3)e? 
ZU — 7)?" 

Here k is again the number of unknown 

means, o? is the square of the standard 
deviation and E(y — j)2 is the sum of the 
squared deviations of the individual av- 
erages y from the grand average j. 

Let us briefly explore the meaning of 
this rather forbidding equation. With k 
and o? fixed, we find that the shrinking 
factor ¢ becomes smaller (and the pre- 
dicted means are more severely affected 
by it) as the expression S(y — y)? gets 

smaller. On the other hand, c increases, 
approaching unity, and the shrinking is 
less drastic as the expression =(y — 9)? 
increases. 
What do these equations mean in 

terms of the behavior of the estimator? 
In effect the James-Stein procedure 
makes a preliminary guess that all the 

unobservable means are near the grand 
average y. If the data support that guess 
in the sense that the observed averages 
are themselves not too far from y, then 

the estimates are all shrunk further 
toward the grand average. If the guess is 
contradicted, then not much shrinking is 
done. These adjustments to the shrink- 
ing factor are accomplished through the 
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effect the distribution of averages 
around the grand average ¥ has on the 

equation that determines c. The number 
of means being estimated also influ- 
ences the shrinking factor, through the 
term (k — 3) appearing in this same 
equation. If there are many means, the 
equation allows the shrinking to be 
more drastic, since it is then less likely 

that variations observed represent mere 
random fluctuations. 

With c calculated in this manner, the 
risk function for the James-Stein estima- 
tor is less than that for the sample aver- 
ages no matter what the true values of 
the means @ happen to be. The reduction 
of risk can be substantial, particularly 
when the number of means is larger than 
five or six. The risk function is not con- 
stant for all values of the true mean @, as 
it is for the observed averages. The risk 
of the James-Stein estimator is smallest 
when all the true means are the same. As 
the true means depart from one another 
the risk of the estimator increases, ap- 
proaching that of the observed averages 
but never quite equaling it. The James- 
Stein estimator does substantially better 
than the averages only if the true means 
lie near each other, so that the initial 
guess involved in the technique is con- 
firmed. What is surprising is that the es- 
timator does at least marginally better 
no matter what the true means are. 

The expression for the James-Stein es- 
timator that we have employed refers all 
observed averages to the grand average 
y. This procedure is not the only one 

possible; other expressions for the esti- 
mator dispense with ¥ entirely. What 
cannot be avoided is the introduction of 
some more or less arbitrary initial guess 
or point of origin for the estimator. The 
observed averages, it will be noted, do 
not depend on a choice of origin. Before 
Stein discovered his method it was felt 
that such “invariant” estimators must be 
preferable to those whose predictions 
change with each choice of an origin. 
The theory of invariance, to which Stein 
had been a principal contributor, was 
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points (x) given here could be described by a normal distribution with 

a mean of 6.5 only if all five points were more than two standard de- 
viations above the mean. It can be shown that the data are most likely 

to be generated by a distribution with a mean equal to the observed 

average of the data, denoted x. In this case the average is equal to 9.6. 

badly shaken by the James-Stein coun- 
terexample. From the standpoint of 
mathematics this is the most unsettling 
aspect of Stein's theorem. Indeed. the 
paradox was not discovered earlier large- 
ly because of a strong prejudice that the 
estimation problem, being stated with- 
out reference to any particular origin. 
should be solved in a similar way. 

Abplications of Stein’s method tend to 
involve large sets of data with 

many unknown parameters. Some of 
the difficulties of such problems, as well 
as the practical potential of the method 
itself, can be illustrated by an exam- 
ple: an analysis of the distribution of the 
disease toxoplasmosis in the Central 
American country of El Salvador. 

Toxoplasmosis is a disease of the 
blood that is endemic in much of Cen- 
tral America and in other regions of the 
Tropics. In El Salvador roughly 5,000 
people drawn in varying numbers from 
36 cities were tested for toxoplasmosis. 
The observed rate of incidence for each 
city can conveniently be expressed by 
comparison with the national rate (that 
is, with the grand average §). A mea- 

sured rate of .050, for example, denotes 
a city with an incidence of the disease 5 
percent higher than the national aver- 
age. The measured rates have an ap- 
proximately normal distribution. The 
standard deviations of these distribu- 
tions are known, but they differ from 
city to city, depending inversely on how 
large a sample population was tested in 
that city. It is the task of the statistician 
to estimate the true mean @ of the distri- 
bution for each city from the measured 
incidence y. 

