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ABSTRACT

There are three primary measures of teaching performance: student test-based measures (i.e., 
value added), classroom observations, and student surveys. Although all three types of measures 
could be biased by unmeasured traits of the students in teachers’ classrooms, prior research has 
largely focused on the validity of value-added measures. We conduct an experiment involving 66 
mathematics teachers in four school districts and test the validity of all three types of measures. 
Specifically, we test whether a teacher’s performance on each measure under naturally occurring 
(i.e., non-experimental) settings predicts performance following random assignment of that 
teacher to a class of students. Combining our results with those from two previous experiments, 
we provide further evidence that value-added measures are unbiased predictors of teacher 
performance. In addition, we provide the first evidence that classroom observation scores are 
unbiased predictors of teacher performance on a rubric measuring the quality of mathematics 
instruction. Unfortunately, we lack the statistical power to reach any similar conclusions 
regarding the predictive validity of a teacher’s student survey responses.
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I. Introduction 

For decades, researchers have documented heterogeneity in student achievement gains 

across teachers’ classrooms (e.g., Gordon, Kane, & Staiger, 2006; Jacob & Lefgren, 2005; Kane, 

Rockoff, & Staiger, 2008; McCaffrey, Lockwood, Koretz, Louis, & Hamilton, 2004; Rivkin, 

Hanushek, & Kain, 2005; Rockoff, 2004). Such findings have inspired recent efforts to measure 

and reward teacher performance based primarily on three types of measures: student test 

achievement gains, classroom observations, and student surveys. In fact, between 2008 and 

2014, nearly every state reformed their teacher evaluation policies to include one or more of such 

measures (Minnici, 2014). Yet, legitimate questions have been raised about whether the 

measures are valid reflections of teachers’ performance, or are instead driven by unmeasured 

characteristics of the students they teach. Although the test-based measures (i.e., value-added 

estimates) have been most controversial in this regard, the same questions could be raised 

regarding classroom observations and student surveys. 

In this study, we test whether a teacher’s performance on each measure, when collected 

under naturally occurring settings (i.e., non-experimentally), is a valid predictor of that teacher’s 

performance on the same measure following random assignment. The study was conducted over 

three academic years. In the first two years, we observed a sample of fourth- and fifth-grade 

mathematics teachers and collected a series of measures—end-of-year student standardized test 

achievement, classroom observations conducted by external raters, and student surveys. In the 

third year of the study, we randomly assigned participating teachers to classrooms within their 

schools and then again collected all three measures. Using those data, we ask two questions 

regarding the predictive validity of these measures: 
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1. Do teachers with higher scores on these performance measures during the first two 

years—when teachers were not randomly assigned to students—score higher in the third 

year following random assignment? 

2. To what degree does the magnitude of teachers’ scores on these performance measures 

from the first two years predict their scores under random assignment?  

If the distinctions drawn between teachers during the first two years are largely driven by 

unmeasured characteristics of their students, we would not expect performance from the prior 

period to predict performance following random assignment. Moreover, the magnitude of the 

relationship will illustrate the degree of forecast bias (henceforth referred to simply as “bias”) in 

estimates of teaching performance measured under naturally occurring settings (i.e., when 

classrooms are not randomly assigned).  

To date, predictive validity studies have focused largely on value added.1 Specifically, 

two experimental studies randomly assigned teachers to classrooms within schools to assess the 

predictive validity of these test-based measures of teacher effectiveness. Kane and Staiger (2008) 

randomly assigned teachers to 156 classrooms within Los Angeles schools and found that prior-

year value-added estimates were unbiased predictors of average student test score growth in their 

randomly assigned classrooms. As part of the Measures of Effective Teaching Project, Kane, 

McCaffrey, Miller, and Staiger (2013) randomly assigned over 1,100 teachers to classrooms 

across six school districts. Kane et al. (2013) used scores on state and project-developed tests, 

classroom observations, and student surveys to form a composite measure of effectiveness, and 

                                                
1 One notable exception exploits a nearly random student teacher assignment mechanism for kindergarten students 
in Ecuador to test the relationship between teacher observation scores and student achievement (Araujo, Carneiro, 
Cruz-Aguayo, & Schady, 2016). Although they do not explicitly test for forecast bias in performance on teacher 
effects based on classroom observations, they find that differences in teacher observation scores are predictive of 
differences in student achievement gains under random assignment. 
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found that this combined measure was an unbiased predictor of average state test score growth.2 

Glazerman and Protik (2014) conducted the only study so far to use random assignment of 

teachers across schools to test the validity of teacher value-added estimates in predicting student 

performance across schools. For elementary teachers, they could not reject the hypothesis that 

teachers’ value-added measures from one school were unbiased predictors of teachers’ students’ 

performance after transferring to another school, but they lacked precision to reach any 

meaningful conclusion for middle school teachers. 

In addition to the results from random assignment experiments, three recent studies used 

a quasi-experimental design to test the predictive validity of teacher effectiveness measures 

derived from student test performance. This quasi-experimental method, introduced by Chetty, 

Friedman, and Rockoff (2014a), predicts changes in student test scores using naturally occurring 

variation in teacher assignments as teachers move from school to school and from grade to grade. 

Using this method, Chetty et al. (2014a) found that teachers’ value-added scores were unbiased 

estimators of changes in student achievement when there were changes in the specific teachers 

working in a given grade and subject. Two replication studies applied the same quasi-experiment 

in different samples and found similar results (Bacher-Hicks, Kane, & Staiger, 2014; Rothstein, 

2014).3  

                                                
2 Kane et al. (2013) also explored the validity of a non-experimental composite measure in predicting student scores 
on their project-developed supplemental test and on student survey responses following random assignment. 
However, this composite measure was estimated specifically to predict student state test performance, and not 
supplemental test performance or student survey responses. With a third year of data in our study, we can create 
non-experimental estimates tailored specifically to predict supplemental test performance or student survey 
responses following random assignment. 
3 Rothstein (2014) finds little evidence of forecast bias in value added when replicating the preferred specification in 
Chetty et al. (2014a). However, Rothstein argues that the quasi-experiment itself is not a valid test, since it fails a 
placebo test correlating changes in value added with changes in prior test scores. Chetty, Friedman, and Rockoff 
(2014b) respond to this criticism arguing that the placebo test is influenced by a mechanical effect rather than 
selection bias. 
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Because the quasi-experiments utilize large, pre-existing administrative data, which 

include many teacher transitions over multiple years, these studies generate substantially more 

precise estimates than the experimental evaluations. However, questions about the additional 

assumptions of these quasi-experiments—specifically that annual changes in teacher 

composition do not correspond with changes in student baseline characteristics—have fueled an 

ongoing debate on the validity of the quasi-experimental test itself (Chetty et al., 2014b; 

Goldhaber & Chaplin, 2015; Rothstein, 2010, 2014). Because of this, the current study employs 

random assignment to provide additional experimental evidence on the predictive validity of 

teacher quality measures.  

We make three primary contributions.  

First, we provide additional experimental evidence on the predictive validity of value 

added in a setting where there were high rates of compliance with randomized teacher 

assignments. Although some level of non-compliance caused by student and teacher movement 

is unavoidable, previous experiments (i.e., Kane et al., 2013) experienced higher levels of non-

compliance, as teachers and students subsequently switched classrooms. In the current study, 

71% of students and teachers comply with their randomized assignments. Accordingly, our 

results are less susceptible to the questions about the generalizability of effects to non-compliers. 

Our results are consistent with previous evidence: test-based value-added measures are unbiased 

predictors of teachers’ impacts on student achievement following random assignment. 

Second, we present the first evidence on the predictive validity of classroom observations 

and student surveys. Because students are typically not randomly assigned to teachers, such 

measures are potentially susceptible to the same selection biases as the test-based measures. (It is 

puzzling that potential bias in classroom observation scores has received so little attention 
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relative to test-based measures, given that classroom observations typically receive more weight 

in teacher evaluation systems.)  We find evidence that a teacher’s score on a classroom 

observation conducted when students are assigned naturally is an unbiased predictor of the 

teacher’s score on the same rubric when students are assigned randomly. Unfortunately, we lack 

the statistical power to draw any conclusions about the predictive validity of student surveys 

collected non-experimentally. 

Finally, we use meta-analytic methods to combine the results from the current study with 

those from the two existing within-school random assignment experiments. By doing so, we 

provide a more precise, pooled experimental estimate of the predictive validity of value added. 

