
https://doi.org/10.1177/21677026211049366

Clinical Psychological Science
 1 –15
© The Author(s) 2021
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/21677026211049366
www.psychologicalscience.org/CPS

ASSOCIATION FOR

PSYCHOLOGICAL SCIENCETheoretical/Methodological/Review Article

Highly cited (HC) studies are often considered to be 
the most valued and influential scholarship, which leads 
to an expectation that they should hopefully report the 
most accurate findings. However, meta-epidemiological 
investigations in some scientific fields have found that 
HC studies may report overestimated effects relative to 
larger or better designed studies (Ioannidis, 2005; Tajika 
et  al., 2015) or to meta-analyses on the same topic 
(Ioannidis & Panagiotou, 2011). In addition, influential 
studies often produce substantially larger or contradic-
tory effects relative to subsequent preregistered repli-
cation attempts (Camerer et  al., 2018; Klein et  al.,  

2018; Open Science Collaboration, 2015; Wagenmakers  
et al., 2016).

Multiples sources of bias may contribute to effect 
size inflation (Fanelli et al., 2017; Ioannidis et al., 2008). 
A major concern is that when research findings are 
incentivized to pass a prescribed threshold of statistical 
significance to be published (publication bias) and 

1049366 CPXXXX10.1177/21677026211049366Cristea et al.Overestimation of Effects in Highly Cited Emotion Research
research-article2021

Corresponding Author:

Ioana A. Cristea, Department of Brain and Behavioral Sciences, 
University of Pavia 
Email: ioana.cristea@unipv.it

Effect Sizes Reported in Highly Cited 
Emotion Research Compared With Larger 
Studies and Meta-Analyses Addressing  
the Same Questions

Ioana A. Cristea1,2 , Raluca Georgescu3,  
and John P. A. Ioannidis2,4,5,6,7,8

1Department of Brain and Behavioral Sciences, University of Pavia; 2Meta-Research Innovation  
Center at Stanford (METRICS), Stanford University; 3Department of Clinical Psychology and Psychotherapy,  
Babes-Bolyai University; 4Department of Medicine, Stanford University; 5Department of Epidemiology  
and Population Health, Stanford University; 6Department of Biomedical Data Science, Stanford University;  
7Department of Statistics, Stanford University; and 8Meta-Research Innovation Center Berlin (METRIC-B),  
QUEST Center for Transforming Biomedical Research, Berlin Institute of Health, Charité– 
Universitätsmedizin, Berlin, Germany

Abstract
We assessed whether the most highly cited studies in emotion research reported larger effect sizes compared with meta-
analyses and the largest studies on the same question. We screened all reports with at least 1,000 citations and identified 
matching meta-analyses for 40 highly cited observational studies and 25 highly cited experimental studies. Highly cited 
observational studies had effects greater on average by 1.42-fold (95% confidence interval [CI] = [1.09, 1.87]) compared 
with meta-analyses and 1.99-fold (95% CI = [1.33, 2.99]) compared with largest studies on the same questions. Highly 
cited experimental studies had increases of 1.29-fold (95% CI = [1.01, 1.63]) compared with meta-analyses and 2.02-fold 
(95% CI = [1.60, 2.57]) compared with the largest studies. There was substantial between-topics heterogeneity, more 
prominently for observational studies. Highly cited studies often did not have the largest weight in meta-analyses (12 of 
65 topics, 18%) but were frequently the earliest ones published on the topic (31 of 65 topics, 48%). Highly cited studies 
may offer, on average, exaggerated estimates of effects in both observational and experimental designs.
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research designs have suboptimal statistical power, 
published effect sizes are inflated on average (Bakker 
et  al., 2012; Button et  al., 2013; Gelman, 2018;  
Ioannidis, 2008). In addition, flexibility in analytical 
choices (Simmons et al., 2011) can lead to a large “vibra-
tion of effects” (i.e., the range of possible effects obtained 
for different analysis specifications estimating the same 
association) that, when combined with selective report-
ing, can lead to an upward bias for published effects 
(Patel et al., 2015; Steegen et al., 2016). Finally, influential 
stakeholders within the scientific ecosystem, such as 
funders and journals, exert a preference for aesthetically 
appealing (“positive,” “clean,” or “novel”) results (Nosek 
et al., 2012), which could lead to preferential citation 
(citation bias) of studies that report larger effects com-
pared with those reporting smaller or null effects (Cristea 
& Naudet, 2018; Gøtzsche, 1987; Greenberg, 2009).

Although systematic investigations of effect-size 
inflation in HC articles in the social and behavioral sci-
ences are lacking, indirect evidence from replication 
studies suggests that effects reported by HC studies may 
be exaggerated. For example, three large-scale studies 
have found that effects reported in multilaboratory pre-
registered replication attempts are on average 49% to 
66% smaller than corresponding effects reported in 
previously published research (Camerer et  al., 2016, 
2018; Open Science Collaboration, 2015). Many, but not 
all, of the included original studies were HC, and they 
were all published in high-profile journals. Other mul-
tilaboratory replication efforts specifically targeting 
influential psychology studies often report smaller (and 
sometimes null) effects relative to original studies 
(Klein et  al., 2014, 2018; Wagenmakers et  al., 2016). 
These replication efforts did not systematically target 
specifically the most HC articles—even though some 
of the assessed work was HC. Moreover, they have also 
focused predominantly on randomized experiments. 
However, there are many other studies that attract a lot 
of attention and citations, including diverse observa-
tional associations, biomarkers or predictive markers, 
and more. It would be important to assess whether HC 
studies covering such a broad spectrum of designs have 
inflated effect sizes and, if so, the size of the inflation 
compared with other studies on the same questions 
that do not get so many citations.

