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Abstract

Meta-analysis is an important quantitative tool for cumulative science, but its application is frustrated

by publication bias. In order to test and adjust for publication bias, we extend model-averaged Bayesian

meta-analysis with selection models. The resulting robust Bayesian meta-analysis (RoBMA) methodol-

ogy does not require all-or-none decisions about the presence of publication bias, can quantify evidence

in favor of the absence of publication bias, and performs well under high heterogeneity. By model-aver-

aging over a set of 12 models, RoBMA is relatively robust to model misspecification and simulations

show that it outperforms existing methods. We demonstrate that RoBMA finds evidence for the absence

of publication bias in Registered Replication Reports and reliably avoids false positives. We provide an

implementation in R so that researchers can easily use the new methodology in practice.

Translational Abstract

Meta-analysis is an essential tool to synthesize information from a series of primary studies. However, the

application of meta-analysis is often frustrated by publication bias – the fact that statistically significant

results are published more often than nonsignificant results. To alleviate the problem of publication bias we

developed a robust Bayesian meta-analysis (RoBMA). RoBMA applies a series of meta-analytic models to

the data simultaneously and estimates the effect size by taking all models into account. RoBMA can quan-

tify evidence for the presence as well as the absence of publication bias, RoBMA can correct for publication

bias in cases where the true effect effect size differs between studies, and RoBMA does not require all-or-

none decisions. We illustrate RoBMA with a meta-analysis on violent video games and aggressive behavior,

and apply it to the ManyLabs 2 data for which we know publication bias to be absent. Simulations suggest

that RoBMA provides a valuable complement to current methods for meta-analysis.
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Meta-analysis is the method of choice for aggregating evidence

across a set of primary studies. However, studies that report statis-

tically significant results (i.e., p , .05) are more likely to get pub-

lished (Rosenthal & Gaito, 1964; Scheel et al., 2020; Wicherts,

2017), and this preferential publishing results in an inflated effect

size estimate—a phenomenon known as publication bias (Roth-

stein et al., 2005). A variety of methods have been developed to

test and adjust for publication bias. Citation counts suggest that

funnel-based methods such as trim-and-fill (Duval & Tweedie,

2000) and Egger’s regression (Egger et al., 1997) are most popu-

lar.1 Alternative methods such as p-curve (Simonsohn et al., 2014)

and PET-PEESE (Carter & McCullough, 2014) have recently been

proposed and are increasing in popularity (for reviews see Carter

et al., 2019 and Renkewitz & Keiner, 2019). The existing methods

are predominantly based on the frequentist framework for statisti-

cal inference. In other words, these methods aim to control the
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long-term rate of false positives such that it does not exceed some

frequency a. For an individual test, the methodology usually

reduces to computing a p-value (i.e., the probability of encounter-

ing a test statistic at least as extreme as the one observed, under

the assumption that the null-hypothesis of no difference holds) and

assessing whether or not p , a, with a usually set to 5% (Bartoš

& Maier, 2019; Neyman, 1977). However, most existing methods

to test and adjust for publication bias share several limitations.

A first limitation is that frequentist methods require researchers

to decide whether or not to adjust for publication bias in all-or-

none fashion, based on whether the p-value is smaller than the a

level. This choice fails to take model uncertainty into account and,

consequently, slight differences in p-values (e.g., .049 vs. .051)

can lead to consequential changes in mean estimates. This problem

is exacerbated because the number of primary studies in a meta-

analysis is often so low that confident inferences about publication

bias are beyond reach.

A second limitation is that frequentist methods cannot quan-

tify evidence in favor of the absence of publication bias; a non-

significant p-value may indicate evidence of absence or absence

of evidence (Gallistel, 2009; Rouder et al., 2009). In practice,

researchers often assume that they do not need to worry about

publication bias whenever a test for publication bias is not sig-

nificant. However, publication bias might still be present, with

the test lacking the statistical power to detect it (Renkewitz &

Keiner, 2019).

A third limitation is that frequentist methods assume knowl-

edge of the sampling plan with which the studies accumulate

over time (ter Schure & Grünwald, 2019). When executing a

meta-analysis on K primary studies, the implicit assumption is

that an experimenter planned to conduct K studies and then

stopped. This sampling plan is not realistic; studies accumulate

over time, either indefinitely or until a point has been suffi-

ciently proven or disproven. Assume a frequentist meta-analy-

sis has been executed based on the standard assumption that K

studies (no more, no less) were ever going to be reported. Next,

study K þ 1 comes in. For frequentist methods, this presents a

conundrum, as conducting another test invokes a multiple com-

parisons problem, with all of the a already spent on the first

test.

A fourth limitation is that most existing methods fail under high

across-study heterogeneity, as shown in simulation studies (Carter

et al., 2019; McShane et al., 2016; Renkewitz & Keiner, 2019). A

notable exception are selection models (e.g., Iyengar & Green-

house, 1988; Vevea & Hedges, 1995) which perform well even

under high heterogeneity, although they have other problems such

as poor convergence under few primary studies (Field & Gillett,

2010; Terrin et al., 2003).

To overcome the above limitations, we developed an exten-

sion of Bayesian model-averaged meta-analysis (BMA).

Below we start by introducing BMA (Gronau, van Erp et al.

(2017)) which is the first component of our method. Next, we

introduce selection models as a framework to test and adjust

for publication bias—the second component of our method.

These two components are then brought together to yield Ro-

bust Bayesian Meta-Analysis (RoBMA), a model-averaged

meta-analytical framework in the presence of publication

bias.

We illustrate the methods by applying them to two data

sets. The first data set concerns the meta-analysis by Ander-

son et al. (2010) on violent video games and aggressive

behavior. Anderson et al. (2010) concluded that “exposure to

violent video games is a causal risk factor for increased

aggressive behavior.” However, several researchers have

questioned this conclusion, suggesting instead that the results

are contaminated by publication bias (e.g., Ferguson et al.,

2010; Hilgard et al., 2017). We focus our analysis on the 27

experimental studies that meet Anderson and colleagues’

(2010) best practice criteria.2 The second data set concerns

28 meta-analyses from the Many Labs 2 data (Klein et al.,

2018); this data set is particularly useful because we know

the ground truth: Publication bias is absent. Consequently,

the different tests for publication bias can be compared based

on how many false positives they produce. Finally, we pres-

ent a simulation study comparing RoBMA to other methods

under different conditions for heterogeneity, effect size, and

publication bias.

