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THE APPLICATION OF THE “LAW OF ERROR” 

TO THE WORK OF THE BREWERY. 

  

8rd November, 1904. 

The following report has been made in response to an increasing necessity 

to set an exact value on the results of our experiments, many of which lead to 

eonclusions which are probable but not certain. It is hoped that what follows 

may do something to help us in estimating the Degree of Probability of many of 

our results, and enable us to form a judgment of-the number and nature of the 

fresh experiments necessary to establish or disprove various hypotheses which we 

are now entertaining.* - , 

When a quantity is measured with all possible precision many times in 

succession, the figures expressing the results do not absolutely agree, and even 

when the average of results, which differ but little, is taken, we have no means 

of knowing that we have obtained an actually true result, and the limits of our 

powers are that we can place greater or lesser odds in our favour that the results 

obtained do not differ more than a certain amount from the truth. 

Results are only valuable when the amount by which they probably differ 

from the truth is so small as to be insignificant for the puxposes of the experiment, 

What the odds selected should be depends . ‘ 

1. On the degree of accuracy which the nature of the experiment 

allows, and . 

2, On the importance of the issues at stake, 

: It may seem strahge that reasoning of this nature has not been more 

widely made use of, but this is due— .. 

cs 1, To the popular dread of mathematical reasoning. 

2, To the fact that most methods employed in a Laboratory are 

capable of such refinement that the results are well within 

; the accuracy required, 

Unfortunately, when working on the large scale, the interests are so great that 

more accuracy is required, and, in our particular case, the methods are not always 

capable of refinement. Hence the necessity for taking a number of inexact 

determinations and of caleulating probabilities. 

In any series of determinations of a simple quantity there are three kinds 

of errors which prevent all the results being the same. These three kinds of 

errors are— / 

1, Mistakes, often of a whole number of integers, as, for instance, of 

reading a saccharometer 5° too high, or of multiplying two 

numbers together and getting the wrong result. These can 

often be found out by checking, or can be conjecturally 

corrected, and need not concern us further, as they can be 

eliminated by taking sufficient care. , 

* A supplement is given at the end of this report bringing some matters in it up to a later date. 
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2, Conitant errors, where, for some reason or other, some instrument 

is invariably read wrong in the same dixection ; thus, in 

determining the gravity of a sample of fermenting wort 

which has not been “tossed,” the gas in the liquid will 

always cause’ the. saccharometer to read too low. Or again, 

an incorrect saccharometer will always give « result foo high! 

‘or too low, as the case may be. This form of error can be 

corrected by taking a sufficient. number of instances, and’ 

finding out the average amount wrong, by checking against 

another method, in this case by weighing “ tossed.” samples. 

This, therefore, need not concern us either, evert though the’ 

. ___ pkocess of making the correction may be difficult, in some.cases. 

| 3. When all corrections have been applied the ‘results will still not he 

quite uniform, though the more carefully thé determitiations © 

are carried out the nearer will the’ iesults bé. to ach other,’ 

and to the truth.. - 

Thus, sny number of weighings of an unfermented’ wort with @ 

saccharometer will probably, if sufficient care, be taken, come 

within one degree of one another. If weighed with « battle’ 

they will very likely come within ‘1 of a degree, e.g. & wort 

at about 1035 is weighed with a saccharometer, and an en- ~ 

deavour is made to read as accurately as possible: the results 

: will mostly lie between 1034°5 and 1035°5, with a bottle,’ 

. between 1034'95 and 1035°05, It will be impossible with the 

first instrument to say this weighs 10848, or with the second,’ 

, 1085-02, though, perchance, these may actually be correct. 

Hence we see that according to the ‘precision of the instruments employed, and. 

the care with which they can be used, the accuracy, obtained -is obeatar .or less. 

The use of the theory of error is, primarily, to find a measure of the accuracy of © 

a given method ; when this is found, the probability that the trae value lies 

within a given amount of an observed value can easily be calculated. , , 

If we consider a number of determinations of a quantity, all corrections 

having been made, it is obvious that it is more likely that a result ‘will lie close 

to the real value than far off, so that most of the results will be grouped around 

, the true value, and the numbers further out will tail off on either side. Eg. if the 

real specific gravity of the sample of worts be 1035°02, more of the determinations 

by the specific gravity bottle will give results between 1035°02 and 1035'03, than 

between 103522 and 1035°23, and few, if any, will lie between 1036°02, atid 

1036-08, though it is not impossible that such might occur. 

