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PREFACE

This book presents the theory of a recently developed method of statistical inference, that of sequential analysis. An effort has been made to keep the exposition on a level that will make most of the book, with the exception of the Appendix, understandable to readers whose mathematical background does not go beyond college algebra and a first course in calculus. Some knowledge of probability and statistics is desirable for the understanding of the book, although not essential, for a brief review is given of the fundamental concepts, such as random variables, probability distributions, and statistical hypotheses.

To facilitate the reading of the book for those who have no advanced mathematical training, some concessions are made to generality and occasionally even to rigor. Furthermore, mathematical derivations of somewhat intricate nature are put into the Appendix, the reading of which may be omitted without impairing the understanding of the rest of the book.

This book contains an expanded exposition of the ideas and results I published in two technical papers on this subject, one of which appeared in 1944 and the other in 1945, as well as some further developments. Such developments, for example, are: the discussion of multivalued decisions and estimation in Part III; improvements in the limits for the average number of observations required by a sequential test; and limits for the effect of grouping in the binomial case. Some recent results of M. A. Girshick are included and, in the discussion of certain applications in Part II, use is made of some simplifications contained in a publication of the Statistical Research Group of Columbia University dealing with these applications.

Nearly all tables in the book were computed by the Statistical Research Group of Columbia University while I was a consultant to the group. A few sections of my two forementioned publications have been incorporated in this book, mostly in the Appendix, without substantial changes.

I wish to express my indebtedness to Milton Friedman and W. Allen Wallis, who proposed the problem of sequential analysis to me in March, 1943. It was their clear formulation of the problem that gave me the incentive to start the investigations leading to the present developments. I also wish to express my thanks to the Social Science Research Council for their help, which facilitated the publication of this book. I am indebted to Mr. Mortimer Spiegelman of the Metropolitan Life Insurance Company for his careful reading of the manuscript and for making several valuable suggestions. Thanks are due also to Mrs. E. Bowker who prepared the manuscript with particular care.

A. W

Columbia University
March, 1947
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INTRODUCTION

Sequential analysis is a method of statistical inference whose characteristic feature is that the number of observations required by the procedure is not determined in advance of the experiment. The decision to terminate the experiment depends, at each stage, on the results of the observations previously made. A merit of the sequential method, as applied to testing statistical hypotheses, is that test procedures can be constructed which require, on the average, a substantially smaller number of observations than equally reliable test procedures based on a predetermined number of observations.

This book presents the theory of a particular method of sequential analysis, the so-called sequential probability ratio test, which was devised by the author in 1943 mainly for the purpose of testing statistical hypotheses. A comparison of this particular sequential test procedure with any other (sequential or non-sequential) is shown, in Section A.7, to effect the greatest possible saving in the average number of observations, when used for testing a simple hypothesis against a single alternative. The sequential probability ratio test frequently results in a saving of about 50 per cent in the number of observations over the most efficient test procedure based on a fixed number of observations.

The first idea of a sequential test procedure, i.e., a test for which the number of observations is not determined in advance but is dependent on the outcome of the observations as they are made, goes back to H. F. Dodge and H. G. Romig 1 who constructed a double sampling procedure. According to this scheme the decision whether or not a second sample should be drawn depends on the outcome of the observations in the first sample. Whereas this method allows for only two samples, Walter Bartky devised a multiple sampling scheme for the particular case of testing the mean of a binomial distribution.2 His scheme is closely related to the test procedure that results from the application of the sequential probability ratio test to this particular case. The reason that Dodge and Romig introduced their double  sampling method, and Bartky his multiple sampling scheme was, of course, the recognition of the fact that they require, on the average, a smaller number of observations than “single” sampling.

The occasional practice of designing a large scale experiment in successive stages may be regarded as a forerunner of sequential analysis. The idea of such chain experiments was briefly discussed by Harold Hotelling.3 A very interesting example of this type is the series of sample censuses of area of jute in Bengal carried out under the direction of P. C. Mahalanobis.4 Sample censuses, steadily increasing in size, were taken primarily for the purpose of obtaining preliminary information about the parameters to be estimated. This information was then used for designing the final sampling of the whole immense jute area in Bengal.

The problem of sequential analysis arose in the Statistical Research Group of Columbia University 5 in connection with some comments made by Captain G. L. Schuyler of the Bureau of Ordnance, Navy Department. Milton Friedman and W. Allen Wallis recognized the great potentialities and the far-reaching consequences that sequential analysis might have for the further development of theoretical statistics. In particular, they conjectured that a sequential test procedure might be constructed which would control the possible errors committed by wrong decisions exactly to the same extent as the best current procedure based on a predetermined number of observations, and at the same time would require, on the average, a substantially smaller number of observations than the fixed number of observations needed for the current procedure.6 Friedman and Wallis also exhibited a few examples of sequential modifications of current test procedures resulting, in some cases, in an increase of efficiency. It was at this stage that they proposed the problem of sequential analysis to the author. This gave the incentive for the author’s investigations which then led to the development of the sequential probability ratio test.

Because of the usefulness of the sequential probability ratio test in development work on military and naval equipment, it was classified Restricted within the meaning of the Espionage Act. The author was requested to submit his findings in a restricted report7 dated September, 1943.8 In this report the sequential probability ratio test is devised and the basic theory is given. To facilitate the use of this new technique by the Army and the Navy, the Statistical Research Group issued a second report in July, 1944, which gives an elementary non-mathematical exposition of the applications of the sequential probability ratio test and contains a considerable number of tables, charts, and computational simplifications to facilitate applications.9

Further advances in the theory of the sequential probability ratio test were made in 1944. The operating characteristic (OC) curve of the sequential probability ratio test for the case of a binomial distribution was found by Milton Friedman and George W. Brown (independently of each other), and slightly earlier by C. M. Stockman in England.10 The author then obtained the general OC curve for any sequential probability ratio test.11 A few months later a general theory of cumulative sums was developed 12 which gives not only the OC curve of any sequential probability ratio test but also the characteristic function of the number of observations required by the test and various other results.

The material in the author’s report together with the new advances made in 1944 were published by him in a paper, “Sequential Tests of Statistical Hypotheses,” in The Annals of Mathematical Statistics, June, 1945. The Statistical Research Group issued a revised edition 13 of its original report. The revised edition includes a discussion of the operating characteristic and average sample number curves for various applications of the sequential probability ratio test.

Independently of the development in this country and about the same time, G. A. Barnard recognized the merits of a sequential method of testing.14 He treated the problem of double dichotomies, using a sequential method of testing which, however, differs from the one that results from the application of the sequential probability ratio test.

This book consists of three parts and an Appendix. Part I contains a discussion of the general theory of the sequential probability ratio test. Part II discusses applications of the general theory given in Part I. These applications are given primarily to illustrate the general theory and to bring out some points of theoretical interest which are specific to these applications. Accordingly, computational simplifications are not stressed much and hardly any tables are given.15 Part III outlines briefly a possible approach to the problem of sequential multi-valued decisions and estimation. This field is largely unexplored and further progress is still a matter of future developments. To facilitate the use of the book by readers with no advanced mathematical training, mathematical derivations of somewhat intricate nature are included in the Appendix.



1 H. F. Dodge and H. G. Romig, “A Method of Sampling Inspection” The Bell System Technical Journal, Vol. 8 (1929), pp. 613–631.

2 Walter Bartky, “Multiple Sampling with Constant Probability,” The Annals of Mathematical Statistics, Vol. 14 (1943), pp. 363–377.

3 Harold Hotelling, “Experimental Determination of the Maximum of a Function, “ The Annals of Mathematical Statistics, Vol. 12 (1941), pp. 20-45.

4 P. C. Mahalanobis, “A Sample Survey of the Acreage under Jute in Bengal, with Discussion on Planning of Experiments,” Proceedings of the 2nd Indian Statistical Conference, Calcutta, Statistical Publishing Society (1940).

5 During World War II the Statistical Research Group operated under a contract with the Office of Scientific Research and Development and was directed by the Applied Mathematics Panel of the National Defense Research Committee.

6 Bartky’s multiple sampling scheme for testing the mean of a binomial distribution provides an example of such a sequential test. His results were not known to Friedman and Wallis at that time, since they were published nearly a year later.

7 Abraham Wald, “Sequential Analysis of Statistical Data: Theory,” a report submitted by the Statistical Research Group, Columbia University, to the Applied Mathematics Panel, National Defense Research Committee, Sept., 1943.

8 The restricted classification was removed in May, 1945.

9 Harold Freeman, “Sequential Analysis of Statistical Data: Applications,” a report submitted by the Statistical Research Group, Columbia University, to the Applied Mathematics Panel, National Defense Research Committee, July, 1944.

10 C. M. Stockman, “A Method of Obtaining an Approximation for the Operating Characteristic of a Wald Sequential Probability Ratio Test Applied to a Binomial Distribution,” (British) Ministry of Supply, Advisory Service on Statistical Method and Quality Control, Technical Report, Series “R,” No. Q.C./R/19.

11 Abraham Wald, “A General Method of Deriving the Operating Characteristics of any Sequential Probability Ratio Test,” unpublished memorandum submitted to the Statistical Research Group, Columbia University, April, 1944.

12 Abraham Wald, “On Cumulative Sums of Random Variables,” The Annals of Mathematical Statistics, Vol. 15 (Sept., 1944).

13 The authorship of the revised edition, which was published by the Columbia University Press, Sept., 1945, is ascribed to the group as a whole.

14 G. A. Barnard, “Economy in Sampling with Reference to Engineering Experimentation” (British) Ministry of Supply, Advisory Service on Statistical Method and Quality Control, Technical Report, Series “R,” No. Q.C./R/7.

15 For a more complete and detailed discussion of these applications the reader is referred to the revised edition of the publication of the Statistical Research Group mentioned before.


 

PART I. GENERAL THEORY


Chapter 1. ELEMENTS OF THE CURRENT THEORY OF TESTING STATISTICAL HYPOTHESES

1.1  Random Variables and Probability Distributions

1.1.1  Notion of a Random Variable

The outcome of an experiment or the reading of a measurement is usually a variable quantity or, more briefly, a variable, since generally it can take different values. For example, repeated measurements on the length of a bar will yield, in general, different values. Frequently, it will be possible to make probability statements concerning the outcome of an experiment or the reading of a measurement. Consider, for example, the experiment consisting of the throw of a die whose sides are numbered from 1 to 6. Here the outcome of the experiment may be any integral number from 1 to 6. Various probability statements regarding the outcome of the experiment can be made. For example, the probability that the outcome will be equal to 5 is equal to [image: images], or the probability that the outcome will be less than 4 is equal to [image: images], and so forth. Probability statements can also be made about the outcome of the following experiment: Suppose that an individual is selected at random from a group of 1000 individuals and that his height is then measured. The probability that the height of the selected individual will be less than 68 inches is equal to [image: images] times the number of individuals in the group whose heights are less than 68 inches.

A variable x is called a random variable if for any given value c a definite probability can be ascribed to the event that x will take a value less than c. A general class of experiments where the outcome is a random variable in the sense of the above definition may be described as follows. Consider a class of N objects (or individuals) and some measurable characteristic of these objects, such as weight, diameter, or hardness. Suppose that the value x of this characteristic varies from object to object in the class. The experiment consists in selecting at random one object from the class of N objects, and then measuring the value x of the characteristic of the selected object. Random selection is selection of an object in such a way that each object in the class of N objects has an equal chance of being chosen. The outcome x of such an experiment is a random variable, since a probability can be ascribed to the event that x will take a value less than c, for any given value c. This probability is, in fact, equal to Nc/N, where Nc is the number of objects in the class for which the characteristic undei consideration has a value less than c. An interesting special case is that in which the characteristic under consideration can take only two values. Such a situation arises, for instance, in the case of a manufactured product where each unit is classified in one of two categories: defective or non-defective. We shall ascribe the value 0 to a nondefective unit and the value 1 to a defective unit. Then the characteristic under consideration, i.e., the characteristic of being defective or non-defective, can take only the values 0 and 1. Consider a lot consisting of N units and let Nd be the number of defectives in the lot. If the experiment consists in inspecting a single unit drawn at random from the lot, the outcome x of the experiment is a random variable which can take only the values 0 and 1. The probability that x = 0 is equal to (N – Nd)/N, and the probability that x = 1 is equal to Nd/N.

1.1.2  Cumulative Distribution Function (c.d.f.) of a Random Variable

Let x be a random variable and denote by F(t) the probability that x will take a value less than a given value t. Then F(t) is a function of t which is called the cumulative distribution function of x. Since any probability must lie between 0 and 1, we must have 0 [image: images] F(t) [image: images] 1 for all values of t. If t1 and t2 are two values such that t1 < t2, then the probability that x < t2 is greater than or equal to the probability that x < t1, i.e., F(t2) [image: images] F(t1). In other words, F(t) cannot decrease as t increases. A typical form of a c.d.f. F(t) is shown in Fig. 1 where t is measured along the horizontal axis and F(t) along the vertical axis.




[image: images]

FIG. 1



For any given values a and b (a < b) we can easily derive the value of the probability that a [image: images] x < b from the c.d.f. F(t). In fact, the event that x < a and the event that a [image: images] x < b are mutually exclusive. Hence, the probability that one of these events will occur is equal to the sum of the two probabilities: the probability that x < a and the probability that a [image: images] x < b. Thus, we have



[image: images]

Since the probability that either x < a or a [image: images] x < b is the same as the probability that x < b, we obtain, from (1:1),



[image: images]

Hence, the probability that a [image: images] x < b is equal to F(b) – F(a).

A simple interpretation of the c.d.f. F(t) can be given if the random variable x is the value of a measurement on an object selected at random from a given group of N objects. As mentioned in Section 1.1.1, in this case the probability that the observed value of x satisfies some equality or inequality relationship, such as x = c, or x < c, or a < x < b, is equal to the proportion of objects in the group of N objects for which the value of x satisfies the equality or inequality in question. Thus, F(t) is simply equal to the proportion of objects in the group for which x < t. With this interpretation of probability, the validity of (1:2) becomes self-evident. It merely says this: The proportion of objects for which x < b is equal to the proportion of objects for which x < a plus the proportion of objects for which a [image: images] x < b. The group of N objects is frequently called population or universe. So far we have considered only populations which contain a finite number of objects. Such populations are called finite populations.

The interpretation of the probability that a certain relation (equality or inequality) holds as the proportion of objects in the population for which the value of x satisfies that relation proves useful in many instances and we shall employ it frequently. However, if we restrict ourselves to finite populations, such an interpretation is not always possible. In fact, the c.d.f.'s which arise from finite populations are of a special nature. Suppose that N is the number of objects in the population. Then the random variable x can take at most N different values. Let a1, …, aM be the different values x can take, arranged in ascending order of magnitude, i.e., a1 < a2 < … < aM. Clearly, M [image: images] N. If the value of x is the same for several objects, then M < N. The c.d.f. of x will be a step function of the type shown in Fig. 2. The distribution function makes exactly M jumps and the magnitude of each jump is equal to 1/N or an integral multiple of 1/N, A c.d.f. represented by a continuous curve, as shown in Fig. 1, is certainly not of this type. Thus, if the c.d.f. is given by a continuous curve, the interpretation of probabilities as proportions of a finite population is not possible. However, any c.d.f. can be approximated arbitrarily closely by a c.d.f. arising from a finite population, if the number N of objects in the population is sufficiently large. Thus, any c.d.f. can be regarded as a limiting form of a c.d.f. arising from a finite population when the number of objects in the population is increased indefinitely. This means that if we admit infinite populations 1 (populations with infinitely many objects), the interpretation of any probability as a certain proportion of an underlying population is always possible. Of course, the notion of an infinite population is only an abstraction constructed merely for the purpose of simplifying the theory. To give an example of an underlying infinite population, consider a measurement on the length of a bar, the outcome of which is regarded as a random variable x having a c.d.f. F(t). Then the underlying infinite population may be thought of as an infinite sequence of repeated measurements on the length of the bar, and the actually observed measurement is considered an element drawn from this population. Sometimes the underlying population is finite, but the number N of objects in the population is so large that we may find it more convenient to treat the problem as if N were infinity, i.e., as if the population were infinite. Suppose, for example, that we are interested in the height distribution of all male individuals of age 20 and above living in the United S ates. The number of such individuals is so large that considerable mathematical simplification may be achieved by treating the population of such individuals as if it were infinite.
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FIG. 2



1.1.3  Probability Density Function

Let F(t) be the c.d.f. of a random variable x. As we have seen in Section 1.1.2, the probability that [image: images] is given by [image: images]. The limiting value f(t) of the ratio [image: images] as Δ approaches 0, provided that such a limiting value exists,2 is called the probability density of the random variable x at the value x = t. The probability density f(t) is a function of t and is called the probability density function of the random variable x. It follows from the definition of the probability density f(t) that for small positive values Δ the product f(t)Δ is a good approximation to the probability that x will lie in the interval [image: images]. A probability density function does not always exist. If the random variable x is discrete, i.e., if x can take only discrete values, the c.d.f. is a step function and no probability density function exists.

The probability that x will take a value within the interval from t1 to t2 (t1 < t2) can be obtained by integrating the probability density function f(t) from t1 to t2; i.e., the probability in question is given by
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One of the most important probability density functions is the so-called normal probability density function, which is given by



[image: images]

where μ and σ are some constant values. If a random variable x has a probability density function f(t) given by (1:3), we say that x is normally distributed, or x has a normal distribution. The shape of a normal curve is shown in Fig. 3, where t is measured along the horizontal axis and f(t) along the vertical axis.
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FIG. 3



1.1.4  Discrete Random Variables

A random variable x is called discrete if it can take only discrete values. Any variable which can take only a finite number of different values is, of course, a discrete variable. A variable which can take infinitely many values may still be discrete. For example, if the variable x is restricted to integral values, x is discrete. The c.d.f. of a discrete random variable is a step function, as shown in Fig. 2. Thus, a discrete random variable has no probability density function, but admits an elementary probability law f(t), where f(t) denotes the probability that x = t.

In what follows we shall consider only random variables which either admit a probability density function or have a discrete distribution. By the probability distribution, or more briefly distribution, f(t), of a random variable x, we shall always mean the probability density function of x, if a probability density function exists. If x is a discrete random variable, f(t) will denote the probability that x = t. We shall sometimes refer to the distribution f(t) of x also as the population distribution of x, or the distribution of x in the population.

1.1.5  Expected Value and Higher Moments of a Random Variable

Suppose that x is a random variable which has a discrete distribution. Let f(t) denote the distribution of x, i.e., f(t) is the probability that x = t. Then the expected value of x, in symbols E(x), is defined by
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where the summation is to be taken over all possible values t of x. Interpreting the probability f(t) as the proportion of objects in the population for which x = t, we see from (1:4) that the expected value E(x) of x is the same as the mean value of x in the population. If x is a continuous variable which admits a probability density function f(t), then the expected value of x is given by
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The expected value of x is often called also the population mean, or mean of x.

A function ϕ(x) of a random variable x is itself a random variable. For any positive integer r and for any constant c, the expected value of (x – c)r is called the rth population moment of x referred to the value c. Of special interest is the case in which c = E(x). The expected value of [x – E(x)]r is called the rth moment of x referred to the mean. The second moment referred to the mean, i.e., the expected value of [x – E(x)]2, is also called the variance of x. The square root of the variance is called the standard deviation.

Consider the normal probability density function
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where μ and σ are constants (σ > 0). Let x be a random variable whose distribution is given by (1:6). That the expected value of x is then equal to μ and the variance of x is equal to σ2 can easily be verified.

1.2  Notion of a Statistical Hypothesis

1.2.1  Unknown Parameters of a Distribution

Let x be a random variable. A statistical problem arises when the distribution of x is not known and we want to draw some inference concerning the unknown distribution of x on the basis of a limited number of observations on x. Frequently, the distribution of x is not entirely unknown, i.e., some partial knowledge of the distribution of x is available a priori. To illustrate this we shall consider the two following examples.


Example 1. Consider a lot consisting of N units of a certain manufactured product. Suppose that each unit is classified in one of the two categories, defective and non-defective. The value 0 is assigned to each non-defective unit and the value 1 to each defective unit. One unit is drawn at random from the lot and is inspected. The outcome x of this experiment is a random variable which can take only the values 0 and 1. Denote by p the proportion of defectives in the lot. Then the probability that x = 1 is equal to p and the probability that x = 0 is equal to 1 – p. Thus, if the value of p were known, the distribution of x would be completely known. Usually p is unknown and we want to make some inference regarding the value of p by inspecting a limited number of units drawn from the lot. If p is unknown, we have only partial knowledge of the distribution of x; we know merely that x is restricted to the values 0 and 1. In this case p is considered an unknown parameter which can have any value between 0 and 1. We shall also say that the distribution of x involves an unknown parameter p. Thus in this example the distribution of x is known except for the value of an unknown parameter p.

Example 2. Suppose that the length of a bar is measured with an instrument for which the error of measurement is known to be normally distributed. The outcome x of such a measurement is then a normally distributed random variable, i.e., the distribution of x is given by the normal density function
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Usually the mean μ and the variance σ2 of the distribution are unknown. These quantities are also called the parameters of the normal distribution. The mean μ can take any real value and σ2 can take any positive value. Thus, in this example too, the distribution function is known except for the values of the parameters μ and σ2 involved in the distribution function.



A general situation similar to that given in Examples 1 and 2 may be described as follows: The functional form of the distribution function is known and merely the values of a finite number of ‘parameters involved in the distribution function are unknown; i.e., the distribution function is known except for the values of a finite number of parameters. In Example 1 the only unknown parameter is the proportion p of defectives in the lot. In Example 2 there are two unknown parameters, the mean μ and the variance σ2.

In what follows we shall assume that the distribution of the random variable x is known except for the values of a finite number of parameters.

1.2.2  Simple and Composite Hypotheses

Let θ1, …, θk be the unknown parameters of the distribution of the random variable x under consideration. A statement about the values of θ1, …, θk is called a simple hypothesis if it determines uniquely the values of all k parameters. It is called a composite hypothesis if it is consistent with more than one value for some parameter. For example, if there are two unknown parameters, θ1 and θ2, involved in the distribution of x, the hypothesis that θ1 = 2 and θ2 = 4 is a simple hypothesis, since it specifies completely the values of the unknown parameters. On the other hand, the hypothesis that θ1 = θ2 is composite. In Example 1 the statement that the unknown proportion p of defectives is equal to .2 is a simple hypothesis. On the other hand, the statement that p lies between .1 and .3 is a composite hypothesis. In Example 2 the statement that μ = 3 would be a composite hypothesis, since it does not specify the value of the unknown variance σ2.

In general, the parameters θ1, …, θk will not be subject to any a priori restrictions; i.e., they may take any values. However, the parameters may in some cases be restricted to certain intervals. For instance, if one of the unknown parameters is the standard deviation, this parameter is restricted to positive values. In other cases, the parameter may be able to take only a finite number of discrete values.

1.3  Outline of the Current Procedure for Testing Statistical Hypotheses

1.3.1  The Sample

Let x be a random variable and suppose that we wish to test a hypothesis concerning the unknown parameters of the distribution of x. The decision to accept or reject the hypothesis in question is always made on the basis of a finite number of observations on x. A set of a finite number of observations on x is called a sample. The number of observations contained in the sample is called the size of the sample.

We shall be concerned mostly with the case in which the successive observations on x are independent in the probability sense. The successive observations x1, …, xn on x are said to be independent in the probability sense if the (conditional) probability distribution of the ith observation xi (i = 2, …, xn), when the values of the preceding observations x1, …, xi – 1 are known, is not affected by these values. This condition cannot be strictly fulfilled if the successive observations are drawn from a finite population. Consider, for instance, the case discussed in Example 1 on page 12. Suppose that two successive units are drawn at random from the lot. Denote by x1 the value of x for the first unit and by x2 the value of x for the second unit. The distribution of x1 is clearly given as follows: the probability that x1 = 0 is 1 – p and the probability that x1 = 1 is equal to p. The distribution of x2, when the value of x1 is known, is given as follows: if x1 = 0, then the probability that x2 = 1 is equal to pN/(N – 1) and the probability that x2 = 0 is equal to 1 – [pN/(N – 1)]. On the other hand, if x1 = 1, the probability that x2 = 1 is equal to (pN – 1 )/(N – 1) and the probability that x2 = 0 is equal to 1 – [(pN – 1 )/(N – 1)]. Thus, the probability distribution of x2 is affected by the outcome of x1. For similar reasons no strict independence can prevail in any other case in which the successive observations are drawn from a finite population. However, if the number of objects in the finite population is sufficiently large, the dependence is only slight and can be neglected.

Let x be a discrete random variable, and denote the distribution of x by f(t), i.e., f(t) is the probability that x = t. Let x1, …, xn be a set of n independent observations on x. Because of the independence of the observations, the probability of obtaining a sample equal to the observed one is given by the product
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This product is also called the joint probability distribution of the observations x1, …, xn.

If x is a continuous random variable admitting a probability density function f(x), then the joint density function of n independent observations x1, …, xn on x is given by the product
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1.3.2  The General Nature of a Test Procedure

Denote by n the number of observations on the basis of which the acceptance or rejection of the hypothesis in question is to be decided. Any possible outcome of n successive observations is a sample of size n. A test procedure leading to the acceptance or rejection of the hypothesis in question is simply a rule specifying, for each possible sample of size n, whether the hypothesis should be rejected or accepted on the basis of that sample. This may also be expressed as follows: A test procedure is simply a subdivision of the totality of all possible samples of size n into two mutually exclusive parts, say part 1 and part 2, together with the application of the rule that the hypothesis be rejected if the observed sample is contained in part 1 and that the hypothesis be accepted if the observed sample is contained in part 2. Part 1 is also called the critical region. Since part 2 is the totality of all samples of size n which are not included in part 1, part 2 is uniquely determined by part 1. Thus, choosing a test procedure is equivalent to determining a critical region.

As an illustration, we shall discuss a few examples. Suppose that a lot consisting of N units of a manufactured product is submitted for acceptance inspection. Assume that each unit is classified in one of the two categories: defective and non-defective. The proportion p of defectives in the lot is assumed to be unknown. Let p0 be a value between 0 and 1 such that we prefer to accept the lot if the proportion p of defectives is [image: images] p0 and we prefer to reject the lot if p > p0. Suppose that a sample of n units, drawn at random from the lot, is inspected and on the basis of this sample a decision is to be made to accept the lot or reject it. In other words, on the basis of the inspection of the sample of n units a decision is to be made to accept the hypothesis p [image: images] p0 or reject it. The critical region generally used in this case is defined as follows: The hypothesis that p [image: images] p0 is rejected, i.e., the lot is rejected, if, and only if, the proportion of defectives in the observed sample of n units exceeds a suitably chosen numerical constant c.

Another example: Suppose that the length of a bar is measured with an instrument for which the error of measurement is known to be normally distributed with variance equal to unity. Thus, the outcome x of a measurement is a normally distributed random variable with mean μ equal to the true length of the bar and variance unity. Let the hypothesis to be tested be the statement that the true length of the bar is equal to a specified value μ0. This hypothesis is to be tested on the basis of a sample consisting of n independent measurements x1, … xn on the length of the bar. The critical region generally used for this purpose is defined as follows: The hypothesis that μ = μ0 is rejected if, and only if, the sample observed is such that [image: images] where [image: images] denotes the arithmetic mean of the n observations and c is a suitably chosen numerical constant.

There are, in general, infinitely many possibilities for choosing a critical region. For instance, in the example just discussed we could have used the median, or the geometric mean, or the harmonic mean, or some other mean of the observations instead of the arithmetic mean. The various critical regions cannot be regarded as equally good and the fundamental problem in testing hypotheses is to set up principles for the proper choice of the critical region. Such principles have been advanced by Jerzy Neyman and Egon S. Pearson. In the next section we shall discuss briefly the basic idea of the Neyman-Pearson theory.3

1.3.3  Principles for Choosing a Critical Region

The principles formulated by Neyman and Pearson for the proper choice of a critical region constituted an advance of fundamental importance in the theory of testing hypotheses. The purpose of this section is to indicate briefly the basic idea of the Neyman-Pearson theory.

A simple case of particular theoretical interest arises when only one unknown parameter θ is involved in the distribution of the random variable x under consideration, and θ can take only two values, θ0 and θ1. The basic idea of the Neyman-Pearson theory can be indicated even in this simple case. Therefore, in the rest of this section, as well as in the following section, 1.3.4, we shall restrict ourselves to the case of a single parameter θ which can take only two values, θ0 and θ1.

For any value θ of the parameter, let f(x, θ) denote the distribution of x. We shall denote f(x, θ0) by f0(x) and f(x, θ1) by f1(x). Suppose that it is desired to test the hypothesis that θ = θ0. We shall refer to this hypothesis as the null hypothesis and denote it by H0. The hypothesis that θ = θ1 will be called the alternative hypothesis and will be denoted by H1. Thus, we shall deal with the problem of testing the hypothesis H0 against the alternative hypothesis H1 on the basis of a sample of n independent observations x1, …, xn on x.

As a basis for choosing among critical regions the following considerations have been advanced by Neyman and Pearson: In accepting or rejecting H0, we may commit errors of two kinds. We commit an error of the first kind if we reject H0 when it is true; we commit an error of the second kind if we accept H0 when H1 is true. After a particular critical region W has been chosen, the probability of committing an error of the first kind, as well as the probability of commiting an error of the second kind, is uniquely determined. The probability of committing an error of the first kind is equal to the probability, determined on the assumption that H0 is true, that the observed sample will be included in the critical region W. The probability of committing an error of the second kind is equal to the probability, determined on the assumption that H1 is true, that the observed sample will fall outside the critical region W. For any given critical region W we shall denote the probability of an error of the first kind by α and the probability of an error of the second kind by β.

The probabilities α and β have the following important practical interpretation: Suppose we draw a large number of samples of size n. Let M be the number of such samples drawn. Suppose that for each of these M samples we reject H0 if the sample is included in W and accept H0 if the sample lies outside W. In this way we make M statements of rejection or acceptance. Some of these statements will in general be wrong. If H0 is true and if M is large, the probability is nearly 1 (i.e., it is practically certain) that the proportion of wrong statements (i.e., the number of wrong statements divided by M) will be approximately α. If H1 is true, the probability is nearly 1 that the proportion of wrong statements will be approximately β. Thus, we can say that in the long run the proportion of wrong statements will be α if H0 is true and β if H1 is true.

It is clear that one critical region W is more desirable than another if it has smaller values of α and β. Although either α or β can be made arbitrarily small by a proper choice of the critical region W, it is impossible to make both α and β arbitrarily small for a fixed value of n, i.e., a fixed sample size. To illustrate this point, consider the following two extreme cases: (1) W is empty, i.e., we always accept H0, irrespective of the outcome of the sample. In this case α = 0 and β = 1. (2) W is the totality of all possible samples, i.e., we always reject H0. In this case α = 1 and β = 0. If, for some reason, we decide to consider only critical regions W for which α has a given fixed value, the choice of W is based on the following principle, introduced by Neyman and Pearson: Restricting ourselves to regions W for which α has a fixed value, we choose that one for which β is a minimum.

The quantity α is called the size of the critical region, and the quantity 1 – β, the power of the critical region. A critical region which has the highest power in the class of all regions of equal size is a most powerful region. Since minimizing 0 is the same as maximizing 1 – β, the Neyman-Pearson principle concerning the choice of the critical region W can be formulated as follows: Restricting ourselves to regions of a fixed size α, we choose that one which is most powerful.

For a fixed sample size, the probability β is a (single-valued) function of α, say β(α), if a most powerful critical region is used. Thus, given the number of observations on which the test is based, one of the quantities α and β can still be chosen arbitrarily. The Neyman-Pearson theory leaves the question of this choice open. It is clear that if α is small, β(α) is in general large, and if α is large, β(α) is in general small. The choice of α (or β) will be greatly influenced by the relative importance of the errors of the first and second kinds in each particular application. Suppose, for example, that the loss caused by an error of the first kind is one dollar and the loss caused by an error of the second kind is merely one cent. Then a small α and a large β will be preferable to a large α and a small β.

Neyman and Pearson show that a region consisting of all samples (x1, …, xn) which satisfy the inequality
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is a most powerful critical region for testing the hypothesis H0 against the alternative hypothesis H1. The term k on the right-hand side of (1:7) is a constant chosen so that the region will have the required size α. The reason why the critical region defined by (1:7) is most powerful can be indicated as follows: For simplicity suppose that the probability distributions under H0 and H1 are discrete. Thus, fi(x1)fi(x2) … fi(xn) (i = 0, 1) denotes the probability of obtaining a sample equal to the observed one. The critical region defined by (1:7) can be built up by starting with a sample E1 = (x11, x21, …, xn1) for which [image: images] takes its maximum value. Then a sample E2 = (x12, …, xn2) is included for which [image: images] takes its maximum value in the set of samples which is left after E1 has been removed from the totality of all possible samples. In general, after r samples E1, …, Er have been included in the critical region, a sample Er + 1 is added for which [image: images] takes its maximum value in the set of samples (x1, …, xn) which are left after E1, …, Er have been removed from the totality of all samples. This construction is continued until the size of the region reaches the desired value α.4 Since at any stage of the construction the last sample included in the critical region has the largest probability under H1 per unit probability under H0 as compared with any other sample not yet included in the region, it can be seen that the probability measure of the critical region under H1, i.e., the power of the critical region, is greater than or equal to the power of any other region of equal size.

Let us illustrate the principle for choosing a critical region by application to a simple and familiar case. Let H0 be the hypothesis that x is normally distributed with mean θ0 and variance unity. Let H1 be the hypothesis that x is normally distributed with mean θ0 and variance unity. Assume θ1 > θ0. For testing H0 against H1 we shall have to determine the ratio [image: images]. Since
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and
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the inequality (1:7) can be written as
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Taking the logarithm on both sides of this inequality, we obtain
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Hence
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Inequality (1:9) can be written as
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Now we shall determine the value of k″ such that the critical region defined by the inequality (1:10) has the size α = .05. Since under the hypothesis H0 the random variable [∑(xα – θ0)]/n is normally distributed with zero mean and variance 1/n, we see from a table of the normal distribution that k″ = 1.64/[image: images]. Thus, the most powerful region of size .05 consists of all samples for which the inequality
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holds.

This is a familiar result. Long before Neyman and Pearson developed their theory of testing hypotheses, it had been the practice to use the critical region (1:11) for testing the hypothesis that θ = θ0 against alternative values θ > θ0. A remarkable feature of the region given by (1:11) is that it does not depend on the alternative value θ1. In the derivation of (1:11) merely the inequality θ > θ0 was used. Hence, the test defined by the region (1:11) is most powerful with respect to all alternatives θ > θ0, i.e., it is a uniformly most powerful test when the alternatives are restricted to values greater than θ0.

1.3.4  Number of Observations Necessary if a and p Have Preassigned Values

In the preceding section we assumed that α and the sample size n were given and we were looking for a critical region for which β was a minimum. In this section we shall assume that α and β are given and our problem is to determine the minimum value of n for which the power of the most powerful region of size α is greater than or equal to 1 – β.

Let βn denote the probability of an error of the second kind associated with a most powerful critical region of size α when the test is based on n observations. It can be shown that βn decreases, or at least does not increase, with increasing n. In general, βn will approach 0 as n increases indefinitely. Denote by n(α, β) the smallest value of n for which β [image: images] β. If we want a test procedure such that the probability of an error of the first kind is equal to α and the probability of an error of the second kind does not exceed β, then according to the current theory we must draw a sample of size n [image: images] n(α, β). If we use a most powerful critical region, we need a sample of size n = n(α, β).

1.3.5  Testing a Hypothesis Viewed as a Decision between Two Courses of Action

It happens frequently in practice that we have to decide between two courses of action, say action 1 and action 2, and the preference for one or the other action depends on the value of an unknown parameter θ of the distribution of a random variable x. Denote by ω the set of all values of θ for which action 2 is not preferable to action 1. Thus, for any value θ not contained in ω we prefer action 2 to action 1. The problem of deciding between these two actions on the basis of a sample of n independent observations on x may be formulated as a problem of testing the hypothesis H that the true value of θ is contained in the set ω. If the test procedure leads to the acceptance of H we take action 1, and if it leads to the rejection of H we take action 2.

