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Participation in social programs is often misreported in survey data, complicating the
estimation of treatment effects. We propose a model to estimate treatment effects under
endogenous participation and endogenous misreporting. We present an expression for the
asymptotic bias of both OLS and IV estimators and discuss the conditions under which
sign reversal may occur. We provide a method for eliminating this bias when researchers
have access to information regarding participation and misreporting. We establish the
consistency and asymptotic normality of our proposed estimator and assess its small
sample performance through Monte Carlo simulations. An empirical example illustrates
the proposed method.
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1. Introduction

This paper proposes a solution to the problem of identification and estimation of treatment effects in parametric
regressionswhen participation is endogenouslymisreported. In particular, we provide a two-step estimation procedure that
consistently estimates the conditional average treatment effect. Participation in social programs is substantiallymisreported
in survey data, sometimes with misreporting levels as high as 50% (Meyer et al., 2009). When a binary regressor is
misreported (or misclassified), the measurement error is necessarily negatively correlated with the true underlying value of
the regressor, thus making the classical measurement error assumptions implausible.1 While earlier papers (Aigner, 1973;
Lewbel, 2007) show that exogenous misreporting leads to attenuation bias, we demonstrate that the effects of endogenous
misreporting aremuchmore severe. To our knowledge, this paper is the first attempt to provide point estimates of treatment
effects in the context of endogenous misreporting of a binary treatment variable.
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Misreporting occurs when program participants report not receiving treatment when they did (‘‘false negatives’’) or vice
versa (‘‘false positives’’). One-sidedmisreporting (i.e., the occurrence of only one of the two types of misclassification errors)
is pervasive in practice and many empirical studies. For example, Lynch et al. (2007) and Meyer et al. (2018) report that
validation studies always find high rates of false negatives in the Supplemental Nutrition Assistance Program (SNAP) ranging
from 20% to 50%, depending on the survey and period.2 While Meyer et al. (2018) finds up to 50% rate of false negatives in
SNAP participation in the CPS Annual Social and Economic Supplement, false positives are typically low with only less than
1.5% of non-recipients reporting SNAP receipt.

One-sided misreporting is not confined to government programs. For example, according to Bound (1991), there are a
number of reasons to be suspicious of any survey response to questions concerning self-evaluated health, not only because
respondents are being asked for subjective judgments, but also because responses may be endogenous to the outcomes
we may wish to use them to explain. Brachet (2008) argues that in health-related surveys, self-reported smoking status is
significantly misreported, with false negatives ranging from 3.4% in some studies to 73% in others. Other instances of one-
sided misreporting can be found in the development literature where a firm’s formality status is often misreported, with
informal firms more likely to falsely report their status (see Gandelman and Rasteletti, 2017), or the education literature
where misclassification error is more likely to arise from overreporting of qualifications (e.g. Battistin and Sianesi, 2011).

Recognizing the documented evidence ofmisclassification errors, a related literature considers the consequences ofmea-
surement errors in a binary regressor in Monte Carlo studies. For instance, in studying the worst-case bounds of regression
coefficients under arbitrary misclassification of a binary regressor, Kreider (2010) finds that even with misclassification
error rates of less than 2%, the confidence intervals from the contaminated data that the researcher observes and the true,
error-free data do not overlap. Similarly, Millimet (2011) studies the performance of several estimators employed in the
causal inference literature while introducing measurement error in the treatment (binary) regressor, outcome variable, and
vector of covariates, and cautions researchers to be conscious of the consequences of not addressing measurement error.

The existing literature has focused on accounting for random (exogenous)misreportingwhen participation is exogenous.
For instance, Aigner (1973) considers misclassification in exogenous binary regressors, shows that OLS estimates are biased
downwards, and proposes a technique based on knowledge of themisclassification probabilities to consistently estimate the
parameters of interest. More recently, Lewbel (2007) examines the identification and estimation of the treatment effect of a
misclassified binary regressor in nonparametric and semiparametric regressions. Lewbel reaches the same attenuation-bias
result that Aigner (1973) finds and introduces assumptions that identify the conditional average treatment effect of the
misclassified binary regressor. Related works by Bollinger (1996), Black et al. (2000) and van Hasselt and Bollinger (2012)
provide partial identification bounds in the linear regressionmodel, while Chen et al. (2008a,b), provide identification in the
nonparametric regression model.

Some attempts have been made to address exogenous misreporting when treatment selection (participation) is en-
dogenous. In the education literature, Kane et al. (1999) address misreporting when estimating returns to schooling by
proposing a generalized method of moments (GMM) estimator that relies on the existence of two categorical reports of
educational attainment, and so may have limited applicability. In estimating the effects of maternal smoking on infant
health, Brachet (2008) proposes a two-step GMM estimator, that essentially follows Hausman et al. (1998) and Kane et al.
(1999). An admitted weakness of Brachet’s approach is the assumption that misreporting probabilities are independent
of covariates, conditional on treatment status. Frazis and Loewenstein (2003) and Mahajan (2006) study identification
with the usual IV assumptions under homogenous and heterogenous treatment effects due to observables, respectively.
More recently, DiTraglia and García-Jimeno (2017) derive a sharp identified set under standard first-moment assumptions
and propose a Bonferroni-based procedure for identification robust inference. Also, Bollinger and van Hasselt (2017) use a
Bayesian approach while Ura (2018) allows for heterogeneous treatment effects due to unobeservables in these models.

Much less is known about the case in which the regressor and the measurement error are both endogenous. Hu et al.
(2015, 2016) provide identification results in a class of nonseparable index models with measurement error and endogene-
ity. Kreider et al. (2012) is the most closely related to our work, in the sense that they allow for both treatment endogeneity
and endogenousmeasurement error in the case of binary treatment aswe do in this paper. In estimating the effect of SNAP on
health outcomes, they use auxiliary administrative data on the size of SNAP caseloads to address misreporting by bounding
the average treatment effect under increasingly stronger assumptions. While this partial identification approach identifies
treatment effects with their tightest bounds, it does not yield point estimates. As such its relevance for policy making may
not be widespread.

This paper has three salient contributions. First, we propose a parametric model of endogenous misreporting and
endogenous participation. We only analyze the case of one-sided misreporting at this stage, which is the predominant
case of misreporting described in Meyer et al. (2009). Second, we show that when misreporting is endogenous, OLS and
IV estimators are inconsistent and OLS estimates can be of opposite signs from the true effects (sign reversal), whether
participation is endogenous or not. We provide theoretical expressions for these biases under the normality assumption as
well asMonte Carlo simulation evidence. Third, we propose an estimator that is root-n consistent and asymptotically normal
and show that it performs remarkably well in small samples.

2 Misreporting has also been documented for other government programs; see, e.g., Marquis andMoore (1990) for an earlier validation study discussing

measurement error in the reports of participation in eight government transfer programs in the 1984 Survey of Income and Program Participation (SIPP).
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We illustrate the use of our approach in an empirical application. Identification in our framework relies on the existence
of both an additional random variable that is correlated with the true (unobserved) underlying treatment, but unrelated to
the outcome and themisclassification error (e.g., Frazis and Loewenstein, 2003;Mahajan, 2006), aswell as a random variable
that is correlated with the misclassification error and needs not be excludable from the outcome. In addition, we assume
that the observed treatment probability is a joint (known) function of the treatment and misclassification probability. This
allows us to pin down the marginal distribution of true participation and thus point-identify the treatment effect.

The rest of the paper is organized as follows. Section 2 presents the model of endogenous misreporting and shows
the inconsistency of OLS and IV estimators. Section 3 develops the proposed estimator. Section 4 provides Monte Carlo
simulations; Section 5 contains an empirical application, and Section 6 concludes. Proofs and other technical material are
collected in the appendix.

2. Framework

This section describes the proposed model and associated framework, and presents our estimation strategy.

2.1. Model with endogenous misreporting

Consider the following specification of the usual treatment effects model. The outcome variable, yi, is related to the
k–vector of correctly measured exogenous covariates, xi, and the (true) participation indicator, δ∗

i , by

yi = x′
iβ + δ∗

i α + ϵi, (1)

and we model participation as

δ∗
i = 1

(
z ′
iθ + vi ≥ 0

)
, (2)

whereα is a scalar capturing the treatment effect of interest,β and θ are parameter vectors of sizes k×1 and q×1 respectively,
zi is a q-vector of exogenous variables that includes xi aswell as additional instruments that are unrelated to ϵi. In thismodel,
the (possible) endogeneity of participation is captured by the correlation between the error terms ϵi and vi.

However, the researcher does not observe the true participation indicator δ∗
i but only a possiblymisclassified surrogate, δi,

contaminated by amisreporting, unobserved dummy variable, di, such that δi = δ∗
i di. In other words, an individual correctly

reports receiving treatment only if di = 1 and reports not receiving treatment otherwise. We assume that the indicator of
(mis)reporting behavior, di, is related to a p-vector of observable covariates wi such that

di = 1
(
w′

iγ + ui ≥ 0
)
, (3)

where γ is a parameter vector of size p × 1 and ui is the error term.3 Hence, the observed participation, δi, can be modeled
by

δi = δ∗
i di = 1

(
z ′
iθ + vi ≥ 0, w′

iγ + ui ≥ 0
)
. (4)

Our modeling of misreported participation is generally in the spirit of a broader class of methods that have been developed
for incomplete data scenarios and specifically similar to partial observability models studied in Poirier (1980). Partial
observability models such as Poirier’s have been widely applied in many fields of study, including Feinstein’s examination
of the problem of incomplete detection of violations of laws and regulations (Feinstein, 1990).