Mathematicians have discovered an equation * which defines a curve such 

  
  

  

  

1 de 4-% 
* The equation is Yu pes 

Nr ec ¢ +   where y is the frequency with which a given error of size oecurs a and ¢ are well-known constants, the 

former being the ratio of the cireumference of a cirele to the diameter (3°14159), the latter the base of 

the Napierian system of logarithms (2718... ), de * is the unit in which a is expressed, ¢* is the 

“ Modulus of Exror,” a number which varies with the accuracy of the methods under consideration. 

‘As most of the terms in books are expressed in terms of the modulus, it is not possible to avoid 

mention of the modulus, nor, beyond saying that it is a measure of the precision of the observation, 

is ib possible to define it in popular language. Seo Airy, Lheory of Jevrovs of Observations, p. 7 et seq. 5 

Lupton, Votes on Observations, p. 78 et seq. ; Merriman, Method of Least Squares, p. 16 ef seq. , 
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* In measuring a mile daw might be 1 yard and ¢ 20 yards, By a more accurate method, ¢ might be brough’ 

down to 5 yards. 
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that if any given error be the abscissa, the corresponding ordinate represents, 

very approximatély, the frequency with which the error in question’ will ogeur, 

and have found that, though the shape is similar for all series of determinations, 

the ‘size of this curve depends on what is known as the Modulus of, Error. 

This number is constant for determinatiohs made by the same metliod 

_ with the same care, but larger for coarse, and smaller for more delicate 

measurements. ‘ 

In the case above given, the modulus of error for a series of saccharometer 

weighings might be ten times the’ modulus of error of a system of bottle 

weighings, : 
In diagram No. | are, three curves representing the frequency of error of 

systems whose modulus of error are 2: 4: $. These moduli of error are repre- 

sented by the lines M,O, M,0, M,0. 
(They may be imagined as belonging to three methods of estimating a& 

quantity. No. 1 belongs to a rough method, like pacing a 

distance. No. 2 belongs to a better method, such as chaining the 

same distance, No. 8 to a still more refined method, such as 
measuring with a tape.) 

Since the curves are drawn to scale, the total area enclosed by each curve is 

the same, and if we draw an ordinate, XY, Y, Y; to cut all three curves, the 

probability of obtaining the error OX in the three systems are as XY): 

XY,: XY. 

. Again, the probability of obtaining an error between OX and Oz in the 

the. area Xay, Y, 
the area enclosed by the whole No. 1 curve’ 

" the area Xay,Y. 

the area enclosed by the whole No, 2 curve’ 

the area Xay, Vs 

the area enclosed by the whole No. 8 curve’ 

Or, since the areas enclosed by the three curves are the same, the probability of 

obtaining an error between OX and Ow in the three systenjs is as the area 

Xay,¥,: the area XayY,: Xay,¥; By inspection of the diagram we see that, 

roughly speaking, it represents the fact that a small error, such as OX, is much 

more likely to occur in the series with the small modulus of error; whereas the 

larger the error the greater, in proportion, is the chance of its occurring in the 

series with the large modulus of error, though in each series the smaller the area 

the greater the chance of its ocourring. 
I have indicated in the three curves the points P,P, P,P,,.and P,P, such, 

. that the odds are 20 : 1 that an error will lie between P,P, in the first curve, 

between P,P, in the second curve, and P,P, in the third curve. 
Again; the nature of some expétiments obliges us to work with rough 

measurements, and so a large error, and yet to know the result with some 

certainty. This is effected by taking a mean of a number of observations.. .The 

means thus obtained are of course subject to similar, though smaller, errors, and 

the greater the number of observations of which the means are taken, the smaller 

the error, and the curve which represents their frequency of error becomes taller 

and narrower, In these curves, if No. 1 represents the frequency of error of a 

single observation, No. 2 will represent the frequency of error of the average of 

a group of four, and No. 3 will represent the frequency of error of the average of a 

group of 36. 

  first curve is 

  in the 2nd curve is — 

in the 8rd curve is 

(5)  
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In practice, 

as the modulus of error 

obtained of the size of the curve of frequency of error. 

To obtain the mean error we must first find the mean 

determinations under consideration, 

their number. This will give the mean positive exror. 

