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Abstract

Uniformity, that is, equiprobability of all available options is central as a theoretical presuppo-
sition and as a computational tool in probability theory. It is justified only when applied to an appro-
priate sample space. In five studies, we posed diversified problems that called for unequal
probabilities or weights to be assigned to the given units. The predominant response was choice
of equal probabilities and weights. Many participants failed the task of partitioning the possibilities
into elements that justify uniformity. The uniformity fallacy proved compelling and robust across
varied content areas, tasks, and cases in which the correct weights should either have been directly
or inversely proportional to their respective values. Debiasing measures included presenting individ-
ualized and visual data and asking for extreme comparisons. The preference of uniformity obtains
across several contexts. It seems to serve as an anchor also in mathematical and social judgments.
People’s pervasive partiality for uniformity is explained as a quest for fairness and symmetry, and
possibly in terms of expediency.
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1. Introduction

How probabilities are intuitively assigned to events has always been the focus of the
judgment-under-uncertainty school of research. In statistical language, the problem is that
of the frequencies, or weights, to be attached to the various attributes or values. Evidently,
the simplest method to fall back on is to embrace equality. Distributing the probabilities
equally over the available options is the easiest, and it seems to be fair by being indifferent
and doing justice to all contenders. This basic strategy, which we label the uniformity heu-
ristic, has been described in historical accounts of the emergence of probability theory and
statistics, and it is being mentioned in contemporary studies of psychologists, statisticians,
and educators. However, relative to many specific heuristics and biases that have been
studied in recent decades, this fundamental tendency has not received enough attention.
Our purpose is to systematically explore the workings and manifestations of the unifor-
mity construct and its degree of compellingness and resistance to contradictory evidence.

Carnap (1953, p. 132) presented the principle of indifference (as phrased by Jeffreys in
1939): ““If there is no reason to believe one hypothesis rather than another, the probabil-
ities are equal.” The proviso in the first half of the sentence is critical. We conjecture that
people sometimes apply the principle even when the proviso does not hold, and this is
what we set about to examine in the literature review as well as in the experiments. The
experimental tasks ask, either directly about event probabilities, or indirectly about means
of distributions. In addition, several experimental manipulations investigate which condi-
tions favor or check the reliance on uniformity. Finally, we have a look at the extent of
generality of the uniformity tendency and at possible reasons for its supremacy.

1.1. Early roots of uniformity assumptions

Historically, according to Hacking (1975, chap. 14), the epistemological conception of
equal probabilities goes back perhaps as early as to Aristotle. Leibniz defined probability
as the ratio of favorable cases to the total number of equally possible cases in 1678, and so
did Laplace around the end of the 18th century. The definition persisted in full vigor also a
century after Laplace and it is still viable. According to Gigerenzer et al. (1989, p. 31 and
167), the heart of Laplace’s interpretation of probability was viewing all cases with respect
to which we are ignorant in the same way as equally possible. This enabled computing the
probability of any given event. The uniformity assumption has been known throughout
the years under various names, such as the principle of indifference, principle of insufficient
reason, or equal ignorance. See Fine (1973, chap. 5), Keynes (1943, chap. 7), Stigler (1986,
chap. 3) and Zabell (1988) on the history and philosophy of uniformity arguments.

1.2. Contemporary manifestations of the uniformity belief

In three notorious probability teasers—the three cards, the three prisoners, and the three
doors (Monty’s dilemma)—three a priori equally likely alternatives are presented. Then
some datum (observation), which rules out one of the three, while lending unequal prob-
abilities to the remaining two possibilities, is provided. The puzzles ask either to compare
the chances of these two options or to assess the probability of one of them. Typically,
most solvers keep adhering to uniformity, insisting also on posterior equiprobability of
the remaining two possibilities (e.g., Bar-Hillel & Falk, 1982; Falk, 1992; Krauss & Wang,



R. Falk, A. Lann/ Cognitive Psychology 57 (2008) 293-334 295

2003; Nickerson, 1996, 2004; Shimojo & Ichikawa, 1989). In all three cases, the condi-
tional probabilities (likelihoods) of the observation under the two remaining alternatives
are different. Hence, there is sufficient reason for deeming these two alternatives not equally
likely anymore. Evidently, the inventors of these puzzles counted on people’s spontaneous
proclivity to endorse equiprobability when creating these problems that fail their
respondents.

The compellingness of the equiprobability belief was further revealed by the vehement
objections of many lay readers as well as mathematicians and academics to vos Savant’s
(1990, 1991) correct solution of Monty’s dilemma. Their support of the equality of prob-
abilities of the two remaining options was decisive and confident; their uniformity belief
seemed stable and indestructible (Falk, 1992). Furthermore, several (separate) debiasing
attempts made by Krauss and Wang (2003), who introduced sensible changes in the for-
mulation of Monty’s dilemma, failed to achieve that end (only a combination of several
such manipulations had the synergistic effect of correcting participants’ perspective). Inap-
propriate uniformity responses are apparently hard to extinguish.

An extreme misapplication of uniformity occurs when it is applied to an infinite sample
space. This is wrong, because the sum of all the probabilities in a discrete probability dis-
tribution, and the total area under the probability-density curve in the continuous case,
should be equal to one, whereas for an unbounded and uniform distribution these totals
would be infinite. Presuming constancy of probabilities, or densities, over an infinite sam-
ple space may result in contradictory consequences and acute paradoxes. Falk and Sam-
uel-Cahn (2001) and Portnoy (1994) analyzed one problem of Lewis Carroll (1895/1958,
problem 58) where he started by sampling three points at random (i.e., uniformly) on an
infinite plane. One had to compute the probability that the triangle formed by those three
points is obtuse. Carroll’s answer was .64. Falk and Samuel-Cahn showed that reliance on
the same self-contradictory assumptions may result also in a probability of 1 and even in a
“probability” of 1.5, and Portnoy obtained a probability of .82 for the same event. These
discrepant results were based on computations relating to “the triangle.” However, pre-
supposing the existence of such a triangle is illegitimate. This triangle was born in sin since
it could not have been constructed, in the first place, by random selection of points from an
infinite sample space. No less disturbing absurdities arise in the so-called exchange paradox
as a result of assuming unlimited equal ignorance (e.g., Christensen & Utts, 1992; Nicker-
son & Falk, 2006).

Outside the realm of probability puzzles there are some direct research results showing
a similar tendency. Tune’s (1964) classic review of response preferences listed many prob-
ability-learning experiments in which participants had initially held an equiprobable
hypothesis. Albert’s (2003) students assumed that experimental outcomes would be
equally likely even when the assumption was inappropriate. They chose the probability
1/2 for binary events because there were only two possibilities. Such statements abound
in daily discourse and in the media (see Bruine de Bruin, Fischhoff, Millstein, & Halp-
ern-Felsher, 2000, Table 1).

Fox and Rottenstreich (2003) found that participants’ likelihood judgments were biased
toward assigning equal credence to all mutually exclusive events considered by the judge.
When the number of these events was changed by manipulating the problems’ formula-
tion, the participants kept distributing the probabilities equally over the set of events that
they were led to consider. Fox and Clemen (2005) and See, Fox, and Rottenstreich (2006)
confirmed the same tendency. Johnson-Laird, Legrenzi, Girotto, Legrenzi, and Caverni
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(1999) maintained that individuals construct mental models for the truth of various pos-
sibilities. They apply equiprobability to these models, so that the probability of an event
depends on the proportion of mental models in which it occurs.

Fox and Rottenstreich (2003) listed several other well-documented psychological find-
ings that might be interpreted as manifestations of preference of uniformity. Thus, peo-
ple’s repeatedly observed tendency to overestimate proportions smaller than .5 and
underestimate proportions greater than .5 could have been affected by their being drawn
to the 50-50 anchor. The authors viewed this tendency as an instance of a general cogni-
tive strategy that appears also outside the domain of probabilistic judgment. Roch, Lane,
Samuelson, Allison, and Dent (2000) showed, for example, that in the economic context of
a resource sharing task, participants anchored on the equality heuristic as a first stage.
Likewise, Benartzi and Thaler (2001) found that, in choosing investments, many people
used simple rules of thumb. One such rule was the diversification heuristic, or its extreme
form: 1/n heuristic. Harris and Joyce (1980) found in three experiments that a sizable
minority (37%) of students, who had been asked to allocate shares of the final outcomes
of a group effort as fairly as possible, suggested giving all participants the same outcome,
regardless of differential contributions.

A distinct inappropriate ‘blip’ at 50% was observed by Fischhoff and Bruine de Bruin
(1999) in the distribution of participants’ estimates of the probabilities of relatively unli-
kely events. The authors interpreted the number 50 in this case, not as a quantitative esti-
mate of probability, but as a translation of the common phrase fifty—fifty that is equivalent
to absolutely no idea. Indeed, this phrase would not have been coined, if not for the strong
psychological link between epistemic uncertainty and equal probabilities. Konold (1989)
reported that some of his participants viewed a 50% probability not as a prediction of
long-range relative frequency, but rather as an admission of total ignorance, meaning “I
really don’t know” (p. 68).

The most stable and consistent finding of the vast research on subjective randomness is
people’s tendency to identify chance in binary sequences (and grids) with an excess of
alternations between the symbol types (Falk & Konold, 1997; Nickerson, 2002). Kahn-
eman and Tversky (1972) explained it by local representativeness: A random binary
sequence is expected to exhibit the equiprobability of the two symbols not only globally
but also locally in shorter sequences. This precludes long and medium runs of identical
outcomes and results in overalternations. It reflects a wish to see local uniformity, or equal-
ity of frequencies everywhere along the series (Kareev, 1992).

Reliance on equally likely outcomes is still the most powerful tool in the calculus of
probability, as presented in textbooks. When uniformity can legitimately be assumed,
the computation of the probability of any event, E, reduces to that of a proportion:

number of favorable cases number of elements in £ n(E)

P(E) = = = 1
(E) total number of cases total number of elements N’ (1)

where cases and elements in Eq. (1) refer to elementary outcomes (sample points) of the sta-
tistical experiment under discussion (Feller, 1957, chap. 1).

1.3. Equiprobability as an expedient heuristic

The justifiability of assuming uniformity has been for long the subject of discussion by
philosophers and statisticians (Carnap, 1953; Keynes, 1943). It has been contended that
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this assumption is logically unavoidable and the only possible one. It has also been
claimed that the equal probabilities are due to experience; von Mises (1928/1957, pp.
68-73) justified uniformity by means of relative frequencies in the long run. According
to Feller (1957), associating probability 1/2 with either head or tail, when tossing a “good”
coin, is a convention: “We preserve the model not merely for its logical simplicity, but
essentially for its usefulness and applicability. In many applications it is sufficiently accu-
rate to describe reality” (p. 19). Stigler’s (1986) historical account also agreed that “doing
this was more calculational expediency than metaphysical assumption” (p. 103). Two
examples follow.

In the classic birthday problem, assuming that all birth dates are equally likely easily
yields the result that the probability of a shared birthday for two or more people exceeds
1/2 when the size of the group reaches 23. Berresford (1980) compared this result with
results based on actual births’ distribution—for which the assumption of uniformity did
not hold—and found that a group of 23 was still required to raise the probability of a
shared birthday above one half. That probability is in fact minimal when the distribution
of births is uniform (Zabell, 1988).

Empirical psychological research found that predicting numerical variables of interest
(e.g., ratings) by using linear combinations in which all the predicting variables are equally
weighted is superior to experts’ clinical predictions (Dawes, 1979). Moreover, selecting
weights from a rectangular distribution does no worse than proper (regression) models
obtained via optimization by statistical criteria.

Presuming equal probabilities, or weights, can thus be construed as a heuristic rule that
may work. Quite often it serves its purpose. Polya (1981) considered it a principle of plau-
sible inference in problem solving that often enables forecasting a solution. However, as
compellingly demonstrated by Tversky and Kahneman (1974), heuristics that are highly
economical and usually effective sometimes lead to systematic and predictable errors.
We will show that uniformity, if overused, or misapplied, may result in distinct fallacies.

1.4. The problem of the appropriate sample space

The determination of the set of options to which equiprobability should apply becomes
a crucial issue for computing event probabilities. When uniformity is postulated, different
finite sample spaces result in different numbers in the denominator of Eq. (1). The partition
into possible outcomes, determines that number. There is, however, no simple answer to
the question how to reasonably divide the space into equally likely events. This question
had troubled the founders of probability theory. Stigler (1986, p. 103) regarded Laplace’s
suggestion that if the options under one specification were known not to be equally likely,
one should respecify them, say, by subdividing the more likely cases, as fraught with inher-
ent difficulties.