Hence, the goal of the present study was to investigate 
whether effect sizes reported in HC emotion research 
are greater relative to larger studies and meta-analyses 
addressing the same questions. We focused on emotion 
research because it is a major topic domain in psychol-
ogy with a breadth of content and research designs and 
covers both highly exploratory basic research and 
applied research with clinical implications. Our goal was 
to gauge the extent to which effects differed between 

HC studies and summary effects from meta-analyses and 
the larger studies on the same topic. We also wanted to 
map the timing of publication of HC studies, largest 
studies, and other studies on the same topic.

Method

We adopted the approach of previous similar investiga-
tions in clinical research (Ioannidis, 2005; Ioannidis & 
Panagiotou, 2011) and psychiatry (Tajika et al., 2015). 
Changes to the preregistered study protocol are detailed 
in the Supplemental Material available online.

Identification and selection of target 

HC articles

The database Scopus was searched through October 8, 
2019, using keywords generically related to “emotion,” 
“mood,” “anxiety,” or “depression” present in the title, 
abstract, or keywords.

Eligible records reported on primary data that could 
be used for generating effect sizes in human partici-
pants, mentioned findings related to emotions in the 
abstract (even if these were peripheral to the goals of 
the study), had an experimental (i.e., randomized) or 
observational design, and had been cited at least 1,000 
times in Scopus as of the date of the search. Articles in 
which the abstract made no mention of emotion or 
focused exclusively on biomedical, molecular, or other 
aspects not related to emotional disorders or conditions 
were excluded. However, articles that were found to 
mention emotion during abstract inspection, even if in 
a peripheral role (e.g., as one of many secondary out-
comes, a component in a model), were included.

We also excluded (a) meta-analyses and other arti-
cles using secondary data, (b) observational studies 
focused on prevalence, (c) studies describing the devel-
opment or subsequent validation of scales, and (d) 
estimations of disease burden, such as the Global Bur-
den of Disease.

One researcher (I. A. Cristea) screened all records 
with at least 1,000 citations by title and abstract and 
selected those that mentioned emotion and described 
observational (including pre/post designs and nonran-
domized studies of various associations) and experi-
mental (including all studies in which participants were 
randomized to an intervention or to different modalities 
of an independent variable) designs.

Identification and selection of  

meta-analyses

For each eligible observational or experimental HC 
record, we searched for the most recent meta-analysis 
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including effect-size data from any finding in the article, 
provided it was related with emotion. In cases in which 
the HC article mentioned emotion in a peripheral role, 
an eligible meta-analysis had to report effect size 
related to the emotion finding and not to the article’s 
other findings.

Meta-analyses for each target article were identified 
by downloading the most recent 2,000 records citing 
the target study in the form of a searchable .csv file. 
We then used the “find” command in a document pro-
cessor to search for the text string “meta-analy*” in the 
title, author, or index keywords. Citing records were 
screened starting with the most recent ones and moving 
downward on the list. Whenever a potentially eligible 
meta-analysis was identified, the full text was retrieved 
and manually searched to identify whether (a) the HC 
study was included and (b) an effect size of interest 
from the HC study was reported. If these criteria were 
not satisfied, we moved down the list of citing articles 
chronologically until identifying another eligible meta-
analysis. Meta-analyses that substituted the HC study 
with a larger study that encompassed it or with another 
publication on the same sample were eligible. In these 
cases, we planned to recalculate the effect size from 
the original report, if possible.

For eligible records that described more than one 
meta-analysis (i.e., reported more than one forest plot) 
including the target HC study, we chose the one with 
the highest number of studies or, if there were ties in 
this regard, the one that appeared first in the text, pro-
vided it reported a finding related to emotion.

One researcher (I. A. Cristea) searched citing records 
and identified meta-analyses.

Data extraction

For each matching meta-analysis, we coded information 
about publication year, meta-analysis model used (fixed 
or random), total number of included effect sizes in the 
selected forest plot, effect-size measure (e.g., mean 
difference, standardized mean difference [SMD], cor-
relation, odds ratio [OR], risk ratio [RR], hazard ratio 
[HR]), earliest study (by publication year) in the forest 
plot, effect sizes and 95% confidence intervals (CIs) for 
the HC and largest study, and summary effect sizes and 
95% CIs in the meta-analysis. When the meta-analysis 
reported different models of estimating effect size, we 
preferred random effects. The largest study was defined 
as the study with the lowest standard error in the 
matching meta-analysis. To select the largest study, we 
relied on the following succession of information, if 
reported: (a) weights in the forest plots, followed by 
(b) standard errors/variance associated to individual 
effect sizes, followed by (c) recalculation of the 95% CI 

width for those individual effect sizes in which the CI 
appeared visually smaller in the forest plot, and finally, 
(d) study sample size. If more studies with the same 
weight or standard error were included, sample size 
was used to break the tie.

If more studies, including the HC study, were the 
earliest in the forest plot (published in the same year), 
the HC study was considered the earliest.

When the forest plot included only graphic informa-
tion, we attempted to contact the authors or used tools 
such as WebPlotDigitizer (https://automeris.io/Web 
PlotDigitizer/) to reconstruct the data from the plots.

Outcomes

All outcomes were assessed separately for observational 
and experimental designs.

The primary outcome was the degree of agreement 
between (a) the effect size of the HC study and the 
summary effect size of the matching meta-analysis and 
(b) the effect size of the HC study and the effect size 
in the largest study in the matching meta-analysis. To 
this purpose, we calculated the ratios of odds ratios 
(RORs), as detailed in the Data Analysis section.

This outcome is reported both nominally, as the per-
centage of topics in which the 95% CI of ROR included 
1, and statistically, as the meta-analytical aggregate 
across topics, separately for experimental and observa-
tional studies.

Secondary outcomes were the percentages of HC 
studies with effect sizes that differed by 2-fold (ROR ≥ 
2 or ≤ 0.5) or 4-fold (ROR ≥ 4 or ≤ 0.25) from the effect 
size in the matching meta-analysis and respective larg-
est study in the meta-analysis.

