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Preface

This book presents the foundations of a recently developed general
theory of statistical decision functions. It is mainly an outgrowth of
several previous publications of the author on this subject and contains
a considerable expansion and generalization of the ideas and results
given in the earlier papers. A major advance beyond previous results
is the treatment of the design of experimentation as a part of the gen-
eral decision problem.

Until about ten years ago, the available statistical theories, except
for a few scattered results, were restricted in two important respects:
(1) experimentation was assumed to be carried out in a single stage;
(2) the decision problems were restricted to problems of testing a hy-
pothesis, and that of point and interval estimation. The general
theory, as given in this book, is freed from both of these restrictions.
It allows for multi-stage experimentation and includes the general
multi-decision problem. A brief historical note on the developments
leading up to the present stage of the theory is given in Section 1.7 of
Chapter 1.

The first chapter is devoted to the formulation of the general decision
problem and various basic concepts. It is shown that the decision
problem may be interpreted as a zero sum two-person game in the
sense of von Neumann’s theory of games. The second chapter deals
with a generalization of von Neumann’s theory of zero sum two-person
games, which is then used in Chapter 3 for the development of the
theory of statistical decision functions. In Chapter 4 a number of ad-
ditional results are given in the case of a sequence of identically and
independently distributed chance variables. In Chapter 5 various
special problems of interest are discussed, partly for the purpose of il-
lustrating the general theory.

Throughout the book, general ideas and results are emphasized
rather than specific methods or techniques. Some knowledge of proba-
bility, including probability distributions in the infinite dimensional
space, is necessary for the understanding of the book. Because sta-
tistical concepts and ideas are developed in the book from the very
beginning, a previous knowledge of statistics is not essential, although
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vi PREFACE

still desirable. A knowledge of calculus and some familiarity with the
elements of set, measure, and integration theories will suffice as a
mathematical background for the reading of the book.

I am indebted to J. M. G. Fell, E. L. Lehmann, M. Loéve, C. Stein,
and J. Wolfowitz for reading the manusecript and for making valuable
suggestions and remarks. The book was written under the sponsor-
ship of the Office of Naval Research, and I wish to express my thanks
for their generous support. Mrs. E. Bowker was most helpful in the
preparation of the manuscript for publication, and I take this op-
portunity to thank her for her careful work.

AW
Columbia University
May, 1950
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Chapter 1. THE GENERAL STATISTICAL DECISION PROB-
LEM: DEFINITIONS AND PRELIMINARY DISCUSSION

1.1 Formulation of the Statistical Decision Problem

1.1.1 The Stochastic Process Underlying the Statistical Decision
Problem

Any statistical decision problem is formulated with reference to a
stochastic process. By a stochastic process we mean a finite or infinite
collection of chance variables having a joint probability distribution.
We shall restrict ourselves to the case where the stochastic process
consists of a countable collection of chance variables. Thus we shall
assume that the stochastic process is given by a sequence X = {X;}
(t=1, 2, ---, ad inf.) of chance variables. For any sequence
z={z;} G=1,2 ---, ad inf.) of real values, let F(z) denote the
probability that the inequalities X; < z; hold simultaneously for all
positive integral values 7; i.e., F(z) is the (cumulative) distribution
function of X. Statistical decision problems with reference to the
stochastic process X arise only when the distribution function F(z)
of X is not completely known. A characteristic feature of any statis-
tical decision problem is the assumption that the unknown distribution
F(z) is merely known to be an element of a given class Q of distribution
functions. The class @ is to be regarded as a datum of the decision
problem; it will generally vary with the decision problem and the
stochastic process under consideration. In most decision problems the
class @ will be a proper subset of the class of all possible distribution
functions.

