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Ever since the publication in 2011–2012 of two front-of-the- 
magazine pieces by Prinz et al.1 and Begley and Ellis2, the research 
world has been rocked by accusations of the “irreproducibility” of 
preclinical research. Both of these articles described, anecdotally, 
the inability of pharmaceutical preclinical testing units to repro-
duce experiments by academic laboratories published in the scien-
tific literature. These surveys were widely reported on in the media  
(e.g., ref. 3), and their pessimistic message was embraced by fund-
ing agencies4 and journal editors5. The desire for a more systematic 
approach to the issue yielded high-profile “reproducibility projects” 
in both psychology6 and cancer7; the former has been published 
and confirmed that large proportions of published research find-
ings cannot be clearly reproduced by independent laboratories. A 
recent survey of preclinical scientists revealed that 52% think there 
is a “significant crisis”8.

This being said, it is hard to decide whether something in sci-
ence has actually changed, or is “broken”, or whether the appar-
ent epidemic of irreproducibility is simply due to more attention 
being paid to the topic against a backdrop of the (undeniably)  
poor translational success of recent decades in drug development9. 

Those commenting on irreproducibility have most often attributed 
it to poor experimental design, poor reporting of methods and 
results (for example, missing statements about blinding and ran-
domization), various types of bias, investigator misconduct, and 
misuse of statistics10. I believe that all of these things occur. I would 
argue, however, that the current state of affairs is certainly no worse 
than when I started in science 25 years ago, and almost certainly 
better. At the beginning of my career, for example, methods sections 
would simply refer to “mice”; now at least we’re usually told that 
they are male—alas, always male—C57BL/6 mice. Thus, it seems to 
me that the true reasons for poor translation lie elsewhere.

What is responsible for poor translation?

What then is responsible for our current translational challenges? 
Some believe that the drugs that work in animals really do also work 
in people, but that it’s becoming harder and harder to prove this so. 
That is, the real problem may actually be the changing nature of 
clinical trials, in which fewer and fewer drug-naive participants are 
available, and in which the placebo response has steadily increased 
over time11. Others have pointed to shortcomings in the validity 
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The poor record of basic-to-clinical translation in recent decades has led to speculation that preclinical 
research is “irreproducible”, and this irreproducibility in turn has largely been attributed to deficiencies 
in reporting and statistical practices. There are, however, a number of other reasonable explanations of 
both poor translation and difficulties in one laboratory replicating the results of another. This article 
examines these explanations as they pertain to preclinical pain research. I submit that many instances 
of apparent irreproducibility are actually attributable to interactions between the phenomena and 
interventions under study and “latent” environmental factors affecting the rodent subjects. These 
environmental variables—often causing stress, and related to both animal husbandry and the specific 
testing context—differ greatly between labs, and continue to be identified, suggesting that our 
knowledge of their existence is far from complete. In pain research in particular, laboratory stressors  
can produce great variability of unpredictable direction, as stress is known to produce increases  
(stress-induced hyperalgesia) or decreases (stress-induced analgesia) in pain depending on its 
parameters. Much greater attention needs to be paid to the study of the laboratory environment if 
replication and translation are to be improved.
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of animal models (and their implementation) used in preclinical 
studies12. I have previously argued that a major problem with the 
status quo in preclinical pain research is the animal models in com-
mon use; the inadequacies are related to all three facets of an animal 
model: subjects, assays, and measures13. The human sufferers of  
chronic pain are overwhelmingly female14, middle-aged or eld-
erly15, and of heterogeneous genetic background, whereas the ani-
mal subjects in pain experiments are overwhelmingly young-adult, 
male Sprague Dawley rats or C57BL/6 mice13,16,17. Both quantita-
tive and robust qualitative differences in pain processing have been 
documented between strains18 and the sexes19,20, confounding sim-
ple conclusions. The most common chronic pain syndromes in 
humans are low back pain, arthritis of the joints, and headache21, 
whereas the most common chronic pain assays in current use for 
animal subjects involve experimental ligations of afferent fibers 
serving, and injection of inflammatory substances into, the hind 
paw22. Finally, whereas the most prevalent (and bothersome) clini-
cal symptoms of chronic pain are deep, spontaneous (ongoing) pain 
and numbness23,24, and comorbidities like sleep disruption21, pre-
clinical pain researchers continue to focus almost exclusively on 
measuring mechanical and thermal pain hypersensitivity (allodynia 
and hyperalgesia)13,25. Whether currently popular animal mod-
els are close enough to clinical reality or not is hard to say (is the 
glass half-empty, or is it half-full?), and such discussions tend to 
quickly devolve into simply counting up recent efficacy successes  
(e.g., ziconotide, tanezumab) and failures (e.g., neurokinin-1  
antagonists, fatty acid amide hydrolase inhibitors). Simply put, 
preclinical pain research with currently popular animal models 
performs more than adequately for backwards translation26,27; the 
forward translation jury is still out.