The pooled coefficient indicates that value added is a valid predictor of students’ average test 

scores following random assignment, and is more precise than existing experimental evidence.  

 

II. Research Design 

We use data collected for the National Center for Teacher Effectiveness (NCTE) study, 

which was funded by IES to develop and test the validity of multiple measures of teacher 

effectiveness. The study comprised four large east coast school districts and spanned three school 

years, from 2010-11 through 2012-13. During all three school years, the study collected data on 

teachers and students. In the third year, eligible and participating teachers were additionally 

assigned randomly to classroom rosters. Across the four school districts, 316 fourth- and fifth-

grade teachers were eligible for and agreed to participate in at least one of the three years of the 

study, and 66 teachers were eligible for and agreed to participate in the random assignment 

portion of the study in the third year.4  

                                                
4 Several factors contributed to the smaller sample of teachers in the random assignment portion of this study. The 
most important was teacher movement during the course of the study. Of the 316 teachers who participated in any of 
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NCTE collected pre-existing administrative data, including classroom rosters, 

demographic information, and state test scores for all fourth- and fifth-grade students in the four 

participating districts. In addition, the study collected the following information from students 

and teachers who were in classrooms participating in the study each year: student test 

performance on a project-developed low-stakes mathematics test; student responses to a survey 

probing perceptions of their classroom; digitally-recorded mathematics lessons, used as 

classroom observations; and teacher responses to a questionnaire about teaching preparation and 

background. 

 

A. Measures 

We used the pre-existing administrative records and the additional data collected by 

NCTE to generate estimates of teacher performance on five measures: (a) students’ scores on 

state standardized mathematics tests; (b) students’ scores on the project-developed mathematics 

test (Hickman, Fu, & Hill, 2012); (c) teachers’ performance on the Mathematical Quality of 

Instruction (MQI; Hill et al., 2008) classroom observation instrument; (d) teachers’ performance 

on the Classroom Assessment Scoring System (CLASS; La Paro, Pianta, & Hamre, 2012) 

observation instrument; and (e) students’ responses to a Tripod-based perception survey 

(Ferguson, 2009).5 

                                                                                                                                                       
the three years in the study, only 132 remained teaching in participating schools in the third year of the study. Such 
high levels of teacher movement are not atypical, especially in urban districts (Papay, Bacher-Hicks, Page, & 
Marinell, 2015). Further, leadership changed in some schools, resulting in a smaller number of principals who 
remained interested in participating in the random assignment part of the study. Of the 132 teachers, 78 remained 
interested in participating and were in schools where leadership remained interested. Among these 78 teachers, 66 
satisfied all other conditions for eligibility (e.g., must teach a class of no fewer than five students with current and 
baseline state standardized test scores, not be the only remaining teacher in the random assignment block, etc.).  
5 We present reliability estimates for the four project-administered (i.e., non-state test) measures in Appendix Table 
A1. Cronbach’s alpha ranges from 0.78 to 0.91 across these four measures. 
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Students’ scores on state standardized tests came from three different tests, as two of the 

four participating districts were situated in the same state. There was considerable variability in 

the format and cognitive demand of items across tests. For example, students in one district took 

assessments that were completely composed of multiple-choice items, whereas students in 

another district took assessments with open-ended items that were markedly more difficult 

(Lynch, Chin, & Blazar, in press). To account for these differences between tests, we rescaled 

student test scores by district, grade, and academic year using van der Waerden rank-based 

standardization methods (Conover, 1999). 

In conjunction with the Educational Testing Service, NCTE developed a fourth-grade and 

a fifth-grade mathematics test, designed to align with the Common Core State Standards for 

Mathematics (National Governors Association Center for Best Practices & Council of Chief 

State School Officers, 2010) and with the other project-developed measures of teacher quality. 

The tests contained gridded-response and open-ended items in addition to traditional multiple-

choice items. Similar to the state test scores, we standardized these test scores to have a mean of 

zero and a standard deviation of one, within grade and school year. Because the test was the 

same across districts (unlike the state test scores), we preserved between-district differences in 

means and variances. 

The MQI and CLASS teacher observation measures were based on up to three video and 

audio recordings of mathematics lessons per teacher per year. Teachers selected which lessons to 

record, under the condition that they choose lessons typical of their teaching; on average, 

recorded lessons lasted approximately one hour.6 The videos were scored on two established 

observation instruments: MQI (Hill et al., 2008) and CLASS (La Paro et al., 2012). The MQI 

                                                
6 No sanctions or rewards were associated with the study, so teachers had no explicit incentive to strategically select 
when to record their lessons. Ho and Kane (2013) find that teacher rankings, based on classroom observation, were 
stable between teachers’ self-selected lessons and other lessons. 
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instrument was designed to assess teacher proficiency in delivering rich, error-free, reform-based 

mathematics instruction. It comprised 14 codes, which capture practices during instruction such 

as: using multiple approaches to solve problems; (in)correctly using mathematical language or 

notation; and remediating student mathematical difficulties (Hill et al., 2008).  

The CLASS, which measures general pedagogical practice and is agnostic to the subject-

matter of instruction, comprised 12 codes and assesses teachers on more general classroom 

practices and features such as: the positive or negative climate of the classroom; the quality of 

the feedback provided by the teacher; the behavior management skills of the teacher; and the 

level of engagement of students during instruction (La Paro et al., 2012). To generate a teacher’s 

annual overall MQI observation score, we first averaged scores across codes within a lesson, and 

then across lessons within a year for each teacher. Because the instrument was the same across 

fourth and fifth grade and across districts, we standardized these teacher-level scores to have a 

mean of zero and a standard deviation of one within school year. We followed the same 

procedure to estimate a teacher’s CLASS observation score.7 

Finally, we derived a measure from student responses to a perception survey, comprising 

26 Likert-scale items based on the Tripod survey (Ferguson, 2009). These items covered a range 

of topics, such as whether students felt that: the mathematics presented by his/her teacher was 

engaging; his/her teacher cared about the students; his/her teacher challenged students to engage 

with the mathematics; his/her teacher presented mathematical content clearly; his/her teacher 

regularly assessed the understanding of material presented during lessons; his/her teacher 

provided useful feedback; or the classroom stayed productive during mathematics lessons. We 

                                                
7 MQI and CLASS observation measures are standardized at the teacher level since student-level data do not exist; 
the measures derived from students’ state test scores, project-developed test scores, and survey responses are 
standardized at the student level. 
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calculated the simple average across responses to all 26 items and standardized these student-

level scores to have a mean of zero and standard deviation of one within school year. 

For the three measures with student-level data (i.e., state test scores, project test scores, 

and Tripod responses), we generated an estimate of teacher quality as the teacher-year level 

average residuals from the following OLS regression equation: 

!",$,% = !",%'() + +",%, + -$,%. + /0,% + 12 + 3",$,%,    (1) 

where !",$,% is the standardized state test score for student i taught by teacher k during school 

year t. In addition to grade-by-year fixed effects, /0,%, and district fixed effects, 12, we included 

the following control variables: !",%'(, a cubic polynomial of student i’s baseline achievement; 

+",%, a vector of indicators for gender, race and ethnicity, free-or-reduced lunch eligibility (FRPL-

eligibility), limited English proficiency, and special education status; and -$,%, a vector of 

average characteristics of student i’s peers in the same class, including average baseline test 

scores and classroom-level averages of +",%. The student-level idiosyncratic error is (3",$,%). As is 

typical in value-added models, we estimated teacher-year residuals (3
$,%

5%6%7_97:%) by averaging 

3",$,% across students of teacher k in year t, which provides an estimate of the performance of 

teacher k in year t. We followed an analogous process to generate teacher-year residuals for the 

project-developed test (3
$,%

;<=>7?%_97:%) and for the student survey results (3
$,%

5@<A7B) using Equation 

1 by changing the dependent variable to standardized test scores on the project test or 

standardized scores on the survey. 

Because student-level data did not exist for the two measures based on classroom 

observations, we generated teacher-year residuals for those measures by fitting the following 

OLS regression equation: 

C$,% = -$,%. + 12 + 3$,%,      (2) 
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where C$,% is a measure of a teacher’s classroom observation score and -$,% is the same vector of 

average characteristics of student i’s peers used in Equation 1, which included average baseline 

test scores and averages of the student characteristics, +",%. We estimated this model separately 

for the standardized MQI and the CLASS classroom observations scores in order to generate two 

teacher-year residuals, 3
$,%

DEF and 3
$,%

GHI55. As we later describe in the Empirical Strategy, we used 

these teacher-year residuals to generate predictions of teacher performance. 

