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Summary. We present models for the combined analysis of evidence from randomized con-
trolled trials categorized as being at either low or high risk of bias due to a flaw in their conduct.
We formulate a bias model that incorporates between-study and between-meta-analysis heter-
ogeneity in bias, and uncertainty in overall mean bias. We obtain algebraic expressions for the
posterior distribution of the bias-adjusted treatment effect, which provide limiting values for the
information that can be obtained from studies at high risk of bias. The parameters of the bias
model can be estimated from collections of previously published meta-analyses. We explore
alternative models for such data, and alternative methods for introducing prior information on
the bias parameters into a new meta-analysis. Results from an illustrative example show that
the bias-adjusted treatment effect estimates are sensitive to the way in which the meta-epi-
demiological data are modelled, but that using point estimates for bias parameters provides
an adequate approximation to using a full joint prior distribution. A sensitivity analysis shows
that the gain in precision from including studies at high risk of bias is likely to be low, however
numerous or large their size, and that little is gained by incorporating such studies, unless the
information from studies at low risk of bias is limited.We discuss approaches that might increase
the value of including studies at high risk of bias, and the acceptability of the methods in the
evaluation of health care interventions.

Keywords: Bayesian methods; Bias; Health technology assessment; Markov chain Monte
Carlo methods; Randomized controlled trials

1. Introduction

Various studies have provided empirical evidence that specific flaws in the conduct of random-
ized controlled trials may bias estimates of treatment effects (Gluud, 2006). In particular, there
is good evidence that failure to conceal randomized allocation at the time of patient recruitment,
and the lack of double blinding, are associated with exaggeration of treatment effect estimates
(Schulz et al., 1995; Moher et al., 1998; Egger et al., 2003; McAuley et al., 2000; Kjaergard et al.,
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2001; Wood et al., 2008). Trial characteristics, such as the adequacy of allocation concealment
or blinding, are usually treated as binary indicators of a high or low risk of bias. Trials with
flaws in their conduct are commonly reported in the medical literature and often represent a
substantial proportion of the evidence that is included in systematic reviews (Egger et al., 2003).
Although multiple analyses including or omitting the high risk evidence may be conducted and
reported, meta-analyses are increasingly used in decision analysis, where a single ‘best’ estimate
must be reported. Meta-analysts are then faced with a choice about whether one should take a
‘best available evidence’ approach by restricting attention to the trials at low risk of bias, or an
‘all available evidence’ approach, in which all trials are included.

The all available evidence approach is in the spirit of organizations such as the UK National
Institute of Clinical Excellence (NICE), where the focus is on a decision analysis that reflects
the body of evidence that is available at the current moment in time. However, such an approach
raises methodological issues in the formulation of a model to account for potential bias. If trials at
high risk of bias are to be included in a meta-analysis, then questions are also raised about appro-
priate inclusion–exclusion criteria in the process of systematic review and extraction of data.

Proposed methods for inclusion of potentially biased evidence have focused either on down-
weighting studies with high risk of bias in the synthesis of the evidence (Begg and Pilote, 1991;
Li and Begg, 1994; Larose and Dey, 1997; Prevost et al., 2000; Spiegelhalter and Best, 2003)
or on detailed modelling of study-specific biases that is based on characteristics of individual
studies, which are then used to adjust observed treatment effects study by study before synthesis
of the evidence (Eddy et al., 1992; Wolpert and Mengersen, 2004; Greenland, 2005). Here we
consider an alternative framework in which we adjust for expected bias as well as downweight-
ing studies at high risk of bias, within a Bayesian paradigm. Meta-epidemiological studies (in
which a collection of meta-analyses provides evidence on the association of study characteristics
with treatment effect estimates) are used to provide empirically based prior information on the
degree of bias that can be expected from studies at high risk of bias, the heterogeneity in bias
between studies within a particular meta-analysis and the additional heterogeneity in mean bias
between meta-analyses.

The paper is organized as follows. We first define our bias model for combining trials at low
and high risk of bias, and obtain results in algebraic form, providing insights on the informa-
tional content of trials at high risk of bias. We then show how the parameters of the bias model
can be estimated from meta-epidemiological data (Schulz et al., 1995) and investigate various
extensions. Next we consider various ways in which the outputs from the meta-epidemiological
analysis can be used to introduce prior information on bias parameters in a new meta-analysis.
We apply the model to an example meta-analysis of Clozapine versus neuroleptic medication
for treatment of schizophrenia, to draw specific conclusions on the relative value of trials with
adequate and inadequate allocation concealment in that area. We present sensitivity analyses
investigating how the final estimate of the treatment effect and its precision depend on bias
parameter inputs. We end with a discussion of the various modelling assumptions that are being
made, how acceptable such an approach is likely to be to a national decision maker such as the
NICE and what further work needs to be done before such models can be confidently used in
practice, and finally we discuss our methods in the context of other approaches.

2. Model for combining adequately and inadequately conducted trials in a single
meta-analysis

2.1. Bias model
In a given single meta-analysis m, suppose that studies are classified as being either at low
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(L-studies) or high (H-studies) risk of bias due to a specific flaw in their conduct, such that
there are nL,m L-studies and nH,m H-studies. Each study i provides a summary treatment effect
estimate yi,m, with standard error σi,m (where i = 1, . . . , nL,m indexes the L-studies and i =
.nL,m + 1/, . . . , .nL,m +nH,m/ the H-studies, and m indexes the meta-analysis of current inter-
est). We assume that the L-studies provide an unbiased estimate of a (fixed) true treatment
effect of interest, which is denoted dm, and the H-studies estimate this same treatment effect
with a study-specific bias, βi,m. To obtain analytical results, we assume that the treatment effect
is measured on a continuous scale, e.g. log-odds-ratios for binary outcomes, with an, at least
approximately, normal likelihood, so we have the basic models

yi,m ∼N.dm, σ2
i,m/ i=1, . . . , nL,m, .1/

yi,m ∼N.dm +βi,m, σ2
i,m/ i= .nL,m +1/, . . . , .nL,m +nH,m/: .2/

The sampling variances σ2
i,m are considered to be known, on the basis that they are usually well

estimated from the data in each meta-analysis. The fixed underlying treatment effect is given a
flat normal prior distribution, dm ∼N.0, 1002/.