Consider, for example, the following problem. A lot consisting of a large number of units of a manufactured product is submitted for acceptance inspection. Suppose that the proportion p of defectives in the lot is unknown. There are two courses of action: acceptance of the lot and rejection of the lot. In general, there will exist a particular value p' of p such that if the true proportion of defectives is < p' we prefer acceptance and if p > p' we prefer rejection. If p = p' we are indifferent which action is taken. Suppose that a decision is to be made on the basis of a sample of n units drawn at random from the lot. This problem may be viewed as a problem of testing the hypothesis H that p [image: images] p' on the basis of a sample drawn from the lot. The lot is accepted or rejected according as H is accepted or rejected.

As mentioned in Section 1.3.3, the choice of α, i.e., the size of the critical region, is greatly influenced by the relative importance we attach to errors of the first and second kinds. If the problem of testing a hypothesis arises out of the problem of deciding between certain two courses of action, the relative importance of the errors of the first and second kinds may be judged by considering the practical consequences of taking one action when the value of the parameter is such that the other action would have been preferable.



1 By an infinite population we mean an ordered infinite sequence of objects, O1, O2, …, ad inf. A certain measurable characteristic of these objects is considered and the value x of this characteristic is assumed to vary from object to object. By the proportion of objects in the infinite population for which x satisfies a given relation (equality or inequality) we mean the limiting value of the corresponding proportion in the finite population (O1, …, ON) as N increases indefinitely.

2 The existence of the limiting value of [image: images] is requered, where Δ may be positive or negative and may approach 0 in any arbitrary manner. The existence of this limiting value implies the existence of the limiting value of [image: images]

3 See, for example, J. Neyman and E. S. Pearson, Statistical Research Memoirs University College, London, Vol. I (1936), pp. 1–37.

4 If x is a discrete variable, it may happen that, at the last stage of the construction, at the inclusion of the last sample in the critical region, the size of the region increases from a value below α to a value somewhat greater than α.


Chapter 2. SEQUENTIAL TEST OF A STATISTICAL HYPOTHESIS: GENERAL DISCUSSION

2.1  Notion of a Sequential Test

In the current theory of testing hypotheses the number of observations, i.e., the size of the sample on which the test is based, is treated as a constant for any particular problem. An essential feature of the sequential test, as distinguished from the current test procedure, is that the number of observations required by the sequential test depends on the outcome of the observations and is, therefore, not predetermined, but a random variable.

The sequential method of testing a hypothesis H may be described as follows. A rule is given for making one of the following three decisions at any stage of the experiment (at the mth trial for each integral value of m): (1) to accept the hypothesis H, (2) to reject the hypothesis H, (3) to continue the experiment by making an additional observation. Thus, such a test procedure is carried out sequentially. On the basis of the first observation one of the aforementioned three decisions is made. If the first or second decision is made, the process is terminated. If the third decision is made, a second trial is performed. Again, on the basis of the first two observations one of the three decisions is made. If the third decision is made, a third trial is performed, and so on. The process is continued until either the first or the second decision is made. The number n of observations required by such a test procedure is a random variable, since the value of n depends on the outcome of the observations.

For each positive integral value m, we shall denote by Mm the totality of all possible samples (x1, …, xm) of size m. We shall also refer to Mm as the m-dimensional sample space. A rule for making one of the three decisions at any stage of the experiment can be described as follows. For each integral value m, the m-dimensional sample space is split into three mutually exclusive parts, Rm0, Rm1, and Rm. After the first observation x1 has been drawn, the hypothesis H that is being tested is accepted if x1 lies in R10; H is rejected if x1 lies in R11; or a second observation is made if x1 lies in R1. If the third decision is made and a second observation x2 drawn, H is accepted, H is rejected, or a third observation is drawn, according as the observed sample (x1, x2) lies in R20, R21 or R2. If (x1, x2) lies in R2 a third observation x3 is drawn and one of the three decisions is made according as (x1, x2, x3) lies in R30, R31, or R3, and so on. This process is stopped wThen, and only when, either the first or the second decision is made.1 Thus, a sequential test is completely defined by defining the sets Rm0, Rm1, and Rm for all positive integral values m. Since Rm0, Rm1, and Rm are mutually exclusive and add up to the whole sample space Mm, it is sufficient to define any two of the sets Rm0, Rm1, and Rm. Any one of the three sets Rm0, Rm1, and Rm consists precisely of all those samples which are not contained in the other two.

We shall call a sample (x1, …, xm) ineffective if it contains an initial segment (x1, …, xm′), where m′ < m, such that (x1, …, xm′) lies in Rm′0 or in Rm′1. A sample which is not ineffective will be said to be an effective sample. Clearly, for a sequential test procedure we shall have an effective sample at any stage of the experiment. Thus, in defining the sets Rm0, Rm1, and Rm we may disregard ineffective samples. In other words, it is sufficient to state in which of the sets Rm0, Rm1, and Rm each effective sample (x1, …, xm) should be included, since ineffective samples cannot occur during the sequential process.

The following is a simple example of a sequential test. Suppose that a lot consisting of a large number of units of a manufactured product is submitted for acceptance inspection. Each unit is classified in one of the two categories: defective and non-defective. The proportion p of defectives in the lot is unknown. The lot is considered acceptable if p [image: images] a given value p'. If p > p' we prefer to reject the lot. Thus, we are interested in testing the hypothesis H that p [image: images] p'. The following procedure of testing H is a simple example of a sequential test. Let n0 denote a given integer. If the first n0 units inspected are nondefective, we stop inspection and the lot is accepted (H is accepted). If for some value m [image: images] n0 the mth unit inspected is found defective, no further units are inspected and the lot is rejected (H is rejected). We shall assign the value 0 to any non-defective unit and the value 1 to any defective unit. In this example, a sample (x1, …, xm) is effective if and only if m [image: images] n0 and x1 = … = xm – 1 = 0. Rm0 contains no effective sample for m < n0, i.e., acceptance is not possible for m < n0. Rn00 contains only one effective sample: (0, 0, …, 0). For any m [image: images] n0 the set Rm1 contains exactly one effective sample: (0, 0, …, 0, 1).

The sets Rm0, Rm1, and Rm (m = 1, 2, …) defining a sequential test can be chosen in many ways, and a fundamental problem in the theory of sequential tests is that of a proper choice of these sets. To formulate principles for a proper choice of the sets Rm0, Rm1, and Rm, it is necessary to study the consequences of any particular choice. This will be done in the next section.

2.2  Consequences of the Choice of Any Particular Sequential Test

2.2.1  The Operating Characteristic Function

After a particular sequential test has been adopted, i.e., a particular choice of the sets Rm0, Rm1, and Rm (m = 1, 2, …) has been made, the probability that the process will terminate with the acceptance of the hypothesis H0 under test depends only on the distribution of the random variable x under consideration. As before, it is assumed that the distribution of x is known except for the values of a finite number of parameters, θ1, …, θk, say. Thus, the distribution of x is given by a function f(x, θ1, …, θk) where the functional form f is known, but the true values of the parameters θ1, …, θk are unknown. To simplify notation, we shall use the letter θ without subscript to denote the set of all k parameters θ1, …, θk. We shall refer to θ as a parameter point, since θ can be represented geometrically by a point with the coordinates θ1, …, θk. Since the distribution of x is determined by the parameter point θ, the probability of accepting H0 will be a function of θ. This function will be denoted by L(θ) and will be called the operating characteristic (OC) function. If there is only one unknown parameter θ the function L(θ) can be plotted as a curve, θ being measured along the horizontal axis and L(θ) along the vertical axis. Since we shall consider only tests for which the probability that the procedure will eventually terminate is equal to 1, the probability of rejecting H0 is equal to 1 – L(θ).

The OC function is very closely related to the notion of the power function in the current theory of tests. For any parameter point θ which is not consistent with the null hypothesis H0, the power of the test is defined as the probability of rejecting H0 when θ is the true point. Thus, for any θ not consistent with H0 the power of the test is equal to 1 – L(θ).

To illustrate the meaning of an OC function, we shall compute the OC function of the particular sequential test given as an example in the preceding section. In that example the only unknown parameter is θ = p, where p denotes the proportion of defectives in the lot. The lot is accepted if, and only if, the first n0 units inspected are nondefective. The probability that the first unit inspected is non-defective is equal to 1 – p. On the assumption that the size of the lot is sufficiently large as compared with n0, the successive observations may be treated as being independent. Then the probability that all n0 units will be non-defective is equal to (1 – p)n0. Thus, the operating characteristic function is given by
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This function can be plotted, as shown in Fig. 4, by measuring p along the horizontal axis and L(p) along the vertical axis.
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FIG. 4



The OC function describes what the sequential test procedure accomplishes. For any parameter point θ the probability of making a correct decision can be obtained immediately from the OC function. If the parameter point θ is consistent with the hypothesis H0 to be tested, then the probability of making a correct decision is equal to L(θ). If the true parameter point θ is not consistent with the hypothesis H0, the probability of making a correct decision is equal to 1 – L(θ). Clearly, an OC function is considered more favorable the higher the value of L(θ) for θ consistent with H0 and the lower the value of L(θ) for θ not consistent with H0.

2.2.2  The Average (Expected) Sample Number (ASN) Function of a Sequential Test

We have pointed out before that the number of observations required by a sequential test is not predetermined, but is a random variable, because at any stage of the experiment the decision to terminate the process depends on the results of the observations made so far. For example, for the particular sequential test discussed in the preceding section, the number of observations required by the test may be anything from 1 to n0. If no defects are found during the sampling process, we shall make n0 observations. On the other hand, if the first m – 1 units inspected are non-defective and the mth unit is defective some value m < n0, then the total number of observations made will be equal to m.

We shall denote by n the number of observations required by the sequential test. Then n is a random variable. Carrying out the same sequential test procedure repeatedly, we shall obtain, in general, different values for n. Of particular interest is the expected value of n (the average value of n in the long run, when the same test procedure is applied repeatedly). For any given test procedure the expected value of n depends only on the distribution of x. Since the distribution of x is determined by the parameter point θ, the expected value of n depends only on θ. For any given parameter point θ, we shall denote the expected value of n by Eθ(n). If there is only one unknown parameter θ the function Eθ(n) can be plotted as a curve, θ being measured along the horizontal axis and Eθ(n) along the vertical axis. We shall refer to the average sample number function Eθ(n) briefly as the ASN function.

As an example, we shall compute the ASN function for the particular sequential test discussed in the preceding section. For any positive integral value m < n0, the probability that the test will be terminated at the mth observation is given by (1 – p)m – 1p. We shall inspect n0 units if and only if the first n0 – 1 units are found non-defective. Thus, the probability that the test will require exactly n0 observations is equal to (1 – p)n0 – 1. Hence, the expected value of n is given by
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The graph of the ASN function will be of the type shown in Fig. 5.
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FIG. 5



An OC function and an ASN function are associated with each test procedure. These two functions are perhaps the most important consequences of a test procedure. The OC function describes how well the test procedure achieves its objective of making correct decisions, and the ASN function represents the price we have to pay, in terms of the number of observations required for the test. Thus, in judging the relative merits of two different test procedures, we shall compare the OC and ASN functions of these two tests.

2.3  Principles for the Selection of a Sequential Test

2.3.1  Degree of Preference for Acceptance or Rejection of the Null Hypothesis H0 as a Function of the Parameter θ

In order to set up principles for the selection of a sequential test it is necessary to investigate the dependence of the preference for rejection or acceptance of the null hypothesis H0 on the parameter point θ. Denote by ω the set of all those parameter points θ which are consistent-with H0, i.e., H0 is precisely the statement that the true parameter point is included in the set ω. For example, if there is only one unknown parameter θ and if H0 is the hypothesis that θ is less than or equal to a certain particular value θ0, ω is the set of all values θ for which θ [image: images] θ0. Since a correct decision is preferred to a wrong decision, we can say that acceptance of H0 is preferred whenever θ is in ω, and rejection of H0 is preferred whenever θ is outside ω.

The mere statement of preference for acceptance or rejection of H0 is not yet a sufficient guide for the selection of a proper sequential test. For this purpose it is necessary to know something about the degree of preference for acceptance or rejection as a function of the parameter point θ.

We shall denote by [image: images] the set of all parameter points which lie outside ω. A point θ will be said to be on the boundary of ω, or a boundary point of ω, if any arbitrarily small neighborhood of θ contains points of ω as well as of [image: images]. The totality of all boundary points of ω will be called the boundary of ω. If, for example, there is only one unknown parameter and ω is defined by θ [image: images] θ0, then θ0 is the only boundary point of ω. If ω is the set of all values θ for which θ0 [image: images] θ [image: images] θ1, then both θ0 and θ1 are boundary points. If the true parameter point θ lies in ω but is near the boundary of ω, the preference for acceptance of H0 will, in general, be only slight. Similarly, if the true point θ lies in [image: images] but near the boundary of ω, the preference for rejection of H0 will be only slight. In other words, the rejection of H0 is not considered to be a serious error if θ is in ω but near the boundary. Similarly, the acceptance of H0 is not considered a serious error if θ is in [image: images] but near the boundary of ω. If the true point θ lies exactly on the boundary of ω, there will be, in general, no definite preference for one or the other action, i.e., it will be indifferent to us whether the hypothesis H0 is accepted or rejected.

In general, it will be possible to subdivide the totality of all parameter points (parameter space) into three mutually exclusive zones: a zone consisting of all points θ for which acceptance of H0 is strongly preferred; a zone consisting of points θ for which rejection of H0 is strongly preferred; and a zone consisting of all points θ which are not included in either of the first two zones, i.e., the third zone consists of all points θ for which neither acceptance nor rejection of H0 is strongly preferred. We shall refer to the first zone as the zone of preference for acceptance, to the second zone as the zone of preference for rejection, and to the third zone as the zone of indifference. The zone of preference for acceptance will always be a subset of ω and the zone of preference for rejection will be a subset of [image: images]. The zone of indifference will usually consist of points of ω and [image: images] which are near the boundary or on the boundary of ω.

Although the subdivision of the parameter space into three zones as described above is used as a basis for the selection of a sequential test, it cannot be considered a statistical problem. Such a subdivision is made in each case on the basis of practical considerations concerning the consequences of a wrong decision.

The subdivision of the parameter space into the above-mentioned three zones gives a somewhat sketchy picture of the degree of preference for acceptance or rejection as a function of the parameter θ. A more refined description of the degree of preference for one or the other action can be given in terms of two functions w0(θ) and w1(θ), where w0(θ) expresses the relative importance of, i.e., the loss caused by, the error of accepting H0 when θ is true, and w1(θ) expresses the relative importance of the error of rejecting H0 when θ is true. The function w0(θ) = 0 for any θ in ω, since for such points θ the acceptance of H0 is a correct decision. For any θ in [image: images], w0(θ) will have a positive value which will, in general, increase with increasing distance of θ from the boundary of ω. Similarly, w1(θ) = 0 for all θ in [image: images] and w1(θ) > θ for all θ in ω. Again, w1(θ) will, in general, increase with increasing distance of θ from the boundary of ω. Our subdivision of the parameter space into three zones may be interpreted as being equivalent to choosing the functions w0(θ) and w1(θ) as follows: w0(θ) = 0 when θ is in the zone of preference for acceptance or in the zone of indifference. For any θ in the zone of preference for rejection, w0(θ) has a high positive value, say c0, indicating that the loss caused by acceptance is of practical importance. Similarly, w1(θ) = 0 for any θ in the zone of preference for rejection or in the zone of indifference. For any θ in the zone of preference for acceptance, w1(θ) has some high value, say c1, indicating that the loss caused by rejection of H0 is of practical importance. Although a refined description of the dependence of the degree of preference for one or the other action on θ may occasionally require the use of continuous functions w0(θ) and w1(θ), the step functions implied by the subdivision of the parameter space into three zones will give a sufficiently good approximation for most practical purposes. They also have the advantage of great simplicity. Thus, in what follows we shall assume that the dependence of the preference for one or the other action on θ is described by a subdivision of the parameter space into three zones of the type mentioned above.

As an illustration, we shall discuss briefly a few examples. Consider first the case in which a lot consisting of a large number of units of a manufactured product is submitted for acceptance inspection. Assuming that the units are classified in one of the two categories, defective and non-defective, the preference for acceptance or rejection of the lot depends only on the proportion p of defectives in the lot, which is unknown. In this case there is only one unknown parameter θ which is equal to the proportion p of defectives in the lot. It will, in general, be possible to select two values p0 and p1 (p0 < p1) such that for any p [image: images] p0 the rejection of the lot is an error of practical importance, for any p [image: images] p1 the acceptance of the lot is considered a wrong decision of practical importance, whereas for any value p between p0 and p1 there is no strong preference for either action. Thus, the zone of indifference may be defined as the interval from p0 to p1, the zone of preference for acceptance as the set consisting of all values p [image: images] p0, and the zone of preference for rejection as the set of all values p [image: images] p1.

As a second example, consider the case in which the hardness x of a certain product varies from unit to unit such that x may be considered a normally distributed variable in the population of all units produced. Suppose that the mean value θ of x is unknown but that the standard deviation of x is known. Assume that the most desirable value of θ is θ0 and that the product becomes less desirable as the absolute deviation | θ – θ0 | between the true mean and the most desirable value θ0 becomes greater. Suppose that the problem is to decide whether the product should be put on the market or not. In such a case, it will, in general, be possible to find a positive value c such that if | θ – θ0 | < c we prefer to put the product on the market, and if | θ – θ0 | > c we prefer to withhold the product. For | θ – θ0 | = c, we are indifferent which action is taken. Thus, the hypothesis H0 may be defined as the hypothesis that | θ – θ0 | < c. We shall not define the zone of indifference by the equation | θ – θ0 | = c, since if | θ – θ0 | differs only slightly from c, the preference for one action over the other is only slight and of no practical importance. However, it will be possible to find a positive value Δ such that, if | θ – θ0| < c – Δ, we strongly prefer to accept H0 (to put the product on the market) and, if | θ – θ0 | > c + Δ, we strongly prefer to reject H0 (not to put the product on the market) whereas, if c – Δ [image: images] | θ – θ0 | [image: images] c + Δ, no strong preference is given to either action. Thus, the zone of indifference may be defined by the inequality c – Δ [image: images] | θ – θ0 | [image: images] c + Δ, the zone of preference for acceptance by | θ – θ0 | < c – Δ, and the zone of preference for rejection by | θ – θ0 | > c + Δ.

In each of the previous two examples there was only one unknown parameter. We shall now consider an example where there are two unknown parameters. Suppose that a lot consisting of a large number of units of a manufactured product is submitted for acceptance inspection. Assume that the characteristic of the product in which we are interested is the resistance to pressure, which is a measurable quantity x. It is assumed that x varies from unit to unit in the lot and has a normal distribution with unknown mean μ and unknown standard deviation σ. Let L be a value such that acceptance of the lot is strongly preferred if the proportion of units in the lot with resistance x [image: images] L does not exceed .01, rejection of the lot is strongly preferred if the proportion of units in the lot for which x [image: images] L exceeds .05, and no strong preference exists for either action if the proportion of units in the lot with x [image: images] L lies between .01 and .05. The proportion of units with x [image: images] L is greater than or equal to .05 if, and only if, (μ – L)/σ [image: images] λ1, and the proportion of such units is [image: images] .01 if, and only if, (μ – L)/σ [image: images] λ2 (λ1 < λ2). The values λ1 and λ2 can be obtained from a table of the normal distribution. Thus the zone of preference for rejection is given by the set of all values μ and σ for which (μ – L)/σ [image: images] λ1, the zone of preference for acceptance is given by (μ – L)/σ [image: images] λ2, and the zone of indifference is given by λ1 < (μ – L)/σ < λ2. These three zones are represented in Fig. 6, where μ is measured along the horizontal axis and σ along the vertical axis. The zone of indifference is bounded by two straight lines which go through the point L on the abscissa axis and have slopes 1/λ1 and 1/λ2, respectively.
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FIG. 6



2.3.2  Requirements Imposed on the OC Function

Suppose that the hypothesis H0 to be tested states that the true parameter point θ lies in a given set ω of parameter points. Then we wish to make the probability of accepting H0 as high as possible when θ lies in ω, and as low as possible when θ is outside ω. Since the probability of accepting H0 is by definition equal to the OC function L(θ), an OC function is considered more desirable the higher the value of L(θ) for any θ in ω and the lower the value of L(θ) for any θ outside ω. An ideal OC function would be given by a function L(θ) such that L(θ) = 1 for any θ in ω and L(θ) = 0 for any θ outside ω. Suppose, for example, that there is only one unknown parameter θ and the hypothesis to be tested is the statement that θ [image: images] θ0. Then, an ideal OC function, as shown in Fig. 7, would be given by a function L(θ) such that L(θ) = 1 for θ [image: images] θ0 and L(θ) = 0 for 0 > θ0.
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FIG. 7



The ideal form of the OC function can never be achieved on the basis of incomplete information about θ supplied by a random sample drawn from the population, but it can be approached arbitrarily closely if we are willing to take a sufficiently large sample.

The nearer the OC function is to the ideal function and the smaller the expected number of observations required, the more desirable is the sequential test. These two desirable features of a test are some what in conflict, since the closer we approach the ideal form of the OC function, the larger, in general, will be the number of observations required by the test. To achieve a compromise between these two conflicting desiderata, we may proceed as follows. First we formulate requirements concerning the closeness of the OC function to the ideal function and then consider only tests which satisfy these requirements. From these tests we try to select one for which the expected number of observations required by the test is as small as possible. To impose the desired conditions on the OC function first and then to minimize with respect to the expected number of observations does not seem to be an unreasonable procedure, since the OC function is perhaps of primary importance.

To formulate requirements on the OC function, we shall make use of the subdivision of the parameter space into the three zones discussed in the preceding section. Since in the zone of indifference there is no strong preference for one or the other action, we shall not impose any conditions on the behavior of L(θ) within the zone of indifference. In the zones of preference for acceptance and rejection the requirements on the OC function may reasonably be stated as follows. For any θ in the zone of preference for acceptance the probability of rejecting the hypothesis H0, i.e., the value of 1 – L(θ), should be less than or equal to a preassigned value α, and for any θ in the zone of preference for rejection the probability of accepting H0, i.e., the value of L(θ), should be less than or equal to a preassigned value β.

We can summarize the requirements imposed on the OC function as follows. First the parameter space is subdivided into three mutually exclusive zones: a zone of preference for acceptance, a zone of preference for rejection, and a zone of indifference. Then two positive values α and β, both < 1, are selected. The requirements imposed on the OC function are then given by the two following conditions:
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Condition (2:1) can also be written as
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The subdivision of the parameter space into three zones, as well as the choice of the values α and β, is to be made on the basis of practical considerations in each particular case. We shall say that a sequential test is admissible if it satisfies the requirements (2:2) and (2:3).

A typical OC function satisfying the conditions (2:2) and (2:3) is shown in Fig. 8, where there is only one unknown parameter θ and the zone of preference for acceptance is defined by θ [image: images] θ0, and the zone of preference for rejection is defined by θ [image: images] θ1. (θ0 < θ1.)
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FIG. 8



2.3.3  The ASN Function as a Basis for the Selection of a Sequential Test

After the parameter space has been subdivided into three zones and the quantities α and β have been chosen, we consider only tests which are admissible, i.e., tests which satisfy the conditions (2:2) and (2:3). Clearly, we wish to select a sequential test for which the expected value of the number of observations required by the test is as small as possible. This expected value Eθ(n) depends, as we have seen in Section 2.2.2, on the parameter point θ. In section 2.2.2 we referred to the function Eθ(n) as the ASN function of the test.

The expected value Eθ(n) of the number of observations to be made depends, of course, also on the particular sequential test used. To put this dependence in evidence, we shall occasionally use the symbol Eθ(n | S) to denote the value Eθ(n) when the sequential test S is applied.

It is of particular interest to consider for any particular θ the minimum2 value of Eθ(n | S) with respect to S where S may be any admissible sequential test. This minimum value, in symbols Min Eθ(n | S), depends only on θ. Clearly, for any admissible sequential test S' we have
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If an admissible sequential test S0 exists for which the expected value of the number of observations is minimized for all θ, i.e., for which Eθ(n | S0) = [image: images] for all θ, then S0 may be regarded as a  “uniformly best” test. In general, however, no uniformly best test exists,3 i.e., it will not be possible to minimize the expected value of the required number of observations simultaneously for all θ. Thus, in such cases some compromise principle is to be adopted for the selection of a sequential test. We do not propose to enter into a discussion of the various possible compromise principles that could be advanced, since the various possibilities have not yet been fully investigated. However, for the particular, but theoretically very interesting, case when a simple hypothesis is tested against a single alternative, the situation has been clarified and we shall discuss it in some detail in the next section.

2.4  The Case When a Simple Hypothesis H0 Is Tested against a Single Alternative H1

2.4.1  Efficiency of a Sequential Test

We shall consider only two values of the parameter θ, say θ0 and θ1. Let H0 be the hypothesis that θ = θ0 and let H1 denote the hypothesis that θ = θ1. We shall refer to H0 as the null hypothesis and to H1 as the alternative hypothesis. With any sequential test of the hypothesis H0 against the alternative hypothesis H1 there will be associated two numbers α and β between 0 and 1 such that if H0 is true the probability is α that we shall commit an error of the first kind (we shall reject H0), and if H1 is true the probability is β that we shall commit an error of the second kind (we shall accept H0). Two sequential tests S and S' will be said to be of equal strength if the values α and β associated with S are equal to the corresponding values α′ and β' associated with S'. If α < α' and β [image: images] β', or if α [image: images] α′ and β < β', we shall say that S is stronger than S' (S' is weaker than S). If α < α′ and β > β', or if α > α' and β < β', we shall say that the strength of S is not comparable to that of S'.

Restricting ourselves to sequential tests of a given strength (α, β), a test may be regarded as more desirable the smaller the expected number of observations required by the test. If S and S' are two sequential tests of equal strength such that [image: images] and [image: images] and [image: images], the test S will be considered preferable to S'. If a test S0 exists such that [image: images] for all tests S of strength equal to that of S0, we shall say that S0 is an optimum test.

We shall denote by n0(α, β) the minimum value of Eθ0(n | S) with respect to S, and by n1(α, β) the minimum value of Eθ1(n | S) with respect to S, where S may be any sequential test of strength (α, β).4 Then for any sequential test S of strength (α, β) we have Eθ0(n | S) [image: images] n0(α, β) and Eθ0(n | S) [image: images] n1(α, β). A sequential test S of strength (α, β) is an optimum test if Eθ0(n | S) = n0(α, β) and Eθ0(n | S) = n1(α, β). The existence of an optimum test has not been proved. However, it will be shown in Section A.7 of the Appendix that for the so-called sequential probability ratio test S0 of strength (α, β), defined in Chapter 3, the ratios
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can exceed 1 only by very small quantities which can be neglected for practical purposes. Thus, for all practical purposes, the sequential probability ratio test may be regarded as an optimum test.5 In Section A.7 it is also shown that the ratios (2:4) converge to 1 as θ1 approaches θ0.

We shall define the efficiency of a sequential test S of strength (α, β) by the ratio [image: images] when H0 is true, and by [image: images] when H1 is true. Clearly, the efficiency of a sequential test under H0, as well as under H1, lies always between 0 and 1. The greater the efficiency of a sequential test of a given strength the more desirable it is. An optimum test has the efficiency 1 under H0, as well as under H1. The sequential probability ratio test for testing H0 against H1 is shown in Section A.7 to have an efficiency, if not exactly, very nearly equal to 1 under H0 as well as under H1. As mentioned before, in Section A.7 it is shown that the efficiency of the sequential probability ratio test approaches 1 under H0 as well as under H1, when θ1 approaches θ0.

2.4.2  Efficiency of the Current Test Procedure, Viewed as a Particular Case of a Sequential Test

The current test procedure may be regarded as a particular case of a sequential test. In fact, if N denotes the fixed number of observations used in the current procedure and if WN denotes the critical region, i.e., WN is the totality of all those samples of size N for which the hypothesis under test is rejected, then the current procedure may be regarded as a sequential test defined as follows. For all positive integral values m < N, the regions Rm0, Rm1 are the empty subsets of the m-dimensional sample space Mm, and Rm = Mm. For m = N, RN1 is equal to WN, RN0 is equal to the totality of all samples of size N not contained in RN1, and RN is the empty set. Thus, for the current test procedure we have Eθ0(n) = Eθ1(n) = N.

It will be shown later that the efficiency of the current test for testing H0 against H1, based on the most powerful critical region, is rather low. Frequently it is below [image: images]. In other words, an optimum sequential test can attain the same α and β as the current most powerful test on the basis of an expected number of observations much smaller than the fixed number of observations needed for the current most powerful test.

In Chapter 3 a simple sequential test procedure for testing H0 against H1 will be proposed. It is called the sequential probability ratio test, which for practical purposes can be regarded as an optimum sequential test. It mil be seen that these sequential tests usually lead to average savings of about 50 per cent in the number of trials as compared with the current most powerful test.



1 We shall consider only sequential tests for which the probability is one that the process will eventually terminate.

2 If the minimum value does not exist, we can take the greatest lower bound with respect to S.

3 The situation here is similar to that in the Neyman-Pearson theory of testing hypotheses, where uniformly most powerful tests exist only in exceptional cases.

4 If the minimum value with respect to S does not exist, we take the greatest lower bound.

5 The author conjectures that the sequential probability ratio test is exactly an optimum test, but he did not succeed in proving this.




Chapter 3. THE SEQUENTIAL PROBABILITY RATIO TEST FOR TESTING A SIMPLE HYPOTHESIS H0 AGAINST A SINGLE ALTERNATIVE H1

3.1  Definition of the Sequential Probability Ratio Test

Let f(x, θfunction will be given in) denote the distribution of the random variable x under consideration.1 Let H0 be the hypothesis that θ = θ0, and H1 the hypothesis that θ = θ1. Thus, the distribution of x is given by f(x, θ0) when H0 is true, and by f(x, θ1) when H1 is true. We shall denote the successive observations on x by x1, x2, …, etc.

As mentioned before, we consider only two cases: (1) x admits a probability density function; (2) x has a discrete distribution. It is our intention to cover both cases simultaneously. However, the difficulty arises that some statements will have to be formulated slightly differently, depending on whether x admits a density function or x has a discrete distribution. This difference in formulation is caused mostly by the fact that “probability density” in the continuous case is to be replaced by “probability” in the discrete case. For the sake of brevity, we shall occasionally use the word “probability” to mean “probability density” in the continuous case, if this can be done without danger of confusion. With this understanding it will frequently be possible to cover the discrete, as well as the continuous, case with a single statement.

For any positive integral value m the probability that a sample …, xm is obtained is given by
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when H1 is true, and by
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when H0 is true.

The sequential probability ratio test for testing H0 against H1 is defined as follows: Two positive constants A and B (B < A) are chosen. At each stage of the experiment (at the mth trial for any integral value m), the probability ratio p1m/p0m is computed. If the experiment is continued by taking an additional observation. If
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the process is terminated with the rejection of H0 (acceptance of H1). If
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the process is terminated with the acceptance of H0.2

The constants A and B are to be determined so that the test will have the prescribed strength (α, β). The relations among the quantities α, β, A, and B will be discussed in the next section.

For purposes of practical computation, it is much more convenient to compute the logarithm of the ratio p1m/p0m than the ratio p1m/p0m itself. The reason for this is that log (p1m/p0m) can be written as the sum of m terms, i.e.,
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We shall denote the ¿th term in this sum by zi, i.e.,
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The test procedure is carried out as follows, the quantities zi (i = 1, 2, …) being used: At each stage of the experiment (at the rath trial for each integral value of m), the cumulative sum z1 + … + zm is computed. If
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the experiment is continued by taking an additional observation. If
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the process is terminated with the rejection of H0. If
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the process is terminated with the acceptance of H0.

A few simple illustrations will help to make the procedure more concrete. Suppose that the random variable x can take only two values, 0 and 1. We shall denote the probability that x = 1 by p, the value of which is assumed to be unknown. Thus, p is the unknown parameter of the distribution. The distribution of x is given by the function f(x, p) which is defined only for two values of x, namely x = 0 and x = 1. f(1, p) = p and f(0, p) = 1 – p. Let H0 be the hypothesis that p = p0 and H1 the hypothesis that p = p1 (p1 ≠ p0). Then
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Hence,
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where m* denotes the number of ones in the sequence of the first m observations. We accept H0 if
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We reject H0 (accept H1) if
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We continue the experiment by taking an additional observation if
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The expression (3:7) can, of course, be obtained cumulatively. If an observation is a one, the constant log (p1/p0) is added to the preceding value of (3:7) to obtain the new value. If the observation is a zero, the constant log (1 – p1)/(1 – p0) is added.

As a second example, consider the problem of testing a hypothesis about the mean of a normal distribution. Let x be a normally distributed random variable with unknown mean θ and unit variance.

Let H0 be the hypothesis that θ = θ0 and H1 the hypothesis that θ = θ1. Then
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and
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Hence,
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and



[image: images]

If
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the process is terminated with the rejection of H0. If
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the process is terminated with the acceptance of H0. If
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the experiment is continued by taking an additional observation. Again, log (p1m/p0m) can be computed cumulatively if after each observation xi we compute [image: images] and add it to the preceding value of log (p1m/p0m).

3.2  Fundamental Relations among the Quantities α, β, A, and B

In this section we shall derive certain inequalities satisfied by the quantities α, β, A, and B which will provide the basis for determining the constants A and B in the sequential probability ratio test.

We shall say a sample (x1, …, xn) is of type 0 if
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and
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Similarly, we shall say a sample (x1, …, xn) is of type 1 if
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and



[image: images]

Thus, a sample of type 0 leads to the acceptance of H0 and a sample of type 1 leads to the acceptance of H1 (rejection of H0).

Clearly, for any given sample (x1, …, xn) of type 1 the probability of obtaining such a sample is at least A times as large under hypothesis H1 as under hypothesis H0. Thus, the probability measure of the totality of all samples of type 1 is also at least A times as large under H1 as under H0. The probability measure of the totality of all samples of type 1 is the same as the probability that the sequential process will terminate with the acceptance of H1 (rejection of H0). But the latter probability is equal to α when H0 is true and to 1 – β when H1 is true.3 Thus, we obtain the inequality



[image: images]

This inequality can be written as
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Thus, (1 – β)/α is an upper limit for A.

A lower limit for B can be derived in a similar way. In fact, for any given sample (x1, …, xn) of type 0 the probability of obtaining such a sample under H1 is at most B times as large as the probability of obtaining such a sample when H0 is true. Thus, also the probability of accepting H0 is at most B times as large when H1 is true as when H0 is true. Since the probability of accepting H0 is 1 – α when H0 is true and β when H1 is true, we obtain the inequality
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This inequality can be written as
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Thus, β/(1 – α) is a lower limit for B.

Inequalities (3:8) and (3:10) can also be written as
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and
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These inequalities are of considerable value in practical applications, since they furnish upper limits for α and β for given values of A and B. For example, it follows from these inequalities that
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and
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It may be of interest to represent graphically the totality of all pairs (α, β) which satisfy the inequalities (3:12) and (3:13). Any pair (α, β) can be represented by a point in the plane with abscissa α and ordinate β. Consider the straight lines L1 and L2 in the plane given by the equations
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FIG. 9
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and
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respectively. The line L1 intersects the abscissa axis at α = (1/A) and the ordinate axis at β = 1. Similarly, the line L2 intersects the abscissa axis at α = 1 and the ordinate axis at β = β. The region consisting of all points (α, β) which satisfy the inequalities (3:12) and (3:13) is the interior and the boundary of the quadrilateral determined by the lines L1, L2, and the coordinate axes. This region is shown by the shaded area in Fig. 9.

