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Introduction 

Some 40 years ago, Harold Hotelling pointed out that the statistical 
textbooks of that period were written largely by non-mathematicians. 
Those books were full of misconceptions, and were rather uniformly 
unaware of the new and dramatic development of the mathematical 
discipline of statistical inference. They did not take advantage of the 
sharpened logic for making decisions about populations on the basis of 
sample statistics, including the improved logic of estimation and of 
hypothesis testing. The situation was slowly remedied as more mathe- 
matical statisticians began to issue textbooks, until today the pendulum 
may have swung too far. In some quarters, the symbols of inference rather 
than the substance may have taken over. This appears to be especially 
true in the social sciences with which I am most acquainted, and to which 
this paper is largely (but not exclusively) addressed. For example, referees 
and editors of some journals insist on decorating tables of various kinds 
of data with stars and double stars, and on presenting lists of "standard 
errors", despite the fact that the implied probabilities for significance or 
confidence are quite erroneous from the point of view of statistical in- 
ference (see Problems 3 and 1 below). 

Along with misuse of new developments, many older misconceptions 
persist in current textbooks and journals because of some extraordinarily 
poor terminology that has been retained by mathematical statisticians for 
historical reasons. Mathematicians are accustomed to dealing properly 
with arbitrary and even misleading symbolization, since they are trained 
to focus directly on the concepts being denoted and which are otherwise 
well defined. Not so are non-mathematicians, who instead are prone to 
react to verbal labels as having meaning and implications apart from and 
beyond the designated technical concepts. For example, the term "re- 
gression" first arose in the context of Francis Galton's genetic research 
before the propagation of gene theory, and has been retained by mathe- 
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maticians ever since for something which has no necessary connection 
with any genetic process, nor with any other kind of process. True that it 
is desirable to have a single word for "a set of conditional arithmetical 
means", but retaining the word "regression" for such a set gives 
non-mathematicians ideas of dynamic processes and laws of nature in 
contexts for which these ideas are wholly erroneous. (Ironically, even 
today some geneticists confuse the statistical concept of regression with 
a gene theory of biological inheritance, and thereby come to erroneous 
conclusions.) 

With or without terminological distractions, confusion seems to reign 
over the profound issue of the role of statistical inference in science. At 
what point of scientific argument does statistical inference enter, and at 
what point does its role end? In recent years eminent mathematical 
statisticians like John W. Tukey, William B. Kruskal, and others have 
underlined limitations of statistical inference; tlhere is increasing emphasis 
on the need for focusing on data analysis instead. Yet the misplaced 
prestige of inference has been such that many researchers whose scientific 
problem requires a substantive loss function feel they must employ only 
the abstract machinery of inference. For example, in trying to generalize 
Charles Spearman's scientific problem of a single-common-factor, later 
investigators have developed something they call "maximum likelihood 
factor analysis". Actually, their mathematical machinery purposely fails 
to yield the maximum likelihood estimate of the number of common- 
factors-the rank number that is supposedly of basic interest to science. 
Maximum likelihood rank is automatically maximal rank, and those 
investigators do not want large rank. So they do maximum likelihood on 
something other than rank, and use this as if it were inferential for deter- 
mining rank. In effect, they debase maximum likelihood in an attempt to 
attain something resembling a loss function for their real concern. No 
reason is given for not doing direct data analysis based on a direct loss 
function. Nor do such investigators show that they are aware of the fact 
that their data analytic problem would remain even if there were no 
sampling error-if they had tlhe observed population correlations at hand, 
and not sample estimates, so that there was no room for statistical inference 
in the first place. 

Perhaps worse, many-if not most-practitioners do not do the scien- 
tific thinking that must precede statistical inference. They do not make 
the choice of null versus alternative hypothesis that is properly tailor-made 
to their specific substantive problem. They behave as if under the delusion 
that the choice is not in their hands, that the null hypothesis is pre- 
determined eitlher by the mathematicians who created modern statistical 
inference or by some immutable and contentless principles of parsimony. 
An outstanding example of the resulting widespread scientific incoherence 
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comes again from factor analysis. The computer programs presumably 
guided by the two contentless principles currently most popular for factor 
analysis-minimal rank and simple structure-blithely disregard the fact 
that these two principles generally contradict each other and cannot be 
satisfied simultaneously. No less anti-scientific is the practice of auto- 
matically assigning to these principles the roll of null hypothesis. In fact, 
there is nothing in the data design of most empirical research projects 
conducted to date to provide a rationale for either principle (see item 39 
in the list below). Small wonder that after 70 years of "exploration" and 
"confirmation", textbooks on factor analysis still do not present a single 
well-established empirical law-in any field of science-based on common- 
factor scores. The same fate of sterility attends other areas in which 
statistical inference is confused with data analysis, and in which null 
hypotheses are chosen by "mathematical" considerations rather than by 
substantive scientific thinking based on the design of the universe of the 
content under study. 

The purpose of the present paper is twofold: to highlight basic but 
unsolved problems of statistical inference and of data analysis, and to 
help clarify some particularly acute misunderstandings and misconcep- 
tions. The several examples presented above are among many that seem 
worth bringing to the attention of mathematician and non-mathematician 
alilke. Discussion of these matters may alert non-mathematicians against 
pitfalls which have ensnared many of their colleagues, and hopefully may 
stimulate mathematical statisticians to focus on and resolve issues that 
are of great concern for scientific practice. Progress in establishing em- 
pirical laws in social science is admittedly difficult, and may depend on 
seeking consistencies of a different structure from those in other sciences 
(e.g. the first laws of attitude and of intelligence and their successively 
more detailed, substantive, regional laws for correlation matrices). The 
progress is certainly not made easier, and may even be prevented, by 
having researchers subservient to or continually misdirected by thinking 
and practices that are not what they are presumed to be. 

Just as the common cold has defied being conquered by medical 
science, so have some of the commonest problems of social research 
eluded solution by mathematical statisticians. This may be one reason for 
persistence of old misunderstandings and the creation of new ones: 
practitioners try to make do with inadequate tools, since they need some 
answers. Six classes of common but unsolved problems will be outlined. 
Following these is a list of some 50 brief items, each stating a fact about a 
particular misunderstanding. The facts are stated in the negative: what is 
not what; and each is accompanied by a short explanation. The explana- 
tions are largely self-contained, but the interested teacher of statistics can 
easily expand on them. The list can of course be readily extended, and 
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comments will be welcome. Practitioners may prefer to read the less 
technical list of particular items before reading the discussion of the six 
general issues. 

No references are appended to this paper, since the discussion is largely 
about what does not exist. Empirical proof of non-existence is in principle 
difficult, but proof of existence is comparatively simple-requiring 
exhibiting but a single example. Thus, when an assertion below is of the 
form: "No textbook proves that . . .", and should one wish to document 
such an assertion, one would have to refer to all extant textbooks. On the 
other hand, should a reader believe he can prove the assertion to be false, 
all he need do is provide a single correct reference. I would appreciate 
receiving any such rectifying reference from any interested reader, for any 
"is not" asserted below. 