We put a hierarchical model on the study-specific biases that captures the nature of the empir-
ical evidence that is available to inform these parameters:

βi,m ∼N.bm, κ2/ i= .nL,m +1/, . . . , .nL,m +nH,m/, .3/

bm ∼N.b0, ϕ2/, .4/

b0 ∼N.B0, V0/: .5/

H-studies in meta-analysis m have overall meta-analysis-specific mean bias bm, and between-
study within-meta-analysis variance κ2. We make the (rather strong—see Section 7) assumption
that mean bias bm in meta-analysis m is exchangeable with the mean bias from other meta-anal-
yses, with common mean bias across all relevant meta-analyses b0 and between-meta-analysis
variance in mean bias ϕ2. The mean bias b0 itself is uncertain with expectation B0 and variance
V0. Note that V0 represents uncertainty, which can be reduced by further information, whereas
κ2 and ϕ2 are measures of intrinsic variation. In Section 3 we show how estimates of κ2, ϕ2, B0
and V0 can be obtained from meta-epidemiological data.

This formulation is sufficiently simple to allow us to obtain some analytical results on the
posterior distribution for the true treatment effect dm, while still capturing the heterogeneity
and uncertainties that are inherent in the evidence base. This approach provides insights into
the key determinants of the posterior for dm and facilitates examination of the sensitivity of the
results to various model inputs. However, when we consider extensions to this basic model, we
use Markov chain Monte Carlo (MCMC) simulation to obtain results.

2.2. Posterior distribution for dm in a single meta-analysis m
In what follows we drop the subscript m for compactness. Following Gelman et al. (2003) (section
15.3), we can view our hierarchical prior structure as additional data and write this hierarchical
linear model in the form of a single likelihood:

y|X, γ, Σ∼N.Xγ, Σ/

where
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y =
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,
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:

The first nL +nH rows of data vector y and matrix X simply pick out the relevant likelihoods,
conditional on {d, βi, σ2

i }, for the observed low and high risk studies (equations (1) and (2)).
The following nH rows represent the hierarchical model for bias between studies, within meta-
analysis (equation (3)). The ‘observed’ data are set equal to 0. This gives the correct mean,
E[βi −b] = 0, while reflecting the between-study, within-meta-analysis variance κ2. The next
row represents between meta-analysis variation (equation (4)). Again the ‘observed’ data are
set equal to 0 to give the correct mean, E[b−b0]=0, while reflecting the between meta-analysis
variation ϕ2. The final row represents the prior for mean bias across meta-analyses (equation
(5)). The observed data are set to B0 to give the correct mean, E[b0] =B0, while reflecting the
uncertainty in this, V0.

The variance matrix Σ is assumed known, and so the posterior for parameters γ can be
obtained by weighted least squares regression (Lindley and Smith, 1972; Gelman et al.,
2003):

γ|y, X, Σ∼N{.XTΣ−1X/−1XTΣ−1y, .XTΣ−1X/−1}:

For our model, the marginal posterior for d (the first element of γ/ can be found in closed
form:
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E[d|{yi, σ2
i }]=

nL∑
i=1

yi=σ
2
i + .1=w/

nL+nH∑
i=nL+1

.yi −B0/=.σ2
i +κ2/

nL∑
i=1

1=σ2
i + .1=w/

nL+nH∑
i=nL+1

1=.σ2
i +κ2/

,

var.d|{yi, σ2
i }/=

{
nL∑
i=1

1=σ2
i + .1=w/

nL+nH∑
i=nL+1

1=.σ2
i +κ2/

}−1

, .6/

where

w =1+
nL+nH∑
i=nL+1

.V0 +ϕ2/=.σ2
i +κ2/:

The posterior mean treatment effect is a weighted average of the L- and H-studies. The L-stud-
ies are taken at face value with inverse variance weights. Individual H-studies are weighted by
the inverse of the variance of the estimate plus between-study within-meta-analysis variance κ2.
However, this is also multiplied by the inverse of a second weighting factor w, which increases
with the ratio of uncertainty in the meta-analysis mean bias V0 +ϕ2 to between-study, within-
meta-analysis uncertainty in estimated treatment effects σ2

i +κ2. So, if the uncertainty in the
meta-analysis mean bias is large compared with the estimation uncertainty and between-study
heterogeneity, then H-studies are given less weight. In other words, if we do not know the bias
adjustment to make, then an H-study cannot tell us much about the treatment effect however
large it is, or however many such studies there are.

Sterne et al. (2008) have described some properties of the posterior distribution (equations
(6)). In particular, the informational content of H-studies is limited. If there is a single H-
study, then even if that trial is very large it is still downweighted by V0 +ϕ2 +κ2. Even if there
are infinitely many H-studies, the posterior variance still depends on the uncertainty in the
meta-analysis mean bias V0 +ϕ2. Note that, for this model to revert to a standard fixed effect
meta-analysis that treats all high and low risk evidence at face value, we need to assume that all
of V0 =ϕ2 =κ2 =B0 =0.