.. negative error. If sufficient determinations have been made, 

be the same, 
  

error. 

difference between the various results and the grand average. 
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No. of negative cases 35 +3 = 38. 

  

o
 

Mean 124°6 

  

A
O
 
b
A
a
k
R
 
a
D
 124-7 

1248 
1249 
125-0 
125° 

. 1252 
| 1253 

125-4 
125° 
125°7 

' 126°3 
oe 

44) 18°9(- 

m
e
 

h
t
e
 

O
D
D
 

S
w
 
A
A
K
R
H
S
H
R
H
 

ft
 

at 
et

 O
D 

fo
 

WO 
T
O
 

OO
 
OD
 

e
e
e
 
t
t
h
e
 

e 
e
t
e
       

No, of positive cases 42 + 2= 44. 

        44)18°9(43 14°36 
‘AT 12°87 

° 2)°90 
‘45 mean error. 

4/3°36 = ‘58 x ‘8 

it 
= ‘46 mean error.   % Vide, however, supplement, 
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then the difference between 

the determinations, and add together all the positive differences and divide by 

We likewise add together 

all the negative differences and divide by their number, which will give the mean: . 

these will probably 

but if they are not, we must take half their sum as the mean 

38)18-O(AT 

the Grst step is to find what is known as the mean error,” and, 

has been found to be 1°77 times th is, a measure is 

(average) of all the 

this and each of 

The mean error may therefore be described as the average amount of 
X 

‘ 

Squares. 

_ 

2:89 
2:25 
1:96 
“1°00 

‘81 
49 

2°88 
‘50 
96 
‘45 
12 
‘05 

_ 

14:36, 

  

    
27:93 + 81=3'36 mean square of error.  



  

As a check on this, it is usual to find the “error of mean squares,” a 

number which should be about ‘71 times. the modulus, and from which another, 

value of the mean error may be found by multiplying by ‘8. This number is 

found by squaring cach of the differences from the mean, dividing the sum of 

the squares obtained by the number of determinations less 1, and taking the 

square root. 

(The value thus obtained is the better value of the two in the proportion 

114 : 100.) - 
Eg. 82 analyses of a malt were done in the Brewery Office Laboratory 

with the intention of defining the acouracy with which the produce could be found. 

The results are displayed in the tables on previous page, and the mean erro 

obtained by both methods, 
. We see then that the mean error is defined by the 82 cases with sufficient 

accuracy, thus, we have—_ : 

Mean of negative error. . . ‘47 , r 

positive ,, : : ‘48 Average *46, 

» calculated from errors of mean squares ‘46 

Diagram No. 2 compares the theoretical and actual distribution of these results.* 

. From the mean error we can pass, as mentioned above, to the modulus by 

multiplying by 1°77 and can construct the curve of the frequency of error, and 

thus (or more simply by the use of tables) caleulate the chances of our observation 

having an error between any given limits, .For this purpose we must first decide— 

1, Within what limits of accuracy-we desire to know.the result. 

2, What certainty we require that it will fall within those limits. 

E.g. it might be maintained that a Laboratory produce should be within ‘5 

of the true result with a probability of 10 to 1. . The mean error being °46, the 
5 . 

médulus is (46 1°77)='8 roughly. Our °5 error=-¢ of the modulus, say ‘6. 

” 

By consulting the table + we see that 60°4 per cent. of the observations (say 3 out. 

‘of 5) have an error less than this, 4.¢. the odds are not 10:1 but 8:2. Anyone 

demanding 10 to 1. in favour of an error less than’'5 could not therefore rely on a 

single observation. : 

As will be shown later, the modulus varies inversely as the square root of 

the number of observations, the mean of which is considered. Thus with— 

Limit of error Odds in favour 
New desired (‘5) of smaller 

modulus, + modulus, error than °5. 

: 80 
' 2 observations = 7a 57 9 4:1 

3 io = 3 ‘46 1:09 7:1 

“80 
4 ” = Va 40. — 125 12:1 

“*B0 
5 » = V5 "36 140 =° 19:1 

82 89 gg 5°50 tically infinit » = 782 ‘ ; practically infinite. 