We coach our students from the beginning to construct uniform probability spaces for
computing event probabilities as relative frequencies. When asked about the probabilities
of the numbers of sons in a 2-children family, although the possible values are 0, 1, and 2,
one should consider the 4-point sample space of ordered pairs of children—BB, BG, GB,
GG—and then apply Eq. (1) for obtaining the required probabilities. One notorious his-
torical example of not following the above advice is that of D’Alembert’s error (Todhun-
ter, 1865/2001, pp. 258-259). In 1754, D’Alembert obtained a probability of 2/3 for the
event of at least one H in two tosses of a fair coin. He considered only the outcomes that
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were necessary for determining whether the target event had or had not occurred, namely,
H, TH, TT. Since the first two of these three events were favorable he got the answer 2/3
by relying on equality of the probabilities of his 3-point space. This error is a quintessential
instance of presupposing uniformity over the wrong sample space.

Although in D’Alembert’s case it is agreed that the 4-point uniform sample space of
ordered pairs should have been considered (yielding the answer 3/4), in other cases the def-
inition of the “right” sample space is not that simple. That decision should, as a rule,
depend on some background information, which is not always available. Physicists have
described real behaviors of particles, which can be modeled by different uniform spaces
depending on latent microphysical factors (Basano & Ottonello, 1996; Feller, 1957, pp.
38-40).

Uniformity has thus to apply to the “correct” sample space, the determination of which
is not always self-evident. The complex nature of this issue has been repeatedly demon-
strated by showing the absurdities that may arise if one attributes equiprobability liberally
to various conceivable sample spaces (Carnap, 1953, p. 132; Fox & Rottenstreich, 2003;
Keynes, 1943, chap. 4; Nickerson, 2004, pp. 35-37 and 204-205; von Mises, 1928/1957,
p- 77). Consider a variation of one of Gardner’s (1982, pp. 107-108) examples: Suppose
one only knows that a cube’s side is between 2 and 10 cm long. Applying the principle
of indifference to the range 2-10, the cube’s side is as likely to be above or below 6 cm long.
Therefore, its volume is equally likely to be either greater or less than 6°=216 cc. However,
if uniformity is applied to the cube’s volume across the range 2°-10%, or 8-1000 cc,
then this entails equal probabilities for the volume being greater or less than
1008/2 = 504 cc, which is obviously a contradiction. This apparent paradox results from
the equivocality concerning the variable to which uniformity should apply. Equiprobabil-
ity is not invariant under simple transformations though it seems offhand that it should be
(Kotz & Stroup, 1983, pp. 154-155).

Often there is no ultimate answer to the question of the definition of the sample space
that could rightfully be considered uniform (Keren, 1984). This choice depends on non-
mathematical context considerations, and it should best be decided by judicious consen-
sus. We chose the simple problem of the three cards as our first experimental stimulus
because it explicates the underlying procedure in terms that—when being read care-
fully—leave no doubt as to which sample space should be considered uniform. This could,
however, either agree or clash with people’s intuitions, and their responses may indicate
which sample space they regard as uniform. Keren found that perception of the relevant
sample space can be manipulated effectively by apt experimental instructions. The ques-
tion was also investigated by Brase, Cosmides, and Tooby (1998) and Fox and Levav
(2004). Gavanski and Hui (1992) showed that people’s natural sample spaces might differ
from those prescribed by probability theory, but people can be helped in accessing appro-
priate sample spaces. Fiedler (2000) stressed the point that latent properties of the environ-
ment with which the individual interacts determine the samples to which one relates. These
might be biased and entail biased judgments.

1.5. Uniform versus differential weighting
The frequencies (or weights) in an empirical distribution depend on the precise proce-

dure employed in collecting the data. Their estimation, as well as that of the mean value,
must therefore rest on knowledge of the methods of ascertainment (Fisher, 1934; Lann &
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Falk, 2006). When all the weights are equal, the weighted mean is the simple arithmetic
mean of the values. The converse is not always true. For example, the weighted mean
equals the arithmetic mean of a nonuniform symmetric distribution. If, on the other hand,
greater (smaller) values are systematically weighted more heavily, the resultant weighted
mean is greater (smaller) than the arithmetic mean.

People’s intuitions concerning differential weights have been scantily investigated. Poll-
atsek, Lima, and Well (1981) asked students to combine the means of two groups of dif-
ferent sizes into an overall mean of the union group. Many students failed to weight the
two given means by the group sizes (that had been explicitly given) and responded by the
simple arithmetic mean. On the other hand, Levin (1974) reported that participants’ over-
all mean showed some sensitivity to correct weighting. Methodological differences can rec-
oncile the ostensibly discrepant results: Many people may indeed disregard the differential
weights (as reported by Pollatsek et al.), whereas some others weight their responses in the
right direction so that group responses (as found by Levin) result in analysis of variance
showing a main effect of sample size. Hawkins, Jolliffe, and Glickman (1992) maintained
(like Pollatsek et al.) that students commonly fail in the assignation of different weights
and they resort to the simple arithmetic mean.

The same fallacy occurs in averaging rates (i.e., means of dichotomous variables). Peo-
ple often disregard the different denominators of the given rates, and they average them via
the simple arithmetic mean. Huck and Sandler (1984, p. 8) caution against this tendency.
They note that the appropriate weights of several batting averages (for quantifying a base-
ball player’s effectiveness) should reflect the different denominators, that is, different num-
bers of times at bat. Averaging the rates obtained in subgroups of different sizes by
calculating their arithmetic mean, namely, weighting them all equally, does not generally
yield the rate for the whole group. An intuitive erroneous belief that these two magnitudes
are equal accounts for the difficulty that people demonstrably experience with Simpson’s
notorious paradox (Bickel, Hammel, & O’Connell, 1975; Simpson, 1951).

1.5.1. Self-weighted sampling
We call a procedure, in which the frequency (probability) of sampling each value in a
given set is equal (proportional) to that value, self-weighted sampling (SWS). The arithmetic
mean (expectation) of the sampled values is the self~-weighted mean (SW) of the original set
of values (Lann & Falk, 2005). Formally, when observations from a population of n (non-
negative) values, x1,xy,. .., x,—whose arithmetic meanis A = (x; + x, + --- + x,,)/n— are
obtained via SWS, the expected mean of the observations is:
I 2)
Xi x4,
Because in SW the weight attached to x; is x/—so that the larger the value the larger its
weight—SW is generally greater than A. If and only if all the xs are equal, so are SW

and A. It can easily be derived from the definitions of the arithmetic mean 4, and the var-
iance, o2, that

hY/4

2

ag
SW=4+—. 3
+Z ()

This means that for a fixed 4, the excess of SW over 4 is proportional to the variance of
the population (Jenkins & Tuten, 1992; Patil, Rao, & Zelen, 1988).
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Real-life examples of SWS are often encountered in medicine (van Dijk, 1997; Zelen &
Feinleib, 1969), genetics (Fisher, 1934), demography (Keyfitz, 1985, chap. 10), and many
other areas (Basano & Ottonello, 1996; Patil & Rao, 1978; Stein & Dattero, 1985). For
example, many schools advertise a modest number as their average class size, yet, most
students find themselves in quite larger classes (Hemenway, 1982). This happens because
the mean class size for the school is generally less than the mean for the student. Each class
contributes one addend to the calculation of the mean for the school, which equals 4 of
the class sizes. However, each class size is added as many times as that size when listed
for student by student in computing the mean per student, which equals SW of the class
sizes. When individuals are organized in units, the average size per unit (family, class, and
city) is not always the same as the average size per individual (child, student, and inhab-
itant). The latter is generally greater than the former (Smith, 1979). When a community
comprises families of different sizes, the average child does not come from the average fam-
ily (Jenkins & Tuten, 1992; Nickerson, 2004, pp. 150-151). Recording the size for each
child in the community yields an upward-biased estimate of the mean per family whenever
there is variability in family-sizes. Not only does it exclude childless families, but it over-
represents families with many children. Note that if the average family has three children,
the average child has more than two siblings (Keyfitz, 1985, pp. 285-288).

Suppose cars travel along a freeway, each with a constant speed. Measuring the speeds
of cars passing a fixed point, during a given time unit, in order to assess the average speed
(A) of cars on the freeway is expected to give an upward-biased answer (SW instead of A).
The faster cars will be sampled by this method more frequently than their share among the
traveling cars, because in a given time unit the probability of recording a car’s speed is pro-
portional to the distance traversed by the car, which is proportional to its speed (Falk,
Lann, & Zamir, 2005; Haight, 1963, pp. 114-116; Stein & Dattero, 1985). Likewise, if
you get, at a random moment, to a bus stop in which three buses stop per hour—on aver-
age once every 20 min—the untutored intuition that your expected waiting time will be
10 min is generally faulty. The 10-min average wait would be correct only if all intervals
between consecutive buses were exactly 20 min. If there is any variation in the interarrival
times, the chances of arriving during a longer interval are greater, and the expected wait
will be greater than 10 min (Lann & Falk, 2005). Your expected mean wait will be SW
of all half intervals. Eq. (3) shows that it will be larger the greater the variance of the inter-
vals’ lengths. As flatly put by van Dijk (1997), “variation is the villain” (p. 28).

Considering people’s shortcomings in taking differential weights into account, even
when they are explicitly given (as in Pollatsek et al., 1981), it stands to reason to expect
that self-weighting (as in the above examples) will a fortiori be harder to embrace. In many
SWS cases, only the values are known and the proportionality of the probabilities of sam-
pling them is not explicated. A few examples follow.

Stein and Dattero (1985) reported that students frequently suggest polling their class-
mates (or stopping people on the street) to ask about the number of children in their
family in order to estimate the average size of a family in the population. And they fall
prey to the same sampling bias in thinking that the average speed of cars on the freeway
can be obtained by measuring the speeds of cars passing a fixed point. Jenkins and Tuten
(1992) related that their colleagues believed that if the average number of children per
family is three, then the average child has two siblings. They described also some distor-
tions of historians and social scientists that had relied on the average size for the unit
when the average for the individual should have been employed and vice versa. For
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example, statistics indicated that in 1850 most American slaveholders owned few slaves,
whereas in fact most slaves lived in large peer groups. Likewise, psychological studies of
children’s intelligence erred in drawing conclusions about families without acknowledg-
ing that large families had been overrepresented by sampling children (Bytheway,
1974; Smith, 1979).

Suppose all men in a large group write down the number of boys (including themselves)
and the number of girls in their family. We then add the reported numbers of each kind
and get the two respective sums B and G. Rao (1977) reported that people believe that
the expected proportion B/(B + G), is one half. This is wrong. The expected proportion
is greater than 1/2, because all-daughter families are not represented in this survey, and
the more boys there are in a family, the more likely they are to be represented in the group
and then report a larger number of boys (Falk, 1982). This is a case of SWS.

Most of the evidence cited heretofore consisted of sporadic studies, anecdotal examples,
introspection, and teachers’ reports. Educators’ experience, as well as introspection, is
often a source of important insights. However, we endeavor to obtain orderly experimen-
tal evidence of people’s performance in pertinent tasks that call for self-weighting.

1.5.2. Inversely weighted sampling

Unequal weights may be heavier for smaller values. In particular—in contrast to the
situation in which each value is weighted in proportion to its magnitude—a value might
be weighted in inverse relation to its size. In analogy to SWS, we refer to this case as inver-
sely weighted sampling (IWS).

Suppose a car travels a distance of S km, from A to B, at 50 kph and back from B to A
at 100 kph. We wish to know the car’s average speed for the round trip ABA. This average
should equal the total traversed distance (2S) divided by the total time of travel in the two
directions. The time (in hours) of going from A to B is S/50, and from B to A it is S/100.
The total distance can be obtained by adding the products of the two speeds and their
respective durations of travel. Hence the desired average (in kph) is:

505+ 10055 5045 + 100 135 2
5T 100 St %t

This is a weighted mean of 50 and 100 in which each value is weighted by its reciprocal.
The result is 66.7 kph, less than A of the speeds. This is an instance of IWS. If one samples
a random moment from the total duration of the trip, for measuring the car’s speed, the
probability of sampling a given speed is directly related to the length of time that the car
spends traveling at that speed, which is inversely related to the speed itself. In averaging
the speeds, this probability works as a weight for its respective speed. This results in the
harmonic mean of the speeds.