Both to adjust for and to downweight H-studies properly, we therefore need information on
variance parameters V0, ϕ2 and κ2, as well as on mean bias b0. Whereas V0, κ2 and b0 can (in
theory) be estimated from a single meta-analysis, ϕ2 cannot. However, all parameters can be
estimated from meta-epidemiological studies (Sterne et al., 2008).

3. Meta-epidemiological analysis to estimate inputs to bias model

3.1. Models for meta-epidemiological analysis
We now show how to estimate B0, V0, ϕ2 and κ2 from data. Schulz et al. (1995) analysed a data
set consisting of 33 meta-analyses, m=1, . . . , 33, where each study was characterized according
to whether concealment of allocation was adequate or inadequate. There were 250 trials in all:
79 adequately concealed (L-studies) and 171 inadequately concealed (H-studies).

Sterne et al. (2008) have presented an analysis of the Schulz data (model M1) that was based
on a standard model for Bayesian meta-analysis (Smith et al., 1995). They assumed a fixed
treatment effect in which dm denotes the true treatment effect in all trials that are included in
meta-analysis m, regardless of allocation concealment. The outcome ra,i,m for arm a of trial i
in meta-analysis m is assumed to have a binomial likelihood (for given denominator na,i,m/:

ra,i,m ∼binomial.pa,i,m, na,i,m/:
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The probability of success, pa,i,m, is modelled by a logistic regression:

logit.pa,i,m/=
{

μi,m a the control arm,
μi,m +dm +βi,mXi,m a the treatment arm, .7/

where μi,m is the log-odds of success in the control arm, dm is the treatment effect, Xi,m is an
indicator of allocation concealment (Xi,m = 1, inadequate; Xi,m = 0, adequate) and βi,m is the
bias in treatment effect in study i of meta-analysis m. This model simply generalizes the approx-
imate normal likelihood model for yi,m that was used in the previous section, to allow for the
binomial variation and to estimate the base risk as well as the odds ratio. The model for bias is
exactly the same as set out in equations (1)–(4); however, in the meta-epidemiological analysis
we put a flat prior on the mean bias over meta-analyses b0. The resulting posterior (with mean
B0 and variance V0/ then forms the prior for b0 in equation (5) for a future meta-analysis.

N(0,1002/ priors were given to μi,m, dm and mean bias b0. The variance parameters were
given uniform(0,10) priors on the standard deviation scale. We used uniform priors for stan-
dard deviations as suggested by Gelman (2006) and chose the range (0,10) to be large on a
log-odds scale. Results were fairly robust to changes in these priors. Posterior summaries from
this model were obtained by using MCMC simulation implemented in the WinBUGS 1.4.1
software (Spiegelhalter et al., 2000). In all the results that are presented, two chains were run
until convergence (25000 iterations) according to the Brooks–Gelman–Rubin diagnostic tool
(Brooks and Gelman, 1998). These ‘burn-in’ simulations were then discarded and a further
50000 iterations run on which all inference is based. Reparameterizing so that the hierarchical
models are centred on zero may improve the speed of convergence.

We extend model M1 in three ways. We may expect that κ2 varies between meta-analyses,
and so a natural extension is to estimate a hierarchical gamma distribution for between-study,
within-meta-analysis, precisions, 1=κ2

m ∼gamma.ηλ, λ/, with flat gamma priors on the common
parameters η and λ. Model M2 extends model M1 to incorporate this random-effects distribu-
tion for 1=κ2

m. Posterior median values for η and λ can then inform a gamma prior for 1=κ2
m in

a new meta-analysis.
Model M3 extends M1 by incorporating meta-analysis-specific random-effects distributions

for the treatment effects, so the fixed treatment effect dm is replaced by δi,m ∼N.dm, τ2
m/, where

the mean effects in each meta-analysis, dm, are given flat normal priors and τm are given uni-
form(0,10) priors.

Finally, model M4 incorporates both meta-analysis-specific random-effects distributions for
the treatment effect and a random-effects distribution for 1=κ2

m.
The WinBUGS code for all the models that are presented here can be downloaded from

http://www.bristol.ac.uk/cobm/research/mpes.

3.2. Results of the meta-epidemiological analyses
For model M1 the mean bias b0 had a posterior mean of −0.47 with posterior standard devi-
ation 0.095 (Table 1). These outputs provide estimates of the parameters in equation (5), i.e.
B̂0 =−0:47 and V̂ 0 =0:0952. We summarize the variance parameters with their posterior median
values. The posterior median of the between-study within-meta-analysis standard deviation κ
was 0.49, and the between-meta-analysis standard deviation ϕ was 0.26. In Section 5 we com-
pare various approaches to using the posteriors from the Schulz analysis to inform priors for
use in a new meta-analysis where studies are characterized according to whether randomization
allocation concealment was adequate or inadequate.

Table 1 also shows posterior summaries for models M2–M4. Estimated mean bias B̂0 is
reasonably robust to the choice of model. However, the estimates for both between-meta-
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Table 1. Posterior summaries from models M1–M4 described in Section 3 for
the meta-epidemiological analysis applied to the Schulz data†

Parameter Mean Standard Median 95% credible
deviation interval

Model M1: Schulz analysis (fixed treatment effect; κ2 fixed)
b0 −0.47 0.095 −0.47 (−0.65, −0.28)
ϕ 0.26 0.131 0.26 (0.02, 0.52)
κ 0.50 0.062 0.49 (0.38, 0.62)

Model M2: Schulz analysis (fixed treatment effect; 1=κ2
m ∼gamma(ηλ,λ))

b0 −0.45 0.094 −0.45 (−0.64, −0.27)
η 7.28 3.892 6.26 (3.17, 17.27)
λ 1.38 3.138 0.41 (0.06, 10.04)
ϕ 0.24 0.131 0.24 (0.01, 0.51)
κm 0.50 0.879 0.44 (0.19, 1.13)