* Besides the 82 analyses of the same malt, there were three other series of analyses each with 

its own malt, giving 77 more analyses, or 159 in all; these were all corrected to the same mean and 

plotted in red ink on Diagram TZ to show how increasing the number of observations tends to smooth. 

off the curve. : 

_ + Appendix I. 
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In order to get the accuracy we require,.we must, therefore, take the méan of four 

determinations. Practically, we have held the position ‘that the: Lahoratory, 

extract gives a result within one degree of the ‘truth, and the odds in oui favour” 

that this is the case are about 12:1. ‘This theoretical conclusion is almost 

exactly justified by the series quoted above, in which 6 out of 92, or % 124 to 1, 

exceeded this limit. . is 

In the daily caleulation of Laboratory produce, for comparison with the 

Brewery, several determinations are brought into play, on account of several malts 

being used, and the error is much leg, The experimental brewings, resting on ° 

the malt drawn from several bins, have also more than one determination made - 

for the calculation of their Laboratory produce. 

In all experiments it is a question to be decided by the comparative labour 

how far we should repeat experiments, or refine the method, as it is by taking the 

mean of the first few experiments, that the accuracy ig most increased. Thus, to). 

halve the error, four, but to reduce it to }, 16 experiments aré necessary. The 

table of odds that the error will not exceed ‘1 in the Laboratory, is as follows :— 

Odds in favour 

Number of of error smaller 

observations. , Modulus. than ‘1. 

1 8 1:6 

4 “4 1:3 

9 ‘27 2:3 

16 2 18:12 

64 ‘1 5:1 

82 ‘Oo 7:1 

100° , 08 12:1 
* 

“A further proposition dealt with by mathematicians * is that connecting the 

errors affecting a quantity with the known errors of two quantities of which it is 

composed, ° 
Suppose the mean error of determining a quantity X to be ¢, and that of 

determining another quantity Y (quite distinct from X), f, and suppose Z to be 

the sum or the difference of X and Y, then if be the mean error of Z, e, fand E 

are connected by the equation B= e'+f?, Hig. ib has lately been shown that the 

mean error of an O.G., as determined by the Laboratory, is, roughly, 8. Again, 

the Brewery aims at a constant O.G. subject to an error altogether unconnected 

with the error of the Laboratory determination, which we will suppose to be °2. 

Our Laboratories now return us results giving us the so-called 0.G.’s of brewjngs sub- 

, ject, of course, to both these errors. The mean error of such a series will be found, 

according to the above equation, to be H when HPs (*2P+('3)"5 .': B= 4/18 = "36, 

not much greater than the larger of the constituent errors. ' : 

Another example was furnished while considering the figures in the report 

“The Grind Experiments in 1904.” The question arose as to the increase in the 

error introduced by a correction for half the difference in the Laboratory produce 

so as to allow for inequalities in malt. The mean error of an average of two 

Laboratory determinations =°"32: only half this came into the calculation = say ‘2. 

Now the error of a single brewing’ = say ‘6, and the calculation therefore becomes 

HP = 674-2? = °864-'04 ; 

vy Ba /'40 = °68, 

the Laboratory correction has, therefore, only introduced an additional error of °03. 

* Airy, Theory of Errors of Observations. Part I. 
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Again, in the same report it became important to determine the mean 

ereay of the Brewery extract. In this work every, vesult was determined in 

duplicate, and we may consider that we have ‘two series, an A series and a B 

series ; the first of two determinations belonging to the A series, the second to 

the B series. We can thus obtain 4 third. series. by taking the differences 

between the A’s and the B, - Now the-mean errors of the A and B determinations 

are the same, and as they:are qitite independent, the proposition H’=e?+/? 

applies. In this case e (mean error of the A determinations) =/ (mean error of 

the B determinations), E (the mean error of the cierence series) = 2e”; ’ 

=O D5. i. 

‘Now E has been determined directly,* and so we deduce e. 
This proposition carries with it the important, corollary that a series of 

small errors can be added to a large.one without, materially increasing the original 
error. Eg, the slide rule introduces a small error of ‘03 into the 0.G., but the 

error of the O.G. is ‘2, which gives a combined error of only ‘202—a quite 

immaterial increase, 
As a further extension of this proposition, we have the cases— 

(1) Witen there are more than two sources of errors, for example 
e, f, h, etc,, when the equation becomes Bao Phi, ete. 

