
Recently we proposed a model in which when a scientist
writes a manuscript, he picks up several random papers,
cites them, and also copies a fraction of their references.
The model was stimulated by our finding that a majority
of scientific citations are copied from the lists of refer-
ences used in other papers. It accounted quantitatively
for several properties of empirically observed distribu-
tion of citations; however, important features such as
power-law distributions of citations to papers published
during the same year and the fact that the average rate of
citing decreases with aging of a paper were not ac-
counted for by that model. Here, we propose a modified
model: When a scientist writes a manuscript, he picks
up several random recent papers, cites them, and also
copies some of their references. The difference with the
original model is the word recent. We solve the model
using methods of the theory of branching processes,
and find that it can explain the aforementioned features
of citation distribution, which our original model could
not account for. The model also can explain “sleeping
beauties in science;” that is, papers that are little cited
for a decade or so and later “awaken” and get many
citations. Although much can be understood from
purely random models, we find that to obtain a good
quantitative agreement with empirical citation data,
one must introduce Darwinian fitness parameter for the
papers.

Introduction

A theory of citing was long called for by information

scholars (Cronin, 1981). From a mathematical perspective,

an advance was recently made with the formulation and so-

lution of the model of random-citing scientists1 (Simkin &

Roychowdhury, 2005a). According to the model, when a sci-

entist writes a manuscript, he picks up several random pa-

pers, cites them, and also copies a fraction of their refer-

ences. The model was stimulated by the recursive literature

search model (Vazquez, 2001) and justified by the fact that a

majority of scientific citations are copied from the lists of

references used in other papers (Simkin & Roychowdhury,

2003, 2005b). The model leads to the cumulative advantage

(Price, 1976) (also known today as preferential attachment;

Barabasi & Albert, 1999) process, so that the rate of citing a

particular paper is proportional to the number of citations it

has already received. Despite its simplicity, the model ap-

peared to account for several major properties of empirically

observed distributions of citations.

A more involved analysis, however, reveals that certain

subtleties of the citation distribution are not accounted for by

the model. It is known that the cumulative advantage process

would lead to the oldest papers being most highly cited

(Barabási & Albert, 1999; Günter, Levitin, Schapiro, &

Wagner, 1996; Krapivsky & Redner, 2001).2 In reality, the

average citation rate decreases as the paper in question

gets older (Glänzel & Schoepflin, 1994; Nakamoto, 1988;

Pollmann, 2000; Price, 1965). The cumulative advantage

process also would lead to an exponential distribution of

citations to papers of the same age (Günter et al., 1996;

Krapivsky & Redner, 2001). Empirically, it was found that

citations to papers published during the same year are

distributed according to a power law (see the ISI dataset in

Figure 1a in Redner, 1998).

In the present article, we propose the modified model of

random-citing scientists: When a scientist writes a manu-

script, he picks several random recent papers, cites them,

and also copies some of their references. The difference with

the original model is the word recent. We solve this model
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1Random-citing model is used not to ridicule the scientists but because

it can be exactly solved using available mathematical methods while yield-

ing a better match with data than any existing model. This is similar to the

random-phase approximation in the theory of an electron gas. Of course, 

the latter did not arouse as much protest as the model of random-citing 

scientists, but this is only because electrons do not have a voice. What is an

electron? It’s just a green trace on the screen of an oscilloscope. Meanwhile,

within itself, an electron is very complex and is as inexhaustible as the 

universe. When an electron is annihilated in a lepton collider, the whole uni-

verse dies with it. And as for the random-phase approximation: Of course,

it accounts for the experimental facts—but so does the model of random-

citing scientists.
2Some of these references do not deal with citing but with other social

processes, which are modeled using the same mathematical tools. In the

present paper, we rephrased the results of such papers in terms of citations

for simplicity.



using methods of the theory of branching processes (Harris,

1963) (for a review of its relevant elements, see Appendix A),

and show that it explains both the power-law distribution of

citations to papers published during the same year and liter-

ature aging. A somewhat similar model was recently pro-

posed by Bentley, Hahn, and Shennan (2004) in the context

of patents citations; however, those authors used it to explain

only a power law in citation distribution (for what the usual

cumulative advantage model will do) and did not address the

topics just mentioned.

Branching Citations

While working on a paper, a scientist reads current issues

of scientific journals and selects from them the references to

be cited in it. These references are of two sorts:

• Fresh papers he had just read–to embed his work in the con-

text of current aspirations.

• Older papers that are cited in the fresh papers he had 

just read–to position his work in the context of previous 

achievements.

It is not a necessary condition for the validity of our

model that the citations to old papers are copied, but the

paper itself remains unread (although such opinion is sup-

ported by the studies of misprint propagation; Simkin &

Roychowdhury, 2003, 2005b). The necessary conditions are

as follows:

• Older papers are considered for possible citing only if they

were recently cited.

• If a citation to an old paper is followed and the paper is 

formally read, the scientific qualities of that paper do not 

influence its chance of being cited.3

A reasonable estimate for the length of time a scientist

works on a particular paper is 1 year. Therefore, we will as-

sume that “recent” in the model of random-citing scientists

means preceding year. To make the model mathematically

tractable, we enforce time-discretization with a unit of 

1 year. The precise model to be studied is as follows. Every

year, N papers are published. There is, on average, Nref refer-

ences in a published paper (The actual value is somewhere

between 20 and 40.) Each year, a fraction a of references goes

to randomly selected preceding-year papers [The estimate4

from actual citation data is a� 0.1 (see Figure 4 in Price,

1965) or a� 0.15 (see Figure 6 in Redner, 2004)]. The

remaining citations are randomly copied from the lists of

references used in the preceding-year papers.

When N is large, this model leads to the first-year

citations being Poisson-distributed. The probability to get

n citations is

(1)

where l0 is the average expected number of citations

l0 � aNref. (2)

The number of the second-year citations, generated by

each first-year citation (as well as third-year citations gener-

ated by each second-year citation, etc.), again follows a

Poisson distribution, this time with the mean

l� (1 � a). (3)

Within this model, citation process is a branching process

(see Appendix A), with the first-year citations equivalent

to children, the second-year citations to grandchildren, and

so on.

As l� 1, this branching process is subcritical. Figure 1

shows a graphical illustration of the branching-citation

process.