Component 1: Model-Averaged Bayesian Meta-Analysis

Our method is based on BMA as introduced in Gronau, van

Erp et al. (2017). This method applies four models simultane-

ously (see Figure 1), differentiated according to whether they

assume an overall effect to be absent or present, and whether

they assume across-study heterogeneity to be absent (i.e.,

fixed effects, when the effect size is the same across the pri-

mary studies) or present (i.e., random effects, when effect

sizes differ across the primary studies). Thus, BMA features

the following four models:

1. The fixed effects null hypothesis (Hf
0)

2. The fixed effects alternative hypothesis (Hf

1)

3. The random effects null hypothesis (Hr
0)

4. The random effects alternative hypothesis (Hr
1)

The default setting for BMA is to assume that all four models

are equally likely a priori (cf. Figure 1). The relative plausibil-

ity of the four rival models is then updated according to Bayes’

theorem: Models that predict the observed data relatively well

receive a boost in plausibility, whereas models that predict the

data relatively poorly suffer a decline (Wagenmakers et al.,

2016).

With only two models under consideration, their relative pre-

dictive performance is given by the Bayes factor (Etz &

Wagenmakers, 2017; Kass & Raftery, 1995; Rouder & Morey,

2019; Wrinch & Jeffreys, 1921). To illustrate, Equation 1

shows that the Bayes factor for the random effects alternative

hypothesis Hr
1 versus the fixed effects alternative hypothesis

Hf
1 equals the change from prior to posterior odds brought

about by the data:

2
The data are available at https://github.com/Joe-Hilgard/Anderson

-meta.
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pðdata j Hr
1Þ

pðdata jHf
1Þ

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Bayes factor

¼
pðHr

1 j dataÞ

pðHf
1 j dataÞ

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Posterior odds

,

pðHr
1Þ

pðHf
1Þ

|fflffl{zfflffl}

Prior odds

: (1)

When Hr
1 and Hf

1 are equally plausible a priori, the prior odds

equal 1 and the Bayes factor reduces to the posterior odds. For

instance, if Hr
1 predicted the observed data three times better than

Hf

1 (i.e., the Bayes factor equals three) then the posterior odds also

equal three, meaning that the posterior model probability for Hr
1

equals 3/4 = .75, leaving .25 for Hf

1. A common rule of thumb is

to regard Bayes factors between one and three as weak or anec-

dotal evidence, Bayes factors between three and ten as moderate

evidence, and Bayes factors larger than ten as strong evidence

(e.g., Jeffreys, 1939, Appendix I; Lee & Wagenmakers, 2013, p.

105). However, “This set of labels facilitates scientific communi-

cation but should only be considered an approximate descriptive

articulation of different standards of evidence” (Lee & Wagen-

makers, 2013, p. 105), by reducing a continuous measure for the

strength of evidence to a discrete category, information is inevita-

bly lost (Jeffreys, 1938).3

With more than two models under consideration, as is the case

for BMA, one may consider the change from prior to posterior

odds for sets of models defined by including versus excluding a

specific parameter. This “inclusion Bayes factor” allows BMA to

quantify evidence for the presence of a meta-analytic effect and

for across-study heterogeneity by taking all four models into

account simultaneously. For example, in the context of assessing

the evidence for and against the presence of a meta-analytic effect

the inclusion Bayes factor BF10 compares H1 ¼ fHf
1;H

r
1g to

H0 ¼ fHf
0;H

r
0g. Specifically, the inclusion Bayes factor for

assessing the evidence for the presence of a meta-analytic effect is

given by:

BF10
|ffl{zffl}

InclusionBayesfactorforeffect

¼
pðHf

1 jdataÞþpðHr
1 jdataÞ

pðHf
0 jdataÞþpðHr

0 jdataÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Posteriorinclusionoddsforeffect

,

pðHf
1ÞþpðHr

1Þ

pðHf
0ÞþpðHr

0Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Priorinclusionoddsforeffect

: (2)

The inclusion Bayes factor BFrf for the test of heterogeneity is

obtained similarly, by contrasting Hr ¼ fHr
0;H

r
1g to Hf ¼

fHf

0;H
f

1g. Note that inclusion Bayes factors are able to distinguish

between “absence of evidence” (i.e., when BF10 and BFrf are close

to 1) and “evidence of absence” (i.e., when BF10 and BFrf are close

to 0, or, equivalently, when BF01 and BFfr are much larger than

1).4 Also note that Bayes factors quantify evidence on a continu-

ous scale, and this evidence can be seamlessly updated as more

studies accumulate (Berger & Wolpert, 1988; Rouder, 2014).

In addition to testing for effect size and across-study heterogeneity,

the BMA framework can also be used to estimate parameters. For

instance, the overall posterior distribution for the meta-analytic effect

is a weighted combination of the estimates from each of the four indi-

vidual models, with the weights equal to the model’s posterior proba-

bility. This process is known as Bayesian model-averaging (Hoeting

et al., 1999; for a conceptual introduction see Hinne et al., 2020) and

it obviates the need to base inference on a single model in all-or-none

fashion. This is particularly advantageous when there is considerable

posterior uncertainty about whether a fixed effects or a random effects

model is most appropriate. In such scenarios, the Bayesian model-

averaging result is substantially influenced by both model classes.

Recently, BMA has been used to estimate the effect of power pos-

ing (Gronau, van Erp, et al., 2017), to test compensatory control

theory (Hoogeveen et al., in press), study the effectiveness of descrip-

tive social norms (Scheibehenne et al., 2017), to analyze a registered

replication report on facial feedback (Hinne et al., 2020), to investi-

gate how researchers subjective decisions when designing studies

influence the results (Landy et al., 2020), and to conduct a Bayesian

multiverse analysis on the data of Many Labs 4 (Haaf et al., 2020). A

primer on BMA is presented in Gronau, Heck, et al. (2020). How-

ever, most past applications concern prospective meta-analyses, that

is, meta-analyses on registered reports. The main reason for this is

that BMA cannot yet adjust for publication bias.