A frequent assumption in statistical problems is that the chance
variables X;, X,, ---, ete., are independently and identically dis-
tributed. If this is all that is known about the distribution F(z) of
X, then the class @ consists of all distribution functions F(z) which

can be written in the form F(zr) = [] G(z;), where G(y) may be any
i1

univariate distribution function. In some problems merely the inde-

pendence of the chance variables X3, X3, - - -, ete., is postulated. The

class @ is then the class of all distribution functions F(z) which can

be written in the form [] Gi(z;), the Gi(z;) being any univariate
=1

distribution functions. Much of the present-day statistical literature
1



2 THE GENERAL STATISTICAL DECISION PROBLEM

deals with problems where € is a finite-parameter family of distribution
functions. For example, if the chance variables X, X5, - - -, etec., are
known to be independently distributed with the same normal distribu-
tion, but the mean and the standard deviation of the common normal
distribution are unknown, then © will be a two-parameter family of
distribution functions. Here is another simple example of a parametric
class Q: Suppose that it is known that for given values z;, - - -, z,, of
X, --+, Xm, respectively, the conditional distribution of X,
(m =1, 2, ---, ad inf.) is normal with standard deviation ¢ and ex-
pected value az,, + B8, where the values of the constants «, 8, and o
are unknown. Suppose also that X; is known to be normally dis-
tributed with mean zero and standard deviation ¢. Then Q will be a
three-parameter family of distribution functions.

1.1.2 Space of Possible Decisions at Termination of
Experimentation

A statistical decision problem arises when we are faced with a set
of alternative decisions, one of which must be made, and the degree of
preference for the various possible decisions depends on the unknown
distribution F(z) of X.

As will be seen later, which of the possible decisions should be made
will generally be determined only after some experimentation. By
experimentation we mean making observations on some of the chance
variables in the sequence {X;}. Since the decisions under discussion
here are made at the termination of experimentation, we shall refer
to them as terminal decisions, as distinguished from decisions as to
how to continue experimentation, which will be discussed in the next
section. We shall use the symbol d* to denote a terminal decision and
the symbol D! to denote the space of all possible terminal decisions d’.
In any decision problem there will be given a space D* whose elements
d* represent the possible terminal decisions. The space D! is to be
regarded as a datum of the decision problem and will generally vary
with the problem under consideration.

As an illustration, consider the following simple example. Suppose
that a lot consisting of N units of a manufactured product is submitted
for acceptance inspection. Suppose, in addition, that each unit is
classified in one of two categories, defective or non-defective, and that
the proportion p of defectives in the lot is unknown. We shall assign
the value 1 to any defective unit, and 0 to any non-defective unit.
The two possible terminal decisions under consideration here are
acceptance or rejection of the lot. Obviously the degree of preference
for acceptance or rejection of the lot will depend on the proportion p



FORMULATION OF THE PROBLEM 3

of defectives in the lot. In general it will be possible to specify a
value po such that acceptance is preferred when p < po and rejection
is preferred when p = po. A decision problem arises if complete
inspection of the lot is too costly and we have to decide on acceptance
or rejection on the basis of a limited random sample drawn from the
lot. For this problem the space D consists of the two elements d;*
and d’, where d,* denotes the decision to accept the lot, and dy* the
decision to reject the lot. The stochastic process underlying this
decision problem consists of the finite sequence {X;} ¢ =1, ---, N)
of chance variables corresponding to successive random drawings
from the lot without replacement (X; corresponds to the 7th drawing).
The joint distribution of X3, ---, Xy is determined as follows: Each
X; can take only the values 0 and 1. The probability that X; = 1 is
equal to p. The conditional probability that X,, = 1, given that
m—1

pN — El Z;
N—-—m+1"
this problem is a one-parameter family of distribution functions, the
only unknown parameter being p. Experimentation consisting of the
inspection of m units drawn from the lot means making observations
on the first m chance variables X;, - - -, X,.

In general it will be possible to associate each element df of the
space D! with some subset w of © such that the decision d can be
interpreted as the decision to accept the hypothesis that the true
distribution F(z) of X is an element of w. For instance, in the example
discussed above the decision d; can be interpreted as the decision to
accept the hypothesis that p < po, and d,’ as the decision to accept the
hypothesis that p = p,.

Suppose that for any element F of Q and for any two elements d;*
and d,’ of D* one (and only one) of the following three statements is
true: (1) d,? is preferred to dy®* when F is true; (2) dy® is preferred to d;*
when F is true; (3) neither of the two decisions d;* or d,’ is preferred
when F is true.