The harmonic mean, H, of n positive numbers, x;, x,, .. .,X,, is traditionally defined as
the inverse of the arithmetic mean of the reciprocals of the n values. It is easy to see that
H equals the weighted mean of the xs, where each x is weighted by its reciprocal:

1 1. .. 1
n Xigtxagt X

H= = . 4
R Y

Comparing the weight of each x; in the definition of SW—Eq. (2)—with its respective
weight in the definition of H—Eq. (4)—and considering the equal weights in the arithmetic
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mean' A, it becomes clear that H < A4 < SW (Lann, 2008). When averaging only two val-
ues, a and b, H and SW are equally distant from A. The reciprocality between the corre-
sponding weights in H and SW can be utilized for correcting sampling bias: If we are
interested in the arithmetic mean of a population of positive values, but the values are
sampled via SWS, then, to debias the inflated frequencies of larger observations, we can
compute H of the sampled observations to obtain the desired answer (Patil et al., 1988;
Stein & Dattero, 1985).

The harmonic mean pops up in diverse contexts. H has applications to wildlife popu-
lations and human demography (Keyfitz, 1968, pp. 382-384, 1985, pp. 335-337; Patil &
Rao, 1978); it is of interest in traffic flow analysis (Falk et al., 2005; Haight, 1963, p.
22), and it has, since the days of Pythagoras, a musical connection. It is therefore impor-
tant to know to what extent people recognize the need to weight values in converse rela-
tion to their size. There are a few suggestions that the arithmetic mean prevails as the
chosen average, also under IWS. It has been repeatedly observed by teachers that, given
two different speeds at which a car travels the same distance forth and back, students tend
to compute A4 (rather than H) of these speeds as the car’s average speed for the round trip
(Gorodetsky, Hoz, & Vinner, 1986). Puzzlemakers like to include problems of this type in
recreational-math collections. They can trust the illusion to work (Gardner, 1982, p. 142;
Huck & Sandler, 1984, pp. 3 & 7).

1.6. Overview of the experiments

We conducted two sets of experiments. In the first (Study 1), a probabilistic experi-
ment—that of the three cards—was described, and participants were asked about the con-
ditional probability of a certain outcome. Uncritical application of the uniformity
heuristic results in this case in an erroneous answer. However, uniformity may lead to
the correct answer if the sample space is appropriately defined. Therefore, the research
question may be viewed as finding out to which sample points participants ascribe equal
probabilities. Study 1 comprised several variations of the same problem in order to find
out whether different descriptions of the situation produce considerable shifts in the
responses (Tversky & Kahneman, 1981), and which framing promotes a correct insight.
Although a series of studies have established the relative superiority of formulating prob-
lems in frequentist rather than probabilistic terms (Cosmides & Tooby, 1996; Gigerenzer
& Hoffrage, 1995), we limited this inquiry to questions about probability. The three-cards
problem is prototypically probabilistic; a frequentist formulation would render it rather
pointless, because it concerns a unique event.

In the second class of experiments (Studies 2-5), the descriptions of the statistical exper-
iment implied assigning different weights to several given values. Out of the unlimited rep-
ertoire of nonuniform distributions, we selected two diametrically opposed ones as our
targets: In one case, the weights had to be equal (or proportional) to their respective values
(under SWS), and in the other, they had to be inversely proportional to the values (under
IWS). Participants’ subjective weights were to be inferred from their estimates or compar-
isons of means of distributions. Several framings of the problems were devised in an

' To be consistent with the notation SW, the uniformly weighted arithmetic mean and the inversely weighted
harmonic mean could have been denoted UW and IW, respectively. However, because the terms arithmetic and
harmonic are widely used, we retain the symbols 4 and H.
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attempt to present increasingly transparent formulations with respect to the correct
weighting.

In all the experimental forms, the givens and the underlying background were described
unequivocally. This should have left no doubt as to the sampling procedures involved,
unless participants project their own preconceptions on the process.

1.6.1. Participants

The participants were statistically naive students of the Hebrew University from diverse
disciplines, in their first year of study. Altogether, we recruited more than 1200 students by
entering classes in three successive academic years. The students participated voluntarily
(they got credit when required by their departments). This large sample included students
of psychology, education, social work, economics, law, business administration, political
science, international relations, biology, and pharmacology. The participants showed
interest and were eager to answer correctly. Many held lengthy discussions with us after
handing in their forms. Hence, potential mistakes cannot be attributed to laziness or care-
lessness, but rather to faulty intuitions.

1.6.2. Procedure

The experiments took place in a class setting. The task was always to respond in writing
to (Hebrew) forms. The total number of different forms was 32. About half the partici-
pants got two forms, and the rest got only one. A total of 1915 regular filled forms was
collected (about 3% were disqualified because of incomplete or indistinct responses).
Whenever two forms were paired, they belonged to different studies and never to analo-
gous conditions, so that there could be no conceivable interplay between them. The order
between two such forms was reversed for half the participants. Some forms appeared in
alternative variants that differed only in the given numbers or in the order between multi-
ple answers; their allocation was counterbalanced.

Each of the forms appeared on one page that started with the instructions to read the
problem carefully and answer intuitively. We repeated these instructions orally, encourag-
ing the students to rely on their common sense (even without carrying out computations).
Respondents had either to circle one out of a given set of (numerical or verbal) options, or
to provide a number. Space was left for an optional short written explanation. The exper-
iment lasted about 15-20 min. Then we either briefed the class by explaining the correct
answers, or handed out feedback sheets.

1.6.3. Analyses of results

In all the tables of results, boldface numbers designate the percentage of the modal
choice in the column, and shaded percentages are those of the correct answer. The percent-
ages in the tables of the results speak for themselves. They are often unequivocal concern-
ing the use of the uniformity heuristic. No tests of significance are necessary to “prove”
similarities or differences. Because of the misleading interpretation of a ““significant” result
that is too often believed to mean that H, has been rendered improbable (Cohen, 1994;
Falk & Greenbaum, 1995; Gigerenzer & Murray, 1987, pp. 24-25), we rely essentially
in drawing our conclusions on persistent replications based on large numbers. The 32
forms, in the five studies, investigate broadly the same question in many variations of con-
text and task. The conclusions rest on studious evaluation of the obtained rates and on the
extent of their consistency.



304 R. Falk, A. Lann/ Cognitive Psychology 57 (2008) 293-334

As often happens, some participants neglected to complete the verbal justifications, and
some explanations were indistinct. Still, many were to the point, and they shed additional
light on the quantitative analyses. We quote a few examples.

2. Study 1—The three-cards problem
2.1. Rationale

The problem was originated by Joseph Bertrand in 1889 and had since been widely cir-
culated in several variations. One is told that three cards—the first, red on both sides (RR);
the second green on both sides (GG); and the third, red on one side and green on the other
one (RG)—are well shuffled. Then somebody blindly draws one card and, still blindly, puts
it on the table. We observe a red face up (this observation is denoted r), and the question is
what is the (conditional) probability that the bottom side of this card is also red.

Using the above notations, one is asked about P(RR|r). The authors of this teaser set a
trap for the respondents: Those who take into account the conditioning event, r, and
understand that the card on the table cannot be GG, usually figure out that of the two
remaining options, RR and RG, one has red and one has green on the other side—hence
they give the mistaken answer 1/2 (Bar-Hillel & Falk, 1982; Brase et al., 1998; Fox &
Levav, 2004). However, although RR and RG were a priori equally likely to be the ones
on the table, they are not anymore so after observing r. The correct answer is
P(RRJr) = 2/3, because the double-red card (RR) is twice as likely to yield a red face up
(it is a certainty) than is the RG card, whose chances of showing either red or green as
the upper face are equal (this argument can be formalized by Bayes’ theorem).

The answer 2/3 might be better justified by noting that the description of the procedure
guarantees equal probabilities of appearing as an upper face on the table to all six sides.
The question of the probability of red on the bottom side reduces to whether the observed
red side was a singleton or a “doubleton” (one of a pair). Two of the three equally probable
red sides are doubletons with red also on the other side, only one is a singleton with green
on the reverse side. This reasoning relies on uniformity as well, but it applies to the sample
space of the sides rather than to that of the cards.

The three cards can be viewed as a core problem representing many of its kind. The
advantage of using this problem as an experimental tool lies in its simplicity. Unlike
Monty’s dilemma and the three prisoners, where implicit assumptions have to be spelled
out to disambiguate the situation (Falk, 1992; Nickerson, 1996), the story of the three
cards is unequivocal. Furthermore, whereas the solutions of Monty and the prisoners
are often rather complex—using tree diagrams, hierarchic tables, or Bayes’ formula
(Krauss & Wang, 2003; Shimojo & Ichikawa, 1989)—the three-cards’ resolution can easily
be achieved by resorting to the uniform sample space of the six sides.

It remains to be seen whether participants would intuitively regard the sides, rather
than the cards, as the elements of their uniform sample space, and, if they do, under what
conditions. For this end, we tried several variations of the problem that seem more con-
ducive to the required insight. One version was meant to confront the respondent with
the contradiction in assigning probability 1/2 to same color on the reverse side indepen-
dently of whether the obverse is red or green, and at the same time assigning probability
2/3 to the event that a card has identical colors on both sides. The other versions
attempted to direct solvers’ attention to sides by separating them and by lending them
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more individuality, up to “humanizing” them. Separation and individuation manipula-
tions were described by Brase et al. (1998) and Fox and Levav (2004); their outcomes will
be compared with those of our attempts.’

The answers 1/2 versus 2/3 distinguish between applying equiprobability to the cards and to
the sides—provided that one has correctly deduced from the observation r that the GG card is
ruled out. There are, however, grounds for concern that participants might ignore the given
information, r, and respond, instead, with the prior probability (base rate) of the event that
both sides of the drawn card are red. In that case, their answer will be 1/3. This is the probability
of the intersection of the events upper side is red and bottom side is red. As teachers of many
years, we have repeatedly encountered students who had been asked about P(A4|B), but for
some reason or other “did not believe us” that B had occurred and computed P(4 N B),
namely, the probability that both A and B will occur. Beyth-Marom (1977) established that
participants often confuse P(A|B) with P(4 N B). Falk, Lipson, and Konold (1994) and Teigen
and Keren (2007) described situations in which participants, who were given the prior proba-
bility of a target event, ignored subsequent relevant information and insisted on adhering to the
given base rates. Contrary to many studies that had documented base-rate neglect (e.g., Tver-
sky & Kahneman, 1982), they found a “reverse base-rate fallacy”. Such responses incur loss of
some information, because our purpose was to compare the rates of the answers 1/2 and 2/3
among those who ruled out the GG card. In subsequent studies, we avoided confounding
our intended examination with the issue of dealing with conditional probabilities.

2.2. Methods

Each of 486 participants responded to one of seven forms that presented variations of
the three-cards puzzle. The versions were all mathematically analogous. They differed in
details of their cover story. Participants were asked to circle one probability out of the fol-
lowing scale of given options:

0 1/6 1/5 1/4 1/3 1/2 2/3 3/4 4/5 5/6 1

The correct answer was always 2/3, whereas the answer 1/2 reflected the uniformity fallacy
of adhering to equality of probabilities of the two remaining units (cards or their
equivalents).

2.2.1. Traditional three-cards problem-stem
Three of the versions started with the same opening paragraph that described a statis-
tical experiment, supposedly conducted by the experimenter:

I hold three cards in my hand: One is red on both sides, another one is green on both
sides, and a third one is red on one side and green on the other.

I shuffle the three cards well, pick one card with closed eyes, and, still blindly, place it
on the table.

Now, I open my eyes, and then. ..

2 Our manipulations were done independently. Due to oversight, we learned about these studies only after ours
had been completed. Yet, we deem it important to report our results, since science is about the accumulation of
information and testing by replication (Ross, 1985). Conducting replications is highly advocated and hardly ever
implemented.
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The continuation differed among the versions Control, Standard, and Conflict
manipulation:

Control. To get an assessment of the extent to which participants understand the basic
situation, we offered a control ending in which the specific color on the upper side of the
drawn card was not mentioned:

...We all see the color of the upper side of this card.
In your opinion, what is the probability that when I turn the card over, the bottom
side will be of the same color?

Standard. This version ended with the classic formulation of the three-cards puzzle:

...We all see that the upper side of this card is red.
In your opinion, what is the probability that when I turn the card over, the bottom
side will be red as well?

Conflict manipulation. We reasoned that if participants will be confronted, in the same
form, with the givens “red on the upper side,” “green on the upper side,” and “we see
the color on the upper side” (without mentioning the identity of the observed color), and
will be asked three times about the probability of finding the same on the bottom side,
they will see the paradox in giving the answer 1/2 in the two former cases and 2/3 in the
latter, and will realize that, irrespective of whether the upper color is red or green, the
required probability is 2/3. The form comprised three parts. Each part was followed by
the above scale of probabilities. The problem-stem, describing the experiment, was fol-
lowed by:

... Three different outcomes are described below. Answer separately, in each case,
according to the described outcome.

