
Late for work, you paw frantically 
through your sock drawer, un-
able to find a matching pair in

its jumbled disarray. In the kitchen, your
toast slides off the plate and lands on
the floor—butter-side down, of course.
Finally out of the house, you reach the
train station and join a line for a tick-
et—and then find yourself watching the
lines on either side shoot ahead, while
you remain stuck behind someone ar-
ranging a world tour.

Is it all just chance misfortune—and no
more likely, probabilistically speak-

ing, than happier outcomes? Or
is there something about the
way the universe works that fa-
vors this kind of aggravation?

Alas, a strong case can be made
for the latter explanation. Indeed,

there is evidence that the universe is
against you.

Of course, this idea has for many years
been a part of popular wisdom; there is
even a name for it: Murphy’s Law. “If
something can go wrong, it will” is
how the law is usually expressed. But
though most nonscientists have never
doubted the validity of Murphy’s Law,
scientists typically dismiss it as nothing
more than a product of our selective
memory for those times when things
don’t go well. 

In this case, however, the scientists 
appear to have dismissed popular wis-
dom too hastily. Using a wide range of
mathematics and science, from proba-
bility theory to rigid-body dynamics, I
have been investigating Murphy’s Law. JA
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The Science 
of Murphy’s Law
Life’s little annoyances are not as random 

as they seem: the awful truth is that 

the universe is against you

by Robert A. J. Matthews

BAD DAY might feature some improbable misfortunes as well as some
that are not so improbable—such as taking along an umbrella that turns
out to be unneeded or being unable to find a matching pair of socks.
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And the awful truth is that many of the
most famous manifestations of Murphy’s
Law actually do have a basis in fact.

The familiar version of Murphy’s
Law is not quite 50 years old, but the
essential idea behind it has been around
for centuries. In 1786 the Scottish poet
Robert Burns observed that

The best laid schemes o’ mice an’ men

Gang aft agley (“Are prone to go 

awry”).

In 1884 the Victorian satirist James
Payn described perhaps the most fa-
mous example of Murphy’s Law:

I had never had a piece of toast

Particularly long and wide

But fell upon the sanded floor

And always on the buttered side.

The modern version of Murphy’s Law
has its roots in U.S. Air Force studies
performed in 1949 on the effects of rap-
id deceleration on pilots. Volunteers were
strapped on a rocket-propelled sled,
and their condition was monitored as
the sled was brought to an abrupt halt.
The monitoring was done by electrodes
fitted to a harness designed by Captain
Edward A. Murphy.

After what had seemed to be a flaw-
less test run one day, the harness’s fail-
ure to record any data puzzled techni-
cians. Murphy discovered that every one
of its electrodes had been
wired incorrectly, prompting
him to declare: “If there are
two or more ways of doing
something, and one of them
can lead to catastrophe, then
someone will do it.”

At a subsequent press con-
ference, Murphy’s rueful ob-
servation was presented by
the project engineers as an ex-
cellent working assumption
in safety-critical engineering.
But before long—and to Mur-
phy’s chagrin—his principle
had been transformed into
an apparently flippant state-
ment about the cussedness
of everyday events. Ironical-
ly, by losing control over his
original meaning, Murphy
thus became the first victim
of his eponymous law.

I became intrigued by
Murphy’s Law in 1994, after
reading a letter in a maga-
zine describing what hap-

pens when a paperback book slides off
a desk. The writer claimed that a book
initially with its front cover uppermost
almost always lands face down. Did this,
he asked, have any bearing on the noto-
rious buttered-toast phenomenon?

My first reaction was perhaps typical
of most scientists: I thought that the
book was as likely to land face up as
face down and that the reader hadn’t
repeated the experiment often enough.
Yet when I tried it, it became clear that
the behavior of a tumbling book was
far from random. Its final state was
clearly dictated by its rate of spin, which
was typically too low to allow the book
to make a complete revolution and come
face up again by the time it hit the floor.
The torque induced by gravity as the
book—or piece of toast, for that mat-
ter—goes over the edge simply does not
lead to a sufficiently fast spin rate.