The role of latent environmental factors in pain research

I would suggest that another reason for apparent irreproducibil-
ity may be more important than is commonly appreciated: stealth 
or “latent” laboratory environmental factors28, the “unknown 
unknowns” of biology. Simply stated, any factor affecting stress levels  
in the testing environment may have huge effects on any biological 
phenomenon affected by stress, which includes essentially all of them, 
behavioral and non-behavioral alike. In turn, we are aware of only 
a few such factors, and even when we are aware of them they hardly 
ever receive our attention. Figure 1 lists a variety of factors that might 
vary in the laboratory environment, both in the vivarium and the 
testing room, that have been documented to affect pain sensitivity in 
rodents. Pain is, in fact, a perfect example of a biological domain in 
which subject stress can produce robust effects. The bigger problem is 
that these effects are unpredictable. Stress can produce either stress-
induced analgesia (SIA) (see ref. 29 for review) or stress-induced 
hyperalgesia (SIH) (see ref. 30 for review), and although some evi-
dence suggests that genetics, stress severity, context and chronicity 
may be relevant to the direction in which pain is modulated31–35, this 
topic remains greatly understudied. Also unappreciated is the fact 
that stress associated with pain testing can be surprisingly high (and 
hugely variable) in human participants as well. In a study of capsaicin 
pain, self-reported stress levels ranged from 0 to 8 on a 0-to-10-point 
scale, and this stress interacted with both sex and a genetic variant  
within the AVPR1A gene to significantly affect pain ratings36.