In this case the appropriate form of 
the James-Stein estimator is z = cy. The 
simplification, which was introduced by 
us, is made possible by the chosen man- 
ner of expressing the observations y. 
They are defined in such a way that the 
grand average ) is zero, and terms con- 

taining ¥ therefore drop out of the equa- 
tion. On the other hand. the estimation 
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VARIOUS ESTIMATORS of a single true mean, @, can be evaluated by way of a risk func- 

tion, The risk is defined as the expected value of the squared error of estimation, considered as 

a function of the mean @. The average of the data, x, is an estimator with a constant risk func- 

tion: no matter what the true mean is, the expected value of the squared error is the same, The 

median, or middle value, of the data also has constant risk, but it is everywhere greater (by a 

factor of 1.57) than the risk of the average. Half the average (x/2) is an estimator whose risk 

depends on the actual value of the mean; the risk is smallest when the mean is near zero and in- 

creases rapidly when the mean departs from zero. For the estimation of a single mean there is 

no estimator with a risk function that is everywhere less than the risk function of the average x. 
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TOTAL SQUARED DEVIATION OF MEANS FROM THEIR AVERAGE 

TOTAL RISK FUNCTION for the James-Stein estimators is everywhere less than that for 

the individual observed averages, as long as the number of means being estimated is greater 

than two. In this case there are 10 unknown means. The risk is smallest when ail the means are 

clustered at a single point. As the means depart from one another the risk of the James-Stein 

estimators increases, approaching that of the observed averages but never quite reaching it. 
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procedure is now complicated by the 

fact that the shrinking factor c is differ- 

ent for each city. varying inversely as 

the standard deviation of y for that city. 

This dependence of the shrinking factor 

on the standard deviation has a simple 

intuitive rationale. A large standard de- 

viation implies a high degree of random- 
ness or uncertainty in a measurement. 

If the measured incidence is unusual- 
ly large, it can therefore be attributed 
more reasonably to random fluctuations 

within the normal distribution than to a 
genuinely large value of the true mean 

9. It is thus proper to reduce this value 
drastically, that is, to apply a small 
shrinking factor. 

The same argument can be made even 
more forcefully by returning for a 
moment to baseball. Frank O’Connor 
pitched for Philadelphia in the 1893 sea- 
son. He batted twice in his major-league 
career, hitting successfully both times. 
His observed batting average is hence 

1.000. The James-Stein rule for the 18 
players considered above estimates 
O’Connor’s true batting ability to be 
265 + .212(1.000 — .265) = .421 (ig- 
noring the effect of the new data on the 
grand average and on the shrinking fac- 
tor). This is a silly estimate, although 
not as silly as 1.000. A perfect average 
after two times at bat is not at all incon- 
sistent with a true value in the range 
from .242 to .294 that is estimated for 
the other players. The shrinking con- 
stant ¢ applied to O’Connor’s average 
should be severer in order to compen- 
sate for the smaller amount of data 
available for him. 

For the El Salvador observations, 
most of the shrinking factors are quite 
gentle, between .6 and .9, but a few are 
in the range from .1 to .3. Which set of 

numbers should we prefer, the James- 
Stein estimators or the measured rates 

of incidence? That depends largely on 
what we want to use the numbers for. 

If the Minister of Health for El Salva- 
dor intends to build local hospitals for 
people suffering from toxoplasmosis, 
the James-Stein estimators probably of- 

fer the more reliable guidance. The rea- 

son is that the expected value of the total 

squared error is smaller for the James- 

Stein estimators: in fact, it is smaller by 

a factor of about three. The important 
point in this calculation is that the ex- 

pected error is added up for all the cities. 

Any particular hospital might be the 
wrong size or in the wrong place, but the 
sum of all such mismatches would be 
smaller for the James-Stein estimators 
than for the observed rates. 