For the estimation, no further restrictions are imposed on x. However, we require the covariates z and w to be different
but possibly overlapping and to have sufficient variation (e.g., at least one covariate in z and w is continuous) to avoid the
local identification problems discussed in Poirier (1980). We also make the following basic assumptions, some of which
are standard in the literature.

Assumption 1. The error term ϵi is independent of the exogenous variables xi, zi, with variance σ 2; and the error terms
(ui, vi) are independent of all covariates xi, zi, wi, and have unit variances. The correlations for the pairs (ϵi, ui), (ϵi, vi) and
(ui, vi) are denoted ϕu, ϕv and ρ, respectively.

Assumption 2. The k × kmatrix, E(xix
′
i), is nonsingular (and hence finite).

Assumption 3. The joint CDF of (−ui,−vi) is known and defined by

Fu,v(u, v, ρ) = Pr[−ui ≤ u, −vi ≤ v], for any − ∞ < u, v < +∞.

In particular, we assume that conditional on zi and wi, (−ui,−vi) follows a bivariate normal distribution.

3 Note that true participation, δ∗ , affects misreporting to the extent that we focus on one-sided misreporting and the error terms in Eqs. (2) and (3) are

correlated. This allows, for example, misreporting to be influenced by the stigma experienced by true participants in social programs.
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Assumption 4. The error terms, (ϵi, ui, vi), follow a trivariate normal distribution, conditional on all covariates xi, zi, wi.
That is,

(ϵi, ui, vi)
′ |xi, zi, wi ∼ N (0,Σ) , with Σ =

⎛
⎝

σ 2 ϕuσ ϕvσ

ϕuσ 1 ρ

ϕvσ ρ 1

⎞
⎠ . (5)

Assumptions 1 and 2 are quite standard. However, it is important to notice that unlike x and z, the exogeneity requirement
does not apply to w, the vector of covariates associated with misreporting in Eq. (3). This could be of substantial interest
in practice where exogenous covariates are often difficult to find. Assumption 3 is critical to parametrically identify the
probability of true (unobserved) participation. While we assume joint normality of the disturbance terms in the observed
participation equation for simplicity (as in Poirier, 1980), normality is not needed and the following discussionwould hold for
other absolutely continuous distributions (e.g., the bivariate logistic distributions discussed in Gumbel, 1961). Assumption 4
is only needed to derive closed-form formulas for the OLS bias (see Section 2.2) and for extensions to binary choice models
and full information maximum likelihood (see Appendix B); but it is not essential for the rest of our main discussions.

Our estimation strategy relies on observing z and w. We recognize that exclusion restrictions for participation as well
as relevant predictors for misreporting may be difficult to obtain in practice and our suggestion is to rely on different data
sources. For instance, exclusion restrictions for participation, z, may come from qualification laws (eligibility requirements)
for program participation. Relevant predictors of misreporting, w, could include peculiar features of the survey in question
and its administration such as survey date, length of the survey, and interview mode.

2.2. Bias due to endogenous misreporting

We first show that a naive OLS estimator of the treatment effect is biased and may assume a sign opposite to the true
effect. Since the true participation status, δ∗

i , is unobserved and only δi is observed, the model with reported participation
status estimated by the researcher is given by

yi = x′
iβ + δiα + εi. (6)

Given the true outcome equation defined by Eq. (1), Eq. (6) implies that

εi = ϵi +
(
δ∗
i − δi

)
α. (7)

For a random sample of size n, Eq. (6) can be re-written in the matrix form as follows:

y = Xβ + δα + ε, (8)

where y = [y1, . . . , yn]′, X = [x1, . . . , xn]′, δ = [δ1, . . . , δn]′, and ε = [ε1, . . . , εn]′.4
Denote by α̂LS the OLS estimator obtained by naively estimating Eq. (6) using reported participation, δi. Then, we have

the following result.

Theorem 1. Under Assumptions 1–4, the ordinary least squares estimator, α̂LS , is biased and inconsistent, and the asymptotic

bias is given by

plim(̂αLS − α) = A − αB

C
, (9)

with

A = E

[
σϕvφ

(
−z ′

iθ
)
Φ

(
w′

iγ − ρz ′
iθ√

1 − ρ2

)
+ σϕuφ

(
−w′

iγ
)
Φ

(
z ′
iθ − ρw′

iγ√
1 − ρ2

)]
,

B = E(δix
′
i)E(xix

′
i)

−1
E[(δ∗

i − δi)xi] and C = E(δi) − E(δix
′
i)E(xix

′
i)

−1
E(δixi),

where φ(·) andΦ(·) are respectively the pdf and cdf of the standard normal.

Proof. See Appendix . □

Since the denominator in (9), C , is always positive by the Cauchy–Schwarz Inequality (see, e.g., Tripathi, 1999) the sign
of the asymptotic bias only depends on the numerator of the expression. For example, if B > 0, then plim(̂αLS) < α for all
α > A/B (i.e., there is an attenuation bias) and plim(̂αLS) > α for all α < A/B (i.e., there is an expansion bias). Also there
are many instances in which plim(̂αLS) and α will have opposite signs. For example, if B − C < 0, then plim(̂αLS) and α have
opposite signs whenever α falls between A/(B − C) and 0 (Fig. 1 depicts the regions where bias and sign switching occur in
this case).

4 Re-writing themodel inmatrix notation is not necessary butmakes the exposition (especially the proofs) less cumbersome. Thematrix form also gives

alternative (simpler) expressions for the various estimators considered.
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Fig. 1. Illustration of the OLS bias.

Note that sign-switching can occur even when participation is exogenous. Without loss of generality, consider the case
of exogenous participation (i.e. ϕv = 0). The sign-switching result depicted in Fig. 1 follows if (i) A > 0, (ii) B − C < 0, and
(iii) A/(B − C) < α < 0. Condition (i) holds if misreporting is endogenous and the disturbance terms in Eqs. (1) and (3)
are positively correlated (ϕu > 0). Thus, the size of the sign-switching region depends on how large the ratio A/(B − C) is
in general. In particular, in our example, the size of the sign-switching region increases with the rate of false negatives and
the variance of the error term in the outcome equation and decreases with the rate of true participation, ceteris paribus. We
provide evidence on the sign-switching region and these relationships in our Monte Carlo study in Section 4.

The above discussion shows that the bias related to misreporting is not merely an attenuation bias as found in many
other studies (e.g., Aigner, 1973; Black et al., 2000; Lewbel, 2007). Under endogenousmisreporting, the estimated treatment
effect can assume an opposite sign, yieldingmisleading policy prescriptions. This sign reversal phenomenonwould generally
occur when misreporting is significant, and the direction of its correlation with the outcome is opposite to the direction of
the treatment effect. For example, in the SNAP participation and obesity relationship, much empirical work has relied on
self-reported participation and have found a positive or no effect on obesity. However, if people who are overweight are also
more likely to correctly report participation (i.e., A positive) and since, as mentioned above, misreporting in SNAP is very
severe in the data ( i.e., B − C is negative and small in magnitude) then we could observe a positive relationship between
SNAP participation and obesity (i.e. plimα̂LS > 0) even if the true effect is negative (i.e. α < 0).

In the next section, we provide an estimation strategy that allows consistent estimation of the treatment effect, α. We
first examine how well an IV estimation strategy would perform in our framework.

2.3. IV estimator under endogenous misreporting

The misreporting mechanism described above shows that in Eq. (6), the regressor, δi, is correlated with the error term εi
as implied by Eq. (7). Thus, Eq. (1) can be seen as a regressionwith an endogenous binary regressor, even if true participation
is exogenous and only misreporting is endogenous. So it may be tempting to suppose that if an instrument is present, then
a standard IV estimator will address the issue raised in our framework. Here, we show that this is not the case.

Suppose we have access to a valid instrumental variable, zi, such that E[ziεi] = 0 and Cov(zi, δi) ̸= 0, and assume, for
simplicity, that zi is a scalar so that α is just identified. Then the (simple) instrumental variable estimator is given by

α̂IV = (z ′Mδ)−1z ′My,

where M = I − X(X ′X)−1X ′ is the orthogonal projection matrix onto the null space of X .
We can show using the same reasoning as above that,

plim(̂αIV ) = E(ziδ
∗
i ) − E(zix

′
i)E(xix

′
i)

−1
E(xiδ

∗
i )

E(ziδi) − E(zix
′
i)E(xix

′
i)

−1E[xiδi]
α. (10)

Thus, the IV estimator of α is inconsistent, and we cannot sign the bias in general. However, in the special case where
misreporting is uncorrelated with true participation and the other covariates, it can be shown that,

plim(̂αIV ) = α

E[di]
= α

Pr[di = 1] , so that |plim(̂αIV )|> |α|.

Hence, in this specific scenario, the IV estimator is upwardly biased. This result is similar to those obtained by Black
et al. (2000), (see also Frazis and Loewenstein, 2003; Brachet, 2008). The finding that the IV estimator is inconsistent
is not new, given the results of the above authors and others. However, Black et al. (2000) showed that the IV estimator
yields an expansion bias, which corresponds to the special case of exogenous measurement errors. By contrast, as suggested
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by Eq. (10), the sign of the IV bias is not obviouswhenmisreporting is endogenous, and our simulations show that the ensuing
bias can take either direction (i.e., expansion or attenuation).

We now present an estimation procedure that delivers consistent and asymptotically normal estimates for the treatment
effect, α.