Substituting Equation 1 into Equation A1, we obtain the

generating function for the first-year citations:

(4a)

Similarly, the generating function for the later years cita-

tions is:

(4b)

The process is easier to analyze when l � l0, or

as then we have a simple branching
l0

l �
a

1 � a Nref � 1,

f(z) � e(z�1)l.

f0(z) � e(z�1)l0.

P(n) �
l0

n

n!
e�l0,

1662 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—September 2007

DOI: 10.1002/asi

3This assumption may seem radical, but consider the following example.

The writings of J. Lacan (10,000 citations) and G. Deleuze (8,000 citations)

were argued to be nonsense (Sokal & Bricmont, 1998). Sadly enough, the work

of the true scientists is far less cited: A. Sokal: 2,700 citations; J. Bricmont:

1,000 citations.
4The uncertainty in the value of a depends not only on the accuracy of

the estimate of the fraction of citations which goes to previous-year papers.

We also arbitrarily defined recent paper (in the sense of our model) as being

published within 1 year. Of course, this is by order of magnitude correct, but

the true value can be anywhere from 6 months to 2 years.

FIG. 1. An illustration of the branching citation process, generated by the

modified model of random-citing scientists. During the first year after pub-

lication, the paper was cited in three other papers written by the scientists

who have read it. During the second year, one of those citations was copied

in two papers, one in a single paper, and one was never copied. This resulted

in three second-year citations. During the third year, two of these citations

were never copied, and one was copied in three papers.



process where all generations are governed by the same off-

spring probabilities (as is the case when is studied in

Appendix B).

Distribution of Citations to Papers Published During the

Same Year

Theory of branching processes allows us to analytically

compute the probability distribution, P(n), of the total num-

ber of citations the paper receives before it is finally forgot-

ten. This should approximate distribution of citations to old

papers. Substituting Equation 4b into Equation A11, we get:

(5)

Applying Stirling’s formula to Equation 5, we get that

large n asymptotic of the distribution of citations is:

(6)

When, 1 � l 1 the factor in the exponent can be ap-

proximated as:

l � 1� ln l� (1 � l)2�2. (7)

As 1 � l 1, this number is small. This means that for

n 2 �(1 � l)2, the exponent in Equation 6 is approxi-

mately equal to 1 and that the behavior of P(n) is dominated

by the factor. In contrast, when n 2�(1 � l)2, the

behavior of P(n) is dominated by the exponential factor.

Thus, citation distribution changes from a power law to an

exponential (i.e., suffers an exponential cutoff) at about

(8)

citations. For example, when a � 0.1, Equation 3 gives 

l � 0.9, and from Equation 8, we get that the exponential

cutoff happens at about 200 citations. We can see that the

model is capable of a qualitative explanation of the power-

law distribution of citations to papers of the same age. The

exponential cutoff at 200, however, happens too soon, as

the actual citation distribution obeys a power law well into

thousands of citations. In the following sections, we will

show that taking into account the effects of literature growth

and of variations in papers’ Darwinian fitness can fix this.

Distribution of Citations to Papers Cited

During the Same Year

In Appendix A, we computed the fraction of families sur-

viving after k generations (Equation A6) and their average

sizes (Equation A7). These results are directly applicable to

the fraction of papers still cited k years after publication, and

the average number of citations those papers receive during

nc �
1

l � 1 � ln l
�

2

(1 � l)2

W
1

n3�2

V

V

V

p(n) r
e

l12p
 

1

n3�2
e�(l�1�lnl)n.

 �
(nl)

n�1

n!
 e�ln.

P(n) �
1

n!
 c d n�1

dvn�1
en(v�1)l d

v�0

l � l0

the kth year. Next, we make an approximation assuming that

all k-year-old papers have the same number of citations,

equal to the average given by Equation A7. Then, the num-

ber of citations depends on age only, and the number of cited

papers of a given age is given by Equation A6. After per-

forming simple variables substitutions, and noting that in

our case f �(1) � l2, we get that the citation probability dis-

tribution is:

(9a)

We can obtain a more accurate approximation taking into

account the fact that the distribution of the sizes of surviving

families is exponential (see chap. IV in Fisher, 1958):

(9b)

A similar formula was previously derived (using a dif-

ferent method) by Kimura and Crow (1964) and by Ewens

(1964) in the context of frequency distribution of selec-

tively neutral alternative forms of a gene in a biological

population. The model used in those articles is practically

identical to ours, with a being the mutation rate instead of

the fraction of citations going to new papers. The theory

developed by Kimura and Crow and by Ewens was subse-

quently used to study cultural transmission and evolution

(Cavalli-Sforza & Feldman, 1981). Recent examples in-

clude the modeling of the dynamics of popularity of baby

names (Hahn & Bentley, 2003) and of dog breeds (Herzog,

Bentley, & Hahn, 2004).

Scientific Darwinism

Now we proceed to investigate the model, where papers

are not created equal but each has a specific Darwinian

fitness, which is a bibliometric measure of scientific “fangs

and claws” that help a paper to fight for citations with its

competitors. In bibliometrics literature, a similar parameter

is sometimes called latent rate of acquiring citations

(Burrell, 2003). While this parameter can depend on factors

other than the intrinsic quality of the paper, the fitness is the

only channel through which the quality can enter our model.

The fitness may have the following interpretation. When a

scientist writes a manuscript, he needs to include in it a

certain number of references (typically between 20–40,

depending on implicit rules adopted by a journal to which

the paper is to be submitted). The scientist considers random

scientific papers one by one for possible citation, and stops

when he has collected the required number of citations.

Every paper has specific probability to be selected for cita-

tion, once it was considered for citation. We call this proba-

bility a Darwinian fitness of the paper. Defined in such way,

fitness is bounded between 0 and 1.

p(n) �
2

l2

1

n
e�

2(1�l)

l
2 n.

p(n) � µ 2

l2
 
1

n
 when n �

l2

2(1 � l)

      0   when n �
l2

2(1 � l)

.
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In this model, a paper with fitness p will on average have

(10)

first-year citations. Here, we have normalized the citing rate

by the average fitness of published papers, to insure

that the fraction of citations going to previous-year papers

remained a. The fitness distribution of references is different

from the fitness distribution of published papers, as papers

with higher fitness are cited more often. This distribution as-

sumes an asymptotic form Pr (�), which depends on the dis-

tribution of the fitness of published papers, Pp(�), and other

parameters of the model.

During later years, there will be on average

(11)

next-year citations per one current-year citation for a paper

with fitness �. Here,  is the average fitness of a reference.