Data analysis

Analyses were performed in Microsoft Excel for Mac 
(Version 16.43) and STATA/SE for Mac (Version 16.1; 
programs admetan and metaeff). Scatterplots were con-
structed in the R software environment (R Core Team, 
2020) using RStudio (Version 1.2.5033; RStudio Team, 
2019) and the lessR package (Version 3.9.8; Gerbing, 
2020).

For each identified meta-analysis, we extracted the 
effect size and standard error or 95% CI reported for the 
HC study, the summary effect size, and the effect size of 
the largest study in the meta-analysis. The preferred 
meta-analytic estimate was the OR. Effect sizes were 
extracted as reported in the meta-analysis without 
retrieving the primary studies. When meta-analyses 
reported estimates other than the OR, we employed stan-
dard procedures for converting estimates into ORs. 
SMDs, including Hedges’s g, were transformed to 
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naturally logarithmic ORs using the Chinn transformation 
(Chinn, 2000). Correlation coefficients were first con-
verted into SMDs (Polanin & Snilstveit, 2016) and then 
into ORs. For RRs that could not be converted into ORs 
without estimates of baseline risk, often not reported, 
we first checked whether study-level event data (e.g., a 
2 × 2 table) were reported. If yes, we extracted them and 
reran the meta-analysis with effect sizes expressed as 
ORs using the authors’ specified meta-analytic model. If 
neither baseline risk nor event data were provided, 
remaining RRs were treated as ORs in the main analyses 
and excluded in sensitivity analyses. Likewise, HRs were 
assimilated to ORs. For continuous outcomes expressed 
as mean differences and standard errors or CIs, we also 
reran the meta-analysis to produce SMDs.

For meta-analyses that reported data by subgroups, 
we took the pooled estimate (i.e., across subgroups) if 
available and the estimate in the largest subgroup 
including the HC study if the pooled estimate across 
all subgroups was not reported. For forest plots that 
included separate effect sizes from the HC or largest 
study (e.g., different subgroups or outcomes), we first 
pooled these distinct estimates under a fixed-effects 
model and used that estimate for further analyses, 
whereas the summary estimate remained the one 
reported in the meta-analysis.

To assess the magnitude of the differences for each 
pair (HC vs. summary estimate; HC vs. largest study), 
we computed the RORs using the Altman-Bland 
approach (Altman & Bland, 2003). In brief, RORs were 
obtained by dividing the OR of the HC article by the 
(a) summary effect size of the meta-analysis and (b) 
the effect size in the largest study.

To ensure coherence across studies, effect sizes were 
coined (i.e., the sign was inverted) when necessary. For 
experiments, coining was performed so that an ROR 
greater than 1 implied that the intervention or experimen-
tal manipulation had more favorable results than control. 
For observational studies, exposures were coined to rep-
resent values over 1 for the HC study so that an ROR 
greater than 1 meant that the effect size in the HC study 
was larger than the one in the meta-analysis or larger 
study. For each comparison of the HC study and meta-
analysis and HC study and largest study, we noted whether 
RORs were statistically significant (i.e., the 95% CI did not 
include 1) and whether estimates from the HC study dif-
fered by at least 2-fold (ROR ≥ 2 or ≤ 0.5), at least 4-fold 
(ROR ≥ 4 or ≤ 0.25), or more.

We also conducted meta-analyses of RORs separately 
for experimental and observational designs. Although 
in the protocol we planned both fixed- and random-
effects models for meta-analyses of RORs, given the 
substantial clinical heterogeneity, we reported only a 
random-effects model. We used a random-effects model 

with the Paule and Mandel estimator (Paule & Mandel, 
1989), recommended for dichotomous outcomes in the 
presence of high heterogeneity (Veroniki et al., 2016). 
Although not specified in the protocol, for comparisons 
with the largest study, cases in which the largest study 
coincided with the HC study were excluded. Heteroge-
neity was assessed with the between-topics variance τ2, 
I 2, and its 95% CI estimated using the Q-profile method 
(Viechtbauer, 2007). Because some clinical psycholo-
gists may be accustomed to SMD rather than OR metrics 
for expressing effects, we also transformed summary 
RORs from the main analysis in differences of SMDs 
(dSMDs) by applying the conversion formula described 
by Chinn (2000) using the natural logarithm (ln) of the 
ROR. For the ROR of the HC study versus the summary 
estimate of the meta-analysis (MA in the equation), we 
have:
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Therefore, dSMD = ln(RORHC MA) ÷ 1.81.

The standard errors can be computed by the same 
formula, SE(dSMD) = SE(RORHC MA) ÷ 1.81. We also 
reported estimates as dSMDs for the topics in which 
the SMD was the effect measure used in the selected 
meta-analysis.

Sensitivity analyses were performed by repeating the 
main analyses (a) excluding studies for which HRs and 
RRs were considered to be ORs, (b) limited to the topics 
in which the HC study was the earliest published on the 
topic, (c) limited to the topics in which the largest study 
was published later than the HC study, and (d) restricted 
to HC studies in which the abstract mentioned the out-
come and exposure/intervention extracted from the 
matching meta-analysis. This last analysis was not pre-
registered and was added post hoc to verify whether the 
finding selected for evaluation was considered central 
in the HC study. Finally, because we observed extremely 
large heterogeneity for observational designs, we added 
a series of nonpreregistered exploratory sensitivity analy-
ses for this cohort (e) limited to topics in which both the 
exposure and outcome are clinical manifestations (e.g., 
depression, anxiety, insomnia), demographic variables 
(e.g., gender), or major life events (e.g., adverse events, 
childhood abuse); (f) limited to topics in which either 
exposure or outcome are nonclinical or surrogate mea-
surements (e.g., genes, neuroimaging, cognitive tasks); 
and (g) limited to topics in which the matching meta-
analysis was lower variance or higher variance compared 
with the median of the entire sample. For this analysis, 
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we calculated the median standard error of the log OR 
for the entire cohort of meta-analyses and used the 
median to dichotomize the sample into topics in which 
the standard error of the log OR in the matching meta-
analysis was below and above the median.