An initial reaction of some readers may be that this paper is intended 
to be contentious. That is not at all the purpose. Pointing out that the 
emperor is not wearing any clothes is in the nature of the case somewhat 
upsetting. It should be noted that professional mathematicians have 
reacted to this differently from non-professional mathematicians and 
non-mathematicians. The latter are shocked to learn that popular com- 
puter programs in internationally distributed packages are statistically or 
mathematically incorrect-that computer centres unfortunately dissemin- 
ate incorrect techniques as well as correct ones. This is a fact that is truly 
hard to absorb. But professional mathematicians are not at all surprised 
by the revelation, since they are used to non-professionals continually 
misusing technical ideas. Mathematicians usually do not go out of their 
way to remark on misplaced mathematics of colleagues in neighbouring 
disciplines; they could spend full time on this, and not endear themselves 
thereby. Practitioners may mistake this silence for consent, and would 
like to continue to believe that "since everybody is doing it, it can't be 
wrong". Experience has shown that contentiousness may come more from 
the opposite direction, from firm believers in unfounded practices. Such 
devotees often serve as scientific referees and judges, and do not refrain 
from heaping irrelevant criticisms and negative decisions on new develop- 
ments which are free of their favourite misconceptions. A contribution of 
the present paper may be to help prevent such Kafkaesque situations 
from recurring in the future. 

This paper is also not intended to be merely an exercise in terminology 
and/or mathematical niceties. Many "what is not" items have been omitted 
from the discussion below, to leave room largely for those on which I 
have evidence that they are actually damaging. Some of the items included 
have demonstrably hindered progress in social science, often leading to 
useless expenditures of tens of thousands of research dollars, not to speak 
of waste of enormous amounts of time and scientific manpower. 
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Some Unsolved Problems of Statistical Inference 

Problem 1. Simultazeous Confidence Inttervals 

Most social science inference problems are multivariate at the outset, 
yet they are usually not studied as such. Consider any set of data gathered 
on the basis of a demographic or attitudinal questionnaire, or by means 
of an achievement or mental test composed of several items. How does 
one establish simultaneous confidence intervals for the entries in a popula- 
tion contingency table from a sample cross-tabulation of such data? 
This requires specifying a set of intervals simultaneously for many para- 
meters of a multinomial distribution, but with a single level of confidence 
for the entire set. Such a problem concerning proportions is a special case 
of a general problem: if 01, 06 ..... On are n population parameters of a 
multivariate distribution of mutually dependent variables, define statistics 
al, b1, a2, b2,.. ., an, bn from a single sample such that, for a given level 
of confidence ox, 

Prob {a1<601-<b1, a2 02<-b2,. . . <On<bn} l -_ 

and with some optimality condition for choice of the ai and bi. Contingency 
tables are among the commonest forms of observed data, yet no solution 
is known for this problem of theirs; textbooks do not even mention it. 
(They usually do not even mention related problems that have been 
solved for certain differences.) In practice, "standard errors" are often 
calculated for separate statistics in such a table, though no one has shown 
what relevance these have to the problem. The same abuse holds for 
simultaneous confidence intervals for a set of arithmetic means. Social 
and psychological research projects may involve many numerical variables 
simultaneously, and it is of interest to establish bounds for each of the 
population arithmetic means. Even for normal multivariate distributions, 
the use of a "standard error" with each sample mean has not been shown 
to yield a confidence region for all population means simultaneously. It 
is known how to establish confidence intervals for certain linear and 
quadratic functions of arithmetical means, but this does not solve the 
problem of an interval for each mean separately. What is a correct way 
of establishing such simultaneous intervals? Of no less interest is a set of 
simultaneous confidence intervals for the elements of the matrix of the 
correlation coefficients among the several variables. It is encouraging that 
some mathematical statisticians are beginning to probe such matters. 
Meanwhile, no textbook addresses itself to this obvious and basic class 
of problems of statistical inference for a set of O's-nor to any of the 
important and ubiquitous special cases (proportions, means, correlation 
coefficients, etc.) in the form that they actually occur in practice, if the 
problems are mentioned at all. Solving such issues will still leave open the 
no less basic problem of replication, as sketched next. 
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Problem 2. Replication 
Both estimation and the testing of hypotheses have usually been restricted 
as if to one-time experiments, both in theory and in practice. But the 
essence of science is replication: a scientist should always be concerned 
about what will happen when he or another scientist repeats his experi- 
ment. For example, suppose a confidence interval for the population mean 
is established on the basis of a single experiment: what is the probability 
that the sample mean of the next experiment will fall in this interval? The 
level of confidence of the first experiment does not tell tbis. Or again, 
suppose a regression equation is calculated from one unconditional 
random sample: what is the variance of predictions made for a new 
unconditional random sample from the same population on the basis of 
this previous equation? The answer to this last question is unknown; 
many psychologists are aware of this and therefore do not depend on a 
single sample but do empirical cross-validation. The same kind of issue, 
with a different twist, holds for the testing of hypotheses. Suppose a 
scientist rejects a null hypothesis in favour of a given alternative: what is 
the probability that the next scientist's experinment will do the same? 
Merely knowing probabilities for type I and type II errors of the first 
experiment is not sufficient for answering this question. Furthermore, the 
next scientist's experiment will generally not be independent of the first's 
since the repetition would not ordinarily have been undertaken had the 
first retained the null hypothesis. Logically, should not the original 
alternative hypothesis become the null hypothesis for the second experi- 
ment ? Here are some of the most realistic problems of inference, awaiting 
an answer. The matter is not purely mathematical, for the actual behaviour 
of scientists must be taken into account. Facing such real problems of 
replication may lead to doubts about the so-called Bayesian approach to 
statistical inference. 

Problem 3. SimultaneousLevels of Significance and Simutltaneous Hypotheses 
An intrinsic difficulty of the preceding problem, and of many other real 
problems of inference, is the complication of the habits of researchers. 
Practitioners usually do not have a type I error fixed in advance of their 
experiments. Preliminary fixing of such a value is required by the logic of 
Neyman-Pearson theory, but how to fix it is not part of the theory. Since 
practitioners like to get precise instructions, they insist on being told how 
to select a level of significance, despite the fact that it is not the business 
of mathematicians to tell them. Pressed for an answer, the mathematical 
statistician may hem-and-haw and finally say: "You might try something 
like 005 or 0-01, or even 0 001". In earlier years, he might have suggested: 
"Take something like plus-or-minus two or three standard errors". He 
may forget to remind the practitioner to take one and only one such 
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number-and in advance-for the problem. In any event, given several 
options, the practitioner accepts all of them and uses them simultaneously, 
and usually after the fact. This practice alone may make Problem 2 above 
completely insoluble. The situation becomes worse confounded when the 
omnibus levels are all applied simultaneously as is to a set of simultaneous 
hypotheses. There are some solutions known for certain multiple com- 
parisons, but not for most kinds of simultaneous hypotheses (Jerzy 
Neyman himself, among others, has recently been endeavouring to develop 
a correct Neyman-Pearson approach to such problems). What solution 
can exist for the procedures used in practice? How can authors and 
editors of scientific journals be made to realize that when they fill their data 
tables with a galaxy of stars, double stars, and even triple stars, they are 
not testing hypotheses but are merely rejecting statistical inference itself? 