(2) Where several, say », determinations are made subject to the 

game error when e=f=h, etc., then H?=ne?; .. H=e/n, te. the 
error of a sum of 2 experiments is times the error of a single 
experiment. But, since to find the average we divide by , we 
get the formula-— 

Exror of average Bien we 

2. thé error of an average is equal to the error of a single determination divided 

by the square root of the number of experiments made, as exemplified above, 

The proposition f cannot be. extended to observations which have any 

mutual dependence; but we have, by investigation of the errors, a method of 

estimating the amount of this dependence, if any, and of discovering if two 

phenomena, which are supposed to be mutually related, ave actually so. Eg. the 

determination of the O.G. on Settling-back in the Brewery Office Laboratory was 

inaugurated in the hope of showing that high O.G. was a result of under-caleula- 

tion of the Brewery Produce, and, consequently, that a low Laboratory difference 

should go with a high O. G., and vice versé. The methods, however, carry a high 

experimental error, while ‘the error common to the two is comparatively small. 

Hence ordinary attempts at correlation gave negative results. 
When attacked with the aid of the above proposition, the connection can 

be shown by means of the following argument -— 

Any increase in the 0. G. “due to miscalculation of the “ quantity,” will 

cause a decrease of about twice is much in produce, and, consequently, in the 

Laboratory difference, and vice versd. Therefore, if the O.G. be added to ap- 

proximately half the Laboratory difference, this error will disappéar. There are, 

  

- of course, other errors in the 0.G,‘and Laboratory difference. 

* Appendix IT. ‘ . 

+ The fall formula is E? =e? +f? + Sref where? is the correlation between the quantities X and Y 

which have mean errors e and,f, Hence.the above is only true ifr=o. E, e, and f would generally 

. be taken not as the mean error, but asthe Standard Direction or error of. mean squares, and the 

proposition is then true for any type of distribution, and, not only for the “ normal” type. 

B (9) 

  

 



  

  

  
          

Now if we find the mean error of—— " 

1. Half the Laboratory difference. 

2. The Original gravity. _ 

3, Of a series obtained by adding them together, day by day, we _ 

should find, if there had been no'connection between them, the 

square of this last error equal to the squares of the other two. 

As a matter of fact, it is found to be considerably less, thus 

showing that the error common to the two is appreciable, Theré 

is, therefore, a connection hetween them. By taking sufficient 

observations, the extent of this connection can be ascertained. — 

ode ge 

There are two further points which may be here considered. The. first is. 

the rejection of doubtful observations, and the second the degree of accuraty-of, 

the number found as the mean"brror. poe 

I is a matter of common knowledge that often, in the midst of many “* 

concordant observations, ove occurs very far from the mean. Sometimes it’ is 

possible to assign a known cause for this extreme variation, and then, if the cause 

is found to be adequate, and one peculiar to that observation, we can either 

reject the observation, or correct it for the extraordimary error. Very frequently, 

however, no particular reason can be found to aecount for the discordant observa- - 

tion, and then the question arises, whether we are to accept the result or no. . 

In the first place, it is clear that if we have only a few observations, one « 

with a very large error will be apt to introduce altogether too large an error into 

the mean; whereas the mean of a great number of observations will be but little 

influenced by « single error, evon if much greater than the others. , : 

On the other hand, it.is generally agreed that to leave the rejection of 

experiments entirely to the discretion-of the experimenter is dangerous, as he is 

likely to be biassed. Hence it has been proposed to adopt criterion depending on 

the probability of such a wide error occurring in the given number of observations. 

The criterion proposed by Chauvenet is the simplest of these, and is as. 

follows :— 

Tf, in the number of observations made, an error occurs of such a size that, 

& priori, less than half an observation, with a8 large an error, might be expected 

" -¢o occur, the observation is to be rejected. In practice, this is applied as follows :— 

Tf 2 be the number of observations and P the probability that all but half 

an observation occurs, then ‘ 

20-1 

P= an 

If, then, we look out in the table (Appendix I) the size of the error 

corresponding to P, this will give us the limit within which all but half an obser- 

vation may be expected to oceur, and all observations with larger errors may be ~ 

  (since n —nP = 4). 

rejected. 
In the case of the 82 observations of Laboratory produce, x= 82; 

163 
“Ps iea= 994, 

This corresponds to 1:94 times the modulus (which is ‘80). Hence any observa- 

tion with a greater error than 1°55 must be rejected in determining the mean of 

the series. ‘Two would be rejected, one positive and one negative, s0 that the 

mean would not be affected. : 

In the case of the whole 159 observations, m= 159, 

317 
Ps 378 997. 
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{with 1000 : 1, certainty), to 

  

‘This corresponds to 2°09 times the modulus, or 1°67. Hence, any observation 
with a greater error than 1°67 should be rejected. As the greatest is 17 these 
would probably be retained, but might, strictly, be rejected. 

