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Florida be used to improve an estimate of the price of 
French wine, when it is assumed that they are unre- 

lated? The best heuristic explanation that has been 

offered is a Bayesian argument: If the 6; are a priori 

independent N(0, 7”), then the posterior mean of 6; is 

of the same form as 62°, and hence 6°* can be viewed 
as an empirical Bayes estimator (Efron and Morris, 

1973; Lehmann, 1983, page 299). Another explanation 

that has been offered is that 675 can be viewed as a 
relative of a “pre-test” estimator; if one performs a 

preliminary test of the null hypothesis that 6 = 0, and 

one then uses 6 = O or 6; = X; depending on the 
outcome of the test, the resulting estimator is a 

weighted average of 0 and 6° of which 6” is a smoothed 
version (Lehmann, 1983, pages 295-296). But neither 

of these explanations is fully satisfactory (although 

both help render the result more plausible); the first 
because it requires special a priori assumptions where 

Stein did not, the second because it corresponds to 

the result only in the loosest qualitative way. The 

difficulty of understanding the Stein paradox is com- 
pounded by the fact that its proof usually depends on 

explicit computation of the risk function or the theory 

of complete sufficient statistics, by a process that 

convinces us of its truth without really illuminating 
the reasons that it works. (The best presentation I 

know is that in Lehmann (1983, pages 300-302) of a 

proof due to Efron and Morris (1973); Berger (1980, 

page 165, example 54) outlines a short but unintuitive 

proof; the one shorter proof I have encountered in a 

textbook is vitiated by a major noncorrectable error.) 
The purpose of this paper is to show how a different 
perspective, one developed by Francis Galton over a 
century ago (Stigler, 1986, chapter 8), can render the 

result transparent, as’ well as lead to a simple, full 

proof. This perspective is perhaps closer to that of the 

period before 1950 than to subsequent approaches, but 

it has points in common with more recent works, 

particularly those of Efron and Morris (1973), Rubin 

(1980), Dempster (1980) and Robbins (1983). 

2. STEIN ESTIMATION AS A REGRESSION 
PROBLEM 

The estimation problem involves pairs of values 

(X;, 6;),1 = 1, ---, k, where one element of each pair 

(X;) is known and one (6;) is unknown. Since the 6,’s 

are unknown, the pairs cannot in fact be plotted, but 

it will help our understanding of the problem and 
suggest a means of approaching it if we imagine what 

such a plot would look like. Figure 1 is hypothetical, 

but some aspects of it accurately reflect the situation. 

Since X is N(6, 1), we can think of the X’s as being 

generated by adding N(0, 1) “errors” to the given @’s. 
Thus the horizontal deviations of the points from the 
45° line 6 = X are independent N(0, 1), and in that 

respect they should cluster around the line as indi- 

cated. Also, F(X) = 6 and Var(X ) = 1/k, so we should 
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Fic. 1. Hypothetical bivariate plot of 0; vs. X;, fori =1, «++, k. 

expect the point of means (X, @) to lie near the 45° 
line. 

Now our goal is to estimate all of the 6;’s given all 
of the X;,’s, with no assumptions about a possible 
distributional structure for the 6;’s—they are simply 

to be viewed as unknown constants. Nonetheless, to 

3ee why we should expect that the ordinary estimator 

6° can be improved upon, it helps to think about what 
we would do if this were not the case. If the 0,;’s, and 

hence the pairs (X;, 6;), had a known joint distribution, 

a natural (and in some settings even optimal) method 
of proceeding would be to calculate 6(X) = E(6 | X) 

and use this, the theoretical regression function of 0 

on X, to generate estimates of the 6;’s by evaluating it 

for each X;. We may think of this as an unattainable 

ideal, unattainable because we do not know the con- 

ditional distribution of 6 given X. Indeed, we will not 
assume that our uncertainty about the unknown con- 

stants 6; can be described by a probability distribution 

‘ at all; our view is not that of either the Bayesian or 

empirical Bayesian approach. We do know the condi- 

tional distribution of X given 6, namely N(6, 1), and 

we can calculate E(X | 6) = 6. Indeed this, the theo- 

retical regression line of X on 6, corresponds to the 

line 6 = X in Figure 1, and it is this line which gives 
the ordinary estimators 6° = X;. Thus the ordinary 

estimator may be viewed as being based on the 
“wrong” regression line, on E(X|6) rather than 
E(6|X). Since, as Francis Galton already knew in the 

1880’s, the regressions of X on 6 and of 6 on X can be 
markedly different, this suggests that the ordinary 
estimator can be improved upon and even suggests 

how this might be done—by attempting to approxi- 
mate “H(@|X)”—or whatever that might mean in a 

setting where the @’s do not have a distribution. 
With no distributional assumptions about the @’s,
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we are of course prevented from looking for an optimal 

estimate of “E(0| X)”. Instead, we note that go = X, 

is a linear function of .X;, and we may look for a “best 

linear” estimator of the 6,’s, an estimator of the form 

6, =at+bX;, i=1,---,k. 