Problem 4. Choice of Nuill and of Alternative Hypotheses 

Neyman-Pearson theory for testing hypotheses requires advance formula- 
tion of-and distinction between-null and alternative hypothesis. It is 
not the theory's job to tell how to make this preliminary distinction, again 
leaving the practitioner in a quandary. Retaining the unfortunate adjective 
"null" for historical reasons is counter-productive in this regard. More 
enlightening terminology might be: "incumbent" hypothesis versus 
"challenging" hypothesis. A null hypothesis is the incumbent one, not to 
be dislodged unless there is overwhelming evidence against it (hence odds 
like 99 to 1 for type I error, in favor of the incumbent). In many areas of 
social science, incumbent hypotheses are to the effect that the data are 
very complex. Simplistic hypotheses-like no difference or no correlations 
-are usually challenging in well-documented fields of research. Take the 
case of intelligenice tests: no one has yet shown how actually to make an 
a priori design for two different but reliable mental tests that will correlate 
zero with each other; this is indeed a challenging task (almost all correla- 
tions between mental tests ever observed over the past 70 years are positive). 
Or again, Charles Spearman's hypothesis of a single common-factor was 
a challenging innovation (ultimately rejected even by himself) for such a 
complex phenomenon as intelligence. Having a small number of common- 
factors remains a challenging hypothesis against the usual incumbent of a 
large number of common-factors. Such cases may be contrasted with more 
problematic and challenging fields like parapsychology and graphology, 
say, for which nullity as yet remains an appropriate null hypothesis. 
Illustration of this point in another area is Newton's law about a body 
moving in a straight line with constant velocity: surely this was a challeng- 
ing hypothesis! What was the null hypothesis being challenged by Newton? 
And when in history did Newton's hypothesis become incumbent, to be 
faced by a new challenger? The change in time of roles of hypotheses from 
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alternative to null is an important process to be elucidated for statistical 
inference. There is no need to go Bayesian for this; indeed, the task is 
outside the province of mathematical statisticians. (As already remarked, 
Problem 2 on replication raises questions about the realism of a Bayesian 
approach, questions not unlike those that may have led the late Reverend 
Thomas Bayes himself not to recommend what is called "Bayesian" 
today.) The practical problem remains that many mathematicians have 
given practitioners to believe, for example, that linearity of regression is 
an incumbent hypothesis, despite its rarity and challenge in many areas of 
empirical science. Here may be confusion between the concept of a "first 
approximation" and that of "null hypothesis"-the two are essentially 
contradictory. The same for lack of interaction in analysis of variance and 
for lack of correlation in bivariate distributions-such nullities would be 
quite surprising phenomena in the usual interactive complexities of social 
life. How can empirical researchers be taught that, without substantive 
knowledge of their respective fields, there is no basis for assigning roles 
to hypotheses as "null" or "alternative"? And that a first approximation 
is not the null hypothesis talked about in textbooks? 

Problem 5. Orthogonality 

The quest for "independent contributions" from each of several correlated 
components is a perennial enterprise of non-mathematicians. Belief in the 
reality of such a statistical mirage may have been reinforced by the notion 
of orthogonality in the design of experiments. The designer can enforce 
orthogonality, and does so if he can, because of the simplified distributional 
theory that results. Many non-mathematicians believe that a design must 
generate orthogonality, or else it goes against statistical theory! Mathe- 
maticians know that such orthogonality is but an artifact created by the 
designer of experiments, and may have nothing to do with the interrelations 
of natural phenomena. Similarly, the statistician creates orthogonality 
when he uses least-squares for predicting a numerical variable: the pre- 
diction and error-of-prediction are orthogonal to each other. It appears 
safe to say that most contexts in which orthogonality occurs in statistics 
are created by the statistical analysis, and that orthogonality has no 
necessary "natural" interpretation or implication. An interesting question 
would be: Is there any kind of orthogonality in data that is not created by 
the statistician ? One possible answer is a zero observed correlation 
coefficient (the popular choice for a "null" hypothesis discussed in Problem 
4 above). In multiple correlation, one would often like to have the pre- 
dictors uncorrelated with each other; should they be, they could be con- 
sidered to have "independent" contributions to the multiple regression. 
But generally predictors correlate with each other, and there is no intrinsic 
statistical bootstrap operation for defining "independent" contributions 
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in this case. Even for the case of uncorrelated predictors, there is no 
guarantee that a further predictor cannot be found that will correlate with 
the old, restoring the impossibility of giving independent credit to each 
of the predictors separately. 

Problem 6. Data Design, Data Analysis, and First Approximations 

R. A. Fisher showed how statistical inference must be based on experi- 
mental design. How can this type of thinking be carried over to more 
general data analysis for which mathematical statisticians have no in- 
ferential answers yet (and may not have for a long time to come)? Why 
should social surveys and mental tests have their content items constructed 
without the same care and formalization that goes into the design of the 
population sample to which they are administered? And why should not 
the data analysis be conducted according to such a design of content? 
Doing this requires developing a (stratified) sampling theory for con- 
structing variables for a universe of content, just as ordinary sampling 
theory discusses selection of individual subjects from a population. 
Random sampling (even within strata) clearly cannot hold for the con- 
struction of attitude or intelligence test items. Facet theory has been 
slowly developing to give a partial answer to this problem, especially in 
the contexts of theories of structure of intercorrelation and of what Lee 
Cronbach calls "generalizability". The associated techniques for data 
analysis cannot presume to be amenable to "exact" tests of significance, 
whether non-parametric or parametric. Indeed, they suggest looking anew 
at inference itself: why should one be interested in an "exact" level of 
significance or confidence? Non-inferential data analysis is content with 
being descriptive, and often only with a "first approximation" with some 
indication of how approximately it is exact. (One cannot ascertain the 
converse, namely exactly how approximately, without knowing the exact 
answer, in which case the approximation would be superfluous.) More 
generally, why not be satisfied with an approximate level of approximation? 
Why should the researcher be confronted perennially with the paradoxical 
and even self-contradictory question: "exactly how approximate is your 
work?" Ultimately, replication is the test of science, and repeated replica- 
tions-however approximate-may be worth more than trying to assess 
the "exactness" of a level of approximation of one or two trials. How to 
draw correct statistical inferences about parameters when only first 
approximations are used appears to be largely unexplored territory for 
mathematical statisticians. W. Edwards Deming and others have done 
yeoman work in pointing out dozens of non-sampling sources of error, 
which should in particular sensitize researchers to the problem of approxi- 
mation. Still, confusion seems to be widespread among practitioners 
concerning errors of sampling versus errors of approximation. 
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A List of What is Not What 
The following list of (negative) facts enlarges on and adds to the preceding 
six classes of unsolved issues. As the discussion above shows, inferential 
problems may tend to become blurred by non-inferential features. Indeed, 
one of the sources of misunderstandings for the practitioner is the difficulty 
of pin-pointing where inference formally begins (so-called analysis of 
variance being a prime example of this). I have resisted the temptation to 
try to classify the varieties of misunderstandings and blurrings in the list. 
Each impinges on others in subtle and unsubtle ways. It may be in the 
nature of such misunderstandings that an attempted classification must 
itself be blurred, and may even lead to further misunderstandings. Accord- 
ingly, each item is stated succinctly as a fact in its own right, and only a 
mild attempt is made at cross-referencing, both within the list and with 
the preceding six problem areas. 

1. Averages do not measure central tendency 
No dynamic process is implied by the concept of an average, as the non- 
mathematical word "tendency" erroneously suggests. Consider U-shaped 
distributions. An average may be defined as a value which minimizes a 
loss function over a population, and any value in the range of a variable 
is an average according to some loss function. See also item 3 below. 

2. Spread, or deviation, of a distribution is not necessarily defined to be 
around an average 

Consider the expected value of Jxp-xql, where xp and Xq are values of 
members p and q of a population on a numerical variable x. Analysts of 
variance take notice. In contrast, the expected value of (Xp -Xq)2 happens 
to be proportional to the variance around the arithmetic mean. See also 
items 4 and 23 below. 