(a) We all see that the upper side of this card is red.

In your opinion, what is the probability that when I turn the card over, the bottom
side will be red as well?

(b) We all see that the upper side of this card is green.

In your opinion, what is the probability that when I turn the card over, the bottom
side will be green as well?

(¢) We all see the color of the upper side of this card.

In your opinion, what is the probability that when I turn the card over, the bottom
side will be of the same color?

Four alternative forms presented the three parts in four different permutations—a b ¢, b a
¢, ¢ a b, and ¢ b a—so as to counterbalance for possible order effects. Only participants
who chose the same probability for the red and the green observations (parts a and b) were
included (three participants who answered these parts differently were among the
disqualified).

2.2.2. Individuation and separation manipulations
To draw participants’ attention to sides, as possible sample points, we offered a variant
of the problem in which each of the six sides was labeled. Because the physical tie between
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the two sides of a card might obstruct regarding the sides as distinct units, we separated the
elements and presented pairs of colored balls in urns, instead of sides of cards. This manip-
ulation was intensified by humanizing the elements that became men and women in rooms,
and more so, by naming these individuals.

Labeling sides. The formulation was largely as before, but for listing the six sides with
an individual symbol attached to each:

I hold three cards in my hand:

One is red on both sides; one side is denoted R, and the other R,. Another is green
on both sides; one side is denoted G; and the other G,. The third one is red on one
side, denoted Rj, and green on the other one, denoted Gs.

I shuffle the three cards well, pick one card with closed eyes, and, still blindly, place it
on the table.

Now, I open my eyes, and we all see that the upper side of this card is red. We do not
know whether this upper side is Ry, R,, or Rj,

In your opinion, what is the probability that when I turn the card over, the bottom
side will be red as well?

Labeling the sides is, in fact, a weak form of separation. In the next versions the sepa-
rations were physical.

Balls in urns. Three opaque urns that look identical are in front of me. Each one
contains two balls:
One urn contains two red balls.
Another urn contains two green balls.
And a third urn contains one red and one green ball.
I pick one urn with closed eyes, and, still blindly, draw one ball from this urn.
Now I open my eyes, and we all see that I drew a red ball.
In your opinion, what is the probability that when I draw the other ball out of the
same urn, it will be red as well?

Human elements. Without loss of generality, men and women in rooms can replace red
and green balls in urns. Humans might presumably be perceived as more unique, and thus
play the role of elementary events:

Three rooms, whose doors are closed, are in front of me. In each one are two
persons:

In one room there are two men.

In another room there are two women.

And in a third room there are a man and a woman.

I don’t know which pair is in which room.

I happen to see by chance that a man gets out of one of the rooms.

In your opinion, what is the probability that there is another man in the same room?

In an alternative form, a woman was observed getting out of a room and one was asked
about the probability that there is another woman in that room.

Named humans. To impart more individuality to the six persons in the rooms, the same
problem introduced each individual by his/her name. In two variants, either a man or a
woman (unnamed in both cases) was observed getting out of one of the rooms.
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2.3. Results and discussion

2.3.1. Overall outcomes

Table 1 summarizes the results. The correct answer 2/3 was the majority choice in Con-
trol, indicating that participants understood that there were two favorable cards among
the three equiprobable cards. In all the other cases, the fallacious answer 1/2 was the most
frequent. The next frequent error was 1/3, which is in fact the prior probability of the tar-
get event. All other erroneous answers were essentially blind guesses, with no comprehen-
sible justifications. They are grouped together in the Other category.

Despite the majority of correct choices in Control, 25% of answers 1/2 seem unfeasible
as just arithmetic errors. The explanations of this answer showed that, for the most part,
uniformity accounted for the wrong answer. Some assumed a given upper color (as in
Standard): “Suppose the card is red on one side, then the chances that it will be red on
the other side are, as one can see from the givens, 1:2.” Others resorted to downright uni-
formity: “If we pick a card of a certain color, we know that the other side could be either
the same or different [italics added]”.

The answer 1/2, selected in Standard by 75% of 107 participants, confirmed the expec-
tation of the makers of this puzzle. That the remaining two cards stay equiprobable also
after learning about the observation of an upper red face, was stated in no uncertain terms:
“At first, when the three cards were in our hands, the probability of drawing a red card on
both sides was 1/3. But, once it is clear that this is not the green card on both sides, the
probability reduced to 1/2” (the mistaken “reduced” is fun). A few participants articulated
the uniformity principle in its ultimate form — “because there are two colors”—without
even mentioning cards or sides. The minority who chose the probability 1/3 simply ignored
the observed conditioning event: “The chances of seeing red also on the other side are the
random chances of choosing the red-red card from the beginning, that is, the probability is
1/3.” The refusal to update the prior of the double-red card reflects a reverse base-rate fal-
lacy (Falk et al., 1994).

Prima facie, the manipulations (starting with Conflict) appear beneficial: The rate of the
wrong answer 1/2 decreased (relative to Standard). However, this decline was not system-

Table 1
Percentages of chosen probabilities in seven versions of the three-cards problem, in Study 1 (N = 486)

Probability The version

Traditional problem-stem Individuation and separation manipulations
Control Standard Conflict Labeling Balls in Human Named
manipulation® sides urns elements humans
1/3 2.8 11.2 324 25.8 21.1 18.8 38.3
1/2 254 74.8 57.7 51.5 55.3 479 40.4
2/3 63.4 9.3 7.0 18.2 39 10.4 43
Other 8.4 4.7 2.8 4.5 19.6 23.0 16.9
n 71 107 71 66 76 48 47

Note. The probability chosen is that of the reverse side being red, given that the obverse was red, and of the
equivalent events in all versions. The correct answer is always 2/3.

“The percents are those of the probability of red/green on the reverse side, given the obverse was red/green (parts
a & b).
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atically matched by a correspondent rise in the rate of the correct answer 2/3. In Standard
there were about 16% of answers other than 1/2 or 2/3, whereas in response to all the
manipulations, the rate of such answers was steadily at least 30%. Conceivably, the con-
flict, separation, and individuation hints did help respondents to view individual sides,
balls, or persons as elementary events, but they had also to consider the organization of
these elements within more inclusive units (cards, urns, rooms), and to take into account
the effect of the conditioning observation. This additional cognitive load might have
caused more participants either to dismiss the impact of the conditioning event or to grope
in the dark for the required probability.

In Conflict manipulation, 63% of the participants were inconsistent in their responses to
the cases of specified and unspecified obverse color (parts a and b vs. ¢). Only 4 of 71 par-
ticipants gave the correct answer 2/3 to all three parts. The others were consistent in
answering three times 1/2 or 1/3. Apparently, many participants were not strongly dis-
turbed by giving identical probabilities for same color on the reverse side when red and
green were given as the obverse colors, and a different probability for the same event, when
the obverse color was not specified. The modal inconsistent triple answer 1/2, 1/2, 2/3
(47% of the inconsistent triplets) replicated the most popular answers to Standard and
to Control even when confronted with them side by side, despite the contradiction. A typ-
ical explanation was a: ““1/2, because one of the 2 cards with one red face has red also on
the other side;” b: same as a, but for replacing “red” with “green;” ¢: “2/3, because there
are 2 cards out of 3 with identical colors on the front and back sides.” The second most
frequent inconsistent triplet was 1/3, 1/3, 2/3. The majority answer to part c—the question
of seeing the same unspecified color on the reverse side—was 2/3. However, 25% who cir-
cled 1/2 were not sloppily mistaken in dividing 2 by 3, they were swayed by their own
answer to parts « and b. Sensing the need for consistency, they carried over to part ¢ their
wrong answers to parts ¢ and b. This was betrayed by some participants who had first cir-
cled the probability 1/2 in parts @ and b and 2/3 in part ¢, and then crossed the 2/3 and
circled 1/2 instead. They explained their answer to part ¢: “This case is not different from
parts a and b, although it seems so at first.” The popular inconsistent 1/2, 1/2, 2/3 and
consistent 1/2, 1/2, 1/2 indicate that either no conflict was felt due to the inconsistency,
or, when a conflict was sensed, the wish for uniformity of the cards had the upper hand.

Labeling apparently did not help the 34 participants who still answered 1/2. They either
ignored those tags altogether and explained their answer the standard way, or, despite
noticing them, they kept relying on the equiprobability of the two remaining cards:
“The green card (G;G>) is, in fact, out of the game. So two cards remain (R;R, and
G3R3), and the drawn card is one of them” Conversely, the labels had been often put
to use by the participants who circled the probability 2/3: “If the side facing up is red,
there are 3 possibilities for the identity of this card, out of them, 2 are that this is the dou-
ble-red card, i.e., R; R,. Two out of three are therefore the chances.”

The modal answer was 1/2 also for Balls in urns: ““It is possible that the third group was
chosen, and then a green ball will be picked, and it is possible that the first group was cho-
sen, and then a red ball will be picked. Two possibilities—50%.” The percentage of the
other wrong answers rose considerably at the expense of the correct answer, 2/3, that
hit bottom (4%). Separating the elements within an urn apparently succeeded in directing
participants’ attention to the balls, but failed in helping them find the required conditional
probability. Many solvers were unable to integrate the information about urns and balls
with the impact of the conditioning event and were evidently at a loss.
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In the combined results of the 95 participants who responded rather similarly to Human
elements and Named humans, the percentage of the most frequent error, 1/2, dropped to
44%. However, here too there was no rise in the rate of the correct answer, and the per-
centage of other mistaken choices was maximal among all conditions, perhaps because
of increased confusion concerning the two levels (persons and rooms) and their prior
and posterior probabilities. The mistaken 1/2 was explained either by postulating equi-
probability of the two remaining rooms: “It is certain a man was seen leaving the room,
therefore we reduce the rooms to 2,” or by outright uniformity applied to the six individ-
uals without any consideration of their arrangement in rooms or of the given observation:
“Half the people are men.”

Brase et al. (1998) obtained results similar to ours and to Bar-Hillel and Falk’s (1982) in
an analogous problem in which candy canes replaced cards and two different types of
edges replaced the two colors. Once these edges were presented as two different candies,
or were physically broken, the percent of correct answers rose (unlike the case of our sep-
aration manipulations), but only to somewhat less than 25% or 35% (see the results of
“Single Event” in Brase et al., Fig. 3). Their manipulation was thus only partially success-
ful; it did not turn the tide. Our separation attempts managed only to lower the rate of the
incorrect answer 1/2.

Fox and Levav (2004) numbered the six sides of the three cards. They also separated and
humanized the sides by framing the problem in terms of three companies represented by two
men, two women, or a man and a woman. As in our experiment, both their manipulations
involved a decrease in the rate of the answer 1/2, and an increase in the answer 1/3 (Tables
5 and 8 in Fox & Levav). Their percents of the correct answer 2/3 were higher than ours,
though they did not form a majority there either. Their relative advantage in eliciting the cor-
rect answer might be accounted for by differences in the problems’ formulations. We adhered
to the same target question also in Labeling sides: “What is the probability that when I turn
the card over, the bottom side will be red as well?”” and the same was done in Human elements,
whereas Fox and Levav eased the target question in both cases. They asked: “Given that the
side showing is red, what is the probability that it is side Red; or Red,?” (p. 632).

The question about a conditional probability was apparently a drawback of the design
because it interfered with examining the application of uniformity. However, if we confine
our consideration only to the 339 participants who had chosen either the probability 1/2 or
2/3, the picture does not change. Barring control, 1/2 was throughout the majority choice
of the respondents who took account of the conditioning event.

2.3.2. Unrefined scale of probabilities

All in all, participants were hardly willing to abandon the initially justified belief in the
equiprobability of the given events after receiving information that reduced their number
to two and undid their equiprobability. Many ruled out the double-green card (or its
equivalents), showing that they took notice of the conditioning event. They were able to
distinguish between possible and impossible events, but they failed to discern varying
degrees of possibility between the remaining uncertain events and kept considering them
equally probable. This phenomenon accords with Konold’s (1989) report that some of
his participants interpreted probability statements as definite predictions of what is going
to happen. High (low) probabilities were taken as certain predictions of occurrence (non-
occurrence) of the event in question. But when uncertain, they translated their state of
knowledge into uniform probabilities that convey the message “I have no idea.” These
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people had in mind a triple-edged probability scale with no distinctions within the middle
“don’t know” category.