We illustrate BMA using the data from Anderson et al. (2010).5

As can be seen in Figure 1 we assume equal prior probabilities for

the four different models. Figure 2 shows the associated posterior

model probabilities. The model that best predicts the data is Hf
1,

the fixed effects model that assumes the presence of an effect. This

model has a posterior probability of .773. The second-best model

is Hr
1, the random effects model that assumes the presence of an

effect with a posterior probability of .277. When comparing sets of

Figure 1

Prior Model Probabilities of BMA

r

r

f

f

Note. Total probabilities are displayed on the nodes and conditional

probabilities on the edges. H0 denotes the models assuming the null

hypotheses to be true, H1 denotes the models assuming the alternative

hypotheses to be true. Hf denotes fixed effects models, Hr random effects

models. BMA = Bayesian model-averaged meta-analysis.

3
On p. 378, Jeffreys (1938) discusses thresholds on BF01 (which he

termed K) as follows: “we are at liberty to surround K = 1 by two other
values and say that within this range the data are not sufficiently decisive,
and even this device would be purely one of convenience and sacrifice
some information given by the actual values of K.”

4
The first and second subscript of the Bayes factor denote the model

in the numerator and the denominator, respectively; so BFAB means
p(data j HA) / p(data j HB), and BFBA means p(data j HB) / p(data j HA).
When Bayes factors are lower than one, it is recommended to switch
numerator and denominator, because “BFAB = 0.2, the data are 0.2 times
more likely under HA than under HB” is more difficult to interpret than the
equivalent statement “BFBA = 5, the data are five times more likely under
HB than underHA”.

5
We fit BMA using the metaBMA R package (Heck et al., 2017; see

also Gronau, Singmann, &Wagenmakers, 2020).
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models using the inclusion Bayes factor, we find weak support

favoring the fixed effects models over the random effects model

(i.e., BFfr = 3.41)6 and overwhelming support for the alternative of

an effect of violent video games on aggressive behavior (BF10 =

8.753 109).

The model-averaged posterior mean effect size estimate r =

.211, 95% CI [.171, .247] is then obtained after weighting the

effect size implied by each model according to its posterior

probability. In this particular case the estimate is based most

strongly on Hf

1 and Hr
1, and almost not at all influenced by Hf

0

and Hr
0.

However, Ferguson et al. (2010) and Hilgard et al. (2017) have

argued that the original effect size reported in Anderson et al.

(2010) was overestimated due to publication bias. BMA cannot

test or adjust for the possibility of publication bias; to do so, we

now turn to selection models.

Component 2: Selection Models

Our approach to publication bias is based on selection models

that operate on p-values (e.g., Hedges, 1992; Iyengar & Green-

house, 1988; Vevea & Hedges, 1995). These selection models

use weighted distributions to account for the proportion of stud-

ies that are missing because they yielded nonsignificant results.

The researcher specifies the p-value cut-offs that drive publica-

tion bias (usually p = .05). The selection model then estimates

how likely studies in nonsignificant intervals are to be published

compared with the interval with the highest publication proba-

bility (usually p , .05). The pooled effect size estimate accounts

for the estimated publication bias by giving more weight to

studies in intervals with lower publication probability (usually

nonsignificant studies). Selection models can also test for publi-

cation bias. To do so, the unadjusted model— either a fixed or a

random effects meta-analytic model—is compared with the cor-

responding selection model using a likelihood ratio test. This

test uses a x 2 statistic to reject the null hypothesis of no publica-

tion bias whenever the p-value is lower than the conventional

5% a level, or lower than an a level of 10%, a more lenient

threshold which is sometimes advocated because it increases

power (Renkewitz & Keiner, 2019).

Another type of selection models, so-called “Copas” selection

models, specify the probability of a study being published as a

function of both effect sizes and standard errors (Copas, 1999;

Copas & Li, 1997; Copas & Shi, 2001; for recent Bayesian ver-

sions see Bai et al., 2020; Mavridis et al., 2013). In this article

we focus on the selection models based on p-values; these selec-

tion models have been extensively tested in simulation studies

and are most popular in practice (e.g., Carter et al., 2019).

Selection models are one of the few methods that have been

shown to work well even under high heterogeneity (Carter et al.,

2019; McShane et al., 2016) and can be specified flexibly

according to the assumed model of publication bias (e.g., assum-

ing different probability of publication for marginally significant

studies with p [ [.05, .10]). Finally, the assumed model of the

publication process (i.e., selection based on statistical signifi-

cance) is a well-founded model for how publication bias operates

in practice (Masicampo & Lalande, 2012; Rosenthal & Gaito,

1964; Wicherts, 2017).

To illustrate the methodology of selection models we revisit

the example of Anderson et al. (2010). We use the weightr R

package (Coburn et al., 2019) and initially specified a two-

sided selection with different probabilities for significant and

marginally significant studies (i.e., with cutoffs at p = .05,

.10).7 Because all effects were positive we were forced to alter

the model and include only p-value cut-offs in the expected

direction (i.e., one-sided selection). We first tested for presence

of heterogeneity (with a = .05). The test is not significant, Q

(22) = 15.09, p = .89, so we proceeded with a fixed effect

model (Bartoš et al., 2020). The fixed effect model indicates

significant publication bias (i.e., x 2(2) = 13.58, p = .001, using

a = .10). Estimates for the relative publication probability in

the different intervals indicate that marginally significant

results are only 28% as likely to be published than significant

findings and nonsignificant results are only about 8% as likely

to be published (see Figure 3). Adjusting for this publication

bias corrects the effect size estimate downward although the

effect remains significant, r =.140, 95% CI [.077, .201], z =

4.33, p , .001.

However, in addition to the general limitations of frequent-

ist methods (i.e., ignoring model uncertainty, inability to

quantify evidence for the absence of an effect, and dependence

on an unknown sampling plan), selection models have more

specific limitations as well. In particular, they often cannot be

estimated under small sample size, especially when there are

few studies in any of the p-value intervals (e.g., Terrin et al.,

2003; but see Citkowicz & Vevea, 2017; for a recent attempt

Figure 2

Posterior Model Probabilities for a BMA of Anderson et al.