3. There is no regression to the mean 
Just as there is no dynamic process for an average (see item 1 above). 
The verb "to regress" has no mathematical definition, although the noun 
"regression" unfortunately is attached to one. A regression is merely a 
set of conditional averages, usually of arithmetic means. 

4. The concept of correlation does not necessarily depend on the concept of 
regression 

Consider regression-free coefficients of monotonicity between two numeri- 
cal variables x and y for a population P, like P2: 

E E (Xp Xq) (yp-yq) 

- lXp-Xql IYP-Yql 
peP qGP 
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Such correlation coefficients vary between -1 and + 1, reaching these 
extreme values when perfect monotonicity obtains, without specification 
of the exact shape of the monotone function, and without reference to 
conditional averages of one variable from the other. This extends the 
average-free concept of dispersion of item 2 above. Regression-free 
correlation concepts are proving to be useful in data analysis of time- 
series, as well as for the more usual bivariate and multivariate types of 
distribution. Such coefficients are also the basis for non-metric data 
analysis computer programs like smallest space analysis. 

5. A first approximation is not a ntull hypothesis 
It may be an approximate hypothesis, null or alternative, if an hypothesis 
to be tested at all. The extant Neyman-Pearson theory does not deal with 
approximate hypotheses, and so is not appropriate to first approximations. 
For example, if linearity is considered to be only a first approximation to 
the shape of a population regression curve, in effect this is an automatic 
rejection of the hypothesis of linearity, and it behoves the investigator to 
decide exactly what he is testing and against what alternative if he wants 
to use extant Neyman-Pearson theory to talk about the shape of the 
population regression. Use of ideas of approximation may contradict the 
ideas of null versus alternative hypotheses. 

6. There generally is no departure fronm linearity of regression 
To take linearity as a point of departure is to assign such an unusual 
phenomenon the generally incorrect role of null or incumbent hypothesis. 
In the social sciences, at least, linearity should generally be regarded as a 
departure from non-linearity, and not vice versa. See Problem 4 above; 
also items 4 and 23. This raises an interesting question of how to develop 
a realistic test of significance, or whether statistical inference should at all 
be mixed up with problems of approximation. See Problem 6 above. 

7. A difference that is declared to be "signtificant at the 0.01 level" is not 
significant at the 0.01 level 

This is a fact for any level-not just 0 01 which is taken here as but one 
example-and for any statistic, not just for a difference. Such a declaration 
implies that the "level" was determined after the statistic was calculated. 
In testing hypotheses, the level (and only one level) should be fixed in 
advance of the research; the null hypothesis is subsequently declared to 
be rejected or not, according to the observed value of the statistic and the 
region of rejection. To proclaim a "level of significance" after a statistic is 
calculated implies an incorrect value for the probability of type I error, and 
indeed makes the probability indeterminate. See Problem 3 above. If a 
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researcher wishes to signal that he belongs to the small minority that 
really tests hypotheses, he might do well to say something like: "The 001 
level of significance was chosen in advance of the research, and the statistic 
is significant. The null hypothesis is rejected." He would also not star. 

8. A test of statistical significance is not a test of scientific importance 
This fact needs reteaching to each new generation of students. It may have 
escaped part of the previous generation who became current referees 
and editors of "hard-headed" journals in fields like experimental psycho- 
logy and experimental social psychology devoted de facto to soft matters 
like "'small but significant differences" and "significant effects". No one 
lhas yet published a scientific law in the social sciences which was de- 
veloped, sharpened, or effectively substantiated on the basis of tests of 
significance. The basic laws of physics were not facilitated this way. 
Estimation and approximation may be more fruitful than significance in 
developing science, never forgetting replication. Consider the replicated 
radex law for intelligence and cylindrex law for attitude, or the polytone 
regression laws for the principal components of attitude. 

9. A confidence intervalfor the population mean does not holdfor predicting 
the mean of a new sample 

Even worse, a linear multiple regression equation calculated from one 
unconditional random sample can often do more damage in predicting 
for a new unconditional random sample than does simple weighting. 
See Problem 2 above on replication. 

IO. The normal distribution is not a normal empirical phenomenon 
It is seldom, if ever, observed in nature. It is largely generated by statis- 
ticians when they develop the mathematics of sampling theory. This fact 
has been properly taught for a long time, but seems to need constant 
repetition to students after they have been exposed to courses on statistical 
inference. 

11. Partial correlation does not partial out anything 
No more than does conditional probability partial out anything. All 
bivariate correlations are partial correlations: each is conditional on the 
population for which it is calculated. Posing further conditions implies 
stratification into subpopulations, and the resulting conditional correla- 
tions can vary widely among such subpopulations. Better and less mis- 
leading terminology would be always to say "conditional correlation" 
instead of "partial correlation", just as mathematicians say "conditional 
probability" and not "partial probability". 
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12. The "independent" variables of a regression are usually not statistically 
independent of the variable to be predicted by the regression 

If they were, the regression would be useless for prediction. These "in- 
dependent" variables are also generally mutually statistically dependent. 
Better terminology would be to call them the "conditional" variables of 
the regression, or the "predictors". Hotelling suggested calling the un- 
conditional variable, namely that to be predicted, the "predictand" of the 
regression; psychologists often call it the "criterion". From the point of 
view of theory construction, rationale for predictability should be based 
on a common definitional framework for predictand and predictors, or 
semantic dependence; see items 20 and 31 below. 

13. "Independent" contributions to a multiple regression are usually statistic- 
ally dependent 

Even when the predictors are statistically independent of each other, there 
is no guarantee but that further predictors could be found that would 
introduce statistical dependence. When statistical dependence holds, there 
are many ways of resolving it into statistically independent components; 
how to choose among these ways, if at all, is not a statistical problem. 
See the discussion of the mirage of orthogonality in Problem 5 above; 
also item 24 below on stepwise regression. 

14. Wheni calculated from a single trial on a sample, ani estimate of a 
reliability coefficient for the population is generally inconsistent (usutally 
an underestimate) 

At least two trials on the same sample are needed to provide a consistent- 
not to speak of unbiased-estimate of a population reliability coefficient, 
even for the reliability of a sum or split-halves. Popular attempts to get 
away with only a single trial bring in assumptions which are usually false 
and which do not cancel out each other's biases. The biases of the usual 
assumptions are cumulative, and often lead to severe under-estimates. 
Practitioners sometimes become aware of this when they "correct for 
attentuation" and obtain a correlation coefficient greater than unity; the 
bias is quite universal and can be drastic even if a "correction"in a particu- 
lar case does not lead to an immediate absurdity. Most textbooks in 
educational psychology and related fields erroneously treat conventional 
reliability coefficient formulas as if they were consistent, whereas these 
formulas are usually but estimates of lower bounds to the reliability 
coefficient in question. 
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15. In a multiple-choice test item, the several wrong answers generally do 
not have the same probability of being chosen 

If the wrong answers are equally probable for each member of a large 
population being tested, and if there is experimental independence between 
members, then the observed proportion of the population choosing one 
particular wrong answer must be equal to the observed proportion choosing 
each of the other wrong answers. In scrutinizing hundreds of multiple- 
choice items over the years, I have yet to see such equal proportions 
empirically, and I know of no one who has reported seeing such an 
empirical phenomenon. In practice, distractors distract unequally. The 
widespread hypothesis that there is "guessing" in practical testing that 
leads to equal probabilities is an example of unnecessary and demonstrably 
false "mathematical" assumptions that pervade some quarters of social 
science. "Mathematical" assumptions are no substitute for actual study 
of human behavior. 