2.3.3. Conclusions

Though puzzles and paradoxes are often trifled as just piquancy, they can be invaluable
in diagnosing our cognitive habits. The three-cards problem and its many isomorphs
proved instrumental in pinpointing our tacit, untested assumptions and inbuilt bias
toward uniformity. Being familiar with the compelling force of that problem, we have
anticipated the prevalence of the answer 1/2. We were surprised, however, that a quarter
of the participants erred in responding similarly even to Control. The finding that the
apparently sensible corrective manipulations were to no avail came as a surprise as well.
These results attest to the stubbornness of the uniformity heuristic. Switching people’s
attention from the units on which they had initially focused (cards) to elements of a more
refined partition (sides) proved not easy to accomplish. As argued by Brase et al. (1998),
“If whole objects are the natural unit of analysis for our statistical inference mechanisms,
then people should have difficulty with any problem whose solution requires one to count
arbitrary parsings of intact whole objects” (p. 9).

Yet, the results suggest that labeling and personification have a somewhat positive effect.
To further explore whether individuation hints help in considering an appropriate partition,
we employed them again in Study 2 without confounding weighting with conditionality. If
the effect of individuation, as found by Fox and Levav (2004) and hinted by the results of this
study, would replicate, this might validate its expediency. It would also confirm Nisbett and
Ross’ (1980, chap. 3) thesis that vivid information has greater impact on people’s inferences.

The three cards, GG, GR, and RR, can also be identified by their numbers of red sides,
namely, 0, 1, and 2. The three respective posterior probabilities—0, 1/3, and 2/3—are
directly proportional to these numbers. Hence, the three-cards experiment represents a
case of SWS. In Study 2, we have a look at people’s responses to another situation in
which the sampling procedure imparts self-weighting of the values.

3. Study 2—Self-weighting problems
3.1. Rationale

The procedure of collecting numerical data in this study (SWS) entailed weights (fre-
quencies) equal to the values. In most of the problems, equal number of families with
one, two, three, or four children were given. Participants were asked about the mean num-
ber of children in the family of @ child in this population. Let the number of children in a
family be referred to as the family-size (not including the parents). The distinction between
the mean family-size per family and the mean per child is important. The former is the sim-
ple arithmetic mean, A4 (=21), of the distribution of families, and the latter is the self-
weighted mean, SW (=3), of that distribution. One can learn from participants’ chosen
mean how they intuitively weight the different family-sizes. A mean greater than 4, indi-
cates that the balance of the weights tends upwards.

In analogy to the question of relating to sides or to cards, respondents’ mean per child
may indicate which sample space they consider uniform: that of the families or that of the
children. Based on suggestions in the literature (Jenkins & Tuten, 1992; Nickerson, 2004,
pp. 150-151; Stein & Dattero, 1985), we hypothesized that many participants will consider
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the families equiprobable and will answer the question of the mean per child by A4 of the
family-sizes, that is, by the mean per family.

Modifications of the same problem included facilitating features: By asking both about
mean family-size per family and per child, we tried to raise participants’ sensitivity to the
implications of the difference between the two sampling methods. In a stronger manipula-
tion they had to compare the means obtained by recording family-size per family and per
child. Participants were also required to mentally conduct a thought-experiment and pro-
duce an example of a typical sample of family-sizes recorded for the children prior to
selecting their answer of the mean family-size per child. Envisaging the sampling process
might encourage relating to children and realizing that a given family-size is multiply
recorded according to its magnitude. Furthermore, we offered versions with only one fam-
ily of each of the four sizes. These included variants in which we intensified the salience of
individual children by naming or even depicting them. To amplify the effect, two other con-
ditions presented extreme distributions comprising only two families with widely disparate
numbers of children. A strategy of “extremization” is often effective in problem solving
(e.g., Gardner, 1978, pp. 54-55; Polya, 1981, Vol. 1, p. 10). Finally, to find out whether
participants are sensitive to the effect of the variance in family-sizes (Eq. (3)), we presented
two pairs of families with the same arithmetic mean of their sizes; in one case the two sizes
were close to each other and in the other they were widely discrepant. Participants were
asked to compare the mean family-size per child in these two cases.

3.2. Methods

Thirteen forms dealt with problems concerning mean family-size. Altogether, 771
regular forms were collected. Our main dependent variable was participants’ assessed
mean family-size per child, denoted M.> The assessed mean family-size per family is
denoted M;. Participants’ ability to distinguish between the two, and to realize that
the former is generally greater than the latter, was the target of the investigation. In
all the cases it was true that M.= SW> M;= A. One version concerned the assessed
mean number of siblings per child, denoted Mg;,. This should equal SW —1 and be
greater than 4 — 1.

The first eight versions asked participants to assess mean family-size—Mj in the first
and M. in the other seven. They differed in the given distribution of families and in the
vividness of the description. In the first seven of these versions, the population consisted
of equal number of families with one, two, three, or four children, and participants were
asked to circle one mean out of the following scale of options:

1 1% 2 2% 3 3% 4

The correct answers are My= A :2%, and M_.= SW =3. The other five versions,
required comparison of means—four obtained by different methods from the same popu-
lation, and the fifth by the same method from different populations.

3 When asking about M., we clarified that the recorded child is included in the family-size, and that one should
assume that all the numbers recorded for children are accurate.
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3.2.1. Simple distribution
All four versions in this category started with the same problem-stem:
In a certain community, all families have children (one or more).
There are equal numbers of families with one, two, three, and four children (there are
no families with more than four children).

The continuation varied among the forms.
Control—mean per family (My). To make sure that participants got the families’ distri-
bution and its arithmetic mean right, they were asked:

A researcher addresses each family in the community and records its number of children.
The researcher computes the mean of the recorded numbers. In your opinion, what is
the value of this mean?

Standard—mean per child (M.). A researcher addresses each child in the community and
records the number of children in the child’s family.
The researcher computes the mean of the recorded numbers. In your opinion, what is
the value of this mean?

Sensitization—mean per child and per family (M. and My). Participants were asked
about both M, and My in the same form. Researcher A addresses each family, as in Con-
trol, and Researcher B addresses each child, as in Standard. The above scale of multiple
answers was given below each of the two questions. In two alternative forms the order
of the two questions was reversed. We were interested only in the M, responses. A few par-
ticipants whose M; was wrong were deleted because of failing the control test.

Imagine a sample (M.). The question was as in Standard. However, before the question
paragraph (after the problem-stem), participants were asked:

Suppose you sample some children from this community, so that all the children in
the community have equal chances to be sampled. You record the number of children
in the family of every child in the sample.

Please write in the allotted space a representative example of the numbers that may
comprise the sample:

This format enables participants who apprehend the self-weighting to produce the exem-
plary sample 1, 2, 2, 3, 3, 3, 4, 4, 4, 4; whereas if they embrace equal weights, they could
repeat each of the four numbers three times.

3.2.2. Reduced distribution: one family of each kind

Four versions—with minor variations—were simplified by presenting only one family

of each size.

Standard—mean per child (M.). All the children of four families play in a community
center. One family has one child, one has two children, one has three children,
and one has four children.

A researcher addresses each child in the community center and records the number of
children in the child’s family. The researcher computes the mean of the recorded num-
bers. In your opinion, what is the value of this mean?
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Labeling children (M.). Repeating the previous formulation, we added the children’s
names immediately after mentioning their number in each family.

Depicting children (M.). Every child in every family was represented by a sketch, with
the child’s name written above the figure. Otherwise, everything was the same as before.

Extreme distribution(s) (M.). Only two families, with a wide gap between their sizes,
were described. Two alternative forms of this version were composed. The wording was
as in Standard of this section, except for the following changes: Four families were replaced
by two families; the numbers of children in the two families were 3 and 15 in one form
(4=9; SW=13), and 2 and 6 in the other form (4 = 4; SW =5). The scale of multiple
answers for the first form was:

3 4 5 6 7 8 9 10 11 12 13 14 15
And for the second it was:

2 2l 3 3 4 4l 5 51 6

3.2.3. Comparing means

In four versions, participants were required to compare their M, with the mean per fam-
ily (M; or A), either when the distribution of families was given or when it was not known.
The former case included an extreme case of two widely disparate family-sizes, and the
latter included comparison of the assessed mean number of siblings per child (Mg;,) with
A — 1. The fifth version required comparing M.s of two distributions, each consisting of
two families with the same 4 but with considerably different variabilities.

Simple distribution—mean per child versus mean per family (M. vs. My). The problem-
stem distribution was presented again. As in Sensitization, two procedures of data collec-
tion were described, but here they had to be compared with each other:

Two researchers visit the community.

Researcher A addresses each family and records its number of children,

Researcher B addresses each child and records the number of children in the child’s
family.

Each of the two researchers computes the mean of the recorded numbers. In your
opinion, what will be the relation between the means obtained by the two researchers?

1. There will be no difference between the two means.
2. The mean of Researcher A will be greater than that of Researcher B.
3. The mean of Researcher B will be greater than that of Researcher A.

In two alternative forms, the multiple answers appeared in different orders.

Extreme distribution(s)—mean per child versus the arithmetic mean of family-sizes (M.
vs. A). Only two families with a considerable gap between their sizes as in the assessment
task in Extreme distribution(s) (M.) were presented:

All the children of two families play in the yard. One family has 2 children and the
other one has 6 children.

A researcher addresses each child in the yard and records the number of children in
the child’s family.
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The researcher computes the mean of the recorded numbers.
In your opinion, which of the following statements is correct?

1. The researcher’s mean will equal 4.
2. The researcher’s mean will be less than 4.
3. The researcher’s mean will be greater than 4.

In another variant, the two family-sizes were 3 and 15 and M, had to be compared with
A =9. Each variant appeared in two alternative forms, with changed order among the
three multiple answers.

No distribution—mean per child versus mean per family (M. vs. My). This version resem-
bled the story of the two researchers in Simple distribution. However, the only information
concerning the distribution of the families was that “There are families of different num-
bers of children in the community.” Note that this suffices for deducing that SW > A4, and
hence M, should be greater than M.

No distribution—mean number of siblings per child versus one less than the mean of fam-
ily-sizes (Mg, vs. A — 1). Only the crucial information that not all family-sizes were iden-
tical was given:

In a certain community, families have different numbers of children. The mean
number of children of a family in the community is 3. A researcher addresses each
child in the community and records the child’s number of siblings (brothers and
sisters).

The researcher computes the mean of the recorded numbers (i.e., the mean number of
siblings of a child in the community).

In your opinion, which of the following statements is correct?

1. The researcher’s mean will be less than 2.
2. The researcher’s mean will be equal to 2.
3. The researcher’s mean will be greater than 2.

In three alternative forms, different orders between the possible answers were presented.

Two families—mean per child for different variances (M~ vs. M?). The assessed mean
family-size per child in the case of /arge variability between the two families is denoted
ME, and in the case of small variability it is denoted M?. The distributions to be compared
had the same arithmetic mean (A4) of family-sizes:

All the children of two families play in Yard A. One family has 8 children and the
other has 10 children.

Researcher A addresses each child in Yard A and records the number of children in
the child’s family.

All the children of two other families play in Yard B. One family has 3 children and
the other has 15 children.

Researcher B addresses each child in Yard B and records the number of children in the
child’s family.

Each researcher computes the mean of his/her recorded numbers. In your opinion,
what will be the relation between the means obtained by the two researchers?
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1. There will be no difference between the two means.
2. The mean of Researcher A will be greater than that of Researcher B.
3. The mean of Researcher B will be greater than that of Researcher A.

In a second variant, the numbers in Yard A were 3 and 5, and in Yard B they were 1 and 7.
Each variant appeared with two different orders between the multiple answers.

3.3. Results and discussion

3.3.1. Overall outcomes

The outcomes of Control show that 29 of 32 participants correctly assessed
My=A= 2%. The 91% correct answers confirm the simplicity of the case of the mean
per family. Having established that participants largely equated M; with A, we subse-
quently compared M, responses with 4 of the given distribution without asking about M.

Table 2 presents the results of seven versions of assessing mean family-size per child
(M.), giving the percents of participants whose M, equaled SW (the correct answer) and
A (the uniformly weighted mean). However, applying a more lenient criterion of admissi-
bility, any M, greater than 4 could be considered adequate, because it indicates a tendency
to weight greater values more heavily. The main finding was that, in the absence of power-
ful facilitating hints, participants failed to self-weight the given values. They weighted all
the sizes uniformly and answered by A4, the mean family-size per family, as in Control.
Asin Study 1, the uniformity fallacy prevailed in Standard. At the same time, it was reduced
by apt formulation of the mean-per-child problem. Considering only one family of each size
was, on the whole, helpful, especially when the children were individualized, and when there
were only two families with an amplified gap between their sizes.