3. The proposed estimator

Recall that our objective is to estimate α in the outcome equation (1), where true (and possibly endogenous) participation
status, δ∗

i , is unobserved, but only a possibly misreported (and possibly endogenous) participation status, δi, is observed. The
proposed estimation strategy proceeds in the following two steps.

Step 1: With the joint distribution of ui and vi given by Fu,v(u, v, ρ), use the partial observability probitmodel given by Eq. (4)
to estimate the parameter vectors θ and γ . Then, compute the predicted probability for person i’s true participation

status as δ̂∗
i = Φ(z ′

i θ̂ ).

Step 2: Estimate Eq. (1) by substituting δ̂∗
i for δ∗

i . Assuming correct model specification and distribution of the error terms,
the resulting two-step estimator of α is consistent. Moreover, with standard regularity assumptions, this estimator
is asymptotically normal.

3.1. First step estimation

Following Poirier (1980), the parameters γ , θ and ρ can be jointly estimated from the joint distribution of the error terms
using the binary choice model defined by

Pr[δi = 1|wi, zi] = Pr
[
−ui ≤ w′

iγ , − vi ≤ z ′
iθ
]

= Fu,v
(
w′

iγ , z
′
iθ, ρ

)
= Pi(γ , θ, ρ).

The log-likelihood function of this model is given by

Ln(γ , θ, ρ) =
n∑

i=1

δi ln Pi(γ , θ, ρ) + (1 − δi) ln (1 − Pi(γ , θ, ρ)) .

Assuming correct distributions, the maximum likelihood estimator of the vector of parameters (γ , θ, ρ) is consistent
and asymptotically normal, and the covariance matrix consistently estimated with the inverse of the information matrix. In
particular, for the parameter θ , the MLE θ̂ is consistent and asymptotically normal, i.e.,

θ̂
p−→ θ and

√
n(θ̂ − θ )

d−→N (0, Vθ ) ,

where the asymptotic variance of θ̂ is obtained from the information matrix equality as

Vθ =
{
E

[
1

Pi(1 − Pi)

∂Pi

∂θ

∂Pi

∂θ ′

]}−1

. (11)

From this expression, a consistent estimator for the variance matrix can be obtained as

V̂θ =
[
1

n

n∑

i=1

1

P̂i(1 − P̂i)

∂ P̂i

∂θ

∂ P̂i

∂θ ′

]−1

, (12)

where P̂i = Pi(γ̂ , θ̂ , ρ̂) = Fu,v

(
w′

i γ̂ , z
′
i θ̂ , ρ̂

)
. For the normal case, the gradient takes a fairly simple form

∂ P̂i

∂θ
= φ(z ′

i θ̂ )Φ

(
w′

i γ̂ − ρ̂z ′
i θ̂√

1 − ρ̂2

)
zi.

Since this first-step is a maximum likelihood, parametric identification of (θ, γ , ρ) can be discussed in terms of non-
singularity of the corresponding information matrix (Rothenberg, 1971). This means perfect multicollinearity needs to be
ruled out, implying that both wi and zi should satisfy the standard rank conditions as a basic requirement. Also, as we
explained earlier, a single exclusion restriction between wi and zi (i.e., at least one covariate in zi should not be relevant
in wi, or vice-versa) is sufficient to identify all the first step parameters locally (Poirier, 1980).5 Also, notice that only the
(correct) specification of the marginal distribution of v is necessary for the parametric identification and estimation of the
model in the second step. If the distribution of u or the joint distribution of (u, v) are unknown, then one may still obtain a
consistent estimator of θ in the first step by using a semiparametric approach such as the series expansion of the joint PDF
of (u, v) proposed by Gallant and Nychka (1987) or the single equation multiple index model described in Ichimura and Lee
(1991).

5 Essentially, identification impliesmuch stronger conditions than the standard rank condition for linear IV since it requires that participation and hence

the (nonlinear) relationship between true treatment and instruments be fully parameterized and correctly specified.
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3.2. Second step estimation

In the second step, we compute the predicted values of true unobserved participation δ∗
i , given by δ̂∗

i = Φ(z ′
i θ̂ ), which

are used in lieu of δ∗
i to estimate the parameters of the new model given by

yi = x′
iβ + δ̂∗

i α + ηi. (13)

Using the same approach as above, the second step estimator is obtained as

α̂2S = (δ̂∗′
M δ̂∗)−1δ̂∗′

My

=
∑n

i=1Φ(z ′
i θ̂ )yi −

∑n

i=1Φ(z ′
i θ̂ )x

′
i[
∑n

i=1 xix
′
i]−1

∑n

i=1 xiyi∑n

i=1Φ(z ′
i θ̂ )

2 −
∑n

i=1Φ(z ′
i θ̂ )x

′
i[
∑n

i=1 xix
′
i]−1

∑n

i=1 xiΦ(z ′
i θ̂ )

(14)

We have the following consistency result.

Theorem 2. Under Assumptions 1–3, the two-step estimator is consistent for α, that is, α̂2S

p−→α.

Proof. See Appendix . □

Notice that only the component θ̂ of the parameter vector is used at this second stage to predict the true unobserved
participation status. The other components, γ̂ and ρ̂ are only used in the computation of the asymptotic variance estimator,
as described below. In this second step, exclusion restriction is not strictly needed for identification as long as nonlinearity
in the marginal distribution of vi is assumed.

We have the following asymptotic normality result.

Theorem 3. Under the model assumptions the two-step estimator is asymptotically normal, i.e.,

√
n(̂α2S − α)

d−→N(0, σ 2
α ),

with

σ 2
α = α2

E[Λi(θ )φ(z
′
iθ )z

′
i ]V (θ̂ )E[ziφ(z ′

iθ )Λi(θ )]
E[Λ2

i (θ )]2
+ α2

E[Λ2
i (θ )Φ(z ′

iθ )(1 −Φ(z ′
iθ ))]

E[Λ2
i (θ )]2

+ σ 2

E[Λ2
i (θ )]

where

Λi(θ ) = Φ(z ′
iθ ) − E

[
Φ(z ′

iθ )x
′
i

]
E[xix′

i]−1xi

Proof. See Appendix . □

This result is an application of the central limit theorem in the context of two-step estimators and is useful for our
procedure to be readily usable for parametric inference. An expression for the variance estimator σ̂ 2

α of σ 2
α is given in the

Appendix . However, this variance is quite involved and can be difficult to estimate. In practice, a simpler approach to
evaluate the precision of α̂2S and make inference about the treatment effect α is to use a bootstrap.

In sum, the outcome equation requires true participation status, δ∗, which is unobserved to the econometrician. Given
the observed participation, δ, the first step in our estimation procedure amounts to a partial observability probit analysis
on the indicator variable δ using both z and w, which are respectively the instrumental variables driving true participation
and the covariates related to misreporting. The result of this analysis is an estimator, θ̂ , of θ , the coefficient of z, which
allows constructing a proxy δ̂∗ for truly being a participant. By construction, this proxy is purged from both endogeneity
and misreporting, and is then used in lieu of δ∗ in the outcome equation of interest to derive a consistent treatment effect
estimator. The estimate θ̂ obtained from the first step can then be used along with the other model estimates to compute a
consistent variance estimator for the treatment effect estimator.

A natural alternative to our two-step procedure is to estimate our model equations jointly via maximum likelihood (ML).
Under appropriate assumptions, the ML procedures yield more efficient estimators and asymptotically correct estimates of
standard errors. Unfortunately, in many situations, due to sample size and other considerations, the ML estimation can be
both computationally complex and costly to implement, which may limit its use. For example, the correlations between the
outcome equation error and the participation and reporting equations errors, ϕu and ϕv , might not be strongly identified,
resulting in a likelihood function with ridges or multiple local maxima. Also, in some applications, the researcher may
be reluctant to hypothesize a specific joint distribution between the random errors of the observed participation and the
outcome as is required by maximum likelihood. In the Appendix , we briefly discuss the ML estimation of this model under
the assumption of joint (trivariate) normality of the errors. In the same vein, we also briefly discuss how our method can be
extended to the case of binary outcomes.

While this framework focuses on one-sided misreporting (i.e., only false negatives or false positives) which may be more
appealing in specific contexts (e.g., when studying scenarios of participation in risky behavior or activities associated with
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stigma), a more general framework should account for misreporting in both directions (i.e., both false negatives and false
positives). In the following section, we provideMonte Carlo simulations results on the performance of our estimator for both
the one-sided case and the case where there is a small amount of misclassification in the other direction.6

4. Monte Carlo simulations

This section presents the results of Monte Carlo simulations comparing the proposed two-step estimator (2S) with OLS
and IV estimators. Our goal is to consistently estimate α, the (conditional) average treatment effect of participation, δ∗, on an
outcome, y, given by Eq. (1). However, since true participation is unobserved, our task reduces to use the proposed method
to estimate α from Eq. (6) under the assumption that observed (misclassified) participation, δ, arises according to the process
described by Eq. (4), which focuses on false negatives. In the simulations, we also consider a slight departure from Eq. (4)
and allow for small amounts of false positives as described below.

4.1. Simulation setup

The baseline data generating process is simulated as follows. The true treatment indicator, δ∗
i , is given by

δ∗
i = 1 (θ0 + θ1zi + vi ≥ 0) , where zi ∼ N(0, 1), θ0 = 0.1, θ1 = 1.

The outcome equation yi is given by

yi = β0 + xiβ1 + δ∗
i α + ϵi where xi ∼ N(0, 1) β0 = β1 = 1, α = −0.2.