Distribution of Citations to Old Papers Published

During the Same Year

The average number of citations that a paper with fitness

� acquires during its cited lifetime is:

. (12)

Obviously, is obtained self-consistently by averaging

over �:

. (13)

Let us consider the simplest case when the fitness distrib-

ution, Pp(�), is uniform between 0 and 1. This choice is

arbitrary, but we will see that the resulting distribution of

citations is close to the empirically observed one. In this

case, the average fitness of a published paper is, obviously

The average fitness of a reference is given by

Equation 13, which now becomes:

(14)

where

g� 1 � a.

After some transformations, Equation 14 reduces to:

(15)g � 1 �
(g� 8w 9r)2�2

ln(1 � g� 8w 9r) � g� 8w 9r.

8w 9r �

�
1

0

w2dw

1 � gw� 8w 9r
�

1

0

wdw

1 � gw� 8w 9r

8w 9p � 0.5.

8w 9r �

�pp(w)wN(w)dw

�pp(w)N(w)dw

wN(w)

8w 9r
 � aNref 

w8w 9p 1

1 � (1 � a)w� 8w 9r
N(w) � l0(w)a

	

n�0

(l(w))n
�
l0(w)

1 � l(w)

8w 9r,
l(w) � (1 � a)w� 8w 9r

8w 9p,
l0(w) � aNref w� 8w 9p When g is close to 1, must be very close to g, and

we can replace it with the latter everywhere but in the loga-

rithm to get:

(16)

For papers of fitness, �, citation distribution is given by

Equation 5 (or Equation 6) with l replaced with l(�), given

by Equation 11:

(17)

When a � 0.1, we have g � 0.9, and Equation 16 gives

. From Equation 11, it follows that

. Substituting this into Equation 8, we get

that the exponential cutoff for the fittest papers (� � 1) starts

at about 300,000 citations. In contrast, for the unfit papers,

the cutoff is even stronger than that in the model without

fitness. For example, for papers with fitness of � � 0.1,5 we

get , and the decay factor in the

exponent becomes . This

cutoff is so strong than not even a trace of a power-law

distribution will remain for such papers.

To compute the overall probability distribution of cita-

tions, we need to average Equation 17 over fitness:

. (18)

We will concentrate on the large n asymptotic. Then, only

highest fitness papers (which have l(�) close to 1) are im-

portant, and the integral in Equation 18 can be approximated

(using Equation 8) as:

.

The upper limit in this integral can be replaced with infinity

when n is large. The lower limit can be replaced with zero

when , where

(19a)

In that case, the integral is equal to , and Equation

18 gives:

. (19b)

In the opposite case, , we get (see Weisstein, b):

(19c)P(n) r  
e�w�r

4g
 
1nc

n2.5
 e�

n
nc.

n W nc

P(n) r  
e�w�r
2g

 
1

n2

1p�2

nc � 2a1 �
g

�w�r
b�2

.

n V nc

�
1

0

dw expa� c1 � w 
g

�w�r
d 2 n

2
 b �

�w�r
g

 B
2

n
 �
1n�2

(1�
g8w9r)1n�2

dze
�z2

P(n) r  
e

22p
 

1

n3�2
 �

1

0

dw

l(w)
 e

� (l(w)�1� ln l(w))n

l(0.1) � 1 � ln l(0.1) � 2.4

l(0.1) � 0.1g��w�r � 0.1

l(1) � g��w�r
g��w�r � 1 � e�6

P(n, w) r
e

l(w)12p
 
e� (l(w)�1�ln l(w))n

n3�2
.

g8w 9r � 1 � e�
1

2(1�g)�1.

8w 9r
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5In the biological case to get a Darwinian fitness of 0.1, one needs to have

a major genetic disease such as cystic fibrosis (see pp. 11–12 in Cavalli-

Sforza & Feldman, 1981). In contrast, it seems that otherwise healthy people

can be prolific producers of scientific writings with very low fitness. 



When a � 0.1, we have g� 0.9, , and nc �

3 
 105.

Compared to the model without fitness, we have a modi-

fied power-law exponent (2 instead of 3�2) and a very much

relaxed cutoff of this power law.

As was already mentioned, because of the uncertainty of

the definition of “recent” papers, the exact value of a is not

known. Therefore, we give nc for a range of values of a in

Table 1. As long as a � 0.15, the value of nc does not con-

tradict the existing citation data.

The major results, obtained for the uniform distribution of

fitness, also hold for a nonuniform distribution which

approaches some finite value at its upper extreme pp (� � 1) �

a � 0. In Appendix C, we show that in this case is very

close to unity when a is small. Thus, we can treat Equation

18 the same way that we did in the case of the uniform dis-

tribution of fitness. The only change is that Equations 19b

and 19c acquire a prefactor of a

When things turn out differently. In

Appendix C, we consider a fitness distribution, which vanishes

at � � 1 as a power law: . When

u is small the behavior of the model is similar to

that in the case of a uniform fitness distribution. The

distribution of the fitness of cited papers pr(�) approaches

some limiting form, with being very close to unity

when � is small. The exponent of the power law is, however,

no longer 2 as it was in the case of a uniform fitness distribu-

tion (Equation 19b), but 2 � u. Note, however, that when

the model behaves completely different (see the

end of Appendix C).

Thus, a wide class of fitness distributions produces

citation distributions very similar to the experimentally

observed one. More research is needed to infer the actual

distribution of the Darwinian fitness of scientific papers;

however, two things are clear: (a) Some variance in fitness

is needed to account for the empirical data, and (b) the fit-

ness distribution does not need to have a heavy tail.

Distribution of Citations to Papers Cited

During the Same Year

This distribution in the case without fitness is given in

Equation 9b. To account for fitness, we need to replace lwith

l(w) in Equation 9b and integrate it over w. The result is:

(20a)

where

(20b)n*c �
1

2
 a1 �

g8w 9rb�1

.

p(n) r
1

n2
e�n�n*

c,

u �
2 
 a
1 � a

g� 8w 9r
(u �

2 
 a
1 � a ),

pp(w) � (u � 1)(1 � w)u

pp(w � 1) � 0,

g��w�r

1 �
g

�w�r � e�6

Note that . This means that the exponential

cutoff starts much sooner for the distribution of citation to

papers cited during the same year than for citation distribu-

tion for papers published during the same year.