Results

Selection of target HC articles and 

matching meta-analyses

The search produced 1,686,834 records, of which 1,183 
had at least 1,000 citations. From these, 187 studies 
were selected (114 observational and 73 experimental; 
for the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses [PRISMA] flow diagram, see Fig. 1). 

Twenty-seven studies (14%) had more than 2,000 cita-
tions, and as per protocol and owing to Scopus limita-
tions on download of citing records, we screened 
through only the first 2,000 most recent citations until 
identifying a matching meta-analysis. This procedure 
failed to identify a matching meta-analysis for 19 of 
these 27.

We contacted authors of three meta-analyses in which 
forest plots did not contain effect-size data or were 
incomplete (i.e., presented only a subgroup) and 
retrieved data for two meta-analyses. The remaining 
meta-analysis (McKinnon et  al., 2009) was excluded. 
Therefore, we identified matching meta-analyses with 
study-level effect-size data for 41 of 114 (36%) observa-
tional studies (37 unique meta-analyses, four of which 
contained more than one HC study) and 25 of 73 (34%) 
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Fig. 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram of the 
study-selection process.
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experimental studies (22 unique meta-analyses, three of 
which contained two different HC studies).

Characteristics of the sample

The 41 observational studies were published between 
and 1972 and 2013, and citation counts ranged from 
1,001 to 5,497 (Mdn = 1,357, interquartile range [IQR] =  
1,087–1,769). The 25 experimental studies spanned 
1989 to 2006, and citation counts ranged from 1,126 to 
2,374 (Mdn = 1,426, IQR = 1,290–1,723). Matching meta-
analyses were published between 1998 and 2019 for 
observational studies and between 2014 and 2019 for 
experimental studies. Twenty-eight of 37 meta-analyses 
for observational studies (76%) and 21 of 22 (95%) 
experimental studies were published after 2015 (see 
Tables S1 and S2 in the Supplemental Material).

For observational studies, 17 meta-analyses used 
ORs, 14 used SMDs (five used Hedges’s g), seven used 
RRs, one used HR, one used mean difference, and one 
used standardized coefficients from linear regression. 
In this last case, we did not have enough information 
to convert or recalculate the regression coefficient, and 
the meta-analysis (Martinez-Calderon et al., 2019) was 
excluded, which left a total of 40 meta-analyses for 
quantitative synthesis.

There were a few special cases. In the case of one meta- 
analysis involving individual patient data (Culverhouse 
et al., 2018), the HC study was eligible for inclusion but 
did not provide primary data. As per protocol, we used 
the estimates from the meta-analysis for the summary 
and the largest study estimates and recalculated the 
effect for the HC study from the primary report, using 
coining so it would represent the same contrast as the 
meta-analysis. For another HC study (Regier et al., 1990), 
the meta-analysis (Lai et al., 2015) included data from 
a pooled analysis (Swendsen et al., 1998) combining the 
cohort reported in the HC study with other cohorts. The 
HC study did not report the sufficient data for effect-size 
calculation, but the meta-analysis included separate esti-
mates for the HC study cohort (Epidemiologic Catch-
ment Area), which we extracted. Another meta-analysis 
(Reising et al., 2019) included a larger study that con-
tained the HC study (Odgers et al., 2008). The HC study 
did not report sufficient data for effect-size calculation. 
We substituted its estimate with the one from the over-
lapping larger study (Odgers et al., 2008) reported in 
the meta-analysis. Because the original HC study 
reported only on males and the overlapping study 
included separate estimates for males and females, we 
used only the former. We conducted additional sensitiv-
ity analyses excluding all these special cases.

For experimental studies, 13 meta-analyses reported 
SMDs (six reported Hedges’s g), four reported ORs, four 

reported RRs, three reported Pearson correlation  
coefficients (r), and one reported HR. For one HC study 
describing the Enhancing Recovery in Coronary Heart 
Disease Patients randomized trial (Writing Committee 
for the ENRICHD Investigators, 2003), the correspond-
ing meta-analysis (Richards et al., 2017) combined data 
from all trial publications. As per protocol, we used 
summary and largest study estimates from the meta-
analysis and recalculated the HC study effects using the 
primary report.

Primary outcomes and meta-analysis

Observational studies. Effect estimates were recalcu-
lated (n = 2) or converted (n = 15) for 16 meta-analyses. 
For six meta-analyses, RRs and HRs were assimilated to 
ORs in computing RORs. Effect estimates were coined for 
eight meta-analyses. For 27 of 40 (67.5%) HC studies, we 
rated the abstract as describing the finding extracted from 
the matching meta-analysis. Twenty-five of 40 (62.5%) 
HC studies were the earliest or conducted within 3 years 
of the earliest study in the meta-analysis (see Tables 1 
and 2 and Fig. 2).

In 27 of 40 HC studies (67.5%), estimates were nomi-
nally larger (i.e., ROR > 1) than the summary effect in 
the corresponding meta-analysis (Fig. 2). In 12 of 40 
HC studies (30%), effects were statistically significantly 
different from the summary estimate, and in 10 cases, 
RORs were greater than 1. The difference was at least 
2-fold for 15 (37.5%) pairs and at least 4-fold for six 
(15%) pairs. The summary ROR (see Fig. S1 in the 
Supplemental Material) across all topics was 1.42 (95% 
CI = [1.09, 1.87]) with extremely high heterogeneity  
(τ2 = 0.55, I 2 = 98%, 95% CI = [95%, 99%]). This was 
equivalent to a dSMD of 0.19 (95% CI = [0.04, 0.34]; 
Table 2). RORs were somewhat larger for topics in 
which the HC was the earliest study (n = 21; ROR = 
1.77, 95% CI = [1.07, 2.94], τ2 = 1.07) and those in which 
the HC study abstract mentioned the exposure and 
outcome used in the meta-analysis (n = 27; ROR = 1.60, 
95% CI = [1.08, 2.36], τ2 = 0.77), but heterogeneity 
remained very large. For topics in which the matched 
meta-analysis reported effects as SMDs (n = 15), esti-
mates were higher (dSMD = 0.45, 95% CI = [0.04, 0.86]) 
and had extremely high heterogeneity (τ2 = 1.66).