Model M3: Schulz analysis (random treatment effects, κ2fixed)
b0 −0.46 0.108 −0.47 (−0.66, −0.25)
ϕ 0.15 0.106 0.13 (0.01, 0.39)
κ 0.11 0.085 0.10 (0.00, 0.30)

Model M4: Schulz analysis (random treatment effects; 1=κ2
m ∼gamma(ηλ,λ))

b0 −0.44 0.119 −0.43 (−0.68, −0.21)
η 22.27 11.20 19.83 (7.24, 51.23)
λ 3.21 5.083 1.26 (0.06, 18.30)
ϕ 0.14 0.110 0.12 (0.00, 0.40)
κm 0.24 0.104 0.23 (0.13, 0.43)

†Where there is a random-effect distribution for between-study, within meta-anal-
ysis, precision in bias, the predictive distribution, on the standard deviation scale,
in a new meta-analysis, κm, is presented.

analysis variation in bias ϕ̂2 and between-study, within-meta-analysis variation κ̂2 are lower if
a random-effects model is used for treatment effect. This has the potential to impact strongly
on the presumed informational content of studies at high risk of bias. We therefore need to
consider the choice of models for the meta-epidemiological data carefully before forming priors
for a new meta-analysis. It is also important that the same model is used for a new meta-analysis
as was used to form prior inputs.

4. Fixed or random treatment effects: model fit and selection

In the bias model (equations (3)–(5)) we are already assuming random effects; therefore it seems
reasonable to use the adequately concealed evidence alone to decide whether to use a fixed or
random-effects model for the true treatment effect. Table 2 shows the posterior mean of the
residual deviance, D̄res, effective number of parameters, pD, and the deviance information cri-
terion DIC (Spiegelhalter et al., 2002) for both fixed and random-effects treatment models for
the Schulz data, on the basis of the adequately concealed studies alone. DIC is the sum of the
residual deviance D̄ and the effective number of parameters, pD, and provides a measure of
model fit that penalizes model complexity. Because of the non-linearity between the likelihood
and the model parameters, we calculate pD at the posterior mean of the fitted values rather
than at the posterior mean of the parameters (Welton and Ades, 2005). We see that, although
the random treatment effects model has a better fit (lower D̄res/, it also has substantially more
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Table 2. Posterior mean residual deviance ND res, effective number
of parameters, pD , and deviance information criterion DIC for the
meta-epidemiological analysis†

Model D̄res pD DIC

Adequately concealed evidence from Schulz data
Fixed treatment effects 179.7 115.0 294.7
Random treatment effects 156.5 145.8 302.3

Adequately and inadequately concealed evidence from Schulz data
M1, fixed treatment effect; κ fixed 538.1 373.7 911.8
M2, fixed treatment effect; κm random 535.8 370.2 906.0
M3, random treatment effect; κ fixed 500.6 401.6 902.2
M4, random treatment effect; κm random 497.3 405.6 902.9

†Results are presented for models M1–M4 described in Section 3, applied
to adequately concealed evidence only from the Schulz data and ade-
quately and inadequately concealed evidence from the Schulz data.

parameters (higher pD/ and consequently has higher DIC. The adequately concealed evidence
alone therefore suggests that a fixed treatment effect model is the more parsimonious. However,
even if there is no evidence of heterogeneity in treatment effects, we may still not feel that it is
appropriate to assume a fixed effects model—as this assumption will be forced to hold across
all meta-analyses, including a new meta-analysis.

Table 2 also shows model fit based on both adequately and inadequately concealed trials, for
the four different models M1–M4. It is interesting to see that, although model M2 (random
effects for 1=κ2

m/ has a similar D̄res, the effective number of parameters is actually reduced, lead-
ing to a lower DIC in the fixed treatment effect model. This seems counterintuitive—the more
complicated model has lower complexity, pD. However, the random-effects model for 1=κ2

m has
the consequence that overall there is a higher degree of shrinkage in the bias parameters—leading
to a lower effective number of parameters overall.

On the basis of the evidence, there is little to choose between the models. We would tentatively
propose M4, the random treatment effect model and random effects for 1=κ2

m, on the grounds
that a fixed treatment effect model is too restrictive for general use, and that it is unlikely that
between-study variation in bias is the same in different meta-analyses. However, we must accept
that the degree to which the inadequately concealed evidence is downweighted could be sensitive
to model choice. Whichever model we decide on for the meta-epidemiological analysis, the same
model should be used in the analysis of a new meta-analysis.

5. Bias-adjusted treatment effect estimates in a new meta-analysis: sensitivity
to model choice and format of priors

5.1. Sensitivity to model choice
We now show how evidence-based priors for bias parameters that are obtained from the anal-
ysis of the Schulz data can be introduced into a new meta-analysis. We use as an example a
meta-analysis of studies comparing Clozapine versus neuroleptic medication for treatment of
schizophrenia (Wahlbeck et al., 1998). Allocation concealment in each study was classified as
either inadequate or unclear, or adequate. The data were in the form of binomial counts, and
we used a logistic regression model as presented in equation (7), for a single meta-analysis m,
and the bias model as given by equations (1)–(5).
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Table 3. Posterior summaries for the pooled treatment effect (log-odds-ratio) in the Clozapine
meta-analysis†

Bias model Posterior mean (95% credible interval)
for the following treatment effect models:

Fixed effects Random effects

Face value
Adequately concealed studies −0.321 (−0.836, 0.193) −0.065 (−1.682, 2.840)
Inadequately concealed studies −0.884 (−1.129, −0.641) −0.533 (−1.031, 0.130)
Adequately and inadequately −0.781 (−1.002, −0.562) −0.452 (−0.883, 0.081)

concealed studies combined

Model M1 Model M3

Bias adjustment, κ fixed
Non-parametric prior sampled from −0.244 (−0.656, 0.152) −0.145 (−0.630, 0.438)

joint posterior from Schulz
Parametric priors

κ, ϕ constant −0.249 (−0.663, 0.162) −0.149 (−0.613, 0.430)
κ, ϕ stochastic Bivariate normal, Independent gammas,

−0.241 (−0.656, 0.165) −0.133 (−0.609, 0.448)

Model M2 Model M4

Bias adjustment, κm random
Non-parametric prior sampled from −0.259 (−0.664, 0.143) −0.150 (−0.644, 0.450)

joint posterior from Schulz
Parameteric priors

η, λ, ϕ constant −0.256 (−0.658, 0.144) −0.144 (−0.625, 0.439)
η, λ, ϕ stochastic η, λ gamma; ϕ normal, η, λ, ϕ gamma,

−0.260 (−0.669, 0.147) −0.142 (−0.634, 0.437)

†Results where all evidence is taken at face value are shown separately for inadequately and ade-
quately concealed trials, as well as when both types of study are combined. Results are also presented
for bias adjustment models M1–M4, for different methods for introducing prior information on
the bias parameters.

We begin with estimates of pooled treatment effect based on separate meta-analyses of the
trials at high and low risk of bias (Table 3). This allows us to investigate the extent of bias
in the high risk studies, before fitting more complex models that adjust for bias. If only the
adequately concealed trials are included, the pooled (fixed effect) log-odds-ratio has poster-
ior mean −0:321 (95% credible interval (CI) −0:84 to 0.19), compared with −0:884 (95% CI
−1:13 to −0:64) for the inadequately concealed studies, suggesting that these studies are subject
to bias. Note that the difference in posterior mean pooled log-odds-ratio between the ade-
quately and inadequately concealed studies is −0:563, which is consistent with the estimated
95% CI for mean bias from the analysis of the Schulz data (95% CI −0:65 to −0:28) (Table 1).
If all the evidence is taken at face value, then the posterior mean pooled log-odds-ratio is
−0:781 (95% CI −1:13 to −0:64), which lies between the two but closer to the mean of the
inadequately concealed studies which are larger and more numerous. Different estimates are
obtained with random-effects models, because the larger studies, which showed the strongest
effects, have relatively less weight (Fig. 1). However, the combined effect taking all evidence
at face value is again between the pooled effects of the adequately and inadequately concealed
studies.
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Log-Odds-Ratio
–5.0 0.0 5.0 10.0

Inadequate/Unclear Allocation Concealment (Face Value)

Pooled: Inadequate

Adequate Allocation Concealment

All Studies Combined (Face Value)
Pooled: Adequate

Pooled: All Studies Combined

Fig. 1. Posterior mean study-specific and pooled treatment effects (on a log-odds-ratio scale), with 95%
CIs, for random-effects models separately for inadequately concealed (taken at face value) and adequately
concealed trials: in addition results are shown when both types of study are combined and taken at face
value

We might expect the bias-adjusted posterior mean pooled log-odds-ratio to lie (for the fixed
treatment effect model) between −0:321, the face value estimate from the adequately concealed
studies, and −0:884 + 0:47 =−0:414, the face value estimate from the inadequately concealed
studies adjusted for mean bias. Perhaps counterintuitively, the posterior mean bias-adjusted
pooled estimate is −0:244 (95% CI −0:66 to 0.15) (Table 3). However, the bias model is hier-
archical in nature and, just like a random treatment effects model, gives relatively less weight
to the large studies, which in this example are also the studies showing the greatest treatment
effect. The combined effect of the random-effects model for bias and the bias adjustment is to
shift the combined treatment effect estimate substantially in the direction of no effect. Each of
the bias-adjusted models gives little evidence of a treatment effect, in contrast with the analyses
that take the inadequately concealed evidence at face value (Table 3).

Extending the analysis to a random treatment effects model leads to a greater posterior stan-
dard deviation, and reduced treatment effect sizes. This is in part because the larger studies
(which have relatively more weight in a fixed effect analysis) show the bigger treatment effects in
this example (Fig. 1), but also because the prior inputs for the variance parameters are sensitive to
the use of a random- or fixed effects model (Table 1). Arguing as above, we might expect that the
bias-adjusted posterior mean log-odds-ratio lies between −0.065 and −0:533+0:47= −0:063,
when in fact the pooled bias-adjusted estimate is −0.145 (95% CI −0:63 to 0.44) (Table 3). For
the random-effects model the treatment effect is stronger than expected by intuition. Again this
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is a result of the hierarchical model for bias, which leads to a reduction in estimated between-
study heterogeneity in treatment effect in the bias-adjusted models. As a consequence, more
weight is given to the large studies with strong treatment effects than for models where the
evidence is taken at face value.

5.2. Sensitivity to format of priors
We next consider in more detail how to introduce priors based on the analysis of the Schulz data
into a new meta-analysis. In the results that were presented above (Table 3), we sampled from
the joint posterior distribution from the Schulz analysis to form a joint prior for b0, κ and ϕ
(for κ fixed; models M1 and M3) or b0, η, λ and ϕ (for κm random; models M2 and M4). We
achieved this by saving the MCMC chains (thinned every 25 iterations) from the Schulz anal-
ysis (resulting in 2000 records) and then sampled with replacement from these 2000 records to
provide a non-parametric joint prior.