Note that α = −0.2 is the true population treatment effect we seek to estimate.
The econometrician only observes an error-ridden treatment indicator, δi, defined by

δi = δ∗
i 1 (γ0 + γ1wi + ui ≥ c)+ (1 − δ∗

i )1 (ζi < b) ,

where wi ∼ N(0, 1), γ0 = 0.01, γ1 = 2, and b ∈ [0, 1).
The parameter c is the threshold that determines the proportion of false negatives in the sample.7 The disturbance

term, ζi, is drawn from a uniform (0, 1) distribution independently from zi and vi so that the parameter b corresponds
to the rate of false positives. For example, when b = 0 (baseline case), the observed treatment indicator is given by
δi = δ∗

i 1 (γ0 + γ1wi + ui ≥ c)which only allows for false negatives as given by Eq. (4). However, when b > 0, the observed
treatment indicator allows for both false negatives and a (100 × b)% rate of false positives.

The disturbances ϵi, ui and vi are drawn from a trivariate distribution given by

(ϵi, ui, vi) ∼ IID (0,Σ) , where Σ =

⎛
⎝

σ 2 ϕuσ ϕvσ

ϕuσ 1 ρ

ϕvσ ρ 1

⎞
⎠ , σ = 1.

The baseline results assume joint normality although we consider non-normal distributions as well. The values of the
parameters ϕv and ϕu, which are the correlations of the outcome equation error term with participation and misreporting
equation disturbance terms, respectively, are varied in the simulations to examine how various degrees of the endogeneity
of participation and misreporting with respect to the outcome impact the results. We also allow ρ, the correlation between
participation and misreporting to vary. We estimate the treatment effect α and the associated bias using the naive OLS
approach, α̂LS , and the proposed two-step approach, α̂2S . We also estimate the instrumental variable estimators α̂IV1 and
α̂IV2 using z and [z, w] as instruments, respectively.

4.2. Simulation results

We report simulation results averaged over 1000 replications each with sample size 5000 for different levels of false
negatives – 0%, 5%, 10%, 20%, 40% – for ρ ∈ {0, 0.3}, ϕu ∈ {0, 0.2, 0.8} and ϕv ∈ {−0.3, 0, 0.3}. These results are first
presented for b = 0 (i.e., 0% false positives) and, subsequently, also for b ∈ {0.01, 0.05, 0.1} (i.e., 1%, 5% and 10% false
positives). Thus, no misreporting corresponds to the case of 0% false negatives and false positives. The cases of exogenous
participation and exogenous misreporting correspond to ϕu = ϕv = 0. Table 1 presents the results of the Monte Carlo
simulations for OLS, IVs, and the proposed two-step (2S) estimators when the errors are jointly normal, the false positive
rate is 0%, and ρ = 0.3. We report both the OLS estimates using the true treatment indicator, δ∗

i (OLS-T) and the observed
treatment indicator δi (OLS-O). Although δ

∗
i is unobserved to the econometrician, the OLS-T estimates provide a theoretical

benchmark for the estimates obtainedusing themisclassified δi.We also report both the IV estimates using z as an instrument
(IV-1) and those using [z, w] as instruments (IV-2). The proposed estimator is denoted (2S) in the tables.

6 Extending this framework to the two-sided endogenous misreporting case is not straightforward. It would require at least two sets of excluded

covariates, that is, w1 and w2 , each associated with one of the misreporting directions, and possibly other additional functional form/distributional

assumptions for identification.
7 By appropriately choosing the value of c , one can simulate varying rates of misreporting.
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Table 1

Monte Carlo simulations.

False
ϕu ϕv OLS-T OLS-O

IV-1 IV-2
2S

Negatives [x, z] [x, z, w]

0%

0

−0.3 −0.5523 −0.5523 −0.2006 −0.2003 −0.1998

0 −0.1997 −0.1997 −0.2014 −0.2013 −0.2009

0.3 0.1519 0.1519 −0.1951 −0.1954 −0.1963

0.2

−0.3 −0.5524 −0.5524 −0.2036 −0.2033 −0.2030

0 −0.2021 −0.2021 −0.2011 −0.2012 −0.1999

0.3 0.1508 0.1508 −0.1983 −0.1986 −0.1972

0.8

−0.3 −0.5507 −0.5507 −0.1991 −0.1988 −0.1980

0 −0.1994 −0.1994 −0.2003 −0.2003 −0.1993

0.3 0.1523 0.1523 −0.1985 −0.1987 −0.1962

5%

0

−0.3 −0.5499 −0.5066 −0.2041 −0.2152 −0.1997

0 −0.1987 −0.1834 −0.2018 −0.2127 −0.1980

0.3 0.1504 0.1357 −0.2069 −0.2188 −0.2012

0.2

−0.3 −0.5513 −0.4827 −0.2061 −0.2166 −0.2001

0 −0.2008 −0.1611 −0.2063 −0.2168 −0.2009

0.3 0.1513 0.1615 −0.2054 −0.2167 −0.2009

0.8

−0.3 −0.5506 −0.4072 −0.2044 −0.2158 −0.2013

0 −0.1993 −0.0844 −0.2039 −0.2160 −0.2007

0.3 0.1516 0.2371 −0.2036 −0.2146 −0.2003

10%

0

−0.3 −0.5515 −0.4649 −0.1949 −0.2345 −0.2000

0 −0.2013 −0.1715 −0.1936 −0.2319 −0.1991

0.3 0.1524 0.1250 −0.1922 −0.2323 −0.1992

0.2

−0.3 −0.5499 −0.4203 −0.1960 −0.2350 −0.2008

0 −0.1989 −0.1266 −0.1942 −0.2305 −0.1973

0.3 0.1518 0.1677 −0.1952 −0.2339 −0.1995

0.8

−0.3 −0.5513 −0.2916 −0.1953 −0.2340 −0.1998

0 −0.1986 0.0053 −0.1936 −0.2331 −0.1978

0.3 0.1514 0.2987 −0.1937 −0.2350 −0.2005

20%

0

−0.3 −0.5508 −0.4065 −0.1674 −0.2668 −0.1984

0 −0.1990 −0.1496 −0.1681 −0.2666 −0.1989

0.3 0.1501 0.1050 −0.1690 −0.2681 −0.2002

0.2

−0.3 −0.5518 −0.3421 −0.1733 −0.2728 −0.2036

0 −0.2004 −0.0858 −0.1690 −0.2665 −0.1992

0.3 0.1498 0.1693 −0.1730 −0.2743 −0.2026

0.8

−0.5 −0.5511 −0.1443 −0.1690 −0.2679 −0.1988

0 −0.2015 0.1097 −0.1675 −0.2668 −0.1990

0.3 0.1512 0.3680 −0.1709 −0.2728 −0.2034

40%

0

−0.3 −0.5502 −0.3161 −0.1215 −0.3740 −0.1981

0 −0.2008 −0.1198 −0.1219 −0.3814 −0.2027

0.3 0.1506 0.0783 −0.1210 −0.3746 −0.1987

0.2

−0.3 −0.5501 −0.2181 −0.1160 −0.3687 −0.1963

0 −0.2015 −0.0230 −0.1213 −0.3852 −0.2041

0.3 0.1507 0.1743 −0.1191 −0.3788 −0.2003

0.8

−0.3 −0.5509 0.0675 −0.1207 −0.3757 −0.1993

0 −0.2005 0.2646 −0.1189 −0.3789 −0.2016

0.3 0.1514 0.4607 −0.1211 −0.3783 −0.2000

Notes: The true treatment effect is α = −0.2. Each calibration in the Monte Carlo Design involved 1000 replications each of size 5000. We report results

for five false negative rates (0%, 5%, 10%, 20%, and 40%) — the proportion of true participants who misreport their status. ϕv and ϕu are correlations that

indicate the extents of endogeneity of participation and misreporting, respectively. The correlation between participation and misreporting is ρ = 0.3.

Also, the error terms are jointly normally distributed and the false positive rate is 0%.

The naive OLS estimates using δi (OLS-O) show that not only is the OLS estimator inconsistent as asserted in Theorem 1,
but also yields thewrong (i.e., positive) sign,whether participation is exogenous or endogenous. Sign switching is observed at
all nonzero false negative rates i.e. 5%, 10%, 20% and 40% and is more pronounced at higher values of ϕu. These results persist
even under the special case of exogenous misreporting (ϕu = 0). The IV estimates (IV-1) and (IV-2) show that the classic IV
estimator is also inconsistent and sometimes worse than the OLS, albeit keeping the correct (negative) sign.8 Interestingly,
(IV-1) shows expansion biases while (IV-2) shows attenuation biases. This confirms as we explained in Section 2.3, that we
cannot generally sign the bias in the IV estimator when misreporting is endogenous.

In contrast, the proposed two-step estimator (2S), presented in the last column of Table 1, yields consistent estimates
of the true treatment effect and by comparison, is superior to both the OLS and IV estimators under both endogenous and
exogenousmisreporting or participation. Also, the proposed estimator remains accurate and performs remarkablywell, even
when the rate of false negatives is substantially high in the data. Moreover, there is no cost in doing our procedure since the

8 This is actually a better set of simulations for IV-2 because the covariate wi can be used as an additional instrument to improve the IV. Additional

simulations with wi being endogenous yielded worse results for this IV while the proposed estimator (2S) remained consistent.
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Table 2

Sensitivity of the proposed estimator to misspecification.