Straightforward measurements and
dynamical calculations approximating
the book (or toast) as a rigid, rough,
thin plate confirmed that the motion
has nothing to do with aerodynamic ef-
fects, which are negligible. The presence
of the thin layer of butter is also irrele-
vant: the butter-down landings are pri-
marily the result of gravity and surface
friction.

I later learned that others had pub-
lished similar analyses of the tumbling
toast phenomenon years earlier. It was
when I began to dig deeper into its

causes that I uncovered something truly
surprising: a connection between the
dynamics of tumbling toast and the
fundamental constants of nature.

Clearly, toast would land butter-side
up if it fell from sufficiently tall tables.
So why are tables the height they are?
Because they must be convenient for
human beings. So why are humans the
height they are? Some years ago Wil-
liam H. Press, a professor of astrophys-
ics at Harvard University, pointed out
that as bipedal, essentially columnar an-
imals we humans are relatively unstable
against toppling. If we were a lot taller,
he further reasoned, we would be in dan-
ger of severely injuring our head every
time we fell over. At a more fundamen-
tal level, this likelihood of injury means
there is a limit on human height set by
the relative strengths of the chemical
bonds making up our skull and by the
strength of gravity pulling us over.

Cosmic Constants

The strengths of these two forces are
in turn dictated by various funda-

mental constants—such as the charge on
the electron—whose values were fixed
in the cosmic big bang some 15 billion
years ago. Using an argument similar to
that of Press, I found that the values of
these constants lead to a maximum
height for human beings of around three
meters, which is still below that needed

to avoid butter-down land-
ings of toast [see “The An-
thropomurphic Principle,”
by Ian Stewart; Scientific

American, December 1995].
It seems that toast tends to
land butter-side down be-
cause the universe is de-
signed that way.

The publication of this re-
sult in the European Journal
of Physics in 1995 generated
an astonishing amount of
popular interest. I soon found
myself being asked to explain
other examples of Murphy’s
Law: Why is the weather al-
ways worse during weekends,
say, or why do cars break
down on the way to impor-
tant meetings?

The trouble with many
such examples is that either
they are not true or they are
entirely anecdotal and thus
beyond the reach of analysis.
For some, like car break-
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ODD SOCKS are likely to accumulate as a result of random and
repeated sock loss, combinatoric analysis shows.
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downs, the standard scientific explana-
tion of “selective memory” seems rea-
sonable. Nevertheless, I have found some
well-known manifestations of Mur-
phy’s Law that are amenable to analy-
sis. And again, the results tend to sup-
port popular belief in the law’s validity.

Lost on the Fringes

One manifestation of the Murphy
principle that is rather easy to ex-

plain is Murphy’s Law of Maps, which
might be expressed as, “If a place you’re

looking for can lie on the inconvenient
parts of the map, it will.” The reason
turns out to involve an interesting com-
bination of probability and optical illu-
sion. Suppose that the map is square;
the “Murphy Zone” consists then of
those parts of the map close to its edges
and down the central crease, where fol-
lowing roads to their destination is
most awkward.

Simple geometry shows that if the
width of the Murphy Zone makes up
just one tenth of the width of the entire
map, it nonetheless accounts for more

than half the area of the map. Hence, a
point picked at random on a map has a
better than 50–50 chance of falling into
the Murphy Zone. This surprising re-
sult stems from the fact that although
the Murphy Zone looks rather narrow,
its perimeter tracks the largest dimen-
sion of the map, so the total area of this
zone is deceptively large.

Another example of Murphy’s Law
that is relatively easily explained is Mur-
phy’s Law of Queues: “The line next to
you will usually finish first.” Of course,
if you stand in line behind a family of
12 shopping for the winter, it is hardly
surprising if all the other queues finish
before yours does. But what if your line
is identical in length and makeup to all
the others? Surely then you’ll be safe
from Murphy’s Law? 

Sorry, but the answer is no. It is true
that, on average, all the queues will move
at more or less the same rate—each be-
ing equally likely to suffer from the kind
of random delays that occur when, for
example, the cashier has to change the
cash-register tape or a customer wants
to use a personal check drawn on an ob-
scure bank to pay for a pack of chew-
ing gum. But during any one trip to the
supermarket, we don’t care about aver-
ages: we just want our line to finish first
on that particular visit. And in that case,
the chances that we’ve picked the queue
that will turn out to be the one least
plagued by random delays is just 1/N,
where N is the total number of queues
in the supermarket.