These results qualitatively agree with the empirical data

for papers cited in 1961 (see Figure 2 in Price, 1965). The

exponent of the power law of citation distribution reported

in that work is, however, between 2.5 and 3. Quantitative

agreement thus may be lacking.

Effects of Literature Growth

Until now, we implicitly assumed that the yearly volume

of published scientific literature does not change with time;

however, in reality it grows, and does so exponentially

(Asimov, 1958, gives a vivid account.) To account for this,

we introduce a Malthusian parameter, b, which is the yearly

percentage increase in the yearly number of published

papers. From the data on the number of items in the Mathe-

matical Reviews Database,6 we obtain that the literature

growth between 1970 and 2000 is consistent with b� 0.045.

From the data on the number of source publications in the ISI

database (see Table 1 in Nakamoto, 1988), we can see that the

literature growth between 1973 and 1984 is characterized by

b� 0.03. One can argue that the growth of the databases re-

flected not only growth of the volume of scientific literature

but also increase in activities of Mathematical Reviews and

ISI and true b must be less. One can counter that maybe ISI

n*c � 1nc
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6Growth in the total number of items in the Mathematical Reviews Data-

base since its founding in 1940:

http://www.ams.org/publications/60ann/FactsandFigures.html

TABLE 1. The onset of exponential cutoff in the distribution of citations,

nc, as a function of a , computed using Equation 19a.

a 0.3 0.25 0.2 0.15 0.1 0.05

nc 167 409 1405 9286 3.1E�05 7.2E�09
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0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1
1 10 100 1000 10000

number of citations

p
ro

b
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FIG. 2. Numerical simulations of the modified model of random-citing

scientists (triangles) compared to actual citation data for papers published

during a single year (squares). The solid line is the prediction of the 

cumulative advantage (aka preferential attachment) model.



and Mathematical Reviews could not cope with literature

growth and b must be more. Another issue is that the aver-

age number of references in papers also grows. What is im-

portant for our modeling is the yearly increase not in number

of papers but in the number of citations these papers contain.

Using the ISI data, we get that this increase is characterized

by b� 0.05. As we are not sure of the precise value of b, we

will be giving quantitative results for a range of its values.

Model Without Fitness

First, we will study the effect of b in the model without

fitness. Obviously, Equations 2 and 3 will change, respec-

tively, into:

l0 � a(1 � b)Nref, (21a)

l � (1 � a)(1 � b) (21b)

The estimate of the actual value of l is l� (1 � 0.1) 


(1 � 0.05) � 0.945. Substituting this into Equation 8, we get

that the exponential cutoff in citation distribution now hap-

pens after about 660 citations.

A curious observation is that when the volume of litera-

ture grows in time, the average amount of citations a paper

receives, Ncit, is larger than the average amount of references

in a paper, Nref. Elementary calculation gives:

. (22)

As we can see, Ncit � Nref only when b� 0 and Ncit � Nref

when b� 0. There is no contradiction here if we consider an

infinite network of scientific papers, as one can show using

methods of the set theory (Kleene, 1952) that there are one-

to-many mappings of an infinite set on itself. When we con-

sider a real (i.e., finite) network where the number of cita-

tions is obviously equal to the number of references, we

recall that Ncit, as computed in Equation 22, is the number of

citations accumulated by a paper during its cited lifetime.

Thus, recent papers had not yet received their share of cita-

tions, and there is again no contradiction.

Model with Darwinian Fitness

Taking into account literature growth leads to transforma-

tion of Equations 10 and 11 into:

(23a)

(23b)

As far as the average fitness of a reference, , goes, b has

no effect. Clearly, its only result is to increase the number of

citations to all papers (independent of their fitness) by a factor

1 �b. Therefore, is still given by Equation 15. While l(w)

is always less than unity in the case with no literature growth,

it is no longer so when we take this growth into account. When

b is large enough, some papers can become supercritical. The

8w 9r
8w 9rl(w) � (1 � a)(1 � b)w� 8w 9r .l0(w) � a(1 � b)Nref w� 8w 9p,

Ncit � a
	

m�0

l0l
m

�
l0

1 � l
�

a(1 � b)Nref

1 � (1 � a)(1 � b)

critical value of b (i.e., the value which makes papers with

w� 1 critical) can be obtained from Equation 23b:

bc � /(1 � a) � 1. (24)

When b � bc, a finite fraction of papers becomes super-

critical. The rate of citing them will increase with time; how-

ever, note that it will always increase slower than the amount

of published literature. Therefore, the relative fraction of

citations to those papers to the total number of citations will

decrease with time.

Critical values of b for several values of a are given in

Table 2. For realistic values of parameters (a� 0.15 and b�

0.03), we have b � bc, and thus our model predicts the exis-

tence of supercritical papers. Note, however, that this conclu-

sion also depends on the assumed distribution of fitness.

It is not clear whether supercritical papers exist in reality

or are merely a pathological feature of the model. Supercrit-

ical papers probably do exist if one generalizes “citation” to

include references to a concept which originated from the

paper in question. For instance, these days, a negligible frac-

tion of scientific papers which use Euler’s Gamma function

contain a reference to Euler’s original paper. It is very likely

that the number of papers mentioning Gamma function is in-

creasing year after year.

Let us now estimate the fraction of supercritical papers

predicted by the model. As is very close to

unity, it follows from Equation 23b that papers with fitness

are in the supercritical

regime. As about 5% of papers are in such regime.

This does not mean that 5% of papers will be cited forever

because being in supercritical regime only means having

extinction probability of �1. To compute this probability, we

substitute Equations 23b and 4b into Equation A3 and get:

It is convenient to rewrite this equation in terms of

survival probability:

As the survival probability is small, and we can

expand the RHS of the aforementioned equation in powers

of psurv. We limit this expansion to terms up to and

after solving the resulting equation, get:

The fraction of forever-cited papers is thus:

For this will be 1 inb � 0.05,�1
1�b2(w � 1 � b) dw � b2.

psurv(w) � 2 

w �
1

1 � b

(1 � b)w
� 2(w � 1 � b).

(psurv)
2,

b �� 1,

1 � psurv(w) � exp(�(1 � b) 
 w 
 psurv(w)).

pext(w) � exp((1 � b) 
 w 
 ( pext(w) � 1)).

b � 0.05,

w � wc � 1� (1 � b) � 1 � b

(1 � a)� 8w 9r

8w 9r
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TABLE 2. Critical value of the Malthusian parameter �c as a function of

computed using Equation 24. When � � �c the fittest papers become

supercritical.

a 0.3 0.25 0.2 0.15 0.1 0.05

�c 0.12 0.075 0.039 0.015 2.6E-03 1.7E-05



400. By changing the fitness distribution from a uni-

form, this fraction can be made much smaller.