Heterogeneity was significantly reduced in explor-
atory sensitivity analyses of topics in which both expo-
sure and outcome were clinical manifestations, 
demographic variables, or major life events (n = 25; 
ROR = 1.16, 95% CI = [0.94, 1.42], τ2 = 0.17). Heteroge-
neity was also contained in analyses (n = 20) circum-
scribed to the meta-analyses with lower variance (i.e., 
under the median variance of the entire cohort of meta-
analyses; ROR = 1.18, 95% CI = [0.92, 1.52], τ2 = 0.26).



Overestimation of Effects in Highly Cited Emotion Research 7

Table 1. Meta-Analytic Estimates and Sensitivity Analyses of Ratio of Odds Ratios for Observational 
Designs

Comparison N ROR 95% CI I2 [95% CI] τ2

HC study compared with summary estimate 40 1.42 [1.09, 1.87] 98 [95, 99] 0.55
 Excluding HC study estimates recalculated  
  from primary articlesa

37 1.47 [1.08, 1.99] 98 [95, 99] 0.64

 RRs and HRs substituted for ORsb 34 1.54 [1.11, 2.14] 98 [95, 99] 0.69
 Excluding coined estimates 32 1.30 [0.97, 1.74] 97 [92, 99] 0.51
 HC study is the earliest study 21 1.77 [1.07, 2.94] 98 [95, 99] 1.07
 Meta-analytic comparison mentioned in  
  HC study abstract

27 1.60 [1.08, 2.36] 95 [86, 98] 0.77

 Exposure and outcome clinical/demographic/ 
  life events

25 1.16 [0.94, 1.42] 91 [80, 97] 0.17

 Exposure or outcome nonclinical/ surrogate 15 2.22 [1.11, 4.45] 99 [97, 100] 1.55
 Variance of meta-analysis < median variance  
  of the cohort

20 1.18 [0.92, 1.52] 98 [92, 99] 0.26

 Variance of meta-analysis > median variance  
  of the cohort

20 1.91 [1.14, 3.21] 87 [66, 95] 0.93

HC study compared with largest study 35 1.99 [1.33, 2.99] 98 [97, 99] 1.17
 Excluding HC study estimates recalculated from  
  primary papersa

32 2.08 [1.33, 3.28] 97 [94, 99] 1.33

 RRs and HRs substituted for ORsb 30 2.27 [1.41, 3.66] 97 [93, 98] 1.38
 Excluding coined estimates 28 1.62 [1.06, 2.48] 98 [96, 99] 1.04
 HC study predates largest study 33 1.99 [1.29, 3.07] 98 [96, 99] 1.25
 Meta-analytic comparison mentioned in  
  HC study abstract

26 2.14 [1.31, 3.48] 97 [93, 99] 1.22

 Exposure and outcome clinical/demographic/ 
  life events

22 1.49 [0.97, 2.30] 98 [96, 99] 0.81

 Exposure or outcome nonclinical/ surrogate 13 3.31 [1.50, 7.32] 89 [71, 97] 1.69
 Variance of meta-analysis < median variance of  
  the cohort

17 1.71 [1.22, 2.41] 98 [92, 99] 0.40

 Variance of meta-analysis > median variance of  
  the cohort

18 2.51 [1.17, 5.41] 91 [82, 97] 2.12

Note: ROR = ratio of odds ratio; CI = confidence interval; HC = highly cited; HR = hazard ratio; RR = risk ratio; OR = 
odds ratio.
aExcluded HC studies: Caspi (2003), Regier (1990), and Moffitt (2002). bThe comparison excludes cases in which RRs 
and HRs could not be converted and were considered equivalent to ORs.

Five HC studies (12.5%) were also the largest, which 
left 35 for further ROR analyses. In 29 of 35 (83%) cases, 
HC study estimates were greater than those in the larg-
est study in the meta-analysis (Fig. 2). In 17 cases, RORs 
comparing estimates were statistically significantly dif-
ferent from 1 (49%); in 13 of these cases, ROR was 
greater than 1. RORs were at least 2-fold for 17 of 35 
cases (49%) and at least 4-fold in 10 of 35 (29%) cases. 
The summary ROR (see Fig. S2 in the Supplemental 
Material) was 1.99 (95% CI = [1.33, 2.99]) and had 
extremely high heterogeneity (τ2 = 1.17, I2 = 98%, 95% 
CI = [97%, 99%]). This corresponded to a dSMD of 0.38 
(95% CI = [0.15, 0.61]; Table 2). The summary ROR was 
similar in sensitivity analyses restricted to topics in 
which the HC study predated the larger study (n = 33; 
ROR = 1.99, 95% CI = [1.29, 3.07]) and had similarly 

high heterogeneity (τ2 = 1.25). In exploratory sensitivity 
analyses (Table 1) on topics in which both exposure 
and outcome were clinical, summary RORs were reduced, 
and heterogeneity was more contained (ROR = 1.49, 
95% CI = [0.97, 2.3], τ2 = 0.81). Heterogeneity was sub-
stantially reduced in analyses limited to meta-analyses 
with lower variance (ROR = 1.71, 95% CI = [1.22, 2.41], 
τ2 = 0.40).