An element d* of D may be called optimal relative to an element F
of Q if there is no element of D? that is preferred to d* when F is true.
With each element d® we associate the set wy of all elements F of Q
relative to which d* is optimal. In general it will be possible to inter-
pret d¢ as the decision to accept the hypothesis that the true distribu-
tion F is an element of wg, provided that wy is not empty. Although
in most decision problems the set ws will not be empty for any df,
there are problems, not without interest, where w, is empty for some
d* and the above-mentioned interpretation of d* becomes meaningless.

Xy =1z, -+, Xn_y = Tm_y, is equal to Thus Q@ in
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In most of the problems treated so far in statistical literature, each
element d’ of D* is defined from the outset as the decision to accept
the hypothesis that F is an element of a certain subset w of 2. While
this is undoubtedly the most important case to be considered, we do
not wish to restrict the generality of our investigations by imposing
such a condition on the nature of the elements d°.

1.1.3 Space of Possible Decisions as to How to Continue
_ Experimentation at Any Given Stage

As mentioned in Section 1.1.2, by experimentation we mean making
observations on some of the chance variables in the sequence {X,}
(t=1,2, --- ad inf.). It will be assumed that at most one observa-
tion is made on each chance variable X;. There is no loss of generality
in making this assumption. Suppose, for example, that the experi-
menter makes 7(r > 1) independent observations on X, say X;, -,
Xr; then X; can be replaced by a finite set of independently and iden-
tically distributed chance variables X;, ---, X;,, and z; can be
regarded as a single observation on X;.!

We shall permit experimentation to be carried out in several stages.
The first stage consists of the selection of a certain finite set of chance
variables from the sequence {X;} and observation of their values.
After the first stage has been completed, the second stage is carried
out by selecting a finite set from the remaining chance variables in
the sequence {X;} and observing their values, and so on. If experi-
mentation is terminated after the kth stage, we shall say that the experi-
ment has been carried out in k stages. Experimentation in several
stages is frequently preferable to experimentation in a single stage,
since in the former type of experimentation the selection of the chance
variables to be observed in the next stage may be made dependent
on the observed values obtained in all the preceding stages.

Before the start of experimentation, the experimenter is confronted
with the following question of choice for the first stage of experimenta-
tion: Which finite group of elements of the sequence {X;} should he
observe? Thus any decision concerning the first stage of experimen-
tation can be represented by a finite set of posmve integers %3, -, %
which are pairwise different. The set {;, - - -, 7z} represents the deci-
sion to make an observation on each of the chance variables X, -- -,

1 More generally, the sequence {X;} can be replaced by the double sequence

{Ys} G, 5=1,2, ---, ad inf.) of chance variables, where the distribution of
Y;=1{Yi4}(G=1,2, ---,adinf.) isidentical with thatof X = {X;} (j = 1,2, ---,
ad inf.) and Y3, Yo, - -, etc., are independent. The double sequence {Yj;} can

be arranged in a single sequence Z = {Z;}, and we may regard Z as the stochastic
process underlying the decision problem.
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X;. Consider now a later stage of experimentation when observations
have already been made on Xj,, ---, X, but on no other chance vari-
ables. Then any possible decision to continue experimentation one
stage further can be represented by a finite subset of I — {7y, - --, 7},

where I denotes the set of all positive integers. If hy, ---, hy, are
elements of I — {ji, - - -, jr}, then the set {hy, - -, by} represents the
decision to observe X;,, -+, X,

At this point, one may raise the question why a single stage of
experimentation should consist of more than one observation. On
first thought, it may seem more reasonable to select merely one chance
variable for observation at a time and to make further selections of
chance variables dependent on the observed value of that chance vari-
able. There are situations, however, where such a procedure would
be rather costly and impractical. For example, if making an observa-
tion requires a considerable amount of time, as it frequently does in
agricultural experimentation, the selection for observation of merely
one chance variable at a time may make the time needed for the com-
pletion of the experiment so long as to make its value almost worthless.
There may also be other reasons why the selection of more than one
chance variable at a time may be desirable.