Some laboratory stressors (or non-stressful modulatory factors) 
are related to husbandry, and have long been known. For example, 
housing isolation and crowding can both affect animal welfare  
(e.g., ref. 37), and directly affect pain sensitivity38–43, and the 
effects of cage density might be sex-specific44. Housing enrichment 
using physical objects has been shown to ameliorate pain45–47.  
Also well known are the effects of prenatal (i.e., gestational) stress 
(e.g., ref. 48) (which might be sex-specific49), which may occur due 
to noise or other disruptions in the breeding room, social isolation 
of breeding dams, or even high lead or arsenic levels in the drinking 
water50–52. Stress during pregnancy can affect maternal behavior53, 
which in turn can affect stress responses of rats in adulthood, and 
across generations54. Postnatal stressors during development can 
have long-lasting effects as well. Failure to provide bedding mate-
rial for a rat to make a nest for her pups can lead to hyperalgesia 
in those pups when they become adults55,56, and the handling of 
young animals (for example, related to injections, and involving 
the stress of maternal separation) can cause long-term alterations 
in pain sensitivity41,57–63. A growing literature also documents the 
effect of diet on pain sensitivity64–80. In one case, differences in 
the soy content of rat chow turned out to be wholly responsible 
for a failure to replicate in Baltimore the findings of studies origi-
nally performed in Jerusalem65. Perhaps the largest husbandry-
related stressor is within-cage aggression in males. Social defeat 
in the “resident-intruder” assay is known to produce profound 
stress-induced analgesia81, and one might imagine great variabil-
ity in the apparent “baseline” sensitivity of male mice depending  
on their social status (dominant/submissive) and how long before 
testing aggressive encounters had occurred. Kevin Keay and 
colleagues have shown that subpopulations of rats that exhibit 
dominant behavior as residents in a resident-intruder assay have 
different behavioral changes—including apparent changes in pain  
sensitivity—after nerve damage than rats that exhibit submis-
sive behavior82, with corresponding alterations in neuroimmune 
signaling83. Even very subtle differences in husbandry may mat-
ter. One study demonstrated increased pain sensitivity of male 
mice reared until weaning with only their brothers compared to 
both brothers and sisters84. Another recent study observed that 
mice housed on aspen bedding were more sensitive to thermal 
and mechanical stimuli than mice housed on TEK-Fresh bedding 
made of 100% virgin wood pulp85. Other variable husbandry fac-
tors that have been discussed but not yet shown directly to affect 
pain sensitivity include: litter size (i.e., culling), weaning timing,  
light/dark phase duration, housing mice and rats in the same 
room, water source, in-house breeding versus commercial breed-
ing (and, in the latter, delay between arrival and testing), direct 
transfer from vivarium to testing room versus the use of a holding 
room, and endemic presence of viruses. The effect of husbandry 
on adult biomedical testing is hardly limited to stress effects on 
behavioral measures. A celebrated recent study demonstrated 
that the hygienic barrier facilities that most laboratory mice are  
currently housed in render their immune system abnormally 
immature, and concludes that translation would be improved if 
mice were “dirtier”86. It should be pointed out that all these hus-
bandry-related factors apply both to commercial breeding facilities 
as well as vivaria within academia and industry.
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Other laboratory stressors occur in the testing room rather 
than the vivarium. Many routine procedures—including capture/
handling, blood collection, and gavage—produce stress in labora-
tory animals87. Simply being placed in a novel testing room under 
bright lights can produce non-negligible stress in laboratory mice 
that have never before left the vivarium88, and a large literature 
documents the SIA resulting from this novelty and the ameliorating 
effects of habituation to the testing room (e.g., ref. 89). Different 
laboratories have very different practices regarding the frequency 
and duration of handling of adult animals, potentially leading to 
very different (and strain-dependent90,91) stress levels on testing 
days if human experimenters are present during the data collection, 
and depending on whether the same or different individuals are 
involved in handling versus testing92. The precise method of mouse 
capture has been shown to have large effects on stress93. Stress 
related to injections, producing SIA, is well known28,94, and likely 
due to the associated capture and restraint95 required in addition 
to the needle itself. Whether animals are naive to other behavioral 
tests can affect the results of pain tests performed later96. Circadian 
rhythms affect pain in rodents (e.g., ref. 97), in a strain-98, sex-99  
and estrous phase-dependent100 manner, and testing times in labo-
ratories vary widely, as does whether animals are kept under regular 
or reverse light cycles. The ambient temperature101–104, humid-
ity105, barometric pressure106, and noise level107–109 in the test-
ing room have all been shown to affect pain sensitivity; these are  
not as tightly controlled in many laboratories as is often pretended.  
In most cases, animals are tested in groups, and social factors can 
alter results as well. We and others have found that pain sensitivity 

can be increased (by emotional contagion110–113 or social SIH88,111), 
or decreased (by social SIA88,110 or social buffering114–118)  
when animals are in close proximity (through either visual110 or 
olfactory113,119 mechanisms), depending on their social status 
(siblings, familiars, or strangers) and the threat level determined 
by their degree of physical access to each other. Our laboratory 
surprisingly observed that the mere presence of a male (but not 
female) experimenter in the testing room could produce stress 
in mice and rats, producing olfactory-mediated SIA that robustly 
affected apparent “baseline” pain sensitivity119.