Numerical Simulations

The analytical results are of limited use, as they are exact

only for infinitely old papers. To see what happens with

finitely old papers, one has to do numerical simulations.

Figure 2 shows results from such simulations (with a� 0.1,

b� 0.05, and uniform between 0 and 1 fitness distribution);

that is, distributions of citations to papers published within a

single year, 22 years after publication. Results are compared

with actual citation data for Physical Review D papers pub-

lished in 1975 (as of 1997). Prediction of the cumulative ad-

vantage (Price, 1976) (aka preferential attachment; Barabási

and Albert, 1999) model also is shown. As mentioned ear-

lier, that model leads to exponential distribution of citations

to papers of the same age, and thus cannot account for highly

skewed distribution empirically observed.

Unread Citations

Recent scientific research points to evidence that the

majority of scientific citations were not read by the citing

authors. Apart from the analysis of misprint propagation

(Simkin & Roychowdhury, 2003, 2005b), this conclusion is

indirectly supported by a recent study (Brody & Harnad,

2005), which found that the correlation coefficient between

the number of citations to and the number of readings of pa-

pers in arXiv.org is only r � �0.45. This suggests that just

20% (r2
� �0.2) of the variance in number of citations is

explained by the variance in the number of readings.

This should affect citation distribution in the model with

fitness because when a paper is not read, its qualities cannot

affect its chance of being cited.

Equation 23a is obviously unchanged (Since recent pa-

pers had not yet been cited, citation could not be copied and

thus had to be read.) Equation 23b changes into:

(25)

Here, R is the fraction of citations that are read by citing

authors. According to Simkin and Roychowdhury (2005b),

it was estimated to be R � 0.2 
 0.1.

Equation 14 transforms into:

(26a)

After some transformations, Equation 26a reduces to an

equation identical to Equation 15, with g replaced with

(26b)

Approximation used in Equation 16 is no longer valid as 

is not close to 1, and we have to solve Equation 15 numerically.

g
~

g
~

�
Rg

1 � g(1 � R)
.

8w 9r �

�
1

0

w2dw

1 � g(1 � R � Rw� 8w 9r)
�

1

0

wdw

1 � g(1 � R � Rw� 8w 9r) .

l(w) � (1 � a)(1 � b)(1 � R � Rw� 8w 9r).

pp(w)

A critical value of b can be defined and computed similarly

to how it was done in the earlier section on the effects of liter-

ature growth (Model with Darwinian fitness subsection):

(27)

Results are given in Table 3. We can see that for realistic

values of parameters ( and ),

we have b � bc. That is, unread citations can save us from

supercritical papers.

The argument in the beginning of this section, however, is

not entirely correct. The fitness of a paper, apart from scientific

qualities, which can be assessed only by reading, depends on

the scientific respectability of the associated authors and of the

journal in which it was published. Besides, a paper’s fitness

may be reflected by the way to which it is referred. So perhaps

this section is useful only as a mathematical exercise.

Aging of Scientific Literature

Scientific papers tend to get less frequently cited as time

passes since their publication. There are two ways to look at

the age distribution of citations. One can take all papers cited

during a particular year and study the distribution of their

ages. In Bibliometrics, this is called synchronous distribu-

tion (Nakamoto, 1988). One can take all the papers

published during a particular distant year and study the

distribution of the citations to these papers with regard to

time difference between citation and publication. Synchro-

nous distribution is steeper than the distribution of citation to

papers published during the same year (see Figures 2 and 3

in Nakamoto, 1988). For example, if one looks at a synchro-

nous distribution, then 10-year-old papers appear to be cited

three times less than 2-year-old papers. But when one looks

at the distribution of citations to papers published during the

same year, the number of citations 10 years after publication

is only 1.3 times less than that 2 years after publication. The

apparent discrepancy is resolved by noting that the number

of published scientific papers had grown 2.3 times during 8

years. When one plots not total number of citations to papers

published in a given year but the ratio of this number to the

annual total of citations, then the resulting distribution

(called dyachronous distribution; Nakamoto, 1988) is sym-

metrical to the synchronous distribution. Motylev (1989)

used a similar procedure to refute the notion of more rapid

aging of publications on rapidly developing fields of knowl-

edge.

There is some controversy as to functional form of the

citation age distributions. Nakamoto (1998) found it to be ex-

ponential for large ages. Pollmann (2000), however, stated that

a power law gives a better fit. Other proposed functional forms

R � 0.2a � 0.15, b � 0.05,

bc �
1

1 � a
 

8w 9r
(1 � R) 8w 9r � R

� 1.
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TABLE 3. Critical value of the Malthusian parameter, �c , as a function of

R for a � 0.15 , computed using Eq. (27).

R 0 0.1 0.2 0.3 0.5 1

�c 0.18 0.13 0.10 0.08 0.05 0.015



are lognormal, Weibull (i.e., stretched or compressed exponen-

tial), and log-logistics distributions; see Burrell (2002) and ref-

erences therein. Recently, Redner (2004), who analyzed a

century’s worth of citation data from Physical Review, found

that the synchronous distribution (He called it citations

“from.”) is exponential, and the distribution of citations to

papers published during the same year (He called it citations

“to.”) is a power law with an exponent close to 1. If one were

to construct a diachronous distribution using Redner’s (2004)

data, it would be a product of a power law and an exponential

function. Such distribution is difficult to tell from an exponen-

tial one. Thus, Redner’s data may be consistent with synchro-

nous and diachronous distributions being symmetric.

The predictions of the mathematical theory of citing are

as follows. First, we consider the model without fitness. The

average number of citations a paper receives during the kth

year since its publication, Ck, is:

(28)

and thus decreases exponentially with time. This is in quali-

tative agreement with Nakamoto’s (1988) empirical finding;

however, note that the exponential decay is empirically

observed after the second year, with the average number of

second-year citations being higher than those of the first-

year citations. This can be understood as a mere conse-

quence of the fact that it takes about 1 year for a submitted

paper to get published.