Now our goal is to minimize the loss function 

k 

L(6, 6) = > (6; — 4:)?, 
i=1 

and so if the 0,;’s were actually available to us (that is, 

if the “data” plotted in Figure 1 were given to us), 

then we would be faced with a standard simple linear 
regression problem and the “best linear estimator” 
would clearly be the least squares line found by re- 

gressing 8 on X, namely 

6,= 0+ B(X; — X), 

where 

é, = ¥ (X; — X)(6; — 9) 

, y (X; — X) 
  xB 

The 6;’s are not available, but if we can estimate the 

functions 6 and # of these unknown parameters, we 

will have an estimate of the regression line of 6 on X; 

that regression line is both optimum for our loss 
function and a reasonable linear estimator of the ideal 

regression function E(@ |X). 

The obvious (and Uniform Minimum Variance Un- 
biased) estimator for 6 is X. To construct an estimator 
of the random parametric function 8, consider its 

numerator, © (X; — X)(6; — @). Our approach is non- 
Bayesian, but we can nonetheless use Bayesian cal- 
culations to help guide us. Suppose then for a moment 
that the 6;’s are independently distributed according 
to some distribution, any distribution (known or un- 
known) with a finite second moment. (For example, 

motivated by Efron’s Bootstrap, the 6;’s could even be 

supposed to be distributed as a random sample taken 

with replacement from the list of the actual (unknown, 

fixed) values of the 6;’s.) 

Then the sample covariance 

1 — _ 
——— ;- X)(6; — 6 ay DK - X96; - D) 

is an unbiased estimator of cov(X, @). Furthermore, 

since 

X=O+e 

where « is N(0, 1), independent of 6, var(X) = 

var(6) + var(e) and we have 

cov(X, 6) = var(6@) 

= var(X) — var(e) 

= var(X) — 1, 

where var(X ) is computed for the marginal distribu- 

tion of X. But an unbiased estimator of var(X ) is 

1 Y \2 Roy UAT AY, 

and thus an unbiased estimator of cov(X, 6) is 

1 — 
7. X; - 2 . pay LK - XP -1 

That is, regardless of the supposed distribution of 

the 6;, 

> (X; — X)(8; - 8) 

and 

> (X; — X)? — (k - 1) 

both have the same expectation. Indeed, reverting 
to our non-Bayesian perspective, where the 6;’s are 

simply fixed constants, it is easy to see that the 
same is true there: E[> (X; — X)? — (k — 1)] = 
E[>d (X; — X)(6; — 9)] = ¥ (6; — 6). This suggests 
estimating the random parametric function @ by 

  

  

Y(X;- XP —(k-1) | ___ kai 

d (X;-— X)? > (X;- X) 

k-1 

tg 
which leads to the estimated least squares line 

gPM = XK + (1 - ) (X; — X). 

But this is just the Efron—Morris estimator, with 

c = k — 1; it is not the best choice of c, but it has risk 

uniformly smaller than the “ordinary” estimator as 

long ask — 1 < 2(k — 3), ork> 5. 

The James-Stein estimator can be derived by a 

similar route, by considering the class of estimators 

that are linear in X with zero intercept, 

6, = bX;. 

Then the least squares estimator has 

» 9:X; 

y XP?’ 
  B= 

and 6,;X; and ¥\ X? — k have the same expectation 
(X 67), leading to the James-Stein estimator with 
c=k, 

A k 
92 = (1 _ #)x. 

3. INTERPRETATION AND EXTENSION 

This Galtonian perspective on the Stein para- 
dox renders it nearly transparent. The “ordinary”
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estimators 6? = X; are derived from the theoretical 

regression line of X on 6. That line would be useful if 
our goal were to predict X from 0, but our problem is 

the reverse, namely to predict 6 from X using the sum 

of squared errors >; (6; — 6;)? as a criterion. For that 

criterion, the optimum linear estimators are given by 

the least squares ‘regression line of 9 on X, and the 

James-Stein and Efron—Morris estimators are them- 
selves estimators of that optimum linear estimator. 