The inequalities (3:12) and (3:13) have been derived under the assumption that the successive observations x1, x2, …, etc., are independent observations on x. The assumption of the independence of the observations has been used in showing that the probability is one that the sequential process will eventually terminate.4 The rest of the derivation, however, remains valid also when the successive observations are dependent, i.e., when the conditional distribution of the ¿th observation is affected by the outcome of the preceding observations x1, …, xi–1. If the successive observations are not independent, the probability that a sample (x1, …, xm) will be obtained, i.e., the joint distribution of (x1, …, xm), is no longer given by the product f(x1, θ)f(x2, θ) …, f(xm, θ), but by a more general function pm(x1, …, xm). Thus, in dealing with dependent observations, the null hypothesis H0 will be the statement that the distribution of the sample (x1, …, xm) is given by some function p0m(x1, … xm), and the alternative hypothesis H1 will be the statement that this distribution is given by some other function p0m(x1, …, xm). We can construct the sequential probability ratio test for testing H0 against H1 in the same way as for independent observations. That is to say, we select two constants A and B (B < A) and continue taking observations as long as [image: images]. The first time that the probability ratio [image: images] or [image: images], we terminate the sequential process. H0 is accepted if (p1m/p0m) [image: images] B and H1 is accepted if (p1m/p0m) [image: images] A. The fundamental inequalities (3:12) and (3:13) remain valid for such a test procedure in spite of the dependence of the successive observations, provided that the probability is one that the procedure will eventually terminate. It can be shown that for a very general class of joint distributions p0m(x1, …, xm) and p1m(x1, …, xm) the probability is one that the procedure will eventually terminate. Thus, the validity of the inequalities (3:12) and (3:13) is by no means restricted to the case of independent observations. They are generally valid also for dependent observations.

A simple case of dependent observations arises when we sample from a finite population. Suppose, for example, that a lot consisting of N units of a manufactured product is submitted for acceptance inspection. Let D be the number of defectives in the lot, which is assumed to be unknown. To each defective unit we assign the value 1 and to each non-defective unit the value 0. Then the distribution of a single observation x is given by f(x, p) where f(1, p) = p, f(0, p) = 1 – p, and p = D/N. The successive observations are, however, not independent. For example, if x1 = 1, the distribution of x2 is given by [image: images], while if x = 0, the distribution of x2 is given by [image: images]. If we denote by di the number of defectives (the number of ones) in the set of the first i observations x1, …, xi, the joint distribution of (x1, …, xm) is given by 5
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Suppose that the hypothesis H0 is that D is equal to some specified value D0, and H1 is the hypothesis that D is equal to some value D1 (D1 > D0). Then the distribution of (x1, …, xm) under H0 is given by
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and the distribution under H1 by
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The sequential probability ratio test for testing H0 against H1 is based on the ratio p1m/p0m. Inspection continues as long as B < p1m/p0m < A. The lot is accepted if p1m/p0m [image: images] B and the lot is rejected if p1m/p0m [image: images] A. The fundamental inequalities (3:12) and (3:13) remain valid for this test procedure in spite of the dependence of the observations.

3.3  Determination of the Constants A and B in Practice

Suppose that we wish to have a test procedure of strength (α, β). Then our problem is to determine the constants A and B such that the resulting test will have the desired strength (α, β). Let us denote by A (α, β) and B(α, β) the values of A and B, respectively, for which the test has the required strength (α, β). The exact determination of the values A(α, β) and B(α, β) is usually very laborious.6 However, the fundamental inequalities derived in the preceding section permit an approximate determination of A and B which will suffice for most practical purposes. From (3:9) and (3:11) it follows that
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and
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We shall propose to put A = (1 – β)/α = a(α, β), say, and B = β/(1 – α) = b(α, β), say, and we shall investigate the consequences of this determination of A and B. From (3:21) and (3:22) it follows that the value a(α, β) chosen for A is greater than or equal to the exact value A(α, β), and the value b(α, β) chosen for B is less than or equal to the exact value B(α, β). Then, letting A = a(α, β) instead of A(α, β) and B = b(α, β) instead of B(α, β) will, in general, change the probabilities of errors of the first and second kinds. If A were put equal to a value greater than A(α, β), and if B were put equal to B(α, β), then the resulting probability of an error of the first kind would be less than a, but the probability of an error of the second kind would be slightly larger than β. Similarly, if we were to use the exact value A (α, β) for A, but a value B below the exact value B(α, β), the resulting probability of an error of the second kind would be less than β, and the probability of an error of the first kind would be slightly greater than α. Thus, if a value A is used which is higher than the exact value A(α, β) and a value B is used which is lower than the exact value B(α, β), it is not clear what the resulting effect on the probabilities of errors of the first and second kinds will be. Let us denote by α′ and β′ the resulting probabilities of errors of the first and second kinds when A = a (α, β) and B = b(α, β). From (3:12) and (3:13) it follows that
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and
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From these inequalities it follows that
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and
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Multiplying (3:23) by (1 – 0)(1 – β′) and (3:24) by (1 – α)(1 – α′) and adding the two resulting inequalities, we obtain
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Inequalities (3:25), (3:26), and (3:27) give valuable upper limits for α′ and β′. The values α and β will usually be small in practical applications. Most frequently they will lie in the range from .01 to .05. Thus, α/(1 – β) and β/(1 – α) will be very nearly equal to α and β, respectively. It follows then from (3:25) and (3:26) that the amount by which α′ may exceed α, or β′ may exceed β is very small and can be neglected for all practical purposes. Moreover, (3:27) shows that at least one of the inequalities α′ [image: images] α and β′ [image: images] β must hold exactly. In other words, by using a(α, β) and b(α, β) instead of A (α, β) and β(α, β), respectively, at most one of the probabilities α and β may be increased.

Thus, we may conclude: The use of a(α, β) and b(α, β) instead of A(α, β) and B(α, β), respectively, cannot result in any appreciable increase in the value of either α or β. In other words, for all practical purposes the test corresponding to A = a(α, β) and B = b(α, β) provides at least the same protection against wrong decisions as the test corresponding to A = A (α, β) and B = B(α, β).

Our discussion so far leaves still open the possibility that the use of a(α, β) and b(α, β) instead of A (α, β) and B(α, β), respectively, may result in an appreciable decrease of α, or β, or both. If this were so, it would mean only that the test corresponding to A = a(α, β) and B = b(α, β) would provide a better protection against wrong decisions than the test corresponding to A = A (α, β) and B = B(α, β). Thus, the only disadvantage that may arise from using a(α, β) and b(α, β) instead of A(α, β) and B(α, β), respectively, is that it may result in an appreciable increase in the number of observations required by the test. In fact, since a(α, β) [image: images] A(α, β) and b(α, β) [image: images] B(α, β), the number of observations required by the test corresponding to A = a(α, β) and B = b(α, β) can never be smaller than the number of observations required by the test corresponding to A = A(α, β) and B = B(α, β). Thus, if the increase in the necessary number of observations caused by the use of a(α, β) and b(α, β) instead of A(α, β) and B(α, β) can be shown to be only slight and of no practical consequence, the test corresponding to A = a(α, β) and B = b(α, β) serves the purpose just as well, and the determination of the exact values A(α, β) and B(α, β) is of little interest.

We shall now indicate the reasons why the increase in the necessary number of observations caused by the use of a(α, β) and b(α, β) instead of the exact values A(α, β) and B(α, β) will generally be only slight.7 The reason that (3:21) and (3:22) are inequalities instead of equalities is that the sequential process may terminate with (p1m/p0m) > A or (p1m/p0m) < B. If at the final stage (p1m/p0m) were exactly equal to A or B, then A(α, β) and B(α, β) would be exactly equal to (1 – β)/α and β/(1 – α), respectively. On the other hand, a possible excess of (p1m/p0m) over the boundaries A and B at the termination of the test procedure is caused only by the discontinuity of the number of observations, i.e., by the fact that the number of observations can take only integral values. Thus, if fractional observations were possible, i.e., if the number m of observations were a continuous variable, (p1m/p0m) would also be a continuous function of m and consequently A(α, β) and B(α, β) would be exactly equal to a(α, β) and b(α, β), respectively. That the increase in the necessary number of trials caused by the use of a(α, β) and b(α, β) will generally be slight is strongly indicated by the fact that the discrepancy between A(α, β) and a(α, β), as well as that between B(α, β) and b(α, β), arises only from the discontinuity of the number of observations. In Section 3.9 we give upper estimates of the increase in the expected number of trials caused by the use of a(α, β) and b(α, β). Numerical computations given in that section show that the increase is slight. It may be added that the nearer the distribution f(x, θ1) is to the distribution f(x, θ0), the smaller will be this increase in the expected number of trials. The reason for this is that the nearer f(x, θ1) is to f(x, θ0), the smaller the expected excess of p1m/p0m over the boundaries A and B and, therefore, also the smaller the discrepancy between A(α, β) and a(α, β) as well as that between B(α, β) and b(α, β). If f(x, θ1) approaches f(x, θ0) the exact values A(α, β) and B(α, β) converge to a(α, β) and b(α, β), respectively.

Hence, if experimentation is not excessively costly, for all practical purposes the following procedure may be adopted: If a sequential test is desired such that the probability of an error of the first kind does not exceed α, and the probability of an error of the second kind does not exceed β, put A = (1 – β)/α and B = β/(1 – α) and carry out the sequential probability ratio test as defined by the inequalities (3:1), (3:2), and (3:3).

The fact that for practical purposes we may put A = a(α, β) and B = b(α, β) brings out a surprising feature of the sequential test as compared with current tests. Whereas current tests cannot be carried out without finding the probability distribution of the statistic on which the test is based, there are no distribution problems in carrying out a sequential test. In fact, a(α, β) and b(α, β) depend on α and β only, and the ratio p1m/p0m can be calculated from the data of the problem without solving any distribution problems. Distribution problems arise in connection with the sequential process only if it is desired to find the probability distribution of the number of trials necessary for reaching a final decision. But this is of secondary importance as long as we know that the sequential test on the average leads to a saving in the number of observations.

3.4  The OC Function of the Sequential Probability Ratio Test8

Since the sequential probability ratio test for testing the hypothesis H0 against the hypothesis H1 will be applied to problems when the parameter θ can take values ≠ θ0 and ≠ θ1, it is of interest to derive the whole operating characteristic function L(θ) of the test. For convenience, we shall treat the case of a single unknown parameter θ in this section and in Section 3.5. The results can be extended without difficulty to any number of parameters. In Section 2.2.1, L(θ) has been defined as the probability that the sequential process will terminate with the acceptance of H0 when θ is the true value of the parameter. In this section we shall indicate the derivation of an approximation formula for L(θ), neglecting the excess of p1m/p0m over the boundaries A and B at the termination of the process. A rigorous derivation (using a different method) together with upper and lower limits for the OC function will be given in Section A.2.3 of the Appendix.

Consider the expression
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For each value θ, the value of h(θ)	is determined so that h(θ) ≠ 0 and the expected value of the expression (3:28) is equal to 1, i.e.,
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if f(x, θ) is the probability density function, or
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if x has a discrete distribution (the summation is taken over all possible values of x). It is shown in Section A.2.1 of the Appendix that under some slight restriction on the nature of the distribution function f(x, θ), there exists exactly one value h(θ) ≠ 0 such that (3:29) is fulfilled.

Hence, for any given value θ, the function of x given by
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is a distribution function.

Since h(θ) ≠ 0, there are two possibilities: h(θ) > 0 or h(θ) < 0. We shall first consider the case when h(θ) > 0.

Let H denote the hypothesis that f(x, θ) is the true distribution of x and H* the hypothesis that f*(x, θ) is the true distribution of x. Consider the sequential probability ratio test S* for testing H against H* defined as follows: Continue taking observations as long as
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Accept the hypothesis H if



[image: images]

Reject the hypothesis H (accept H*) if
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Since (3:34)
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and since h(θ) > 0, the inequalities (3:31), (3:32), and (3:33) are equivalent to
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and
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But these inequalities are identical with those defining the sequential probability ratio test S for testing H0 against H1, when the constants A and B are used. Thus, if the test S* leads to the acceptance of H, the test S leads to the acceptance of H0, and if S* leads to the rejection of H, then S also leads to the rejection of H0. From this, it follows that the probability of accepting H0 when θ is true, i.e., the value of L(θ), is the same as the probability that the test S* will lead to the acceptance of H when f(x, θ) is the true distribution of x.

To calculate the latter probability we shall apply the formulas (3:9) and (3:11) to the test procedure S*. Denote by α′ the probability that S* will lead to the rejection of H when H is true, and by 0 the probability that S* leads to the acceptance of H when H* is true. Applying the formulas (3:9) and (3:11) to the test procedure S* we obtain
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and
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When the excess over the boundaries at the termination of the process is neglected, the equality sign holds in (3:38) and (3:39), that is,9
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and
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From (3:40) and (3:41) we obtain
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Since α′ = 1 – L(θ), we get
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The case h(θ) < 0 can be treated in a similar way. We obtain the same result, i.e., the approximation formula (3:43) remains valid also when h(θ) < 0.

It is interesting to note that h(θ0) = 1 and h(θ1) = – 1. This follows easily from (3:29b).

As an illustration, we shall determine L(θ) for the binomial case when x can take only the values 0 and 1 and the distribution f(x, θ) is given as follows: f(1, θ) = θ and f(0, θ) = 1 – θ. Then equation (3:29b) can be written as
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To plot the OC function, it is not necessary to solve equation (3:44) with respect to h(θ). We may consider h = h(θ) a parameter and solve (3:44) with respect to θ. Then we obtain
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If we let A = (1 – β)/α and B = β/(1 – α), (3:43) can be written as
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For any arbitrarily chosen value h, the point [θ, L(θ)], computed from (3:45) and (3:46), will be a point on the OC function. The OC function can be drawn by plotting a sufficiently large number of points [θ, L(θ)] corresponding to various values of h.

A typical OC function for the binomial case is shown in Fig. 10.
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FIG. 10



We shall now compute L(θ) when x is normally distributed with unknown mean θ and known variance σ2. In this case we have
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The quantity h(θ) is the non-zero root of the equation
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Evaluating the above integral and solving the equation with respect to h(θ), we obtain
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An approximation to the OC function is obtained from (3:43) by substituting (θ1 + θ0 – 20)/(θ1 – θ0) for h(θ).

3.5  The ASN Function of a Sequential Probability Ratio Test

Let n denote the number of observations required by the test and let Eθ(n) be the expected value of n when θ is the true value of the parameter. This expected value Eθ(n) is a function of θ which we have called the average sample number function, or briefly the ASN function. In this section we shall outline the derivation of an approximation formula for the ASN function, neglecting the excess of p1m/p0m over the boundaries A and B at the termination of the sequential process. A more complete discussion together with upper and lower limits for the ASN function is given in Section A.3 of the Appendix.

Let N be an integer sufficiently large to allow the probability that n [image: images] N to be neglected.10 Thus we shall assume that n < N. Then we can write
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where
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Taking expected values on both sides of (3:49), we obtain



[image: images]

where
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Since, for α > n, the random variable zα is distributed independently of n, the expected value of zn+1 + … + ZN is equal to the expected value of (N – n) times the expected value of a single z, i.e.,
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From (3:51) and (3:53) it follows that
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Hence
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if E(z) ≠ 0.

If θ is the true value of the parameter, then E(n) = Eθ(n) by the definition of the symbol Eθ(n). We shall denote by Eθ(z) the expected value E(z) of z when θ is the true value of the parameter. If the excess of the probability ratio p1m/p0m over the boundaries A and B at the termination of the sequential process is neglected, the random variable (z1 + … + zn) can take only the values log A and log B with the probabilities 1 – L(θ) and L(θ), respectively. Hence
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From (3:55) and (3:56) we obtain the approximation formula
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In the preceding section we have computed explicitly the formula L(θ) for the binomial and normal case. Thus, to obtain the explicit formula for Eθ(n), we need only compute Eθ(z). In the binomial case, i. e., when f(x, θ) = θ for x = 1 and f(x, θ) = 1 – θ for x = 0, we have



[image: images]

In the normal case, i.e., when
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we have
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Hence,
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3.6  Saving in the Number of Observations Effected by the Use of the Sequential Probability Ratio Test instead of the Current Test Procedure

In this section we shall assume that H0 is the hypothesis that the random variable x under consideration is normally distributed with mean θ0 and variance unity, while H1 is the hypothesis that x is normally distributed with mean θ1 and variance unity. We may assume without loss of generality that θ0 < θ1. We shall compare the expected number of observations required by the sequential probability ratio test of strength (α, β) for testing H0 against H1 with the fixed number of observations needed for the current most powerful test to attain the same strength (α, β).

We shall denote by n(α, β) the fixed number of observations required by the current test to attain the strength (α, β). The current most powerful test procedure for testing H0 against H1 is carried out as follows. The hypothesis H0 is accepted if the arithmetic mean [image: images] of the observations x1, …, xn (the number n of observations is determined in advance) is less than or equal to a preassigned constant d, and H0 is rejected (H1 is accepted) if [image: images] exceeds d. The constant d and the fixed number n of observations are to be determined so that the test will have the required strength (α, β). For any given n and d the corresponding strength of the test can be determined as follows. Since [image: images] [image: images] d is equivalent to the inequality [image: images], the probability that [image: images] [image: images] d is the same as the probability that [image: images]. The random variable [image: images] is normally distributed with mean 0 and variance unity if H0 is true. Thus, the probability that [image: images] [image: images] d when H0 is true, i.e., the probability that we shall accept H0 when H0 is true, is equal to the probability that [image: images]. We shall denote by G(t) the probability that a normally distributed random variable with mean 0 and variance unity will take a value less than t, i.e.,
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Then the probability that we shall accept H0 when H0 is true is equal to [image: images]. Since the probability that we shall accept H0 when H0 is true is 1 – α by definition, we have
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To determine the value of 0 corresponding to given n and d, we shall write the inequality [image: images] [image: images] d in the equivalent form [image: images]. By definition, β is the probability that we shall accept H0 when H1 is true. But the latter probability is the same as the probability that [image: images] [image: images] d, i.e., that [image: images], when H1 is true. But when H1 is true this probability is equal to [image: images]. Thus, we have
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Hence, to obtain a test of the required strength (α, β), we have to choose the quantities n and d so that equations (3:62) and (3:63) are fulfilled. Let λ0 be the value for which G(λ0) = 1 – α and let λ1 be the value for which G(λ1) = λ. The values λ0 and λ1 can be obtained from a table of the normal distribution. Then equations (3:62) and (3:63) can be written as
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and
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Subtracting equation (3:64) from equation (3:65) we obtain
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Thus
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If this expression is not an integer, n(α, β) is the smallest integer in excess.

We shall now determine the expected number of observations required by the sequential probability ratio test of strength (α, β) and we shall compare it with the fixed number n(α, β) of observations required by the current test as given in formula (3:67). In the sequential test we shall use the approximation formulas for A and B, i.e., we shall let A and B equal (1 – β)/α and β/(1 – α), respectively, instead of the exact values A(α, β) and B(α, β), respectively. It has been shown in Section 3.2 that (1 – β)/α [image: images] A(α, β) and B(α, β) [image: images] B(α, β). Thus, by letting A = (1 – β)/α and B = β/(1 – α) instead of using the exact values A(α, β) and B(α, β), we can only increase the number of observations required by the sequential test. Consequently, the saving effected by the sequential test of strength (α, β) as compared with the current test cannot be smaller than the saving which results from the sequential test obtained by using the approximation formulas A = (1 – β)/α and B = β/(1 – α).

We shall assume that |θ1 – β0| is small so that the approximation formula (3:57) for the expected value of n can be used. Since L(θ0) = 1 – α and L(θ1) = β, we obtain from (3:57)
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and
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where Ei(n) denotes the expected value of n when Hi is true (i = 0, 1). As can easily be verified,
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and
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From (3:67), (3:68), (3:69), (3:70), and (3:71) we obtain
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and
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It is interesting to note that the ratios [image: images] and [image: images] are independent of the parameter values θ0 and θ1 The average saving of the sequential test as compared with the current test is [image: images] per cent if H1 is true, and [image: images] per cent if H0 is true. In Table 1, panel A shows the value of [image: images], and panel B shows the value of [image: images], for several vaiues of α and β. Because of the symmetry of the normal distribution, panel B is obtained from panel A simply by interchanging α and β.

TABLE 1

AVERAGE PERCENTAGE SAVING IN SIZE OF SAMPLE WITH SEQUENTIAL ANALYSIS, AS COMPARED WITH CURRENT MOST POWERFUL TEST FOR TESTING MEAN OF A NORMALLY DISTRIBUTED VARIATE



[image: images]

As the table shows, for the range of α and β from .01 to .05 (the range most frequently employed), the sequential test results in an average saving of at least 47 per cent in the necessary number of observations as compared with the current test. The true saving is slightly higher than shown in the table, since Ei(n) (i = 0, 1) calculated under the condition that A = (1 – β)/α and B = β/(1 – α) is greater than Ei(n) calculated under the condition that A = A(α, β) and B = B(α, β).

3.7  Lower Limit of the Probability That the Sequential Test Will Terminate with a Number of Trials Less Than or Equal to a Given Number

In Section A.6 an approximate formula 11 for the probability distribution of the number of observations required by the sequential test is derived in the case in which [image: images] is normally distributed. It is pointed out that the same distribution function of n can be regarded as an approximation to the exact distribution even when z is not normally distributed, provided that the absolute value of E(z) and the standard deviation of z are sufficiently small as compared with log A and log B. Although the distribution of n given in Section A.6 could be used to determine the probability that n [image: images] n0 for any fixed integer n0, we shall prefer to derive a lower limit for this probability by a different method for the following reasons. (1) The computation of the lower limit given in this section is very simple, whereas the use of the distribution function given in Section A.6 would require laborious computations, since that distribution function has not yet been tabulated. (2) If n0 is fairly large and if α and β are small, as they usually are in practice, the lower bound given in this section will be fairly near the exact value.

For any given positive integer let Pi(n [image: images] n0) denote the probability that n [image: images] n0 when Hi is true, i.e., when θ = θi(i = 0, l).12 We want to derive a lower bound for Pi [image: images] n0). It will be assumed that n0 is sufficiently large so that the sum z1 + … + zn0 may be regarded as normally distributed even when the distribution of z is not normal.13

If [image: images], then we certainly have n [image: images] n0. Similarly, if [image: images], we must have n [image: images] n0. Hence



[image: images]

and



[image: images]

The inequality [image: images] A can be written as



[image: images]

where σ1(2) denotes the standard deviation of z when is true. The left-hand member of (3:76) is normally distributed with mean 0 and variance unity when H1 is true. For any value λ we shall denote by G(λ) the probability that a normally distributed random variable with mean 0 and variance unity will take a value less than λ. Thus, the probability that such a random variable takes a value [image: images] λ is given by 1 – G(λ). Hence the probability that (3:76) holds when H1 is true is



[image: images]

But the probability that (3:76) holds when H1 is true is equal to P1(∑zα [image: images] log A). Thus,



[image: images]

Because of (3:74), we obtain



[image: images]

Thus, 1 – G[λ1(n0)] is a lower limit of the probability that n [image: images] n0, when H1 is true.

To obtain a lower limit for P0(n [image: images] n0), we rewrite the inequality



[image: images]

where σ0(z) denotes the standard deviation of z when H0 is true. Since the left-hand member of (3:79) is normally distributed with mean 0 and variance unity when H0 is true, the probability that (3:79) holds when H0 is true is equal to G[λ0(n0)]. Hence,



[image: images]

Because of (3:75), we then have



[image: images]

Thus G[λ0(n0)] is a lower bound of the probability that n [image: images] n0 when H0 is true.

When log A = log (1 – β)/α and log B = log β/(1 – α), Table 2 shows the values of the lower bounds of P0(n [image: images] n0) and P1(n [image: images] n0) corresponding to different pairs (α, β) and different values of n0. In these calculations it has been assumed that the distribution under H0 is a normal distribution with mean 0 and variance unity, and the distribution under H1 is a normal distribution with mean 0 and variance unity. For each pair (α, β) the value of 0 has been determined from (3:67) so that the number of observations needed for the current most powerful test of strength (α, β) is equal to 1000.

TABLE 2

LOWER BOUND OF THE PROBABILITY THAT A SEQUENTIAL ANALYSIS WILL TERMINATE WITHIN VARIOUS NUMBERS OF TRIALS, WHEN THE MOST POWERFUL CURRENT TEST REQUIRES EXACTLY 1000 TRIALS



[image: images]

The probabilities given are lower bounds for the true probabilities. They relate to a test of the mean of a normally distributed variate, the difference between the null and alternative hypothesis being adjusted for each pair of values of α and β so that the number of trials required under the most powerful current test is exactly 1000.

3.8  Truncation of the Sequential Test Procedure

Although it is shown in Section A.1 that the probability is 1 that the sequential test procedure will eventually terminate, it is occasionally desirable to set a definite upper limit, say n0, for the number of observations. This can be achieved by truncating the sequential process at n = n0, i.e., by giving a new rule for the acceptance or rejection of H0 at the n0th trial if the sequential process did not lead to a final decision for n [image: images] n0. A simple and reasonable rule for truncation at the n0th trial seems to be the following: If the sequential probability ratio test does not lead to a final decision for n [image: images] n0, accept H0 at the n0th trial when [image: images], and reject H0 when [image: images] log A.

By truncating the sequential process at the n0th trial we shall, however, change the probabilities of errors of the first and second kinds. Let α and β be the probabilities of errors of the first and second kinds if the sequential test is not truncated. The effect of the truncation on α and β will, of course, depend on the value of n0. The larger n0, the smaller will be the effect of truncation on α and β. We shall denote the resulting probabilities of errors of the first and second kinds by α(n0) and β(n0), respectively, if the sequential process is truncated at n = n0. In this section we shall derive upper bounds for α(n0) and β(n0).

To obtain an upper bound for α(n0) we have to consider the cases in which the truncated process leads to the rejection of H0, while the non-truncated process leads to the acceptance of H0. Denote by Po(^o) the probability under H0 of obtaining a sample such that the truncated process leads to the rejection of H0, while the non-truncated process leads to the acceptance of H0. Then, we clearly have



[image: images]

The reason that in (3:82) the inequality sign holds instead of the equality sign is that there may be samples for which the truncated process leads to the acceptance of H0, while the non-truncated process leads to the rejection of H0. To obtain an upper bound for α(n0), we merely need to derive an upper bound for α(n0)ρ0(n0). By definition, ρ0(n0) is the probability under H0 that for the successive observations z1, z2, …, etc.. the following three conditions are simultaneously fulfilled:

(i)  [image: images]

(ii)  [image: images]

(iii)  When the sequential process is continued beyond n0, it terminates with the acceptance of H0.

Denote by [image: images] the probability under H0 that condition (ii) will be fulfilled, i.e.,
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Since the probability that condition (ii) is fulfilled cannot be smaller than the probability that all three conditions are fulfilled simultaneously, we have
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and, therefore,



[image: images]

Thus, [image: images] is an upper bound for α(n0), which can easily be computed, as will be shown later. To obtain an upper bound for β(n0) we shall denote by ρ1(n0) the probability (under H1)	that the successive observations will be such that the truncated process leads to the acceptance of H0, while the non-truncated process leads to the rejection of H0. In other words, ρ1(n0) is the probability under H1 that the successive observations will satisfy the following three conditions simultaneously:

(i)  [image: images]

(ii)  [image: images]

(iii)  If the process is continued beyond the n0th trial, it terminates with the acceptance of Hi.

Clearly
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Since it is difficult to determine the value of ρ1(n0), we shall derive a simple upper bound for it. Let [image: images] be the probability under H1 that condition (ii) is fulfilled, i.e.,
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Then [image: images] [image: images] ρ1(n0) and we have
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We shall now show how [image: images] and [image: images] can be computed. We shall assume that n0 is sufficiently large so that z1 + … + zn0 may be regarded as a normally distributed variable. When Hi is true (i = 0, 1) the expected value of z1 + … zn0 is equal to n0Ei(z) and the standard deviation of z1 + … + zn0 is equal to [image: images] where σi(z) denotes the standard deviation of z when Hi is true. To compute [image: images] we shall write the inequality [image: images] in the following form:
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Let



[image: images]

Since the middle term in (3:88) is normally distributed with zero mean and unit variance when H0 is true, the probability that (3:88) is fulfilled when H0 is true is equal to G(v2) – G(v1) where G(v) denotes the probability that a normally distributed variable with mean 0 and variance unity will take a value < v. Thus,
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To compute [image: images], we shall write the inequality [image: images] in the following form:
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Let
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Since the middle term in (3:91) is normally distributed with mean 0 and variance unity when H1 is true, the probability (under H1) that (3:91) holds is equal to G(v4) – G(v3). Hence,
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Our results can thus be summarized as follows:



[image: images]

and



[image: images]

where v1, v2, v3, and v4 are given in (3:89) and (3:92). These upper bounds may considerably exceed α(n0) and β(n0), respectively. It would be desirable to find closer limits.

Table 3 shows the values of the upper bounds of α(n0) and β(n0) given in (3:94) and (3:95) corresponding to different pairs (α, β) and different values of n0. In these calculations we have put log A = log (1 – β)/α and log B = log β/(1 – α), and assumed that the distribution under H0 is normal with mean 0 and variance unity, and the distribution under H1 is normal with mean θ and variance unity. For each pair (α, β) the value of θ has been determined so that the number of observations required by the current most powerful test of strength (α, β) is equal to 1000.

TABLE 3

EFFECT ON RISKS OF ERROR OF TRUNCATING A SEQUENTIAL ANALYSIS AT A PREDETERMINED NUMBER OF TRIALS



[image: images]

If the sequential analysis is based on the values α and β shown, but a decision is made at n0 trials even when the normal sequential criteria would require a continuation of the process, the realized values α(n0) and β(n0) will not exceed the tabular entries. The table relates to a test of the mean of a normally distributed variate, the difference between the null and alternative hypotheses being adjusted for each pair (α, β) so that the number of trials required by the current test is 1000.

It seems to the author that the upper limits given in (3:94) and (3:95) are considerably above the true α(n0) and β(n0), respectively, when n0 is not much higher than the value of n needed for the current most powerful test.

3.9  Increase in the Expected Number of Observations Caused by Replacing the Exact Values A(α, β) and B(α, β) by (1 – β)/α and β/(1 – α), Respectively

The quantities A(α, β) and B(α, β) denote the values of A and B for which the probabilities of errors of the first and second kinds associated with the sequential probability ratio test are exactly α and β, respectively. In Section 3.3 it has been recommended that A(α, β) and B(α, β) be replaced by a(α, β) = (1 – β)/α and b(α, β) = β/(1 – α), respectively. This may slightly increase the expected number of observations, since a(α, β) [image: images] A(α, β) and b(α, β) [image: images] B(α, β).14 The present section gives estimates of the amount of such increase in the expected number of observations.

In Section 3.5 the following approximation formula has been obtained for the expected number of observations:
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Since L(θ0) = 1 – α and L(θ1) = β, we obtain from (3:96)
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and



[image: images]

Ei(n) denotes the expected value of n when θi, is true.

Thus, the changes Δ(n) and ΔE1(n) in the expected values E0(n) and E1(n) caused by using a(α, β) and b(α, β) instead of A(α, β) and B(α, β), respectively, are given by
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and



[image: images]

Formulas (3:99) and (3:100) are, of course, approximation formulas, since (3:97) and (3:98) are approximations. However, if the error in the formulas (3:97) and (3:98), i.e., if the differences
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and



[image: images]

were exactly independent of the quantities A and B, then in (3:99) and (3:100) the equality sign would hold exactly. It can be shown that small changes in A and B affect the differences (3:101) exceedingly little, and, therefore, (3:99) and (3:100) are very close approximations.

We shall derive upper bounds for the right-hand members of (3:99) and (3:100). Since E0(z) and [image: images] are negative,15 while [image: images] is positive, we have
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Similarly, since E1(z) and [image: images] are positive, while [image: images] is negative, we have
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Thus, for all practical purposes [image: images] is an upper bound for ΔE1(n) and [image: images] is an upper bound for ΔE0(n). The exact values A(α, β) and B(α, β) not being known, we cannot yet use these limits. Since E1(z) > 0, an upper limit of [image: images] is obtained by substituting for [image: images] an upper bound of [image: images]. Similarly, since E0(z) < 0, an upper limit of [image: images] can be obtained by substituting for [image: images] a lower bound of [image: images].

From equations (A:29) and (A:30) in the Appendix one can derive the following inequalities:
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and



[image: images]

where the quantities δθ and ηθ are defined by equations (A:27) and (A:28).16 The quantities δθ and ηθ have been explicitly computed for binomial and normal distributions.

Thus, we arrive at the following result: For all practical purposes we may regard (log δθ0)/E1(z) as an upper bound for ΔE1(n) and (log ηθ0)/E0(z) as an upper bound for ΔE0(n).

TABLE 4

INCREASE IN EXPECTED NUMBER OF OBSERVATIONS RESULTING FROM APPROXIMATIONS IN CRITERIA FOR TERMINATING A SEQUENTIAL PROCESS



[image: images]

The tabular entries may, for practical purposes, be treated as upper bounds of the exact increases. The table relates to a test of the mean of a normally distributed variate, the difference between the null and alternative hypotheses being adjusted for each pair of values of α and β so that the number of trials required under the best current test is as shown in the left-hand column.

As an example, consider the case in which the distribution under H0 is normal with zero mean and unit variance, and the distribution under H1 is normal with mean θ and variance unity. Since for the normal distribution ηθ = 1/δθ [see equation (A:51)] and –E0(z) = E1(z), the upper bound of ΔE0(n) is the same as the upper bound of ΔE1(n). This upper bound depends only on the value of θ. For any pair (α, β) and for any positive integer m there exists exactly one value of θ such that m observations are needed for the current most powerful test of strength (α, β). Thus, with each integer m and pair (α, β) there is associated exactly one value of θ. Table 4 shows the common upper bound of ΔE0(n) and ΔE1(n) calculated for values of θ corresponding to different pairs (α, β) and integers m.



1 f(x, θ) denotes the probability density function of x, if a density function exists. If x has a discrete distribution, f(x, θ) denotes the probability that the random variable under consideration takes the value x.

2 If for a particular sample p1m = p0m = 0, we shall define the value of the ratio p1m/p0m as 1. If for some sample (x1, …, xm) we have p1m > 0 but p0m = 0 inequality (3:2) is considered fulfilled and H0 is rejected.

3 The probability that H0 will be accepted when H1 is true is by definition equal to β. Section A.1 of the Appendix shows that the probability is one that the sequential process will eventually terminate. Thus, the probability that H0 will be rejected when H1 is true must be equal to 1 – β.

4 See Section A.1 in the Appendix.

5 This formula is valid as long as dm–1 [image: images] D.

6 The results in Section A.4 of the Appendix can be used for deriving arbitrarily close approximations to the values A(α, β) and B(α, β).

7 For a more complete discussion see Section 3.9.

8 As mentioned in the Introduction, the operating characteristic function for the special case of a binomial distribution was found by Milton Friedman and George W. Brown independently of each other, and slightly earlier by C. M. Stockman in England. The derivation of the OC function in the general case is due to the author

9 The symbol [image: images] indicates an approximate equality.

10 It is shown in Section A.3.1 that no error is involved in assuming this, since we pass to the limit when N approaches ∞.

11 See formulas (A:166), (A:183) and (A:194).

12 In general, for any relation R we use the symbol Pi(R) to denote the probability that R holds when Hi is true.

13 According to well-known theorems in the theory of probability, the sum of a large number of independent random variables is nearly normally distributed under very general conditions.

14 See inequalities (3:21) and (3:22).

15 It is remarked at the end of Section A.2.1 that E(z) and a certain quantity h0 defined there have opposite signs. Since h0 = 1 if H0 is true, and h0 = – 1 if H1 is true, it follows that E0(z) < 0 and E1(z) > 0.

16 This can be seen as follows: Substituting A(α, β) for A, B(α, β) for B, and θ0 for θ, we obtain from (A:29) and (A:30)
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and



[image: images]

Since we let A = A (α, β) and B = B(α, β), we have L(θ0) = 1 – α and L(θ1) = 0. It follows from this and the two equations which are obtained from (A:18) by substituting θ0 and θ0 for θ that



[image: images]

Since h(θ0) = 1, we obtain



[image: images]

from which (3:104) and (3:105) follow.