(2010)

f

f

r

r

Note. Total probabilities are displayed on the nodes and conditional

probabilities on the edges. H0 denotes the models assuming the null

hypotheses to be true, H1 denotes the models assuming the alternative

hypotheses to be true. Hf denotes fixed effects models, Hr random

effects models. BMA = Bayesian model-averaged meta-analysis.

6
As a calculation example based on Equation 2: The prior odds are

(0.25 þ 0.25)/(0.25 þ 0.25) = 1 and the posterior odds (0.773 þ 0)/(0.227 þ
0) = 3.41 corresponding to a Bayes factor of 3.41/1 = 3.41.

7
The weightr R package allows the specification of p-values cut-offs

on one-sided p-values directly. To achieve two-sided selection with
significant and marginally significant studies, the following one-sided
p-value cutoffs need to be specified (0.025, 0.05, 0.95, 0.975).
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to solve this problem by modeling the weight function as a

beta distribution). Furthermore, selection models are mainly

available in the weightr package (Coburn et al., 2019) and

the selectMeta package (Rufibach, 2015) in the program-

ming language R, limiting their accessibility. This is arguably

the reason why they have not been adopted more widely de-

spite their desirable properties (Card, 2015, p. 275).

Combining Model-Averaged Bayesian Meta-Analysis

and Selection Models: Robust Bayesian

Meta-Analysis (RoBMA)

We propose robust Bayesian meta-analysis (RoBMA), a Bayes-

ian multimodel method that aims to overcome the limitations of

existing procedures. RoBMA is an extension of BMA obtained by

adding selection models to account for publication bias. This

allows model-averaging across a larger set of models, ones that

assume publication bias and ones that do not.

As shown in Figure 4, RoBMA partitions the model space

according to three characteristics. As in BMA, we differentiate

between models that do (H1) and do not (H0) assume the presence

of an effect, and between models that assume homogeneity (fixed

effects; Hf ) and heterogeneity (random effects; Hr). RoBMA gen-

eralizes BMA by also differentiating models assuming the absence

of publication bias (Hv ) and models assuming its presence (Hv ).

Comparing the predictive accuracy of the latter two model types

allows us to test for the presence or absence of publication bias.

The models assuming the absence of publication bias are identi-

cal to the models described by Gronau, Sarafoglou et al. (2017).

For the models that assume the presence of publication bias, we

specified two selection processes (not shown in Figure 4). The first

selection process is a two-step model that distinguishes only

between significant and nonsignificant studies assuming that signif-

icant studies are more likely to be published. The second selection

process is a three-step model that includes marginally significant

Figure 4

Different Models Included in RoBMA and Their Prior Probabilities
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Note. RoBMA features two publication bias models (i.e., two and three-steps) that are not distin-

guished in the plot. Total probabilities are displayed on the nodes and conditional probabilities on

the edges. H0 denotes the models assuming the null hypotheses to be true, H1 denotes the models

assuming the alternative hypotheses to be true. Hf denotes fixed effects models, Hr random effects

models, Hv publication bias models, and Hv models without publication bias. RoBMA = result-

ing robust Bayesian meta-analysis.

Figure 3

Estimated Weight Function With 95% CI for Anderson et al.

(2010)

Note. Results are based on the selection model outlined in Vevea and

Hedges (1995). The weight for significant studies is set to one.

“Marginally” significant and nonsignificant studies are then weighted

according to their relative probability of publication.
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results as a separate category. We specify both processes to be in-

dependent of the direction of the effect. Therefore, marginal signif-

icance also corresponds to one-sided significance at the a = .05

level. By including several models for publication bias the overall

approach is relatively robust to model misspecification. Overall,

RoBMA includes the following 12 (i.e., 2 3 2 3 3) different mod-

els of the data generating process:

1. The fixed effects null hypothesis without publication bias

(Hxf

0 )

2. The fixed effects alternative hypothesis without publica-

tion bias (Hxf

1 )

3. The random effects null hypothesis without publication

bias (Hxr
0 )

4. The random effects alternative hypothesis without publi-

cation bias (Hxr
1 )

5. The fixed effects weighted null hypothesis with publica-

tion bias (Hxf
0 ) which subdivides into

(a) a model with two-step selection (Hx2 f

0 )

(b) a model with three-step selection (Hx3f

0 )

6. The fixed effects weighted alternative hypothesis with

publication bias (Hxf
1 ) which subdivides into

(a) a model with two-step selection (Hx2 f
1 )

(b) a model with three-step selection (Hx3f
1 )

7. The random effects weighted null hypothesis with publi-

cation bias (Hxr
0 ) which subdivides into

(a) a model with two-step selection (Hx2r
0 )

(b) a model with three-step selection (Hx3r
0 )

8. The random effects weighted alternative hypothesis (Hxr
1 )

which subdivides into

(a) a model with two-step selection (Hx2r
1 )

(b) a model with three-step selection (Hx3r
1 )

As can be seen in Figure 4, we distribute prior probability

evenly across the different pairs of model classes. In other

words, a priori we assume a probability of .5 of publication

bias, a .5 probability for heterogeneity, and a .5 probability for

a true effect (see Figure 4). In the case of the publication bias

models, the prior probability is further divided, assigning .5

probability to the two-step models and .5 probability to the

three-step models. Regarding the probability of the individual

models, this results in a probability of .125 (.5/4) for each of

the models assuming no publication bias and .0625 (.5/8) for

each of the models assuming publication bias.

Regarding the parameter prior distributions, we used a nor-

mal distribution with mean zero and a standard deviation of 1

for the effect size. This prior distribution assigns high probabil-

ity to a wide range of effect sizes, without being as heavy-tailed

as the popular Cauchy distribution. For heterogeneity, we used

inverse gamma with a = 1 and b = .15. This estimate is based

on empirical heterogeneities for the field of psychology (van

Erp et al., 2017). The prior distribution on the weights parame-

ter is the cumulative sum of the Dirichlet distribution with a set

to (1, 1) for the two-interval model and (1, 1, 1) for the three-

interval model. Thus, the weight for the significant studies is

always equal to one and the weights increase monotonically

with decreasing p-values. We fit the models with the RoBMA

(Bartoš & Maier, 2020) R package. The package estimates the

individual models via MCMC sampling using JAGS (Plummer,

2003), specifically the runjags R package (Denwood, 2016).