The “ordinary” estimators are derived from the wrong 
regression line, the James—Stein and Efron—Morris 
estimators are derived from approximations to the 

right regression line. We can even see why k 2 3 is 

necessary: if Rk = 1 or 2, the least squares line of 6 on 

X must pass through the points (X;, 6;), and hence for 

k = 1 or 2, the two regression lines (of X on 6 and of 

6 on X) must agree at each X;. Thus the ordinary 

estimators 6? = X;, although they lie on the wrong 
theoretical regression line, approximate either least 

squares line equally well. 

This regression perspective not only makes the logic 
of the procedures clear, it also leads to a short, rigorous 
proof of the phenomenon. /f we could actually use (for 

k = 3) estimators derived from either regression line 

6; = 8 + B(X; — X) 

or 

6; = BX;, 

then we would improve upon the ordinary estimators 

not only in the sense that we would have lower risk or 

expected loss (averaged over the possible values of the 
X;), but even in the. much stronger sense that we 
would have lower actual loss L(6, 6) for all possible 

values of the X; (barring the unlikely event that the 

ordinary estimators actually fall on the regression 

line). 

To see what is involved in turning this perspective 

into a full proof of the phenomenon, and to gain deeper 

understanding of why the approximation works, let us 

look more carefully at the case of the James-—Stein 

estimator. We consider three representatives of the 
class of linear estimators with zero intercept, ge = bX,, 

namely the ordinary estimator 

0? = Xi, 

the least squares estimator 

by c= BX, 

where 

B = > X,6,/D X?, 

and the James-—Stein estimators we found to approx- 

imate 645, 

A C 
gs = (1 — é)x 

= bX;, say. 

Now let 

L(0, BX) = RSSjzs, 

the minimum attainable loss within this class of esti- 

mators. For other estimators 6° we have 

L(6, 6°) = > (0; — 63)? 

= > (6; — 67% + 678 — 6?) 

= RSS,s + > (6) — 63)? 

= RSSis + (8 — b)?S?. 

Thus 

R(6, 6°) = E(RSS,s) + E[(6 — b)?S?], 
and we see that a James-—Stein estimator will improve 

on the ordinary estimator if and only if 

E[(6 — 6)?S*] < E[(6 — 1)°S*} 
that is, if and only if 6 is closer to the least squares 
slope 8 than is the constant 1, in _this average 

(weighted by S”) sense, for all 6. Since b is a “reason- 

able” estimator of 8, while 1.0 is not, we should not 

be surprised that this is the case. 

A relatively simple proof that this is indeed the case 

can be obtained as follows: Let b, = 1— c/S’, so that 
1 — b. = c/S?, and look at 

E|(6 — 6.)?S?] — E[(@ — 1)?S?] 

= E[(é — 6.)? — (6 — 1)?]8? 

=E((1 — 6,)(28 — 1 — 6,)S?) 
e _ —_ 2 _ (2 X,6; = + 2) 

= 2¢ [o(2 A+ 22) _ 1} 

To prove the superiority of the James—Stein estimator, 

it is clearly enough to show that 

X;0; + c/2 (2 2) 
<1 

S? 

for all 0;, all k = 3,0 <c S 2(k — 2). The left-hand 

side of this inequality is monotone increasing in c, so 
it is sufficient to establish that 

dy XO; + (R = 2)\ _ ¥(2%eb= 0),
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for all 6, all k= 3. The lemma given in the Appendix 

shows just that. 
Essentially the same proof also shows that the 

Efron—Morris estimator 6=“ dominates the ordinary 

estimator 6° if k = 4. Let 

62 =a + b(X; — X). 

This class includes the Efron—Morris estimators, for 

which 

aM = X, OFM = (1 — ca). 

and the ordinary estimator, where 

a® = X, b° = 1, 

and the least squares line for @ on X, where 

als = 9, 
bts = ¥ (X; — X)(6; — 6)/S"?. 

Then, as before, we have 

L(6, 6%) = ¥ (6; — 67°)? 
= RSSis + > (675 — 62°)? 

= RSSjs 

+ ¥ ((b%* — b)(X; — X) + (a*®* — a))? 