Let D¢ be the space of all possible decisions as to the first stage of
experimentation; i.e., D° is the space of all finite (non-empty) subsets
of the set I of all positive integers. Thus any element d° of D° is
simply a finite (non-empty) subset of I. After observations have
been made on X, - - -, X;;, but on no other chance variables, the space
D¢, ..., of all possible decisions on the next stage of experimentation,
if experimentation is to be continued at all, consists of all elements d°
of D° which are subsets of the set I — {7y, - -+, 7%}

As an illustration, consider the following example: Suppose that the
elements of {X;} (¢ =1, 2, ---) are independent, those with odd sub-
scripts are normally distributed with mean 6; and variance 1, and
those with even subscripts are normally distributed with mean 6,
and variance 9. The values of the parameters 6, and 6, are assumed
to be unknown. Let the decision space D' consist of the two elements
d,* and dy’, where d;® denotes the decision to accept the hypothesis H
that 6; < 62, and do* the decision to reject the hypothesis H. Since
the X’s with odd subscripts, as well as those with even subscripts, are
identically distributed, the question as to how experimentation should
be carried out reduces to this: How many X’s with odd subseripts,
and how many with even subscripts, should be observed in the first
stage of the experiment? After the first stage has been completed, the
question is again how many X’s with odd, and how many with even,
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subscripts should be observed in the second stage of the experiment,
and so on. Since the standard deviation of an X with even index is 3
and that of an X with odd index is 1, it is intuitively clear that it will
be advantageous to observe more X’s with even subscript than X’s
with odd subscript, provided that the cost of observing the value of
X is independent of 7.

1.1.4 Decision Functions

We are now in a position to define the notion of a decision function.
First we shall give the definition of a special type of decision funec-
tion, the so-called non-randomized decision function. Let D be the
set-theoretical sum of D¢ and D¢; i.e., D consists of all elements d* of D*
and all elements d° of D°. Furthermore, for any subset {7;, ---, %}
of the set I of all positive integers, let D;, ...;, be the set-theoretical
sum of D* and D%, ...;. A function d(z; sy, ---, s) is said to be a
non-randomized decision function if: (1) it is a single-valued function
defined for all positive integral values k&, for any sample point z, and
for any finite disjoint sets s;, - - -, sk of positive integers; (2) the value
of d(z; 81, - - -, sx) is independent of the coordinates z; of = for which
the integer 7 is not contained in any of the sets sy, ---, sz; (3) it is a
constant when & = 0 [we shall denote this constant by d(0)]; (4) for
k = 1, the value of the function d(z; s;, - - -, sx) may be any element
of D ...;, where the set {71, ---, %,} is the set-theoretical sum of
81, -+, Sk; (B) for &k = 0, the value of d(z; sy, - - -, sp), i.e., the value
d(0), may be any element of D.

Such a decision function can be used to determine uniquely a rule
for carrying out the experimentation and for selecting a terminal
decision d®. This can be done as follows: If d(0) is an element d’ of D,
no experimentation is made and the terminal decision d(0) is chosen.
If d(0) is an element d® = s; = (34, - - -, %,) of D?, then observations are
made on the chance variables X, - - -, X; and the value of d(z, s;) is
computed. If d(z;s;) is an element d* of D?, experimentation is stopped
and the terminal decision d(z; s;) is made. If d(z; s;) is an element
d® = sp = (J1, * * *, Ju), then observations are made on X, - - -, X; and
the value of d(z; s;, s2) is computed. If d(z; s;, s2) is an element d*
of D¢, experimentation is stopped with the terminal decision d(z; sy, s3).
If d(z; s, s2) is an element of D?, observations are made on the corre-
sponding set of chance variables, and so on.