 

B. Description of the random assignment experiment 

During the second year of data collection (2011-12), the NCTE project team worked with 

staff at participating schools to identify the teachers who met the necessary requirements to be 

part of the random assignment sample in the third year of the study (2012-13). The primary 

eligibility conditions to participate in the random assignment part of the study were that (a) 

teachers had to be part of a group of two or more NCTE project teachers who were scheduled to 

teach the same grade in that school, and (b) principals had to view the teachers within this group 

as being capable of teaching any of the classroom rosters designated for the group of teachers 

without any major adjustments.8  

Teachers satisfying these two conditions were placed into a randomization block of either 

two or three teachers. School administrators generated one classroom roster per teacher in each 

randomization block. For example, if a randomization block had three teachers, school 

administrators would construct three rosters of students. After school administrators created 

                                                
8 In some cases, certain students were required to be paired with specific teachers within a randomization block 
(e.g., if only one teacher was certified to instruct students with limited English proficiency). In these cases, NCTE 
staff allowed these students to be paired non-randomly with the appropriate teacher, and then filled the remaining 
seats in the classroom randomly. We exclude these non-randomly-placed students from all analyses that are 
restricted to the random assignment sample, but we include them when generating aggregate peer control variables. 
Approximately 7% of the students in the random assignment classrooms were paired non-randomly. 
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these rosters, they were submitted to the NCTE study team, who randomly matched eligible 

teachers with classrooms and then returned the matched rosters to school administrators. Of the 

29 total randomization blocks, 21 contained two teachers, and 8 contained three teachers. 

In an ideal setting, every randomly assigned student would have been taught by the 

teacher to whom they were randomly assigned. However, since these rosters were constructed 

before the start of the random assignment year, a certain amount of movement was unavoidable. 

In Table 1, we document the disposition of the 1,177 students in the random assignment sample. 

Notably, 71% of these students remained in their randomly assigned classroom for the entire 

school year. This is a significant improvement from prior randomization studies. For example, 

across the six sites described in Kane et al. (2013), between 27% and 66% of students remained 

in their randomly assigned classroom. 

 

C. Descriptive statistics 

In Tables 2 and 3, we present a series of descriptive statistics to examine whether the 

students and teachers who participated in this study were representative of those from the four 

NCTE districts. We use data from the first two years of the study, which allows us to examine 

the characteristics of students naturally assigned by schools to the teachers in our sample, rather 

than the characteristics of those who were subsequently randomly assigned.  

In Table 2, we explore these student characteristics among three distinct subsamples: 

students assigned to teachers who subsequently participated in random assignment (column 1); 

students assigned to teachers who participated in the project in any of the three years, but did not 

participate in random assignment (column 2); students assigned to all other fourth- and fifth-
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grade mathematics teachers in these four districts (column 3).9 Compared to teachers who did not 

participate in the project (column 3), teachers who participated in random assignment (column 1) 

were more likely to have been assigned white students and less likely to have been assigned 

special education and FRPL-eligible students. In addition, the average baseline test score of 

students assigned to teachers who participated in random assignment was 0.12 student-level 

standard deviations higher than other project non-random assignment project teachers (column 2) 

and 0.07 standard deviations higher than non-project teachers (column 3). These results imply 

that teachers included in the random assignment experiment tended to be assigned—in the years 

prior to random assignment—classrooms with somewhat more advanced students. This is likely 

an artifact of our sample design: eligibility required that teachers be capable of teaching any 

classroom within their randomization block, which generally excluded specialized teachers (e.g., 

special education teachers). As such, we caution against over-interpreting our results as 

extending to these teachers. 

In Table 3, we present means and standard deviations for our five measures of teacher 

quality. We again report these statistics for three distinct groups of teachers and use data only 

from the two years prior to random assignment. In the first row, we report teacher-level residuals 

based on students’ state test performance (i.e., 3
$,%

5%6%7_97:% from Equation 1). Although the 

average teacher residuals are nearly identical for the project teachers who were not part of the 

randomized experiment and all other fourth and fifth grade teachers, they were somewhat lower 

for the teachers who participated in the randomized experiment. Since the other measures were 

only collected for teachers who participated in the NCTE project, we can only compare them 

across the random assignment sample and the non-random assignment project sample. Unlike for 

                                                
9 Although we determine the three subsamples based on whether teachers participated in the experiment in the third 
year of the study, all of the student data used in Table 2 comes only from the first two years of the study. 
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the state test residuals, the random assignment teachers had somewhat higher mean residuals on 

the project-developed test, but lower mean residuals for the two observation metrics and the 

student perception surveys.  

In the middle panel of Table 3, we present standard deviations for the five measures 

across the three subsamples of teachers. Although the random assignment group exhibits less 

variation in the MQI observation measure and the student survey measure, they exhibit similar 

variation to the other project teachers in the other three measures. Finally, in the lower panel of 

Table 3, we estimate the persistent component of a teacher’s effectiveness estimate (i.e., the 

“signal” standard deviation) for each of the five measures, by calculating the square root of the 

covariance in the first two years of the study for each of the five measures. The signal is virtually 

identical across the three samples for the state test measure. However, for the other four 

measures the signal is considerably less in the random assignment sample. This suggests that 

although the random assignment sample of teachers had a similar distribution of “true” teacher 

effects based on the state test, they were a more homogeneous sample on the other four 

measures. Unfortunately, this reduced variation in true effects on the other four measures reduces 

the precision for our validation test, especially for the CLASS observation measure and the 

surveys. 

Finally, in Table 4, we explore whether there were systematic differences in student 

compliance. We present characteristics of the students who did not remain in their randomly 

assigned classrooms (“switchers”) and compare them to the students who remained in their 

randomly assigned classrooms for the duration of the 2012-13 school year (“compliers”). 

Although the switchers and compliers were not statistically significantly different, on average, 

across seven of the eight observable characteristics in Table 4, the switchers were less likely to 
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be classified as having limited English proficiency. However, because this result may be driven 

by multiple hypothesis testing, we also conduct a test of joint significance.10 The p-value for this 

joint hypothesis test was 0.40, meaning we could not reject the null hypothesis that these eight 

characteristics are jointly unrelated to compliance. We also note that most of the student 

movement occurred early in the school year, before students had much of a chance to experience 

a teacher’s effectiveness (79% of non-compliers moved before the first time NCTE verified 

classroom rosters in the fall semester) and many students who did not comply with their 

randomly assigned classroom left the school or the district, which is unlikely to be driven by 

teacher assignments. We, therefore, conclude that there is little evidence that compliers are 

substantially different from non-compliers. 

 

III. Empirical Strategy 

Our empirical strategy involves two steps. First, we generate estimates of teacher 

performance in the years prior to the experiment. Second, we evaluate whether these estimates 

accurately predict teacher performance following random assignment.11 We describe this 

empirical strategy in detail below.  

 

A. Predicting teachers’ expected performance 
                                                
10 To test for joint significance, we use a randomization omnibus test, which is preferred to a conventional F-test 
with a small number of clusters (Young, 2015). We first draw 1000 block-bootstrapped samples (clustered at the 
random assignment block level) and within each draw, we reassign each student’s compliance status randomly. For 
each bootstrapped sample, we calculate the conventional F-statistic of joint significance. Then, we generate our p-
value as the fraction of bootstrapped null F-statistics that are greater than the actual F-statistic. We use this general 
approach for joint hypothesis tests throughout the paper. 
11 This strategy assumes that the teachers who participate in the random assignment experiment were not already—
in the years prior to random assignment—being assigned classrooms under a process that was random. If the 
participating teachers were limited to those who were already effectively assigned classrooms at random, then the 
results of this test would not be generalizable to settings in which classrooms are not randomly assigned. However, 
similar to Kane et al. (2013), we find strong evidence that the teachers who participated in the random experiment 
were—in the years prior to the experiment—not already being assigned students under a random process. Please see 
Appendix B for details. 