False
ϕu Baseline

Types of misspecification of baseline

False positives Distribution of errors

Negatives 1% 5% 10% Γ (3, 1) χ2
(1)

0%

0 −0.2000 −0.2021 −0.2141 −0.2291 −0.2047 −0.2110

0.2 −0.1970 −0.2003 −0.2126 −0.2257 −0.1971 −0.2077

0.8 −0.1981 −0.2008 −0.2129 −0.2266 −0.1967 −0.2090

5%

0 −0.2041 −0.2057 −0.2191 −0.2317 −0.2077 −0.2059

0.2 −0.1974 −0.2074 −0.2208 −0.2312 −0.1935 −0.2094

0.8 −0.1989 −0.2035 −0.2169 −0.2320 −0.1957 −0.2082

10%

0 −0.1987 −0.2029 −0.2169 −0.2323 −0.1972 −0.2051

0.2 −0.2001 −0.2060 −0.2207 −0.2331 −0.2007 −0.2042

0.8 −0.1983 −0.2027 −0.2171 −0.2350 −0.1955 −0.2057

20%

0 −0.2018 −0.2063 −0.2234 −0.2428 −0.2013 −0.2037

0.2 −0.1989 −0.2056 −0.2229 −0.2411 −0.1966 −0.2064

0.8 −0.2003 −0.2036 −0.2210 −0.2377 −0.1970 −0.2073

40%

0 −0.1961 −0.2066 −0.2314 −0.2652 −0.1873 −0.2058

0.2 −0.2000 −0.2085 −0.2333 −0.2628 −0.1977 −0.2107

0.8 −0.2009 −0.2087 −0.2336 −0.2598 −0.2004 −0.2104

Endogeneity of predictor Omission of predictor

corr(w, ϵ) corr(w, u) corr(w, v) omitted omitted∗

= .5 = .5 = .5 w w2

0%

0 −0.2000 −0.1975 −0.1975 −0.1738 −0.1972 −0.2009

0.2 −0.1970 −0.2008 −0.2008 −0.1765 −0.2017 −0.1986

0.8 −0.1981 −0.1995 −0.1995 0.1754 −0.1980 −0.1967

5%

0 −0.2041 −0.1988 −0.1988 −0.1752 −0.1956 −0.2035

0.2 −0.1974 −0.2012 −0.2013 −0.1773 −0.1979 −0.2012

0.8 −0.1989 −0.1985 −0.1984 −0.1743 −0.1981 −0.1981

10%

0 −0.1987 −0.2017 −0.2018 −0.1776 −0.1965 −0.2001

0.2 −0.2001 −0.1972 −0.1973 −0.1741 −0.2008 −0.1990

0.8 −0.1983 −0.1991 −0.1992 −0.1759 −0.2013 −0.2009

20%

0 −0.2018 −0.1954 −0.1954 −0.1712 −0.2004 −0.1981

0.2 −0.1989 −0.2008 −0.2008 −0.1763 −0.1996 −0.1997

0.8 −0.2003 −0.1988 −0.1989 −0.1742 −0.2008 −0.1990

40%

0 −0.1961 −0.2003 −0.2004 −0.1732 −0.2022 −0.2027

0.2 −0.2000 −0.1974 −0.1974 −0.1705 −0.1975 −0.2025

0.8 −0.2009 −0.2004 −0.2000 −0.1732 −0.1969 −0.2037

Notes: The true treatment effect is α = −0.2. We fix ρ = ϕv = 0. Each calibration in the Monte Carlo Design involved 1000 replications each of size 5000.

We report results for five false negatives rates (0%, 5%, 10%, 20%, and 40%) and false positive rates of (0%, 1%, 5%, and 10%). The correlation ϕu indicates the

extent of endogeneity of misreporting.
∗ Here, the true misreporting equation includes both w and w2 , but the estimation omits w2 .

proposed estimator remains as good as the OLS and the IV when there is 0% false negatives and participation is exogenous

(ϕv = 0). This performance is not sensitive to the choice of parameters such as the variance of the outcome equation error

or the correlation between the error terms in the participation and misreporting equations (see, e.g., the results for ρ = 0

in the ‘‘Baseline’’ column of Table 2).

To further assess the robustness of our proposed estimator, we investigate its sensitivity to misspecification in a number

of directions. First, we allow the reported participation to include both false negatives (as before) and a small amount of false

positives. We consider false positive rates of 1%, 5%, and 10%. Second, we allow for the error terms to be non-normal. We

consider both the trivariate Gamma distribution and the trivariate Chi-squared distribution as alternatives to allow more

skewness and kurtosis in the distributions of error terms.9 Third, we allow for the misreporting equation to be misspecified

by considering the case where the predictor is unavailable to the researcher (i.e., only x is included) or by introducing a

quadratic term in w in the data generating process but which is omitted by the researcher in the estimation. Fourth, we

introduce correlation between the predictors of misreporting w and the error terms in both participation and outcome

equations.

Table 2 summarizes the results where ρ and ϕv are fixed to zero (exogenous participation), and the focus is on the

sensitivity to different degrees of endogeneity of misreporting ϕu and various rates of false negatives.10 These results show

that at any false positive rate the bias increases with false negative rates. Interestingly, for small amounts of false positives,

9 These multivariate distributions can be simulated using the Copulas method or the inverse transformation method as described in Gentle (2002)
10 Results for other combinations of parameter values are similar and are available upon request.



P. Nguimkeu, A. Denteh and R. Tchernis / Journal of Econometrics 208 (2019) 487–506 497

Table 3

Intervals of α yielding sign-switching in the OLS.

False
ϕu

Sign-switching region

Negatives σ = 1 σ = 4

5%

−0.8 [0, 0.2307] [0, 0.9227]
−0.2 [0, 0.0577] [0, 0.2309]
0 ∅ ∅

0.2 [−0.0577, 0] [−0.2309, 0]
0.8 [−0.2307, 0] [−0.9227, 0]

10%

−0.8 [0, 0.4054] [0, 1.6216]

−0.2 [0, 0.1033] [0, 0.8368]

0 ∅ ∅

0.2 [−0.1033, 0] [−0.8368, 0]

0.8 [−0.4054, 0] [−1.6216, 0]

40%

−0.8 [0, 1.1347] [0, 5.3786]

−0.2 [0, 0.3399] [0, 1.3597]

0 ∅ ∅

0.2 [−0.3399, 0] [−1.3597, 0]

0.8 [−1.1347, 0] [−5.3786, 0]

Notes: Results are reported for three false negatives rates (5%, 10%, and 40%). The correlation ϕu indicates

the extent of endogeneity of misreporting; ϕv and ρ are fixed to 0.

the proposed estimator still performs quite well, although it gets worse with higher rates of false positives. Specifically,
when false positive rates range from 1% to 5%, the median value of the proposed estimator (2S) ranges between −0.2042
and −0.2180 for all ranges of false negatives in our setting. The proposed estimator is robust to non-normality of the error
terms and remains consistent when the true error distributions are Gamma or Chi-Squared in this setting.

When the misreporting equation is misspecified by including only the covariates from the outcome equation (i.e., only x)
orwhen this equation includes a quadratic term inw that is omitted by the researcher in the estimation, the 2S estimator still
performs well. Finally, the 2S estimator is robust to introducing correlations between the predictorw and both the outcome
and misreporting equation errors. When w is correlated with the outcome equation or the misreporting equation errors,
the 2S estimator remains consistent. However, the 2S estimator performs poorly, exhibiting an attenuation bias just like the
IV-1, when w and the participation equation error are correlated. Our recommendation is to access w and z from different
data sources to minimize the chances of having w endogenous to true participation in practice.

There are a few additional facts that are worth mentioning. On the one hand, it is not surprising that the OLS estimator
only works well when there are 0% false negatives and participation is exogenous (ϕv = 0). On the other hand, the IV
estimator tends to work well for low levels of false negatives (0%–5%) but gets worse for higher false negative rates (10% and
higher). As explained earlier, the sign-reversal regions for the OLS depends on the quantity A/(B − C) (given in Theorem 1),
which varies with ϕv , ϕu, σ , and the extent of misclassification. Even when participation is exogenous (i.e. ϕv = 0),
various degrees of endogeneity of misreporting (e.g., ϕu ∈ {−0.8, −0.2, 0, 0.2, 0.8, }), various sizes of the error variance
(e.g., σ ∈ {1, 4}), and various rates of false negatives (e.g., 5%, 10%, 40%) yield different sign-switching regions for the OLS,
as shown in Table 3.

Table 3 shows the ranges of the true treatment effects α for which the OLS estimator α̂LS would yield thewrong (opposite)
signs in our simulation design. For example, negative correlations between misreporting and outcome errors yield positive
intervals of the treatment effect for which the OLS takes the wrong (negative) sign, while positive correlations between
misreporting and outcome errors yield negative intervals of the true treatment effect for which the OLS takes the wrong
(positive) sign. In all cases, higher levels of endogeneity of misreporting, higher rates of false positives or greater error
variance in the outcome equation yieldwider sign-reversal intervals. It is onlywhenmisreporting is also exogenous (ϕu = 0)
that the OLS keeps the same sign as the true treatment effect (albeit still biased), so that the sign-switching set is empty (see
Table 3).

Finally, Lewbel (2007)’s estimator also worked well in our setting for the special cases where both participation
and misreporting where exogenous. However, Lewbel’s estimator displayed large biases and sign reversals under some
endogeneity cases, which is not surprising since this limitation is clearly emphasized in Lewbel (2007). These additional
results are available from the authors upon request.11

5. Empirical example

We illustrate our proposed method with an empirical example examining the impact of SNAP on adult body mass index
(BMI).12 Asmentioned in Section 1, amajor difficulty in estimating SNAP’s impacts is the high reporting error rates in national
surveys, with false negatives being more prevalent than false positives.