The James-Stein estimators are also 
likely to be preferable for determining 
the ordering of the true means. In this 
regard it is notable that the city with the 
highest apparent incidence (according 
to the measured rates y) is ranked 12th 

according to the James-Stein estimators.



The estimate is drastically reduced be- 
cause the sample was very small in that 
city. This information might be useful if 
there were funds for only one hospital. 

Suppose an epidemiologist wants to 
investigate the correlation of the true in- 

cidence in each city with attributes such 

population? Once 
estimators are pre 

er approximation 
the cases. 

as rainfall, temperature, elevation or 

lation shows that they would give a clos- 

There is one purpose for which the 

measured incidence may well be superi- 
or to the James-Stein estimator: when a 

single city is considered in isolation. As 
we have seen, the James-Stein method 

gives better estimates for a majority of 
cities, and it reduces the total error of 

estimation for the sum of all cities. It 

again the James-Stein 
ferred; a rough calcu- 

in about 70 percent of 
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INCIDENCE OF TOXOPLASMOSIS, a disease of the blood, was 
surveyed in 36 cities in the Central American country El Salvador. 
The measured incidence in each city can be regarded as an estimator 
of the true incidence, which is unobservable. The measured incidence 
has a normal distribution whose standard deviation is determined by 
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SHRINKING of the observed toxoplasmosis rates to yicld a set of 
James-Stein estimators substantially alters the apparent distribution 
of the disease. The shrinking factor is not the same for all the cities 
but instead depends on the standard deviation of the rate measured 
in that city. A large standard deviation implies that a measurement is 
based on a small sample and Is subject to large random fluctuations; 
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the number of people surveyed in that city. The measured rates are 
expressed in terms of deviation from the national incidence (the aver- 

age of the rates observed in all the cities). Thus zero denotes exactly 
the national rate, and a city with a measured incidence of —.040 would 
have an observed rate 4 percent lower than the country as a whole. 
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that measurement is therefore compressed more than the others are. 
In the El Salvador data the most extreme observations tend to be cor- 
related with the largest standard deviations, again suggesting the un- 
reliability of those measurements. Compared with the observed rates, 

the James-Stein estimators can be proved to have a smaller total error 

of estimation. They also provide a more accurate ranking of the cities, 
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cannot be demonstrated, however, that 

Stein’s method is superior for any par- 

ticular city; in fact, the James-Stein pre- 

diction can be substantially worse. 

Estimating the true mean for an isolat- 

ed city by Stein’s method creates se- 

rious errors when that mean has an atyp- 

ical value. The rationale of the method 

is to reduce the overall risk by assuming 

that the true means are more similar to 
one another than the observed data. 
That assumption can degrade the esti- 
mation of a genuinely atypical mean. 
Now we see why imported cars should 
not be included in the same calculations 
with the 18 baseball players. There is a 
substantial probability that the automo- 
biles will be atypical. 

Suppose we ignore this hazard and 
lump together all 19 problems; we can 
then calculate the total expected 
squared error as a function of the true 
percentage of imported cars. It turns out 
that the risk for both the baseball play- 
ers and the automobiles is reduced only 
if the percentage of imported cars hap- 
pens to lie in the same range as the esti- 

mated batting averages: otherwise the 
risk of error for both kinds of problem 
is increased. 

The question of whether or not a par- 
ticular mean is “typical” is a subtle one 
whose implications are not yet fully un- 
derstood. Returning to the problem of 
toxoplasmosis in El Salvador, let us sin- 
gle out for attention the city of Alegria, 
which has the fifth-smallest measured 
incidence of the disease: — .294. It is one 
of four cities included in the survey that 
are east of the Rio Lempa; all four have 
distinctly negative values of measured 
incidence y. It is plausible to suppose 
that this is no coincidence and that the 
rate of toxoplasmosis east of the Lempa 
is genuinely lower. A James-Stein es- 
timator that consolidates information 
from the entire country therefore may 
be less than optimal in these cities. We 
have developed techniques for taking 
advantage of extra information of this 
kind, but the theory underlying those 
techniques remains rudimentary. 