Let Cp be a certain Borel field 2 of subsets of the space D which

2 A class C of subsets of a space A is said to be a Borel field if (i) the empty set
belongs to C; (ii) if a subset « of A belongs to C, then the complement of « also
belongs to C; (iii) the sum of a sequence {a;} (2 = 1,2, ---, ad inf.) of subsets of 4
belongs to C if a; belongs to C for each 2.
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contains all denumerable subsets of D as elements. By a probability
measure § on the space D we shall mean a probability measure defined
for all elements of the Borel field Cp. Let A be the space of all prob-
ability measures §. For any subset {7y, - - -, %} of I, let A; ..., be the
class of all probability measures § for which §(D;, ...;) = 1.

A function 6(z; s, - - -, sx) whose values are elements of A is said to
be a randomized decision function if: (1) it is a single-valued function
defined for any positive integer &, for any finite disjoint sets sy, - - -, %
of positive integers, and for any sample point z; (2) it is a constant
5(0) when k = 0; (3) 8(z; s1, -« -, s) is an element of A; ..., if r = 1,
and 4(0) is an element of A where {7, - - -, 7,} is the set-theoretical sum
of sy, ---, sg; (4) the value of 8(z; s, ---, sx) is independent of the
coordinates z; of z for which the integer ¢ is not contained in any of
the sets sy, - - -, sk

Clearly, a randomized decision function is equivalent to a non-
randomized decision function if for any values &, sy, - - -, si, and z the
probability measure 8(x; s;, ---, Sk) assigns the probability 1 to a
single element of D. Thus a non-randomized decision function may
be regarded as a special case of a randomized decision function.? A
randomized decision function 6(z; sy, - - -, sk) can also be used to deter-
mine uniquely a procedure for making the experimentation and
selecting a terminal decision. First an element d of D is selected with
the help of a chance mechanism constructed so that the probability
distribution of the selected element d is equal to §(0). If the element d
so selected is a terminal decision df, no experimentation is made and
the terminal decision d® is adopted. If the element d so selected is an
element d°* = s; = (33, - - -, %,) of D? then observations are made on
X;, -+, X;, and the value of &(z; s;) is computed. Then the prob-
ability distribution &(z; s;) is used to select an element d of D. If the
element d so selected is contained in D?, experimentation is stopped
with the corresponding terminal decision. If it is an element of D°,
observations are made on the corresponding set of chance variables,
and so on. The procedure is the same as in the non-randomized case,
except that at each stage, instead of choosing a particular element d,
the experimenter chooses a probability measure § on D and then the
element d is selected with the help of a chance mechanism that produces
the desired probability distribution é.

It would seem reasonable to assume that §(z; s, - - -, sx) = 8(z; &'y,

.+, §,) if the set-theoretical sum of sy, ---, s is equal to that of
'y, +--, §'». We shall, however, not make this restriction on & for
reasons that will be apparent in Chapter 3.

3 We may identify “selection with probability 1” with “selection with certainty.”
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In what follows the term ‘“‘decision function’ will be used for ran-
domized as well as for non-randomized decision functions, since the
latter are a special case of the former. For any subset D* of D, we
shall denote the probability that deD* by §(D* | z; s1, - - -, s) when
&(z; sy, -+, sx) (k> 0) is the probability measure on D, and by
8(D* | 0) when §(0) is the probability measure on D.

An important special case arises when the decision function
5(z; sy, - - -, sx) used is such that it is certain that experimentation is
carried out exactly in one stage. This will be the situation when
B(Del 0) = 1 and &(D? l z; 8;) = 1 for any z and s;. We can charac-
terize this case also by saying that we decide in advance (before
experimentation starts) which chance variables in the sequence {X;}
should be observed during the total course of experimentation. This
is the classical non-sequential case. A decision function &(z; sy, - - -, k)
will be said to be sequential if it is such that, if adopted by the experi-
menter, the probability is positive that the experiment will be carried
out in more than one stage.

1.1.6 Losses Due to Possible Wrong Terminal Decisions and

Cost of Experimentation
The experimenter is confronted with the problem of choosing a
particular decision function 8(z; s, - - -, si) for carrying out the experi-

mentation and making a terminal decision. But, to be able to judge
the relative merit of any given decision function, it is necessary that
something be stated about (1) the relative degree of preference given
to the various elements d* of D when the true distribution F of X is
known, and (2) the cost of experimentation.