Experimental studies. Effect estimates were recalcu-
lated (n = 4) or converted (n = 16) for 20 meta-analyses, 
and for one meta-analysis, the HR was considered equiv-
alent to the OR. Effect estimates were coined for eight 
meta-analyses. Fifteen of 25 (60%) HC studies were the 
earliest or conducted within 3 years of the earliest study 
in the meta-analysis. The abstract of 21 of 25 (84%) HC 
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studies described the intervention and outcome used in 
the meta-analysis (see Tables 2 and 3 and Fig. 3).

For 17 of 25 (68%) HC studies, estimates were nomi-
nally larger than summary estimates of matching meta-
analyses (Fig. 3). The ROR of the HC study compared 
with the summary estimate was statistically significantly 
different from 1 in six of 25 cases (24%), three of which 
had RORs greater than 1. The estimates from the HC 
study differed by at least 2-fold (i.e., ROR ≥ 2 or ≤ 0.5) 
in five cases (20%) and by at least 4-fold in one case 
(4%). The summary ROR (see Fig. S3 in the Supplemen-
tal Material) was 1.25 (95% CI = [0.97, 1.61]) and had 
substantial heterogeneity (τ2 = 0.25, I2 = 73%, 95% CI = 
[53%, 87%]). The ROR corresponded to a dSMD of 0.14 
(95% CI = [0.007, 0.27]). For topics in which the matched 
meta-analyses reported effects as SMDs, summary esti-
mates were higher (dSMD = 0.24, 95% CI = [0.05, 0.44]). 
Sensitivity analyses limited to topics in which the HC 
study was the earliest study (n = 10) resulted in a simi-
lar summary ROR of 1.33 (95% CI = [1.08, 1.64]) and 
had no between-topics heterogeneity (τ2 = 0). Analyses 
of topics in which the HC study abstract mentioned the 
intervention and outcome extracted from the matching 
meta-analysis (n = 21) led to a similar summary ROR 
of 1.30 (95% CI = [0.97, 1.73], τ2 = 0.33).

Seven HC studies (28%) were also the largest in the 
matching meta-analysis, which left 18 studies for ROR 
analyses. Estimates from the HC study were nominally 
higher than those from the largest study for all 18 stud-
ies (Fig. 3), and for six of 18 (33%) studies, RORs were 
statistically significantly different from 1. RORs were at 
least 2-fold in seven of 18 (39%) cases and at least 
4-fold in one of 18 (6%) cases. The summary ROR (see 
Fig. S4 in the Supplemental Material) of the HC study 
compared with the largest study was 1.81 (95% CI = 
[1.39, 2.36]) and had moderate heterogeneity (τ2 = 0.09, 
I2 = 29%, 95% CI = [0%, 68%]). One HC study postdated 

the largest study. Analyses restricted to the cases in 
which the HC study (n = 17) predated the largest study 
yielded a larger summary ROR of 1.85 (95% CI = [1.39, 
2.46], τ2 = 0.10).

Discussion

Reports that collect extreme numbers of citations can be 
very influential in shaping the scientific literature and 
often also inform crucial decisions about which research 
to conduct, publish, or finance. Hence, the validity of 
their claims is paramount. Although there is no perfect 
means to evaluate validity, placing the results of HC 
studies against those of meta-analyses and of the largest 
studies on the same topic can offer valuable comparative 
insights. In a large, field-wide survey of emotion research, 
we showed that HC studies report more prominent 
effects compared with meta-analyses and larger studies 
on the same topic. For observational designs, HC studies 
produced effects about 1.4-fold higher on average than 
those from meta-analyses and almost 2-fold higher than 
those from the largest studies. For experimental designs, 
the average difference was around 1.3-fold for summary 
estimates and 2-fold in comparisons with the largest 
study. Translated in dSMDs, an estimate more habitually 
used by clinical psychologists, HC observational studies 
produced effects higher by 0.19 compared with summary 
meta-analytic estimates and by 0.38 compared with the 
largest study. The differences were similar for experi-
mental designs (0.14 compared with the summary esti-
mate and 0.39 compared with the largest study).

These average differences need to be viewed with 
great caution because there was extremely prominent 
heterogeneity across topics. Heterogeneity was 
extremely high for observational designs and more 
moderate for experimental studies. Heterogeneity was 
considerably reduced (a) in exploratory sensitivity 

Table 2. Meta-Analytic Primary Analyses Estimates and Sensitivity Analyses 
Expressed as Differences in Standardized Mean Differences

Design and comparison N dSMD 95% CI τ2

Observational  
 HC study vs. summary estimate 40 0.19 [0.04, 0.34] 0.55
 Meta-analyses reporting SMDs 15 0.45 [0.04, 0.86] 1.66
 HC study vs. largest study 35 0.38 [0.15, 0.61] 1.17
 Meta-analyses reporting SMDs 14 0.73 [0.28, 1.18] 1.91
Experimental  
 HC study vs. summary estimate 25 0.14 [0.007, 0.27] 0.20
 Meta-analyses reporting SMDs 13 0.24 [0.05, 0.44] 0.25
 HC study vs. largest study 18 0.39 [0.26, 0.52] 0.04
 Meta-analyses reporting SMDs  9 0.41 [0.17, 0.65] 0.18

Note: dSMD = difference in standardized mean differences; CI = confidence interval;  
HC = highly cited; SMD = standardized mean difference.
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analyses that were limited to topics in which both the 
exposure and outcome were clinical or demographic—
or involved major life events—and (b) when consider-
ing the meta-analyses with the lower variance (i.e., 
below the median variance of the entire cohort of 
matching meta-analyses). In these analyses, differences 
between estimates were reduced to around 1.2-fold 
compared with meta-analyses and to 1.5 to 1.7 com-
pared with larger studies and were, in most cases, non-
significant (the CI around RORs included 1, albeit 
narrowly). Therefore, although HC studies may be 
expected to report larger effects on average, it is not 
possible to predict in advance for which topics this will 
be most pronounced and for which topics HC studies 
may not have larger effects at all. It is impossible to 
“correct” the effect estimates of an HC study by using 
some standard inflation factor.