11 It is easy to slightly modify our set up to include the IV required by Lewbel’s identification strategy. For that purpose, one can add a binary indicator

in the true participation equation, since, as explained by Lewbel (2007), only two points of support are needed for the instrument to identify the treatment

effect in the case of one-sided misreporting.
12 BMI is defined as weight in kilograms divided by height in meters squared.
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Table 4

Summary statistics by SNAP participation status.

Non-SNAP SNAP

Mean Std. Error Mean Std. Error

Body Mass Index 28.11 (0.25) 29.85 (0.52)

Age 38.96 (0.09) 38.29 (0.21)

Hispanic 0.08 (0.01) 0.11 (0.02)

Black 0.21 (0.03) 0.38 (0.04)

Household Size 3.45 (0.06) 3.77 (0.09)

WIC 0.06 (0.00) 0.21 (0.02)

SSI 0.06 (0.01) 0.26 (0.02)

AFDC 0.02 (0.00) 0.45 (0.03)

Mother’s Education (High school or higher) 0.52 (0.02) 0.43 (0.04)

Number of children 1.81 (0.05) 2.23 (0.08)

Household with child<5 0.14 (0.01) 0.22 (0.02)

Gross Income SNAP Eligible Household (130% FPL) 0.39 (0.02) 0.86 (0.01)

Biometric 0.16 (0.02) 0.23 (0.04)

EBT card 0.62 (0.02) 0.55 (0.03)

Phone Interview 0.36 (0.01) 0.25 (0.02)

Net Family Income (2004 Thousand Dollars) 22.04 (0.506) 12.644 (0.364)

Observations 4307 1163

Notes: Standard errors in parentheses are adjusted for the complex survey design of theNLSY79. Based on the

1996–2004 biennial waves of the NLSY79, restricted to females with income lower than 250% of the federal

poverty level.

We consider a simple treatment effects model relating BMI to a binary indicator of SNAP participation. Since SNAP

participation is not randomly assigned and possibly misreported, OLS and IV estimates are biased and inconsistent for the

average treatment effect.13 We present estimates of SNAP’s effect on BMI using OLS, IV, and our proposed two-step (2S)

estimators using the 1996–2004 waves of female respondents of the restricted-use National Longitudinal Survey of Youth -

1979 (NLSY79).14

As discussed in Section 3, estimation of our 2S estimator proceeds in two steps. We first estimate a partial observability

probit model described in Eq. (4) to obtain the parameters of our true participation and misreporting equations. The second

step uses the predicted probabilities of true participation to estimate the effect of SNAP on BMI from Eq. (13).

To implement the 2S estimator, two sets of covariates need to be distinguished: instruments for participation (zi in Eq. (2))

and predictors of misreporting (wi in Eq. (3)). Regarding zi, the excluded instruments for participation are whether the

respondent’s state uses a biometric identification technology (‘‘Biometric") and the percentage of SNAP benefits issued by

the state via Electronic Benefit Cards (‘‘EBT Card") (Almada et al., 2016).

As for wi, we take the set of regressors in the outcome equation augmented with both the biometric identification

technology mentioned above (‘‘Biometric’’) as well as a binary indicator for whether the interview was conducted by

telephone or in person (‘‘Phone Interview’’). Intuitively, the latter captures variations in interview mode while the former

could increase stigma, both of whichmight be correlated withmisreporting, in addition to personal characteristics.15 Notice

that the vectors zi and wi are different albeit overlapping, as required by the theory.

The summary statistics in Table 4 by SNAP participation status suggest that participants are largely negatively selected

in the program. In Table 5, we report two sets of regression estimates for the OLS, IV, and 2S. The first set of results uses five

covariates (Age, Black, Hispanic, Household size, Family income) and only Biometric as the instrument. The second set uses

eleven covariates (addingNumber of children,Mother’s education, participation inWIC, AFDC/TANF and SSI, Householdwith

child) and Biometric EBT Card as instruments. The estimates from these methods yield different and sometimes opposite (in

sign) results.

The OLS estimator suggests a positive and statistically significant effect of SNAP participation on BMI of about 0.929 BMI

units for the first set and 1.006 BMI units for the second set. The IV estimator which uses Biometric as instrument suggests

a 10.62 decrease in BMI units, while the one that uses Biometric and EBT Card as instruments shows only a 0.576 decrease

in BMI units, although not statistically significant.16 In contrast, our proposed estimator yields a negative and statistically

significant effect of −3.093 for the First Set and −3.187 for the Second Set scenarios. These results show that while the OLS

13 See Gundersen (2015) for a review of the literature on the SNAP-obesity relationship.
14 We restrict our analysis sample to females who are within 250% of the federal poverty level. Determining true SNAP eligibility status is almost

impossible with most national surveys due to the lack of a comprehensible set of variables needed to determine each respondent’s true eligibility. Thus,

we follow the existing literature and use 250% of the federal poverty level to determine our eligible sample. This type of sample restriction is common in

the literature which also favors thresholds higher than the gross-income eligibility threshold of 130% (Mykerezi and Mills, 2010; Almada et al., 2016).
15 Also, we include inwi a dummy for being eligible for SNAP based on the Gross Income test (130% of the federal poverty level). We thank an anonymous

referee for pointing these issues out.
16 See Table C.2 in Appendix C for the first stage IV results.
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Table 5

The impact of SNAP on BMI.

Dependent Variable: BMI

Variable Set of Covariates OLS IV 2S

SNAP Participation

First Set 0.929** −10.62 −3.093*

(0.379) (12.61) (1.804)

Second Set 1.006** −0.576 −3.187**

(0.432) (7.849) (1.538)

Notes: Standard errors in parenthesis and bootstrapped (500 replications) for the 2S estimator. Results are

based on the 1996–2004 biennial waves of the NLSY79, restricted to females with income lower than 250% of

the federal poverty level. For the First Set, regressors not reported include respondents’ age, race, household

size, household income). For the Second Set, additional regressors are number of children, mother’s educa-

tion, square of income, time fixed effects, and indicators for receivingWIC benefits, AFDC/TANF, SSI benefits,

and having an infant living in home.
* p < 0.10, ** p < 0.05, *** p < 0.010.

and the 2S estimators are stable, significant and of opposite signs, the IV estimator is unstable and varies substantially with
the instruments as our simulations suggested earlier.17

This empirical illustration is undoubtedly limited, and the results should be interpreted with caution since they are only
suggestive. For instance, even if our proposed method estimates α consistently, it may not represent a causal effect of SNAP
on obesity due to possible confounding by omitted variables in this application.

Subject to these caveats, the empirical example corroborates the simulation results obtained in Section 4. First, there is
a possible sign reversal between the OLS and the 2S estimates. Second, the IV and the 2S estimators have the same sign, but
the IV has a smaller or a larger magnitude.18 Also, the results obtained from these methods could lead to radically different
and possibly contradictory policy advice.

6. Conclusion

This paper examines the identification and estimation of the conditional average treatment effect of a binary regressor in
the presence of endogenous misreporting and possibly endogenous participation. We derive and prove the consistency and
asymptotic normality of our proposed two-step estimator and show that OLS and IV estimators are inconsistent and may
yield wrong (opposite) signs from the true effect.

We also provide Monte Carlo simulations to this effect and illustrate our method with an empirical example examining
the impact of SNAP participation on obesity. Previous studies on misclassified binary regressors are mostly concerned with
exogenous or random misreporting (Aigner, 1973; Brachet, 2008; Lewbel, 2007; Mahajan, 2006; Frazis and Loewenstein,
2003), where it is commonly assumed that misclassification probabilities depend only on the true treatment status and
are thus, independent of measurement errors and other regressors. Our two-step estimator relaxes this arguably strong
assumption and shows that, when the researcher has access to information related to why individuals misreport, the
treatment effect can be consistently estimated.

To our knowledge, this paper is the first attempt to provide point estimates of treatment effect in the context of
endogenous misreporting of a binary treatment variable. This is important because of the prevalence of misreporting in
public programs and survey data (Meyer et al., 2009; Bollinger, 1996; Kane and Rouse, 1995; Kane et al., 1999; Brachet,
2008). While this paper focused on one-sided endogenous misreporting when participation is possibly endogenous, future
work should allow for bidirectional misreporting (i.e., false negatives and false positives). It would also be useful to show
the level of dependence of our approach on distributional and functional form assumptions by considering parametric or
semi-parametric estimation approaches.

Appendix A. Proofs

A.1. Proof of Theorem 1

Proof. Biasedness: By the Frisch–Waugh–Lovell Theorem, see, e.g. Davidson andMacKinnon (2004, page 68), the regression

My = Mδα + v

17 Table C.1 in Appendix C presents the results of the first step of the 2S estimator. Panel A of Table C.1 shows both instruments have the expected signs

but only ‘‘EBT Card" is statistically significantly correlated with true participation. Also, Panel B of Table C.1 suggests that being interviewed by phone is

negatively correlated with the probability of truthful reporting of participation.
18 Note that the sign reversal phenomenon obtained in this empirical illustration is neither a general result nor does its nonoccurrence invalidate the

results herein. See Section 2.2 for further discussions.
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yields the same least squares estimate of α as the regression equation of interest (8). It follows that,

α̂LS = (δ′Mδ)−1δ′My. (15)

This implies that α̂LS − α = (δ′Mδ)−1δ′Mε.
Hence, E[̂αLS − α|X, δ] = (δ′Mδ)−1δ′ME[ε|X, δ] ̸= 0, since E[ε|δ, X] ̸= 0 by the correlation of ε and δ through u and v.