17 
 

To generate predictions of teacher performance, we use the two years of data prior to the 

experiment to identify the best linear combination of teacher measures from one year to predict 

teacher performance in an adjacent year. Specifically, we use the five teacher-year level 

measures from the second year of the study to predict each of these five measures in the first year 

using a separate OLS equation of the following form for each of the five teacher measures: 

                  3
$,J(

K
= ,(

K
3
$,JL

5%6%7_97:%
+ ,L

K
3
$,JL

;<=>7?%_97:%
+ ,M

K
3
$,JL

5@<A7B
+ 

,N
K
3
$,JL

DEF
	+ ,

P

K
3
$,JL

GHI55
+ ,Q

K
RSTUVW$,JL + ,X

K
CYZ[W\Z$,JL + 12

K
+ ]

$

K
.				  (3) 

The outcome variable, 3
$,J(

K , is the mean residual for teacher k on measure m in the first year and 

the predictor variables, 3
$,JL

5%6%7_97:%, 3
$,JL

;<=>7?%_97:%, 3
$,JL

5@<A7B, 3
$,JL

DEF, and 3
$,JL

GHI55, are the average 

residuals for teacher k in the second year. In addition to these predictor variables, we include 

indicators for novice teachers (RSTUVW$,JL) and teachers with a master’s degree (CYZ[W\Z$,JL), 

and district fixed effects (1
2

K
). The error term is ]

$

K
.  

Then, we apply these coefficients from Equation 3 to the teacher-level measures from the 

second year to generate predictions of teacher performance in the third year—the random 

assignment year. We generate five different predictions—one for each of the five outcome 

measures, m—and denote them as _
$,JM

K .12 Note that as measurement error increases, the 

coefficients will tend to zero. Thus, by generating a linear combination of measures from one 

year to predict another year, we not only combine information across several types of teacher 

                                                
12 For teachers who do not have scores on all five predictor measures, we estimate separate models only including 
the predictors that were not missing for those teachers. Using this algorithm, we predict a teacher’s performance 
using all of the available information. For example, although all teachers have value-added estimates, teachers 
entering the project in 2012-13 do not have observation or survey scores in the years prior to random assignment. To 
generate predictions for these teachers we only include value-added as a predictor and fit the model using all 
teachers who also had value-added estimates (including those who also may have had scores on other predictors). 
First-year teachers in 2012-13 do not have any of the five measures of effectiveness from 2011-12 or 2012-13, but 
we can still generate coarse predictions of their third year effectiveness using indicators for having a master’s degree 
and indicators for the school district in which they teach. 
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performance measures, we also produce a “shrunken” estimate that accounts for the 

measurement error (Mihaly, McCaffrey, Staiger, & Lockwood, 2013). 

 

B. Comparing expected quality to actual outcomes following random assignment 

 To estimate the relationship between our predictions of teacher performance and the 

actual outcomes following random assignment, we use an instrumental variables (IV) estimator. 

While we are confident that the effectiveness of a student’s randomly assigned teacher is not 

correlated with observable or unobservable student characteristics, we cannot be sure that the 

effectiveness of the actual teacher is not. For example, as we documented in Table 1, although 

our compliance was higher than in past random assignment studies, there was some reshuffling 

of students to different classrooms within the school, which may not have been random (e.g., it 

could have followed the same sorting that occurs in a typical year). Therefore, we instrument for 

the effectiveness of a student’s actual teacher with the effectiveness of their randomly assigned 

teacher.  

 We fit our IV model using two-stage least squares. In the first-stage, we estimate the 

effect of the randomly assigned teacher on the actual teacher’s effectiveness using the following 

equation: 

_
",$,JM

K,6?%@6`
= ,_

",$,JM

K,6::"0a72
+ ∅

c

K
+ ]

"

K
,                                       (4) 

where _
",$,JM

K,6?%@6` is the predicted performance on outcome measure m for the actual teacher of 

student i and _
",$,JM

K,6::"0a72 is the predicted performance on outcome measure m for the teacher 

randomly assigned to student i. Randomization block fixed effects are ∅
c

K and the error term is 

]
"

K. We perform this procedure for the three measures of teacher performance based on student 

data. If we had observed perfect compliance, the , coefficient would be one. However, we found 
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that a one standard deviation unit increase in assigned teacher performance was associated with 

between a 0.82 and 0.91 standard deviation unit increase in actual teacher performance, across 

all three measures. 

In the second stage, we use the fitted values from Equation 4, _
",$,JM

K,6?%@6`
, to predict actual 

student outcomes, !
",	JM

K , following random assignment:  

!
",	JM

K
= dFe

K
_
",$,JM

K,6?%@6`
+ ∅

c

K
+ ]

"

K
,                                               (5) 

where dFeK	is the IV estimate for the three student-level outcomes: state standardized test scores, 

project-based test scores, and student survey responses.  

The IV model described in Equations 4 and 5 requires student-level data, so it cannot be 

used to estimate the relationship between teachers’ predicted and actual observation scores, 

which vary at the teacher level. Instead, we use the following teacher-level OLS model to 

estimate the relationship between of teachers’ predicted observation scores and their actual 

observation scores, following random assignment:  

3
$,JM

K
= d

fH5

K
_
$,JM

K
+ ∅

c

K
+ ]

$

K
.                                              (6) 

The outcome, 3
$,JM

K , is the teacher-level residual for measure m in the third year described in 

Equation 2 and the predictor, _
$,JM

K , is the teacher-level prediction for measure m from Equation 

3. The coefficient d
fH5

K is the OLS estimate for the two teacher-level outcomes: MQI and CLASS 

observations. Although the IV estimates in Equation 5 are not biased by students who do not 

comply with their random teacher assignments, the OLS estimates in Equation 6 could be biased 

if students selectively move from their randomly assigned classrooms. As we documented in 

Table 4, we find little evidence that non-compliance is related to students’ observable 

characteristics. Of course, non-compliance could be related to unobserved differences (e.g., 

motivation, parental involvement), but the balance on observable characteristics and the 
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relatively high compliance rates suggest that these OLS estimates are unlikely to be substantially 

biased. 

 

IV. Results 

A. Predicting teachers’ expected quality 

In Table 5, we report estimates of Equation 3 for the sample of teachers who have data on 

all five predictor measures. The five columns present the coefficients used to predict each of the 

five teacher measures, using the best linear combination of all five measures from an adjacent 

year. By fitting different models to predict each of the five measures, we highlight how these 

weights differ depending on the measure. 

Although the weights differ substantially across the five outcomes, one clear pattern 

emerges: the most weight is always assigned to the measure that is the same as the outcome. For 

example, in the first column, we present coefficients from the regression of 2010-11 state test 

value-added on the five 2011-12 measures. Among the five predictor measures, we find that the 

2011-12 state test value-added receives the most weight (0.504) and is statistically significant. 

The coefficient of 0.504 implies that for each student-level standard deviation that a teacher 

generated this year, we estimate approximately half a student-level standard deviation next year, 

controlling for other teacher measures. The other four measures follow a similar pattern: the 

most weight is placed on the predictor that comes from the same measure as the outcome and the 

coefficients on these predictors are always statistically significant. However, the magnitude is 

lower than for the state test, ranging from 0.242 to 0.391. The attenuation in these weights 

indicates more year-to-year volatility in these four teacher residuals, relative the those derived 

from the state test.  
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Although the predictor that comes from the same measure as the outcome is given the 

most weight, in some cases other predictor variables are also statistically significant. For 

example, although the 2011-12 project-developed test is the strongest predictor of the 2010-11 

project-developed test (0.274), the 2011-12 state test is also a statistically significant predictor 

(0.184). This highlights the benefit of using additional information from multiple measures to 

generate predictions.13 

 

B. Comparing expected quality to actual outcomes following random assignment 

In Table 6, we present the results from Equations 5 and 6, which represent the effect of 

our prediction of a teacher’s effectiveness on the actual outcome following random assignment. 

We follow Kane et al. (2013) and include controls for students’ baseline test scores and 

background characteristics, but not peer characteristics.14 Recall from our discussion of our 

empirical strategy, the predicted teacher outcomes have been “shrunk” to account for 

measurement error. Thus, we would expect—if there were no bias—that the coefficients on the 

shrunken predictions of teacher performance to be equal to one.  