The degree of preference given to the various elements d* of D’
when F is known can be expressed by a non-negative function W(F, d%),
called weight function, which is defined for all elements F of @ and
all elements d* of D!. For any pair (F, d°), the value of W(F, d) ex-
presses the loss suffered by making the terminal decision d* when F
is the true distribution of X. We shall say that d* is a correct terminal
decision when F is true, if W(F, d¢) is zero. If W(F, d*) > 0, we shall
say that d* is a wrong terminal decision when F is true. A terminal
decision d,¢ is said to be preferable to another terminal decision dp*
when F is true, if W(F, d;*) < W(F, dg?).

The weight function W(F, d%) is to be regarded as a datum of the
problem. In some problems, however, it may be difficult to set up a
numerical weight function W(F, d%), especially when d° means the
acceptance or rejection of a certain scientific hypothesis. Even in
those cases where there is no difficulty in principle in assigning a numer-
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ical value to W(F, d*) for any F and df, the resulting weight function
may be rather complicated and it would be desirable to replace it by
some simplified function. We shall say that a weight function W (F, d¢)
is simple if it can take only the values 0 and 1. In many statistical
problems it will be sufficient for practical purposes to consider only
simple weight functions. In problems where there is difficulty in
assigning definite numerical values to losses due to terminal decisions,
there will generally be no such difficulty in constructing a simple
weight function, since the latter merely requires that for any given F
the elements d* of D* be classified in two categories only, wrong and
correct decisions. If a numerical weight function W(F, d*) can be
constructed, but we wish to replace it by a simple weight function
W*(F, d*) for reasons of simplicity, we may proceed as follows: For
any F let ¢(F) be some properly chosen positive value. We then put
W*(F, d) =0 when W(F, d*) < c(F), and W*(F, d°) = 1 when
W(F, d¥) =z c¢(F).

As an illustration, consider the example discussed in Section 1.1.2.
In that example the space D! consists of two elements d;* and dyf,
where d;* denotes the decision to accept the lot and d,® the decision
to reject the lot. Since the proportion p of defectives in the lot is the
only parameter on which F depends, we may replace F by p in the
weight function W(F, d*). Consider the following weight function:

W(p,di*) =0 forp <po, =ci(p—po) forp > po
W(p, d2*) = co(po — p) for p < po, =0 for p > po

It will generally be possible to choose the constants py, ¢;, and ¢z so
that the resulting weight function will express the preference scale
sufficiently well for practical purposes. If we want to replace the
above weight function by a simple weight function W*(p, d%), we
choose two values p; and p2(p1 < po < p2) and put

W*(p, di¥) = 0 when p < p,, =1 whenp > p,
W*(p,ds*) =1 when p < p, =0 whenp > p,

Such a simple weight function, if p; and p, are chosen properly,
will frequently be satisfactory for practical purposes.

The cost of experimentation may depend on the chance variables
selected for observation, on the actual observed values obtained, and
also on the stages in which the experiment has been carried out. Thus
we shall denote the cost by c¢(z; s1, - - -, sx) when (1) the experiment
was carried out in & stages; (2) the 7th stage consisted of the observa-
tions on the chance variables Xj for all j that are elements of s;; (3) z is
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the observed sample point. Of course, the cost c(z; 1, - - -, sx) does
not depend on the coordinates z; of z for which 7 is not contained in
any of the sets sy, - - -, Sg.

A special case of interest is that where the cost of experimentation
depends only on the number of observations made and is proportional
toit. A cost function of this sort will be called a simple cost function.
In many problems it will be possible to approximate the cost function
by a simple one.

1.1.6 Statement of the Decision Problem

We are now in a position to give a formulation of the general decision
problem. It may be stated as follows:

Given (1) the stochastic process {X;}, (2) the class @ of distributions
which is known to contain the true distribution F of X as an element,
(3) the space D? of possible terminal decisions, (4) the weight function
W(F, d*) defined for all elements F of @ and all elements d‘ of D,
and (5) the cost function c(z; s;, ---, sx) of experimentation, the
problem is to choose a decision function é(z; sy, - - -, sx) to be adopted
for carrying out the experiment and for making a terminal decision.