Inconsistency: We can write

α̂LS − α = (δ′Mδ)−1δ′Mϵ =
(
δ′Mδ

n

)−1
δ′Mε

n

=
(
δ′Mδ

n

)−1 (
δ′Mϵ

n
+ δ′M(δ∗ − δ)α

n

)
by Eq. (7) (16)

Notice that,

δ′Mδ

n
= δ′[I − X(X ′X)−1X ′]δ

n
= δ′δ

n
− δ′X

n

(
X ′X

n

)−1
X ′δ

n

Hence, by the Weak Law of Large Numbers and the Slutsky’s lemma, we have

δ′Mδ

n

p−→E(δ2i ) − E(δix
′
i)E(xix

′
i)

−1
E(δixi)

By amatrix extension of the Cauchy–Schwarz inequality (see Tripathi, 1999), we know that E(δ2i )−E(δix
′
i)E(xix

′
i)

−1
E(δixi) >

0. The Continuous Mapping Theorem then implies that

(
δ′Mδ

n

)−1
p−→
[
E(δ2i ) − E(δix

′
i)E(xix

′
i)

−1
E(δixi)

]−1
. (17)

Likewise, the term
δ′Mϵ

n
can also be decomposed as

δ′Mϵ

n
= δ′[I − X(X ′X)−1X ′]ϵ

n
= δ′ϵ

n
− δ′X

n

(
X ′X

n

)−1
X ′ϵ

n
.

Then, using the same arguments as above we have

δ′Mϵ

n

p−→E(δiϵi) − E(δix
′
i)E(xix

′
i)

−1
E(xiϵi) = E(δiϵi),

where the last equality follows from Assumption 1.

Using the expression of δi given by Eq. (4) and the trivariate normality of (ϵi, ui, vi), it can be shown by integration that

E[δiϵi] = E

[
ϵi1
(
z ′
iθ + vi ≥ 0, w′

iγ + ui ≥ 0
)]

= E

[
Pr[ui ≥ −w′

iγ , vi ≥ −z ′
iθ, ρ]E

[
ϵi|ui ≥ −w′

iγ , vi ≥ −z ′
iθ
]]

= E

[
σϕvφ

(
−z ′

iθ
)
Φ

(
w′

iγ − ρz ′
iθ√

1 − ρ2

)
+ σϕuφ

(
−w′

iγ
)
Φ

(
z ′
iθ − ρw′

iγ√
1 − ρ2

)]
,

whereΦ(·) and φ(·) are the CDF and PDF of the standard normal. It follows that

δ′Mϵ

n

p−→E

[
σϕvφ

(
−z ′

iθ
)
Φ

(
w′

iγ − ρz ′
iθ√

1 − ρ2

)
+ σϕuφ

(
−w′

iγ
)
Φ

(
z ′
iθ − ρw′

iγ√
1 − ρ2

)]
. (18)

Finally, using the same reasoning as above for the term
δ′M(δ∗ − δ)α

n
, we have

δ′M(δ∗ − δ)α

n

p−→ − αE(δix
′
i)E(xix

′
i)

−1
E[(δ∗

i − δi)xi]. (19)

The desired result follows by taking (19), (18) and (17) to Eq. (16). □

A.2. Proof of Theorem 2

Proof. We can write

α̂2S = (δ̂∗′
M δ̂∗)−1δ̂∗′

Mδ∗α + (δ̂∗′
M δ̂∗)−1δ̂∗′

Mϵ (20)
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By the exogeneity of X and Z given by Assumption 1, the consistency of θ̂ , the continuity of Φ(·) and the law of large
numbers, we have

δ̂∗′
Mϵ

n

p−→E[Φ(z ′
iθ )ϵi] = E

[
Φ(z ′

iθ )E[ϵi|zi]
]

= 0,

so that the second termon the RHS of Eq. (20) goes to zero.We also have, byAssumption 2, the consistency of θ̂ , the continuity
ofΦ(·) and the law of large numbers,

δ̂∗′
M δ̂∗

n

p−→E

[
Φ(z ′

iθ )
2
]
− E

[
Φ(z ′

iθ )x
′
i

]
E[xix′

i]−1
E

[
xiΦ(z ′

iθ )
]

and

δ̂∗′
Mδ∗

n

p−→ E

[
Φ(z ′

iθ )δ
∗
i

]
− E

[
Φ(z ′

iθ )x
′
i

]
E[xix′

i]−1
E

[
xiδ

∗
i

]

= E

[
Φ(z ′

iθ )E[δ∗
i |zi]

]
− E

[
Φ(z ′

iθ )x
′
i

]
E[xix′

i]−1
E

[
xiE[δ∗

i |zi]
]

= E

[
Φ(z ′

iθ )
2
]
− E

[
Φ(z ′

iθ )x
′
i

]
E[xix′

i]−1
E

[
xiΦ(z ′

iθ )
]

where the last display follows from the fact that E[δ∗
i |zi] = Φ(z ′

iθ ), as implied by Eq. (2). Hence,

(δ̂∗′
M δ̂∗)−1δ̂∗′

Mδ∗ =
(
δ̂∗′

M δ̂∗

n

)−1

δ̂∗′
Mδ∗

n

p−→ 1

so that

α̂2S

p−→α □

A.3. Proof of Theorem 3

Proof. We can write

√
n(̂α2S − α) =

(
δ̂∗′

M δ̂∗

n

)−1 (
δ̂∗′

M(δ∗ − δ̂∗)√
n

)
α +

(
δ̂∗′

M δ̂∗

n

)−1

δ̂∗′
Mϵ√
n

=
(
δ̂∗′

M δ̂∗

n

)−1 (
δ̂∗′

M(Ψ ∗ − δ̂∗)√
n

)
α +

(
δ̂∗′

M δ̂∗

n

)−1

δ̂∗′
M(α(δ∗ − Ψ ∗) + ϵ)√

n

= q−1
n

[√
nV1nα +

√
nV2n

]
(21)

where

qn = δ̂∗′
M δ̂∗

n
, V1n = δ̂∗′

M(Ψ ∗ − δ̂∗)

n
, and V2n = δ̂∗′

M(α(δ∗ − Ψ ∗) + ϵ)

n
,

with Ψ ∗ = Ψ ∗(θ ) = [Φ(z ′
1θ ), . . . ,Φ(z ′

nθ )]′.

Denote Λ̂i = δ̂∗
i −

(
1

n

∑n

i=1 δ̂
∗
i x

′
i

)(
1

n

∑n

i=1 xix
′
i

)−1

xi and byΛi = Φ(z ′
iθ )−E

[
Φ(z ′

iθ )x
′
i

]
E[xix′

i]−1xi its probability limit.

Notice that qn = 1

n

∑n

i=1 Λ̂
2
i . We know, from the consistency results above that

qn
p−→ q = E

[
Φ(z ′

iθ )
2
]
− E

[
Φ(z ′

iθ )x
′
i

]
E[xix′

i]−1
E

[
Φ(z ′

iθ )xi
]

= E[Λ2
i ]. (22)

Since δ̂∗ = Ψ ∗(θ̂ ), then expanding Ψ ∗(θ ) in a Taylor series about θ̂ , we have

Ψ ∗ − δ̂∗ a= ψ∗(θ̂ )(θ − θ̂ )

where ‘‘
a=’’ denotes asymptotic equivalence in probability, and ψ∗(θ ) is the vector of partial derivatives given by

ψ∗(θ ) = ∂Ψ ∗(θ )

∂θ ′ = [φ(z ′
1θ )z1, . . . , φ(z

′
nθ )zn]′.

Therefore

√
nV1n

a= δ̂∗′
Mψ∗(θ̂ )

n

√
n(θ − θ̂ ) = 1

n

n∑

i=1

Λ̂iφ(z
′
i θ̂ )z

′
i

√
n(θ − θ̂ ).
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A direct application of the central limit theorem then gives,

√
nV1nα

d−→N(0, α2ν21 ),

where

ν21 = E[Λiφ(z
′
iθ )z

′
i ]V (θ̂ )E[ziφ(z ′

iθ )Λi]. (23)

Likewise,

√
nV2n = δ̂∗′

M(α(δ∗ − Ψ ∗) + ϵ)√
n

= 1√
n

n∑

i=1

Λ̂iζi

where ζi = α(δ∗
i −Φ(z ′

iθ )) + ϵi, with E[ζi|zi] = 0 and Var[ζi|zi] = α2Φ(z ′
iθ )(1 −Φ(z ′

iθ )) + σ 2.
Hence, by the central limit theorem,

√
nV2n

d−→N(0, σ 2
2 ),

where

σ 2
2 = E[Λi

(
α2Φ(z ′

iθ )(1 −Φ(z ′
iθ )) + σ 2

)
Λi] (24)

= α2
E[Λ2

i Φ(z ′
iθ )(1 −Φ(z ′

iθ ))] + σ 2
E[Λ2

i ].
Finally, the asymptotic covariance term between the elements of

√
nV1nα and

√
nV2n is

σ12 = E[Λiφ(z
′
iθ )z

′
i ]E[(θ − θ̂ )

(
α(δ∗

i −Φ(z ′
iθ )) + ϵi

)
]E[Λi]α (25)

= −E[Λiφ(z
′
iθ )z

′
i ]E[θ̂ ϵi]E[Λi]α.