While JAGS incorporates most common distributions we also

added custom weighted distributions that were required to imple-

ment the selection models. To obtain the marginal likelihoods, the

package uses bridge sampling (Gronau, Sarafoglou, et al., 2017)

implemented in the bridgesampling R package (Gronau,

Singmann, & Wagenmakers, 2020). More detailed specifications

of RoBMA can be found in Appendix A.

Although this is the default setup and the setup that will be

used in the examples and in the simulation study of this paper,

we wish to stress that RoBMA can be customized in several

ways. For example, some methodologists have argued that only

random effects meta-analysis should be used (e.g., Borenstein,

2019). This advice can be followed by simply removing the

fixed effects models from RoBMA. Apart from adding and

removing models one can also alter the assignment of prior

model probabilities. For instance, the belief that the null hy-

pothesis is relatively unlikely may be incorporated by lowering

the prior model probabilities for the associated models. Finally,

in practice researchers should also feel free to use different pa-

rameter prior distributions when conducting meta-analyses,

depending on their prior knowledge and the specific hypotheses

under consideration. For example, when the possibility of very

large effect sizes cannot be ruled out a Cauchy prior might be

preferable over the normal prior distribution. An R vignette that

explains how to modify RoBMA is available at https://cran

.microsoft.com/web/packages/RoBMA/vignettes/

CustomEnsembles.html.

To illustrate, we apply RoBMA to the example of Anderson et al.

(2010). As can be seen in Figure 4, all model pairs are equally likely

a priori. Figure 5 shows the associated posterior probabilities. After

updating by the data the two most likely models are the weighted

fixed effects alternative (H
v f
1 ) and the weighted random effects

(Hvr
1 ) alternative. Those two models take up almost all posterior

probability (86% and 13.6%). When comparing sets of models using

the inclusion Bayes factor the data overwhelmingly support the pres-

ence of effect size (BF10 = 1.05 3 107) and publication bias

(BFvv ¼ 381:69), while support for the fixed effects models is mod-

erate (BFfr = 6.29). The final inference is, therefore, based most

strongly on the effect-present fixed and random effects models that

include publication bias; consequently, the model-averaged posterior

mean corrects the meta-analytical effect size estimate downward in

comparison to BMA, r = .151, 95% CI [.094, .207].
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RoBMA Benefits

The first benefit of RoBMA is that Bayes factors can quantify

evidence for the absence of publication bias. This is especially im-

portant because frequentist tests for publication bias usually have

low power to detect publication bias if it is present (Renkewitz &

Keiner, 2019). Therefore, a nonsignificant test for publication bias

does not usually imply the absence of publication bias. RoBMA

allows researchers to differentiate between absence of evidence

and evidence of absence.

The second benefit of RoBMA is that the Bayesian frame-

work mitigates the estimation problems that arise when some of

the p-value intervals contain only few studies. If one of the p-

value intervals misses sufficient observations, the weights are

still constrained by prior distributions. Therefore, the model

can also be estimated on few primary studies. However, in this

context it is important to choose priors carefully and evaluate

the robustness to prior specification by examining how the con-

clusions change when using different parameter priors on the

weights.

The third benefit of RoBMA is that the Bayesian model-averaging

removes the need for a variety of all-or-none p-value-based decisions

required by frequentist methods. In other words, RoBMA allows

researchers to retain all models, weighting their inferential impact by

their posterior probability. The option to include multiple models of

the publication process also makes selection models more robust to

model misspecification. Model-averaging should be especially bene-

ficial when there is substantial uncertainty about the best model. In

addition, model-averaging avoids the danger of making incorrect

analysis choices since the data will directly guide the inference to be

based most strongly on the best model.

Unsurprisingly, we are not the first to realize these benefits.

Non model-averaging Bayesian selection models have been

proposed over 20 years ago (Givens et al., 1995; Larose & Dey,

1998; Silliman, 1997; Smith et al., 2001) and more recently

Guan and Vandekerckhove (2016) showed model-averaging

over fixed effects models. However, heterogeneous effect sizes

are the norm, rather than the exception in psychology (e.g.,

McShane et al., 2016). Therefore, we extend model-averaging

to include random effects models. In addition, we add Bayes

factor tests for the presence or absence of publication bias.

Finally, we implement the Bayesian model-averaged meta-anal-

ysis in an R package RoBMA (Bartoš & Maier, 2020) and we

also recently developed a version for the open-source statistical

software program JASP (Bartoš et al., 2020; JASP Team,

2020). This allows researchers without programming experi-

ence to conduct state-of-the-art publication bias-adjusted meta-

analysis.

In the remainder of this article, we test RoBMA and compare it

with existing meta-analytic techniques. First, we used the 28 stud-

ies from Many Labs 2—here we know that publication bias is

absent—to assess the possible tendency to produce false positives

when testing for publication bias. Second we performed a simula-

tion study to compare RoBMA with other methods under different

conditions for publication bias, effect size, heterogeneity, and

number of primary studies.

Testing False Positives on Many Labs 2

It is hard to assess the performance of different methods on pub-

lished meta-analyses because the true parameters are usually

unknown. However, it is possible to assess the false positive rate

Figure 5

Posterior Model Probabilities for the Different Types of Models in RoBMA After

Updating on the Data of Anderson et al. (2010)
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Note. RoBMA features two publication bias models (i.e., two and three steps) that are not

distinguished in the plot. Total probabilities are displayed on the nodes and conditional prob-

abilities on the edges. H0 denotes the models assuming the null hypotheses to be true, H1

denotes the models assuming the alternative hypotheses to be true. Hf denotes fixed effects

models, Hr random effects models, Hv publication bias models and Hv models without

publication bias. RoBMA = resulting robust Bayesian meta-analysis.
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of tests for publication bias using Registered Reports (Chambers,