The impact of laboratory environmental factors

That environmental factors differing from one laboratory to 
another can affect behavioral experiments has been appreciated for 
quite some time. In a famous study by Crabbe and colleagues120, the 
performance of multiple inbred mouse strains tested in standard  
behavioral assays were found to be highly lab-dependent, even 
though the investigators at three institutions took great pains to 
synchronize and standardize animal shipment, husbandry, and  
test-related parameters. It should be noted that the differences 
between labs were related to overall levels of behavior in these 
assays; relative strain sensitivities were generally preserved across 
sites121. These investigators hypothesized that the lab variation was 
mostly due to “experimenter effects”122. In an analysis of acute pain 
sensitivity in over 8,000 mice we concluded that differences between 
experimenters accounted for more variance than any other factor, 
including genotype123. Environmental factors can interact with gen-
otype, of course, producing yet more variability. In one experiment,  

Husbandry-related
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FIGURE 1 | Factors significantly affecting pain sensitivity in rodent models and sample references. Only factors that might credibly vary between laboratories 
are considered. For the factor “Diet”, we excluded diabetes, hypertension and obesity models. We also excluded experimental stressors or procedures such  
as shock, restraint, prolonged maternal separation, or sucrose feeding. Only papers reporting statistically significant effects in either direction are listed.  
In the case of multiple papers by the same laboratory (indicated by *), only the first to be published is listed.
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investigators observed that a brief period of food shortage could 
abolish and even reverse a well-known mouse strain difference in 
response to amphetamine124. In an intriguing study of rats selec-
tively bred for high and low pain (autotomy) behavior after hind 
limb denervation, the selected phenotype could be largely abolished 
simply by co-housing “high” rats with “low” counterparts, and vice-
versa125. This same phenomenon was thereafter demonstrated in 
high- and low-autotomy mouse strains126. In one of our studies, a 
particularly robust strain difference in pain sensitivity127 was found 
eventually to exist only because of SIA—resulting simply from being 
placed in the testing room itself—in one strain but not the other; 
if mice were habituated to the room on several days before testing 
no strain difference was observed36.

These sorts of findings have led to a discussion as to whether 
reproducibility in animal experiments would be enhanced by stand-
ardization of husbandry and experimental parameters across labora-
tories128. Some have argued for such standardization in the name of 
sample size reduction, and improving comparability of results within 
and between laboratories129. Others have pointed out that many 
environmental factors simply cannot be practically standardized 
(for example, staff, room architecture, noise, tap water composition, 
locally sourced rodent chow), and that any such attempts would 
prioritize comparability over the potentially even more impor-
tant aim of generalizability (external validity)130,131. In fact, some 
have argued that attempts over the last few decades to standardize 
between laboratories in the name of reproducibility have actually led 
to a “standardization fallacy”, producing results that are increasingly 
distinct between laboratories (and thus, perversely, less reproduc-
ible)132. A proposed solution to the problem is systematic variation 
of experimental conditions128,133, although I see a real danger here 
in presupposing which environmental factors actually matter.

Conclusions

The plethora of “latent” laboratory environmental factors that affect 
pain studies—and biomedical studies more generally—imply that if 
two laboratories fail to replicate each other’s findings, it is not nec-
essarily the case that one is “right” and one is “wrong”, or that such 
research is “irreproducible.” They might both have obtained accu-
rate data given their unique environmental context. The relevant 
contextual factors may or may not be appropriately reported, and 
may or may not even be understood. Increased prioritization, espe-
cially by funding agencies, of the identification of such factors (like 
experimenter sex, which was unknown until 2015) is warranted. 
Only by turning unknown unknowns into known knowns—and 
either controlling for them, covarying them out of statistical analy-
ses, and/or explicitly varying them to investigate interactions—
will we improve both the reproducibility and generalizability of  
preclinical research.
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