Meta-analysts may not have access to either a full relevant meta-epidemiological data set or
the MCMC chains from a resulting meta-epidemiological analysis. There are several possible
parametric approximations that can be made. We could simply enter κ and ϕ (for κ fixed; mod-
els M1 and M3) or η, λ and ϕ (for κm random; models M2 and M4) as constants in equations
(3)–(5), taking their posterior median values from the Schulz output. Alternatively, we could
treat κ and ϕ, or η, λ and ϕ, as stochastic, and attempt to approximate their joint distributions
parametrically, on the basis of the output from the Schulz analysis. Inevitably, there will be a
wide range of modelling options here (the approximations that are described in Table 3 represent

Fig. 2. Posterior standard deviation of fixed treatment effect dm, plotted against prior standard deviation
for the meta-analysis-specific mean bias

p
.V0 Cϕ2/ , for four scenarios (where L denotes low risk of bias

and H high risk of bias), L-trials only, a single infinitely sized H-trial, 10 H-trials with typical (from Schulz
data) variance of σ2

i D 0:7 and an infinite number of H-trials: in all cases the L-evidence from the Clozapine
example is used and κ̂2 is set equal to 0.25, the posterior mean from the fixed treatment effect model for the
Schulz data; the posterior CI for

p
.V0 Cϕ2/ from the fixed treatment effect models based on the Schulz data

is (0.17, 0.73)
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just one such choice), raising the further question about whether the MCMC outputs have been
adequately captured in the approximation.

These different methods for forming a prior are broadly comparable (Table 3), with both
stochastic and constant prior bias parameters giving estimated bias-adjusted treatment effects
that are close to those obtained by using the full joint posterior from Schulz et al. (1995) as a
prior. For the stochastic models, slightly different results were found with different models, but
no consistent pattern could be seen.

6. Contribution of evidence at high risk of bias: sensitivity to parameters
of the bias model

It is clear from this analysis that the bias-adjusted estimated treatment effect and its poster-
ior uncertainty will be sensitive to the inputs to the bias model from the meta-epidemiological
modelling. The algebraic solution (equation (6)) to the basic bias model allows us to carry
out sensitivity analysis to prior inputs in more detail, either by evaluating posterior summaries
directly for given input values or by looking at derivatives with respect to given inputs. For
example, Fig. 2 shows how the posterior standard deviation for the treatment effect increases
as the prior uncertainty (on the standard deviation scale) in meta-analysis-specific mean bias
increases (for κ̂2 set equal to 0.25, the posterior mean from the fixed treatment effect model for
the Schulz data). The higher the value of

√
.V0 +ϕ2/, the more the evidence at high risk of bias is

downweighted. The posterior standard deviation of the treatment effect decreases as the number

Fig. 3. Implied informational content of the evidence at high risk of bias on a precision scale (precision
including H-trials minus precision with L-trials only), plotted against prior standard deviation of the meta-anal-
ysis-specific mean bias,

p
.V0 Cϕ2/: results are presented for a single infinitely sized H-trial (curve a), 10

H-trials with typical (from the Schulz data) variance of σ2
i D 0:7 (curve b) and an infinite number of H-trials

(curve c); in all cases the L-evidence from the Clozapine example is used and κ̂2 is set equal to 0.25, the
posterior mean from fixed treatment effect model for the Schulz data; numerical results are superimposed
for fixed and random treatment effect models with random κ2

m for the Clozapine meta-analysis; the posterior
95% CI for

p
.V0 Cϕ2/ from the fixed treatment effect models based on the Schulz data is (0.17, 0.73) (�,

Clozapine, random-effects model; +, Clozapine, fixed effects model)
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of studies at high risk of bias increases from a single (even if very large) study, to 10 typically
sized studies, to infinitely many studies (Fig. 2). The effect on posterior uncertainty depends on
the value of

√
.V0 +ϕ2/. On the basis of the fixed treatment effect model for the Schulz data, the

posterior mean for
√

.V0 +ϕ2/ was 0.52 with a CI of (0.17, 0.73). When
√

.V0 +ϕ2/=0:52, then
the posterior standard deviation falls from 0.260 with no studies at high risk of bias to 0.245
with a single large study at high risk of bias, to 0.239 for 10 typical studies at high risk of bias
and to 0.233 for an infinite number of studies at high risk of bias. The reduction in posterior
uncertainty that is attributable to the use of data at high risk of bias is therefore relatively minor
in this case.

It is also instructive to look at the gain in precision (which is defined as 1/variance) due to
incorporation of the evidence at high risk of bias. This is simply the precision with the H-trials
minus precision with no H-trials. This is plotted for various scenarios in Fig. 3. For example if√

.V0 +ϕ2/ takes values over the 95% CI range (0.17, 0.73), the gain in precision from including
10 typical H-trials (with precision 1=0:7=1:43) is equivalent to between 5.7 (=8:1=1:43) and 1.1
(=1:6=1:43) typical trials taken at face value. We see that the gain in precision from including
the evidence at high risk of bias is limited, unless

√
.V0 +ϕ2/ is low (near the lower end of its

CI limits in this analysis). Fig. 3 also shows numerical results of fitting fixed and random treat-
ment effect models with κ2

m random to the Clozapine meta-analysis, where there are 16 trials
at high risk of bias. The main feature of the random-effects analysis is that the posterior mean
for

√
.V0 +ϕ2/ is at the lower end of the CI, and the gain in precision from including the trials

at high risk of bias is greater. Thus it would appear (at least for the Clozapine example) that a
fixed effect model might lead to more downweighting of the evidence at high risk of bias than
a random-effects model.