Choosing 4 = 21, instead of SW =3 in Standard of Simple Distribution, seemed self-
evident: “If there is an equal number of families with 1, 2, 3, and 4, then the mean will
be(l1+2+3+4)4= 2%.” The correct choice was explained: “Every child counts himself
and his siblings; and then we divide by the number of children that were interrogated: 1; 2,
2;3,3,3;4,4,4, 4. In Sensitization, participants who had circled 4 for both M, and M;
justified that double choice by: “The answers to both parts are identical, because, in fact,
this is the same question in different words.” They were not sensitive to the implications of
the different methods of data collection. Yet, the need for differential weighting was not
beyond the grasp of 30% who had responded in the right direction: “The big families will
give more big answers and the mean will increase.”

In Imagine a sample, sorting the generated samples as indicative of either SWS or uni-
Sformly weighted sampling (UWS) was unequivocal for 51 out of the 69 participants: they
split into 36 UWS and 15 SWS. The remaining 18 samples were sorted undecided. Of
the participants whose sample was definitely categorized, 90% selected M. consistent with
their sample. The group’s modal choice was still the uniformly weighted mean 4. The
undecided group had 72% of 4 answers. The increase of the rate of M.> 4 answers rel-
ative to Standard might be explained by a limited degree of success of the attempt to think
of a sample. In a typical response, the sample consisted of three of each of the numbers 1,
2, 3, and 4 (in mixed order) and—consistent with UWS—Z% was the chosen M_: “Because
equal numbers of children from all types of families are included in the sample.” Most of
those who answered correctly produced a perfect, or close to perfect, self-weighted sample
and based their explanation on it.



Table 2

Percentages of assessed mean family-size per child (M.), according to its relation to means of the families’ distribution in seven versions, in Study 2 (N = 422)

Participants’ chosen mean per child The version
(M) Simple distribution® Reduced distribution: One family of each kind
Standard ~ Sensitization® Imagine a Standard® Individuation® Extreme
sample Labeling Depicting distribution(s)
children children
M. <A 10.0 12.8 5.8 9.3 5.6 0.0 1.8
M.=A4 72.2 57.4 66.7 51.9 37.0 434 18.2
A<M <SW — — — — — — 9.1
M.=SW 13.3 21.3 20.3 29.6 46.3 47.2 69.1
M,> SW 44 8.5 7.2 9.3 11.1 9.4 1.8
n 90 47 69 54 54 53 55

Note. In all versions families have different sizes. 4 and ST denote, respectively, the arithmetic mean and the self-weighted mean of the given distribution of families.

M. should always equal SW.

aFour family-sizes—1, 2, 3, and 4 (with equal frequencies)—were given. Their means are 4 =21, SW = 3. There was no value between 4 and SW in the scale of

options.

M, responses were counted only for those whose M was right.

‘Two alternative family-sizes—2, 6, or 3, 15—were given. Their means are 4 =4, SW =75 or A =9, SW = 13, respectively.
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Reducing the distribution to One family of each kind was not enough for tipping the
balance in Standard in favor of the correct answer: “The total of families is 4, the total
of children 10, therefore the mean is 2%,” However, the effect of Individuation was stronger
here than in Study 1. The outcomes of Labeling and Depicting children showed that these
measures helped participants to consider each child personally and weight the family-sizes
accordingly. Some listed the children one by one, naming each child and specifying its fam-
ily-size. The Extreme distribution of only two families swayed the responses toward weight-
ing the family-sizes in the right direction. The common error of selecting 4 was reduced
and the rates of answers greater than A4 peaked to 80%. The efficacy of the manipulation
was revealed in an explanation of the choice M, = SW =5 (for families of sizes 2 and 6):
“If there are 2 families in the community center—of 6 children and 2 children—then the
mean will be (6 x 6 + 2 x 2)/8 = 5. I should note that at first glance T assumed that it was
4 children.” Comments similar to this indicate that some learning took place while consid-
ering the extreme version.

Comparison is apparently more potent than sensitization. Table 3 presents the results of
the four comparisons between M, and 4 (or My). When participants were asked to judge
which of two sampling procedures will yield a greater mean, they were apparently driven
to consider the difference between the two methods. The rates of the mistaken M, = A4
dropped in comparison tasks relative to their analogous assessment tasks. There was also
a rise in the correct answers (M, > M or M .>A). Yet, we cannot know, in the case of cor-
rect comparisons, whether the participant’s M. was numerically accurate (equal to SW) or
just greater than A. Some comparisons between M, and My in Simple distribution and No
distribution were well explained: “Since Researcher B addresses each child he’ll probably
count the same family several times.” Still, the modal choice was M, = My “The families
and the children will report the same number of children.”

Coupling the amplified gap between the two families with a comparison task in Extreme
distribution(s) proved highly effective in clarifying the distinction between self- and equal-
weighting: “There are greater chances that the researcher will ask one of the 6 children of
the second family. This means that the number 6 will appear more times than the number
2, and therefore the mean will be greater than 4 which is the mean of the ratio 1:1 between
2 and 6.”

Table 3
Percentages of comparisons between assessed mean per child (M) and mean per family (M or A4) in four versions,
in Study 2 (N = 257)

Participants’ choice The version
Simple distribution Extreme distribution(s) No. distribution
M, vs. My M, vs. A M, vs. M; Mg vs. A — 1
M. < M;or M. <A 15.2 3.9 8.5 5.4
M.= M;or M.=A 4.3 7.8 46.5 83.9
M.> M;or M.> A 40.5 88.2 45.1 10.7
n 79 51 71 56

Note. In all the versions families have different sizes. The assessed mean per family (M) should equal the
arithmetic mean (A4) of the families’ distribution. The assessed mean per child (M.) should equal the self-weighted
mean (SW) of that distribution. The correct answer is always M. > M;or M. > A.

4 M, = assessed number of siblings per child. The correct answer is Mg, > A — 1, which is equivalent to M, > 4.
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Ostensibly, whoever understands that M, should be greater than the mean per family,
A = 3, can also see that the assessed mean number of siblings per child (Mg;, = M.—1) should
be greater than 4 — 1 = 2. However, most participants had apparently focused on the need to
subtract one from the number of children in the family to get a child’s number of siblings and
thus circled 2 as their M;,. Many regarded that choice self-evident: ““If there are three chil-
dren on the average, logic implies that each child has 2 siblings on the average.”

Participants sensed the increase in SW with an increased variance in family-sizes. When
comparing M, of two families in distributions with different variances (not included in
Table 3), 75% of 60 participants circled the category M- > M% and only 18% chose
ME = M?$ . Many participants mentioned only the bigger family of the more disparate pair:
“There are more children in a family of 15 children, therefore the relative part of bigger
numbers is greater.” Only one participant who chose correctly wrote: “Because the disper-
sion of the children between the two families in Yard B is more extreme than in Yard A.”
Contrarily, a participant who had opted for no difference noted: “The means are the same,
only the standard deviations are different.”

3.3.2. Conclusions

People’s bias in weighting the given options equally was prominent in the standard
tasks of assessing mean family-size per child, much as in the case of the three-cards prob-
lem. The rates of relying on (posterior) uniformity of cards or families were rather similar
in the two studies (cf. Tables 1 and 2). Recall that the three cards can also be construed as
a self-weighting problem, because cards were sampled via red sides, just as families were
sampled via children. In both studies, participants were mostly oblivious of the need for
self-weighting and they fell back on the simplest solution of equal weights, often without
explicit awareness of their weighting decisions. Just as cards (not sides) were subjectively
considered the focal units of analysis in Study 1, so were families (not children) primarily
viewed as “whole objects” (Brase et al., 1998) in this study. It took specific manipulations
to shift participants’ attention to the more refined uniform sample space of children. Cor-
rective effects of individuation, as hinted in Study 1 and found by Fox and Levav (2004),
were found. Most expedient was the amplification (extremization) of the variability in fam-
ily-sizes. The best performance in this study, close to 90% of correct judgments, was
obtained for a comparison involving extreme gaps. We therefore employed a combination
of comparison and extremization also in the next study, where the correct weights should
be inversely related to the weighted values.

4. Study 3—Inverse-weighting problems
4.1. Rationale

Participants had to figure out the mean of two values by weighting them in converse
relation to their size. Inverse weighting is exemplified when a car travels there and back
along the same distance at different speeds and one has to find the overall mean speed
for the round trip. We used this framework for studying people’s weighting decisions
under IWS. Weighting lower speeds more heavily decreases the mean below A. Specifi-
cally, weighting each speed exactly by its reciprocal yields H—see Eq. 4.

In Study 2, where SWS was due, many participants resorted to equal weights. It stands
to reason to expect that a similar or even stronger tendency will be observed under IWS,
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because one has to inverse each value prior to using it as a weight. Wilkening (1981)
argued—in a developmental study about conceptions of velocity, time, and distance—that
concepts involving direct relations are easier to understand than those involving inverse
relations. Falk and Wilkening (1998) found that, ceteris paribus, children succeeded better
in solving probability problems when the number to be figured out was in the numerator
than when it was in the denominator of the odds in favor of the target event.

Considering the efficacy of combining comparison with extremization in the case of
SWS, we included a version with an increased gap between the two speeds and asked par-
ticipants to compare their assessed overall mean speed with the arithmetic mean of the two
speeds. In addition, to extend the inquiry beyond the sphere of speed problems, we asked
for an extreme comparison in another IWS problem concerning rates of success.

4.2. Methods

Five forms dealt with IWS. Altogether, we collected 210 regular responses. Participants’
assessed overall mean, denoted M, should equal H of the two given numbers. Three of the
five versions asked for assessments and two for extreme comparisons. Of the three assess-
ment versions, two asked for M of the same two speeds and one specified the value of one
speed as well as that of the overall mean speed (H of the two speeds) and asked for assess-
ment of the second speed. The two comparisons pitted participants’ assessed mean against
the known value of 4 of two given numbers. In one case, these were speeds (of traversing
the same distance), and in the other, they were probabilities of success per trial. Suppose
one runs repeated, independent trials, such that the probability of success in each one is p.
It can easily be ascertained that the expected number of trials until the first success (includ-
ing that success) is 1/p (Keyfitz, 1985, pp. 335-336). If, now, two types of trials, with suc-
cess probabilities p; and p,, are each performed repeatedly until the first success, then the
overall expected proportion of successes among the totality of trials of the two kinds is
about 2/[(1/py) + (1/p>)], that is, the harmonic mean, H, of p; and p,. Comparing the
assessed overall proportion, denoted P, with the arithmetic mean of the two proportions
is also a case of comparing M with A4, because the proportion of successes is the mean of the
outcomes of all the trials when a success is encoded as one and a failure as zero.

4.2.1. Assessments

The two versions in which an assessment of the overall mean speed was required were
analogous. The purpose of two mathematically equivalent questions was to make sure the
problem is understood:

Standard 1—overall mean speed (M). The problem was worded so as to make clear that
one is asked about the overall mean speed and not about the arithmetic mean of the two
speeds:

A man drives to work, in the morning, from city A to city B at a constant speed of
100 kph. On his way back he is more relaxed and he drives along the same way (this
time from city B to city A) at a constant speed of 60 kph.

In your opinion, what is the driver’s mean speed (in kph) for the round trip, from A
to B and back to A?

Circle your answer and explain your choice:

70 75 80 85 90
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Standard 2—overall constant speed (M). This version asked virtually the same question,
offering the same scale of multiple-choice answers, but without mentioning the word
“mean,” to avoid the risk of inducing participants to resort to the arithmetic mean of
the speeds:

A man drives to work, on Monday morning, from city A to city B at a constant
speed of 100 kph. On his way back he is more relaxed and he drives along the same
way (this time from city B to city A) at a constant speed of 60 kph. On Tuesday, he
decides to drive at the same constant speed both on his way to work and back, but to
drive so that the total time of driving from city A to B and back to A will equal the
total driving time of Monday.

In your opinion, at what speed should he drive on Tuesday?

Missing speed. This version is exceptional in not asking for the overall mean speed—
which is given—but rather for assessment of a missing constituent of that mean (Gardner,
1982, p. 142):

A skier travels up to the top of the mountain in a cable car that advances slowly at
5 kph. The impatient skier feels annoyed. He decides to compensate by skiing faster
on his way back, down the slope, so that his mean speed for the round trip, up and
down, will be 10 kph.

At what speed should he ski downward on his way back in order to achieve that goal
(assuming equal distances on the way up and down)?

(A blank space was marked for inserting the answer.)

There is a twist to this puzzle. The correct answer is that such a speed does not exist. The
skier wants his mean speed to be double that of going up, but in order to do this he must
cover twice the distance of the way up during the same length of time it took him to go up,
and all this time has already been exhausted. No time is left for the way down at any speed
whatsoever.