In the first three columns of Table 6, we report the IV estimates of dFeK for the state test, 

the project-developed test, and student perception scores, based on Equation 5. The most 

precisely estimated coefficient is in column 1, where we constructed a prediction of teacher 

                                                
13 We note that the coefficient on the project-based test is negative (-0.184) when predicting CLASS. Since all five 
predictor variables are measures of classroom quality, we expect a certain amount of multicollinearity to impact the 
estimates in Table 5. This would be concerning if we were interested in identifying the causal impacts of the 
individual predictor variables. However, since this step of the analysis simply solves a prediction problem, the 
coefficients on each predictor are not a major focus. We caution against the over-interpretation of individual 
parameter estimates, especially the negative relationship between CLASS and project-based test. 
14 In theory, the coefficients should remain unchanged by the introduction of students’ baseline test scores and 
background characteristics and including additional student-level controls will increase precision. However, we 
choose not to include peer controls because peers were not randomly assigned and any subsequent non-random 
student movement of actual peers could introduce bias if we controlled for peers. However, we provide results from 
a taxonomy of models in Table 7 and the results are robust to each specification.  
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impacts as it relates to students’ state test performance. Using this measure of teacher effects, the 

coefficient on predicted teacher effectiveness on student achievement is 0.847 with a block-

bootstrapped standard error of 0.228.15  Thus, we are able to reject the hypothesis that this 

coefficient is zero and fail to reject the hypothesis that this coefficient is one (i.e., the 95% 

confidence interval of this estimate contains one, but not zero). In other words, we cannot reject 

the hypothesis that a one-unit increase in a teacher’s predicted effectiveness, on average, 

produces a one-unit change in student state test outcomes after random assignment. This finding 

is consistent with the two previous within-school random assignment studies (Kane et al., 2013; 

Kane & Staiger, 2008) and is the third piece of experimental evidence that teacher effect 

estimates, based on students’ state standardized test scores, are a forecast unbiased estimator of 

student achievement, on average. 

In the second column of Table 6, we present the IV estimate using the project-developed 

test instead of the state standardized test scores.16 The coefficient on predicted teacher 

effectiveness on student achievement in the project-developed test is 1.486 with a standard error 

of 0.267. Similar to the state test outcomes, we reject the hypothesis that this coefficient was zero 

and fail to reject the hypothesis that this coefficient was one (i.e., the 95% confidence interval of 

this estimate contains one, but not zero). In the third column, we present the IV estimate using 

the student perception survey to construct the non-experimental prediction of a teacher’s 

effectiveness and as the post-randomization student outcome. Unfortunately, the point estimate 

for this measure (-0.228) is imprecise, with a standard error of 0.778. The 95% confidence 
                                                
15 Since we have a small number of randomization blocks, we present block-bootstrapped standard errors, which are 
preferred to cluster-robust standard errors when there are a small number of clusters (Cameron, Gelbach, & Miller, 
2008). We use 1000 bootstrap draws, clustered at the random assignment block level. This approach is used 
throughout the paper to generate standard errors when we cluster at the random assignment block level. The 
bootstrapped standard errors are slightly larger than those obtained using asymptotic theory.  
16 Note that both the outcome of the IV model changes from the state to the project-developed test and that the 
prediction of teacher effects is also based on the best linear combination of measures that predict the project-
developed test score residuals (see Table 5).  
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interval of this estimate contains both zero and one and the imprecision of this estimate prevents 

us from reaching any meaningful conclusions on the validity of this measure. This imprecision is 

likely due in part to the fact that we are unable to control for students’ baseline survey responses 

in the model represented by Equation 5. While we control for the same vector of variables as we 

did in the first two columns (including, notably, students’ baseline state test scores) these 

controls fail to explain a substantial portion of variation in students’ survey responses. We 

comment on this limitation and provide suggestions for future research in the conclusion. 

In the last two columns of Table 6, we present the OLS estimates of d
fH5

K  (from Equation 

6) for MQI and CLASS. For MQI, we find that the non-experimental scores have an estimated 

impact of 0.926 on MQI scores following random assignment, with a standard error of 0.284. For 

CLASS, the coefficient is 0.877, with a substantially larger standard error of 0.543. Thus, similar 

to the findings for state and project test scores, we find no evidence that the non-experimental 

classroom observation predictions are biased for MQI. However, the standard error on the 

estimate for the CLASS observation metric is large and the 95% confidence interval contains 

both zero and one. As a result, we are unable to reach any meaningful conclusions on possible 

presence of bias in those non-experimental estimates based on teacher performance on the 

CLASS observation metric. As noted above, this is likely driven by the lower “signal” variation 

in CLASS, relative to the other measures (see Table 3). 

 In Table 7, we explore the impact of including different student and peer controls. We 

focus this analysis on our most precisely estimated outcome: the state mathematics test 

performance. In theory, since students were randomly assigned, the inclusion (or exclusion) of 

student-level controls should not substantially change our estimates. However, to the extent that 

additional control variables explain a significant portion of residual variation in the outcome, we 
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expect precision to improve. In the first column, we only include controls for randomization 

block, which resulted in a coefficient of 0.755. In the second column, we include controls for 

students’ baseline achievement on state mathematics tests, which produced a coefficient of 

0.848. The third column presents our preferred specification (also reported Table 6), which 

additionally includes controls for students’ demographics characteristics and generated a 

coefficient of 0.847. Finally, in the fourth column, we include additional controls for the average 

characteristics of the students’ in each student’s classroom; the coefficient was 0.715.17 Although 

all four models generate substantively similar point estimates, the inclusion of baseline student 

achievement controls (column 2) reduces the standard errors substantially from the model with 

only fixed effects for random assignment block (column 1), highlighting the importance of 

including baseline controls for this type of analysis.  

 

C. Combining our evidence with prior studies 

In order to facilitate comparison between our study and the existing studies exploring the 

predictive validity of test-based teacher quality, in Figure 1 we present our main results 

alongside the main results from the five previous validation studies. Each bar represents the 

coefficient on teachers’ value-added in predicting outcomes following random or quasi-random 

assignment. A value of one indicates that the non-experimental estimates are unbiased predictors. 

In addition to point estimates, we plot the 95% confidence intervals around each estimate.  

The first three bars in Figure 1 report the findings from previous large-scale quasi-

experimental studies that applied the teacher-switching identification strategy proposed by 

                                                
17 Although students were randomly assigned, because of student movement following random assignment, the peer 
group that remained in the classroom is not guaranteed to be random. We explore this possibility in the Threats to 
Validity section and find that the actual peer characteristics are unrelated to assigned teacher quality. Moreover, in 
Table 7 we find that our main estimates are similar across all four specifications. 
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Chetty et al. (2014a) to data on mathematics and English test scores from grades four through 

eight from three different datasets. Each of these studies provides a precise estimate with the 

confidence interval including one, implying that, in each independent study, they could not reject 

the null hypothesis that the non-experimental estimates are unbiased predictors of teacher effects. 

The next three bars report the findings from the two previous within-school experimental studies 

and from the current study, each of which are based on randomly assigning mathematics teachers 

to classrooms. The confidence intervals for each of these estimates also include one, but are 

substantially wider than the corresponding intervals for the large-scale quasi-experimental 

studies.  

In the last bar in Figure 1, we use meta-analytic methods to combine the results from the 

three random assignment studies. Using a chi-squared test, we find no evidence of heterogeneity 

in the coefficient across the three studies (Higgins & Thompson, 2002), suggesting that our 

results are consistent with the two existing within-school random assignment studies. Because 

there is no heterogeneity across studies, we generate the pooled estimate reported in the last bar 

simply as a precision-weighted average of the estimates from the three random assignment 

studies. The pooled estimate (0.946) is more precise (the standard error is 0.098) and the 

confidence interval continues to include one. Together, these random assignment studies yield a 

pooled estimate with precision much closer to the quasi-experimental studies. 

 

V. Threats to Validity 

A. Baseline equivalence 

In a traditional random experiment, it is common to test for baseline differences in the 

treatment and control group. Since our analysis relies on many blocks of randomized groups, we 
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test the degree to which the baseline characteristics of the randomly assigned students were 

balanced across teachers within a randomization block. Specifically, we estimate the relationship 

between assigned teachers’ predicted effectiveness in 2012-13 and students’ characteristics in 

2011-12 using an OLS regression of the following form for each of the eight student baseline 

characteristics, g
"

`, for student i and baseline characteristic l:  

g
"

`
= h`_$,JM

:%6%7_%7:%,6::"0a72
+ ∅

c

`
+ 3",    (7) 

where _
$,JM

:%6%7_%7:%,6::"0a72 is the predicted effectiveness in 2012-13 of the randomly assigned 

teacher (based on state test scores) and ∅
c

`  are fixed effects for randomization blocks. We report 

the coefficients, h`, and standard errors for each of eight baseline characteristics in Table 8. We 

find that none of the eight student characteristics were statistically significantly related to 

assigned teacher effectiveness. 