It then follows from Slutsky’s Lemma, (21), (22), (23), (24) and (25) that

√
n(̂α2S − α)

d−→N(0, σ 2
α ), where

σ 2
α = α2ν21

q2
+ 2

σ12

q2
+ σ 2

2

q2

= α2
E[Λiφ(z

′
iθ )z

′
i ]V (θ̂ )E[ziφ(z ′

iθ )Λi]
E[Λ2

i ]2
− 2

αE[Λiφ(z
′
iθ )z

′
i ]E[θ̂ ϵi]E[Λi]

E[Λ2
i ]2

+ α2
E[Λ2

i Φ(z ′
iθ )(1 −Φ(z ′

iθ ))]
E[Λ2

i ]2
+ σ 2

E[Λ2
i ]
.

With θ̂ and ϵi uncorrelated conditionally on zi and wi the covariance term is zero, and the variance reduces to

σ 2
α = α2

E[Λiφ(z
′
iθ )z

′
i ]V (θ̂ )E[ziφ(z ′

iθ )Λi]
E[Λ2

i ]2
+ α2

E[Λ2
i Φ(z ′

iθ )(1 −Φ(z ′
iθ ))]

E[Λ2
i ]2

+ σ 2

E[Λ2
i ]
.

A consistent estimator for this asymptotic variance can be defined by

σ̂ 2
α = α̂2

2S ν̂
2
1

q̂2
+ α̂2

2S ν̂
2
2

q̂2
+ σ̂ 2

q̂

where
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(
1

n

n∑

i=1

Λ̂iφ(z
′
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i
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(
1

n
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)
,

ν̂22 = 1

n
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Λ̂2
i Φ(z ′
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(
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)
,
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,
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n
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i = 1

n
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′
i
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n
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xiΦ(z ′
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)
,

and α̂2S is our proposed estimator of α. □
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Appendix B. Extensions

B.1. Maximum likelihood estimation

Let Assumptions 1–4 hold and assume that the covariance matrix of the joint distribution of errors Σ defined in (5) is
positive definite. Then our model can be estimated jointly using full information maximum likelihood. The log-likelihood
function is built from the joint density of yi, δ

∗
i and di, which we write as the product of the conditional and the marginal

densities

f (δ∗
i , di, yi) = f (δ∗

i , di|yi)f (yi).
To derive the conditional distributions, we use results for the trivariate normal, and write

vi = ρ1ϵi/σ + ρ2ui + ηi, with ηi|ϵi, ui ∼ N(0, κ2)

where ρ1, ρ2 and κ2 are defined in terms of the original parameters ϕv , ϕu and ρ by:19

ρ1 = ϕv − ρϕu

1 − ϕ2
u

, ρ2 = ρ − ϕvϕu

1 − ϕ2
u

, κ2 = 1 − ρ2
1 − ρ2

2 − 2ρ1ρ2ϕu

DenoteΘ = (θ ′, γ ′, ρ, ϕu, ϕv, β ′, α, σ 2)′ the vector of all the parameters of the model. Then,

Υ11i(Θ) = f (δ∗
i = 1, di = 1|yi) = Φ2

⎛
⎝ z ′

iθ + ρ1(yi − α − x′
iβ)/σ√

ρ2
2 + κ2

, w′
iγ ,

ρ2√
ρ2
2 + κ2

⎞
⎠

Υ10i(Θ) = f (δ∗
i = 1, di = 0|yi) = Φ

⎛
⎝ z ′

iθ + ρ1(yi − α − x′
iβ)/σ√

ρ2
2 + κ2

⎞
⎠− Υ11i(Θ)

Υ0i(Θ) = f (δ∗
i = 0|yi) = 1 −Φ

⎛
⎝ z ′

iθ + ρ1(yi − x′
iβ)/σ√

ρ2
2 + κ2

⎞
⎠ = 1 − Υ11i(Θ) − Υ10i(Θ)

whereΦ2(·, ·, ·) is the CDF of the standard bivariate normal distribution.
The full information log-likelihood function of the model is then defined by

l(Θ) =
n∑

i=1

li(Θ),

with

li(Θ) = δi ln

[
Υ11i(Θ)

1

σ
φ

(
yi − α − x′

iβ

σ

)]
+

+ (1 − δi) ln

[
Υ10i(Θ)

1

σ
φ

(
yi − α − x′

iβ

σ

)
+ Υ0i(Θ)

1

σ
φ

(
yi − x′

iβ

σ

)] (26)

Maximizing this function with respect to Θ yields a consistent and asymptotically efficient estimator of the model
parameters.

B.2. Extension to binary outcomes

The method discussed in this paper can be extended to the case of binary outcomes. However, in this case we cannot
just do the plug-in method described earlier, because a linear probability model would exhibit serious problems, especially
the fact that it could produce a wrong sign for the treatment effect, even if the treatment status is correctly classified (see,
e.g., discussion provided by Lewbel et al., 2012). A more reliable alternative in this case would be the maximum likelihood
estimation. We assume the binary outcome yi is related to the exogenous covariates xi and to the true treatment indicator
δ∗
i by

yi = 1
[
x′
iβ + δ∗

i α + ϵi > 0
]
. (27)

19 The fact that the covariance matrix of the joint distribution of errors is constrained to be positive definite guarantees that these new parameters are

well-defined, namely, 0 < ρ1 < 1, 0 < ρ2 < 1, and κ2 > 0.
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True participation δ∗
i andmisreporting di are defined, as before, by Eqs. (2) and (3), respectively.Wemaintain Assumptions 1–

4 above, except that the conditional variance of the error ϵi is now normalized to 1 (as is usually the case for identification
in Probit models). Given the observed participation δi = δ∗

i di, and the outcome yi, the log-likelihood function of the binary
choice model (BCM) is built up from the joint probabilities Pr[yi, δ∗

i , di] of these dichotomous variables as follows.

lBCM (Θ) =
n∑

i=1

δi ln Pr[yi, δ∗
i = 1, di = 1]+

+ (1 − δi) ln
(
Pr[yi, δ∗

i = 1, di = 0] + Pr[yi, δ∗
i = 0]

)
,

(28)

where

Pr[yi, δ∗
i = 1, di = 1] = Pr[yi = 1, δ∗

i = 1, di = 1]yi Pr[yi = 0, δ∗
i = 1, di = 1]1−yi ,

Pr[yi, δ∗
i = 1, di = 0] = Pr[yi = 1, δ∗

i = 1, di = 0]yi Pr[yi = 0, δ∗
i = 1, di = 0]1−yi ,

and Pr[yi, δ∗
i = 0] = Pr[yi = 1, δ∗

i = 0]yi Pr[yi = 0, δ∗
i = 0]1−yi

The probabilities in these equations can be obtained in terms of model parameters:

Pr[yi = 1, δ∗
i = 1, di = 1] = Φ3

(
x′
iβ + α, z ′

iθ,w
′
iγ ;ϕv, ϕu, ρ

)

Pr[yi = 0, δ∗
i = 1, di = 1] = Φ2

(
z ′
iθ,w

′
iγ ; ρ

)
− Pr[yi = 1, δ∗

i = 1, di = 1]

Pr[yi = 1, δ∗
i = 1, di = 0] = Φ2

(
x′
iβ + α,w′

iγ ;ϕv
)
− Pr[yi = 1, δ∗

i = 1, di = 1]

Pr[yi = 0, δ∗
i = 1, di = 0] = Φ

(
z ′
iθ
)
−Φ2

(
z ′
iθ,w

′
iγ ; ρ

)
− Pr[yi = 1, δ∗

i = 1, di = 0]

Pr[yi = 1, δ∗
i = 0] = Φ

(
x′
iβ
)
−Φ2

(
x′
iβ, z

′
iθ;ϕv

)

Pr[yi = 0, δ∗
i = 0] = 1 −Φ

(
z ′
iθ
)
− Pr[yi = 1, δ∗

i = 0]
whereΦ3(·, ·, ·) is the CDF of the standard trivariate normal distribution.

Appendix C. Additional tables

See Tables C.1 and C.2.

Table C.1

Partial observability probit estimates (first step of proposed estimator).

Dependent Variable: SNAP Participation Dummy

First Set Second Set

Panel A: Participation Equation

Biometric 0.509* −0.078

(0.305) (0.217)

EBT Card 0.242***

(0.086)

Panel B: Misreporting Equation

Phone Interview −0.270*** −0.092*

(0.066) (0.050)

Biometric 0.040

(0.175)

Observations 5470 5470

Notes: This table presents the first step maximum likelihood estimated coefficients of partial observability

model specified in Eq. (4). Standard errors in parentheses. Results are based on the 1996–2004 biennialwaves

of the NLSY79, restricted to females with income lower than 250% of the federal poverty level. For the First

Set column, regressors not reported include respondents’s age, race, household size, household income. For

the Second Set column, additional regressors are number of children, mother’s education, square of income,

time fixed effects, and indicators for receiving WIC benefits, AFDC/TANF, SSI benefits, and having an infant

living in home.
* p < 0.10, ** p < 0.05, *** p < 0.010.
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Table C.2

First stage IV results.

Dependent Variable: SNAP Participation Dummy

First Set Second Set

Biometric 0.0456* 0.005

(0.026) (0.014)

EBT card 0.046***

(0.014)

F-statistics 3.19* 5.27***

Hansen J-statistic 0.147

Observations 5470 5470

Notes: This table reports the first stage estimates of the linear IV estimator. Standard errors

in parentheses. Results are based on the 1996–2004 biennial waves of the NLSY79, restricted

to females with income lower than 250% of the federal poverty level. For the First Set column,

regressors not reported include respondents’s age, race, household size, household income.

For the Second Set column, additional regressors are number of children, mother’s education,

square of income, time fixed effects, and indicators for receiving WIC benefits, AFDC/TANF,

SSI benefits, and having an infant living in home.
* p < 0.10, ** p < 0.05, *** p < 0.010.
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