2013, 2019). Registered Reports are subject to a two-stage peer review

process. In the first, predata stage, peer review concerns only the intro-

duction and method sections; when the experimental design and data

analysis plan are sufficiently convincing, the article receives “in princi-

ple acceptance,” which means that the journal commits to publishing

the results independent of the outcome (Chambers et al., 2015). There-

fore, in the case of Registered Reports we know that all primary stud-

ies are published regardless of the result; in other words, if a method

detects publication bias, this is a false positive finding. In addition,

Registered Reports allow an empirical test of RoBMA’s ability to

quantify evidence in favor of the absence of publication bias. There-

fore, we compared RoBMA to different methods for publication bias

using the registered replication report Many Labs 2 (Klein et al.,

2018). This large-scale project attempted to replicate 28 classic and

contemporary effects from psychology. Each effect was subject to a

replication attempt from about half of the 125 participating labs (com-

prising 15,305 participants from 36 countries in total). The median

Cohen’s d across the 28 replicated effects was .15. One effect had t

larger .2, while the others all had values near t = .10.8

In addition to RoBMA, we included Vevea and Hedges (1995)

selection models with two-steps or three-steps and two-sided

selection. Similar to the Anderson example, we first applied the

test for heterogeneity before proceeding to the test for publication

bias.9 In addition to RoBMA and the selection models, we also

test for publication bias using trim and fill (Duval & Tweedie,

2000), replicability index (Schimmack, 2020), Egger regression

(Egger et al., 1997; which corresponds to testing for publication

bias using the PET part of PET-PEESE; Stanley & Doucouliagos,

2014), and the test for excess significance (Ioannidis & Trikalinos,

2007). For an explanation of these methods see Renkewitz and

Keiner (2019) and Schimmack (2020). For Egger regression we

used code from Carter et al. (2019); for replicability index and test

for excess significance we used code provided by Dr. Schimmack;

for trim and fill we used the trimfill function from the meta-

for (Viechtbauer, 2010) R package with the RO estimator; for

selection models we used the weightr R package (Coburn et al.,

2019), and for the RoBMA models we used the RoBMA R package

(Bartoš & Maier, 2020). For frequentist methods we used a = .10

as significance level (Renkewitz & Keiner, 2019) whereas for

RoBMA we used the inclusion BFwv > 3 as a discrete “evidence

threshold” (e.g., Jeffreys, 1939). In practice, we recommend

researchers interpret Bayes factors as a continuous measure of evi-

dence rather than by reference to discrete thresholds. We use

thresholds here only to interpret RoBMA’s performance in terms

of false positive rate and power, thereby enabling a comparison to

frequentist methods.

As can be seen in Figure 6, RoBMA, the two selection models

(i.e., “SM2” and “SM3”), and trim and fill had either no or few

false positives (0% for SM2 and SM3; 3.6% or 1/28 for RoBMA;

7.1% or 2/28 for trim and fill; i.e., results with p , .10 or

BFwv > 3). However, in contrast to the two frequentist selection

models, RoBMA also provided evidence in favor of the absence of

publication bias in 43% of cases (i.e., for 12/28 studies). The other

methods (i.e., replicability index, Egger regression, and the test for

excess significance) fare worse and incorrectly find evidence for

publication bias in 29% of cases or more (i.e., 8/28 for replicability

Index, 9/28 for Egger regression, 11/28 for the test for excess

significance).

Simulation Study

Method

To test the performance of RoBMA under different conditions

we designed a simulation study in which we manipulated the fol-

lowing four parameters:

1. The population mean: l = (0, 0.2, 0.5)

2. The heterogeneity: s = (0, 0.2)

3. The number of primary studies in each meta-analysis:

K = (10, 30, 100)

4. Three different conditions for publication bias with x

denoting the probability of publication for (a) nonsignificant

findings, (b) marginally significant findings, and (c) signifi-

cant findings:

(a) No publication bias: x1 = 1, x2 = 1, x3 = 1

(b) Moderate publication bias: x1 = 0.2, x2 = 0.5, x3 = 1

Figure 6

False Positives of Different Methods Using the 28 Effects Studied

in Many Labs 2 (Klein et al., 2018)

Note. SM3 = three-step selection model; SM2 = two-step selection model;

RI = replicability index; TES = test for excess significance; RoBMA = result-

ing robust Bayesian meta-analysis; TF = trim and fil. Black areas indicate

evidence for publication bias (BF . 3, p , .10), gray areas indicate ambigu-

ous evidence regarding publication bias (1/3 , BF , 3, p . .10), and white

areas indicate evidence for the absence of publication bias (BF , 1/3, only

applicable to RoBMA).

8
We used the reported t-statistics and sample sizes for studies analyzed

using (Welch) t-tests (16 effects). For the remaining 12 effects, we
computed t-statistic from the reported correlation coefficients.

9
Because the frequentist implementation of selection models requires at

least three p-values in each interval, we join intervals with fewer than three
p-values. If there was only one interval left, we used either a random or
fixed meta-analytical model based on the test of residual heterogeneity
(with a = .05). Otherwise, we fitted a selection model, first tested for
residual heterogeneity (with a = .05), selected either fixed or random effect
model and then used a likelihood ratio test (with a = .10) to determine
whether or not to use an adjusted model. If an adjusted model was selected
but all of the estimated weights were higher than 1, we set the publication
bias p-value to 1 and proceeded with the unadjusted model.
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(c) Severe publication bias: x1 = 0, x2 = 0, x3 = 1

Significance was assessed based on two-sided p-values. The sam-

ple size of the primary studies in the meta-analysis was sampled

from a negative binomial distribution based on empirical sample

sizes that we extracted from Stanley et al. (2018; figure in Appendix

B). We also conducted one simulation to assess method performance

under extreme p-hacking of a null effect (m = 0, t = 0). The results

of this simulation can be found in Appendix C. Each of the presented

conditions was repeated 500 times.

In all simulations, we compared the performance of RoBMA to that

of several different methods. To test for publication bias we used the

same methods as in the Many Labs 2 example presented above. For

effect size estimation and testing, we kept RoBMA, two and three-step

selection models, and trim and fill, because the other methods are only

suited to test for publication bias. Instead we added p-curve (Simon-

sohn et al., 2014), PET-PEESE (Stanley & Doucouliagos, 2014), and

vanilla BMA (Gronau, van Erp, et al., 2017) to test for and estimate

the meta-analytical effect size. A review and explanation of the differ-

ent frequentist methods can be found in (Carter et al., 2019; Renkewitz

& Keiner, 2019; Schimmack, 2020). The implementation of the addi-

tional methods for effect size estimation and testing, PET-PEESE, p-

curve and Trim and Fill (estimation)10 was based on code from Carter

et al. (2019). For the frequentist methods, we used a = .05 as signifi-

cance level for the effect size test and a = .10 for the test of publication

bias. For the Bayesian methods, we used BF . 10 as “evidence

threshold” for effect size testing and BF. 3 for the test of publication

bias. For estimation with RoBMA and BMA we used the model-aver-

aged posterior mean as the point estimate. As before we do not recom-

mend interpreting Bayes factors in terms of these thresholds; we used

them here solely to facilitate the comparison to frequentist methods.