16. The statistic chi-square for testinzg statistical independence between two 
variables is not a measure of dependence, even when normed by sample 
size 

For example, the statistic does not indicate when perfect monotone 
dependence holds. There is only one kind of statistical independence but 
many varieties of perfect dependence, each of the latter requiring its own 
loss function. This is also why the chi-square test, as typically used, is 
rather weak: it has no particular alternative hypothesis. A better test can 
generally be made when the type of dependence is specified. 

17. The concept "random variable" is not defined in terms of random 
sampling 

The converse is true. A "random variable" is actually a function, namely 
a function which has as its domain a population with a probability measure. 
Nothing "random" in any ordinary or technical sense is involved in this. 
That statistical theory deals at the outset with the concept of "function" 
may be one of the sources of difficulty in teaching elementary statistics: 
at least two variables must be considered simultaneously from the very 
beginning. 

18. Nothing happens by chance 
"Chance" is not a technical statistical term. Some practitioners use 
"chance" to refer to events with equal probabilities, others may have in 
mind statistical independence between variables, and still others may 
intend it merely to indicate that no clear lawfulness is known as yet. The 
word is best to be avoided in technical discussions. Similarly, nothing 
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"happens at random", although random sampling is possible-namely by 
generating a multivariate distribution of identically distributed and 
statistically independent variables. 

19. An expected value is generally not to be expected 
It is merely the population's arithmetical mean 

20. A mapping sentence is not a theory 

The concept of a mapping sentence merely generalizes R. A. Fisher's 
design of experiments to the design of any observations, with the added 
feature of informal verbal connectives needed for actual empirical work. 
Such an enlarged design defines the content of the observations, and thus 
can serve as a basis for stating and testing an hypothesis or theory. As 
Fisher pointed out, data design should be an explicit part of a theory. A 
theory can be defined, in this sense (and quite generally), as an hypothesis, 
with its rationale, of a correspondence linking a definitional system-or 
design-for a universe of observations with an aspect of the empirical 
distribution of those observations. See Problem 6; also items 29, 31, 50, 
and 53 below. 

21. A universe of variables generally cannot be sampled at random for a 
given population 

There generally is no probability distribution for a facet design of content. 
Replication of a sample of variables is accomplished by constructing new 
variables according to the same facet design of content. A special case of 
such construction and replication is translation into several languages and 
cross-cultural comparison. 

22. A null hypothesis generally shouild not hypothesize nullity 
Nullity should generally be an alternative hypothesis; see Problem 4 
above. 

23. Analysis of varianice does not analyse variance 
It analyses the shape of the regression of a numerical variable on either 
numerical or categorical conditional (predictor) variables. Variances and 
degrees of freedom come into the picture to help study sampling error for 
inference purposes; they are not essential to the basic partition of the 
numerical predictand into regression ("between") and deviation from 
regression ("within"). Factorial design represents the general case of cat- 
egorical conditions; but, traditionally, the most general possible shape of 
regression for this design is not studied. For example, given a three-facet 
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design for observations on a numerical variable t, analysts of variance 
traditionally consider only a tautology of the form 

tiji= tij. + ti.k+ t.jk+ ti.. + t.j. + t..k+residual, 

and look forward to orthogonality (Problem 5), whereas this form is only 
a special case of a more general tautology 

tijk- UiJVJkWik + residual, 

where Uij, Vjk, and Wik can in turn be decomposed in several ways. The 
population regression, of course, is the set of conditionally expected values 
of tijk, and this set need not be estimated consistently by using a restricted 
tautology. Regardless, practitioners usually try to test hypotheses that a 
more simplified shape than either of the above holds-usually several 
hypotheses simultaneously. They compute a set of statistics ("variance 
ratios") F1, F2,. . . , Fm-each Fi being intended to help test a null hypo- 
thesis Ho1 on some aspect of the regression-and make assertions con- 
cerning "levels of significance" czi where presumably 

oai=Prob{Fi_AiIHoi} (i=1, 2, . .. m) 

a coefficient Ai denoting the boundary between the intervals of rejection 
and acceptance of hypothesis Ho1. Such assertions are typically erroneous, 
as discussed in Problem 3 and item 7. More appropriate would be to 
specify a region of rejection R, a multivariate statistic r, and a level of 
significance az for all hypotheses simultaneously, such that 

oi = Prob{rERI Ho l, Ho 2, . . . , Hom}, 

and where r and R minimize type II error for a set of alternative hypotheses. 
Some mathematical statisticians have been giving attention to special 
cases of this problem, emphasizing nullities as null hypotheses, and usually 
not giving specialized alternatives. This, of course, brings up Problem 4. 
Regardless, practitioners often show that what they are really interested 
in is estimation of the regression shape, and that they use hypothesis 
testing as a technique for estimation. They treat the hypotheses sequentially, 
but without using sequential inference. This is not unlike stepwise re- 
gression on numerical conditional variables (see next item). Various 
things are pooled and "probabilities" are recalculated, in blithe oblivious- 
ness of the fact that statistical inference is being disavowed thereby. 
Something even more basic may be disavowed when authors and journal 
editors get so enamoured with the technical apparatus of sums of squares 
and degrees of freedom that they publish these but decide to save space- 
or simply forget-and do not publish the final estimated regression which 
was the focus of all the work; they look at the bath and not at the baby. 
Even when saving printing space, it would generally be useful to publish 
at least the correlation ratio associated with the regression, to help the 
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reader comprehend immediately the relative predictive power of the 
regression as estimated from the data. See also item 2 above for another 
emphasis. 

24. Stepwise regressioni, as currenitly practised, is neither inference wise nor 
theory wise 

Making further calculations conditional on tests of "significance" of 
previous calculations does not yield the implied probabilities for purposes 
of inference. A correct sequential test is not yet known. Alternatively, to 
look at all possible regressions simultaneously creates another inference 
problem that no one has yet solved; see Problem 3. More important, 
seeking a simplified regression is presumably for practical use in a new 
sample. No one has shown for any current technique for curtailing re- 
gressions-including analysis of variance as discussed in the previous 
item-that it has any optimal qualities for treating the new sample prob- 
lem; see Problem 2. In the face of this state of inferential ignorance, 
nothing may be more practical for arriving at simplified regressions than 
a substantive theory for the structure of the entire covariance matrix- 
predictand and predictors together-that can be approximately tested by 
the sample data. Mathematical and empirical cross-validation evidence 
indicates that there is merit in seeking a minimal number of predictors for 
practical prediction. Too many predictors can give almost worthless 
predictions in the next sample; they spoil a regression by adding more 
sampling error than anything else. Furthermore, simple constant weights 
for predictors can do better for prediction in a new sample than can the 
old sample regression coefficients, because of the sampling instability of 
regression coefficients. Some practitioners look on stepwise regression not 
as a practical problem, but as a theoretical device for ascertaining "in- 
dependent" incremental contributions to a regression. In so doing, they 
step unwisely into the trap of orthogonality discussed in Problem 5, 
item 13, and item 27. Use of stepwise regression is actually a confession of 
theoretical ignorance as to the structure of the correlation matrix. If the 
structure is known, the appropriate shapes of regression can be predicted 
in advance; simple illustrations of this are for the inverses of simplex and 
circumplex covariance matrices. For developing substantive theory, it may 
be better to consider the structure of the covariance matrix as a whole, 
in the light of the definitional design of all the variables concerned. See 
Problem 6 and item 20. 