Let us now investigate the effect of fitness on literature

aging. Obviously, Equation 28 will be replaced with:

(29)

Substituting Equations 10 and 11 into Equation 29 and

performing integration, we get:

(30)

The average rate of citing decays with paper’s age is as a

power law with an exponential cutoff. This is in agreement

with Redner’s data (see Figure 7 in Redner, 2004), though it

contradicts the older work (Nakamoto, 1988), which found

exponential decay of citing with time.

In our model, the transition from hyperbolic to exponen-

tial distribution occurs after about

(31)

years. The values of kc for different values of a are given in

Table 4. The values of kc for a � 0.2 do not contradict the

data reported by Redner (2004).

kc � �1�ln(g� 8w 9r)

Ck �
aNref8w 9p  a g8w 9rbk�1

 
1

k � 1
.

Ck � �
1

0

dwl0(w)lk�1(w).

Ck � l0l
k�1,

Sleeping Beauties in Science

Figure 3 shows two distinct citation histories. The paper,

whose citation history is shown by the squares, is an ordi-

nary paper. It merely followed some trend. When 10 years

later that trend got out of fashion, the paper was forgotten.

The paper, whose citation history is depicted by the trian-

gles, reported an important but premature (Garfield, 1980;

Glänzel & Garfield, 2004) discovery, the significance of

which was not immediately realized by scientific peers.

Only 10 years after its publication did the paper get recogni-

tion, and got cited widely and increasingly. Such papers are

called “Sleeping Beauties” (Raan, 2004). Surely the reader

has realized that both citation histories are merely the out-

comes of numerical simulations of the modified model of

random-citing scientists.

After the original version of this paper was submitted for

publication, there appeared an article by Burrell (2005) which

used a phenomenological stochastic model of citation process

to show that some sleeping beauties are to be expected by or-

dinary chance. An earlier paper by Glänzel, Schlemmer, and

Thijs (2003) addressed a similar issue using the cumulative

advantage model. In this case, the authors were specifically

concentrating on papers that were little cited during the 2 years

after publication (This is the standard time frame used in

bibliometrics to determine the impact of a publication.)

Relation to Self-Organized Criticality

Those familiar with the Self Organized Criticality (SOC)

of Bak et al. (1988) may be interested to know that it is di-

rectly related to our study. We model scientific citing as a

random branching process. In its mean-field version, SOC

also can be described as a branching process (Alstrøm, 1988;

Lauritsen, Zapperi, & Stanley, 1996). Here, the sand grains,
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TABLE 4. The number of years, after which the decrease in average cit-

ing rate will change from a power law to an exponential, kc, computed using

Equation 31, as a function of a.

� 0.3 0.25 0.2 0.15 0.1 0.05

kc 9 14 26 68 392 59861
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FIG. 3. Two distinct histories: an ordinary paper (squares) and a “sleeping

beauty” (triangles).



which are moved during the original toppling, are equivalent

to sons. These displaced grains can cause further toppling,

resulting in the motion of more grains, which are equivalent

to grandsons, and so on. The total number of displaced

grains is the size of the avalanche and is equivalent to the

total offspring in the case of a branching process. Distribu-

tion of offspring is equivalent to distribution of avalanches

in SOC.

Bak (1999) himself had emphasized the major role of

chance in works of nature: One sand grain falls, and nothing

happens; another one (identical) falls, and causes an

avalanche. Applying these ideas to biological evolution, Bak

and Sneppen (1993) argued that no cataclysmic external

event was necessary to cause a mass extinction of dinosaurs.

It could have been caused by one of many minor external

events. Similarly, in the model of random-citing scientists:

One paper goes unnoticed, but another one (identical in

merit) causes an avalanche of citations. Therefore, apart

from explanations of 1/f noise, avalanches in sand piles, and

extinction of dinosaurs, the highly cited Science of Self

Organized Criticality (Bak, 1999) also can account for its

own success.

Next, we would like to clarify some points of potential

confusion.

Avalanches of citations, we are talking about, should not

be confused with avalanches in power-law networks, which

have been studied, for example, by Lee, Goh, Kahng, and

Kim (2004). In the model of random-citing scientists, the

power-law network of scientific papers itself is a product of

avalanches.

Also note that the model of random-citing scientists with

Darwinian fitness is mathematically different from both the

Bak-Sneppen (1993) model and from its modification by

Vandewalle and Ausloos (1996). The model of random-citing

scientists reduces to a branching process, just like the afore-

mentioned models. In addition in our model, the fitness of

new papers is uniformly distributed between 0 and 1, just

like the fitness of the new species in the aforementioned

models; however, in our model the “offsprings” are cita-

tions, which carry the fitness of the cited paper. In the afore-

mentioned models, the “offsprings” are new species which

are assigned a random fitness. As a result, our model leads to

a different exponent of the avalanche distribution (i.e., 2 in-

stead of 1.5) than the mean-field versions of Bak-Sneppen

and Vandewalle–Ausloos models.

Conclusion

In the cumulative advantage (aka preferential attachment)

model, a power-law distribution of citations is achieved only

because papers have different ages; this is not immediately ob-

vious from the early treatments of the problem; Price, 1976;

Simon, 1955) but is explicit in later studies (Barabási & Albert,

1999; Günter et al., 1996; Krapivsky & Redner, 2001). In the

cumulative model, the oldest papers are the most cited ones.

The number of citations is mainly determined by a paper’s age.

At the same time, distribution of citations to papers of the same

age is exponential (Günter et al., 1996; Krapivsky & Redner,

2001). The key difference between that model and ours is as

follows. In the cumulative advantage model, the rate of citation

is proportional to the number of citations the paper had accu-

mulated since its publication. In our model, the rate of citation

is proportional to the number of citations the paper received

during the preceding year. This means that if an “unlucky”

paper was not cited during previous year, it will never be cited

in the future. This means that its rate of citation will be less

than that in a cumulative advantage model. On the other hand,

the “lucky” papers which were cited during the previous year

will get all the citation share of the “unlucky” papers. Their 

citation rates will be higher than those in the cumulative

advantage model. There is thus more stratification in our model

than there is in the cumulative advantage model. As a conse-

quence, the resulting citation distribution is far more skewed.

One can argue that the cumulative advantage model with

multiplicative fitness (Bianconi & Barabási, 2001) can ex-

plain a power-law distribution of citations to the same-year

papers, when the distribution of fitness is exponential (see

Appendix B in Simkin & Roychowdhury, 2006). Note, how-

ever, that this model is not capable of explaining literature

aging.