Fig. 4 shows how this relationship, for 10 typically sized studies at high risk of bias, changes

Fig. 4. Posterior standard deviation of treatment effect dm, plotted against prior standard deviation for the
meta-analysis-specific mean bias

p
.V0 Cϕ2/ for six values of κ, representing the 2.5%, 50% and 95% per-

centiles of the posterior from the fixed (κD0:38, 0.49, 0.62) and random- (κD0, 0.1, 0.3) effects models for
the Schulz data: in all cases the evidence at low risk of bias from the Clozapine example is used, with 10
H-trials with typical (from the Schulz data) variance of σ2

i D0:7
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with κ. Increasing the between-study heterogeneity in bias κ leads to a modest increase in pos-
terior standard deviation in treatment effect. For example, when

√
.V0 +ϕ2/= 0:52 (the mean

from a fixed treatment effects model), then the posterior standard deviation falls from 0.240 to
0.238 as κ falls from 0.62 to 0. A random-effects model leads to lower values of κ, and conse-
quently more weight given to the evidence at high risk of bias. However, Figs 2 and 4 show that
the posterior standard deviation in treatment effect is much more sensitive to changes in uncer-
tainty in meta-analysis-specific mean bias,

√
.V0 +ϕ2/, than to κ. This can be shown to hold in

general, for the fixed effect model, by considering the respective derivatives in equation (6).

7. Discussion

Any meta-analysis containing studies at high and low risk of bias should compare results, for
estimated treatment effect and corresponding precision, both including and excluding the high
risk evidence (taken at face value). However, there is usually too little information within a
meta-analysis to allow precise estimation of the differences between treatment effects in low
and high risk studies (Sterne et al., 2002). Therefore, regardless of whether treatment effect
estimates including or excluding the high risk evidence appear consistent, we should still have
more faith in the low risk evidence. Taking the high risk studies at face value will underesti-
mate uncertainty in treatment effects, which may have implications for any resulting decision
analysis. The bias adjustment models that are presented here attempt to capture this uncer-
tainty, as well as systematic differences between treatment effect estimates in low and high risk
studies.

There has been considerable recent discussion of methods for addressing bias in observational
or randomized studies. Most of the proposals that have been published so far are reweighting
schemes, which accord evidence with a high risk of bias a lower weight (Begg and Pilote, 1991;
Li and Begg, 1994; Larose and Dey, 1997; Prevost et al., 2000; Spiegelhalter and Best, 2003).
Eddy et al. (1992) pointed out that this mitigates the bias but does not eliminate it. Our approach
can be distinguished from this previous work in two ways. First, our proposed model for bias
incorporates variation in the extent of mean bias both between studies, within meta-analyses
and between meta-analyses. In addition, we include an estimated overall mean bias term and
the corresponding uncertainty in this estimate. This not only leads to downweighting of poten-
tially biased evidence but also, at least in principle, to an unbiased pooled estimate. Second,
we base the parameters of our bias model on empirical evidence from collections of previously
published meta-analyses, because single meta-analyses typically provide only limited informa-
tion on the extent of bias (Egger et al., 2003; Sterne et al., 2002). This, of course, entails the
strong assumption that the mean bias in a new meta-analysis is exchangeable with the mean
biases in the meta-analyses included in previous empirical (meta-epidemiological) studies. For
example, the meta-analyses that were included in the study of Schulz et al. (1995) are mostly
from maternity and child care studies, and we must doubt whether the mean bias in studies on
drugs for schizophrenia (the Clozapine example meta-analysis) is exchangeable with the mean
biases in this collection of meta-analyses.

Our example focused on the problem of bias due to inadequate allocation concealment, which
has been the subject of several empirical investigations (although in some ways this was just
a vehicle for exploring the statistical methods and the implications of the modelling assump-
tions). Our sensitivity analyses suggest that studies with inadequate concealment of allocation
contribute very little gain in precision on the treatment effect, owing to a relatively high degree of
uncertainty in the meta-analysis-specific mean bias

√
.V0 +ϕ2/. In cases where the precision in

treatment effect based on adequately concealed evidence alone is low, owing to little adequately
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concealed evidence being available and/or because a random treatment effects model is being
used, then the inadequately concealed evidence may be useful. Otherwise we would tentatively
suggest that, on the basis of the evidence that is available, there is little value in incorporating
evidence from inadequately concealed trials.

We have clarified some of the technical issues in introducing information from previous
meta-epidemiological studies into a new meta-analysis. Ideally, the joint posterior distribution
from the meta-epidemiological analysis should be used to form the prior for a new meta-analysis.
This would require either access to the complete meta-epidemiological database (which is un-
likely to be practical in general) or MCMC outputs from such an analysis, which we would
advocate making generally available. We found that plugging in posterior median values for the
bias variance parameters produces results which, in this example, give an adequate approxi-
mation to the full joint distribution of bias model parameters. However, this will need to be
explored more fully in a wider range of examples—in particular when the joint distribution is
asymmetrical and/or when parameters are highly correlated.

Recently, a much larger database of meta-analyses has been developed (Wood et al., 2008),
which could be used to form priors for bias in new meta-analyses. Wood et al. (2008) confirmed
that treatment effects were dependent on allocation concealment and also found evidence for an
effect of lack of blinding. Interestingly, the evidence for bias was much stronger when outcomes
were subjectively assessed than when objectively assessed or all-cause mortality outcomes were
used. This suggests that if the meta-epidemiological data can be more specifically tailored to
the new meta-analysis, perhaps focusing on studies in a similar area of medicine, with the same
outcome measures, it might be possible to reduce the variety of different meta-analyses, and
thus to generate an evidence base in which estimates of ϕ2, the between-meta-analysis varia-
tion, were lower. This approach might also address the difficult, but critical, exchangeability
assumption, i.e. that the mean bias in studies at high risk of bias in the meta-analysis in ques-
tion is exchangeable with the mean biases in the meta-analyses in the epidemiological database.
The reduction in the size of the evidence base would, however, increase V0, the uncertainty in
the expectation of mean bias. It is likely, therefore, that reducing either V0 or ϕ2 can only be
done at the expense of the other, and this suggests that there are clear limits in the amount of
information that can be provided by studies at high risk of bias, however carefully one tailors
the evidence base for priors.