Chapter 4. OUTLINE OF A THEORY OF SEQUENTIAL TESTS OF SIMPLE AND COMPOSITE HYPOTHESES AGAINST A SET OF ALTERNATIVES

In Chapter 3 we were concerned mainly with the theoretical case of testing a simple hypothesis H0 against a single alternative H1. In problems arising in applications, the unknown parameter, or parameters, can usually take infinitely many values. In this chapter we shall discuss sequential tests of simple and composite hypotheses against infinitely many alternatives.

4.1  Tests of Simple Hypotheses

4.1.1  Introductory Remarks

A simple hypothesis has been defined as a statement which specifies completely the values of all the unknown parameters. We should like to make some remarks concerning the conditions under which a test of a simple hypothesis is meaningful and appropriate. For this purpose it will be sufficient to consider the case in which there is only one unknown parameter θ involved in the distribution of the random variable x under consideration. A simple hypothesis is then a statement that θ is equal to some specified value θ0.

In applications the problem of testing a hypothesis usually arises as follows: There are two alternative courses of action, say action 1 and action 2, between which a decision is to be made, and the preference for one or the other action depends on the value of the parameter θ. Let ω denote the set of all values of θ for which action 1 is preferred to action 2; then action 2 is preferred to action 1 for all values θ outside ω.1 Let Hω be the hypothesis that θ is contained in ω. Then the problem of deciding between the two courses of action can be formulated as the problem of testing the hypothesis Hω. If Hω is accepted we take action 1 and if Hω is rejected we take action 2. If the degree of preference for one or the other action varies continuously with the value of θ, the set ω cannot consist of a single value θ0. In fact, if ω were to contain only the single value θ0, it would mean that we prefer action 1 when θ = θ0 and we prefer action 2 for any θ ≠ θ0, no matter how near θ is to θ0. Thus, we would have a discontinuity in our preference scale at θ = θ0.

We see that the problem of testing a simple hypothesis arises, strictly speaking, only if there is a discontinuity in our preference scale for actions 1 and 2. While a discontinuity in the preference scale is, of course, possible, it will occur rather seldom. A discontinuity in the preference scale may occur, for example, if we want to test the validity of some hypothetical scientific theory which implies that the parameter θ must have a specified value θ0. In such a case any deviation of the value of θ from θ0, no matter how small, is of importance, since it invalidates the hypothetical theory in question.

Whenever the degree of preference for one or the other action varies continuously with the value of θ, the hypothesis to be tested will have to be, strictly speaking, a composite one. Nevertheless, frequently it will be expedient to approximate the composite hypothesis by a simple one, since the latter is usually a simpler problem to treat. As an illustration, consider the following example: Suppose that the hardness x of a material varies from unit to unit and is normally distributed with a known variance. The mean value θ of x is, however, unknown. Suppose that θ0 is considered to be the most desirable value of θ and the material is considered less desirable the greater |θ – θ0|. Let action 1 be acceptance of the material and action 2, rejection of the material. Preference for acceptance is strongest when θ = θ0. The preference for acceptance will decrease steadily as |θ – θ0| increases. There will be a positive value δ such that for |θ – θ0| > δ rejection of the material is preferred and the degree of preference for rejection increases with increasing value of |θ – θ0| in the domain |θ – θ0| > δ. If |θ – θ0| = δ, i.e., if the quality of the product is just on the margin, neither action is preferable to the other. In such a situation the proper hypothesis to be tested is the composite hypothesis that |θ – θ0| [image: images] δ. However, if δ is small, the composite hypothesis may be replaced for practical purposes by the simple hypothesis that θ = θ0. The test of the hypothesis that θ = θ0 will have nearly the same operating characteristic function as the test of the hypothesis that |θ – θ0| [image: images] δ, for the following reasons. To test the hypothesis that |θ – θ0| [image: images] δ we subdivide the θ-axis into three zones: zone of preference for acceptance, zone of preference for rejection, and zone of indifference. As explained in Section 2.3.1, the zone of preference for acceptance consists of all values θ for which acceptance is strongly preferred, i.e., for which the rejection of the material is considered an error of practical importance. Similarly, the zone of preference for rejection consists of all those values θ for which rejection is strongly preferred, whereas for values θ in the indifferent zone the preference for one action over the other is only slight and we do not care particularly which action is taken. In our example the three zones may reasonably be defined as follows. We select two positive values δ0 < δ and δ1 > δ. The zone of preference for acceptance is given by |θ – θ0| [image: images] δ0, the zone of preference for rejection by |θ – θ0| [image: images] δ1, and the zone of indifference by δ0 < |θ – θ0| < δ1. The test procedure will then be constructed so that the probability of rejection will not exceed a preassigned value α whenever θ is in the zone of preference for acceptance, and the probability of acceptance will not exceed a preassigned value β whenever θ is in the zone of preference for rejection.2 Now if we replace the original composite hypothesis by the simple hypothesis that θ = θ0, the zone of preference for acceptance will consist of the single value θ = θ0. The zone of preference for rejection may be defined, as before, by |θ – θ0| [image: images] δ1. The zone of indifference is then given by 0 < |θ – θ0| < δ1. The test procedure for testing that θ = θ0 will then satisfy the requirement that the probability of rejecting the hypothesis is α when θ = θ0 and the probability of accepting the hypothesis does not exceed β whenever |θ – θ0| [image: images] δ1. If δ0 is very small, the test of the hypothesis that θ = θ0 will satisfy the requirements imposed on the test of the original composite hypothesis with close approximation, since the probability of rejecting the hypothesis will be nearly equal to α for values θ in a sufficiently small neighborhood of θ0. Thus, for practical purposes we may replace the original composite hypothesis by the simple hypothesis that θ = θ0.

As we have seen, a test of a simple hypothesis will occur in applications in two cases: (1) when there is a discontinuity in the preference scale and the problem calls for testing a simple hypothesis in the strict sense (these cases are rare); (2) when the problem is such that it calls for testing a composite hypothesis and it is approximated by a simple hypothesis merely for the sake of simplicity.

In terms of the zones of preference for acceptance, of preference for rejection, and of indifference, the simple hypothesis may be characterized by the condition that the zone of preference for acceptance consists of a single point.

4.1.2  Test of a Simple Hypothesis against One-Sided Alternatives

We shall discuss here the simple case in which there is only one unknown parameter θ and the hypothesis that θ = θ0 is tested against alternative values of θ which lie on one side of θ0, say > θ0. In other words, only values of θ > θ0 are considered admissible alternatives to the hypothesis to be tested. In this case the zone of preference for acceptance consists of the single value θ0. The degree of preference for rejection of the hypothesis will generally increase with increasing value of θ in the domain θ > θ0. It will, therefore, be possible to find a value θ1 > θ0 such that the acceptance of the hypothesis is considered an error of practical importance whenever θ [image: images] θ1, while for values θ > θ0 but < θ1 the acceptance of the hypothesis is an error of no particular practical consequence. Thus, the zone of preference for rejection may be defined by θ [image: images] θ1, and the zone of indifference by θ0 < θ < θ1.

According to Section 2.3.2 we shall impose the following requirements on the OC function of the test. The probability that the hypothesis will be rejected should be equal to a preassigned value α when θ = θ0. The probability of accepting the hypothesis should not exceed a preassigned value β whenever θ [image: images] θ1.

In most of the important cases occurring in practice, such as when x has a normal, binomial, or Poisson distribution, and so on, the sequential probability ratio test of strength (α, β) for testing the hypothesis that θ = θ0 against the single alternative θ1 will satisfy the imposed requirements, since the probability of an error of the second kind will decrease steadily with increasing values of θ in the domain θ [image: images] θ1. Thus, in all these cases the sequential probability ratio test for testing the hypothesis that θ = θ0 against a properly chosen alternative 0i provides a satisfactory solution to our problem.

The case in which the alternative values of θ are restricted to values θ < θ0 instead of values > θ0 is entirely analogous and need not be discussed separately.

4.1.3  Test of a Simple Hypothesis with No Restrictions on the Alternative Values of the Unknown Parameters

In this section we shall deal with the following general problem: The distribution of x involves k unknown parameters θ1, ‖, θk and the hypothesis H0 to be tested is that θ1, …, θk are equal to some specified values [image: images], respectively. The set of k parameters (θ1, …, θk) will be denoted by θ without any subscript and will be referred to as a parameter point. The use of a superscript to the letter θ, such as θ0 or θ1, etc., will indicate that a particular parameter point is meant. Our hypothesis H0 can thus be expressed by stating that the unknown parameter point θ is equal to the particular parameter point θ0.

As we have seen in the preceding section, the zone of preference for acceptance consists of the single parameter point θ0. Denote the zone of preference for rejection by ωr. This will usually be the set of all points θ whose “distance” (defined in some sense) from θ0 is greater than or equal to some given positive value. The requirements imposed on the OC function of the test, as formulated in Section 2.3.2, can then be stated as follows: The probability that H0 will be rejected when θ = θ0 should be equal to a preassigned value α and the probability that H0 will be accepted should not exceed a preassigned value β for any parameter point θ in the zone ωr.

Before we discuss the problem of constructing a proper sequential test satisfying the above requirements, we shall consider the problem of finding a proper test procedure satisfying the following modified requirements. For any θ in ωr let β(θ) denote the probability that H0 will be accepted when θ is the true parameter point. Thus β(θ) is the probability of an error of the second kind when θ is true. Our original requirement was that β(θ) should not exceed a preassigned value β for all θ in ωr. Instead we shall now require that the weighted average of β(θ), weighted with a given weight function w(θ), should be equal to β, i.e.,



[image: images]

where w(θ) [image: images] 0 for all θ in ωr and 3



[image: images]

The requirement that the probability of rejecting H0 when H0 is true be equal to a preassigned α is maintained as before. A proper sequential test procedure satisfying these modified requirements can easily be constructed. Let p0n be the probability distribution of the sample (x1, …, xn) when H0 is true, i.e.,



[image: images]

Furthermore, let p1n be defined by



[image: images]

Thus, p1n is a weighted average of the probability distribution functions f(x1, θ1, …, θk) … f(xn, θ1, …, θk) corresponding to various parameter points θ in ωr. As such, p1n itself is a probability distribution function of the sample (x1, …, xn).4 Let H1 denote the hypothesis that the distribution of the sample (x1, …, xn) is given by p1n defined in (4:4). Then H1 is a simple hypothesis, since it specifies completely the distribution. Consider the sequential probability ratio test of strength (α, β) for testing H0 against the simple alternative hypothesis H1. This procedure is given as follows. Reject H0 if
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accept H0 if
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and take an additional observation if



[image: images]

The expressions p0n and p1n are given by (4:3) and (4:4), respectively, and the constants A and B are to be chosen so that the test will have the required strength (α, β). As we have seen in Section 3.3, for most practical purposes we may use the approximation formulas A = (1 – β)/α and B = β/(1 – α).5

The sequential probability ratio test defined by (4:5), (4:6), and (4:7) can be shown to satisfy the relation (4:1). Thus, this probability ratio test may be regarded as a satisfactory solution to our problem if our requirement is that the probability of an error of the first kind should be α and that β(θ) should satisfy (4:1).

In practical problems, however, it seems more reasonable to maintain the original requirements. That is to say, we shall want a test procedure such that the probability β(θ) of accepting H0 does not exceed β for all parameter points θ in the zone ωr, and the probability is α that we shall reject H0 when θ = θ0. There are, in general, infinitely many sequential tests which satisfy these requirements, and we want to select one for which the expected number of observations is as small as possible.

Although a thorough investigation of this problem has not yet been made, the following approach may perhaps be reasonable. First we restrict ourselves to the class C of sequential probability ratio tests based on the ratio p1n/p0n, where p0n is given by (4:3) and p1n by (4:4), corresponding to an arbitrary non-negative weight function w(θ) satisfying (4:2).6 Thus, the class C contains at least as many tests as there are possible weight functions w(θ) satisfying (4:2). A test in class C is uniquely determined by choosing a particular weight function w(θ) and particular values for A and B. The test procedure is then carried out in the usual way. H0 is accepted if p1n/p0n [image: images] B, H0 is rejected if p1n/p0n [image: images] A, and an additional observation is made if B < p1n/p0n < A. The restriction to the class C of sequential tests is suggested by the fact that we have been led to these tests by the requirement that some weighted average of the probabilities of errors of the second kind be equal to a given value β.

Accepting the restriction that the sequential test should be a member of the class C, we still need a principle for choosing the weight function w(θ). Suppose that the quantities A and B have already been determined. Let us then examine what would be a reasonable choice of w(θ). After A and B have been chosen, the probability α of making an error of the first kind is also determined for practical purposes and the choice of w(θ) will not affect it.7 Thus, the choice of w(θ) will affect only β(θ). A weight function w(θ) may be regarded the more favorable the smaller the maximum value of β(θ) with respect to θ (θ is, of course, restricted to points in ωr). Thus, the following choice of w(θ) seems reasonable: For given values of A and B the weight function w(θ) is chosen for which the maximum of β(θ) with respect to θ (θ restricted to points in ωr) takes its smallest value. When this principle for the choice of w(θ) is adopted, α and the maximum of β(θ) with respect to θ (θ in ωr) will depend only on the quantities A and B.

These values A and B are then determined so that the probability of an error of the first kind has the desired value α and the maximum of β(θ) with respect to θ is equal to the required value β.

There is no general method yet available for the determination of an optimum weight function w(θ) in the sense defined above. For some special but important cases, however, such a weight function has been determined. This point is discussed in Section A.8.

4.1.4  Application of the General Procedure to Testing the Mean of a Normal Distribution with Known Variance

In this section we shall consider the problem of testing the simple hypothesis H0 that the mean θ of a normal distribution with known variance is equal to a particular value θ0. The acceptance of H0 will not be considered a serious error if θ ≠ θ0 but is near θ0. However, there will be, in general, a positive value δ such that the acceptance of H0 is considered an error of practical importance if (and only if) [image: images], where σ denotes the known standard deviation of the distribution. Thus, the region of preference for rejection may be defined as the set of all values θ for which [image: images]. The region of preference for acceptance will consist of the single value θ0, and the region of indifference will be the set of all values θ for which [image: images].

The probability density of the sample (x1, …, xn) under H0 is given by
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According to the general theory discussed in the preceding section, p1n is defined as some weighted average of the probability density corresponding to various values of θ in the zone of preference for rejection. It is shown in Section A.8.2 that an optimum weighted average is the simple average of the two density functions: the density function corresponding to θ = θ0 – δσ and the density function corresponding to θ = θ0 + δσ. Thus,



[image: images]

The test is then carried out as follows. We continue taking observations as long as B < p1n/p0n < A. If p1n/p0n [image: images] A, we reject H0. If p1n/p0n [image: images] B, we accept H0. To make the probability of an error of the first kind equal to α and the maximum of β(θ) (in the domain [image: images]) equal to β, for all practical purposes we may put A = (1 – β)/α and B = β/(1 – α).

A more detailed discussion of this test procedure is given in Part II, Chapter 9.

4.2  Tests of Composite Hypotheses

4.2.1  Discussion of an Important Special Case

A frequent and important problem is that of testing the hypothesis H that the unknown parameter θ does not exceed a specified value θ′.8 This problem is of particular importance in quality control of manufactured products. The importance of an error of the first kind (rejection of H when H is true), or that of an error of the second kind (acceptance of H when H is false), will usually vary with the value of θ. For example, if θ is only slightly below θ′ the rejection of H will not be considered a serious error. Similarly, if θ is only slightly above θ′ the acceptance of H will not be considered a serious error. In general, the importance of an error of the first kind will increase steadily with decreasing value of θ in the domain θ [image: images] θ′, and the importance of an error of the second kind will increase steadily with increasing value of θ in the domain θ > θ′. Thus, it will be possible to find two values θ0 < θ′ and θ1 > θ′ such that an error of the first kind is considered of practical importance whenever θ [image: images] θ0, and an error of the second kind is considered of practical importance whenever θ [image: images] θ1, whereas for values θ between θ0 and θ1 we do not care particularly which decision is made. Hence the zone of preference for acceptance may be defined as consisting of all values θ [image: images] θ0, the zone of preference for rejection as the set of values θ for which θ [image: images] θ1, and the zone of indifference as the set of all values θ for which θ0 < θ < θ1. In such a situation we shall want a test procedure for which the probability of an error of the first kind is less than or equal to a preassigned α whenever θ [image: images] θ0, and the probability of an error of the second kind is less than or equal to a preassigned β whenever θ [image: images] θ1. In most of the important cases occurring in practice, such as when x has a normal, binomial, or Poisson distribution, and so on, the sequential probability ratio test of strength (α, β) for testing the hypothesis that θ = θ0 against the single alternative that θ = θ1 will have the desired properties and provides a satisfactory solution to the problem. If the sequential probability ratio test leads to the acceptance of the hypothesis that θ = θ0, we accept the original hypothesis that θ [image: images] θ′, and if the probability ratio test leads to the rejection of the hypothesis that θ = θ0, we reject the original hypothesis that θ [image: images] θ′

As an illustration, we shall discuss briefly one or two examples. Suppose that a lot consisting of a large number of units of a manufactured product is submitted for acceptance inspection. We shall assume that each unit is classified in one of the two categories: defective and non-defective. The proportion p of defectives in the lot is assumed to be unknown. The preference for acceptance or rejection of the lot will, of course, depend on the value of p. It will be possible, in general, to select two values of p, say p0 and p1 (p0 < p1) such that the rejection of the lot is considered an error of practical importance whenever p [image: images] p0, and the acceptance of the lot is an error of practical importance whenever p [image: images] p1; for values p between p0 and p1 we do not care particularly which decision is made. Thus, the zone of preference for acceptance is given by p [image: images] p0, the zone of preference for rejection by p [image: images] p1, and the zone of indifference consists of values p for which p0 < p < p1. Hence, we shall want a test procedure for which the probability of rejecting the lot is less than or equal to a preassigned value α whenever p [image: images] p0, and the probability of accepting the lot is less than or equal to a preassigned value β whenever p [image: images] p1. Such a test procedure is given by the sequential probability ratio test of strength (α, β) for testing the hypothesis that p = p0 against the single alternative that p = p1. To compute the probability ratio p1n/p0n for this problem, we shall denote by dn the number of defectives found in the first n units inspected. The probability of obtaining a sample equal to the observed one is given by
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when p = p1, and by
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when p = p0.9 Then
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The test procedure is carried out as follows. We continue inspection as long as log B < log (p1n/p0n) < log A. If log (p1n/p0n) [image: images] log A, inspection is terminated with the rejection of the lot, and if log (p1n/p0n) [image: images] log B, inspection is terminated with the acceptance of the lot. For practical purposes we may put A = (1 – β)/α and B = β/(1 – α).

A detailed discussion of the problem of acceptance inspection when each unit is classified either as defective or as non-defective is given in Part II in Chapter 5.

Another example for testing a hypothesis that θ [image: images] θ′ is the case when θ is the unknown mean of a normal distribution with known variance.10 Again it will be possible to select two values θ0 < θ′ and θ1 > θ′ such that an error of the first kind is considered of practical importance whenever θ [image: images] θ0, an error of the second kind is of practical importance whenever θ [image: images] θ1; for values θ between θ0 and θ1 we do not care particularly which decision is made. In such a situation we shall want a test procedure for which the probability of committing an error of the first kind is less than or equal to some preassigned value α whenever θ [image: images] θ0, and the probability of committing an error of the second kind does not exceed a preassigned value β whenever θ [image: images] θ1. These conditions will be satisfied by the sequential probability ratio test of strength (α, β) for testing the hypothesis that θ = θ0 against the single alternative hypothesis that θ = θ1. The probability density of the sample (x1, …, xn) is given by
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when θ = θ0, and by



[image: images]

when θ = θ1. We continue taking observations as long as B < p1n/p0n < A. If p1n/p0n [image: images] A, we reject the hypothesis that θ [image: images] θ′, and if p1n/p0n [image: images] B we accept the hypothesis that θ [image: images] θ′. Again, we put A = (1 – β)/α and B = β/(1 – α).

4.2.2  Outline of the Test Procedure in the General Case

In testing a composite hypothesis Hω that the parameter point θ lies in a subset ω of the parameter space, the parameter space is again subdivided into three mutually exclusive zones: the zone of preference for acceptance ωa, the zone of preference for rejection ωr, and the zone of indifference. The zone of preference for acceptance will now consist of more than one parameter point, as distinguished from the case of testing a simple hypothesis.

For any test procedure the probability of an error of the first kind (rejecting Hω when Hω is true) will, in general, vary with the parameter point in ω. For any parameter point θ in ω we shall denote by α(θ) the probability that Hω will be rejected when θ is true. Similarly, the probability of an error of the second kind (accepting Hω when it is false) is a function β(θ) defined for all points θ outside ω.

According to the requirements formulated in Section 2.3.2, we shall want a test procedure such that α(θ) will not exceed a preassigned value α for all θ in the zone ωa, and β(θ) will not exceed a preassigned value β for all θ in the zone ωr. Before discussing the problem of finding a proper test procedure satisfying these requirements, we shall again consider, as in the case of the simple hypothesis, the following modified problem: Let wa(θ) and wr(θ) be two non-negative functions of θ, called weight functions, such that11
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Suppose that we wish to construct a sequential test such that the weighted average [image: images] of the probabilities of errors of the first kind is equal to a given value α, and the weighted average [image: images] of the probabilities of errors of the second kind is a given value β.

A proper sequential test satisfying these modified requirements can be constructed as follows. Let p0n and p1n be defined by
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and



[image: images]

where f(x, θ1, …, θk) denotes the probability distribution of x when θ is true. The functions p0n and p1n can be interpreted as probability distributions of the sample (x1, …, xn). Denote by H0* the hypothesis that the distribution of the sample (x1, …, xn) is given by (4:16), and by H1* the hypothesis that the distribution of (x1, …, xn) is given by (4:17). The sequential probability ratio test of strength (α, β) for testing H0* against H1* provides a solution to our problem. If the constants A and B in this sequential test are chosen so that the probability is α that we reject H0* when H0* is true, and the probability is β that we accept H0* when H1* is true, then for this sequential test we have
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and
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To make the strength of the test of H0* against H1* equal to (α, β), again, for practical purposes, we may put A = (1 – β)/α and B = β/(1 – α).

To construct a sequential test procedure satisfying the requirements
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and
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we shall restrict ourselves to sequential probability ratio tests for which p0n and p1n are given by (4:16) and (4:17), respectively, and wa(θ) and wr(θ) may be any weight functions satisfying (4:15). Denote by C the class of all such tests corresponding to all possible weight functions wa(θ) and wr(θ). To select a proper test from the class C which satisfies the requirements (4:18) and (4:19), our procedure will be similar to that in the case of simple hypotheses, as discussed in Section 4.1.3. A test in class C is uniquely determined by the choice of the constants A and B and by the weight functions wa(θ) and wr(θ). Thus, the maximum of α(θ) with respect to θ in the zone ωa, as well as the maximum of β(θ) with respect to θ in the zone ωr, is determined uniquely by A, B, wa(θ), and wr(θ). Denote these maxima by α[A, B, wa, wr] and β[A, B, wa, wr], respectively. For given values A and B, the weight functions wa(θ) and wr(θ) may be regarded the more desirable the smaller they make α[A, B, wa, wr] and β[A, B, wa, wr]. Thus, if it is possible to find weight functions wa(θ) and wr(θ) for which both α[A, B, wa, wr] and β[A, B, wa, wr] are simultaneously minimized, they may be regarded as optimum weight functions. It is shown in Section A.9 that in some important special cases, such as testing the mean of a normal distribution with unknown variance, optimum weight functions of the type described above do exist. However, it is not known whether they generally exist. If it is not possible to minimize both α[A, B, wa, wr] and β[A, B, wa, wr] simultaneously, it may be reasonable to choose wa(θ) and wr(θ) such that some average of the two values α[A, B, wa, wr] and β[A, B, wa, wr], or the maximum of these two values, is minimized.

If the principle described above for choosing the weight functions wa(θ) and wr(θ) is adopted, the maximum of α(θ) in the zone ωa and the maximum of β(θ) in the zone ωr will depend only on A and B. Finally the constants A and B are determined so that these two maxima are equal to α and β, respectively.

There is no general method yet available for constructing weight functions wa(θ) and wr(θ) which are optimum in the sense defined above. In some special cases, however, such weight functions have been constructed.12

4.2.3  Application of the General Procedure to Testing the Mean of a Normal Distribution with Unknown Variance (Sequential t-Test)

A frequent and important problem in applications is that of testing the hypothesis H that the unknown mean θ of a normal distribution is equal to some specified value θ0 when nothing is known about the variance σ2 of the distribution. If the true value θ differs only slightly from θ0, i.e., if |θ – θ0| is only a small fraction of the standard deviation σ, the acceptance of H will usually not be considered an error of practical consequence. However, the importance of an error committed by accepting H when θ ≠ θ0 will, in general, increase with increasing value of [image: images]. Thus, it will be possible to find a positive value δ such that the acceptance of H is considered an error of practical importance only when [image: images]. Accordingly, the three zones in the parameter space will be defined as follows. The zone ωa of preference for acceptance consists of all points (θ, σ) for which θ = θ0, i.e., ωa consists of all points (θ0, σ) where σ can take any positive value. The zone ωr of preference for rejection consists of all points (θ, σ) for which [image: images]. Finally the zone of indifference contains all points (θ, σ) for which [image: images].

The probability density of a sample (x1, …, xn) drawn from a normal distribution with mean θ and standard deviation σ is given by
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As in the general procedure described in the preceding section, the test procedure will be based on the ratio p1n/p0n where p0n is some weighted average value of pn corresponding to various points (θ, σ) in ωa, and p1n is some weighted average of pn corresponding to various points (θ, σ) in ωr. It is shown in Section A.9 that by choosing the weight functions wa(θ) and wr(θ) according to the principles described in the preceding section we are led to the following ratio:13
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The test procedure is then carried out as follows. Additional observations are taken as long as B < p1n/p0n < A. The hypothesis H is rejected if p1n/p0n [image: images] A and the hypothesis H is accepted if p1n/p0n [image: images] B. To satisfy the requirements (4:18) and (4:19) for practical purposes we may let A = (1 – β)/α and B = β/(1 – α).

4.2.4  A Particular Class of Problems Treated by Girshick 14

A class of problems treated by M. A. Girshick may be formulated as follows. Let x1 and x2 be two independent random variables. The distribution (elementary probability law) of x1 is given by f(x1, θ1) and that of x2 by f(x2, θ2), where the function f is known but the values of the parameters θ1 and θ2 are unknown. The problem is to test the hypothesis H that θ1 [image: images] θ2 against the alternative hypothesis H′ that θ1 > θ2.

The type of problem described above occurs frequently in applications. For example, let x denote some quality characteristic, such as hardness, tensile strength, or weight, of a manufactured product. Suppose that the distribution of x in the population of units produced has a known functional form f(x, θ), but the value of the parameter θ is unknown. Suppose, furthermore, that there are two competing processes of production under consideration by the manufacturer. Let θ1 denote the value of θ when process 1 is used, and θ2 when process 2 is used. Both values, θ1 and θ2, are unknown. If the product is considered the more desirable the greater the value of θ, the problem of deciding between the two competing processes reduces to that of testing the hypothesis H that θ1 [image: images] θ2. Process 1 is chosen if H is rejected, and process 2 is chosen if H is accepted.

The following procedure for testing the hypothesis H has been proposed by Girshick. We choose a particular value [image: images] of θ1 and a particular value [image: images] of θ2 where [image: images]. Let H0 denote the hypothesis that the joint distribution of x1 and x2 is given by [image: images], and let H1 be the alternative hypothesis that the joint distribution of x1 and x2 is given by [image: images]. We then set up the sequential probability ratio test for testing the simple hypothesis H0 against the simple alternative H1. The hypothesis H is accepted or rejected accordingly as the sequential probability ratio test leads to the acceptance or rejection of H0. Thus, to carry out the test procedure, two constants A and B are chosen and the ratio
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is computed at each stage of the experiment. Here xiα denotes the ath observation on xi (i = 1, 2). It is assumed that the observations are taken in pairs, where each pair consists of an observation on x1 and an observation on x2. Experimentation is continued as long as the ratio p1m/p0m lies between B and A. The hypothesis H is accepted if p1m/p0m [image: images] B, and the hypothesis H is rejected if p1m/p0m [image: images] A.

It has been shown by Girshick that in many important cases the above test procedure will have the following property: There exists a function v = v(θ1, θ2) such that v may be regarded as a reasonable measure of the difference between θ1 and θ2, and the probability of accepting H depends only on the value of v. The function v satisfies, furthermore, the conditions: (1) v(θ1, θ2) = 0 when θ1 = θ2; (2) v(θ1, θ2) < 0 when θ2 > θ1; (3) v(θ1, θ2) = –v(θ2, θ1).

If a function v with the above properties exists, the choice of the four quantities [image: images], [image: images], A, and B may be made on the basis of the following considerations: Let δ be a positive value such that the acceptance of H is regarded as an error of practical importance whenever v [image: images] δ, the rejection of H is regarded as an error of practical importance whenever v [image: images] –δ; for values v between –δ and δ we do not care particularly which decision is made. Thus, we shall want a test procedure for which the probability of rejecting H will not exceed a preassigned value α whenever v [image: images] –δ and the probability of accepting H will not exceed a preassigned value β whenever v [image: images] δ. The test procedure will have the desired properties if the quantities [image: images], [image: images], A, and B are chosen so that [image: images] and the sequential probability ratio test for testing H0 against H1 has the strength (α, β). For all practical purposes we may let A = (1 – β)/α= and B = β/(1 – α).

As an illustration, we shall consider the following example. Suppose that one of two production processes is to be chosen. Suppose, further, that the quality characteristic under consideration is normally distributed with known mean and unknown standard deviation cri when process 1 is used, and that the distribution is normal with the same mean but unknown standard deviation σ2 when process 2 is used. The process that leads to a smaller standard deviation is preferred. Thus, the manufacturer is interested in testing the hypothesis H that σ1 [image: images] σ2. There is no loss of generality in assuming that the known means are equal to 0. Let H0 be the hypothesis that [image: images] and [image: images], and H1 the hypothesis that [image: images] and [image: images]. Then the probability ratio for testing H0 against H1 is given by



[image: images]

where xiα denotes the αth observation from the population corresponding to process i.

As Girshick has shown, the probability that the sequential probability ratio test of H0 against H1 will terminate with the acceptance of H0 depends only on the value of
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This quantity may be regarded as a reasonable measure of the deviation of σ1 from σ2. Suppose we want a test procedure satisfying the following conditions: The probability of rejecting H should not exceed α whenever [image: images], and the probability of accepting H should not exceed β whenever [image: images]. Then we choose [image: images] and [image: images] so that
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The probability ratio given in (4:23) becomes then equal to
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When [image: images] is used instead of [image: images], the test procedure can be carried out as follows. We continue taking pairs of observations as long as
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We accept H if
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and reject H if



[image: images]



1 Fur values θ on the boundary of ω it will usually be inconsequential which action is taken.

2 In this connection see Section 2.3.2.

3 The weight function w(θ) may also be discrete. A single formula valid for both, continuous and discrete, weight functions could be given by using Stieltje’s integrals in (4:1) and (4:2).

4 The distribution of the sample (x1, …, xn) will be precisely given by p1n if we assume that θ in ωr has a probability distribution given by the density function w(θ).

5 Although the successive observations x1, x2, …, etc., are not independent when H1 is true (p1n cannot be represented as a product of n factors where the αth factor depends only on xα), the results and conclusion in Sections 3.2 and 3.3 remain valid, as pointed out in Section 3.2.

6 Instead of defining p1n by some weighted average of the type given in (4:4), it would seem equally reasonable to define p1n as the maximum of f(x1, θ) … f(xn, θ) with respect to θ where θ is restricted to points in ωr. Then the ratio p1n/p0n would coincide with the so-called likelihood ratio introduced by J. Neyman and E. Pearson and widely used in current test procedures. Our reason for preferring weighted averages is that the theory of such tests seems to be considerably simpler. If p1n were defined by the maximum with respect to θ in ωr, p1n would no longer be a probability distribution.

7 In fact, with good approximation the following relations hold: (1 – β)/α = A and β/(1 – α) = B where [image: images]. Solving these equations with respect to α and β we obtain α = (1 – B)/(A – B) and β = [B(A – 1)]/(A – B). Thus, α and β depend only on A and B.

8 It is assumed here that there is only one unknown parameter θ involved in the distribution of x.

9 Formulas (4:10) and (4:11) are strictly valid only if the lot contains infinitely many units. It is assumed that the lot contains a large number of units so that these formulas can be used with good approximation.

10 This problem is discussed in detail in Part II, Chapter 7.

11 The weight functions wa(θ) and wr(θ) may also be discrete. Formulas valid for both continuous and discrete weight functions could be given by using Stieltje’s integrals in (4:15) and subsequent equations.

12 See Section A. 9.

13 Considerable work on the evaluation of this ratio to bring it to a suitable form for tabulation was done by K. Arnold while he was a member of the Statistical Research Group of Columbia University. Tables for the computation of this ratio have been prepared by the Mathematical Tables Project, New York.

14 M. A. Girshick, “Contributions to the Theory of Sequential Analysis,” The Annals of Mathematical Statistics, Vol. 17 (1946).


 

PART II. APPLICATION OF THE GENERAL THEORY TO SPECIAL CASES 1


Chapter 5. TESTING THE MEAN OF A BINOMIAL DISTRIBUTION (ACCEPTANCE INSPECTION OF A LOT WHERE EACH UNIT IS CLASSIFIED INTO ONE OF TWO CATEGORIES)

5.1  Formulation of the Problem

Let x be a random variable which can take only the values 0 and 1. Denote by p the (unknown) probability that x takes the value 1. We shall deal here with the problem of testing the hypothesis that p does not exceed some specified value p′.

This problem arises, for example, in acceptance inspection of a lot consisting of a large number of units of a manufactured product. Suppose that each unit is classified in one of the two categories: defective and non-defective. We shall assign the value 0 to any non-defective unit and the value 1 to any defective unit. Let p denote the unknown proportion of defectives in the lot. Then the result x of the inspection of a unit drawn at random from the lot can take only the values 1 and 0 with probabilities p and 1 – p, respectively. Usually it will be possible to specify some value p′ such that we would like to accept the lot whenever p [image: images] p′ and we would like to reject the lot whenever p > p′. Thus, the problem of deciding whether the lot is to be accepted or rejected on the basis of a random sample may be formulated as the problem of testing the hypothesis p [image: images] p′ against the alternative hypothesis that p > p′.

Since acceptance inspection of manufactured products is perhaps one of the most important applications of testing the mean of a binomial distribution, in what follows we shall use the terminology customary in acceptance inspection. This, of course, does not mean that the test procedure is not applicable to other cases as well. In the terminology of acceptance inspection, our problem may be stated as follows: A proper sampling plan (test procedure) is to be devised for deciding whether the lot submitted for inspection should be accepted or rejected.

5.2  Tolerated Risks of Making Wrong Decisions

Any sampling plan which does not provide for complete inspection of the lot may lead to a wrong decision. That is, we may accept the lot when p > p′, or we may reject the lot when p [image: images] p′. Since complete inspection is frequently not feasible, or too costly, we are willing to tolerate some risks of making wrong decisions. In order to devise a proper sampling plan, it is necessary to state the maximum risks of wrong decisions that we are willing to tolerate.

If p = p′, the quality of the lot is just on the margin and we are indifferent which decision is made. For p > p′, we prefer to reject the lot and this preference increases with increasing value of p. For p < p′, we prefer to accept the lot and this preference increases with decreasing value of p. If p is only slightly above p′, the preference for rejection is only slight and acceptance of the lot will not be regarded as an error of practical consequence. Similarly, if p is only slightly below p′, rejection of the lot is not a serious error. Thus, it will be possible to specify two values p0 and p1, p0 below p′ and p1 above p′, such that acceptance of the lot is regarded as an error of practical consequence if (and only if) p [image: images] p1, and rejection of the lot is regarded as an error of practical importance if (and only if) p [image: images] p0. If p lies between p0 and p1 we do not care particularly which decision is made.