Results

Our results indicate that RoBMA outperforms other meta-analytic

methods in most conditions. Averaging across all conditions RoBMA

usually had the lowest root mean squared error (RMSE) and bias (cf.

Figure 7). RoBMA performs best in 65% of conditions when ranked

according to RMSE (Figure 8a) and in 36% of conditions when

ranked according to bias (Figure 8b). Results were computed condi-

tional on method convergence. P-curve converged in 95.5% of effect

size estimations and tests, trim and fill in 99.8% of effect size estima-

tions. All other methods converged in 100% of cases.

While presenting all individual conditions is beyond the scope

of this paper (they can be found at https://osf.io/buk8g/), we show

the results from three conditions that we find of particular interest

to psychologists in Figure 9 because they seem to cover a range of

values typical for meta-analysis in psychology (e.g., Stanley et al.,

2018). These are K = 30, m = 0, t = 0, v = (.2, .5, 1); K = 30, m =

.2, t = .2, v = (1, 1, 1); and K = 30, m = .2, t = .2, v = (.2, .5, 1).

As can be seen in Panel A, RoBMA estimates the pooled mean usu-

ally precise, although sometimes with slight underestimation due to

model-averaging involving the null hypotheses (A2) or a slight overes-

timation due to the involvement of models assuming no bias (A3). For

the effect size test (panel B) RoBMA has high power to detect a null

effect (B1) and few false positives. Panels B2 and B3 show that power

to detect a true effect is also satisfactory. The test for publication bias

in Panel C shows that only the test for excess significance seems to

have higher power (C1 and C3), however, that is mitigated by a false

positive rate of 30% under no publication bias (C2). RoBMA, on the

other hand, shows few false positives as well as high power to detect

publication bias. RoBMA’s test for the absence of publication bias has

lower power (C1), however, the other simulation conditions (https://

osf.io/buk8g/) show that the power increases with more primary stud-

ies. In addition, the conditions available at https://osf.io/buk8g/ show

that RoBMA sometimes overestimates or underestimates when there

are only 10 primary studies in the meta-analysis, although performance

is still good compared to other methods. In addition, Appendix C

shows that RoBMA leads to substantial overestimation under strong p-

hacking. Although this limitation is shared with most other methods, it

should be noted that Vevea and Hedges (1995) selection models per-

form better than RoBMA under strong p-hacking.

Figure 7

Boxplots of RMSE and Bias Across Simulation Conditions

Note. SM3 = three-step selection model; SM2 = two-step selection model; TF = trim and fill; RoBMA =

resulting robust Bayesian meta-analysis; PETPEESE = precision-effect test and precision-effect estimate with

standard error; RMSE = root mean squared error. We omit 10 conditions with RMSE . .5 for p-curve, 1 con-

dition with RMSE . .5 for PET-PEESE, and 4 conditions with bias . .5 for p-curve.

10
Carter et al. (2019) used trim and fill with the default L0 estimator

that does not allow to test for publication bias.
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To summarize, RoBMA outperformed the other methods in

most conditions examined here. In some conditions, RoBMA has

lower power than other methods; however, these methods suffer

from an inflated false positive rate in other conditions. In addition,

RoBMA has a tendency to underestimate effect size whenever the

alternative is true (due to the inclusion of the null models) and

overestimate effect size under publication bias (due to the inclu-

sion of the models assuming no publication bias). However, as can

be seen in the online materials, these biases are slight and disap-

pear under larger sample sizes, when almost all weight is given to

the correct models. Finally, RoBMA fares noticeably worse than

Vevea and Hedges (1995) selection model under strong p-hacking.

Concluding Comments

In this article, we introduced a robust Bayesian meta-analysis

that model-averages over selection models as well as fixed and

random effects models. By applying a set of twelve models simul-

taneously our method respects the underlying uncertainty when

deciding between different meta-analytical models and is compa-

ratively robust to model misspecification. RoBMA also performs

well in different simulation conditions and correctly finds support

for the absence of publication bias in the Many Labs 2 example.

Besides this ability to quantify the evidence for absence of publi-

cation bias, the Bayesian approach also allows updating evidence

Figure 8

Ranked RMSE and Bias of the Population Mean Estimates of Different Methods Across

Conditions

(a) RMSE
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Note. SM3 = three-step selection model; SM2 = two-step selection model; TF = trim and fill; RoBMA =

resulting robust Bayesian meta-analysis; PETPEESE = precision-effect test and precision-effect estimate with

standard error; RMSE = root mean squared error. A rank of 1 means that a method performed best in a simula-

tion condition while a rank of 7 indicates that a method performed worst. The y-axis indicates in which share

of simulations a given method achieved a rank.
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sequentially as studies accumulate, addressing recent concerns

about accumulation bias (ter Schure & Grünwald, 2019).

As are all models, our model is based on assumptions. First, the

test statistics follow a (weighted) normal distribution around the

true effect size with additive heterogeneity. Second, we make

assumptions about the publication process, specifically, that selec-

tion is based on p-values and that studies with smaller p-values are

more likely to be published. Other methods, such as Egger regres-

sion (Egger et al., 1997) are based on different assumptions of the

publication process. Therefore, these methods were disadvantaged

in our simulation in which we operationalized publication bias

based on significance. However, our model is supported by empiri-

cal findings regarding the publication process and p-value distribu-

tions (e.g., Masicampo & Lalande, 2012) and outperforms other

methods on the real data example of Many Labs 2.

We are currently investigating the possibility of adding more

models to the RoBMA ensemble such as different weight func-

tions (Citkowicz & Vevea, 2017; Iyengar & Greenhouse, 1988;

Patil & Taillie, 1989), “Copas” selection models (Copas, 1999;

Copas & Li, 1997; Copas & Shi, 2001), or PET-PEESE models

(Stanley & Doucouliagos, 2014). While these additions are

beyond the scope of the current article, the RoBMA methodol-

ogy is sufficiently flexible to include any plausible model for

publication bias and unify different competing approaches

under a single model-averaging umbrella.