This is the first article that derives literature aging from a

realistic model of scientists’ referencing behavior. Stochastic

models have been used previously to study literature aging,

but they were of the phenomenological type. Glänzel and

Schoepflin (1994)7 used a modified cumulative advantage

model, where the rate of citing is proportional to the product

of the number of accumulated citations and some factor,

which decays with age. Burrell (2003), who modeled cita-

tion process as a nonhomogeneous Poisson process, had to

postulate some obsolescence distribution function. In both

cases, aging was inserted by hand. In contrast, in our model,

literature ages naturally.
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Appendix A: Theory of Branching Processes

This theory was conceived in the 19th century, when

some British gentlemen noticed that many families who had

occupied conspicuous positions in the past became extinct.

At first, they concluded that an increase in intellectual ca-

pacity is accompanied by a decrease in fertility. Afterward,

the theory of branching processes was developed, which

showed that a large proportion of families (or surnames)

should become extinct by the ordinary law of chances.

Watson and Galton (1875) considered a model where in

each generation, p(0) percent of the adult males have no

sons, p(1) have one son, and so on. The problem is best tack-

led using the method of generating functions (Harris, 1963),

which are defined as:

(A1)

These functions have many useful properties, including

that the generating function for the number of grandsons is

f2(z) � f( f(z)). To prove this, notice that if we start with two

individuals instead of one, and both of them have offspring

probabilities described by f (z), their combined offspring has

generating function ( f (z))2. This can be verified by observ-

ing that the nth term in the expansion of ( f (z))2 is equal to

which is indeed the probability that

the combined offspring of two people is n. Similarly, one can

show that the generating function of combined offspring of n

people is ( f (z))n. The generating function for the number of

grandsons is thus:

f2(z) � a
	

n�0

p(n)( f (z))n
� f ( f (z)).

©
n
m�0 p(n � m)p(m),

f(z) � a
	

n�0

p(n)z n.
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In a similar way, one can show that the generating func-

tion for the number of great-grandsons is f3(z) � f( f2(z)), and

in general:

fk(z) � f( fk-1(z)). (A2)

The probability of extinction, pext, can be computed using

the self-consistency equation:

(A3)

The fate of families depends on the average number of

sons l� ∑ np(n) � [ f�(z)]z�1. When l � 1, Equation A3

has only one solution, pext � 1; that is, all families eventually

become extinct (this is called subcritical branching process).

When l � 1, there is a solution where pext � 1, and only

some of the families become extinct while others continue to

exist forever (this is called the supercritical branching

process). The intermediate case, l� 1, is the critical branch-

ing process where all families get extinct, like in a subcritical

process, though some of them only after a very long time.

Although for (sub)critical branching processes the probabil-

ity of extinction is unity, still a nontrivial quantity is the proba-

bility, pext (k), of extinction after k generations. Obviously:

pext (k) � fk (0).

As pext � 1, then for large k, pext (k) must be close to 1.

Therefore,

After noting that f(1) � 1 and f�(1) � l, and defining the

survival probability ps(k) � 1 � pext (k), this equation can be

rewritten as:

(A4)

Let us first consider the case l� 1. Equation A4 then can

be approximated by the differential equation

which has a solution

(A5a)

In the case when l is substantially less than 1, the second

term in the R.H.S. of Equation A4 can be neglected and the

equation can be easily solved:

(A5b)

In general, Equation A3 can be approximately solved to get:

(A6)ps(k) �
2

f –(1)

lk ln(1�l)

1 � lk
.

ps(n) � lk.

ps(k) �
2

f –(1)k
.

dps(k)

dk
� �

f – (1)

2
(ps(k))2,

ps(k)

ps(k � 1)
� l �

f –(1)

2
ps(k � 1).

�
f –(1)

2
( fk�1(0) � 1)2

fk(0) � f( fk�1(0)) � f(1) � f�(1)( fk�1(0) � 1)

pext � a
	

n�0

p(n)pext
n

� f(pext).

When l is very close to, but less than 1, Equation A6 has

an intermediate asymptotic of the form of Equation A5a

when k � kc, where

When k � kc, Equation A6 approaches the form of Equa-

tion A5b.

Next, we estimate the average size of families still

surviving after k generations. As the expectation value of the

offspring after k generations is, obviously, lk, we have:

(A7)

After substituting Equation A5a  into Equation A7, we can

see that for the critical branching process, the average size of

surviving family linearly increases with the number of pass-

ing generations: By substituting Equation A5b

into Equation A7, we get that for subcritical branching

process after a large number of generations, the average size

of a surviving family approaches the fixed value:

For a subcritical branching process, we also will be inter-

ested in the probability distribution, p(n), of total offspring,

which is the sum of the numbers of sons, grandsons, great-

grandsons, and so on (To be precise, we include self in this

sum just for mathematical convenience.) We define the cor-

responding generating function (Otter, (1949):

(A8)

Using an obvious self-consistency condition (similar to

the one in Equation A3), we get:

zƒ(g) � g. (A9)

Using Lagrange expansion8, we obtain from Equation A9:

(A10)

And using Equation A8, we get:

(A11)

The theory of branching processes is useful in many ap-

plications (e.g., in the study of nuclear chain reactions).

Nuclei of uranium can spontaneously fission (i.e., split into

several smaller fragments). During this process, two or three

P(n) �
1

n!
c d n�1

dvn�1
( f (v))n d

v�0

.

g � a
	

n�1

z n

n!
c d n�1

dvn�1
( f (v))n d

v�0

.

g(z) � a
	

n�1

P(n)zn.

s� (	 ) �
f –(1)

2ln(1�l)
�

f –(1)

2(1 � l)
.

s�(k) � f – (1 )

2 k.

s�(k) �
lk

ps(k)
.

s(k)

kc �
1

1 � l
.
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8Let where then (see Weisstein, a):

x � x0 � a
	

k�1

(y � y0)k

k!
 e dk�1

dxk�1
c x � x0

f(x) � y0

d f
x�x0

.

f�(x0) � 0,y � f(x) and y0 � f(x0),



neutrons are emitted. These neutrons can induce further

fission if they hit other uranium nucleuses. As the size of a

nucleus is very small, neutrons have a good chance of escap-

ing the mass of uranium without hitting a nucleus. This

chance decreases when the mass is increased, as the probabil-

ity of hitting a nucleus is proportional to the linear distance a

neutron has to travel through uranium to escape. The fraction

of neutrons that escape without producing further fission is

analogous to the fraction of the adult males who have no sons

in the Galton-Watson model. The neutrons produced in a

fission induced by a particular neutron are analogous to sons.