25. Correlation does not generally imply causation 
This fact has been taught properly for a long time. But hope springs 
eternal in some sociological quarters: see items 26, 27, 42, and 43 on 
"determination", "explanation", "causal analysis", and "path analysis". 
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26. A coefficient of determination does not assess determination 
The square of a Pearson correlation coefficient or correlation ratio is often 
called a coefficient of "determination", and is often erroneously said to 
express the "proportion" of one variable that is "determined" by the 
others. Clearly, any variable may have non-zero correlations in many 
contexts, so the sum of all possible "proportions of determination" for 
any given variable is generally infinite. It is generally taught that "cor- 
relation does not necessarily mean causation"; for some reason, changing 
the word "causation" to "determination" undoes this teaching. The 
squared coefficient is simply the standardized variance of the predicted 
(or regression) values, just as the absolute value of the coefficient is the 
standardized standard deviation of those values. 

27. Proportion (or percentage) of variance is never explained 
No more than is proportion of average deviation, of standard deviation, 
or of any other aspect of dispersion. The word "explanation" here plays 
the same role as does "determination" or "causation" in the preceding 
item. None of these words has any technical mathematical meaning; their 
use represents wishful thinking about the relative predictability of a 
variable in a given context, such thinking generally leading to percentages 
of "explanation" that add up to many times 100 per cent for the variable 
in question. 

28. If y and z correlate 060 with each other, and if x correlates 0O80 with y, 
then x need not be correlated with z 

If the correlation coefficients here are the usual linear Pearsonian, then 
x and z can correlate precisely zero with each other. This can be seen from 
the fact that the conditional correlation between any x and z, holding any 
y constant, varies between -1 and + 1, whence 

rxyryz- V(1 -rxY2)(1 -ryz2) rXZ ?rXyryz + /(1 -rXY2)(1 -ryz2). 

Using the illustrative values 0-60 and 0-80 for ryz and rxy, respectively, 
yields 0 <rxz 50-96, so rxz can attain the value zero as asserted. When 
rxy = ryz= 060, rxz can well be negative, for the inequalities establish that 
-0-28?<rxz ?1; such apparently high coefficients as 0-60 for rxy and ryz 
do not restrict rxz very much. Lack of recognition of this fact has led many 
to the false belief that if two variables correlate "highly" with each other, 
then these tend to be redundant, and either one can be used as a practical 
"substitute" for the other. Using one variable as an "index" or "indirect 
measure" for one or more other variables is among the most widespread 
fallacious practices that militates against progress in developing theory 
and establishing laws in social science. It relates to the flight from definition 
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discussed in items 29, 30, and 37. An interesting and important special 
case of the above inequalities is where x and z correlate equally with y. 
Denoting this common correlation by r, the inequalities become 

2rl2 - 1<rxz<1 (rxy=rzy=r). 

Accordingly, r must be no less than 0 707 to ensure that rxz is not negative. 
(This last form of the inequalities leads to an Achilles heel of factor 
analysis, namely the indeterminacy of factor scores referred to in item 
39 below.) 

29. Scientific definitions are never correct 

Neither are they ever incorrect. In science, an assertion that is to be 
classified as correct or incorrect is called an hypothesis (in logic, it is 
called a proposition). Definitions are not hypotheses; rather, they are 
assertions that are to be classified from very reliable to very unreliable 
(very clear to very unclear). Unreliable definitions cannot lead to correct 
hypotheses about substantial correlations, while perfectly reliable defini- 
tions need not do so. Instead of quarrelling about what is "the correct" 
definition of a concept, one should go about establishing partnerships 
with further concepts and specifications and seeing which partnerships 
lead to scientific laws. For example, the definition of "attitude" which 
makes possible the first law of attitude is not "the correct" definition: it 
is simply a constituent of a successful partnership which constitutes the 
law. Phrases like "operational definition" and "construct validity" are 
often used in the contexts of the issues of reliability and successful partner- 
ship, respectively; these phrases-especially the first-have aroused so 
many unnecessary further associations and misunderstandings that they 
could well be abandoned. Facet theory advocates making a set of 
definitions simultaneously, within a common facet design; this not only 
helps ensure clarity and reliability, but also helps produce partnerships 
that may prove successful and/or fruitful. See also item 20. 

30. Correlation does not determine contenzt 

No more than correlation implies causation. Otherwise there would always 
be an obvious answer to a question like: "Suppose that, for a given 
population, a variable x correlates 0 60 with height of th~. people. What 
is the content of variable x ?" This holds for any subvariet ,f correlation, 
be it canonical, multiple, "partial", part, part-whole, or ainy other. It is 
extraordinary how well trained many psychologists and sociologists are 
against a priori definition of content: they are taught to demand statistical 
evidence that a definition is "correct". For exanmple, when asked whether 
"2+2=-?" is an item that belongs to arithmetic, they reply that they 
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cannot know until it is proved that the item correlates with arithmetical 
ability! When asked further as to what "arithmetical ability" might mean 
then, some embarrassment becomes apparent. It is hard for them to 
realize that this "hard-headed" training contradicts the more correct 
teaching that they receive in the design of experiments: design is possible 
only on the basis of a priori definitions. More generally, scientific laws 
require such definitions. See item 29. 

31. Content does not determine correlation 
For example, two reliable arithmetic test items can correlate virtually zero 
with each other, while two others can correlate virtually perfectly with 
each other. Content can serve as a basis for a rationale for hypotheses 
about differential sizes of correlations, hypotheses which may be false as 
well as true. Indeed, the strategy for attaining empirical laws can be 
characterized as generating a design for content which leads to viable 
hypotheses about the structure of the resulting observations. Using facet 
design for the data facilitates making differential and cumulatively viable 
hypotheses. See also items 20, 48, and 53. 

32. Item analysis for internal consistency does not analyse items 

It merely attempts to "test" the-challenging!-hypothesis that all inter- 
item correlations are zero, and usually by an incorrect item-total score 
correlation technique. It is a way of trying to avoid the basic problem of 
definition, and involves wishful thinking that correlations should determine 
content. 

33. Scalability is not to be desired or constructed 
To say that one "wants to construct" a scale of attitude towards some- 
thing, or of achievement in some field, is almost analogous to saying that 
one "wants" the world to be flat. Items are the things to be constructed- 
not scalability; scalability is an empirical hypothesis for a universe of 
items for a given population (usually an alternative hypothesis to the null 
hypothesis of multidimensionality; see item 36). To throw away items that 
do not "fit" unidimensionality is like throwing away evidence that the 
world is round. 

34. If all inter-item correlations are positive, this does not necessarily imply 
the presence of a single common-factor-not even when the coefficients 
are all very high 

To the contrary, observing all positive correlations led Charles Spearman 
to develop-and disprove-the hypothesis of a single common-factor for 
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intelligence. This is what led to multiple common-factor analysis. Even 
when all intercorrelations are very high-say over 0 95-nothing can be 
inferred about dimensionality from this information alone. All positive 
correlations may be hypothesized when all the variables have a common 
range-consider the first laws of intelligence and of attitude. A common 
range is not to be confused with a common-factor. 

35. That the nzumber of common-factors be small is generally n1ot a null 
hypothesis 

This remains a challenging hypothesis for intelligence and other areas of 
social behaviour. See also next item. 