Even if we are concerned only about
beating the queues on either side of ours,
the chances we’ll do so are only one in
three. In other words, two thirds of the
time, either the line to the left or the one
on the right will beat ours.

Probability theory and combinatorics,
the mathematical study of arrangements,
hold the key to another notorious ex-
ample of Murphy’s Law: “If odd socks
can be created, they will be.” Anyone
who has hunted through a drawer look-
ing for a matching pair will have been
struck by the ubiquity of odd socks.
Popular folklore has blamed everything
from gremlins to quantum black holes.
Yet it is possible to probe the mystery

WHICH LINE will move fastest? Each is
likely to be held up by the kind of random
delays that occur when, for example, cus-
tomers pay by check, but simple probabil-
ity confirms that it is quite likely that the
fastest line will be one you are not in.
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of odd socks without knowing any-
thing about where they go.

To see how, imagine you have a draw-
er containing only complete pairs of
socks. Now suppose one goes missing;
don’t worry about where or how. In-
stantly you have an odd sock left behind
in the drawer. Now a second sock goes
missing. This can be either that odd sock
just created or—far more likely—it will
be a sock from an as yet unbroken com-
plete pair, creating yet another odd sock
in the drawer.

Already one can see signs of a natural
propensity that can be confirmed by
combinatoric analysis. Random sock
loss is always more likely to create the
maximum possible number of odd socks
than to leave us free of the things. For
example, if we started with 10 complete
pairs, by the time half our socks have
gone missing, it is four times more like-
ly that we will be left with a drawerful
of odd socks, rather than one contain-
ing only complete pairs. And the most
likely outcome will be just two complete
pairs lost among six odd socks. No won-
der matching pairs can be so difficult to
find in the morning.

Probability theory also casts light on
Murphy’s Law of Umbrellas: “Carrying

an umbrella when rain is forecast makes
rain less likely to fall.” With meteorolo-
gists now claiming rain-forecast accura-
cy rates of more than 80 percent, it
seems obvious that taking an umbrella
on their advice will prove correct four
times out of five. This reasoning, how-
ever, fails to take into account the so-
called base rate of rain. If rain is pretty
infrequent, then most of the correct
forecasts that resulted in that impres-
sive 80 percent accuracy figure were pre-
dictions of no rain. This is hardly im-
pressive (especially in, say, Phoenix or
San Diego).

Don’t Take the Umbrella

Thus, when deciding whether to take
an umbrella, you need to take into

account the probability of rain falling
during the hour or so you are on your
walk, which is usually pretty low
throughout much of the world. For ex-
ample, suppose that the hourly base rate
of rain is 0.1, meaning that it is 10 times
more likely not to rain during your
hour-long stroll. Probability theory then
shows that even an 80 percent accurate
forecast of rain is twice as likely to prove
wrong as right during your walk—and

you’ll end up taking an umbrella un-
necessarily. The fact is that even today’s
apparently highly accurate forecasts are
still not good enough to predict rare
events reliably.

Captain Murphy was perhaps justifi-
ably irritated by what in his view was
the trivialization of his worthy principle
for safety-critical engineering. Never-
theless, I believe the popular version of
his law is not without merits.

That many of the manifestations of
Murphy’s Law do have some basis in fact
suggests that perhaps scientists should
not be so hasty to explain away the ex-
perience of millions as mere delusion.
And with many of the explanations
based on disciplines ranging from rigid-
body dynamics to probability theory,
analysis of various manifestations of
Murphy’s Law may also help motivate
students to study otherwise dry topics.

But perhaps the most important les-
son behind Murphy’s Law is its light-
hearted demonstration that apparently
trivial phenomena do not always have
trivial explanations. On the whole, that
is not such a bad legacy.

To obtain high-quality reprints of this
article, please see page 39.
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RAIN GEAR often goes unneeded because the base rate of
rain—the probability that rain will fall during the typically brief

time when a person is outside—is low throughout much of the
world. Rare weather events cannot be predicted reliably.
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