As a general methodological point, we acknowledge that some

researchers believe that testing null hypotheses is not meaningful or

interesting; instead, these researchers wish to focus on estimation (e.g.,

Cumming, 2013, 2014; Gelman et al., 2014; Kruschke, 2015). This

philosophy can be accommodated within the framework of RoBMA.

To do so, researchers can simply remove the null models (i.e., the

model assuming no effect, the fixed-effects model, and the model

assuming no publication bias) and then proceed with estimating

RoBMA as usual (for example, see the vignettes for the R package on

https://cran.r-project.org/web/packages/RoBMA/). Also, the R package

allows researchers to retrieve the conditional parameter estimates. In

other words, after fitting RoBMA—including the null models for test-

ing—researchers may decide to engage in estimation using only those

models that assume the effect of interest to be present.

To conclude, this work offers applied researchers a new, conceptu-

ally straightforward method to conduct meta-analysis. Instead of bas-

ing conclusions on a single model, our method is based on keeping all

models in play, with the data determining model importance accord-

ing to predictive success. The simulations and the example suggest

that RoBMA is a promising new method in the toolbox of various

approaches to test and adjust for publication bias in meta-analysis.
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Appendix A

Specifications of RoBMA

In the previous version of our article and the RoBMA package
(Bartoš &Maier, 2020; Versions, 1.2), we followed a descrip-
tion of the Bayesian version of selection models outlined in
Equations 2 and 3 of Larose and Dey (1998). However, after the
selection process has filtered out the observed effects that are rel-
atively small, the true random effects will no longer be normally
distributed. Especially under high heterogeneity, the Larose and
Dey assumption may distort the model fit and unduly lower the
marginal likelihood. Therefore, motivated by the frequentist
specification of selection models (Vevea & Hedges, 1995) we
adapted our model such that it does not estimate the true effects
directly but rather marginalizes them out of the likelihood. A
similar approach to a Bayesian random effects meta-analysis
was recently described as a “marginalized random-effects meta-
analysis” (van Aert & Mulder, 2020).

A Bayesian selection model with a three-step weight func-
tion, assuming a standard normal prior distributions for the
meta-analytic effect size l, inverse-gamma distribution for
between-study heterogeneity s, and a cumulative sum of
Dirichlet distribution for the weights x, with yk and rk denot-
ing the observed effect sizes and standard errors for the k in
1:K studies, can be denoted as,

l �Normalð0; 1Þ
s � Inverse-gammað1; 0:15Þ
x �Cumulative-Dirichletð1; 1; 1Þ
yk�Weighted-normalðl; s2 þ r2

k ;xÞ:

(3)

Weighted-normal stands for a likelihood function of a weighted
normal distribution, with mean l, variance s2 þ r2

k , weights x,
and a cumulative probability function of a standard normal dis-
tribution U,

Weighted-normalðyk jl; s
2 þ r2

k ;xÞ

¼
Normalðyk jl; s

2 þ r2
kÞ3wðx; pkÞ

Ð
Normalðx jl; s2 þ r2

kÞ3w ðx; ð1� Uðx=rkÞÞ � 2Þdx
;

(4)

where the weights x are assigned based on the two-sided p-val-
ues, pk, through the weight function w,

wðx; pkÞ ¼
x1; if pk > 0:10
x2; if 0:05, pk# :10
1; if pk# :05

8

<

:
(5)

The remaining models can be obtained either by restricting
l = 0 for models assuming no effect size, restricting s = 0 for
fixed effect models, by changing the weight functions w (and
the prior on x) to use only two steps for the two-steps weight
function, or by using normal distribution for the observed
effect sizes for the models assuming no publication bias.

(Appendices continue)
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Appendix B

Sample Sizes

Figure B1 shows sample sizes extracted from empirical meta-analyses in Stanley et al. (2018). The data can be found at https://
osf.io/2vfyj/files/.

Appendix C

P-Hacking Simulation

We operationalized strong p-hacking by starting with two

groups of 10 participants, testing the difference after adding one

additional participant to a condition, and stopping either upon

reaching significance or collecting 100 participants overall.

Then, the K = (10, 30) studies are presented as being in the

expected direction and published under either moderate or

severe publication bias. Trim and fill did not converge in .35%

of cases, other methods always converged. The simulations for

intense p-hacking show that RoBMA overestimates the effect

size by about .2. This is less than many other methods but more

than frequentist selection models (Figure C1). Because p-hack-

ing is common in psychological literature (e.g., Simmons et al.,

2011) this shows that effect sizes might still be overestimated

even after adjusting for publication bias.

Figure B1

Distribution of Sample Sizes Used for the Simulation

Note. The histogram is overlaid with Negative binomial distribution with

shape r = 2 and scale u = 58, truncated at 25 and 500 which was used for

generating sample sizes for the simulation.

(Appendices continue)

ROBUST BAYESIAN META-ANALYSIS 15

T
h
is
d
o
cu
m
en
t
is
co
p
y
ri
g
h
te
d
b
y
th
e
A
m
er
ic
an

P
sy
ch
o
lo
g
ic
al
A
ss
o
ci
at
io
n
o
r
o
n
e
o
f
it
s
al
li
ed

p
u
b
li
sh
er
s.

T
h
is
ar
ti
cl
e
is
in
te
n
d
ed

so
le
ly

fo
r
th
e
p
er
so
n
al
u
se

o
f
th
e
in
d
iv
id
u
al
u
se
r
an
d
is
n
o
t
to

b
e
d
is
se
m
in
at
ed

b
ro
ad
ly
.

121



Received July 8, 2020

Revision received January 22, 2021

Accepted March 19, 2021 n

Figure C1

Effect Size Estimation Under Strong p-Hacking

Note. BMA = Bayesian meta-analysis; SM2 = two-parameter selection model; SM3 = three-parameter

selection model; TF = trim and fill; RoBMA = resulting robust Bayesian meta-analysis; PETPEESE = preci-

sion-effect test and precision-effect estimate with standard error.
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