36. Scalability is generally tIot a null hypothesis 
That is why multidimensional scalogram analysis has been developed. 
Multivariate distributions of items in the social sciences, whether based 
on an intuitive or on a formal design of observations, have generally been 
found to be multidimensional rather than unidimensional. No one has 
yet suggested a rationale for a universe of items, and a populatioln to be 
observed thereon, according to which unidimensionality should be the 
rule rather than the exception. Textbooks and journal editors seem 
unaware of the fact that multidimensional scalogram analysis may be 
more appropriate than presently widespread attempts to "enforce" 
scalability (see item 33). Multidimensional scalogram analysis is not to be 
confused with the so-called multidimensional scaling discussed in item 
49 below. 

37. Euiclidean space can be defined without a coordinate system 
Indeed, that is how Euclid did it. Descartes came centuries later. Today, 
a convenient coordinate-free approach is through distance or vector ideas. 
It is curious how some referees of papers involving data analysis techniques 
like Smallest Space Analysis keep asking for presentation and/or interpre- 
tation of coordinate axes, despite the fact that such axes are completely 
irrelevant to the problem. See also the following items on factor analysis, 
and items 49 and 50. 

38. Two-dimensional Euclideai space has an infinite ntuxmber of dinmensions 
This is one reason why regional hypotheses, related to facet designs, 
should be looked into, instead of only trying to find a "meaningful" set of 
coordinate axes. The same holds for n-dimensional Euclidean space when 
n> 2. 
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39. Factor analysts in practice do not analyse factors 
They do not find a set of factor scores for the members of the population 
which, when held constant, yield zero conditional correlations (or local 
statistical independence) among the observed variables for that population. 
At best, they partly analyse the observed population correlation matrix- 
not the observed scores of the individual members-by calculating pre- 
sumed "factor loadings" or "factor patterns" of coefficients for approxi- 
mate reproduction of that matrix. No one has shown the scientific 
meaning or utility or current indirect calculations of loadings from-and 
for-the observed correlation matrix when the real problem is that of 
factor scores for the observed scores. For example, if xi (i= 1, 2, . . . , n) 
are n observed numerical variables for a population P, if xpi is the score 
of individual p on xi (peP), if the content of the variables can be classified 
by three facets A, B, and C, and if xi has the structuple abc-where aeA, 
beB, ceC, then a common-factor score resolution of xi might be 

Xpi=Xpab+Xpac+Xpbc+Xpa+Xpb +Xpc+Xp+ Upi, 

where ui is the unique factor for xi. No one has yet addressed himself to 
estimating such common-factor scores, despite the great attention given 
to the facet designs for intelligence by J. P. Guilford and others. The 
above type of factor resolution by facets produces simple structure, but 
also large rank. As already remarked in the introduction, the principles of 
small rank and of simple structure are generally incompatible. Further- 
more, it has not been shown that the mathematics underlying current 
computer routines is consistent with the mathematics of factor score 
theory. The mathematics of factor analysis proves that even should factor 
loadings be fixed in a consistent fashion, this would generally leave wide 
open the question as to what factor scores should go with these loadings: 
widely different alternative score solutions generally exist that are con- 
sistent with precisely the same loadings (cf. item 28). Most textbooks do 
not mention these problems of factor score underdeterminacy and in- 
consistency which are at the heart of factor analytic theory, and all extant 
computer programs ignore these problems. 

40. Factor analysis is not a powerful nor an openi-eyed exploratory device 

To call factor analysis "exploratory" is to affirm that factor analysts do 
not practise factor analysis (see the previous item), but do something for 
which factor analytic theory was not designed. Non-metric ideas may be 
better suited for exploration purposes than is such a rigid framework as 
factor theory. At best, factor analysts partly explore the correlation 
matrix-even though this matrix is but incidental to factor theory-by 
seeking a coordinate system for variables without going on to factor scores 
for people. This exploration is quite limited; for example, all existing 
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computer programs going under the label of "factor analysis" fail to give 
the most elementary information about a correlation matrix: are all its 
elements of one sign or not? This question of sign is where factor analysis 
began historically; see item 34 above. Forgotten is L. L. Thurstone's 
hypothesis of a "positive manifold" for all-positive signs. Similarly, the 
programs give no systematic information about the relative sizes of the 
observed correlation coefficients, and are geared always to overlook a 
simplex structure and other simple configurations known to exist in 
various empirical correlation matrices. The programs fail to capitalize on 
any facet design for the observed variables (including multitrait-multi- 
method and other factorial designs). They all adopt the narrow and 
arbitrary outlook that a Euclidean space (for variables) must be "under- 
stood" in terms of a coordinate system (see item 37 above), closing their 
eyes to regional and other coordinate-free possibilities. They are further 
blindfolded by their insistence on Cartesian coordinates, ignoring cylin- 
drical and other coordinate systems found fruitful in other approaches to 
data analysis, if coordinates are to be used at all. 

41. Latent structure theory is n1ot a thteory of structure 
It is a theory of deviation from structure. The major point of the approach 
is that a population can be stratified into subpopulations within each of 
which statistical independence obtains for the universe of items. How to 
stratify-or the structural specification-is not part of the theory itself, 
but must be decided afresh for each problem by outside considerations. 
That is why there can be no standard computer program for latent structure 
analysis. In this and other respects, latent structure analysis and factor 
analysis are of the same family; in particular, they share the basic problem 
of indeterminacy of structural values or scores for individuals, even after 
structure over items is specified. Compare item 39 above. 

42. Causal analysis does not analyse causes 
It does not even offer a definition of the word "cause". It offers neither a 
necessary nor a sufficient empirical condition for the testing of "causality" 
of relations. Any such condition, if proposed, would undoubtedly lead to 
things being "caused" many times over (cf. items 27 and 43 on "explaining" 
variance and on path analysis). Regardless, there has been a flowering of 
"causal" discoveries in sociology at a pace unheard of in the history of 
science. Virtually every month, current journals publish new "causal 
analyses" and "causal modelling" which undoubtedly put sociology at the 
forefront of all the sciences in terms of frequency of discovery of funda- 
mental relationships. Actually, sciences outside of sociology have managed 
to get along without "causation". According to Sir Isaac Newton, "causa- 
tion" may not even denote a scientific concept. Scientific progress may be 
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facilitated by soft-pedalling "causation", and paying attention to the 
apparently more prosaic minimum essentials for an empirical theory 
described at the end of item 20. 

43. Path analysis does not analyse non-genetic paths 
Sewall Wright originally suggested path analysis as an algorithm for 
calculating genetic variances under certain conditions when the path of 
inheritance of genes from generation to generation is known. The term 
"path analysis" has been pre-empted by some researchers for non-genetic 
use, namely to refer to some linear algebraic calculations for which the 
"paths" do not exist apart from the algebra itself, and without any 
definition of what (analogous to genes) is supposed to be transmitted over 
a "path" in time. Even in genetics, should environment be introduced into 
a "path" analysis, there would be no clear rationale for a path over time; 
extending genetic equations this way may imply that genes are generated 
by or modified by environment. Units of time and/or sequence of genera- 
tions are typically absent from sociological and other non-genetic "path" 
analyses of data, despite the fact that the basic problem is to study move- 
ment over paths in time-assuming that there are known paths to be 
studied at all. Genetics has but one modest framework for paths. In 
contrast-according to current journals-sociologists keep discovering 
new fundamental path frameworks every month; and sociological graduate 
students are required routinely to hand in, as individual class exercises, 
new discoveries equalling Gregor Mendel's. See also items 27 and 42, on 
''explanation" of variance and on "'causal" analysis. 