4.2.2. Comparisons—extreme gaps

Overall mean speed versus arithmetic mean of speeds (M vs. A). The same cover story as
in Standard 1—overall mean speed (M) was used, but with amplified difference between the
two speeds. These were (in kph) 80 and 20 in one variant (4 = 50; H = 32); and 120 and 40
in another (4 = 80; H = 60). The low speed on the way back was justified by an over-
heated engine. Participants were asked to compare the (assessed) overall mean speed with
the known A of the two given speeds. Each form ended with:

In your opinion, which of the statements concerning the driver’s overall mean speed
(in kph) for the round trip, from A to B and back to A, is true?

1. It is greater than A.
2. Tt is less than A.
3. It is equal to 4.

The symbol 4 was replaced in one variant by 50 and in the other one by 80. Each variant
appeared with two different orders between the three answers.
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Overall proportion versus arithmetic mean of the proportions (P vs. A). The recurrent trial
of this version was a basketball shot. The two proportions of success, .20 and .80, matched
the 20 kph and 80 kph of one variant of the previous comparison problem.

A group of 20 children meets for basketball training. They get, one by one, to the
marked line at a fixed distance from the basket. Each child throws the ball repeatedly
until the first hit, and then makes room for the next child in the line.

The children’s group comprises 10 “‘experts” and 10 “tyros”. An expert’s chance of a
hit per throw is 80%, and a tyro’s chance is 20%.

The coach observes all the trials and records all the throws and their outcomes (hit or
miss). Finally, he computes the percentage of hits out of the total throws of all the
children.

In your opinion, which percentage of hits is expected out of all the trials recorded by
the coach?

1. 50%
2. Greater than 50%.
3. Less than 50%.

Two forms had different orders among the three options.
4.3. Results and discussion

The two Standard assessments of the overall mean speed proved equivalent. Their out-
comes are reported together in Table 4, side by side with the results of the two extreme
comparisons. In Missing speed (not included in Table 4), only 1 of 36 participants claimed
that “there is no such speed.” The majority gave the answer 15.

As can be seen in Table 4, the modal assessment was the arithmetic mean of the two
speeds. The equality of the weights was taken for granted: “The mean is adding the 2

Table 4
Percentages of assessed overall means under inverse weighting and their comparisons with the arithmetic mean
(A), in four * versions, in Study 3 (N = 174)

Participants’ choice The version
Assessments Comparisons—extreme gaps
Standard overall mean,* M M versus A P® versus A4
Less than 4 13.6 50.0 35.0
(Less than H) (3.4)
(Equal to H) (10.2)
Equal to 4 84.1 43.5 60.0
Greater than 4 2.3 6.5 5.0
n 88 46 40

Note. The correct overall mean (and proportion) is the harmonic mean, H, of the given numbers, which is less
than their 4.

4The results of the two Standard versions are combined. M is the assessed overall mean speed for the round trip
ABA for different speeds of travel from A to B and from B to A.

®P is the assessed overall proportion of successes among the totality of trials obtained by running trials until the
first success, and doing it equal times for two different success probabilities.
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numbers and dividing by 2. Without calculating, 80 is in the middle between 60 and 100.”
As hypothesized, participants’ penchant for equal weights was more marked and harder to
debias under IWS than under SWS. An extreme-comparison task, which had the greatest
corrective effect under SWS, produced some positive shift but was less effective in this case:
“The ways forward and backward are of equal distance and therefore each direction has
the same relative weight in computing the mean: (40 + 120)/2 = 80.” But also: “Since on
the way back the man drives more slowly, this part lasts longer. The computation of the
average speed is a function of the time and not only of the distance. Therefore the driver
spends more time lazily on the road (at 20 kph) than driving at 80 kph, and the mean will
be less than 50 kph.” Averaging via the harmonic mean turned out more difficult when the
elements to be averaged were success probabilities. Preference for symmetry was revealed
in justifying the answer 50%: “Because the distance of 80% from 50 is 30, and 20% are also
distant from 50 by 30, the chances will be exactly in the middle, which is 50%.”

The conclusions that the uniformity bias is stronger, and that shaking it off is harder,
under IWS than under SWS have been based on responses to different situations and dif-
ferent numbers. In the next study, we endeavor to find out whether that difference is sus-
tained also when SWS and ITWS relate to the same setup.

5. Study 4—Radar recordings and average speed
5.1. Rationale

We singled out the radar situation for a dual examination of averaging speeds under
both SWS and IWS, while using the same numbers and relating to the same situation.
Potential differences in the extent of uniformity responses could thus be justifiably attrib-
uted to the sampling methods rather than to contextual or numerical differences. The same
two speeds that had been used in the standard assessment in Study 3 were employed. For
one group, these were the equally frequent speeds of cars traveling along the road, and one
had to assess the mean of the speeds recorded during an hour by a radar mechanism (Mg).
For another group, these were speeds recorded with equal frequencies by the radar, during
an hour, and one had to assess the mean speed of the cars traveling on the road (Ms). The
correct means are SW in the first case, and H in the second.

The apparent symmetry of the situations, and the fact that SWand H of two numbers are
equally distant from A4, might support expecting about equal rates of fallacious 4 answers in
both cases. However, the previous findings suggest otherwise. In particular, the extra cogni-
tive load of having to think of self-weighting and then reverse the effect may take its toll and
result in a lower rate of H than of SW answers. Because of expecting more difficulties when
inverse weighting is due, we devised also a two-stage version in that case: An auxiliary step
endeavored to prime respondents by urging them to consider the situation more carefully.

5.2. Methods

We got 220 regular responses to three versions that had asked about mean speed in dif-
ferent ways. The two speeds to be averaged were always 100 kph and 60 kph. The scale of
multiple answers was:

60 65 70 75 80 85 90 95 100
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Mean recording, given speeds (Mg). Many cars travel in the same direction on the
highway. The same number of cars travel on each kilometer, half of them at
100 kph and half at 60 kph. A radar trap, located at a certain point on the
roadside, records during one hour the speeds of all the cars that pass by.

In your opinion, what will be the mean speed (in kph) recorded by the radar during
an hour?

Mean speed, given recordings (Ms). Many cars travel in the same direction on the
highway. A radar trap, located at a certain point on the roadside, records dur-
ing one hour the speeds of all the cars that pass by. Equal numbers of cars trav-
eling at 100 kph and at 60 kph were recorded during an hour. No other speeds
were recorded.

Assuming that this sample is representative, what is your assessment of the
mean speed (in kph) of the cars on the highway?

Mean speed, given recordings, with priming (My). Everything was the same as in the
previous (Ms) version. The difference was that an additional question had been
interjected before asking about the mean speed of cars on the highway:

In your opinion, which of the following conclusions from the radar measure-
ments is correct?

1. The same number of cars on the highway travel at 60 kph and at 100 kph.
2. More cars on the highway travel at 60 kph than at 100 kph.
3. More cars on the highway travel at 100 kph than at 60 kph.

In two alternative forms, the multiple answers appeared in different orders.

5.3. Results and discussion

Table 5 presents the distributions of the assessed mean speed in the three versions, Pref-

erence of equal weights was exhibited again in two opposite tasks. The prediction that
inverse weighting will be intuitively less accessible than self-weighting—as found in the
previous studies—was borne out in this study by comparing the two sampling methods
in the same context with identical numbers.

Table 5
Percentages of assessed mean speed under self-weighting and inverse weighting, in three versions, in Study 4
(N =220)

Participants’ chosen mean (in kph) The version

Mean recording,” given speeds, Mg~ Mean speed, given recordings®

My With priming, Mg
70 or less 0.0 4.2 7.4
75 (=H) 0.0 0.0 11.8
80 (=4) 65.4 89.6 69.1
85 (=SW) 16.3 6.2 5.9
90 or more 18.3 0.0 5.9
n 104 48 68

Note. The correct answers are: Mg = SW =85, and Ms = My =H =175.
#Recordings of the speeds of all cars that go past a radar device during 1 h.
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In justifying Myr = 80, participants were oblivious of the SWS by the radar: “If equal
amounts of cars pass each km, and half of them go at 100 kph and the other half at 60—
altogether the average speed, should be the simple mean.” Contrarily, the answer 90 (in the
right direction) was explained: ‘““The mean of 60 and 100 is indeed 80, however, during the
hour more cars that travel at 100 kph go past the radar than slower cars going at 60 kph.
Therefore the mean is greater than 80 and closer to 100.” Counteracting the biased radar
recordings for computing Mg was apparently too difficult. This resulted in a higher rate of
choosing A4 than in assessing Mg. Choice of 4 = 80 seemed self-evident: “An equal num-
ber in each group. The ratio is 1:1 and one can compute (100 + 60)/2.”

The moderate corrective effect of the priming was in the intended direction. The answers
to the auxiliary question (not summarized in Table 5) showed that participants’ evaluations
of the relation between the frequencies of the two actual speeds largely determined their
assessed mean, My: “Because cars of 100 kph travel faster and an equal number of cars were
registered by the radar, then there are more cars that travel at 60 kph.” H = 75 was justified
by: “The mean speed (considering the first question) should be closer to 60.”

In the studies up to now, the weights have never been presented as such. Only the values
were given. Respondents had to deduce from the described procedure that the values
should be either directly or inversely weighted. Considering the difficulty of correcting
the biases by different manipulations, we attempt in the next study to present the problem
so that the values and the weights will be equally salient.

6. Study 5—Transparent weighting
6.1. Rationale

Whereas in the previous studies the weights had to be inferred from the problem’s story,
now the weights were visually displayed. We examined the effect of such an exhibit on
tasks of comparing means.

Sums of money to be gained were written on sectors of a roulette dial. The size of a sec-
tor’s central angle—which determines the probability that the rotated pointer will stop on
that sector—was distinctly visible. In the case of SWS, the gains equaled the angles, so that
the proportionality between value and weight could be seen. Participants were asked to
compare expected gains between two roulettes with the same gains, one embodying
SWS, and the other, representing UWS. This enabled pitting SW against 4 in a translucent
way, and thus obtaining a measure of people’s capability of distinguishing between the two
under optimal conditions. The same method served also to compare uniform distributions
with inversely weighted distributions (obtained by IWS), where H is the expected gain, and
to compare SWS with IWS. In addition, to find out whether people sense that SW of a var-
iable X with fixed 4 is directly related to the variance of X—see Eq. (3)—we presented for
comparison two SWS roulettes with the same A4, but with different variabilities between the
gains. All the roulettes used in this study are portrayed in Fig. 1.

6.2. Methods
Each of 228 participants responded to one of four different versions. Each version pre-

sented for comparison two of the five roulette games presented in Fig. 1. All the versions
started with:
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The gain equals
the size of the
adjacent angle

The gain equals
the size of the
angle

The gain equals
the size of the
angle

The gain equals
the size of the
angle

SWS,: E(G)=130 SWS E(G)=108

Fig. 1. The roulette games used as stimuli in four paired comparisons, in Study 5. The number written on each
sector is the player’s gain (G) in dollars for landing on that sector. Only the legend to the right of each roulette
appeared in the forms given to the participants. The roulettes are labeled according to the sampling method: UWS,
uniformly weighted sampling; SWS, self-weighted sampling; IWS, inversely weighted sampling; SWS;, SWS—
large variability; SWSs, SWS—small variability.

Two roulettes are presented below.

Suppose you are offered to play a game in which you have first, to choose one of the
roulettes, and then to turn the pointer 10 times.

The number written on each sector is your gain (in $$), for each turning, if the poin-
ter stops on that sector.

After that, the two roulettes for that version, numbered 1 and 2, were presented (includ-
ing only the legend to the right of each roulette in Fig. 1), and the instructions continued:
Which roulette game is preferable (according to its expected average gain)?
The choices were:

Roulette 1
Roulette 2
No difference

Each version appeared in two alternative forms with reversed order between the two
roulettes. Note that the arithmetic mean of the potential gains in all the roulettes is the
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same (A = 90), so that whoever relies on uniformity will opt for indifference between the
two options. The versions below are identified by the two sampling methods (roulette
games) to be compared:

Self-weighting versus uniform weighting (SWS vs. UWS).
Uniform weighting versus inverse weighting (UWS vs. IWS).
Self-weighting versus inverse weighting (SWS vs. IWS).
Self-weighting: Large versus small variance (SWSy vs. SWSg).

6.3. Results and discussion

The adage “seeing is believing” has been verified in this study. It turned out that dis-
playing the probabilities paid off (Table 6). The results of the visual comparisons of the
mean under uniform sampling with the mean under either self- or inverse-weighting were
diametrically superior to those of assessing means in verbal problems both under SWS and
under IWS, and they proved, for the most part, also superior to comparisons in the verbal
problems.