Now, suppose we had only 5 observations — 

Pama, 
This corresponds to 1-17 times the modulns, or, in the Laboratory produce séries, 
‘94 of a degree. Therefore, in a series of 5 observations of a Laboratory produce, 
one which varied a whole degree from the mean should be rejected. 

If this test be applied to the grind experiments, only one pair is rejected, 
since the limit found for the difference between a pair is 2°6 degrees, and only one 
difference is higher than this (3:0). 

This pair included one experiment which was, in other ways, doubtful ; 
but as ib was not one of the important results, and it was not possible to repeat 
the experiment, the earlier criterion was used, viz., that any experiment not called 
in question before the result was obtained, was to be included. 

(This rule is practically being applied by Mr. Jackson to the case of . 
two, three, and four determinations of extracts.) gi 

The other point is the uncertainty of the number found as the mean, error, 
This is found to have an uncertainty of such a kind that a modulus of. error can 
be found for it, and odds given that it lies within given limits, 

The formula. by which this is determined is as follows:—If C be the 

: Cc 
modulus of error found from n experiments, then Yon will be the modulus of error 

for this figure. Or, assuming that 1000 : 1 is certainty, the modulus of error will 
: 82), 2°32 

ite between C(1 +e and O(1 — a) and the mean error between (1 + Ton) 

232... |, : a : 
and ( 1- Vin) times its value. This is the uncertainty attached to the error 

fdund by the method of n mean squares: the other method gives a larger error 

288 
G + in) 

As our results are taken as the mean of these two, it is clear that our 

: : 2°32 
accuracy will be greater than either. Tt will lie somewhere between (1+ 7e= t on 

170 
and (14+ 75 , say (1 +7). * 

In the 82 Laboratory produce experiments, the mean error, °45, is accurate 

  ag i x ‘45 or ‘07, 4.¢, ib is 1000 : 1 that it lies 

between ‘38 and ‘52. In the 159 experiments, between ‘40 and °50. 
If the probable error (even chances) be taken, the limits are divided, 

roughly, by 4. 
The odds até ¢ven that the mean error of a Laboratory produce lies 

between 43 and ‘47 from the first series, from all 159 experiments between 
‘44 and ‘46. 

Similarly, the figure found for the mean error of a produce in the grind 
experiments, ‘67, has a probable error of ‘04, a2, it is an even chance that it 
hes between ‘63 and 71. 

, * Vide Appendix I, 
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iD< Tp conclusion, then, we have gone through the prikcipal methods by which 

the Law of Error can be applied to our work in the Brewery. We believe that it 

may become veluable in many directions. . : 

We may point out that, although the proof of the law rests on higher 

mathematics, the application of it only demands quite simple algebra.. We have 

been met with the difficulty that none of our books mentions the odds, which are 

conveniently accepted as‘ beihg sufficient to establish any conclusion, and it might 

be of assistance to us to cosilt some mathematical physicist on the matter. ~ 

W. 8. GOSSET.   

  

ai CONCLUSIONS. © 
ns 

4 

Discusses the utility of applying the Law of Error to our hypotheses as a 

measure of their probability. : 

  

Classifies Errors. , . 

States, A, The Liaw of Error, and defines “ modulus,” “ mean error,” etc. 

Gives instances— 

L. Of the calculation of the mean error of the determination of 

Laboratory Extract.   2, Of-the number of determinations.of Laboratory Extract necessary to 

HT détermine this figure within certain limits, with certain 

| degrees of probability. : / , 

: | B, the equation E? = ¢*+/° where E is the error &f a quantity compounded. 

of two quantities having errors ¢ and f, the two quantities. being determined quite 

independently, showing that this equation is useful in various ways, ¢.g.— 

1. As proving that errors can -be added with cémparatively slight 

increase of total error. ‘ 

2, When e and / are the errors incidental to similar determinations of 

the same constant ¢=/, leading to the law that where n deter- 

minations are made the mean is more accurate than @ single 

determination inversely as the square root of the number of 

‘determinations made. 
’ 

. : 3. To prove the exror of the Brewery produce. 