= RSS,s + (b* — b)?S’? + (a — a). 

Then since a=’ = a°, the risk function of 6™™ will 
dominate that of 6° if and only if 

E[(o's _ bEM)?2°9 72] < E{(o' _ 1)?S ’?], 

or, equivalently, : 

E[(1 — b™)(2b'S — 1 — b™™)S’?] <0 

for all 6. But (1 — b™)S’? =c, and so this is equivalent 
to having 

50 | ai? (X; - XV. @) + “2 _ i} <0, 
  

’ or 

Bj? (X; - Eye. 9) + 2) <1 

Now an elementary matrix decomposition gives us 

X — X1 = U’DU, where U is orthogonal and 
D = diag(1, 1, ---, 1, 0). (See, e.g., Searle, 1982, 

page 352). Then if Y = UX, the Y;,’s are normal with 

expectations p; (Say) and variances 1, and we have 

Y (X; — X)(6; — 6) + c/2 re Yip; + c/2 

s” SER Y? i=1 i 

    

It follows from the lemma of the Appendix that for 

0<c <2(k — 3), 

(2 (X; — X)(6, — 9) + 2) 
E S/2 

  

(2 (X; — X)(6, — 8) + (k- ») 
<E G72 

_ n( eT Yin: + (Rk — ») 

iy Y? 

=lallé, allk=4. 

It may be noted that the essence of these proofs is 
a “swindle” akin to those that have proved useful in 
Monte Carlo studies (e.g., Andrews et al., 1972; Simon, 

1976). A basic property of least squares estimators 

(the orthogonality of the fitted values and the resid- 

uals) is exploited to separate out the common term 

RSS gs from L(6, 6”) for all a, b, permitting different 

linear estimators to be compared without the necessity 
of evaluating E(RSSyjs). 

In the above development we have supposed the 

variances of the X;’s are equal. The case of unequal 
variances, which would be of interest in many practical 
situations, presents serious mathematical difficulties 

that have not been surmounted except for specially 

weighted loss functions. It is not clear how the present 

approach can shed additional light upon this problem. 
The issues involved, and an approach that is useful in 

practice, are discussed in Morris (1983). 

4. THE POISSON CASE 

The regression perspective can also be used to 

motivate shrinkage estimators for the Poisson case. 

Suppose (following Clevenson and Zidek, 1975) 

that Z,, Z2, --:, Z, are independent, where Z; has 

a Poisson (\;) distribution, and we wish to estimate 

A= (Ay, Ag, °°, Az)’ With loss function 

Clevenson and Zidek (1975) have shown that the 

“ordinary” estimator A? = Z; is dominated by the 

shrinkage estimator 

(4.1) Ao = 927, 

where 

bo = 224i 

c+ Y Zi
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as long ask -1<c< 2(k—1) and k= 2, in the sense 

that 

E(L* (A, )) S E(L*(X°,A)) 
for all X. (See also Berger, 1985, §5.44.) 

As was true in the normal case, E(Z;| \;) = A;, and 

the estimator X° can be viewed as based upon the 

“wrong” regression line, that of Z on \. The proper 

regression here would be a weighted regression of \ on 
Z. If we limit our attention to the linear estimators 

d° = bZ, then we see that within this class, the loss 

(bZ; — Ai)” 

Xi 

= ¥ [b(Zi/Vd) — VP 
is minimized by the weighted least squares choice, 

bts = » 2/2 (Z;/X;). 

Now, E(> (Z7/d:)) =X Qi + AZ)/Ai = k + Y A; can 
be estimated by k + >) Z;, suggesting the estimator 

with 

L*(t9,A) => 

b= VZ/(k + d Zi), 

which is a Clevenson-Zidek estimator with c = k, and 

dominates A? as long as k = 2. 
Similarly to the normal case, we can write for the 

class of linear estimators 

L*(X°, A) — L*(X%, d) 
2 
L 

(4.2) N = (1 — b)(1 +b — 275) 
L 

> i
M
 > 

> |
 

and if b < 1 (as is true for Clevenson—Zidek esti- 

mators), we have 

L*(X°, X) S L*(2®, d) 

as long as (1 + b)/2 = 6b"; that is, as long as 
|b — b¢*| < |1— 5d], or as long as b is closer to the 
weighted least squares slope 6" than to the slope of 

the wrong regression line, 1. 
Robbins (1983, page 722) outlines (in the tantalizing - 

manner of Fermat, who could not fit the crucial details 

of his “last theorem” into the margin of a book) an 

“elementary” proof that \°2 dominates X° for c = k, 
and indeed Clevenson and Zidek’s original proof is 
short, elegant and covers a broader class of estimators. 