Meta-epidemiological studies are observational in nature and may therefore be affected by
confounding. Confounding might occur because studies at high risk of bias due to a particular
flaw in their conduct are more likely than other studies to have further flaws in their conduct.
This possibility was addressed by Wood et al. (2008), who found the effect of inadequate allo-
cation concealment to be modestly attenuated when controlled for absence of blinding, and
vice versa. The potential for such confounding implies that inadequate allocation concealment
may not be the cause of the bias that was identified in Table 1; however, inadequate allocation
concealment might still be considered a proxy for studies at a higher risk of bias.

Siersma et al. (2007) discussed statistical models that allow for such confounding. Potential
confounders can be adjusted for in the meta-epidemiological analysis by adding regression terms
to equation (7). It is also straightforward to incorporate interaction terms to equation (7) that
allow the average bias to vary according to characteristics such as whether the outcome variable
was subjectively or objectively assessed. In a new meta-analysis, we can also add covariate terms
to equations (1) and (2), e.g. patient subgroups for whom there is a differential treatment effect,
which may be of interest to clinicians.

The models that are presented here all assume statistical independence of trials and meta-
analyses. Such assumptions will be violated if some trials are included in more than one meta-
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analysis. Most published meta-epidemiological analyses have dealt with this issue informally,
by including meta-analyses that address different clinical questions and by including only
one meta-analysis per systematic review. Wood et al. (2008) combined data from three meta-
epidemiological studies. They dealt with overlap by indexing all trials by using PubMed or
similar identifiers, which were used to identify those meta-analyses containing overlapping
trials. Meta-analyses were removed to ensure that there was minimal overlap in the data set
that was analysed. An alternative would be to use modelling techniques that can allow for
the correlation that duplication implies, such as cross-classified random effects (Patterson
and Thompson, 1971) that have been modelled by using MCMC simulation (Browne et al.,
2001).

Here we have restricted attention to randomized controlled trials. Extension of these meth-
ods to include evidence from observational studies would be of interest and would in principle
be possible. However, there are substantial practical difficulties in assembling empirical meta-
epidemiological evidence on the magnitude of and variability in biases in estimates of treat-
ment effects from observational studies, compared with randomized controlled trials. Although
there have been several evaluations of differences between intervention effects in randomized
controlled trials and observational studies (Deeks et al., 2003), we are not aware of published
estimates of the variance of these differences. Much empirical research is based on convenience
samples of published meta-analyses (MacLehose et al., 2000; Concato et al., 2000), which may
not be representative. Therefore, exchangeability assumptions may be more difficult to justify
when combining evidence from observational studies and randomized controlled trials.

We end by reflecting on the implications of our results for the potential future use of the bias
adjustment approach in health care intervention assessment. In the context of a national deci-
sion maker such as the NICE, any decision that is taken needs to be supported by evidence that
is accepted by, among others, groups of patients and the pharmaceutical industry. It is there-
fore crucial that all modelling assumptions are transparent and reproducible, and not open to
interpretation. There seem to be at least three obstacles that would prevent these methods from
being adopted for routine use at present.

First, a critical assumption is that the new meta-analysis can be considered exchangeable
with those in the existing evidence base. The results of Wood et al. (2008) suggest that we would
certainly need to consider the variability in bias between clinical areas and according to out-
come. However, there are likely to be other possible mechanisms for bias, which may leave the
exchangeability assumption open to debate. Second, this paper has focused on a single source of
bias, coded as a binary variable. Further work would be required to generalize this to account
for multiple sources of bias and to deal with confounding, as discussed above. Although such
models for multiple sources of bias are technically feasible (Eddy et al., 1992; Greenland, 2005;
Siersma et al., 2007), reliance on exchangeability assumptions and sensitivity to the model for
the meta-epidemiological data will be increased. A third obstacle to the acceptance of these
methods is the sensitivity of the estimated treatment effect to whether a fixed or random-effects
treatment model is employed (Table 3). A choice of a fixed effect model may lead to greater
downweighting of evidence at high risk of bias, whereas a random-effects model may give the
evidence that is at high risk of bias relatively more weight.

The possibility of using carefully tailored subsets of previous evidence, and the issue of mul-
tiple sources of bias, can, of course, be examined in more detail as more comprehensive meta-
epidemiological databases are established. These analyses will no doubt add to our knowledge
of bias mechanisms, lead to refinements in the methods and most importantly provide a bet-
ter empirical basis for bias adjustment. However, it is all too easy to imagine that a company
whose drug is not recommended might dispute a methodology that downweights its evidence of
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efficacy, especially if a slight change in modelling assumptions or in the meta-epidemiological
data gives a more favourable result.

In summary, an ‘all available evidence’ approach to health intervention assessment trades off
increased precision at the expense of an increased risk of bias. The models that are presented
here provide a methodology that downweights and adjusts for potential bias. However, at our
present state of knowledge, the models that are proposed here cannot yet be confidently used for
health intervention assessment, unless the decision on which intervention to adopt can survive
a thorough and wide-ranging analysis of sensitivity to model inputs.
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