 

B. Peer equivalence  

The characteristics of the actual peers in a classroom are not randomly assigned in all 

cases, since non-randomly assigned students enter classrooms throughout the school year and 

randomly assigned students exit. Thus, our random assignment process does not guarantee that 

assigned teacher effectiveness is unrelated to actual peer characteristics. To test for the balance 

of predicted teacher effectiveness by classroom-level averages of peer characteristics, we use the 

same regression model presented in Equation 7 to examine the relationship between assigned 

teachers predicted effectiveness and average actual peer characteristics. In Table 9, we present 

the coefficients on teacher effectiveness. We find that seven of the eight student characteristics 

are not statistically significantly related to assigned teacher effectiveness, but lower preforming 

teachers are assigned classrooms with higher concentrations of students with limited English 
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proficiency. However, a joint hypothesis test that all eight coefficients are zero has a p-value of 

0.442, meaning we cannot reject the null hypothesis that these eight characteristics are jointly 

unrelated to teacher performance. 

 

C. Attrition 

Because the random assignment rosters were generated prior to the beginning of the 

2012-13 school year, before new students may have signed up and before teachers may have had 

to be reshuffled to other schools, some amount of student attrition was unavoidable. Although 

our study maintained a relatively low level of attrition, we examine whether student movement is 

related to the predicted performance of the randomly assigned teacher. To do so, we estimate a 

model similar to that in Equation 7, but the dependent variable instead indicates whether the 

student remained in the sample in 2012-13 and had student outcomes in that year. In Table 10, 

we present the coefficients from this regression along with the percentage of students who 

remained in the sample and had achievement scores. As shown in the first column, 

approximately 88% of students from the random assignment sample have state standardized test 

scores, approximately 74% of students have scores on the project-developed test and responded 

to the student survey. In the second column, we present the coefficients on assigned teacher 

effectiveness from three separate regressions, one for each of these three outcomes. In all cases, 

the coefficients are not statistically significantly different from zero at the 5% level. 

 

VI. Conclusion 

Reforms of teacher evaluation systems have inevitably raised questions about the validity 

of the performance measures being used. Our findings are the latest in a series of studies 
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suggesting that the most controversial measure—the test-based value-added measure—is a valid 

predictor of teacher impacts on student achievement following random assignment.  

Until now, much of the public controversy—and all of the predictive validity studies—

have focused on the test-based value-added estimates. However, more than two-thirds of teachers 

are in non-tested grades and subjects, where such value-added measures do not apply (Papay, 

2012). As a result, most teachers are evaluated on measures other than test-based value-added 

measures—such as classroom observations and student surveys. Above, we provide the first 

evidence testing for bias in classroom observations and student surveys, measuring a teacher’s 

performance before and after students were randomly assigned. Although our estimates of the 

CLASS observation instrument were too imprecise to draw meaningful conclusions on the 

validity of that measure, our evidence suggests that the MQI classroom observation measure is, 

like the test-based value-added measure, an unbiased predictor of teachers’ classroom 

observation following random assignment. In other words, the MQI measure seems to be 

identifying variation in teaching practice, and does not seem to be biased by the unmeasured 

characteristics of students the teacher typically teaches. Unfortunately, like the CLASS measure, 

our evidence on the validity of student surveys was not conclusive. 

One of the limitations of this study lies in the imprecision in our validity estimates, 

particularly for the measure based on student survey responses. As mentioned above, this was 

due—at least in part—to our inability to control for students’ baseline survey responses. Since 

we did not follow students longitudinally, we were unable to control for any baseline student-

level variables that were not contained in administrative records. Based on this, future 

experiments may consider following students longitudinally in order to control for students’ 

baseline responses on all outcome variables. In addition, the precision on all outcomes will 
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improve as the sample increases. Future studies may consider testing for bias in classroom 

observations and student survey responses by applying the quasi-experimental identification 

strategy of Chetty et al. (2014a) to large administrative databases. Finally, we note that the 

properties of any measure of teaching performance could change as those measures are used for 

increasingly high stakes purposes, and so we hope that future work explores the validity of 

teacher effects under different environments. 
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Figure 1 
Comparison across studies of the predictive validity of value-added 
 
Notes: This figure presents a visual summary of the key findings from the five prior studies validating teacher 
effects. In addition, we present the results of the current study using state mathematics test scores and a pooled 
estimate using precision-weighted average of the estimates from the current study and the two existing random 
assignment studies. Each column plots the coefficient from a regression of the (quasi-) experimental student test 
scores outcomes on non-experimental teacher value-added and the associated 95% confidence intervals. A 
coefficient of one indicates that the non-experimental estimates contain zero bias, on average, in predicting 
outcomes following random assignment. Estimates and standard errors are collected from reported values in each 
paper. Since the two random assignment studies report findings separately by mathematics and ELA, we report only 
the mathematics coefficients. The three quasi-experimental studies only present combined results for mathematics 
and ELA, so we present the combined estimates across both subjects for those three studies. 
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Table 1 
Summary of students’ random assignment compliance 

 

Number of 
Students 

Percent of 
Total 

Remained with randomly assigned teacher 838 71.2% 

Switched teacher within random assignment block 50 4.2% 

Switched teacher within school 148 12.6% 

Left school or district 141 12.0% 

Number of students 1,177 100% 
Notes: Sample consists of fourth- and fifth-grade students from the four districts in our sample who were randomly 
assigned to a classroom in 2012-13. 
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Table 2 
Summary of student characteristics using pre-random assignment data 

  

Project Teachers in 
Randomized 

Sample 

Project Teachers not 
in Randomized 

Sample 

Non-
Project 

Teachers 
% Male 51.0% 50.3% 50.2% 
% White 31.2% 18.5% 24.5% 
% Black 34.3% 46.7% 35.5% 
% Hispanic 20.1% 24.9% 27.5% 
% FRPL-eligible 58.6% 70.3% 63.0% 
% Special education 11.7% 13.3% 14.8% 
% Limited English proficiency 16.8% 22.3% 20.4% 
Baseline state mathematics test scores 0.122 -0.002 0.053 
Number of students 2,433 7,914 50,636 
Notes: Sample consists of three mutually exclusive subgroups from the four districts in our sample. The first group 
(N=2,433) includes all fourth- and fifth-grade students in 2010-11 and 2011-12 who were taught by teachers who 
participated in the random assignment study in 2012-13. The second group (N=7,914) includes all other fourth- and 
fifth-grade students in 2010-11 and 2011-12 who were taught by teachers who participated in our study in any of the 
three years, but did not participate in the random assignment part of the study. The third group (N=50,636) includes 
all other fourth- and fifth-grade students in 2010-11 and 2011-12 who were taught by teachers in these four districts 
who did not participate in any of the three years of the study. Although we use teachers’ random assignment status 
in the third year of data to identify these three subgroups, students’ demographic and baseline test score data come 
from the first two years of the study (2010-11 and 2011-12) to explore differences in the type of students assigned to 
these teachers in a non-experimental setting.  
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Table 3 
Summary statistics for teacher measures using pre-random assignment data 

  

Project Teachers 
in Randomized 

Sample 

Project Teachers 
not in Randomized 

Sample 

Non-
Project 

Teachers 
Means       
State test score residuals -0.014 0.005 0.006 
Project test score residuals 0.023 -0.006 

 MQI residuals -0.048 0.014 
 CLASS residuals -0.064 0.018 
 Tripod residuals -0.041 0.015 
 Standard Deviation       

State test score residuals 0.262 0.271 0.282 
Project test score residuals 0.221 0.259 

 MQI residuals 0.683 0.843 
 CLASS residuals 0.877 0.876 
 Tripod residuals 0.355 0.437 
 Signal Standard Deviation (square root of year-to-year covariance)   

State test score residuals 0.198 0.197 0.197 
Project test score residuals 0.120 0.168 

 MQI residuals 0.270 0.566 
 CLASS residuals 0.151 0.486 
 Tripod residuals 0.075 0.263   

Number of teachers 61 243 1,763 
Notes: Sample consists of three groups of fourth- and fifth-grade teachers. The first group (N=61) includes all 
teachers who participated in our random assignment study (in the 2012-13 school year) for whom we have data in at 
least one of the two years before random assignment. Note that five of the 66 teachers randomized in 2012-13 were 
new teachers in 2012-13, so they are not included in this table. The second group (N=243) includes all other fourth- 
and fifth-grade teachers who participated in our study in any of the three years, but did not participate in the random 
assignment part of the study. The third group (N=1,763) includes all other fourth- and fifth-grade teachers in these 
four districts who did not participate in any of the three years of the study. We use the years prior to random 
assignment (2010-11 and 2011-12) to explore differences in teacher quality using non-experimental data. The state 
test, project test, and survey residuals are in student-level standard deviation units, while the two classroom 
observation measures are in teacher-level standard deviation units.