4. Asa means of invéstigating phenomena which are supposed to be 

connected, but in which the connection is obscured by large 

experimental errors. Such cases follow the equation if not 

connected, but depart from it if connected, but many instances 

‘ must be averaged. , 

  
\ Gives a rule for rejecting a doubtful observation. - 

  

Explains that we have no information of the degree of probability to be 

accepted as proving various propositions, and suggests referring this question to a 

mathematician. , / 
| 

| i. 
: . a (12)       

 



  

  

  

APPENDIX I* 

ie 

  
  

Limit of Error Per cent, of cases Limit of Error Per cent. of cases 

  

  

in terms of | within the given Soden | Bore 

O1 11-2464 19 99°2790 

0-2 22-2702 20 99-5322 

Os 32-8626 21 99-7020 

0'4 49-8802 22 99°8136 

05 52-0500 23 99-8856 

06 60°3856 Oe 999310 

ov 67°7802 - 25 99-9592 

0-8 742102 26 99-9764 

0-9 79-6908 27 99-9866 

10 84-2700 28 99-9924 

Li 880206 29 99-9958 

12 91-0314 3-0 99-9977 

18 93-4008 31 99-9988 

14 95-2286 32 99-9994 

15 96°6106 3:3 99-9997 

16 97-6848 34 - 99-9998 

17 98-3790 85 - 99-9999 

18 98-9090       
    

Lf we consider only the + or the — cases the percentage is halved. 

* Adapted from Lupton, Notes on Observation, Appendix Table I, p. 122, 
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. . APPENDIX. IL. 

{ 
. 

TABLE SHOWING THE DIFFERENCES BETWEEN THE PAIRS OF OBSERVATIONS 

IN THE WHOLE SERIES OF BREWINGS, WITH THEIR SQUARES, TO CALCU- 

LATE THE MEAN ERROR OF THE DIFFERENCE, AND SO OF THE BREWING, 

i | ‘ No. 1. Brewery. No, 2. Brewery. : Experimental Brewery. 

j Difference. Square. Difference. ~ Square. Difference. -Square. , 

: | “a . 49 5 25 ‘9 81 

13 169 “4 16 13 169 

3 ov 21 44) 10 100 

2 4 12 144 +4 16 

V4 196 8 64 13 169. 

18 324 6 36 14 196000 

7 49 7 49 9 we N 

‘ 11 121 0 vee 7 49 

6 36 22 484 — — 

0 we 8 64 8)70 7)T80 

9 81 15 225 “87 “Tit 

20 400 0 tee 

. “4, 16 7 49 . | (Mean error = 105 

6 36 4 49 of differ-| . x 8 

9 81 —_— nen ence.) a= 'B4, 

0 te 14)122 18)1646 : 

5 25 “87 | 127 . : | 
12 144 . 4 
2 4 (Mean error = 113 

9 81 of  differ- x 8 

4 49 ence.) = 89 ' 

a0 400 
15 225 
0 te 

14 196 
31 961 
3 9 

. 

14 196 
14 196 

: | 16 256 

30)29'1 29)4313 
97 149 

. 12:2 
x 8 
= ‘97 

i .*, Mean error of single brewing, No, 1 Brewery, = ‘69. 

. . No. 2 . = 62 
” y Experimental, = ‘62, 

t 
ee 

i | - 

i 
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SUPPLEMENT. 

The two statistical reports included in this volume were both of an interim 

character, and in consequence it may be as well to point out a few exaggerations 
such as are inherent in essays of that kind. This supplement is written, then, to 
correct the wrong impressions which the reports might be expected to produce, 

To consider first “The Application of the Law of Error to the work of the 

brewery.” 
Nowhere in this report is there any mention of any other distribution of 

errors then that given by the “ Normal” curve of errors discovered by La Place and 
Gauss, and a few words seem necessary to explain why it is suitable for representing 
errors of observation. 

The assumptions-made in the firgt place to reach this curve were that an 
indefinite number of independent sources of error are present, all of which produce 
an equal deviation from the correct result and all of which are equally likely to be - 
positive or negative, It was subsequently shown that the number ofssources of 
error need not-be very great if only they axe equal, independent, and equally likely 
to be positive or negative. 

For example, the distribution of heads if only ten coins be tossed up 
repeatedly will be very closely given by the normal curve even though there are 
but ten causes present. 