Critical branching process corresponds to a critical mass. A

nuclear explosion is a supercritical branching process.

The theory of branching processes also is useful in stud-

ies of chemical chain reactions, cosmic rays, and population

genetics (Replace “surname” with “gene.”) In this article,

we showed that it is helpful for understanding the scientific

citation process. Here, the first-year citations correspond to

sons. Second-year citations, which are copies of the first-

year citations, correspond to grandsons, and so on.

Appendix B

Let us consider the case when l l0 (i.e., a branching

process with generating function for the first generation being

different from the one for subsequent generations). One can

show that the generating function for the total offspring is:

(B1)

Note that in the case of l� l0, we have ƒ(z) � ƒ0(z), and

because of Equation A9, 

From Equations 4 and 5, it follows that 

Substituting this together with Equation A9 into Equation

B1, we get:

(B2)

This formula may be of some use when the ratio is an

integer.

As and , , we have 

Equation B2 reduces to: 

(B3)

where P(n) is given by Equation 5. The citation probability

distribution is thus:

(B4)

We can easily obtain the large-n asymptotic of after

noticing that only the terms with either or 

essentially contribute to the sum:

n � l V nl V n

P
�

(n),

P
�

(n) � a
n

l�1

P(l)P(n � l � 1).

� a
	

n�1

z n

a
n

l�1

P(l)P(n � l � 1),

g�(z) � zag(z)

z
b2

� za a	
n�1

P(n)zn�1b2

l
0

l � 2.Nref � 20a � 0.1
l0

l �
a

1 � aNref

l0

l

g�(z) � zag(z)

z
bl0�l

.

f0(z) � ( f(z))l0�l.

g�(z) � g(z).

g�(z) � z f0(g(z)).

�

where P(n) is given by Equation 6. We can see that having

different first-generation-offspring probabilities does not

change the functional form of the large-n asymptotic, but

merely modifies the numerical prefactor.

Appendix C

Let us start with the self-consistency equation for pr (�),

the equilibrium fitness distribution of references:

(C1)

solution of which is:

(C2)

One obvious self-consistency condition is that:

(C3)

Another is:

(C4)

It is easy to see that when the Condition C3 is satisfied,

C4 follows from C1.

In the case of a uniform distribution of fitness using C2

and C3, we recover Equation 15.

Now consider the published-papers fitness distribution of

the following form:

(C5)

This distribution reduces to a uniform distribution when

a � 1. Elementary calculation gives , and after

substituting C5 and C2 in C3, we get:

� a �
1

1�2

wdw

1 � gw��w�r
¢ .

1 �
4a

1 � a
° (2 � a) �

1�2

0

wdw

1 � gw��w�r

�w�p �
1 � a

4

pp(w) � •2 � a when 0 � w � 1�2

a when 1�2 � w � 1

0 otherwise

�w 
 pr(w)dw � �w�r .

�pr(w)dw � 1.

pr(w) �
a 
 w 
 pp(w)� 8w 9p
1 � (1 � a)w� 8w 9r .

pr(w) � a
w 
 pp(w)8w 9p � (1 � a)

w 
 pr(w)8w 9r

r 2P(n)a
	

l�1

P(l) � 2P(n)

r P(n)a
n�2

l�1

P(l) � P(n) a
n

l�n�2

P(n � l � 1)

P
�

(n) � a
n�2

l�1

P(l)P(n � l � 1) � a
n

l�n�2

P(l)P(n � l � 1)
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After integrating, we obtain:

(C6)

When a is small, should be very close to 1, and we can

replace it with one everywhere in the Equation C6 except for in

. The resulting equation can be easily solved to get:

(7)

For example, when � � 0.1 and a � 0.2, we get from

Equation C7 that . We can see that is very

close to unity, similar to what happened in the case of a uni-

form distribution of fitness. One can reason that this is true

for all fitness distributions which approach a nonzero limit at

the maximum value of fitness.

Now we proceed to investigate the fitness distribution,

which vanishes at p � 1:

(C8)

Substituting Equation C8 into Equation C2, we get:

. (C9)

After substituting this into C3 and some calculations, we

arrive at:

pr(w) �
a(u � 1)(u � 2)w(1 � w)u

1 � gw� 8w 9r

Pp(w) � (u � 1)(1 � w)u.

g8w 9 rg8w 9 r � 1 � e�14

expa� 1

a
 a1 � a

4a
� 1 � 2(1 � a)ln(2)bb .

g8w 9r � 1 �

a1 �
g

�w�rb
g

�w�r

1 �
4a

1 � a
 
8w 9r
g


 ± � 1 �
8w 9r
g

alna1 �
g8w 9rb �

8w 9r
g

 2(1 � a)lna1 �
1

2
 
g8w 9rb
≤

. (C10)

As acceptable values of are limited to the interval

between g and 1, it is clear that when a is small, the equality

in C10 can be attained only when the integral is large. This

requires being close to 1. And this will help only if u is

small. In this case, the integral in C10 can be approximated as

.

Substituting this into C10 and replacing in the rest of it 

with unity, we can solve the resulting equation to get:

. (C11)

For example, when a � 0.1 and u � 0.1, we get from

Equation C11 that 

.

Note that C11 gives a real solution only when � > or

. (C12)

If u is too large and Condition C12 is violated, there is no

stationary distribution which can satisfy Equation C1. The

distribution is forever changing without reaching a station-

ary state. Numerical simulations indicate that is growing

from year to year, but always remains less than g. This

means that top-fit papers are supercritical (see Equation 11),

and the fraction of supercritical papers decreases from year

to year, but never vanishes entirely.

�w�r

u �
2 
 a

1 � a

u

u � 2

�w�r
g � 1� 6 
 10�4

�w�r
g � 1 � ° a �

u

u � 2

a(u � 1)
¢

1

u

�w�
r
g

�
1

8w9r
g �1

xudx

x
�

1

u
 a1 � a �w�r

g
� 1bub

�w�
r
g

�w�r

1 �
a(u � 1)(u � 2)

(g��w�r)
2

 �
1

0

xudx

�w�r
g � 1 � x

�
a(u � 2)

g��w�r
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