37 
 

Table 4 
Comparison of random assignment compliers vs. switchers 

  Compliers   Switchers   
  

Mean 
% Non-
Missing    Mean 

% Non-
missing 

Mean 
Difference 

% Male 49.3% 99.5%  49.6% 98.8% -0.30% 
% White 22.6% 99.5%  21.8% 98.8% 0.80% 
% Black 40.7% 99.5%  42.5% 98.8% -1.80% 
% Hispanic 22.6% 99.5%  18.6% 98.8% 4.00% 
% FRPL-eligible 67.8% 99.5%  62.1% 98.8% 5.7%* 
% Special education 6.3% 99.5%  7.5% 98.8% -1.20% 
% Limited English proficiency 18.3% 99.5%  10.7% 98.8% 7.6%*** 
Baseline state math test scores 0.111 92.2%   0.160 89.4% -0.049 
p-value on joint hypothesis test      0.401 
Number of students 838 838   339  339   
Notes: Sample consists of two groups of fourth- and fifth-grade students from the four districts in our sample. The first group (N=838) includes students in 2012-
13 who remained in classrooms to which they were randomly assigned for the duration of the school year. The second group (N=339) includes students in 2012-
13 who did not remain in the classroom to which they were randomly assigned. Statistical significance of differences is based on block bootstrapped standard 
errors with 1000 draws, clustered at the random assignment block level. The p-value on the joint null hypothesis test is generated using a Fisher-style 
permutation test, where we draw 1000 block bootstrapped (clustered at the random assignment block level) and we re-assign each student’s compliance status 
randomly. We calculate the F-statistic in each ‘null’ bootstrapped sample, and the p-value presented in this table is the fraction of null F-statistics that are greater 
than the actual F-statistic. *** p<0.01, ** p<0.05, * p<0.1 
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Table 5  
Using teacher performance measures from 2011-12 to predict teacher performance measures from 2010-11 

  

2010-11  
State Test  

Value-Added 

2010-11  
Project Test  

Value-Added 

2010-11  
Tripod  
Survey  

2010-11  
MQI 

Observation 

2010-11 
CLASS 

Observation 
2011-12 State Test Value-Added 0.504*** 0.184** 0.095 0.033 0.051 

 
(0.085) (0.092) (0.097) (0.093) (0.102) 

2011-12 Project Test Value-Added 0.172* 0.274*** 0.010 0.081 -0.184** 

 
(0.092) (0.093) (0.109) (0.114) (0.091) 

2011-12 Tripod Survey -0.138* 0.004 0.391*** 0.096 0.069 

 
(0.081) (0.048) (0.103) (0.092) (0.093) 

2011-12 MQI Observation 0.211 -0.007 -0.112 0.277*** 0.113 

 
(0.291) (0.023) (0.095) (0.083) (0.081) 

2011-12 CLASS Observation 0.090 0.031 0.005 0.048 0.242*** 

 
(0.056) (0.027) (0.086) (0.081) (0.075) 

Indicator for Master's Degree 0.056 0.064 -0.316* -0.058 -0.145 

 
(0.046) (0.054) (0.183) (0.212) (0.213) 

Indicator for Novice Teacher -0.061 0.067 -0.172 -0.114 -0.224 

 
(0.081) (0.060) (0.260) (0.367) (0.245) 

Count of teachers 175 151 151 151 151 
R-squared 0.358 0.248 0.166 0.126 0.131 
Notes: Sample consists of all teachers who relevant outcome variable from 2010-11 and all five teacher performance measures in 2011-12. Because state test 
value-added is collected for all teachers (even those not participating in the study), more teachers are included in the first column than in the subsequent columns. 
Block bootstrapped standard errors are presented in parentheses, which are generated by drawing 1000 bootstrapped samples, clustered at the school-by-grade 
level. *** p<.01, ** p<.05, * p<.1 
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Table 6 
Estimates of teacher effects on student achievement, student survey responses, and classroom observation scores  

  
State Test 

VA 
Project Test 

VA 
Tripod  
Survey 

MQI 
Observations 

CLASS 
Observations 

Expected outcome, based on teacher effectiveness 0.847*** 1.486*** -0.228 0.926*** 0.877 
(0.228) (0.267) (0.778) (0.284) (0.543) 

Type of estimation IV IV IV OLS OLS 
Number of observations (students) 888 859 858 

  Number of observations (teachers) 
   

61 61 
R-squared 0.576 0.566 0.013 0.207 0.075 

Notes: In the first three columns, the sample includes all students with the relevant outcome variable and were assigned to and taught by teachers who had 
predicted teacher effects in 2012-13. In the last two columns, the sample includes the 61 teachers who participated in our random assignment study who had 
predicted and actual observation scores in 2012-13. The first three columns are based on the IV model described in Equation 4 and Equation 5 using students’ 
state test scores (column 1), project test scores (column 2), and survey responses (column 3) as outcome variables. We include controls for students’ prior 
achievement on state tests and demographics, and fixed effects for random assignment block. The OLS models for MQI and CLASS are described in Equation 6 
and control for random assignment block fixed effects. For all five models, block bootstrapped standard errors are presented in parentheses, which are generated 
by drawing 1000 bootstrapped samples, clustered at the random assignment block level. *** p<.01, ** p<.05, * p<.1 
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Table 7 
Specification checks for estimates of teacher effects on student state mathematics test achievement 

  (1) (2) (3) (4) 

Expected student achievement, based on teacher effectiveness 0.755* 0.848*** 0.847*** 0.715** 

  (0.387) (0.222) (0.228) (0.297) 

Controls for student's prior achievement? No Yes Yes Yes 

Controls for student's demographics? No No Yes Yes 

Controls for actual peer characteristics? No No No Yes 

Type of estimation IV IV IV IV 

Number of students 888 888 888 888 

R-squared 0.004 0.563 0.576 0.589 
Notes: The sample includes all students with the state test scores in 2012-13 and were assigned to and taught by teachers who had predicted teacher effects in 
2012-13. All columns are based on the IV model described in Equation 4 and Equation 5 using students’ state test outcomes. In addition to the control variables 
specified in the table, we include fixed effects for random assignment block in all columns. Block bootstrapped standard errors are presented in parentheses, 
which are generated by drawing 1000 bootstrapped samples, clustered at the random assignment block level. *** p<.01, ** p<.05, * p<.1 
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Table 8 
Balance of randomly assigned classrooms 

 

Sample  
Mean 

Coefficient on 
Assigned Teacher 

Effectiveness 
Baseline math state test score 0.113 -0.016 

 
 (0.229) 

Baseline ELA state test score 0.126 -0.278 

 
 (0.288) 

Male 50.0% 0.079 

 
 (0.094) 

Black 40.3% 0.121 

 
 (0.178) 

Hispanic 21.7% -0.053 

 
 (0.150) 

Limited English proficiency 17.9% -0.088 

 
 (0.116) 

FRPL-eligible 67.2% 0.056 

 
 (0.097) 

Special education 6.0% 0.045 
    (0.066) 
p-value on joint null hypothesis test  0.965 
Number of students 888 

 Notes: The sample includes all students with the state test scores in 2012-13 and were assigned to and taught by 
teachers who had predicted teacher effects in 2012-13. Block bootstrapped standard errors are presented in 
parentheses, which are generated by drawing 1000 bootstrapped samples, clustered at the random assignment block 
level. The p-value on the joint null hypothesis test is generated using a Fisher-style permutation test, where we draw 
1000 block bootstrapped (clustered at the random assignment block level) and we re-assign teachers’ value-added 
randomly from the pool of value-added estimates within randomization blocks. We calculate the F-statistic in each 
‘null’ bootstrapped sample, and the p-value presented in this table is the fraction of null F-statistics that are greater 
than the actual F-statistic. *** p<.01, ** p<.05, * p<.1
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Table 9  
Peer balance 

  Sample Mean 

Coefficient on 
Assigned Teacher 

Effectiveness 
Mean baseline math state test score of actual peers 0.085 -0.083 

  
(0.186) 