A simple proof based on (4.2) is not hard to derive: 
First exploit the _ relationship between the 
Poisson and binomial distributions (i.e., given 

Z, Z; is binomial) to show that © E(Z?/d;|Z) = 
Z[k —1+ kZ]/; then (4:2) gives 

E(L*(X, A) — L*(X°, d)| Z) 
(4.3) 

(k-—1+ kZ)(1 + 6%)b@% — 2kedb. 

>
I
|
|
o
 

Now (4.3) is a convex function of Z as long as Z = 0 
and c= k — 1 (differentiate), and Jensen’s Inequality 

implies that the expected value of (4.3) is bounded 

below by this same expression, where Z is replaced by 

\; this lower bound is easily seen to be positive as 
long as c S 2(k — 1). The best recent treatment of this 
topic in a general setting is that of Ghosh, Hwang and 
Tsui (1983). 

5. SOME HISTORICAL BACKGROUND 

The perspective advanced here is far from new, 

although the proof that emerges from this develop- 
ment appears to be new. The use of least squares 
estimators for the adjustment of data of course goes 
back well into the previous century, as does Galton’s 
more subtle idea that there are two regression lines 

(Stigler, 1986, Chapter 8). Earlier in this century, 
regression was employed in educational psychology in 

a setting quite like that considered here. Truman 

Kelley developed models for ability which hypothe- 

sized that individuals had true scores (think of our 

6;’s) measured by fallible testing instruments to give 

observed scores (our X;’s); the observed scores could 

be improved as estimates of the true scores by allowing 

for the regression effect and shrinking toward the 
average, by a procedure quite similar to the Efron- 

Morris estimator. (Kelley, 1923, pages 212-214; Kelley 

in effect assumed the means and covariances known, 

and of course proved no result of the type Stein was 

to discover.) The approach of the present paper is 

directly in line with this literature and recent devel- 

opments of it, in particular by Rubin (1980), as was 
most clearly realized by Dempster (1980). 

Modern work on this topic from a decision theoretic 
point of view was initiated by the pathbreaking work 

of Stein (1956) and James and Stein (1961). Stein’s 

original paper seems to have been motivated by the 

observation that (in our notation) 

R R 

(3 x?) = Y 6; +k, 
i=l i=1 

and so when ¥\ X? = C is observed, we should estimate 

the 6;’s to be such that ¥ 6? = C — k; since the 
“ordinary” estimator would estimate > 6? = C, we 
should shrink the components to compensate for this 

over-estimation. 

In a series of important papers in the early 70’s, 
Efron and Morris recast the problem in the empirical 
Bayes framework and explored the properties of the 

Efron—Morris estimator 6©™ (Efron and Morris, 1972, 
1973), which had been earlier suggested by Lindley 
(1962). In his 1982 Neyman lecture, Herbert Robbins 
(the originator of much of the area of empirical Bayes) 

developed the Efron—Morris estimator within the
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empirical Bayes framework by a route that parallels 

that of Section 2 above quite closely (Robbins, 1983). 
It was the excellent review of parametric empirical 

Bayes by Morris (1983) that led me to consider the 
problem from the regression point of view (Stigler, 

1983) and eventually to the present paper. 

The vast literature on the Stein paradox is surveyed 
by Berger (1985, pages 359-369; 1988). Good textbook 
treatments can be found; for example Lehmann (1983, 

§4.6) and, from a Bayesian perspective, Hartigan 
(1983, Chapter 9). A nice general introduction was 

given by Efron and Morris (1977). 

APPENDIX 

LEMMA. Let X;,1= 1, 2, ---, k + 1 be independent 

normally distributed random variables, X; ~ N(6;, 1). 

Then 

p(2E OX; + (k - ») =| 

pt xX? 

for all 6 = (61, «++, 0241)’, all kk = 2. 