But it is quite clear that the necessary conditions of equality, independ- 
ence, and equal likelihood of being positive or negative are very rarely absolutely 
fulfilled. : 

Let us consider, by way of illustration, the curve representing the frequency 
of the average time of sparging. Let the time of sparging be plotted against the 
occurrence during the year. There would be a point of time, say 54 hours, below 
which the kieves never sparged over, then a few cases would occur, then rapidly 

- more and more, till at, say, 62 hours there would be more cases than before or after, 

then the number would decrease again, probably more slowly, till at 11 or 12 
hours there would again be no cases. The point where most cases occur is called 
the mode (the fashionable ‘point), and raust be distinguished from the mean or 
average, which may not coincide with it. 

The causes which contribute to a day’s average time of sparging occurring 
in any one five minutes ‘are ‘many, but we may instance—the modification of the 
“various malts, the fineness of the grind, thé temperature of the mashing liquor, 
the oceurrence of breakdowns at first mash, the attention bestowed on the kieves, 

the demand for worts in the copper, ete. ete. It will at once be noticed that the 
* effect onthe average time of sparging of these various factors is likely to ‘be quite 

unequal, . : 
Next, they are not independent, the malts are mixed and ground with an eye 

- to their modification, more attention is bestowed on the kieves on a bad day, the 

kieves are run more slowly than they could be on a good day owing to their being 
ahead of the coppers, and so forth, 

Finally, they are not equally likely to act either way; in point of fact the 
larger and rarer causes act in the direction of increasing the time of sparging over. 

( 15 ) 

  
 



  

    

  

      
  

And go instead of a symmetrical distribution we get one in which the mode 

is less than the mean, and there is a long “tail” stretching out towards relatively 

large average times of sparging, which, however, occur but rarely. 

This is an instance of whab may be called an unsymmetrical “cocked hat” 

type of Frequency curve, but it is clear that there are other possibilities, such as— 

(1) The mode being right at one end, e.g. cricket scores, or the number of publicans 

returning 0 1 2 8 ete. casky casks in 8 month. (2) There may be two modes, #hich, 

may be due either to a mixture of observations or to an inherent relative. absence’ 

of the mediocre, e.g. the amount of cloudiness presertt, which has a mode at “ no’ 

clouds” and another at “all clouds.” . ‘ a 

But there is another point: it is only when very large numbers are’. taken 

that: any frequency curve becomes anything like smooth: there ave always -irre- 

gulavities due.to “random sampling,” which only decrease slowly relatively to: the 

number of the observations, absolutely of course they continually increase, as" we 

take larger and larger samples, ; . 

Now, owing to these irregularities of random sampling it is often impossible ' 

to say that a given distribution was nob taken from a population distributed 

according to the normal law, although if we could analyse a larger sample we 

might find that this was not the case. 

And 50 although all large samples which have been investigated have 

been found to deviate in some way or other from “normality,” yet for small 

samples it is practically convenient to use a curve to describe them which has been 

thoroughly investigated, of which the values have been tabulated, and which 

in the majority of cases describes them “ within the error of random sampling.” 

In the case of.a large population distributed according to the normal law 

it is quite immaterial whether we fit the curve from the “ mean error ” or “standard 

deviation” (error of mean squares) or any other moment co-efficient, but since our 

samples are small it is better for us to use the “Standard Deviation ” (tables have 

been published in terms of this in place of the “ modulus ”), as we obtain greater 

aceuracy from the same number of observations. Further, the relation (mean 

error = ‘8 standard deviation) only holds in the case of the normal curve, and in 

that the values obtained from the mean error and the standard deviation are so 

closely correlated that we gain very little by determining thé mean error at all, and 

it is best to work from the standard deviation alone. , 

Passing on to the second report on the Pearson Co-efficient of Correlation, 

‘what has been said above as to the error -of random sampling and the con- 

sequent general use’ of the. normal curve, which will approximately fit most 

small samples, applies also to the use of straight regression lines. » We requiré, as 

a rule, a large'number of cases in order to show that any given regression line is 

nos straight, and so for practical purposes we can generally assume it to be 

straight. ‘ , 

But at the same time other possible kinds of correlation must be kept in 

mind in which the regression lines are not straight, and can be shown to be curved 

by the examination of large nimbers of cases. 

W. 8. GOSSET. 
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