Most explanations were correct, as in preferring SWS to UWS: “The greater the gain
the greater its probability.” Preferences of SWS to IWS were mostly justified by: “Because
in roulette 2 (SWS), there is a greater area of winning more money, there are more chances
of gaining 115.” And, when circling indifference: “The mean is the same.” Participants
who had compared SWS; versus SWSg correctly justified their choice only by the greater
probability of the greater gain: “Because I’ll have a chance of 300/360 = 5/6 to win 150. In
the other roulette I’ll have only a chance of 260/360 = 13/18 to win 130.” And those who
were indifferent: “There is no difference between the roulettes because 50 + 130 = 180 and
30 + 150 = 180, therefore turning the pointer will show the same gain at the end of the
day.”

The advantage of a presentation in which the values are given and their weights are vis-
ible is particularly noted when comparing weighted distributions (in either direction) with
uniform distributions of the same values. The level of participants’ performance is not a
monotonous function of the gap between the expected gains of the two roulettes. It
depends also on the ease of integrating the visual and numerical information. Comparing

Table 6
Percentages of the preferred roulette game, according to the relation of its expected gain, E(G), to that of the
other game, in four comparisons, in Study 5 (N = 228)

E(G) of the preferred  The compared sampling methods
game in relation to

Self-weighting Uniform weighting  Self-weighting Self-weighting: large
E(G) of the other : - : }
versus uniform versus inverse versus inverse versus small
game weighting (SWS vs.  weighting (UWS vs.  weighting (SWS variance (SWSy vs.
UWS) IWS) vs. IWS) SWSs)
Lesser 6.5 11.5 3.8 25.8
Equal® 16.1 3.8 36.5 27.4
Greater 77.4 84.6 59.6 46.8
n 62 52 52 62

Note. The correct answer is always “Greater.”
#“Equal” means choice of the answer “no difference” between the two games, which is equivalent to saying that
their expected gains are equal.



328 R. Falk, A. Lann/ Cognitive Psychology 57 (2008) 293-334

the UWS game with either SWS or IWS is easier than comparing SWS with IWS, although
the E(G) gap is twice as big in the latter case. When the compared roulettes consist of dif-
ferent pairs of values, as well as different pairs of probabilities, the complexity of integrat-
ing all this information obliterates the edge of visual displays over verbal problems. The
visual-display method is not without its limitations. Yet, seeing the values to be averaged
on the background of sectors of various widths that are proportional to their probabilities
can be expedient in alerting participants to the need to consider unequal weights. On the
whole, the method panned out.

7. General discussion

Five studies of how people intuitively weight a set of given options have converged on
one answer: They prefer equal weights. The epistemological conception of equiprobabili-
ty—historically prominent in the foundations of probability theory—proved psychologi-
cally predominant. Over and over again, participants distributed their probabilities, or
weights, equally over the available categories, even when unambiguous information indi-
cating otherwise had been available. They failed in partitioning the outcome space into
units that warrant equiprobability. The totality of the outcomes is definitely significant
(whether statistically or otherwise). This is not to say that people invariably believe that
all outcomes of an uncertain process are equally likely. Surely, despite wishful thinking,
most people who buy a lottery ticket know that their chances of either winning or not win-
ning the grand prize are not even. However, when the inequality of probabilities is not
manifestly conspicuous, embracing uniformity is predominant.

7.1. A robust assumption

The problems in response to which participants relied on uniformity varied in many
ways: different contexts (probabilistic experiment, family-size issues, mean speeds), differ-
ent tasks (assessments, comparisons), and different underlying sampling procedures (with
frequencies either directly or inversely proportional to the values). The uniformity fallacy
was expressed in unjustified fifty—fifty answers in the binary case, and in adhering to the
arithmetic mean when the weights should have been heavier for greater or smaller values.
Recurrences of responses determined by uniformity throughout all the experimental vari-
eties testify to the compellingness of the equality presupposition.

The rate of the uniformity fallacy in the unmodified (standard) assessment tasks in all
the studies was at least 65%. There was a mere handful of powerful corrective measures
that managed to reduce the rate of the fallacy below 20%. Most of the attempted debiasing
manipulations had little or no effect. The preference of uniformity is persistent and hard to
extinguish. Replications of similar results under multiplicity of situations—some resem-
bling each other and some rather divergent-validate the robustness of the tendency and
preclude alternative interpretations.

7.2. Two faces of the uniformity fallacy
Most outcomes of probability experiments can be minutely partitioned into a sample

space comprising points that may justifiably be considered equiprobable. Hence, attribu-
tion of equal probabilities to units that should have been unequally weighted can be con-
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strued as either an error of choosing the wrong probabilities or as a failure in properly
refining the partition of the space.

Judging that the two remaining cards are equiprobable, in Study 1, is mistaken because
the probabilities should be 2/3 and 1/3 instead of 1/2 and 1/2, but also because the solver
assumes that the remaining cards are equally likely instead of the relevant sides of these
cards. Likewise, the false equal weighting of the four family-sizes, when asked about the
mean per child in Study 2, reflects a double failure: that of missing the correct self-weights
to be attached to the families, and that of focusing on families instead of relating to the
uniform space of the children. These two ways of going wrong describe the same faulty
reasoning. They are two sides of the same coin. Yet, a description of the results of aver-
aging speeds (Experiments 3 and 4), as well as those of other studies cited above, in terms
of a uniformity bias is more adequate than in terms of relating to the wrong sample space.

7.3. The effect of the sampling method

Erroneously applying uniformity is more pronounced under IWS than under SWS. This
can be seen by comparing Study 3 with Studies 1 and 2. In the case of IWS, decomposing
the outcome space into equally probable units is more complex. The extra difficulty of
inversing the weights was conclusively demonstrated in Study 4, where the effect of the
two sampling methods had been compared in identical setups. These results tally with
the greater difficulty of apprehending inverse relations than direct relations, as found in
cognitive developmental studies.

7.4. Remedial measures

The uniformity bias is not absolute. Though not easily accomplished—as evidenced by
quite a few reasonable but futile attempts—some means did prove successful to different
extents. These measures have instrumental implications for educational and practical ends.
As a rule, the less abstract or formal, and the more vivid or personalized the presentation
of the problem, the greater are people’s chances of partitioning the space into equally
likely elements. Thus, symbolic labeling of the cards’ sides had only a small effect, whereas
replacing sides with humans, and lending them individuality via names, had a greater cor-
rective effect. In Study 2, drawing attention to individual children, by naming and sketch-
ing them, did overturn the pattern of the results in favor of the correct self-weighting.
Extremizing the differential weighting, particularly when combined with a comparison
task, reversed the pattern of the results. Above all, figural presentations of the weights
(probabilities) in conjunction with the values to be weighted induce people to largely aban-
don uniformity and apply the proper weights both under self- and inverse-sampling.

7.5. The generality of the phenomenon

Uniformity is a construct that appears to play an important role in additional areas of
human cognition. Some examples are the perception of randomness, problem solving, and
social judgment. People’s prototypical image of a random pattern is virtually an embodi-
ment of local uniformity. Preference of uniformity appears in diverse problem-solving sit-
uations: Polya (1981) gave examples of geometric and algebraic problems in which
uniformity is an expedient heuristic. Social and economical judgments are often motivated
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by the notion of equity (Benartzi & Thaler, 2001; Roch et al., 2000). Despite the common
knowledge that “some men are more equal than others”, collocations such as “equal
opportunity”, “equal pay”, and “equal rights” abound in public social discourse and
betray human desiderata. Equality serves often as a starting point for diverse decisions.
People anchor on uniformity and either stay there (Fox & Rottenstreich, 2003) or adjust
their views insufficiently in the face of pertinent evidence (Fox & Clemen, 2005; Tversky &
Kahneman, 1974).

7.6. The roots of the phenomenon

Considering the centrality of uniformity in probability theory, there is no wonder that
the teaching of probability starts with the case of equally likely outcomes. The predispo-
sition to uniformity and the teaching practices reinforce and perpetuate each other; it is
hard to say which comes first. Hawkins et al. (1992) asserted, on the basis of vast statis-
tical-education experience, that

The equally likely approach seems to be a natural starting point for the study of
probability, especially where young children are concerned. . .there is a (well-known)
danger that a student reared on an ‘equally-likely diet’ will always attach a probabil-
ity of 0.5 to each of two mutually exclusive and exhaustive events based on any prob-
ability experiment, irrespective of how different the events’ probabilities really are.
(pp. 65-66).

Moreover, the terms average and mean are usually introduced to children since early
school years by instructing them to add up the given values and divide the result by their
number. No mention of weights, let alone unequal weights, is ever made. Ubiquitous usage
of the terms in that sense is commonplace in daily and professional discourse and in the
media. This meaning has often been noticeable in our participants’ verbalizations.

Some of the reasons for people’s uniformity disposition are rather clear. Allotting equal
probabilities or weights to all the available options is apparently the simplest of all deci-
sions, and the first that comes to mind. It calls for minimal mental effort; any other distri-
bution requires careful deliberation. Zabell (1988) highlighted “The Insidious Assumption
of Symmetry” (pp. 159-165). He talked about the seductive attraction of symmetry argu-
ments and explained the gist of the historical appeal of symmetry for philosophers and sci-
entists as a compromise that had resolved conflicts between opposing possibilities.
Symmetry or equilibrium apparently reflect also certain aesthetic expectations and a desire
for “elegance,” which characterizes the motivation of mathematicians. According to Polya
(1981), regular polygons, whose sides and angles are all equal, are popular among problem
solvers because they are nearest to perfection. All these factors conspire to make the choice
of uniformity preeminent.

Polya (1981) suggested that frequently elements that play the same role in the givens
may be expected to play the same role in the solution. People have learned that equal con-
ditions produce equal results. This works often in mathematics. For example, in a triangle,
the angles opposite equal sides are also equal, and in equilateral triangles—altitudes, medi-
ans, and angle-bisectors are all equal. In our research, the three cards appeared to be of
equal status, as did the different family-sizes and speeds. This could explain why so many
participants persisted in regarding these elements equiprobable also in the solution.
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Polya’s rule of thumb: “Symmetry should result from symmetry” (p. 161) apparently
failed them because of overlooking the dissymmetry introduced by the procedures.

The preponderance of uniformity choices might well be a matter of expediency. Harris
and Joyce (1980) reasoned that minimizing conceptual effort might have underlain their
participants’ recommendations to divide outcomes equally among all partners in a group
project. Since people make inferences under constraints of limited time and computational
capacity, they often resort to simple “fast and frugal” (Gigerenzer & Goldstein, 1996)
algorithms. Yet they may perform adequately. Assuming uniformity, even when not real-
istically correct, simplifies the computation considerably while frequently allowing good-
enough results. It is reinforced by the fact that a uniform distribution often constitutes an
extreme case of the situation, as in the birthday problem. Possibly, people’s spontaneous
tendency to uniformity had evolved because of long-standing positive experience associ-
ated with relying on that assumption.

7.7. Conclusions

Decisions based on unjustifiably assuming uniformity are being made time and again in
diversified circumstances. Equality is not just a heuristic, it is people’s default assumption,
which is rather stubborn. Even under conditions that maximally reduce the tendency to uni-
formity, there always remains a vestige of fallacious answers affected by that assumption.
The primacy of opting for uniformity is accounted for by a cognitive quest for equity,
impartiality, perhaps also harmony, as well as by pragmatic, utilitarian factors. Equality
of all probabilities could sometimes be false as a belief, but expeditious as a guide for behav-
ior. Whether uniformity is adaptive (Gigerenzer, 2000) by often providing satisfactory
results without spending excessive efforts, and is being reinforced because of promoting
one’s goals, should be examined. This requires independent behavioral studies comparing
the outcomes of decisions based on assumed uniformity and on real distributions, as done
by Burns (2004) with respect to the “hot hand” belief (Gilovich, Vallone, & Tversky, 1985).
This inquiry is outside the scope of the present basic research. It is worth pursuing.

Though the roots of people’s penchant for equiprobability are not fully understood, the
contribution of this research is documenting the centrality of uniformity as a construct
that permeates many cognitions. The size of the deviations from truth caused by falsely
applying uniformity might not be practically pernicious, nonetheless, such judgments
are wrong in principle. We deem it important for psychologists, educators, and other schol-
ars to be aware of the risks involved in the seductive appeal of uniformity. Echoing Zabell
(1988), who echoed Freud, this work could have been entitled “Uniformity and its
Discontents”.
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