An astute follower of baseball might 
be aware that just as each player's bat- 
ting ability can be represented by a 

Gaussian curve, so too the true batting 

abilities of all major-league players 

have an approximately normal distribu- 

tion. This distribution has a mean of 

.270 and a standard deviation of .015. 

With this valuable extra information. 

which statisticians call a “prior distribu- 

tion,” it is possible to construct a superi- 
or estimate of each player's true batting 
ability. This new estimator, which we 
shall give the label Z, is defined by the 
equation Z= m + C(y — m). Here y is 

again the observed batting average of 
the player, but y, the grand average, has 
been replaced by m, the mean of the 

prior distribution, which is known to 
have the value .270. In addition there is 
a different shrinking factor, C, which de- 
pends in a simple way on the standard 

deviation of the prior distribution (equal 

to .015). 

‘Ths procedure is not a refinement of 
Stein's method; on the contrary, it 

predates Stein’s method by 200 years. It 
is the mathematical expression of a 

theorem published (posthumously) in 
1763 by the Reverend Thomas Bayes. 
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UNRELATED PROBLEMS can be lumped together for analysis by 

Stein’s method, but only at the risk of increasing error. To the 18 

batting averages computed earlier, for example, one might add a 19th 

number representing the proportion of imported cars observed in 

Chicago. New James-Stein estimators could then be calculated for 

both the baseball players and the automobiles, based on the grand 
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TRUE PROPORTION OF IMPORTED CARS 

average of all 19 numbers. Nothing in the statement of Stein’s theo- 

rem prohibits such a procedure, but the evident illogic of it has justi- 

fiably been criticized. In fact, including the unrelated data can reduce 

the risk function only if the proportion of imported cars happens ‘to 

be near the mean batting average of .265; otherwise the expected er- 

ror of estimation for both the cars and the baseball players is increased.
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He was able to show that this estimator 
minimizes the expected squared error 
associated with the randomness in both 
the observed averages (y) and in the true 

means (6). 

The formula for the James-Stein esti- 
mator is strikingly similar to that of 
Bayes’s equation. Indeed, as the number 
of means being averaged grows very 
large, the two equations become identi- 
cal. The two shrinking factors c and C 
converge on the same value, and the 

grand average y becomes equal to the 
mean m precisely when all players are 
included in the calculation. The James- 
Stein procedure, however, has one im- 
portant advantage over Bayes’s method. 
The James-Stein estimator can be em- 
ployed without knowledge of the prior 
distribution; indeed, one need not even 
suppose the means being estimated are 
normally distributed. On the other 
hand, ignorance has a price, which must 
be paid in reduced accuracy of estima- 
tion. We have shown that the James- 
Stein method increases the risk function 
by an amount proportional to 3/k, 
where & is again the number of means 

being estimated. The additional risk is 
therefore negligible when & is greater 
than 15 or 20, and it is tolerable for k as 
small as 9. 

In this historical context the James- 
Stein estimator can be regarded as an 
“empirical Bayes rule,” a term coined 
by Herbert E. Robbins of Columbia 
University. In work begun in about 1951 
Robbins demonstrated that it is possible 
to achieve the same minimum risk asso- 
ciated with Bayes’s rule without knowl- 
edge of the prior distribution, as long as 
the number of means being estimated is 
very large. Robbins’ theory was imme- 
diately recognized as a fundamental 
breakthrough: Stein’s result, which is 
closely related, has been much slower in 
gaining acceptance. 

he James-Stein estimator is not the 

only one that is known to be better 
than the sample averages. Indeed, the 
James-Stein estimator is itself inadmis- 
sible! Its failure lies in the fact that the 
shrinking factor c can assume negative 
values, and it then pulls the means away 
from the grand average rather than 
toward it. When that happens, simply 
replacing ¢ with zero produces a better 
estimator. This estimator in turn is also 
inadmissible, but no uniformly better 
estimator has yet been found. 

The search for new estimators contin- 
ues. Recent efforts have been concen- 
trated on achieving results like those ob- 
tained with Stein's method for problems 
involving distributions other than the 
normal distribution. Several lines of 
work, including Stein's and Robbins’ 
and more formal Bayesian methods 
seem to be converging on a powerful 
general theory of parameter estimation. 
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