44. Regions are generally not clusters 
Two points from different regions of a space can be much closer to each 
other than two points from the same region. Regions for data analysis are 
usually to be defined by content considerations, not by blind "cluster" 
analysis of distances among points. Regions are indicated by-and 
generally share-boundary points, and are generally not separated by 
empty spaces as implied by the term "clusters". In the contiguity language 
of discrete multidimensional scalogram analysis, a cluster should require 
each of its outer points to be closer to at least one of its inner points than 
to any outer point of another cluster. Contiguous regions need not, and 
generally do not, satisfy this restriction. 

45. "Clusterinig" does not definie content 

No more than correlation defines content. An arithmetic test and a verbal 
test can be much closer together than are two arithmetic tests or two verbal 
tests. 
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46. There is no widely accepted definition of the conicept "cluster" for data 
analysis 

There can hardly be, especially for the social sciences, since theories about 
non-physical spaces (including non-geographical and non-ecological 
theories) generally call for continuity, with no "vacuum" or no clear 
separations between regions of the social or psychological space. The 
varied data analysis techniques going under the name "cluster analysis" 
generally have no rationale as to why systematic "clusters" should be 
expected at all, and hence no rationale for a definition. The term "cluster" 
is often used when "region" is more appropriate, requiring an outside 
criterion for delineation of boundaries. See item 44 above. 

47. Nominal, initerval, and ratio scales ar-e not scales 
A "nominal scale" is unordered by definition, so it is not a scale by 
definition, since order is an essential part of the notion of a "scale". In 
psychophysics, "interval scale" and "ratio scale" are names for hypotheses 
on some features of certain experimental regression curves. Some non- 
psychophysicists have borrowed this unfortunate terminology for less 
appropriate-indeed undefined-contexts, and may be unaware of the 
original experimental psychophysical regression problem. There is wide- 
spread folklore concerning mythical statistical "rules" that forbid or 
permit calculations involving "scales", these "rules" being independent of 
context. See next item. Perhaps the psychophysicists could suggest a better 
word than "scale" for their types of bivariate regression hypotheses. 

48. Permission is tiot required in data analysis 

What is required is a loss function to be minimized. Practitioners like to 
ask about a priori rules as to what is "permitted" to be done with their 
unordered, ordered, or numerical observations, without reference to any 
overall loss function for their problem. Instead, they should say to the 
mathematician: "Here is my loss function: how do I go about minimizing 
it ?" Minimization may require treating unordered data in numerical 
fashion and numerical data in unordered fashion. If a mathematician gives 
or withholds "permission" without reference to a loss function, he may 
be accessory to helping the practitioner escape the reality of defining the 
research problem. 

49. Non-metric multidimenisional scaling does not scale dimensions 
If at all, it scales distance. It monotonely transforms interpoint information 
of the ordered-metric type, in the language of Clyde Coombs, into a distance 
function (Euclidean or non-Euclidean) relating the points. The original 
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use of the term "multidimensional scaling" by Warren Torgerson was for 
a fully metric analysis of observed interpoint distances, with the intention 
of actually "scaling" dimensions, namely, to find a set of coordinates, each 
of which was "meaningful" a la metric factor analysis, and with smallest 
dimensionality, for reproducing the observed distance coefficients. Non- 
metric approaches to dissimilarities focus only on the aspect of finding a 
space of smallest dimensionality, and in this sense are coordinate-free. 
Indeed, the cumulative growth of findings of lawful structures in attitudinal 
and mental test data-among others-has been made possible by using 
regional concepts for the smallest space, rather than by seeking meaningful 
dimensions. "Scaling" is technically only for a one-dimensional variable 
(distance is always one-dimensional, even within a multidimensional 
space), so "multidimensional scaling" may be contradictory terminology 
in the non-metric and other coordinate-free contexts. It may be appropriate 
to multifaceted ("multi-modal") factor analysis and other approaches that 
insist on seeking meaningful dimensions. The term is unnecessarily mis- 
leading in contexts where only smallest space analysis is intended, con- 
fusing practitioners-and journal referees-again about item 37 above. 

50. Number offacets does not determine dimensionality 
Consider the example of the three-faceted factorial design in item 23 
above. If none of the terms in the traditional tautology has zero variance, 
and if orthogonality holds, then the regression has six orthogonal dimen- 
sions for the three facets. The hypothesis that all interactions vanish is 
equivalent to the hypothesis that the dimensionality of the regression be 
no greater than the number of facets. The dimensionality, of course, can 
be even less than the number of facets. In the two-facet design example in 
item 39, the dimensionality of the common-factor space is usually much 
greater than 2, indeed can be larger than n-the number of observed 
variables; for degenerate cases dimensionality can be equal to or less than 
the number of facets. Similarly, in smallest space analysis of a correlation 
matrix, the obtained smallest dimensionality has no necessary connection 
with the number of content facets in the mapping sentence for the ob- 
servations: the dimensionality may be greater than, equal to, or less than 
the number of these facets. Indeed, one of the major problems of sub- 
stantive theory construction is to rationalize viable hypotheses about the 
relations of the content facets to dimensionality and other aspects of the 
data. See items 20, 31, and 53. 

51. Non-metric data analysis is generally metric 
The input may be completely non-numerical, or else a non-numerical 
aspect of numerical data; but the output is generally a metric space, 
indeed often a Euclidean space. In the special case where both input and 
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output are metric, but only monotonicity is preserved-as in smallest 
space analysis and related techniques-the Shepard diagram actually 
portrays the metric nature of the implied monotone function. Ultimately 
an explicit monotone function could be specified as a result of the analysis; 
T. W. Anderson did such a thing for the radex as long ago as 1958. 

52. There is no contradiction in principle between metric and lnoni-metric 
data anlalysis 

Every consistent metric analysis must retain certain non-metric features 
of the input data, and merely adds further restraints. That is why an 
analysis devoted only to the non-metric features generally yields a smaller 
space than the more restrictive metric analysis of the same data. Para- 
doxically, when an approximate metric analysis can be calculated more 
quickly than a non-metric analysis, the metric calculations are often a 
useful first approximation to be used in iterations toward a non-metric 
solution. Differences in principle occur within metric procedures and hence 
within the corresponding non-metric procedures: differences as to which 
features of the input data should be represented in the output as points, 
which as vectors, which as distances, which as angles, which as regions, etc. 

53. Loss funictions typically used in data analysis are incomplete 
Coefficients of goodness or of lack of fit, like reproducibility, contiguity, 
alienation, stress, and the like-whether based on least squares, the 
absolute value principle, the rank-image principle, or any other-are 
usually blind to content considerations. They do not incorporate loss 
associated with departure from a substantive theory about the structure 
of the data, and accordingly are in need of modification. See Problem 6; 
also items 20, 31, and 50. In particular, this incompleteness holds for my 
own work till now; but I hope gradually to remedy the matter in the light 
of new developments in facet theory. (After the foregoing was written and 
submitted for publication, faceted smallest space analysis has become a 
reality: a computer program which requires substantive facet input along 
with the usual similarity (or dissimilarity) coefficients, and for which the 
loss function involves both technical and substantive goodness-of-fit to 
regional hypotheses.) 
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