Mean baseline ELA state test score of actual peers 0.094 0.111 

  
(0.169) 

Percent of actual peers identifying as male 49.5% -0.095 

  
(0.072) 

Percent of actual peers identifying as Black 39.0% 0.099 

  
(0.111) 

Percent of actual peers identifying as Hispanic 22.8% -0.075 

  
(0.123) 

Percent of actual peers with limited English proficiency 19.5% -0.250** 

  
(0.122) 

Percent of actual peers who are FRPL-eligible 69.0% -0.074 

  
(0.085) 

Percent of actual peers classified as special education 8.0% -0.062 
    (0.072) 
p-value on joint null hypothesis test 

 
0.442 

Number of students 888 
  Notes: The sample includes all students with the state test scores in 2012-13 and were assigned to and taught by 

teachers who had predicted teacher effects in 2012-13. Block bootstrapped standard errors are presented in 
parentheses, which are generated by drawing 1000 bootstrapped samples, clustered at the random assignment block 
level. The p-value on the joint null hypothesis test is generated using a Fisher-style permutation test, where we draw 
1000 block bootstrapped (clustered at the random assignment block level) and we re-assign teachers’ value-added 
randomly from the pool of value-added estimates within randomization blocks. We calculate the F-statistic in each 
‘null’ bootstrapped sample, and the p-value presented in this table is the fraction of null F-statistics that are greater 
than the actual F-statistic. *** p<.01, ** p<.05, * p<.1 
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Table 10 
Attrition 

  
Percentage of  

Sample 
Coefficient on Assigned 
Teacher Effectiveness 

Student has state test outcomes 88.4% 0.189* 

  
(0.097) 

Student has project test outcomes 73.7% -0.027 

  
(0.146) 

Student has Tripod outcomes 73.7% -0.026 

  
(0.146) 

Number of students 1177 
  Notes: Sample consists of fourth- and fifth-grade students from the four districts in our sample who were randomly 

assigned to a classroom in 2012-13. Block bootstrapped standard errors are presented in parentheses, which are 
generated by drawing 1000 bootstrapped samples, clustered at the random assignment block level. *** p<.01, ** 
p<.05, * p<.1 
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Appendix A: Estimates of Reliability 
 
Table A1 
Reliability of project-developed teacher effectiveness measures 
  # Items Cronbach's Alpha 

   MQI 14 0.78 
CLASS 12 0.89 
Tripod 26 0.91 
Project test 46 0.82 - 0.89 
      
Notes: Cronbach's Alpha is reported across scores on items at the lesson-level for MQI and CLASS, and reported at 
the student-level for the Tripod and Project test. The range in Cronbach’s Alpha represents the range in internal 
consistencies across different test forms. The reliability estimates for the state tests used in our analysis have a range 
of reliability estimates from 0.90 to 0.93, based on the states’ technical reports in relevant years. 
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Appendix B: Evidence of Non-Random Sorting Prior to Randomization 

In this appendix, we present information on the extent to which students were sorted non-

randomly to teachers in the years prior to randomization. If the teachers who participated in the 

random assignment portion of our study were already randomly assigned classroom rosters, our 

validation test would not generalize to other settings where the students are systematically sorted 

to teachers. However, we find that our experimental sample of teachers appears subject to such 

sorting in the years before randomization. 

In the two years prior to the random assignment, the between-teacher standard deviation 

in average test scores was 0.412 for the sample of randomized teachers, compared to 0.550 and 

0.662 for the non-randomized project teachers and for the non-project teachers, respectively.18 

This indicates that there was a considerable amount of sorting of students to teachers based on 

prior achievement in all three groups of classrooms, but there was somewhat less sorting for 

teachers who agreed to be randomized in the third year of our study. 

Sorting in a single year does not necessarily lead to bias in teacher effectiveness 

measures. For example, imagine that students are systematically sorted into classrooms by 

ability, but then randomly assigned to teachers. In this scenario, end-of-year achievement, in 

expectation, would still be an unbiased measure of a teacher’s effect on student achievement 

since no teacher would be more likely to receive the most- or least-able students. Only when 

sorting persists across years does failing to control for baseline achievement lead to bias. To 

estimate the extent of persistent student-teacher sorting in the years prior to the random 

                                                
18 Under normality assumptions, sorting students to teachers perfectly on prior test scores would produce a between-
teacher standard deviation in teacher-level average baseline test scores that is similar to the student-level standard 
deviation (i.e., a standard deviation of one). Alternatively, if there were no sorting (i.e., assignments were random), 
the coefficient would not be zero, but 1 ", where n is the number of students per classroom. Assuming 25 students 
per classroom, this would be approximately 0.2. Therefore, our estimates suggest some amount of sorting on 
baseline test scores in all three samples in the years before random assignment. 
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assignment experiment, we calculate the square root of the covariance across the first two years 

of the study in the average baseline test scores for students in a teacher’s classroom (the “signal” 

standard deviation in the baseline test scores). We also estimate the within-school signal by 

adjusting the baseline scores for school-by-year fixed effects.19 If there were no sorting the signal 

would be zero, but we find that signal standard deviation in baseline sorting for the randomized 

teachers is 0.346 and the within-school signal standard deviation is 0.306, indicating the presence 

of persistent within- and between-school sorting of students to teachers across the two pre-

randomization years. We observe even higher persistent sorting for the non-randomized project 

teachers (0.495 overall and 0.408 within school) and for the non-project teachers (0.652 and 

0.544 within-school). We also estimate within-random assignment block signal in baseline 

sorting by adjusting for random-assignment block fixed effects. This estimation yields a standard 

deviation (0.150) smaller than the within-school or overall standard deviations, but still indicates 

within non-random sorting of students to teachers in the years before our random assignment 

study.20 

                                                
19 We remove the school-by-year fixed effects from the full sample, as opposed to the school-by-year fixed effects 
within each of the three sub-samples. 
20 Since there are at most three teachers within a random assignment block, we correct the within-block estimates of 
variance and signal variance in baseline scores to account for the degrees of freedom. Specifically, we first remove 
the randomization block-by-year fixed effect from each baseline score and then calculate the square root of the 
variance and the square root of the covariance in these demeaned baseline scores across the first two years in our 
sample of teachers.  To correct for the loss of degrees of freedom, we multiply the square root of the variance by 
(" − 1) (" − &), where n is the number of observations across the two years and k is the number of 

randomization block-by-year fixed effects.  We use the same equation to adjust the square root of the covariance, 
using the number of unique teachers across the two years for n and the number of unique randomization blocks 
across the two years for k. 
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Table B1 
Summary of student-to-teacher sorting using pre-random assignment data (2010-11 and 2011-
12) 

  

Project 
Teachers in 
Randomized 

Sample 

Project 
Teachers 

not in 
Randomized 

Sample 

Non-
Project 

Teachers 
S.D. in baseline test scores 0.412 0.550 0.662 
Signal S.D. in baseline sorting 0.346 0.495 0.652 
Within-school S.D. in baseline scores 0.406 0.470 0.543 
Within-school signal S.D. in baseline sorting 0.306 0.408 0.543 
Within-school S.D. in baseline scores 0.277   
Within-random assignment block signal S.D. in baseline sorting 0.150   
Number of students 2,433 7,914 50,636 
Notes: Sample consists of three groups of fourth- and fifth-grade students from the four districts in our sample. The 
first group (N=2,433) includes all students in 2010-11 and 2011-12 who were taught by teachers who later 
participated in our random assignment study (i.e., the 2012-13 school year). The second group (N=7,914) includes 
all other fourth- and fifth-grade students in 2010-11 and 2011-12 who were taught by teachers who participated in 
our study in any of the three years, but did not participate in the random assignment part of the study. The third 
group (N=50,636) includes all other fourth- and fifth-grade students in 2010-11 and 2011-12 who were taught by 
teachers in these four districts who were never a part of the study. We use the year prior to random assignment 
(2011-12) to explore differences in the type of students assigned to these teachers in a non-experimental setting.  To 
estimate the extent of persistent student-teacher sorting in the years prior to the random assignment experiment, we 
calculate the square root of the covariance across the first two years of the study in the average baseline test scores 
for students in a teacher’s classroom (the “signal” standard deviation in the baseline test scores). We also estimate 
the within-school and within-random assignment block signal by adjusting the baseline scores for school-by-year 
fixed effects or block-by-year fixed effects. If there were no sorting the signal would be zero. 

 
 