We also examined the timing of publication of the 
HC reports compared with the other studies and with 
the largest studies on the same topic. HC studies are 
sometimes the first ones on the topic, and thus they 
would be the earliest published among the studies 
included in a meta-analysis. This pattern occurred in 
almost half (31 of 65, 48%) of the topics that we exam-
ined. However, in approximately 40% of cases, HC stud-
ies were published later or even substantially later (i.e., 
> 3 years after). Their high citation profile may reflect 
early publication (“being the first”), some citation bias 
favoring extreme results, or a combination thereof. 
Relatedly, the HC study predated the largest study in 
about two thirds of the pairs for observational designs 
and in all but one for experimental ones. Sensitivity 
analyses limited to topics in which the HC studies were 
the first ones mirrored the main analyses. If anything, 
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the summary ROR estimates became slightly larger 
when only these topics were considered, a pattern com-
patible with some influence of “being first.” However, 
the available data are too limited to exclude that this 
observation may reflect chance.

Finally, our approach of selecting a recent meta-
analysis that used emotion-related estimates from the 
HC studies could have failed to capture the main out-
comes of these studies that led to their high citation 
impact. To account for this possibility, we added a post 
hoc sensitivity analysis restricted to instances in which 
the selected meta-analytic comparison included the 
outcome and exposure/intervention also mentioned in 
the abstract of the HC study. For most observational 
(65%) and experimental (85%) HC studies, this was 
indeed the case, and this sensitivity analysis resulted 
in very similar results to the main analysis. Of course, 
the approach cannot fully guarantee we examined the 
principal finding of the HC study, and it is often impos-
sible to single out only one particular finding from a 
complex study. However, given that abstracts describe 
what are considered by the authors to be the most 
noteworthy results, this approach could represent a 
useful proxy to identifying the principal findings. We 
did not assess the quality of the HC studies because 
this would have posed significant challenges given the 
diversity of topics, designs, and scientific standards at 
the time of publication. Although study size is not a 
surrogate for quality, larger studies are more precise in 
estimating effects. In general, it was uncommon for HC 
studies to be also the largest ones.

Some of the HC studies had extremely large effects 
that also differed tremendously from the respective 

meta-analyses and largest studies. In the most conspicu-
ous case (RORs of 287 and 297, respectively), Hariri et 
al. (2002) examined neuroimaging differences in amyg-
dala activation in carriers of the short serotonin-trans-
porter-linked promoter region (5-HTTLPR) allele (one 
or two copies) compared with those of the long 
5-HTTLPR allele. The authors collected 1,769 citations, 
and the article’s standardized effect size in the matching 
meta-analysis (Munafò et al., 2008) was an incredible 
SMD of 3.74 (95% CI = [2.51, 4.97]). In contrast, the 
summary effect in the meta-analysis was considerably 
smaller (SMD = 0.62, 95% CI = [0.42, 0.82]), similar to 
the largest study (Hariri et al., 2005; SMD = 0.6, 95% CI = 
[0.14, 1.06]). The true effect may actually be entirely 
null. The reason is that this HC study, as well as the 
other studies in the meta-analysis, depends on a can-
didate-gene approach, a design that has since been 
shown as notoriously unreliable (Ioannidis et al., 2011), 
even more so in neuropsychiatric genetics (Duncan 
et al., 2019). Moreover, neuroimaging studies are a clas-
sic example of a literature replete with small, under-
powered studies with high analytical flexibility and 
often spurious results (Botvinik-Nezer et  al., 2020; 
David et al., 2013; Szucs & Ioannidis, 2020). The pro-
posed association with amygdala activation (Hariri 
et al., 2002, 2005) would suggest a role of this genetic 
polymorphism in depression. However, a very large, 
rigorous genome-wide association study found abso-
lutely no effect for this polymorphism (Border et al., 
2019).

RORs were also very large (22 and 29) for a study 
(Klin et al., 2002) examining differences in visual fixation 
patterns between autistic males and control subjects 

Table 3. Meta-Analytic Estimates and Sensitivity Analyses of Ratio of Odds Ratios for 
Experimental Designs

Comparison N ROR 95% CI I2 [95% CI] τ2

HC study compared with summary 
estimate

25 1.29 [1.01, 1.63] 69 [44, 85] 0.20

 Excluding HC study estimates  
  recalculated from primary articlesa

24 1.30 [1.01, 1.67] 67 [42, 84] 0.22

 RRs and HRs substituted for ORsb 24 1.34 [1.06, 1.70] 66 [37, 84] 0.19
 Excluding coined estimates 17 1.21 [0.97, 1.51] 47 [9, 77] 0.09
 HC study is the earliest study 10 1.32 [1.07, 1.62]   0 [0, 61] 0
 Meta-analytic comparison mentioned  
  in HC study abstract

21 1.33 [1.02, 1.75] 74 [52, 88] 0.26

HC study compared with largest study 18 2.02 [1.60, 2.57] 17 [0, 61] 0.04
 Excluding coined estimates 13 2.18 [1.62, 2.95] 30 [0, 74] 0.09
 HC predates largest study 17 2.09 [1.62, 2.68] 18 [0, 62] 0.05
 Meta-analytic comparison mentioned  
  in HC abstract

15 2.07 [1.58, 2.72] 32 [0, 73] 0.09

Note: ROR = ratio of odds ratio; CI = confidence interval; HC = highly cited; HR = hazard ratio; RR = risk 
ratio; OR = odds ratio.
aExcluded HC studies: Writing Committee for the ENRICHD Investigators (2003). bThe comparison 
excludes cases in which RRs and HRs could not be converted and were considered equivalent to ORs.
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while viewing social situations (1,150 citations). In this 
case, the effects between the index study (SMD = −1.47, 
95% CI = [−2.27, −0.66]) compared with the correspond-
ing meta-analysis (SMD = 0.24, 95% CI = [0.1, 0.39]) and 
largest study in it (SMD = 0.39; 95% CI = [0.19, 0.58]) 
differed not just by magnitude but also by direction. 
There were no such large outliers in the analyses on 
experimental studies. Overall, for observational designs, 
topics in which the original meta-analyses used the SMD 
as the metric of choice tended to have greater differences 
in effect size between the HC study and the respective 
meta-analysis or largest study. Several of the large outli-
ers identified in neuroimaging or genetics belong to this 
category.