After the two values p0 and p1 have been chosen, the risks of making wrong decisions which we are willing to tolerate may reasonably be formulated as follows: The probability of rejecting the lot should not exceed some small preassigned value α whenever p [image: images] p0, and the probability of accepting the lot should not exceed some small preassigned value β whenever p [image: images] p1.

Thus, the tolerated risks are characterized by four numbers, p0, p1, α and β. The choice of these four quantities is not a statistical problem. They will be selected on the basis of practical considerations in each particular case. A proper sampling plan can be determined, as will be shown in the next section, after these four quantities have been chosen.

5.3  The Sequential Probability Ratio Test Corresponding to the Quantities p0, p1, α and β

5.3.1  Derivation of Algebraic Formulas for the Test Criterion

A sampling plan satisfying the conditions that the probability of rejecting the lot does not exceed α whenever p [image: images] p0, and the probability of accepting the lot does not exceed β whenever p [image: images] p1, is given by the sequential probability ratio test of strength (α, β) for testing the hypothesis p = p0 against the hypothesis p = p1. This test is defined as follows (see Section 3.1): Let xi denote the result of the inspection of the ith unit; that is, xi = 1 if the ith unit inspected is found defective, and xi = 0 otherwise. If p denotes the proportion of defectives in the lot, the probability of obtaining a sample equal to the observed (x1, …, xm) is given by



[image: images]

where dm denotes the number of defectives in the first m units inspected.2 Under the hypothesis that p = p1 the probability (5:1) becomes equal to
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and under the hypothesis that p = p0 the probability (5:1) becomes equal to
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The sequential probability ratio test is carried out as follows. At each stage of the inspection, at the inspection of the mth unit for each positive integral value m, we compute
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Inspection is continued as long as
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Inspection is terminated the first time that (5:5) does not hold. If at this final stage we have
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the lot is rejected, and if
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the lot is accepted.3

Inequalities (5:5), (5:6), and (5:7) can easily be seen to be equivalent to the following inequalities:
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and



[image: images]

For each value of m we shall denote the right-hand member of (5:10) by am and call it acceptance number. Similarly, we shall denote the right-hand member of (5:9) by rm and call it rejection number. For purposes of practical computations, the use of the inequalities (5:8), (5:9), and (5:10) seems to be much more convenient than the use of the original inequalities (5:5), (5:6), and (5:7).4 On the basis of inequalities (5:8), (5:9), and (5:10), the sequential probability ratio test is carried out as follows. At each stage of the inspection we compute the acceptance number am and the rejection number rm. Inspection is continued as long as am < dm < rm. The first time that dm does not lie between the acceptance and rejection numbers, inspection is terminated. If dm [image: images] rm the lot is rejected, and if dm [image: images] am the lot is accepted.

5.3.2  Tabular Procedure for Carrying Out the Test

The acceptance number
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and the rejection number
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depend only on the quantities p0, p1, α, and β. Thus, they can be computed and tabulated before inspection starts. If am is not an integer, we may replace it by the largest integer < am. Similarly, if rm is not an integer, we may replace it by the smallest integer > rm.

As an illustration, consider the following example. Let p0 = .1, p1 = .3, α = .02, and β = .03. The acceptance and rejection numbers, as well as the results of the observations, in an experiment are given in Table 5. In this example, inspection is terminated at m = 22 with the rejection of the lot.

TABLE 5
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5.3.3  Graphical Procedure for Carrying Out the Test

The test procedure can also be carried out graphically. The number m of observations is measured along the horizontal axis and the number dm of defects along the vertical axis. The points (m, am) lie on a straight line L0, since am is a linear function of m. Similarly the points (m, rm) lie on a straight line L1. The intercept of L0 is given by
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and the intercept of L1 is given by
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The lines L0 and L1 are parallel and the common slope is equal to
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The two straight lines L0 and L1 are drawn before inspection starts. The points (m, dm) are plotted as inspection goes on. We continue inspecting additional units as long as the point (m, dm) lies between the lines L0 and L1. Inspection is terminated the first time that the point (m, dm) does not lie between the lines L0 and L1. If (m, dm) lies on L0 or below, the lot is accepted. If (m, dm) lies on L1 or above, the lot is rejected.

Figure 11 shows the graphical procedure for the example given in Section 5.3.2.
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FIG. 11



5.4  The Operating Characteristic (OC) Function L(p) of the Test5

5.4.1  Determination of L(p) for Some Special Values of p

As defined in Section 2.2.1, the value of the OC function L(p) for each p is equal to the probability that the lot will be accepted when p is the true proportion of defectives in the lot. One can easily verify that
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Since the test procedure is so set up that the probability is 1 – α that the lot will be accepted when p = p0, and the probability is β that the lot will be accepted when p = p1, we have
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When
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we obtain from equation (3:43)
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where h0 and h1 are the intercepts of the lines L0 and L1.6

Thus, five points on the OC curve corresponding to p = 0, 1, p0, p1, and s can immediately be determined. Since L(p) is monotonically decreasing with increasing p, the five points will determine fairly closely the shape of the whole OC curve. This will frequently be sufficient for practical purposes and there will be no need to compute L(p) for additional values of p.

5.4.2  Determination of L(p) over the Whole Range of p

It has been shown in Chapter 3, equations (3:45) and (3:46), that7



[image: images]

where h is determined by the equation
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To compute the OC curve, it is not necessary to solve equation (5:20) in h. For any arbitrarily chosen value h, the values of p and L(p) may be computed from (5:19) and (5:20). The point [p, L(p)] computed in this way will be a point on the OC curve. The OC curve can be drawn by plotting a sufficiently large number of points [p, L(p)] corresponding to various values of h. Figure 12 shows a typical OC curve.
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FIG. 12



The range of h in (5:19) and (5:20) is from – ∞ to + ∞. It can be verified that the right-hand member of (5:19) is increasing with increasing h, and the right-hand member of (5:20) is decreasing with increasing h. The five values of p considered in Section 5.4.1, that is, p = 0, p0, s, p1, 1, correspond to the values of h = + ∞, 1, 0, – 1, – ∞, respectively, as can be seen from (5:20). Letting h = + ∞, 1, 0, – 1, – ∞ in (5:19), we obtain the corresponding five values of L(p) which coincide with those given in Section 5.4.1.

If the part of the OC curve corresponding to positive values of h has been determined, the computation of the part of the OC curve corresponding to negative values of h can be simplified.8 To show this, let h be a given positive value and let [p, L(p)] be the corresponding point on the OC curve. Let [p′, L(p′)] denote the point on the OC curve corresponding to –h. Then we have
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Similarly,
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Thus, the point [p′, L(p′)] corresponding to –h can be computed from the point [p, L(p)] corresponding to h by using the simple relations [image: images] and [image: images].

5.4.3  Exact Formula for L(p) When the Reciprocal of the Slope of the Decision Lines Is an Integer

The quantity z, i.e., the logarithm of the probability ratio for a single observation, can take only the values log (p1/p0) and log [(l – p1)/(1 – p0). It follows from (5:15) that
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where s is the slope of the decision lines. Assume that 1/s is an integer. Then the two values of z are integral multiples of d = log [(1 – p0)/(l – p1)], namely, –d and [(1/s) – 1]d, and the results in the last part of Section A.4 can be used to determine the exact OC curve.9 On the basis of these results one can show that
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where A and B are the constants used in the sequential test,10 the symbol [k] denotes the smallest integer [image: images] k, and [image: images] are the roots of the equation
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A different method for deriving an exact formula for L(p) was given by M. A. Girshick in The Annals of Mathematical Statistics, Vol. 17 (1946). His method does not require the computation of the roots [image: images].

5.5  The Average Sample Number (ASN) Function of the Test

Let n denote the number of observations required by the test procedure. Then n is a random variable, since it depends on the outcome of the observations. The expected value of n depends on the proportion of defectives in the lot and is denoted by Ep(n). This can be plotted as a curve, p being measured along the horizontal axis and Ep(n) along the vertical axis. A typical ASN curve is shown in Fig. 13. This curve is called the ASN curve of the test (see Section 2.2.2 for a general definition of the ASN curve).




[image: images]

FIG. 13



The general formula for the ASN function of a sequential probability ratio test is derived in Section 3.5. The approximation formula (3:57) applied to the binomial case gives 11
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where A = (1 – β)/α, B = (β/(1 – α), and L(p) denotes the probability that inspection terminates with, the acceptance of the lot. Using this formula, we shall compute Ep(n) for p = 0, p0, p1, and 1. Since L(0) = 1, the value of Ep(n) is given by



[image: images]

when p = 0. For p = p0, we have L(p) = 1 – α and we obtain from (5:23)
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For p = p1 we have L(p) = β and we obtain from (5:23)
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Since L(1) = 0, we obtain from (5:23)
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when p = 1.

Using formula (A:99) in the Appendix, we can compute the value of Ep(n) when p is equal to the common slope s of the acceptance and rejection lines, i.e., when 12
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From (A:99) we obtain
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where Es(z2) is the expected value of z2 and z is a random variable which can take only the values log (p1/p0) and log [(1 – p1)/(1 – p0)]

with probabilities s and 1 – s, respectively. Thus
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From (5:28) and (5:29) we obtain
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The determination of the five points of the OC curve, as given in (5:24), (5:25), (5:26), (5:27), and (5:30), may frequently suffice in practice, since these five points already give a fairly good idea of the shape of the whole curve. The ASN curve generally increases as p increases from 0 to p0, and decreases as p increases from p1 to 1. In the interval (p0, p1) the ASN curve generally increases as p increases from p0 to some value p′, and decreases as p increases from p′ to p1. The value p′ is generally equal to s or is very near s.

If it is desired to plot the ASN curve over the Avhole range of p, it is necessary first to compute the OC function L(p). The value of Ep(n) can then easily be determined from (5:23) for any value p.

5.6  Observations Taken in Groups

5.6.1  General Discussion

For practical reasons it may sometimes be preferable to take the observations in groups, rather than singly. That is, the test procedure is carried out as follows. A group g1 consisting of v units is drawn from the lot. If the number of defectives dv in this group g1 is less than or equal to the acceptance number av, inspection terminates with the acceptance of the lot. If dv is greater than or equal to the rejection number rv, inspection terminates with the rejection of the lot. If av < dv < rv, a second group g2 of v units is drawn. Again, the lot is accepted if the total number of defectives d2v in the two groups is less than or equal to a2v, the lot is rejected if d2v [image: images] r2v, and a third group g3 of v units is drawn if a2v < d2v < r2v. This process is continued until either rejection or acceptance of the lot is decided. Thus, when the observations are taken in groups of v units, the number dm of defectives found is compared with the corresponding acceptance number am and rejection number rm only for m = v, 2v, 3v, …, etc.

The purpose of this section is to make some comments on the effect of grouping on the OC and ASN curves of the sampling plan. Clearly, grouping can only increase the number of observations required by the test. For, suppose that inspection terminates at the nth unit when observations are taken singly. If n is equal to an integral multiple of v, i.e., n = kv, then the number of groups inspected, when observations are taken in groups, will be precisely equal to k, and the total number of units inspected will be the same as when observations are taken singly. However, if kv < n < (k + l)v, grouping will cause an increase in the amount of inspection, since we shall have to inspect at least (k + 1) groups, that is, at least (k + l)v units. It may even happen that we shall have to inspect more than (k + 1) groups. This will be the case when dn lies outside the interval (an, rn), but a(k + 1)v < d(k + 1)v < r(k + 1)v. Thus, the increase in the expected number of units inspected caused by grouping may even exceed v in some cases.

Regarding the effect of grouping on the OC curve, the following remarks may be made. Putting A = (1 – β/α and B = β/(1 – α), the probability α′ of rejecting the lot when p = p0 and the probability β′ of accepting the lot when p = p1 will be only approximately equal to α and β, respectively, even if the observations are taken singly. This was pointed out in Section 3.3, where the following inequalities were derived:
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It can easily be verified that these inequalities also remain valid when the observations are taken in groups. The quantities α and β are usually very small and α/(1 – β) and β/(1 – α) are very nearly equal to α and β, respectively. Thus, also in case of grouping, the realized values α′ and β′ cannot exceed the intended values α and β, respectively, except by an exceedingly small quantity which can be neglected for all practical purposes. This means that, for all practical purposes, grouping will not decrease the protection against wrong decisions provided by the test. The only possible effect of practical significance that may be caused by grouping is that it may make α′ or β′ substantially smaller than the intended values α and β. This feature of grouping compensates, to some extent, for the increase in the number of observations.

It may be of interest to remark that, if the number v of units in a group is equal to the reciprocal of the common slope s of the acceptance and rejection lines and if the intercepts of these lines are integers, the OC curve is not affected at all by grouping.13 This can be seen as follows: Because s = 1/d, we have am+d = am + 1 and rm+d = rm + 1. Furthermore, since the intercepts of the acceptance and rejection lines are assumed to be integers, am and rm have integral values for any m which is an integral multiple of v. If item-by-item inspection leads to acceptance of the lot at the nth item, then n must be an integral multiple of v, and therefore inspection in groups of v will also lead to acceptance. If item-by-item inspection leads to rejection of the lot at the nth item, then we have dn [image: images] rn. Let n′ be the smallest integral multiple of v greater than or equal to n. Then dn = rn′, since dn is an integer, dn – rn [image: images] 1, and rn′ – rn [image: images] 1. Hence dn′ [image: images] rn′ and inspection in groups will also terminate with rejection of the lot. Thus, inspection in groups leads to exactly the same decision as item-by-item inspection and consequently grouping does not affect the OC curve.

5.6.2  Upper and Lower Limits for the Effect of Grouping on the OC and ASN Curves

Upper and lower limits for the effect of grouping on the OC and ASN curves can be obtained by considering the following three auxiliary sequential sampling plans. Let h0 be the intercept of the acceptance line, h1 the intercept of the rejection line, and s the common slope in the given sampling plan. The first auxiliary plan is obtained by changing h0 to h0* = h0 – vs and leaving h1 and s unchanged. The second auxiliary plan is obtained by changing h1 to h1* = h1 + vs, leaving h0 and s unchanged. Finally, the third auxiliary plan corresponds to the intercepts h0*, h1*, and slope s. Let Li(p) denote the OC function and Epi(n) the ASN function of the auxiliary plan i, when item-by-item inspection is used (i = 1, 2, 3). Furthermore, let L(p) denote the OC function and Ep(n) the ASN function of the given plan when item-by-item inspection is used. When inspection is made in groups the OC and ASN functions are affected,14 and we shall denote them by L(p) and Ep(n) respectively.

It can easily be seen that whenever the first auxiliary plan (using item-by-item inspection) leads to the acceptance of the lot, the original plan (taking observations in groups) also leads to acceptance. The converse is, however, not necessarily true. That is, it may happen that the auxiliary plan leads to rejection of the lot, whereas the original plan leads to acceptance. Thus, we have
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Similarly, one can verify that whenever the second auxiliary plan (using item-by-item inspection) leads to rejection of the lot, the original plan (using grouping) also leads to rejection. Hence
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This can be written as
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From (5:32) and (5:34) we obtain
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To derive an upper limit for Ep(n) we shall make use of the third auxiliary plan. If this plan (using item-by-item inspection) terminates at the inspection of the nth unit, the original plan (using grouping) must terminate at the latest with the inspection of the group in which the nth item is included.15 Hence, the number n′ of units inspected when the original plan is used cannot exceed n + v. From this it follows that
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Since Ep(n) [image: images] Ep(n), we obtain the limits
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Limits for L(p) and Ep(n) could also be derived by using the method described in Sections A.2.3 and A.3.1 of the Appendix. The limits given in (5:35) and (5:37) will be rather close when p1/p0 and (1 – p1)/(1 – p0) are near 1 and vs does not exceed 1.

5.7  Truncation of the Test Procedure

The sequential sampling plan does not provide any definite upper bound for the number n of units to be inspected. Any large value of n is possible, but the probability is small that n will exceed twice or three times its expected value. It is sometimes desirable to set a definite upper bound n0 for n, excluding even a small probability that n may exceed n0. This can be done by truncating the sequential process at n = n0. That is to say, we terminate the process at n = n0 even if the regular sequential rule does not lead to a final decision for n [image: images] n0. The following seems to be a reasonable rule for deciding acceptance or rejection of the lot at n = n0 if no decision is reached for n [image: images] n0 with the regular sequential procedure: If dn0 [image: images] (an0 + rn0)/2 we reject the lot, and if dn0 < (an0 + rn0)/2 we accept the lot.

Truncation and its effect on the OC curve are discussed in Section 3.8. If n0 is put as high as three times the expected value of n, the effect of truncation on the OC curve is negligibly small, since the probability is nearly 1 that the regular sequential procedure will terminate for n < n0.



1 The special cases treated here are discussed mainly to illustrate the general theory and to bring out points of theoretical interest specific to these applications. Accordingly, computational procedures and simplifications are not stressed much and hardly any tables are given. A more detailed and non-mathematical discussion of these applications, together with a number of tables, charts, and computational simplifications, is contained in “Sequential Analysis of Statistical Data: Applications,” a report prepared by the Statistical Research Group of Columbia University and published by Columbia University Press, Sept., 1945. This report will be referred to hereafter simply as SRG 255.

2 The lot is assumed to be sufficiently large so that the successive observations x1, x2, ‖, etc., may be regarded as independent.

3 There is a slight approximation involved in the use of the constants log [β/(1 – α)] and log [(1 – β)/α]. For further details see Section 3.3.

4 The use of the inequalities (5:8), (5:9), and (5:10) instead of (5:5), (5:6), and (5:7) was first suggested by J. H. Curtiss. In SRG 255 similar transformations of the inequalities defining the test procedure have been used in other problems as well.

5 The formulas given in this section involve an approximation caused by neglecting the excess of dm over the boundaries am and rm at the termination of the test procedure. For details see Sections 3.4 and A.2.3. An exact formula for L(p) is given in Section 5.4.3 for the special case in which the slope s of the decision lines is equal to the reciprocal of an integer.

6 When p = s, the value of h in formula (3:43) is equal to 0. The limiting value of the right-hand member of (3:43), when h → 0, is equal to [image: images] which is equal to the right-hand member of (5:18), since A = (1 – β)/α and B = β/(1 – α).

7 In the formulas given in SRG 255, p. 2.50, the quantities p and L(p) are expressed in terms of another parameter x which is functionally related to h.

8 A similar simplification is given in SRG 255, p. 2.50, with reference to the parameter x used there.

9 To reduce this case to the case discussed in the last part of Section A.4, one merely has to consider the test corresponding to z*, A*, and B* where z* = –z, log A* = – log B and log B* = – log A.

10 To obtain a test of strength (α, β), we used the approximate values A = (1 – β)/α and B = β/(1 – α).

11 The right-hand member of (5:23) can be expressed as a function of L(p), the intercepts, and the slope of the decision lines. See SRG 255, p. 2.63.

12 The value s of p corresponds to the value θ′ in formula (A:99). It can be shown that s lies between p0 and p1. Formula (A:99), and therefore also (5:28), involves an approximation caused by neglecting the excess of the cumulative sum over the boundaries.

13 See also SRG 255, p. 2.30.

14 Except, in the case of the OC function, when the number of units in the group is the reciprocal of the slope, as stated in Section 5.6.1.

15 It is possible, of course, that inspection terminates with an earlier group.


Chapter 6. TESTING THE DIFFERENCE BETWEEN THE MEANS OF TWO BINOMIAL DISTRIBUTIONS (DOUBLE DICHOTOMIES)

6.1  Formulation of the Problem

Suppose that we want to compare the effectiveness of two production processes where the effectiveness of a production process is measured in terms of the proportion of effective units in the sequence produced. We shall say that a unit is effective if it has a certain desirable property, for example, if it withstands a certain strain. Let p1 be the proportion of effectives if process 1 is used, and p2 the proportion of effectives if process 2 is used. In other words, p1 is the probability that a unit produced will be effective if process 1 is used, and p2 is the probability that a unit produced will be effective if process 2 is used. Suppose that the manufacturer does not know the values of p1 and p2, and that process 1 is in operation. If p1 [image: images] p2, the manufacturer wants to retain process 1. However, if p1 < p2, especially if p1 is substantially smaller than p2, the manufacturer would like to replace process 1 by process 2. Thus, we are interested in testing the hypothesis that p1 [image: images] p2 against the alternative that p1 < p2.

A more general formulation of the problem can be stated as follows. Consider two binomial distributions. Let p1 be the probability of a success in a single trial according to the first binomial distribution, and let p2 be the probability of a success in a single trial according to the second binomial distribution. We shall use the symbol 1 for success and the symbol 0 for failure. Suppose that the probabilities p1 and p2 are unknown. We consider the problem of testing the hypothesis that p1 [image: images] p2 on the basis of a sample consisting of N1 observations from the first binomial distribution and N2 observations from the second binomial distribution. Since in many experiments the case N1 = N2 is mainly of interest, and since this case (as we shall see later) makes an exact and simplified mathematical treatment of the problem possible, in what follows we shall assume that N1 = N2 = N (say). Thus, on the basis of the outcome of the two series of N independent trials we have to decide whether the hypothesis p1 [image: images] p2 should be accepted or rejected.

6.2  The Classical Method

The classical solution of the problem for large N is given as follows. Let S1 be the number of successes in the first set of N trials (drawn from the first binomial distribution), and let S2 be the number of successes in the second set of N trials (drawn from the second binomial population). Denote (S1 + S2)/2N by p and 1 – p by q. Then for large N the expression

[image: images]

is normally distributed with zero mean and unit variance if p1 = p2. Suppose that the level of significance we wish to choose is α. Let λα be the value for which the probability that a normal variate with zero mean and unit variance will exceed λα is equal to α. (For example, if α = .05, λα = 1.64.) Thus, if p1 = p2, the probability that the expression (6:1) will exceed λα is equal to α. If p1 > p2, the probability that the expression (6:1) will exceed λα is less than α. According to the classical method, the hypothesis that p1 [image: images] p2 is rejected if the observed value of (6:1) exceeds λα. This method involves an approximation, since the distribution of (6:1) is not exactly normal (for small N it is far from normal). For small N an exact method has been proposed by R. A. Fisher which, however, involves cumbersome calculations. In Section 6.3 we shall suggest another (non-sequential) method which is exact and is fairly simple to apply as far as computations are concerned. The latter method has the further advantage of being suitable for sequential analysis, to which existing methods are not readily adaptable.

6.3  An Exact Non-Sequential Method

Let a1, …, aN be the results in the first set of N trials, and b1, …, bN the results in the second set of N trials. These results are arranged in the order observed. Consider the sequence of N pairs:
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Let t1 be the number of pairs (1,0) and t2 the number of pairs (0, 1) in this sequence. We consider only the pairs (0, 1) and (1,0) and base the test on them.

Let a be the outcome of an observation from the first population, and b the outcome of an observation from the second population. The probability that (a, b) = (1, 0) is equal to p1(l – p2), and the probability that (a, b) = (0, 1) is equal to (1 – p1)p2. Hence, knowing that (a, b) is equal to one of the pairs (0, 1) and (1,0), the (conditional) probability that it is equal to (0, 1) is given by
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and the (conditional) probability that it is equal to (1,0) is given by



[image: images]

Hence, when only the pairs (1,0) and (0, 1) are considered, the variate t2 is distributed like the number of successes in a sequence of t = t1 + t2 independent trials, the probability of a success in a single trial being equal to p. One can easily verify that p = 1/2 if p1 = p2, p < 1/2 if p1 > p2, and p > 1/2 if p1 < p2. Thus, the hypothesis to be tested, i.e., the hypothesis that p1 [image: images] p2, is equivalent to the hypothesis that p [image: images] 1/2. Thus, we can test the hypothesis that p1 [image: images] p2 by testing the hypothesis that p [image: images] 1/2 on the basis of the observed value of t2. Since the distribution of t2 is the same as the distribution of the number of successes in t = t1 + t2 independent trials (t is treated as a constant and the probability of a success in a single trial is equal to p), the test procedure can be carried out in the usual manner. If we want a level of significance α, a critical value T is chosen so that for p = 1/2 the probability that t2 [image: images] T is equal to α. The hypothesis that p [image: images] 1/2 is rejected if and only if the observed t2 is greater than or equal to the critical value T. The value of T can be obtained from a table of the binomial distribution. If t is large, t2 is nearly normally distributed, and the critical value T can be obtained from a table of the normal distribution.

This procedure thus provides a simple test of the hypothesis that p1 [image: images] p2. The question arises whether the efficiency of this method is as high as that of the classical method. It would seem that the method suggested here cannot be a most efficient procedure, since the values of t1 and t2 depend on the order of the elements in the sequences (a1, …, aN) and (b1, …, bN), and there is no particular reason to arrange them in the order observed. However, it has been shown 1 that the loss in efficiency as compared with the classical method is negligible if the number N of trials is large.2

It should be pointed out that the procedure for testing the hypothesis that p1 [image: images] p2 can be used also for testing the hypothesis that p1 = p2 if the alternative hypotheses are restricted to p2 > p1.

In addition to simplicity and exactness, the present method seems superior to the classical one in the following respect. Suppose that (contrary to the original assumption) the probability of a success varies from trial to trial. Let [image: images] denote the probability of success in the ith trial of the first set, and let [image: images] denote the probability of success in the ith trial in the second set (i = 1, …, N). Assume that the probabilities [image: images] and [image: images] are entirely unknown and we wish to test the hypothesis that [image: images]. In this case the classical method is not applicable, but the present method provides a correct procedure. Such a situation may arise, for instance, if we want to test the hypothesis that the probability of a success (hitting the target) is the same for two different guns. In the course of the experiments the probability of a hit may change because of external conditions such as wind or disposition of the gunner. However, these external conditions are likely to affect both guns equally if the trials are made alternately (or approximately alternately), so that if the two guns are equally good we have [image: images].

6.4  Sequential Test of the Hypothesis That p1 [image: images] p2

6.4.1  Risks That We Are Willing to Tolerate of Making Wrong Decisions

In order to devise a proper sequential test for testing the hypothesis that p1 [image: images] p2, we have to state first what risks of making wrong decisions we are willing to tolerate. The efficiency of production process 1 may be measured by the ratio of effectives to ineffectives produced, i.e., by k1 = p1/(l – p1). Production process 1 may be regarded the more efficient the larger the value of k1. Similarly, the efficiency of production process 2 may be measured by k2 = p2/(1 ‒ p2). The relative superiority of production process 2 over process 1 can ther reasonably be measured by the ratio of k2 to k1, i.e., by



[image: images]

If u = 1, the two processes are equally good. If u > 1, process 2 is superior to process 1, and if u < 1, process 1 is superior to process 2. Thus, the manufacturer will, in general, be able to select two values of u, u0 and u1, say (u0 < u1), such that the rejection of process 1 in favor of process 2 is considered an error of practical importance whenever the true value of u [image: images] u0, and the maintenance of process 1 is considered an error of practical importance whenever u [image: images] u1. If u lies between u0 and u1, the manufacturer does not care particularly which decision is made.

Clearly, we will always have u0 < u1. If the transition from production process 1 to process 2 involves some cost or other inconveniences, it seems reasonable to put u0 = 1 (or u0 may even be slightly greater than 1). This choice of u0 really means that we consider the rejection of process 1 a serious error whenever this process is not inferior to process 2. On the other hand, if the transition from process 1 to process 2 does not involve any inconveniences, the rejection of process 1 in favor of 2 cannot be a serious error when the two processes are equally efficient, i.e., when u = 1. Thus, in such a case it seems reasonable to choose u0 somewhat below 1.

After the quantities u0 and u1 have been chosen the risks that wTe are willing to tolerate may reasonably be expressed in the following form: The probability of rejecting process 1 should not exceed a preassigned value α whenever u [image: images] u0, and the probability of maintaining process 1 should not exceed a preassigned value β whenever u [image: images] u1. Thus, the risks that we are willing to tolerate are characterized by the four quantities u0, u1, α, and β.

6.4.2  The Sequential Probability Ratio Test Corresponding to the Quantities u0, u1, α, and β

After the four quantities u0, u1, α, and β have been chosen, a proper sequential test can be carried out as follows. The (conditional) probability that we obtain a pair (0, 1), as given in (6:3), can be expressed as a function of u. In fact



[image: images]

Let H0 denote the hypothesis that p = u0/(1 + u0), and H1 the hypothesis that p = u1/(1 + u1). A proper sequential test satisfying our requirements concerning tolerated risks is the sequential probability ratio test of H0 against H1. The acceptance and rejection numbers for this sequential test can be obtained from (5:11) and (5:12) by substituting u0/(l + u0) for p0, u1/(1 + u1) for p1, and t = t1 + t2 for m.

Thus, for each value of t the acceptance number is given by



[image: images]

and the rejection number is given by



[image: images]

These acceptance numbers at and rejection numbers rt(t = 1, 2, …) are best tabulated before experimentation starts. The sequential test is then carried out as follows. The observations are taken in pairs where each pair consists of an observation from the first process and an observation from the second process. We continue taking pairs as long as at < t2 < rt. The first time that t2 does not lie between the acceptance and rejection numbers, experimentation is terminated. Process 1 is maintained if at this final stage t2 [image: images] at, and process 1 is rejected in favor of 2 if t2 [image: images] rt.

As an illustration, the following example is given. Let u0 = 1.3, u1 = 3, α = .03, and β = .10. The observed pairs (0, 1) and (1, 0) in an experiment, and the rejection and acceptance numbers, are given in Table 6. In this example, the sampling process is terminated at t = 18 with the retention of process 1.

The test procedure can also be carried out graphically as shown in Fig. 14. The total number t of pairs (0, 1) and (1, 0) is measured along







[image: images]

FIG. 14





the horizontal axis. The points (t, at) will lie on a straight line L0, since at is a linear function of t. The points (t, rt) will he on a parallel line L1. We draw the lines L0 and L1 and plot the points (t, t2) as experimentation goes on. The first time that the point (t, t2) is not within the lines L0 and L1 experimentation is terminated. Process 1 is maintained if at the final stage (t, t2) lies on L0 or below, and process 1 is rejected if (t, t2) lies on L1 or above.

TABLE 6



[image: images]

The intercept of line L0 is given by



[image: images]

and the intercept of L1 is given by



[image: images]

The common slope of the two lines is equal to



[image: images]

6.4.3  The Operating Characteristic Curve of the Test

For any value u of the ratio k2/k1, we shall denote by L(u) the probability of maintaining process 1. Clearly, L(u) is a function of u. This function L(u) is called the operating characteristic function of the test. It can be obtained from equations (5:19) and (5:20) by substituting u0/(1 + u0) for p0 and u1/(1 + u1) for p1. These equations are:3



[image: images]

and



[image: images]

Equation (6:13) can be written as



[image: images]

For any given value h we compute u and L(u) from the equations (6:12) and (6:14). The point [u, L(u)] obtained in this way will be a point of the OC curve. By calculating the points [u, L(u)] for a sufficiently large number of values of h, the OC curve can be drawn.

We shall compute [u, L(u)] for h = –∞, –1, 0, 1, +∞. Since [image: images] and [image: images], we obtain from (6:12) and (6:14)



[image: images]
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Furthermore we obtain



[image: images]

and



[image: images]

For h = 0, the expressions u and L(u) have the form 0/0. The limiting values of u and L(u) when h → 0 can be obtained by differentiating numerator and denominator at h = 0. Then we have



[image: images]

when h = 0.

These five points on the OC curve already determine roughly the shape of the curve. It can be seen that u is a decreasing function of h and L(u) is an increasing function of h. Hence L(u) is a decreasing function of u. As u varies from 0 to u0, L(u) decreases from 1 to 1 – α. In the interval from u0 to u1, L(u) decreases from 1 – α to β, and as u varies from u1 to +∞, the OC function L(u) decreases from β to 0.

6.4.4  The Average Amount of Inspection Required by the Test

For any value u of the ratio k2/k1, let Eu(t) denote the expected value of the total number of pairs (0, 1) and (1,0) required by the test. The value of Eu(t) can be obtained from (5:23) by substituting Eu(t) for Ep(n), L(u) for L(p), u0/(1 + u0) for p0, u1/(1 + u1) for p1 and u/(1 + u) for p. Thus 4



[image: images]

To compute the expected value of the total number of pairs (including also the pairs (0, 0) and (1, 1)), we merely have to divide the right-hand side of equation (6:20) by p1(l – p2) + p2(1 – p1).

Since L(0) = 1 and L(∞) = 0, we obtain from (6:20)
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and



[image: images]

Since L(u0) = 1 – α and L(u1) = β, it follows from (6:20) that



[image: images]

and



[image: images]

In Section 5.5 we have computed the expected value of n when p is equal to the slope of the acceptance and rejection lines. This corresponds to the case when u/(1 + u) = s, i.e., u = s/(l – s), where the slope s is given in (6:11). The value of Eu(t) for u = s/(1 – s) can be obtained from the right-hand member of (5:30), replacing p1 by u1/(l + u1) and p0 by u0/(1 + u0). Thus



[image: images]

The determination of the five values of Eu(t), as given in (6:21) through (6:25), may frequently suffice in practice, since these five points generally give a fairly good idea of the shape of the whole curve.

6.4.5  Observations Taken in Groups

In applications it may happen that, at each stage in the sequential process, instead of drawing a single observation we draw a group of v observations from each of the binomial distributions. Hence, instead of a single pair, we have two groups of v observations. The effect of grouping on the OC and ASN curves has been discussed in Section 5.6 and the results obtained there can be applied to the case under consideration here. If the order of observations in each group of v is recorded, we can establish the number of pairs (0, 1) and the number of pairs (1,0) for each pair of groups of v observations. In such a case the test can be carried out as described in Section 6.4.2, since after each pair of groups of v observations we can compute t and t2. However, if the order of observations in such groups is not recorded, the difficulty arises that we are not able to determine the values of t and t2 needed for the test procedure.

It has been shown 5 that in such a case we may replace t and t2 by certain estimates of t and t2 without affecting seriously the probability of making an incorrect decision. The estimates of t1 and t2 (and thereby also an estimate of t = t1 + t2) are obtained as follows. Let v1 be the number of successes in the group of v observations drawn from the first binomial distribution, and let v2 be the number of successes in the group of v observations drawn from the second binomial distribution. Then for this pair of groups of v observations we estimate the number of pairs (1, 0) to be v1 – (v1v2/v) and the number of pairs (0, 1) to be v2 – (v1v2/v). Thus, an estimate of t1 is obtained by summing v1 – (v1v2/v) over all pairs of groups observed, and that of t2 is obtained by summing v2 – (v1v2/v) over all pairs of groups observed.

For the effect of grouping on the OC and ASN curves, the results of Section 5.6 can be applied, since the test procedure discussed here reduces to that considered in Section 5.6 when p = u/(l + u), m = t1 + t2 = t, and dm = t2.



1 See the author’s report, Sequential Analysis of Statistical Data: Theory, submitted to the Applied Mathematics Panel, National Defense Research Committee, Sept., 1943.

2 The author believes that the loss in efficiency is slight even when N is small, although no exact investigation of this case has been made.

3 In the formulas given in SRG 255, p. 3.38, the quantities u and L(u) are expressed in terms of a “dummy” variable x which is functionally related to h.

4 The right-hand member of (6:20) can be expressed as a function of L(u), the intercepts and the slope of the decision lines. See SRG 255, p. 3.41.

5 See the author’s report, Sequential Analysis of Statistical Data: Theory, submitted to the Applied Mathematics Panel, National Defense Research Committee, Sept., 1943.


Chapter 7. TESTING THAT THE MEAN OF A NORMAL DISTRIBUTION WITH KNOWN STANDARD DEVIATION FALLS SHORT OF A GIVEN VALUE

7.1  Formulation of the Problem

Let x be a random variable which is normally distributed with unknown mean θ and known standard deviation σ. In this section we shall deal with the problem of testing the hypothesis that θ is less than or equal to some specified value θ′.

Such a problem arises frequently, for example, in quality control and acceptance inspection. Suppose that a lot consisting of a large number of units of a manufactured product is submitted for acceptance inspection. The number of units in the lot is assumed to be sufficiently large so that the lot may be treated as containing infinitely many units. Suppose that the result of an observation is a measurement x of some quality characteristic of the unit, such as the weight, or hardness, or tensile strength. The value of x will, in general, vary from unit to unit. It is assumed that x is normally distributed with a known standard deviation σ but unknown mean θ. Suppose, furthermore, that the product is considered the more desirable the smaller the value of θ. Then it will, in general, be possible to designate a particular value θ′ such that we prefer to accept the lot if θ < θ′ and we prefer to reject the lot if θ > θ′. Thus, in such a situation, we are interested in devising a sampling plan to test the hypothesis that θ < θ′.