Proor. Let 6 = (i 6?)?”. Now without loss 
of generality we may take @ = (0, 0, 0, ---, 0)’, since 

the problem can be reduced to this case by a 
simple rotation transformation in E;,., (because 

>; 6;X; depends only upon the angle between 6 and X). 
Let X = X, and Y = \\#} X?; then the problem 
becomes this: Show that 

X0+(k—1)\_ 
H( X?+Y jaa 

; forallk=2, allOER, 

where X and Y are independent, X ~ N(6, 1) and 

Y ~ x7?(k). The proof is essentially a simple one: 
Transform to polar coordinates, integrate by parts, 

transform back to rectangular coordinates, and the 
identity is obvious. 

The joint distribution of X and Y has density 

fx y (x, y) = C,exp(—[x’ + yo 20x + 07]) yr), 

for y>0, -~<x< 0, 

—1 

C, = (22r(2) Ji) 

Make the transformation 

x 
w= ——,, z=vx'7 +9, 

Vx7 + y 

whose inverse transformation is given by 

  

where 

x=wz, y=27(1—-—w?), 

and whose Jacobian is 

z Ww — 952 
—2wz* 22(1 — w”) 22"   

Thus the joint density of W and Z is 

2 

. [27(1 _ w)}R/2-1 227, 

for-ls=w<1l1, z>0, 

2° 6? 
fw.z(u, z) = Cxex(- — + dwz - “| 

and 

(2 +(k—- 2) 
  

xX? + Y 

= C, { { (Gwe ue —») fw.z(w, z) dz dw 
—1 0 

1 
—_ —(p2 — 2 _ 20, { (1 w?)r/2 1 p—(6?/2)(1—w?) 

-1 

—+(z— 2 _ 

law zgile-G-wy'2 dz +f ee 2 dak | dw 
0 0 

1 00 

— —(p2 ay —(5— 2 —_ 2C, { (1 _ w?)*/2 lo (0°/2)(1—w*) { 2"e (z—Ow )*/2 dz dw 

—1 0 

  

(after integration by parts) 

1 co 

_ 2C, { { (1 _ w 2) /2-1 (22 )R/2 9—2"/2+2w9— 07/2 dz dw, 

oO —0o 

by taking advantage of symmetry of the integrand (its 
integral over [°, fo equals that over fo f°.). Now 
transform back to X and Y; there the Jacobian is 

y(x? + yy? —Yax(x? + yy? 
|J| = x(x? + y)* Ys (x2 + yy 

  

= VA(x? + y), 

and so (since 1 — w? = y/(x* + y) and 27 =x’? +y) 

(2 +(k—- 2) 
  

  

X?+ Y 
{ { y k/2-1 

= 2 k/2 
2C;, ; _ (= + -} (x + y) 

(x— 0)? y\l_, 4 
. exo — 2); (x° + y)~ dx dy 

= C, { { v"*texp( 2 Jexp(- a dx dy 
0 —oo 2 2 

= J f fx,y (x, y) dx dy 

= 1. C]
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ANOTHER PROOF. A shorter proof of this lemma 

can be based upon a classical identity of the theory of 
estimation, although it has the disadvantage of push- 
ing the magical property of the normal distribution 

that makes the lemma “work” further out of sight. 
The identity in question is 

d d 9g, EM) = cov( hi), ao, 18 pa(X)), 

where p(X) is the joint density of X, and h is any 
function of X (subject to mild regularity conditions). 
This identity was in common use by the mid-1940’s 
in connection with proofs of the information inequal- 

ity; see Lehmann (1983, pages 117, 129 and 145) for 

references. For the special case considered here, where 

the X;’s have independent normal densities with unit 

variances, this identity becomes 

d 
7) Eh(X) cov(h(X), (X; — 6;)) 

Eh(X)(X; — 6;). 

Then (letting U = X — @, and using Fubini’s 
theorem) 

d d 
do, Eh(X) = qo, Eh(U + @) 

d 
= Bg, MU + 8) 

d 
=E ax, h(X), 

and we have 

d 
E ax, h(X) = Eh(X)(X; — 6;). 

In this form, the identity has been ingeniously ex- 
ploited by Stein and his students in studying the 
estimation of the multivariate normal mean (Stein, 

1981). This identity leads to the lemma as follows: Let 

X; 
h(X) = ops 

where S? = Y#ti X?. Then (d/dX;)h(X) = 
(S? — 2X?)/S*, and the identity gives 

1 2X? X} 0X; 

a( - 2x) - (2 - 1X) 
Sum both sides from 1 = 1 to k + 1 to get 

k+1 2S? SS? YY 6X; 

x( 3 2) = o(§ - 23) 
  

or 

  

which is what we wish to prove. L] 
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