In selecting meta-analyses that included the index 
study, we focused on the most recent one that con-
tained effect-size data. Around 80% of the identified 
meta-analyses for observational studies and all but one 
for experimental studies were published after 2015. The 

recency of selected meta-analyses makes it more likely 
that they included a larger number of publications. In 
addition, the quality of reporting and analysis might 
also have improved with time (Page et al., 2016; Wen 
et al., 2008). However, we should caution that the “true” 
effects for the topic examined are unknown, and effects 
may genuinely differ across studies on the same topic 
because of genuine differences rather than bias. More-
over, meta-analyses and even single large studies may 
also be biased. Random-effects models for obtaining 
summary results are appropriate in situations in which 
there is substantial heterogeneity, as is often the case 
in emotion research, but random-effects estimates are 
also susceptible to biases such as small-study effects 
that might underlie publication bias (Sterne et  al., 
2011). On average, meta-analyses may be more biased 
than the largest studies. This would be entirely consis-
tent with our observation that HC results seemed to be 
less inflated when the comparison was made against 
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the summary effect of a meta-analysis than when it was 
made against the largest study.

Kvarven et al. (2020) employed a somewhat similar 
methodological approach to compare results from reg-
istered replications with meta-analyses testing the 
same hypotheses. The starting point were multilabora-
tory registered replication studies in psychology, for 
which matching meta-analyses on the same hypoth-
esis, as identified by the study authors, were searched. 
The authors retrieved meta-analyses with effect-size 
data for 15 of 62 replication studies selected and used 
a Z test to compare replication effects with summary 
meta-analysis estimates, either by a random-effects 
model or with bias adjustment. Results indicated an 
increase in summary meta-analysis estimates of almost 
3-fold compared with replication studies even when 
using methods to adjust for publication bias, which 
suggests that better designed studies in which publica-
tion bias is avoided (as in the case of preregistered 
replications) may provide the most accurate effect 
estimates. If one were to extrapolate from their find-
ings to ours, it is possible that HC studies provide 
highly inflated results, more inflated than what a com-
parison against meta-analyses would suggest. Even the 
comparison against the largest available study may not 
fully capture the inflation of results because these 
largest studies that we used were not preregistered. 
Therefore, they could also suffer from some selective 
reporting of analyses.

In a study that has direct relevance to the present 
work, Kvarven et al. (2020) also compared estimates 
from the original studies—defined as the study that was 
the object of the replication project—with those in the 
selected meta-analyses and reported a nonstatistical 
mean difference of 0.10 for 14 pairs of original studies 
and meta-analyses. However, the pairs of replication 
studies and meta-analyses included mostly meta-analyses 
of small studies, and such meta-analyses may also be 
unreliable and biased. Likewise, we showed that for 
meta-analyses with reduced variance, and hence lower 
uncertainty around the summary effects, differences 
between estimates from HC studies and summary ones 
were reduced and no longer significant (RORs close to 
1). Conversely, for meta-analyses with higher variance 
and highly uncertain estimates, differences with HC stud-
ies were augmented. In an analysis of 200 meta-analyses 
published in Psychological Bulletin, an eminent journal 
in psychological science, Stanley et al. (2018) found that 
only a tiny percentage (< 1%) of experimental studies 
are adequately powered, compared with about a third 
of observational studies. Meta-analyses that include  
only underpowered studies may not be a good “gold 
standard.”

Our findings need to be qualified by important limita-
tions. We were able to identify a matching meta-analysis 

containing effect-size data for only a third of our sample 
of target articles. We considered meta-analyses as eli-
gible if they included any emotion-related finding from 
the target article to avoid ranking findings in the original 
article in terms of importance. Previous research has 
dealt with this problem by choosing a finding for which 
effect-size data are reported in the abstract (Ioannidis 
& Panagiotou, 2011). However, we were concerned that 
most of the articles in social and behavioral sciences 
might simply present findings narratively, with absent 
or incomplete data, especially in abstracts. Moreover, 
there is evidence that abstracts are frequently inconsis-
tent with full reports (Li et al., 2017). Nonetheless, ancil-
lary analyses restricted to findings that were mentioned 
in the abstract supported our main findings. In addition, 
in the interest of consistency, when a matching meta-
analysis included multiple forest plots, we chose the 
largest one, although it might not have used the most 
important finding from the HC study. We were able to 
screen a maximum of 2,000 citations for each target 
article because of the limitations of exporting data from 
Scopus. Because we were mostly interested in research 
on human participants, more general terms such as 
“fear” or “stress” were not used because they would have 
rendered the search overtly nonspecific. Finally, we can-
not exclude the possibility that in some cases in which 
effect size was larger in the HC study, the HC study may 
have been more “correct” than the respective meta-
analysis and the largest study on the topic. For instance, 
the HC study might have had some particularly high-
quality features and protection from bias that other stud-
ies did not, and biases might have eroded an otherwise 
genuinely large effect in the other studies. However, this 
does not seem to be the case in other fields in which 
HC studies compared with other evidence have been 
assessed.

Investigations of HC articles in the social and behav-
ioral sciences have been limited and mostly restricted 
to surveying content and design (Price et al., 2011) or 
the availability and sharing of the data underlying their 
findings in HC articles (Hardwicke & Ioannidis, 2018). 
We add to this metaresearch literature by demonstrating 
a pervasive systematic citation bias toward exaggerated 
effects across empirical studies in emotion research.
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