Since quality control and acceptance inspection is an important field of application for such test procedures, we shall continue the discussion using the terminology of acceptance inspection. This, of course, should not be interpreted as a restriction on the general validity and applicability of the test procedure.

7.2  Tolerated Risks of Making Wrong Decision

If θ = θ′, we are indifferent whether the lot is accepted or rejected. The preference for acceptance increases with decreasing value of θ in the domain θ < θ′, and the preference for rejection increases with increasing value of θ in the domain θ > θ′. Thus, it will be possible, in general, to find two values θ0 and θ1 (θ0 < θ′ and θ1 > θ′) such that rejection of the lot is considered an error of practical consequence if [image: images], and acceptance of the lot is considered an error of practical consequence if [image: images]; for values θ between θ0 and θ1 we do not care particularly which decision is taken. Using the terminology introduced in Section 2.3.1, we may say that the zone of preference for acceptance consists of all values θ for which [image: images], the zone of preference for rejection is the set of all values θ for which [image: images], and the zone of indifference consists of all values θ between θ0 and θ1.

After the two values θ0 and θ1 have been chosen the risks that we are willing to tolerate may reasonably be expressed as follows.1 The probability of rejecting the lot should not exceed a small preassigned value α whenever [image: images], and the probability of accepting the lot should not exceed a small preassigned value β whenever [image: images]. Thus, the risks that we are willing to tolerate are characterized by the four numbers θ0, θ1, α, and β.

7.3  The Sequential Probability Ratio Test Corresponding to the Quantities θ0, θ1, α, and β

The requirements regarding the tolerated risks are satisfied by the sequential probability ratio test of strength (α, β) for testing the hypothesis that θ = θ0 against the alternative that θ = θ1. This sequential test is given as follows. Let x1, x2, …, etc., be the successive observations on x. The probability density of the sample (x, …, xm) is given by
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if θ = θ0, and by



[image: images]

if θ = θ1. The probability ratio p1m/Pom is computed at each stage of the inspection. Additional observations are taken as long as
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Inspection is terminated with the acceptance of the lot if
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Inspection is terminated with the rejection of the lot if



[image: images]

According to Section 3.3 approximate values of A and B are given by (1 – β)/α and β/(1 – α), respectively.

By taking logarithms and simplifying, the inequalities (7:3), (7:4), and (7:5) can be written as



[image: images]
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and



[image: images]

respectively.

Further simplification in carrying out the test procedure can be achieved by adding [image: images] to both sides of the inequalities (7:6), (7:7), and (7:8) and then dividing these inequalities by (θ1 – θ0)/σ2. These operations transform the inequalities (7:6), (7:7), and (7:8) into



[image: images]
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and



[image: images]

respectively.

By using the inequalities (7:9), (7:10), and (7:11) the inspection plan may be carried out as follows. For each m compute the acceptance number



[image: images]

and the rejection number



[image: images]

These acceptance and rejection numbers are best computed before inspection starts. Inspection is continued as long as am <  Σxα < rm. At the first time when Σxα does not lie between am and rm, inspection is terminated. The lot is accepted if [image: images], and the lot is rejected if [image: images].

As an illustration, consider the following example. Let θ0 = 135, θ1 = 150, α = .01, and β = .03. Furthermore, let σ = 25. The observations and the acceptance and rejection numbers are tabulated in Table 7, which shows that the sampling inspection is terminated at m = 20 with the acceptance of the lot.

The test procedure can also be carried out graphically as shown in Fig. 15. The number m of observations is measured along the horizontal axis. The points (m, am) will lie on a straight line L0 and the points (m, rm) will lie on a parallel line L1. We draw the parallel lines L0 and L1 before inspection starts. The points [image: images] are plotted as inspection goes on. Inspection is continued as long as the plotted points (m, Σxα) lie between the lines L0 and L1. Inspection is terminated at the first time when the point (m, Σxα) does not lie between L0 and L1. If it lies on L0 or below the lot is accepted, and if it lies on L1 or above the lot is rejected.




[image: images]

FIG. 15



TABLE 7
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The common slope of the lines L0 and L1 is given by
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The intercept of L0 is equal to



[image: images]

and the intercept of L1 is given by



[image: images]

7.4 The Operating Characteristic (OC) Curve of the Test

Let L(θ) denote the probability that the sequential test will lead to the acceptance of the lot when θ is the true mean value. The function L(θ) is called the operating characteristic function of the test. Approximate formulas for the OC function are derived in Section 3.4 and the general results are applied to testing the mean of a normal population. [See equation (3:48).] It is shown there that
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where



[image: images]

It can be seen from (7:17) and (7:18) that L(θ) is an increasing function of h and h is a decreasing function of θ. Hence L(θ) is a decreasing function of θ.

For θ = – ∞, θ0, (θ0 + θ1)/2, θ1, + ∞ the values of L(θ) obtained from (7:17) are given as follows.2



[image: images]

The computation of these five points of the OC curve will suffice in many applications.

It may be of interest to express L(θ) in terms of the intercepts h0

and h1 and the common slope s of the lines L0 and L1.3 From (7:17) and (7:18) it follows that
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Since [image: images] and [image: images] we obtain from (7:20)



[image: images]

7.5  The Average Amount of Inspection Required by the Test

In Section 3.5 the following approximation formula is derived for the expected value Eθ(n) of the number n of observations required by the sampling plan.



[image: images]

where



[image: images]

and Eθ(z) denotes the expected value of z when θ is the true mean of x. The value of Eθ(z) is given in Section 3.5, equation (3:60).
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Hence



[image: images]

where h0 and h1 are the intercepts and s is the common slope of the lines L0 and L1.

For θ = s, the right-hand member of (7:25) takes the form 0/0. It is shown in the Appendix, equation (A:99), that the limiting value is given by
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Since Es(z) = 0, Es(z2) is equal to the variance σz2 of z. From (7:23) it follows that the variance of z is equal to [image: images]. Hence



[image: images]



1 See, for instance, Section 2.3.2.

2 For [image: images] we have h = 0 and the limiting value of the right-hand member of (7.17) as h → 0 is equal to [image: images].

3 See also SRG 255, p. 4.19.


Chapter 8. TESTING THAT THE STANDARD DEVIATION OF A NORMAL DISTRIBUTION DOES NOT EXCEED A GIVEN VALUE

8.1  Formulation of the Problem

Let x be a normally distributed variate. In this section we shall deal with the problem of testing the hypothesis that the standard deviation σ of x does not exceed a given value σ′. There are two cases to be considered: the mean of x is known or unknown. First we shall treat the case when the mean of x is known. If the mean of x is unknown, only a slight modification of the test procedure will be necessary, as will be seen later.

This problem, like the one treated in Section 7, arises frequently in quality control and acceptance inspection. Suppose that x is some measurable quality characteristic of a manufactured product and that x is normally distributed in the population of units produced. Suppose, furthermore, that the quality of the product is considered the better the smaller the standard deviation σ. Thus, there will be, in general, a value σ′ such that the product is considered substandard if σ > σ′ and the product is considered satisfactory (meets specification) if [image: images]. Since σ is unknown, the problem is to devise a sampling plan for testing the hypothesis that the product is satisfactory, i.e., that [image: images].

8.2  Tolerated Risks for Making a Wrong Decision

If the quality of the product is exactly on the margin, i.e., if σ = σ′, it will make no difference whether the product is classified as satisfactory or as substandard. However, if σ is considerably smaller than σ′, the classification of the product as substandard will usually be regarded as an error of practical importance. Similarly, if σ is much larger than σ′, the classification of the product as satisfactory will be a serious error. Thus, it will be possible to specify two values σ0 and σ1 (σ0 < σ′ and σ1 > σ′) such that the classification of the product as substandard is considered an error of practical importance whenever [image: images], and the classification of the product as satisfactory is regarded as an error of practical consequence whenever [image: images]; for values σ between σ0 and σ1 we do not care particularly which action is taken.

In accordance with the considerations in Section 2.3.2, the risks that we are willing to tolerate may reasonably be stated as follows: The probability of classifying the product as substandard should not exceed a small preassigned value α whenever [image: images], and the probability of classifying the product as satisfactory should not exceed a preassigned value β whenever [image: images].

8.3  The Sequential Probability Ratio Test Corresponding to the Quantities σ0, σ1, α, and β

A sampling plan satisfying the requirements regarding the tolerated risks is given by the sequential probability ratio test of strength (α, β) for testing the hypothesis that σ = σ0 against the alternative that σ = σ1.

Let x1, x2, …, etc., denote the successive observations on x. The probability density of the sample (x1, … , xm) is given by



[image: images]

where the value of the mean θ is assumed to be known. Let Pim denote the expression we obtain if σ is replaced by σi (i = 0, 1) in the right-hand member of (8:1). The sequential probability ratio test is given as follows. The probability ratio p1m/pom is computed at each stage of the experiment. Additional observations are taken as long as 1



[image: images]

The product is classified as satisfactory if
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The product is classified as substandard if
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Taking logarithms, dividing by [image: images] and simplifying, the inequalities (8:2), (8:3), and (8:4) will become



[image: images]
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and



[image: images]

respectively.

On the basis of the inequalities (8:5), (8:6), and (8:7), the test procedure can be carried out as follows: For each integral value m compute the acceptance number



[image: images]

and the rejection number



[image: images]

These acceptance and rejection numbers do not depend on the outcome of the observations and, therefore, they can be computed before inspection starts. Inspection is continued as long as [image: images]. The first time that [image: images] does not lie between am and rm, inspection is terminated. If at the final stage [image: images] the product is declared satisfactory, and if[image: images] the product is declared substandard.

A graphical presentation of the test procedure is shown in Fig. 16.
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FIG. 16



The number m of observations is measured along the horizontal axis. Since both am and rm are linear functions of m, the points (m, am) will lie on a straight line L0 and the points (m, rm) will lie on a straight line L1. These two lines are parallel and the common slope is given by
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The intercept of L0 is equal to



[image: images]

and the intercept of L1 is given by



[image: images]

The lines L0 and L1 can be drawn before inspection starts. As inspection goes on the points [image: images] are plotted. The first time that the point [image: images] does not lie between the lines L0 and L1, inspection is terminated. If the point [image: images] lies on L0 or below, the hypothesis that the product is satisfactory is accepted; and if the point [image: images] lies on L1 or above, the product is declared substandard.

8.4  The Operating Characteristic (OC) Function of the Test

For any value σ, let L(σ) denote the probability that the test will terminate with the acceptance of the hypothesis that the product is satisfactory. The function L(σ) is called the operating characteristic function of the test.

In Section 3.4 a general method is given for deriving an approximation formula for the OC function for any sequential probability ratio test. Applying the result of that section, we obtain
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where h is the root of the equation
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It can be seen that the integral on the left side of (8:14) has a finite value only if [image: images]. In this case, as can be verified, we have
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Hence equation (8:14) can be written as
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Instead of solving (8:16) with respect to h, we shall solve it with respect to σ. We obtain



[image: images]

With the use of equations (8:13) and (8:17), the OC curve can be plotted as follows. For any given value of h we compute σ and L(σ) from equations (8:13) and (8:17). The pair [σ, L(σ)] obtained in this way gives us a point on the OC curve. Computing [σ, L(σ) for a sufficiently large number of values of h, we obtain enough points to draw the OC curve.

For computational purposes, it may be convenient to put2
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Then equations (8:13) and (8:17) can be written as
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and



[image: images]

where s is the common slope and h0 and h1 are the intercepts of the lines L0 and L1 Equations (8:19) and (8:20) may be more convenient for the computation of the OC curve than the original equations (8:13) and (8:17).

For [image: images] the values of L(σ) are given as follows:



[image: images]

These five points already determine roughly the shape of the OC curve and in many instances it will not be necessary to compute further points.

8.5  The Average Amount of Inspection Required by the Test

According to the results in Section 3.5, an approximation formula for the expected value Eσ(n) of the number n of observations required by the sampling plan is given by
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where



[image: images]

and Eσ(z) denotes the expected value of z when σ is the standard deviation of x. We have
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Hence, substituting the right-hand member of (8:24) for Eσ(z) we obtain 3
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For [image: images] the expected value of z is equal to 0 and the right-hand member of (8:25) takes the form 0/0. According to equation (A:99) in the Appendix, the limiting value is given by



[image: images]

Since [image: images], [image: images] is equal to the variance of z when [image: images]. It follows easily from (8:23) that this variance is equal to [image: images]. Hence



[image: images]

8.6  Modification of the Test Procedure When the Population Mean Is Not Known4

If the mean θ of x is not known, the following two modifications of the test procedure are to be made: (1) replace [image: images] by [image: images] where [image: images]; (2) the acceptance number am is replaced by am–1 and the rejection number rm is replaced by rm–1. Thus, if the mean is unknown, the acceptance and rejection numbers at the mth trial are equal to the acceptance and rejection numbers corresponding to the (m – l)th trial when the mean is known.

The formula for the OC curve remains unchanged and the expected value of the number of observations required by the test is larger by 1 when the mean is unknown than when the mean is known.



1 There is a slight approximation involved in the formulas given below, since the constants A and B are put equal to (1 – β)/α and β/(1 – α) respectively. In this connection see Section 3.3.

2 A similar simplification was made by the Statistical Research Group. See SRG 255, p. 6.31. The parameter t used there corresponds to –t here.

3 The expression of Eσ(n) in terms of the slope and intercepts of the decision lines is contained also in SRG 255, p. 6.34.

4 The result contained in this section was found by C. Stein and M. A. Girshick, independently of each other. The proof is based on a transformation of the observations which reduces this case to the case when the mean is known. See Girshick’s paper, “Contribution to the Theory of Sequential Analysis,” The Annals of Mathematical Statistics, June, 1946.


Chapter 9. TESTING THAT THE MEAN OF A NORMAL DISTRIBUTION WITH KNOWN VARIANCE IS EQUAL TO A SPECIFIED VALUE

9.1  Formulation of the Problem

Let x be a quality characteristic of a product, such as weight, diameter, or hardness. Suppose that x is normally distributed in the population of all units produced and that the standard deviation σ of x is known but the mean θ of x is unknown. Suppose, furthermore, that a particular value of θ, say θO, is considered the most desirable value for the product. In general, the greater the absolute deviation of the true value 0 from the most desirable value θO, the less satisfactory the product. Since the manufacturer would like to achieve and maintain the value θO of θ as closely as possible, he will be interested in testing the hypothesis that θ = θO. If the evidence supplied by a sample should indicate that θ ≠ θO, he will try to improve the production process. Of course, if  θ ≠ θO but is near θO, there is no particular need to improve the production, and acceptance of the hypothesis that θ = θO would not be a serious error. However, there will be, in general, a positive value δ such that the acceptance of the hypothesis that θ = θO is regarded as an error of practical importance whenever [image: images].

The situation described in the preceding paragraph will thus lead to the following problem: A sampling plan is to be devised for which the probability that the hypothesis that θ = θO will be rejected (the product will be declared substandard) does not exceed a small preassigned value α when θ = θO, and the probability of accepting the hypothesis that θ = θO (declaring the product satisfactory) does not exceed a small preassigned value β whenever [image: images].

9.2  A Sequential Sampling Plan Satisfying the Imposed Requirements

It has been shown in Section 4.1.4 that an adequate sampling plan for the problem described in Section 9.1 is given as follows. Compute the ratio



[image: images]

at each stage of the experiment. Continue taking observations as long as



[image: images]

Accept the hypothesis that the product is satisfactory if



[image: images]

Reject the hypothesis that the product is satisfactory if



[image: images]

To satisfy the requirements imposed regarding the probabilities of making wrong decisions, for all practical purposes we may put A = (1 – β)/α and B = β/(1 – α).

The expression for p1m/pom given in (9:1) can be simplified to



[image: images]

Substituting this value of p1m/pom in (9:2), (9:3), and (9:4) and taking logarithms, we find that these inequalities become



[image: images]



[image: images]

and



[image: images]

With the use of inequalities (9:6), (9:7), and (9:8), the test procedure is carried out as follows. At each stage of the experiment we compute [image: images]. The first time that Zm does not lie between log B + [m(δ2/2)] and log A + [m(δ2/2)] we terminate the process. The hypothesis that θ = θ0 is accepted if [image: images], and rejected if [image: images].

The computation of Zm at each stage of the experiment is somewhat cumbersome. However, if [image: images] is greater than 3, [image: images] is very nearly equal to [image: images].1 When this approximation to Zm is used, inequalities (9:6), (9:7), and (9:8) simplify to



[image: images]



[image: images]

and



[image: images]

respectively. For all practical purposes inequalities (9:9), (9:10), and (9:11) may be used instead of (9:6), (9:7), and (9:8) whenever [image: images].

The following is an alternative computational procedure which may be found useful. Consider the equation in u.



[image: images]

This has exactly one positive solution if [image: images]. The root of this equation is given by



[image: images]

The function Φ(v) can easily be tabulated. In terms of the function Φ(v), inequalities (9:6), (9:7), and (9:8) can be written as



[image: images]



[image: images]

and



[image: images]

When inequalities (9:14), (9:15), and (9:16) are used, the test can be carried out as follows. For each integral value m we compute the acceptance number



[image: images]

and the rejection number



[image: images]

These acceptance and rejection numbers can be computed before experimentation starts. Additional observations are taken as long as am < | Σ(xα – θ0) | < rm. If [image: images] the hypothesis that θ = θO is accepted and if [image: images] the hypothesis that θ = θO is rejected.



1 See also SRG 255, p. B.15.


 

PART III. THE PROBLEM OF MULTI-VALUED DECISIONS AND ESTIMATION


Chapter 10. THE CHOICE OF A HYPOTHESIS FROM A SET OF MUTUALLY EXCLUSIVE HYPOTHESES (MULTI-VALUED DECISION)

10.1  Formulation of the Problem

Part I has been devoted exclusively to the discussion of the problem of testing a statistical hypothesis. In such problems only one of two possible decisions can be made: the hypothesis is either rejected or accepted. Thus, we can say that testing a hypothesis is a two-valued decision problem, since the decision can take only the two values: acceptance and rejection. Let [image: images] denote the negation of the hypothesis H to be tested. Then testing the hypothesis H is the same as choosing between the two competing hypotheses H and [image: images].

It has been pointed out in Section 1.3.5 that testing a hypothesis H arises frequently as a consequence of the problem of deciding between two alternative courses of action, say action 1 and action 2. Suppose that the preference for one or the other action depends on the value of an unknown parameter θ of the distribution of a random variable x. Let ω denote the set of all values of θ for which action 1 is preferred to action 2 (or at least not less desirable than action 2). If a decision is to be made on the basis of a finite number of observations on x, this leads to the problem of testing the hypothesis H that the true value θ lies in ω. If H is accepted, we decide for action 1, and if H is rejected we decide for action 2. In applications it happens frequently that there are more than two alternative courses of action, one of which is to be chosen. Suppose that there are k (k > 2) alternative actions, say action 1, action 2, …, action k, and that one of them is to be chosen on the basis of some observations on the random variable x. Suppose, furthermore, that the relative degree of preference for these actions depends on the value of a parameter θ of the distribution of x. Then it will be possible, in general, to subdivide the totality of all possible values of θ into k mutually exclusive parts ω1, ω2, … ωk such that action j is preferable to all other actions i ≠ j if, and only if, the true value θ lies in ωj. Let Hj denote the hypothesis that θ lies in ωj (j = 1, …, k). Then the problem of deciding for a particular action reduces to the problem of choosing one of the hypotheses H1, …, Hk. If Hi is accepted we decide to take action i. Such a problem may be called a multi-valued decision problem, since the decision to be made can take k values: We may accept H1, or H2, …, or Hk.

In this section we shall deal with the problem of choosing one out of k mutually exclusive and exhaustive hypotheses, H1, …, Hk, on the basis of some observations on the random variable x under consideration.1 The problem of testing a hypothesis is contained in this as a special case when k = 2.

The following simple example may serve as an illustration. Suppose that x is a measurable quality characteristic of a product which is normally distributed in the population of units produced. Suppose, furthermore, that the quality of the product is regarded the better the higher the mean value θ of x. Assume that the following three alternative actions are under consideration by the manufacturer: (1) to sell the product at the regular market price, (2) to label the product as second rate quality and sell it at a reduced price, (3) to withhold the product from the market. Let a and b (a < b) be two values of θ such that the manufacturer prefers action 3 if [image: images], he prefers action 2 if a < θ < b, and he prefers action 1 if [image: images]. Let H1 denote the hypothesis that [image: images], H2 the hypothesis that a < θ < b, and H3 the hypothesis that [image: images]. If the value of θ is unknown and if the manufacturer must decide which action should be taken on the basis of some observations on x, he is faced with the multi-valued decision problem of choosing one of the mutually exclusive hypotheses H1, H2, and H3.

10.2  The General Nature of a Sequential Sampling Plan for Selecting a Hypothesis from a Set of Mutually Exclusive Hypotheses

A sequential sampling plan for choosing one of k mutually exclusive and exhaustive hypotheses H1, …, Hk may be described as follows. A rule is given for making one of the following (k + 1) decisions at each stage of the experiment (at the mth trial for each integral value of m): (1) to terminate experimentation with the acceptance of H1; (2) to terminate experimentation with the acceptance of H2;…; (k) to terminate experimentation with the acceptance of Hk; (k + 1) to continue the experiment by making an additional observation. Such a procedure is carried out sequentially. On the basis of the first observation one of the aforementioned (k + 1) decisions is made. If one of the first k decisions is made, the process is terminated. If the last decision is made, a second trial is performed. Again, on the basis of the first two observations, one of the (k + 1) decisions is made. If the last decision is made, a third trial is performed, and so on. The process is continued until one of the first k decisions is made.

In more precise mathematical terms, a sequential sampling plan may be described as follows. Let Rm denote the totality of all possible samples of size m, i.e., Rm is the m-dimensional sample space. For each positive integral value of m, the m-dimensional sample space is split into (k + 1) mutually exclusive parts, Rm1, Rm2, …, Rmk and Rm,k+1. If the first observation x1 lies in R1i where [image: images], the process is terminated with the acceptance of Hi. If x1 lies in R1,k+1 a second observation x2 is made. Again, if (x1, x2) lies in some R2i with [image: images], the process is terminated with the acceptance of Hi. If (x1, x2) lies in R2,k+1 a third trial is performed, and so on. This process is stopped at the first time when the sample (x1, …, xm) lies in Rmi for some value [image: images]. Thus, a sequential sampling plan is completely defined by the sets Rm1, …, Rm,k+1. Since these sets are mutually exclusive and add up to the whole sample space Rm, it is sufficient to define any k of these sets, since they determine uniquely the remaining set.

For any m, the subdivision of the sample space Rm into the (k + 1) parts Rm1, …, Rm,k+1 can be made in many ways, and a fundamental problem is that of a proper choice of these sets. In order to set up principles for this choice, in the next section we shall study the consequences of any particular choice.

10.3  Consequences of the Choice of Any Particular Sequential Sampling Plan

After a particular choice of the sets Rm1, …, Rm,k+1 has been made, i.e., a particular sequential sampling plan has been adopted, for any [image: images] the probability that the process will terminate with the acceptance of Hi depends only on the distribution of the random variable x under consideration. Since it is assumed that the distribution of x is known except for the values of a finite number of parameters θ1, …, θr, the probability that Hi will be accepted will be a function of these parameters. To simplify notation, we shall use the letter θ without subscript to denote the set of all r parameters θ1, …, θr. Let Li(θ) denote the probability that the adopted sequential sampling plan will terminate with the acceptance of Hi (i = 1, …, k). We shall refer to the set of functions L1(θ), L2(θ), …, Lk(θ) as the operating characteristics of the sampling plan. We shall consider only sampling plans for which the probability is 1 that the process will eventually terminate. Then we have



[image: images]

and, therefore, one of the functions L1(θ), …, Lk(θ) is determined by the other k – 1.

The operating characteristics represent the accomplishment of the sampling plan in giving protection against possible wrong decisions. For any parameter point θ, the probability of accepting the correct hypothesis, i.e., the hypothesis which is consistent with parameter point θ, can be obtained immediately from the operating characteristics. Since the hypotheses H1, …, Hk are mutually exclusive and exhaustive, for any given parameter point θ one, and only one, of the hypotheses H1, …, Hk will be consistent with a given θ. If Hi is the hypothesis consistent with a given θ, the probability of making a correct decision when this θ is true is equal to Li(θ). The operating characteristics of a sampling plan are considered the more favorable the higher the probability for making correct decisions for the various possible parameter points θ.

The price we have to pay for the accomplishment of the sampling plan in giving protection against wrong decisions is represented by the number n of observations required by the sampling plan. Since n is a random variable, we shall consider, as in testing a hypothesis, the expected value of n. After a particular sampling plan has been adopted, the expected value of n will be a function of the parameter point θ only. As in testing hypotheses, we shall denote the expected value of n, when θ is true, by Eθ(n), and we shall refer to Eθ(n) as the average sample number (ASN) function of the sampling plan.

In conclusion we may say that the most important consequences of any particular choice of a sampling plan are given by the operating characteristics and the ASN function of the adopted sampling plan. The operating characteristics represent the accomplishments of the sampling plan and the ASN function represents the price paid for these accomplishments.

10.4  Principles for the Selection of a Sequential Sampling Plan

10.4.1  Dependence of Importance of Possible Wrong Decisions on the Parameter Point θ

To set up principles for the selection of a sequential sampling plan it will be necessary to investigate the dependence of the importance of possible wrong decisions on the parameter point. Let ωi denote the set of parameter points θ consistent with Hi (i = 1, …, k), i.e., Hi is precisely the statement that the true parameter point θ is included in ωi. If the true θ is in θi but not far from ωi for some j ≠ i, the acceptance of Hj will not be regarded, in general, as a serious error. However, if θ is far from ωi and Hj is accepted, the error committed will usually be of considerable practical consequence.

As an illustration, consider again the example given in Section 10.1. The decision to withhold the product from the market will be considered an error of little practical significance if θ is only slightly above a. The seriousness of this error will, however, increase with increasing value of θ. If θ is substantially above a, the decision to withhold the product will be regarded as an error of considerable practical importance. Similarly, the decision to try to sell the product at regular market price will not be a serious error if θ is just slightly below b, but the importance of this error will increase with decreasing value of θ.

It will frequently be possible to express the importance of the various possible wrong decisions by k functions w1(θ), …, wk(θ), where wj(θ) is a non-negative function expressing the importance of the error committed by accepting Hj when θ is true. In industrial problems, wj(θ) may be thought of as expressing the financial loss caused by taking the action corresponding to the acceptance of Hj when θ is true. We shall, of course, put wj(θ) = 0 for all points θ in ωj, since for such points θ the acceptance of Hj is a correct decision. We shall refer to the functions w1(θ), …, wk(θ) as error weight functions, or more briefly as weight functions.

The choice of a sampling plan will be influenced by the weight functions w1(θ), …, wk(θ). The determination of these weight functions cannot be regarded as a statistical problem. They will be chosen on the basis of practical considerations in each particular problem.

10.4.2  The Risk Function Associated with a Given Sampling Plan

For any parameter point θ we shall mean by the risk r(θ) the expected value of the loss caused by possible wrong decisions when θ is true. Since the probability of accepting Hi is equal to Li(θ) and since the loss caused by this decision is given by wi(θ), the expected value of the loss is equal to



[image: images]

We shall refer to r(θ) as the risk function of the sampling plan.2

We shall judge the relative merits of a sampling plan by its risk function r(θ) and ASN function Eθ(n).

10.4.3  The Risk Function and the ASN Function as a Basis for the Selection of a Sequential Sampling Plan

A sequential sampling plan is the better the smaller the risk r(θ) and the smaller the expected value Eθ(n) of the number of observations. These two desiderata of a sampling plan are somewhat in conflict, since the smaller we make r(θ), the larger, in general, will be the number of observations required by the plan. To achieve a reasonable compromise between these two conflicting desiderata, one may proceed as follows. First we impose the condition that the risk r(θ) shall not exceed a certain prescribed positive value r0, i.e.,



[image: images]

for all parameter points θ. We then consider only sampling plans for which (10:3) is fulfilled. From this class of sampling plans we try to select one for which Eθ(n) is as small as possible.

To impose first the condition (10:3) and then to try to minimize with respect to the expected number of observations does not seem to be an unreasonable procedure, since the risk function r(θ) is perhaps of primary importance.3

The choice of the upper limit r0 of the risk is not a statistical problem. It will be determined on the basis of practical considerations in each particular case.

10.4.4  The Use of Certain Simple Weight Functions

The construction of specific weight functions w1(θ), …, wk(θ) in a given problem may occasionally run into practical difficulties. Although in industrial problems wj(θ) could be assumed to be equal to the financial loss (or estimated financial loss) caused by the acceptance of Hj when θ is true, in purely scientific investigations it is rather difficult to give a reasonable measure of the loss caused by accepting a wrong hypothesis.

Even if the difficulties in measuring the loss caused by possible wrong decisions are disregarded, we still face the practical difficulty that the weight functions w1(θ), …, wk(θ) in a given problem may be too involved to be manageable. Thus, there is a need for simplification.

The choice of the sampling plan is usually not very dependent on the exact shape of the weight functions. It will, therefore, be frequently satisfactory to use some rough approximations, reproducing only the main features of the weight functions. A very rough, but for many applications satisfactory, approximation can be obtained by replacing wj(θ) by [image: images] defined as follows:



[image: images]

where c is some positive constant. Thus, [image: images] can take only two values, 0 and c. There is no loss of generality in putting c = 1, since this can be achieved by multiplication by a proportionality factor which has no effect on the selection of the sampling plan.

In what follows in this and the following section, we shall consider only the weight functions [image: images]. We shall call the set of all parameter points θ for which [image: images] = 0 and [image: images] = 1 for j ≠ i the zone of preference for acceptance of Hi. The set of points θ for which [image: images] = [image: images] = 0 and [image: images] = 1 for k ≠ i, j will be called the zone of indifference between Hi and Hj. Similarly, the set of points θ for which [image: images] = [image: images] = [image: images] = 0 and [image: images] = 1 for l ≠ i, j, m will be called the zone of indifference among the hypotheses Hi, Hj, and Hm, and so on.

If we deal with the problem of testing a hypothesis H, then k = 2, H1 = H, and H2 is equal to the negation [image: images] of H. The zone of preference for acceptance of H, the zone of preference for acceptance of [image: images], and the zone of indifference between H and [image: images] defined here correspond to the zone of preference for acceptance, zone of preference for rejection, and zone of indifference discussed in Section 2.3.1.

To illustrate the meaning of the various zones defined here, we consider again the example discussed in Section 10.1. In this example H1 is the hypothesis that [image: images] is the hypothesis that a < θ < b, and H3 is the hypothesis that [image: images]. The functions [image: images], [image: images], and [image: images] may reasonably be defined as follows:



[image: images]

Then the zone of preference for acceptance of H1 is the set of values of θ for which [image: images]. The zone of preference for acceptance of H2 is given by the inequality [image: images], and the zone of preference for acceptance of H3 by [image: images]. The zone of indifference between H1 and H2 is given by the inequality a – ∆ < θ < a + ∆, the zone of indifference between H1 and H3 is empty, and the zone of indifference between H2 and H3 is given by [image: images]. Finally, the zone of indifference among H1, H2, and H3 is empty.

When the weight functions w1(θ), …, wk(θ) are used, the risk function r(θ) defined in (10:2) takes a particularly simple form. Since [image: images] can take only the values 0 and 1, we shall have



[image: images]

where the summation is to be taken for all values of j for which [image: images] = 1.

We shall say that a wrong decision is made if, and only if, a hypothesis Hi is accepted for which [image: images] = 1. Then the risk r(θ) given in (10:5) is simply equal to the probability that a wrong decision will be made.

The principle for the selection of a sequential sampling plan, as stated in Section 10.4.3, can now be formulated as follows. We consider only sequential sampling plans for which the probability of making a wrong decision does not exceed a certain preassigned value r0. From the class of such sequential sampling plans we try to select one for which the expected value of the number of observations required by the plan is as small as possible.

10.5  Discussion of a Special Class of Sequential Sampling Plans

The problem of finding a sequential sampling plan which may be regarded as an optimum plan in the sense of the previous section is not yet solved. However, as will be shown in this section, a wide class of sequential sampling plans can be constructed for which the condition that the probability of making a wrong decision should not exceed a preassigned value r0 is fulfilled.

To construct such a class of sampling plans we shall make use of the following lemma.

Lemma. Let x1, x2, …, etc., be a sequence of variates, let p1m(x1, …,xm) (m = 1, 2, …) denote the joint probability density function of x1, …,xm, under the hypothesis H1, and let p0m(x1, …,xm) be the density function under the hypothesis H0.4 Let, furthermore, A be a constant greater than one. Then, under the hypothesis H0, the probability that will hold for all values of m is greater than or equal to 1 – (1/A).



[image: images]

The validity of this lemma can easily be shown with the help of the inequalities given in Section 3.2 by letting the constant B in those inequalities approach 0.

With the help of this lemma we can construct a sequential sampling plan satisfying the condition that the probability of making a wrong decision does not exceed a prescribed value r0 as follows. Let pm(x1, …, xm, θ) be equal to f(x1, θ)f(x2, θ) … f(xm, θ) where f(x, θ) is the probability distribution of x when θ is true. For any parameter point θ let pm*(x1, …, xm, θ) be an arbitrary but given probability distribution of the variates x1, x2, …, xm.5 Then according to our lemma the probability that



[image: images]

will hold for all m is greater than or equal to 1 – (1/A) when θ is true. For any sample point En = (x1, …, xn), let ωn(En) denote the totality of all parameter points θ for which the inequality (10:7) is fulfilled for all values [image: images]. Clearly, the probability that the true parameter point θ will be included in all sets ωn(En) (n = 1, 2, …, ad inf.) is greater than or equal to 1 – (1/A). The sequential sampling plan is then defined as follows: We continue taking additional observations as long as none of the weight functions [image: images], …, [image: images] is identically zero in ωn(En). At the first time when ωn(En)  is such that at least one of the weight functions [image: images], …, [image: images] is identically 0 in ωn(En), we stop the process with the acceptance of the hypothesis corresponding to the weight function which is identically zero in ωn(En).6 Obviously, this sequential sampling plan will have the property that the probability of making a wrong decision does not exceed 1/A. If we let A equal l/r0, then the probability of making a wrong decision will not exceed r0, as required.

This method leads to a wide class C of sequential sampling plans with the required property, since the distribution function [image: images] in the numerator of (10:7) can be chosen entirely arbitrarily. It is doubtful whether this class C of sampling plans contains an optimum plan in the sense of the definition given in 10.4. If we are willing to restrict ourselves to sampling plans in class C, we still have the problem of so choosing [image: images] as to make the expected number of observations required by the plan as small as possible. This problem, too, has not yet been solved. There may be some waste involved in letting A = l/r0, since this may result in a maximum probability of making a wrong decision that is considerably less than the tolerated value r0. A further development of the theory may show that A can be put equal to some value smaller than l/r0 which would lead to a saving in the number of observations.

Although the present stage of the theory is very incomplete, sampling plans based on the inequality (10:7) may still be used with good advantage in some problems. Even if we cannot yet find the best distribution [image: images] to be used in the numerator of (10:7), we still may be able to make a reasonably good choice of [image: images] and thereby obtain a sequential plan which requires, on the average, a substantially smaller number of observations than the best possible non-sequential sampling plan based on a predetermined number of observations.

Regarding possible choices of [image: images] which may give reasonably good results, the following remarks may be made. A good result may be obtained in some problems by letting [image: images] equal a properly chosen weighted average of pm(x1, …, xm, ζ) where ζ is a variable parameter point. In other words, we let7



[image: images]

where the integration is taken over the whole parameter space Ω and ρθ(ζ) is a non-negative function of ζ satisfying the condition



[image: images]

The choice of the averaging function ρθ(ζ) will depend on the weight functions [image: images], …, [image: images]. If, for example, [image: images] = 0 for the parameter point θ under consideration, it seems reasonable to let ρθ(ζ) = 0 for all parameter points ζ for which [image: images] = 0, since we are not interested in discriminating between parameter points for which the same decision is correct.

The following is another possible choice of [image: images] which may lead to good results in some problems:



[image: images]

where [image: images] is the maximum likelihood estimate of θ based on the first r observations x1, …, xr and Φ(x1, θ) is some suitably chosen probability distribution of x1.

To illustrate the sampling procedure based on (10:7), we shall consider the following simple example. Let x be normally distributed with unknown mean θ and unit variance. Then
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Let



[image: images]

where δ is a given positive quantity. Then



[image: images]

The equation



[image: images]

has two roots in u which are equal in absolute value. Let ψ(v) be the positive, and –ψ(v) the negative root of (10:14). Then the roots of the equation in θ



[image: images]

are given by



[image: images]

where [image: images] is the arithmetic mean of the observations x1, …, xm.

The set of all values of θ for which the inequality



[image: images]

is satisfied is the open interval (θ2(Em), θ1(Em)). The set ωn(En) is defined as the common part of the open intervals (θ2(E1), θ1(E1)), …, (θ2(En), θ1(En)). Hence ωn(En) is equal to the open interval whose lower endpoint is equal to the maximum of the values θ2(E1), …, θ2(En), and whose upper endpoint is equal to the minimum of the values θ1(E1), …, θ1(En).8 Experimentation is terminated the first time the open interval ωn(En) is such that one of the weight functions [image: images], …, [image: images] is identically zero in ωn(En).

As another illustration, consider again the example given in Section 10.1, and for simplicity assume that the standard deviation of x is equal to 1. Although the proper choice of [image: images] for this example has not been thoroughly investigated, the following choice of [image: images] is perhaps not unreasonable. A parameter point θ in the zone of preference for acceptance of H1, i.e., a value [image: images],9 should be discriminated against all other parameter values ζ for which acceptance of H1 is a wrong decision. The smallest value ζ for which acceptance of H1 is a wrong decision, i.e., the smallest ζ for which [image: images] = 1, is ζ = a + ∆. Thus, we put



[image: images]

If θ is in the zone of indifference between H1 and H2, i.e., if a – ∆ < θ < a + ∆, we want to discriminate θ against values ζ for which acceptance of H1, as well as of H2, is a wrong decision. The smallest value of this kind is ζ = b + ∆. Thus, we let



[image: images]

If θ is in the zone of preference for acceptance of H2, i.e., if [image: images], we want to discriminate it against values ζ for which acceptance of H2 is wrong. The greatest value ζ of this kind to the left of a + ∆ is ζ = a – ∆, and the smallest ζ of this kind to the right of b – ∆ is ζ = b + ∆. It seems, therefore, reasonable to let



[image: images]

If θ is in the zone of indifference between H2 and H3, i.e., if [image: images], we want to discriminate θ against values ζ for which the acceptance of H2, as well as of H3 is wrong. Thus, we let



[image: images]

Finally, if θ is in the zone of preference for acceptance of H3, i.e., if [image: images], we want to discriminate θ against values ζ for which the acceptance of H3 is wrong. The least upper bound of values of ζ of this kind is ζ = b – ∆. Thus, we shall let



[image: images]

It should be remembered that there is no systematic theory yet available for the proper choice of [image: images]. The choice of [image: images] in the above example has been made only on intuitive grounds. It may well be that another choice of [image: images] exists which leads to much better results. It should also be remarked that it is doubtful whether an optimum sampling plan, as defined in the preceding section, is a member of the class of sampling plans based on the inequality (10:7). Further investigations are needed to clarify these questions.



1 This problem in the non-sequential case, that is, when the total number of observations to be made is determined in advance, has been treated in several previous publications. See, for example, the author’s article “Statistical Decision Functions Which Minimize the Maximum Risk,” The Annals of Mathematics, April, 1945.

2 Another possible definition of the risk function could be given by including also the expected value of the cost of experimentation. If c denotes the cost of taking a single observation, the expected value of the cost of experimentation is equal to cEθ(n) and the risk is given by



[image: images]

If the cost of experimentation is not proportional with the number of observations, but is given by the cost function c(n), then the term cEθ(n) in (10:2*) is to be replaced by Eθ[c(n)].

3 Using the risk function r*(θ), as given in (10:2*), a sampling plan for which the maximum value of r*(θ) with respect to θ is minimized may be regarded as an optimum plan. If this definition of an optimum sampling plan is accepted, no condition of the type (10:3) is imposed; we simply try to find a plan for which the maximum of r*(θ) with respect to θ takes the smallest possible value.

4 If the distribution of x1, x2, …, etc. is discrete, pim(x1, …, xm) denotes the probability of obtaining a sample equal to the observed.

5 It is understood that the distribution of x1, …, xm determined from the distribution [image: images] is identical with [image: images].

6 If there are several weight functions which are identically 0 in ωn(En), we may choose arbitrarily one from among the hypotheses corresponding to these weight functions.

7 The averaging function ρθ(ζ) may also be discrete. Formulas valid for both continuous and discrete averaging functions could be given by using Stieltje’s integrals.

8 If it happens that the upper endpoint determined in this way is less than the lower endpoint, the set ωn(En) is empty.

9 For a definition of the various zones and weight functions [image: images], [image: images], and [image: images] for this example see Section 10.4.4.


Chapter 11. THE PROBLEM OF SEQUENTIAL ESTIMATION

11.1  Principles of the Current Theory of Estimation by Intervals or Sets

In this section we shall give a brief outline of the basic ideas of estimation by intervals or sets as developed by J. Neyman.1 Consider first the case in which the distribution of the random variable x under consideration is known except for the value of a single parameter θ. The problem treated in the current theory is that of estimating the value of θ on the basis of a fixed number of observations, say N observations x1, …, xN on x.

Let E denote the sample (x1, …, xN) and let [image: images] and [image: images] be two single-valued functions of the sample E such that
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Let δ(E) denote the interval extending from [image: images] to [image: images]. We shall refer to δ(E) also as an interval function, since it associates an interval with each sample. Since the interval δ(E) is a function of the sample, its location and length will, in general, be random variables and, therefore, probability statements can be made as to whether δ(E) includes the true parameter value θ or not. For any value θ we shall express the relation that δ(E) contains θ by the symbol δ(E)Cθ. For any relation R, the symbol P(R | θ) will denote the probability that R holds when θ is the true parameter value.

According to Neyman, an interval function δ(E) is said to be a confidence interval of θ if



[image: images]

identically in θ where γ is a fixed value independent of θ. The relation (11:2) simply says this: The probability that δ(E) will include the true parameter value is always equal to γ no matter what the true value of the parameter happens to be. The fixed value γ is called the confidence coefficient associated with the confidence interval δ(E).

Suppose, now, that the distribution of x involves several unknown parameters, say θ1, …, θr. Any set of possible values θ1, …, θr can be represented by a point θ, called a parameter point, in the r-dimensional Cartesian space (parameter space). If we want to estimate the parameters θ1, …, θr jointly, i.e., if we want to estimate the parameter point θ, the estimating set will be some subset of the r-dimensional parameter space. Whereas in the case of a single unknown parameter, estimating sets other than intervals have little practical value, this is not so when several unknown parameters are to be estimated jointly. Estimating sets other than intervals in the r-dimensional space, such as the interior of a sphere, or ellipse, or more general regions, will have to be considered. Thus, we shall have to consider a set function ω(E) which associates with each sample point E a certain subset ω(E) of the parameter space without making the restriction that ω(E) is an r-dimensional interval.

A set function ω(E) is said to be a confidence region of the parameter point θ = (θ1, …, θr) if
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identically in θ where γ is a fixed value independent of θ. The value γ is called the confidence coefficient of the confidence region ω(E).

If only one of the parameters θ = (θ1, …, θr) is to be estimated, estimating sets other than one-dimensional intervals will not be of much practical interest, as in the case of a single unknown parameter. Suppose, for example, that only θ1 is to be estimated. According to Neyman, an interval function δ(E) is said to be a confidence interval of θ1 with confidence coefficient γ if
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identically in θ = (θ1, θ2 , …, θr).

Usually there will be infinitely many confidence intervals δ(E) or confidence regions ω(E) with a given confidence coefficient γ and a fundamental problem is to find a proper confidence interval or confidence region which has some optimum properties. It is clear that a confidence interval or confidence region with a given confidence coefficient γ will be regarded the better the shorter the interval or the smaller the region. The notion “short” or “small” is to be made precise, since the length of a confidence interval and the size of a confidence region are random variables depending on the outcome of the sample. This has been done in the theory developed by Neyman who introduced various notions of optimum confidence intervals and confidence regions. The mathematical consequences of these definitions have been investigated and optimum confidence intervals and regions have been derived in many important cases. It is not intended to go into further details here and the reader is referred to the original publications of Neyman on this subject.

11.2  Formulation of the Problem of Sequential Estimation by Intervals or Sets

In estimation procedures based on a fixed number of observations, we cannot control, in general, the length of the confidence interval obtained, since this depends on the outcome of the sample. It may, therefore, sometimes happen that the confidence interval obtained is so long that it has little or no practical value. The possibility of such an event is a drawback inherent in estimation procedures based on a predetermined number of observations.

For example, the length of the best confidence interval, based on a fixed number of observations, for the mean of a normal population with unknown standard deviation is proportional to the sample estimate s of the population standard deviation σ. The sample standard deviation s may take any value and is likely to be large if σ is large.

To devise estimation procedures which lead to confidence intervals not only with a prescribed confidence coefficient but also with a prescribed length, or with a length not exceeding a prescribed value, or which satisfies some other similar condition, it is, in general, necessary to abandon the approach based on a fixed number of observations, and estimation procedures of sequential nature have to be constructed.2

The general nature of a sequential procedure of estimation by sets may be described as follows. For any positive integer m we consider a set Sm of samples of size m. These sets must satisfy the following condition. If the sample Em is an element of Sm and if [image: images] is an element of [image: images], then Em must not be equal to the sample consisting of the first m observations in [image: images]. With any element Em of Sm (m = 1, 2, …, ad inf.), we associate a subset ω(Em) of the parameter space.3 The sequential process of estimation is then carried out as follows. We continue to make observations on x until we reach a value n such that En is an element of Sn. At this stage, we stop the process and state that ω(En) contains the true parameter point, i.e., ω(En) is the confidence set resulting from the sequential estimation procedure.

Thus, a sequential estimation procedure is determined by the sample sets S1, S2, …, etc., and the set function ω(E) defined for all samples E in S1, S2, …, etc. The fundamental problem in sequential estimation is that of a proper choice of S1, S2, …, etc., and of ω(E). First we impose the following two conditions:

Condition I. The confidence set ω(En) resulting from the sequential estimation procedure should satisfy certain stated requirements regarding its geometric shape.

Condition II. The confidence set ω(En) resulting from the sequential estimation procedure should satisfy the inequality 4
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for all parameter points θ. (The quantity γ is a fixed value which is frequently chosen as high as .95, or more.)

The requirements to be imposed on the geometric shape of the confidence set ω(En) do not constitute a statistical problem, and they will be decided on the basis of practical considerations in each particular problem. For example, if there is only one unknown parameter θ (the parameter space is one-dimensional), we may want to require that ω(E) be an interval whose length should not exceed some fixed prescribed value d, or some given function of the midpoint of the interval. The latter case may be of interest, for example, in estimating the mean of a binomial distribution. If there are several unknown parameters, say θ1, …, θr and we want to estimate them jointly, we may require that the Euclidean volume, or the diameter5 of the confidence set ω(En) does not exceed some fixed prescribed value. If we merely want to estimate one of the unknown parameters, say θ1, we may impose the requirement that ω(En) be an interval with length not exceeding some prescribed fixed value, or the weaker requirement that ω(En) be a subset of the r-dimensional parameter space whose projection on the θ1-axis has a diameter not exceeding some preassigned value.

Usually there will exist infinitely many sequential estimation procedures which satisfy Conditions I and II. The criterion for selecting one from among them will be based on the expected number of observations required by the estimation procedure. The sequential estimation procedure may be regarded the better the smaller the expected number of observations required by the procedure. Thus, we shall try to select a sequential estimation procedure from the class of procedures satisfying Conditions I and II for which the expected number of observations to be made is as small as possible.

The problem of finding an optimum estimation procedure is unsolved. However, a special class of estimation procedures satisfying Conditions I and II will be discussed briefly in the next section. It is doubtful whether this class of procedures contains an optimum solution in the sense defined before.

11.3  A Special Class of Sequential Estimation Procedures

The special class of sampling plans based on the inequality (10:7), and discussed in Section 10.5, can be used to obtain estimation procedures satisfying Conditions I and II. With each sample point En = (x1, …, xn) (n = 1, 2, …, ad inf.) we associate the set ω(En) consisting of all parameter points θ for which (10:7) is fulfilled for all values [image: images]. If we put A = 1/(1 – γ), then ω(En) will satisfy Condition II for each n. The estimation procedure is carried out as follows. We continue taking observations as long as ω(En) does not satisfy the requirements in Condition I. We stop the process at the smallest n for which ω(En) satisfies Condition I and then state that the true parameter point θ is included in ω(En). This rule of stopping insures automatically the fulfillment of Condition I.

If [image: images] is chosen so that the probability is 1 that the diameter of ω(Em) will converge to 0 as m → ∞, and if Condition I is such that any set of sufficiently small diameter satisfies it, the probability is 1 that the estimation process will be terminated at a finite stage.

It is doubtful whether the special class of procedures considered here contains an optimum procedure in the sense of the preceding section. Even if we are willing to restrict ourselves to procedures based on (10:7), there is no theory yet developed for the proper choice of [image: images]. Our aim is, of course, to choose [image: images] so that the expected number of observations required by the procedure should be as small as possible. An optimum choice of [image: images] will depend also on the nature of Condition I. For example, if a certain choice of [image: images] is optimal when Condition I requires that the diameter of ω(En) does not exceed a preassigned value, this choice will probably not be optimal when Condition I requires that the diameter of the projection of ω(En) on one of the parameter axes does not exceed a preassigned value, and vice versa.

There may be some waste involved in putting A = 1/(1 – γ), since this may imply the validity of Condition II for a value γ′ substantially larger than the intended γ. A further development of the theory may show that A can be put equal to some value smaller than 1/(1 – γ) which would lead to a saving in the number of observations.



1 J. Neyman, “Outline of a Theory of Statistical Estimation Based on the Classic cal Theory of Probability,” Philosophical Transactions of the Royal Society of London, Series A, Vol. 236 (1937), pp. 333–380.

2 A very interesting sequential procedure has been devised by C. Stein, “A Two Sample Test for a Linear Hypothesis whose Power Is Independent of the Variance,” The Annals of Mathematical Statistics, Vol. XVI, Sept., 1945, which leads to confidence intervals of fixed length in an important class of problems, including the example mentioned before.

3 If we are concerned with interval estimation, ω(Em) will always be an interval

4 This is weaker than the requirement by Neyman that the equality sign should hold.

5 The diameter of a set is the largest possible distance between two points of the set.


APPENDIX

A.1  PROOF THAT THE PROBABILITY IS 1 THAT THE SEQUENTIAL PROBABILITY RATIO TEST WILL EVENTUALLY TERMINATE

The sequential probability ratio test terminates at the nth trial where n is the smallest integer for which either
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Let c = | log B | + | log A |. We shall subdivide the infinite sequence z1, z2, z3, …, ad inf., into segments of length r where r is some positive integer. Thus, the first segment S1 will consist of the elements z1, …, zr, the second segment S2 will contain the elements zr + 1, …, z2r, etc. In general, the kth segment Sk will consist of the elements zr + 1, …, zkr, Let ζk denote the sum of the elements in the kth segment. It can be seen that if the infinite sequence z1, z2, …, ad inf., is such that the sequential process never terminates, then we must have
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Inequality (A:1) can also be written
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Thus, in order to show that the probability is 1 that the sequential process will eventually terminate, it is sufficient to prove that the probability is 0 that (A:2) holds for all integral values k. For any given positive integer i denote by Pi the probability that ζi2 < c2. Since z1, z2, …, are independently distributed, each having the same distribution, the distribution of ζi must be the same for all values i. Hence, also Pi is independent of i and we shall denote it by P. Since ζ1, ζ2, …, etc., are independently distributed, the probability of the joint event that (A:2) holds for k = 1, 2, …, j is equal to PJ. Hence, in order to show that the probability is 0 that (A:2) holds for all values k, it is sufficient to show that P < 1. Clearly, if the expected value of ζi2 is > c2, then P must be < 1. Since the variance of zi is assumed to be positive, the expected value of ζi2 can be made arbitrarily large by choosing r, i.e., the number of elements in a segment, sufficiently large. Thus, P < 1, and we have proved the proposition: The probability is 1 that the sequential probability ratio test procedure will eventually terminate.

A.2  UPPER AND LOWER LIMITS FOR THE OC FUNCTION OF A SEQUENTIAL TEST

A.2.1 A Lemma

In what follows we shall denote the expected value of any random variable z by E(z). For any relation R we shall use the symbol P(R) to denote the probability that R holds. If the expected value E(z) or the probability P(R) has been determined under the assumption that θ is the true value of the parameter involved in the distribution of the random variable under consideration, we shall occasionally put this in evidence by using the symbols Eθ(z) and Pθ(R), respectively.1

In deriving lower and upper limits for the OC function of a sequential test* we shall make use of the following lemma.

Lemma A.1. Let z be a random variable such that the following three conditions are fulfilled:

Condition I. The expected value E(z) exists and is not equal to 0.

Condition II. There exists a positive δ such that P(ez < 1 – δ) > 0 and P(ez > 1 + δ) > 0.

Condition III. For any real value h the expected value E(ehz) = g(h) exists.

Then there exists one and only one real value h0 ≠ 0 such that
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Proof: For any positive h we have
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Hence, since P(ez > 1 + δ) > 0,
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Similarly, we see that for any negative h
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Hence, since P(ez < 1 – δ) > 0, we have
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Since g″(h) = E(z2ehz),2 it follows from Condition II that
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for all real values of h.

The relations (A:4), (A:5), (A:6) imply that there exists exactly one real value h* such that g(h) takes its minimum value for h = h*. Since g'(0) = E(z) is unequal to 0 by Condition I, we see that h* ≠ 0 and g(h*) < g(0) = 1. It is clear that the function g(h) is monotonically decreasing in the strict sense over the interval (– ∞, h*) and is monotonically increasing in the strict sense over the interval (h*, + ∞). Since g(0) = 1 and g(h*) < 1, there exists exactly one real value h0 ≠ 0 such that g(h0) = 1. Hence lemma A.1 is proved.

From the above considerations it follows that if h* > 0 then also h0 > 0, and if h* < 0 then also h0 < 0. Furthermore, if h* > 0 then E(z) = g'(0) < 0, and if h* < 0 then E(z) = g'(0) > 0. Hence, h0 and E(z) are of opposite sign.

A.2.2 A Fundamental Identity

In this section we shall derive an identity which will play a fundamental role. Consider the sequential probability ratio test for testing the hypothesis H0 that the probability distribution of x is given by f(x, θ0) against the alternative hypothesis H1 that the probability distribution in question is given by f(x, θ1). Let [image: images] and [image: images] where xi denotes the zth observation on x. As defined in Section 3.1, the test procedure is given as follows. Continue taking observations as long as
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where A and B (B < A) are constants determined before the experimentation starts. Accept H0 when
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and reject H0 (accept H1) when
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In what follows we shall denote by n the number of observations required by the test. Clearly, n is a random variable. Let D' be the subset of the complex plane such that E(ezt) = ϕ(t) exists and is finite for any point t in D'. Consider the following identity:
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where N denotes a positive integer and Zi = z1 + … + zi.  Let PN be the probability that n [image: images] N. For any random variable u, let EN(u) denote the conditional expected value of u under the restriction that n [image: images] N, and let EN*(u) denote the conditional expected value of u under the restriction that n > N. Then identity (A:10) can be written as
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Since in the subpopulation defined by any fixed n [image: images] N the expression ZN – Zn is independent of Zn, we have
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From (A:11) and (A:12) we obtain the identity
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Dividing both sides by [ϕ(t)]N we obtain
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Let D″ be the subset of the complex plane in which | ϕ(t) | [image: images] 1 and let D denote the common part of the subsets D' and D″. Since [image: images], and since | EN*(eZNt) | is a bounded function of N, we have in D
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Since
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We obtain from (A:14) and (A:15) the fundamental identity
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for any point t in the set D.

A.2.3 Derivation of Upper and Lower Limits for the OC Function

The OC function of the sequential test is defined by the function L(θ), where L(θ) denotes the probability that the sequential process leads to the acceptance of H0 when θ is the true value of the parameter.3 It has been shown in Section A.1 that the probability is 0 that the sequential process will never terminate, i.e., the relation P(n = ∞ ) = 0 has been proved. Thus, the probability that the process will terminate with the rejection of H0 (acceptance of H1) is given by 1 – L(θ). Using the fundamental identity derived in the preceding section we shall obtain upper and lower limits for L(θ).

It will be assumed that the distribution of [image: images] satisfies the three conditions of lemma A.1 for any value θ. Then for any given θ there exists exactly one real value h(θ) ≠ 0 such that Eθ(ezh(θ)) = 1. Substituting h(θ) for t in the fundamental identity (A:16), we obtain
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since ϕ[h(θ)] = 1.

Let Eθ* be the conditional expected value of eZnh(θ) under the restriction that H0 is accepted, i.e., that Zn [image: images] log B, and let Eθ** be the conditional expected value of eZnh(θ) under the restriction that H1 is accepted, i.e., that Zn [image: images] log A. Then we obtain, from (A:17),
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Solving for L(θ) we obtain
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If both the absolute value of Eθ(z) and the variance of z are small, as they will be when f(x, θ1) is near f(x, θ0), then Eθ* and Eθ** will be nearly equal to Bh(θ) and Ah(θ), respectively. Hence, in this case a good approximation to L(θ) is given by the expression
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This is the approximation formula (3:43) given in Section 3.4. It is easy to verify that h(θ) = 1 if θ = θ0, and h(θ) = – 1 if θ = θ1. The difference L(θ) – [image: images](θ) approaches 0 if both the mean and the variance of z converge to 0.

To judge the goodness of the approximation given by [image: images](θ), it is desirable to derive lower and upper limits for L(θ). Such limits can be obtained by deriving lower and upper limits for Eθ* and Eθ**. First we consider the case when h(θ) > 0. To obtain a lower limit for Eθ* consider a real variable ζ which is restricted to values > 1. For any random variable u and any relation R we shall denote by E(u | R) the conditional expected value of u under the restriction that R holds. Let Pθ(ζ) denote the probability that [image: images]. Then we have
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Hence, a lower bound of Eθ* is given by
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where the symbol g.l.b. stands for greatest lower bound with respect to ζ. Since [image: images] is an upper bound of Eθ*, we obtain the limits
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To derive limits for Eθ** consider a real variable ρ which is restricted to values > 0 and < 1. Let Q(ρ) denote the probability that [image: images]. Then we obtain
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Hence an upper bound of Eθ** is given by
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Since Ah(θ) is a lower bound of Eθ**, we obtain the following limits for Eθ**:
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Putting
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and
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inequalities (A:23) and (A:26) can be written as
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and
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Since B < 1 and A > l,4 we see Eθ* < 1 and Eθ** > 1 if h(θ) > 0. From this and relations (A:19), (A:29), and (A:30), it follows that
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where h(θ) > 0.

If h(θ) < 0, limits for L(θ) can be obtained as follows. Let z' = –z, A′ = 1/B and B' = 1/A. Consider the sequential test S' defined as follows. Continue taking observations as long as log B' < z′1 + … + z'm < log A'. Terminate the process with one or the other decision, depending on whether z′1 + … + z'm [image: images] log B' or [image: images] log A'. We shall let L'(θ) be the probability that at the termination of the process the cumulative sum z′1 + … + z'm is less than or equal to log B'. Then L'(θ) = 1 – L(θ). Furthermore, we shall denote the quantities h(θ), ηθ, δθ corresponding to the test S' by h'(θ), η'θ, and δ'θ, respectively. We can apply (A:31) to the test S', since h'(θ) = – h(0) > 0. Thus, we obtain
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where h'(θ) > 0. Since ηθ and δθ depend only on the distribution of h(θ)z, and since h'(θ)z' = h(θ)z, we have η'θ = ηθ and δ'θ = δθ. Substituting, in (A:32), δθ for δ'θ, ηθ for η'θ, 1/B for A', 1/A for B', – h(θ) for h'(θ), and 1 – L(θ) for L′(θ), we obtain
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where h(θ) < 0. Hence
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where h(θ) < 0.

We can summarize our results as follows. If h(θ) > 0, limits for L(θ) are given in (A:31). If h(θ) < 0, limits for L(θ) are given in (A:34). The quantities δθ and ηθ are defined in (A:27) and (A:28).

In Sections A.2.4 and A.2.5 we shall calculate the values of δθ and ηθ for binomial and normal distributions. If the limits of L(θ) as given in (A:31) and (A:34) are too far apart, it may be desirable to determine the exact value of L(θ), or at least to find a closer approximation to L(θ) than that given in (A:31) and (A:34). A method of dealing with this problem is described in Section A.4. There the exact value of L(θ) is derived when z can take only a finite number of integral multiples of a constant d. If z does not have this property, arbitrarily fine approximations to the value of L(θ) can be obtained, since the distribution of z can be approximated to any desired degree by a discrete distribution of the type mentioned above if the constant d is chosen sufficiently small.

A.2.4 Calculation of δθ and ηθ for Binomial Distributions

Let X be a random variable which can take only the values 0 and 1. Let pi be the probability that X = 1 when Hi is true (i = 0, 1). Let H be the hypothesis that p is the probability that X = 1. Denote 1 – p by q and 1 – pi by qi (i = 0, 1). The distribution f(x, p) of x is given as follows: f(1, p) = p and f(0, p) = q. It can be assumed without loss of generality that p1 > p0. The moment generating function of [image: images] is given by
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Let h(p) ≠ 0 be the value of t for which ϕ(t) = 1, i.e.,
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First we consider the case when h(p) > 0. It is clear that ezh(p) = [image: images] implies that x = 1. Hence ezh(p) > 1 implies that [image: images]. From this and the definition of δp given in (A:28) it follows that
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where h(p) > 0. Similarly, the inequality ezh(p) < 1 implies that ezh(p)= (q1/q0)h(p). From this and the definition of ηp given in (A:27) it follows that
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where h(p) > 0.

If h(p) < 0, it can be shown in a similar way that
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where h(p) < 0, and
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where h(p) < 0.

A.2.5 Calculation of δθ and ηθ for Normal Distributions

We shall now assume that X is normally distributed with unknown mean θ and known variance σ2. We can assume without loss of generality that σ = 1, since this can always be achieved by multiplication by a proportionality factor. Then
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and
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We can assume without loss of generality that θ0 = – Δ and θ1 = Δ where Δ > 0, since this can always be achieved by a translation. Then
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The moment generating function of z is given by
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Hence
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Substituting this value of h(θ) in (A:27) and (A:28) we obtain
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and



[image: images]
For any relation R let Pθ*(R) denote the probability that the relation R holds under the assumption that the distribution of x is normal with mean θ and variance unity. Furthermore, let Pθ**(R) denote the probability that R holds if the distribution of x is normal with mean —θ and variance unity. Since e–2θx is equal to the ratio of the normal probability density function with mean — θ and variance unity to the normal probability density function with mean θ and variance unity, we see that
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and
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It can easily be verified that the right-hand members of (A:46) and (A:47) have the same values for θ = λ as for θ = – λ. Thus, δθ and ηθ also have the same values for θ = λ as for θ = – λ. It will therefore be sufficient to compute δθ and ηθ for negative values of θ. Let θ = – λ where λ > 0. First we show that ηθ = 1/δθ. Clearly,
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Letting ζ = (1/ρ) (0 < ρ [image: images] 1) in (A:48) gives
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Hence



[image: images]

Because of the symmetry of the normal distribution, it is easily seen that
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Hence
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Now we shall calculate the value of δθ. Let G(x) denote [image: images]. Then
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Similarly
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Let u denote (1/2λ) log (1/ρ). Since ρ can vary from 0 to 1, u can take any value from 0 to ∞. Since ρ = e– 2λu, we have
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We shall prove that
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s a monotonically decreasing function of u and consequently has a maximum at u = 0. For this purpose it suffices to show that the derivative of log X(u) is never positive. Now
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Let Φ(x) denote [image: images]. Since [image: images], it follows from (A:54) that



[image: images]

It follows from the mean value theorem that the right-hand side of (A:55) is never positive if [image: images] is equal to or less than 1 for all values of u. Thus, we need merely to show that
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Let y denote [image: images]. The roots of the equation y2 – uy – 1 = 0 are
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Hence the inequality y2 – uy – 1 [image: images] 0 holds if, and only if,
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Since y cannot be negative, this inequality is equivalent to
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Thus we merely have to prove (A:57). We shall show that (A:57) holds for all real values of u. Birnbaum 5 has shown that for u > 0
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Hence
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which proves (A:57) for u > 0. Now we prove (A:57) for u < 0. Let u = – v where v > 0. Then it follows from (A:59) that
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Taking reciprocals, we obtain, from (A:60),
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Since
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we obtain, from (A:61),
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Taking reciprocals, we obtain
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Hence (A:57) is proved for all values of u and consequently δθ is equal to the value of the expression (A:53) if we substitute 0 for u. Thus
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Formula (A:63) has been derived for the case in which θ0 = – Δ, θ1 = Δ, and σ = 1. It can easily be seen that for general values θ0, θ1, and σ we have
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where [image: images]

A.3  UPPER AND LOWER LIMITS FOR THE ASN FUNCTION OF A SEQUENTIAL PROBABILITY RATIO TEST

A.3.1  Derivation of General Formulas for Upper and Lower Limits

As before, let
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and let n be the number of observations required by the sequential test, i.e., n is the smallest integer for which Zn = z1 + … + zn is either [image: images] log A or [image: images] log B. To determine the expected value E(n) of n under the hypothesis H that θ is the true value of the parameter, we shall consider a fixed positive integer N. The sum ZN = z1 + … + zN can be split in two parts as follows:
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where Z'n = zn + 1 + … + zN if n [image: images] N and Z′n = ZN – Zn if n > N. Taking expected values on both sides of (A:65) we obtain
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Let PN denote the probability that n [image: images] N. Then



[image: images]

where the operator EθN means conditional expected value when n [image: images] N, and EθN* means conditional expected value when n > N.

Since ZN lies between log B and log A when n > N, and since lim (1 – PN) = 0, we obtain from the last two equations
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For any given value of n < N, the variates zn + 1, …, zN are independently distributed, each having the same distribution as z. Hence, we have
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From this and (A:66) we obtain, since [image: images].1
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Since
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equation (A:67) gives
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Hence



[image: images]

if Eθ(z) ≠ 0. Let Eθ*(Zn) be the conditional expected value of Zn under the restriction that the sequential analysis leads to the acceptance of H0, i.e., that Zn [image: images] log B. Similarly, let Eθ**(Zn) be the conditional expected value of Zn under the restriction that H1 is accepted, i.e., that Zn [image: images] log A. Since L(θ) is the probability that Zn [image: images] log B, and 1 – L(θ) is the probability that Zn [image: images] log A, we have
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From (A:69) and (A:70) we obtain
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The exact value of Eθ(Zn), and therefore also the exact value of Eθ(n), can be computed if z can take only integral multiples of a constant d, since in this case the exact probability distribution of Zn was obtained (see Section A.4). If z does not satisfy the above restriction, it is still possible to obtain arbitrarily fine approximations to the value of Eθ(Zn), since the distribution of z can be approximated to any desired degree by a discrete distribution of the type mentioned above provided the constant d is chosen sufficiently small.

If both | E(z) | and the standard deviation of z are small, Eθ*(Zn) is very nearly equal to log B and Eθ**(Zn) is very nearly equal to log A. Hence in this case we can write
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This is the same approximation formula as given in (3:57).

To judge the goodness of the approximation given in (A:72) we shall derive lower and upper limits for Eθ(n) by deriving lower and upper limits for Eθ*(Zn) and Eθ**(Zn). Let r be a non-negative variable and let
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and
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It is easy to see that
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and
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We obtain from (A:71), (A:75), and (A:76)
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and



[image: images]

The limits given in (A:77) and (A:78) will generally be close to each other for values θ [image: images] θ0 and θ [image: images] θ1. However, for values θ between θ0 and θ1 the difference between the upper and lower limits may become very large, since Eθ(z) may be near (or equal to) 0 for such values θ. In fact, we have seen that Eθ0(z) < 0 and Eθ1(z) > 0. Hence, if Eθ(z) is a continuous function of θ, there will be a value θ' between θ0 and θ1 such that Eθ′(z) = 0. For θ = θ′ or for values θ very near θ' the limits given in (A:77) and (A:78) are of no practical value, since they are far apart.

We shall now derive limits for Eθ(n) which can be used for values θ in the neighborhood of θ'.2 For this purpose, we shall expand eh(θ)Zn in a Taylor series as follows:
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where λ is some value between 0 and h(θ)Zn. From (A:17) and (A:79) we obtain
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From this and (A:69) it follows that
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Thus, upper and lower limits for Eθ(n) can be obtained by deriving upper and lower limits for Eθ(Zn2) and Eθ(Zn3eλ). To derive limits for Eθ(Zn2), we write
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where the operator E* stands for conditional expected value when Zn [image: images] log B, and E** stands for conditional expected value when Zn [image: images] log A. Let ε' denote Zn – log B and ε″ denote Zn – log A. Then
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and
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Since Eθ*(ε′2) [image: images] 0 and [image: images]u, we obtain, from (A:83),
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The quantity ξ′θ given in (A:74) is a lower bound for Eθ*(ε′). Since log B < 0, (log B)ξ′θ is an upper bound for (log B)Eθ*(ε′). An upper bound for Eθ*(ε'2) is given by
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Hence
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Thus we obtain the limits
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In a similar way, the following limits can be derived for Eθ**(Zn2):
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where ξθ is given in (A:73) and
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If we denote by L'(θ) the lower limit and by L″(θ) the upper limit of L(θ) given in (A:31) [(A:34) when h(θ) < 0], we obtain from (A:82), (A:88), and (A:89) the following limits for Eθ(Zn2):
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Using a similar method, one can also derive upper and lower limits for Eθ(Zn3eλ) without any difficulty. We shall, however, not derive such limits here, since we are interested in obtaining limits for Eθ(n) when θ is near θ′ and since, for such values of θ, the second term in the right-hand member of (A:81) is negligible. We shall show that, if h(θ), Eθ(z), and Eθ(z2) are continuous functions of θ, the factor [h(θ)]2/[Eθ(z)] in that term converges to 0 as θ → θ′. It follows from the discussion given in Section A.2.1 that [image: images]. Since
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we obtain, when h(θ) ≠ 0,
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Thus



[image: images]

Assuming that Eθ(e|z|) is a bounded function of θ in the neighborhood of θ', we see that Eθ(|z|3e|h(θ)||z|) is also a bounded function of θ in a sufficiently small neighborhood of θ'.3 Hence, Eθ(z3euh(θ)z) is also a bounded function of θ in the neighborhood of θ'. From this and (A:94) it follows that
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From (A:95) it follows that
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The lower and upper limits for Eθ(n), based on (A:81), will generally be close to each other for values θ in a small neighborhood of θ'. Thus, when θ is near θ' these limits for Eθ(n) can be used instead of the limits given in (A:77) and (A:78).

It may be of interest to determine the limiting form of (A:81) when θ = θ'. If Eθ(Zn2) is a continuous function of θ and Eθ(Zn3eλ) is a bounded function of θ in the neighborhood of θ', it follows from (A:81), (A:95), and (A:96) that4
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The boundedness of Eθ(Zn3eλ) can be proved if, for t = ± 1, the expected value [image: images] is a bounded function of θ and ρ (0 < ρ < 1). Since [image: images], there exists a constant C such that [image: images] for θ in the neighborhood of θ'. Hence, we merely have to show that Eθ(e|Zn|) is bounded. Since eZn + e– Zn [image: images] e| Zn |, it is sufficient to show that both Eθ(eZn) and Eθ(e– Zn) are bounded. We have
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where 0 < ρ < 1. Since
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we obtain
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The right-hand member of this equation is bounded, since [image: images] is bounded by assumption. Hence Eθ(eZn) is bounded. The boundedness of Eθ(e– Zn) can be shown in a similar way. Upper and lower limits for Eθ'(n) can be obtained from (A:97) by substituting for Eθ'(Zn2) the upper and lower limits given in (A:91).

We shall now compute an approximate value of Eθ'(n), neglecting the excess of Zn over the boundaries. Since [image: images], we obtain, from (3:43),
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Hence
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Thus an approximate value of Eθ′ (n) is given by 5
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If the OC function L(θ) of the test is known exactly, close limits for Eθ(n) can be derived which remain valid over the entire range of θ. We shall indicate briefly the derivation of such limits. Denote by fθ(z) the distribution of z when θ is the true value of the parameter. By the distribution of z conjugate to the distribution fθ(z) we shall mean the distribution eh(θ)zfθ(z). In important cases, such as for binomial and normal distributions, to any given value θ of the parameter there will correspond a value [image: images] such that [image: images] is conjugate to fθ(z), i.e., [image: images]. We shall call [image: images] conjugate to θ. It has been shown elsewhere 6 that
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On the other hand,
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where v lies between 0 and h(θ)[Zn – Eθ*(Zn)]. Similarly
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where v′ lies between 0 and h(θ)[Zn – Eθ**(Zn)]. From (A:100), (A:101), and (A:102) we obtain
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and
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Thus



[image: images]

where



[image: images]

Since h(θ)Eθ(z) [image: images] 0 (see Section A.2.1), we see that R [image: images] 0. Hence a lower bound for Eθ(n) is obtained by substituting 0 for R in (A:105).

To obtain an upper bound for Eθ(n) we shall derive an upper bound for R. Clearly
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whenever Zn [image: images] log B. From this and (A:76) we obtain
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whenever Zn [image: images] log B. Similarly, we obtain
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whenever Zn [image: images] log A, where ξθ is given by (A:73). From (A:107), (A:108), and (A:109) it follows that
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and
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Furthermore, we have
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and
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From (A:106) and (A:110) through (A:113) we obtain the following upper bound for R:
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An upper limit for Eθ(n) is obtained by substituting [image: images] for R in (A:105). The value of [image: images] will generally be small over the entire range of θ.

A.3.2  Calculation of the Quantities ξθ and ξ'θ for Binomial and Normal Distributions

Let X be a random variable which can take only the values 0 and 1. Let the probability that X = 1 be denoted by θ. Then the distribution of x is given by f(x, θ), where f(1, θ) = θ and f(0, θ) = 1 – θ. Let Hi be the hypothesis that θ = θi (i = 0, 1). It can be assumed without loss of generality that θ1 > θ0. It is clear that [image: images] implies that x = 1 and consequently [image: images]. Hence
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Since [image: images] implies that x = 0, we have
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Now we shall calculate the values ξθ and ξ'θ when X is normally distributed with unit variance. Let
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and
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We may assume without loss of generality that θ0 = – Δ and θ1 = Δ where Δ > 0, since this can always be achieved by a translation. Then
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Let Φ(x) denote [image: images] and let G(x) denote [image: images]. Let t = x – θ. Then z = 2Δ (t + θ) and
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where



[image: images]

In Section A.2.5, equation (A:56), it was proved that [Φ(t0)/G(t0)] – t0 is a monotonically decreasing function of t0. Hence the maximum of Eθ(z – r | z – r [image: images] 0) is reached when r = 0, and consequently



[image: images]

Now we shall calculate ξ′θ We have
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Let t = –x + θ and t0 = (r/2Δ) + θ. Then
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Since this is a monotonically decreasing function of t0, we have
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From (A:121) and (A:123) we obtain
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Formulas (A:120) and (A:124) have been derived for the case when θ0 = – Δ, θ1 = Δ, and σ = 1. For general values θ0, θ1, and σ, the values of ξθ and ξ′θ are given by
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and
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where



[image: images]

A.4  DERIVATION OF EXACT FORMULAS FOR THE OC AND ASN FUNCTIONS WHEN z CAN TAKE ONLY A FINITE NUMBER OF INTEGRAL MULTIPLES OF A CONSTANT

In this section we shall derive exact formulas for the OC and ASN functions when [image: images] can take only a finite number of integral values of a positive constant d. This is a rather general result, since any distribution of z can be approximated arbitrarily closely by a discrete distribution of the above type if the constant d is chosen sufficiently small.

To obtain the exact OC and ASN functions, we shall first derive the exact probability distribution of the cumulative sum Zn = z1 + … + Zn at the termination of the sequential process. In what follows in this section the probability of any relation and the expected value of any random variable are determined under the assumption that θ is the true value of the parameter.1 However, to simplify notation, we shall not put this in evidence in the formulas, i.e., we shall write P instead of Pθ and E instead of Eθ. Let g1 and g2 be two positive integers such that P(z = – g1d) and P(z = g2d) are positive and z can take only integral multiples of d which are [image: images] – g1d and [image: images] g2d. Denote P(z = id) by hi. Then the moment-generating function of z is given by



[image: images]

To obtain the roots of the equation ϕ(t) = 1, we let etd = u and solve the equation:
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Let g denote g1 + g2 and let the g roots of (A:128) be u1, …, ug, respectively. We shall assume that no two roots are equal, i.e., ui ≠ uj for i ≠ j. Substituting ui for etd in the fundamental identity (A:16) we obtain
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Let [a] be the smallest integer [image: images] log A/d, and [b] the largest integer [image: images] (log B)/d. Then Zn/d can take only the values
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Denote the g different values in (A:130) by c1, …, cg, respectively. Furthermore, denote P(Zn = cid) by ξi. Then equations (A:129) can be written as



[image: images]

Let Δ be the determinant value of the matrix [image: images] and let Δj be the determinant we obtain from Δ by substituting 1 for the elements in the jth column. If Δ ≠ 0, it follows from (A:131) that P(Zn = cjd) = ξj is given by
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Thus, the probability L(θ) that the process will terminate with Zn [image: images] log B is given by
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where the summation is to be taken over all values j for which dcj [image: images] log B. Equation (A:133) is an exact equation of the OC function.

From the probability distribution of zn we can easily derive the expected value Eθ(n) of n. In fact, in Section A.3 it has been shown that
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But
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Hence
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is the exact equation of the ASN function.

The method of obtaining the probabilities ξ1, …, ξg, as described above, requires the computation of the roots of the polynomial equation (A:128). This is not necessary, however, if a method given by Girshick is used.2 Girshick proceeds as follows. Multiplying [image: images], we obtain two polynomials f(u) and F(u), where f(u) is of degree g1 + g2 = g and F(u) of degree g + [a] – [b] – 2. According to (A:128) and (A:131), every root of f(u) is also a root of F(u). Hence
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where f*(u) is a polynomial of degree [a] – [b] – 2, i.e.,
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Putting the coefficient of any power of u in F(u) equal to the coefficient of the same power of u in f(u)f*(u), we obtain a system of g + [a] – [b] – 1 linear equations in the g + [a] – [b] – 1 unknowns ξ1, …, ξg, k0, k1, …, k[a] – [b] – 2,  from which these unknowns can be determined. Thus, the probabilities ξ1, …, ξg can be determined without solving the polynomial equation (A:128). This advantage is, however, bought for the price of an increased number of linear equations to be solved. If the roots of the polynomial equation (A:128) are computed, only g linear equations have to be solved for determining ξ1, …, ξg. If Girshick's method is used, no polynomial equation is to be solved, but the number of linear equations is increased to g + [a] – [b] – 1.

If g2 = 1, the OC function L(θ) is a simple expression of the roots u1, …, ug. In fact, L(θ) = P(zn [image: images] log B) = 1 – P(zn [image: images] log A) = 1 – ξg. We have
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and
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The value of the ratio Δg/Δ is not changed if we multiply the ith row of Δ, as well as that of Δg, by [image: images]. Thus
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The cofactor of each element in the last column is a Vandermonde determinant. Expanding the determinants in the numerator and denominator according to their last columns and dividing numerator and denominator by the Vandermonde determinant,



[image: images]

we obtain



[image: images]

We shall illustrate the derivation of the exact OC and ASN functions by a simple example. Let x be a random variable which can take only the values 0 and 1. Denote by Hi (i = 0, 1) the hypothesis that the probability that x = 1 is equal to pi (i = 0, 1). Let
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Consider the sequential test for testing H0 against H1. We shall compute the probability that the process will terminate with the acceptance of H0, and the expected number of trials required by the test, when the true probability that x = 1 is equal to p = [image: images]. In what follows in this section, all probability statements and expected values refer to the case when p = [image: images].

First we compute ϕ(t) = E(ezt). Since z can take only the values
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with probabilities [image: images] and [image: images], respectively, we have
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Letting et = u and solving the equation
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we obtain the roots u1 = 1, u2 = 2, and u3 = – [image: images]. The integers c1, c2, c3 are given by
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Hence



[image: images]

Then the probability that H0 will be accepted is given by
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The expected value of n is given by



[image: images]

A.5  THE CHARACTERISTIC FUNCTION AND HIGHER MOMENTS OF n

A.5.1  Derivation of Approximate Formulas Neglecting the Excess of the Cumulative Sum over the Boundaries

Let [image: images]n be a random variable defined as follows: [image: images]n = log A if Zn = z1 + … + zn [image: images] log A, and [image: images]n = log B if Zn [image: images] log B. Denote the difference [image: images]n – Zn by ε. Then ε is a random variable.

In what follows in this section we shall neglect ε, i.e., we shall substitute 0 for ε. No error is committed by doing so in the special case when z can take only two values, d and – d, and the ratios (log A)/d and (log B)/d are integers, since in this case ε is exactly 0. Apart from this special case ε will not be identical with the constant 0. However, the smaller | E(z) | and E(z2), the smaller the error we commit by neglecting ε. In fact, for arbitrarily small positive numbers δ1 and δ2 the inequality P(| ε | [image: images] δ1) [image: images] 1 – δ2 will hold if | E(z) | and E(z2) are sufficiently small. Thus, in the limiting case when E(z) and E(z2) approach 0, the random variable e reduces to the constant 0.

As in the preceding section, all probability statements and expected values will refer to the case in which θ is the true parameter point, without putting this in evidence in the formulas by using θ as a subscript to the operators P and E. Let ϕ(t) be the moment generating function of z, i.e.,
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To derive an approximation to the characteristic function of n, we shall consider the equation
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where τ is a purely imaginary quantity. It will be assumed that z satisfies the conditions of lemma A.1. Then, according to lemma A.1, the equation – log ϕ(t) = 0 has exactly two real roots in t; they are t = 0 and t = h (h ≠ 0). Furthermore ϕ'(0) and ϕ'(h) both are unequal to 0. Hence, if ϕ(t) is not singular at t = 0 and t = h, equation (A:136) has two roots, t1(τ) and t2(τ), for sufficiently small values of | τ | such that [image: images]. Identity (A:16) can be written as
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where L denotes the probability that the test procedure leads to the acceptance of H0, E* stands for conditional expected value under the restriction that the process leads to the acceptance of H0, E** stands for conditional expected value under the restriction that the process leads to the rejection of H0. Neglecting the excess of Zn over the boundaries, we have Zn = log B when the process leads to the acceptance of H0, and Zn = log A when the process leads to the rejection of H0. Hence (A:137) can be written as
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This identity is valid for all values of t for which | ϕ(t) | [image: images] 1.1 Letting t = t1(τ) and t = t2(τ), we obtain, from (A:138),
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and
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Solving these equations in E*(eτn) and E**(eτn), we obtain
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and
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for all imaginary values τ.

The unconditional expected value E(eτn) is clearly equal to
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Hence, the characteristic function of n is given by
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(for all imaginary τ).

By definition, the expected value E(eτn) is the characteristic function of n, and (A:144) gives the desired approximation formula when the excess of Zn over the boundaries can be neglected. Our derivations yield also approximation formulas for ψ*(τ) = E*(eτn) and ψ**(τ) = E**(eτn). The function ψ*(τ) can be interpreted as the characteristic function of the conditional distribution of n when the process leads to the acceptance of H0, and ψ**(τ) can be interpreted as the characteristic function of the distribution of n in the subpopulation of samples leading to the rejection of H0.

As an illustration we shall determine ψ*(τ), ψ**(τ), and ψ(τ) when z has a normal distribution. Denote by μ the mean of z and by σ the standard deviation of z. Then equation (A:136) can be written as
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Hence
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Thus
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and



[image: images]

where the sign of [image: images] is determined so that the real part of [image: images] is positive. Substituting these values for t1(τ) and t2(τ) in (A:141), (A:142), and (A:144), we obtain ψ*(τ), ψ**(τ), and ψ(τ) in the case when z is normally distributed. According to formula (3:43), an approximation to L is given by
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When z is normally distributed we have
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It is of interest to consider the following two limiting cases: (1) B = 0 and A is a finite positive value; (2) B is a finite positive value and A = + ∞. It can be shown that E(n) will be finite in case (1) only if E(z)  > 0. Similarly, E(n) will be finite in case (2) only if E(z) < 0. Thus, in case (1) we shall assume that E(z) > 0, and in case (2) we shall assume that E(z) < 0. To obtain the characteristic function ψ(τ) of n in case (1), we have to determine the limiting value of the right-hand member of (A:144) when B → 0. For this purpose we shall first derive the limiting value of [image: images] when B → 0. Since in case (1) E(z) is assumed to be > 0, the quantity [image: images] must be negative, as has been shown in Section A.2.1. Hence, for small τ the real part of t2(τ) is negative. On the other hand, the real part of t1(τ) approaches 0 as τ → 0. Thus, for small τ the real part of t2(τ) – t1(τ) is negative, and, therefore,
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From (A:150) and from the relation [image: images], it follows that with B → 0 the right-hand member of (A:144) converges to
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Thus, if E(z) > 0 the characteristic function of n in case (1) is given by (A:151). When z is normally distributed, t1(τ) is given by (A:146). Hence, for normally distributed z with μ > 0 the characteristic function of n in case (1) is given by
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In case (2) we have assumed that E(z) < 0. Hence t2(τ) and t2(τ) – t1(τ) will have a positive real part for small τ. Thus,
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From (A.153) it follows that the limiting value of the right-hand member of (A:144) when A → ∞ is given by
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Thus, if E(z) < 0, the characteristic function of n in case (2) is given by (A:154).

The moments of n can be obtained by differentiating the characteristic function of n. For any positive integer r the rth moment of n is given by
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We can also obtain the conditional moments of n in the subpopulation of samples for which Zn [image: images] log B, as well as in the subpopulation of samples for which Zn [image: images] log A. Let E*(nτ) denote the conditional expected value of nr in the subpopulation Zn [image: images] log B, and let E**(nr) denote the expected value of nr in the subpopulation Zn [image: images] log A. Then we have
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where ψ*(τ) and ψ**(τ) are the conditional characteristic functions given in (A:141) and (A:142).

It may be of interest to note that  [image: images],and, therefore, also [image: images] can be obtained from identity (A:138) directly by successive differentiation. In fact, (A:138) can be written as
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Taking the first r derivatives of (A:156) with respect to t at t = 0 and t = h, we obtain a system of 2r linear equations in the 2r unknowns [image: images] from which these unknowns can be determined. For example [image: images] and [image: images] can be determined as follows. Taking the first derivative of (A:156) with respect to t we obtain
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Letting t = 0  and t = h we obtain the equations
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and
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from which [image: images] can be determined.

A.5.2  Derivation of Exact Formulas When z Can Take Only a Finite Number of Integral Multiples of a Constant

We shall use here the notation defined in Section A. 4 without any further explanation. Let ψi(τ) denote the characteristic function of the conditional distribution of n in the subpopulation of samples for which Zn = cid (i = 1, …, g). The equation in t
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has g roots t1(τ), …, tg(τ) such that
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The fundamental identity (A:16) can be written as
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Substituting ti(τ) for t in (A:162), we obtain
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These equations are linear in the unknowns [image: images], and the determinant of these equations is given by



[image: images]

Obviously, δ(0) = ξ1ξ2 … ξgΔ. Hence, if ξi ≠ 0 (i = 1, …, g) and Δ ≠ 0, then δ(0) ≠ 0, and consequently δ(τ) ≠ 0 for any τ with sufficiently small absolute value. Thus, [image: images] can be obtained by solving the linear equations (A:163).1 The characteristic function ψ(τ) of the unconditional distribution of n is given by



[image: images]

For any positive integer r, the exact rth moment of n, i.e., E(nr), is given by the rth derivative of ψ(τ) with respect to τ at τ = 0.

A.6  APPROXIMATE DISTRIBUTION OF n WHEN z IS NORMALLY DISTRIBUTED

A.6.1  The Case When B = 0 and A Is Finite

In this case we have assumed that E(z) = λ > 0. Then the approximate characteristic function of n, if the excess of Zn over the boundaries is neglected, is given by (A:152). Let
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Then the characteristic function of m is given by
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where
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and
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The sign of the square root in (A:167) is determined so that the real part of [image: images] is positive. The distribution of m is given by
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Let
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and
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Since
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we have
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From (A:171) and (A:172) we obtain
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From (A:174) and (A:175) it follows that
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Hence
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where λ(m) is some function of m only. Thus
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Now we shall determine λ(m). We have
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Since (1 – t)–1/2 is the characteristic function of [image: images] where χ2 has the χ2-distribution with one degree of freedom, the right-hand side of (A:179) is equal to
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Hence
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From (A:178) and (A:179) we obtain
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From (A:174) and (A:181) we obtain
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Hence the distribution of m is given by
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Let m = (c/2)m*. Then the distribution of m* is given by
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The function (1/m*) + m* – 2 is non-negative and is equal to 0 only when m* = 1. If c is large, then D(m*) is exceedingly small for values of m* not close to 1. Expanding (1/m*) m* – 2 in a Taylor series around m* = 1, we obtain
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Hence for large c
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i.e., if c is large m* is nearly normally distributed with mean equal to 1 and standard deviation 1/[image: images].

A.6.2  The Case When B > 0 and A = ∞

In this case we have assumed that E(z) = μ < 0. It can easily be shown that the distribution of m = (μ2/2σ2)n is now given by the expression we obtain from (A:183) if we substitute (μ/σ2) log B for c.

A.6.3  The Case When B > 0 and A Is Finite

In this case the approximate characteristic function of n, if the excess of Zn over the boundaries is neglected, is given by (A:144) where t1(τ) and t2(τ) are equal to the right-hand members of (A:146) and (A:147), respectively. Let
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Then the characteristic function of m is given by



[image: images]

where
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and t is an imaginary variable. Letting [image: images], and [image: images], the characteristic function of m can be written as
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It will be sufficient to consider only the case when μ > 0, since the case when μ < 0 can be treated in a similar way. Then [image: images] < 0 and [image: images] > 0. Since the real part of [image: images] is greater than or equal to 1, we have
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for any imaginary value of t. Let
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Then
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From (A:189) and (A:192) it follows that [image: images] can be written in the form of an infinite series:
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where λi and ri are constants and λi > 0. Each term of this series is a characteristic function of the form given in (A:167) except for a proportionality factor. Let Fi(m) be the distribution of m corresponding to the characteristic function [image: images]. Then Fi(m) can be obtained from (A:183) by substituting λi for c. Since we may integrate the right-hand member of (A:193) term by term, the distribution of m is given by
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A.6.4  Some Remarks

Since m is a discrete variable, it may seem paradoxical that we obtained a probability density function for m. However, the explanation lies in the fact that we neglected [image: images] and this quantity is 0 only in the limiting case when μ and σ approach 0.

If |μ| and σ are sufficiently small as compared with log A and | log B |, the distribution of m given in (A:194) will be a good approximation to the exact distribution of m, even if z is not normally distributed. The reason for this can be indicated as follows. Let
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where r is a given positive integer. Since the variates zj are independently distributed, each having the same distribution, under some weak conditions the variates [image: images] will be nearly normally distributed for large r. Hence, considering the cumulative sums [image: images] (i = 1, 2, …, ad inf.), the distribution given in (A:194) is applicable with good approximation, provided that r|μ| and [image: images] are small compared with log A and | log B | so that the difference [image: images] can be neglected.

It would be desirable to derive limits for the error in the cumulative distribution of m caused by neglecting [image: images]. No such limits have yet been obtained.

A.7  EFFICIENCY OF THE SEQUENTIAL PROBABILITY RATIO TEST

Let S be any sequential test for testing H0 against H1 such that the probability of an error of the first kind is α, and the probability of an error of the second kind is β, and the probability that the test procedure will eventually terminate is 1. Let S′ be the sequential probability ratio test whose strength is equal to that of S. We shall prove that the sequential probability ratio test is an optimum test, i.e., that Ei(n\S) [image: images] Ei(n\S′) (i = 0,1), if for S′ the excess of Zn over log A and log B can be neglected.1 This excess is exactly 0 if z can take only the values d and –d and if log A and log B are integral multiples of d. In any other case the excess will not be identically 0. However, if |E(z)| and the standard deviation σz of z are sufficiently small, the excess of Zn over log A and log B is negligible.

For any random variable u, we shall denote by [image: images] the conditional expected value of u under the hypothesis Hi (i = 0,1) and under the restriction that H0 is accepted. Similarly, let [image: images] be the conditional expected value of u under the hypothesis Hi(i = 0, 1) and under the restriction that H1 is accepted. In the notations for these expected values, the symbol S stands for the sequential test used. Let Qi(S) denote the totality of all samples for which the test S leads to the acceptance of Hi. Then we have
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and
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To prove the optimum property of the sequential probability ratictest, we shall first derive two lemmas.

Lemma A.2. For any random variable u the inequality
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holds.

Proof. Inequality (A:200) can be written as
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where u′ = u – E(u). Lemma A.2 is proved if we show that (A:201) holds for any random variable u′ with zero mean. Expanding eu′ in a Taylor series around u′ = 0, we obtain
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where ξ(u′) lies between 0 and u′. Hence
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and lemma A.2 is proved.

Lemma A.3. Let S be a sequential test such that there exists a finite integer N with the property that the number n of observations required for the test is [image: images] N. Then2
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The proof is omitted, since it is essentially the same as that of equation (A:69) for the sequential probability ratio test.

On the basis of lemmas A.2 and A.3 we shall be able to derive the following theorem.

Theorem: Let S be any sequential test for which the probability of an error of the first kind is α, the probability of an error of the second kind is β, and the probability that the test procedure will eventually terminate is equal to 1. Then
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and
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Proof. First we shall prove the theorem in the case when there exists a finite integer N such that n never exceeds N. According to lemma A.3 we have
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and
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From equations (A:196) through (A:199) and lemma A.2 we obtain the inequalities
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and
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Since E0(z) < 0, (A:205) follows from (A:207), (A:209), and (A:210). Similarly, since E1(z) > 0, (A:206) follows from (A:208), (A:211), and (A:212). This proves the theorem when a finite integer N exists such that n [image: images] N.

To prove the theorem for any sequential test S of strength (α, β), let SN be the sequential test we obtain by truncating S at the Nth observation if no decision is reached before the Nth observation. Let (αN, βN) be the strength of SN. Then we have
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and



[image: images]

Since [image: images] and [image: images], inequalities (A:205) and (A:206) follow from (A:213) and (A:214). Hence the proof of the theorem is completed.

If for the sequential probability ratio test S′ the excess of the cumulative sum Zn over the boundaries log A and log B is 0, E0 (n | S′) is exactly equal to the right-hand member of (A:205) and E1(n | S′) is exactly equal to the right-hand member of (A:206). Hence, in this case, S′ is exactly an optimum test. If both | E(z) | and σz are small, the expected value of the excess over the boundaries will also be small and, therefore, E0(n | S′) and E1(n | S′) will be only slightly larger than the right-hand members of (A:205) and (A:206), respectively. Thus, in such a case, the sequential probability ratio test is, if not exactly, very nearly an optimum test.3

If θ1 approaches θO, then the ratios of the upper limits of E0(n | S′) and E1(n | S′), as implied by (A:77) and (A:78), to the right-hand members of (A:205) and (A:206), respectively, converge to 1. Thus, the efficiency of the sequential probability ratio test, if not exactly 1, converges to 1 when θ1 → θO.4 The upper bounds for E0(n | S′) and E1(n | S′) given in (A:77) and (A:78) determine lower bounds for the efficiency of the sequential probability ratio test S′.

A.8  DETERMINATION OF AN OPTIMUM WEIGHT FUNCTION w(θ) IN SOME SPECIAL CASES OF TESTING SIMPLE HYPOTHESES WITH NO RESTRICTIONS ON THE POSSIBLE ALTERNATIVE VALUES OF THE PARAMETERS

A.8.1  A Class of Cases for Which an Optimum Weight Function w(θ) Can Be Determined by a Simple Procedure

Let [image: images] be the simple hypothesis H0 to be tested and denote the distribution of x by f(x, θ1, …, θk). Assume the boundary of the zone ωr of preference for rejection is a surface in the parameter space and denote it by Sr. Assume, further, that it is possible to find a non-negative function v(θ) of the parameter θ such that the surface integral1
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and the sequential probability ratio test based on the ratio



[image: images]

satisfies the following two conditions (for any values A and B): (1) The probability β(θ) of committing an error of the second kind (of accepting H0 when θ is true) is constant over the surface Sr; (2) for any point θ in the interior of ωr, the value of β(θ) does not exceed the constant value of β(θ) on the surface Sr.

We shall now show that v(θ) may be regarded as an optimum weight function in the sense defined in Section 4.1.3, and the probability ratio test based on the ratio (A:216) provides a solution to our problem. In fact, the weight function v(θ) over the surface Sr can be considered a limiting case of a weight function w(θ) which takes the value 0 for any θ in the interior of ωr whose distance from the boundary exceeds some positive Δ, with Δ approaching 0 in the limit. It follows from conditions (1) and (2) that for the weight function v(θ) the maximum of β(θ) in ωr is equal to the weighted integral of β(θ), i.e., to [image: images]. Consider now any other weight function w*(θ) and denote the resulting probability of an error of the second kind by β* (θ) when w*(θ) is used instead of v(θ). It has been shown in Section 4.1.3 that the following relations hold with sufficient approximation for practical purposes:
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Hence the maximum of β*(θ) in ωr is [image: images] B(A – 1)/(A – B). The optimum property of the weight function v(θ) follows then from the fact that the maximum of v(θ) is equal to B(A – 1)/(A – B).

In several important statistical problems one can easily find a weight function v(θ) such that conditions (1) and (2) are fulfilled. We shall show, for example, that such a weight function v(θ) can easily be determined for testing the means of normally distributed variables with known variances. After the weight function v(θ) has been found, for practical purposes we may let A = (1 – β)/α and B = β/(1 – α) where α is the required value of the probability of an error of the first kind and β is the required upper limit for β(θ).

Although we have so far assumed that X is a single random variable, all the results remain obviously valid when X is a random vector, i.e., X represents a set of p(p > 1) random variables X1, …, Xp. The only change in the formulas is that the ath observation xα will have to be replaced by a set (x1α, …, xpα) of p values where xiα represents the ath observation on Xi.

A.8.2  Application to Testing the Means of Independently and Normally Distributed Random Variables with Known Variances

Let X1, …, Xk be k normally and independently distributed random variables with a common known variance σ2. The mean values θ1, …, θk are assumed to be unknown. Suppose that it is required to test the hypothesis that [image: images]. Assume that the zone ωr of preference for rejection is given by
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where δ is some given positive value. Then the boundary Sr of ωr is a sphere with center [image: images] and radius δσ. Let v(θ) be constant over Sr and equal to the reciprocal of the area of Sr. We shall show that for this weight function conditions (1) and (2) of the preceding section are fulfilled. For this purpose, we shall first prove that the ratio (A:216) is a monotonically increasing function of [image: images] where [image: images] is the arithmetic mean of the observations on Xi. In fact, in our case the ratio (A:216) reduces to
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where c is equal to the reciprocal of the area of Sr. Let rx denote [image: images] and [image: images] denote the angle between the vector [image: images] and the vector [image: images]. Then (A:218) can be written as
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Because of the symmetry of the sphere, the value of (A:219) will not be changed if we substitute γ(θ) for ρ(θ), where γ(θ) (0 [image: images] γ [image: images] π) denotes the angle between the vector θ – θ0 and an arbitrarily chosen fixed vector u. From this it follows that the value of (A:219) depends only on rx.

Now we shall show that (A:219) is a strictly increasing function of rx. For this purpose we merely have to show that
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is a strictly increasing function of rx. We have
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Denote by S′r the subset of Sr in which 0 [image: images] γ(θ) [image: images] π/2, and by S″r the subset in which π/2 < γ(θ) [image: images] π. Because of the symmetry of the the sphere we have
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Hence



[image: images]

The right-hand side of (A:223) is positive. Hence, we have proved that expression (A:219) or (A:218) is a strictly increasing function of rx.

We shall now show that β(θ) is constant over any sphere Sr(d) with center θ0 and radius d and that it decreases monotonically with increasing d. For this purpose let y1, … yk be an orthogonal linear transformation of [image: images] so that [image: images] and E(yi) = 0 (i = 2, …, k). Since [image: images] and since (A:219) depends only on [image: images], it is seen that the sequence of expressions (A:219) formed for the sequence of integers n = 1, 2, …, etc., has a joint distribution which depends only on [image: images]. Hence β(θ) is constant on any sphere Sr(d). Since (A:219) is a strictly monotonic function of rx, it can be shown that β(θ) is monotonically decreasing with increasing d. Hence, conditions (1) and (2) of the preceding section are fulfilled and we can test the hypothesis that θ = θ0 by the sequential probability ratio test based on the ratio (A:218).

If k = 1, i.e., if we test the mean value of a single random variable X, the sphere Sr is a null-dimensional sphere consisting of the two points θ1 = δσ and θ2 = –δσ and (A:216) reduces to the ratio of p1n to p0n given by (4:8) and (4:9), respectively, in Section 4.1.4.

A.9  DETERMINATION OF OPTIMUM WEIGHT FUNCTIONS wa(θ) AND wr(θ) IN SOME SPECIAL CASES OF TESTING COMPOSITE HYPOTHESES

A.9.1  A Class of Cases for Which Optimum Weight Functions wa(θ) and wr(θ) Can Be Determined by a Simple Procedure

Let f(x, θ, …, θk) denote the distribution of x involving k unknown parameters θ1, …, θk. Suppose we wish to test the composite hypothesis Hω that the parameter point θ lies in the subset ω of the parameter space. Let ωa denote the zone of preference for acceptance and ωr the zone of preference for rejection. Assume that the boundary of ωr is a surface Sr. Suppose that it is possible to find two weight functions va(θ) and vr(θ) such that



[image: images]

and that the sequential probability ratioo test based on the ratio



[image: images]

satisfies the following conditions (for any values A and B): (1) α(θ) is constant in ωa; (2) β(θ) is constant over Sr; (3) for any point θ in the interior of ωr, the value of β(θ) does not exceed the constant value of β(θ) on Sr.

We shall now show that va(θ) and vr(θ) may be regarded as optimum weight functions in the sense defined in Section 4.2.2. For this purpose, let wa(θ) and wr(θ) be any other weight functions and let α*(θ) and β*(θ) be the resulting probabilities of errors of the first and second kinds when wa(θ) and wr(θ) are used. Since, as has been shown,



[image: images]

and



[image: images]

hold with good approximation, we see that in ωa the maximum of α*(θ) [image: images] (1 – B)/(A – B), and in ωr the maximum of β*(θ) [image: images] B(A – 1)/(A – B) with good approximation. But if va(θ) and vr(θ) are used, it follows from conditions (1), (2), and (3) that (with good approximation) the maximum of α(θ) in ωa is equal to (1 – B)/(A – B) and the maximum of β(θ) in ωr is equal to B(A – 1)/(A – B). Hence these weight functions are optimum in the sense defined in Section 4.2.2.

In some special but important statistical problems one can easily find weight functions va(θ) and vr(θ) which satisfy conditions (1), (2), and (3). It will be seen in the next section that such weight functions can easily be constructed when the mean of a normal distribution with unknown variance is being tested. Again, for practical purposes we may let A = (1 – β)/α and B = β/(1 – α), where α is the required upper bound of α(θ) in ωa and β is the required upper bound of β(θ) in ωr.

A.9.2  Application to Testing the Mean of a Normal Distribution with Unknown Variance (Sequential t-Test)

Let X be a normally distributed random variable with unknown mean θ and unknown variance σ2. Suppose we wish to test the hypothesis that θ = θ0. Furthermore, assume that ωr is given by the set of all points (θ, σ) for which [image: images], while ωa consists of all points (θ0, σ). Then the boundary Sr of ωr consists of all points (θ, σ) for which [image: images], i.e., it contains the points (θ, σ) for which either θ = θ0 + δσ or θ = θ0 – δσ.

For any positive value c we define the weight functions vac(σ) and vrc(σ) as follows: vac(σ) = 1/c if 0 [image: images] σ [image: images] c and equals 0 for all other values of σ. The weight function vrc(σ) is equal to l/2c if 0 [image: images] σ [image: images] c and θ = θ0 ± δσ and equal to 0 otherwise. Let
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and
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Then
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We consider the limiting case when c → ∞. Thus



[image: images]

The sequential probability ratio test based on the ratio (A:229) provides a solution to our problem if it can be shown to have the following three properties: (1) α(θ, σ) is constant in ωa; (2) β(θ, σ) is a function of [image: images] alone; (3) β(θ, σ) is mono conically decreasing with increasing [image: images].

To prove these three properties, let x denote [image: images] and S2 denote [image: images]. Since the joint distribution of a sequence of expressions [image: images] corresponding to consecutive values of n depends only on [image: images], the first two properties are proved if we show that the ratio (A:229) is a single-valued function of [image: images].

First we show that the numerator of the ratio (A:229) is a homogeneous function of (x1 – θ0, x2 – θ0, …, xn – θ0) of degree –(n – 1). In fact, making the transformation σ= λt we obtain
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This proves that the numerator of(A:229) is a homogeneous function of x1 – θ0, …, xn – θ0 of degree –(n – 1). Similarly, it can be shown that the denominator of(A:229) is also a homogeneous function of degree –(n – 1). Thus, the ratio(A:229) is a homogeneous function of zero degree in the variables x1 – θ0, …, xn – θ0.

It can be verified that (A :229) is a function of only the two expressions ∑(xα – θ0)2 and ∑(xα – θ0), i.e.,
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Let [image: images]. Since (A:230) is a homogeneous function of zero degree in x1 – θ0, …, xn – θ0, its value is not changed by substituting (xα – θ0)/v for xα – θ0. Hence
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Since [image: images], we see that



[image: images]

Since [image: images] is a single-valued function of [image: images], we have proved [image: images] is a single-valued function of [image: images]. Hence properties (1) and (2) are proved.

In order to prove property (3) of the sequential probability ratio test based on the ratio (A:229), it is sufficient to show that (A:229) is a strictly increasing function of [image: images]. Since [image: images] is a strictly increasing function of [image: images], we have only to show that (A:229) is a strictly increasing function of [image: images]. The latter statement is proved if we show that (A:229) increases with increasing value of |x – θ0| while v is kept fixed. For a fixed value of v the denominator of (A:229) is constant. Thus, we merely have to show that the numerator of (A:229) increases with increasing |x – θ0| while v is kept fixed. This follows easily from the fact that



[image: images]

is a strictly increasing function of |x – θ0|.




1 If there are several unknown parameters, say θ1, …, θk, then θ denotes the set (θ1, …, θk).

2 From Condition III it follows that all derivatives of g(h) exist, and they may be obtained by differentiation under the integral sign, i.e.,
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1 This method of determining [image: images] requires the computation of the roots of equation (A:160). This can be avoided, as Girshick has shown in his paper mentioned in Section A.4, if a device is used similar to that applied by him for determining ξ1, …, ξg (see Section A.4).
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1 dS denotes the infinitesimal surface element.
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