The adoption of a particular decision function by the experimenter
may be termed “‘inductive behavior,” since it determines uniquely the
procedure for carrying out the experiment and for making a terminal
decision. Thus the above decision problem may be called the problem
of inductive behavior.*

In attempting to solve the above decision problem, the first essential
step is to set up some principles which will lead to a complete, or at
least a partial, ordering of all possible decision functions with respect
to their suitability for purposes of inductive behavior. This will be
done in Sections 1.2 and 1.3 by introducing the notions of uniformly
better decision functions and admissible decision functions.

1.2 Consequences of the Adoption of a Particular Decision Function

1.2.1 The Risk Function

First we shall introduce some notation that will prove to be con-
venient. Let s;, - - -, s, be r disjoint subsets of the set I of all positive
integers, and let s denote the sequence {s;, - - -, s,} of the sets sy, - - -, s,.
For any sequence z = {z;} (¢ = 1,2, ---, ad inf.) of real numbers we
shall use é(z; s) as an alternative notation for é(z; sy, +-+, s,) and

4The term ‘inductive behavior” was introduced by Neyman [38]. (The
number in brackets refers to an item in the Bibliography at the end of the book.)
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c(z; s) as an alternative notation for c(z; sy, - - -, s,); i.e., we put
(1.1) 8(z; 81, =+, &) = 8(z; 8)
(1.2) c(z; 81, -+, 8) = c(z; 9)

In accordance with the notation in (1.1), for any subset D* of D,
we shall use the symbols §(D* | z; 81, -+, 8,) and 8(D*| z; s) synony-
mously to denote the probability that the decision d made will be
contained in D* when the decision function § is used, z is the observed
sample, and r stages of the experiment have been carried out in accord-
ance with s, - - -, s, respectively.

We shall occasionally use the same symbol, d% to denote a given
element of D°, as well as to denote the set of positive integers by which
this element of D° is represented, provided that this can be done with-
out any danger of confusion.

If the decision function §(y; s) is adopted and if z = {z;} is the
observed sample point, i.e., z; is the observed value of X;, then the
probability that the experiment will be carried out in % stages, the
first stage in accordance with d,°, the second in accordance with
ds®, ---, the kth stage in accordance with di%, and that the terminal
decision will be an element of the subset D* of D! is given by

13) P ds°, -+, &7, D*| 2, ) = 5(d1° | 0)5(ds* | 2; 1)
8(ds® | z; 1% da?) -+ 8(d | 23 1%, -+, % 1)8(D* | 25 dy%, -, di)

For k = 0, the right-hand member of (1.3) reduces to §(D*| 0).

The probability of the same event when merely the adopted decision
function 8(y; s) but not the observed sample point z is given, and when
F is the true distribution, is equal to 3

(1‘4) Q(dle) B dke; Bt l F} 6) = f p(dle’ ) dk‘) Et I z, 6) dF(Z)
) M

where M denotes the whole sample space; i.e., M is the totality of all
sequences z. Thus the probability that the terminal decision will be
an element of D® when § is used and F is true is given by

(15  PD'|F,8)=2 > g -, & D|F,9)
k=0 di°%---, d°
8 The integral in (1.4) has a meaning only if p(dy?, - - -, di%, D* | z, 5) is a measurable
function of z. The precise measurability conditions which will insure the existence
of this integral, as well as that of the integrals which will appear in subsequent
formulas of this chapter, will be stated in Cth’oer 3. ... -
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Hence the expected value of the loss W(F, d¥) when § is used and F is
true is equal to

(1.6) rn(F, s) = L W(F, &) aP(D* |F, 5)

The expected value of the cost of experimentation when F is true
and the decision function 8(y; s) is used is given by ¢

A7) rF, 8 =2, 2 c(z; di°, ds, -+ -, di®)
k=1 d1%---,a*
p(dle, IR dke, D! I z, 6) dF(x)

The sum of the expected value of W(F, d°) and the expected cost of
experimentation is called the risk; i.e., the risk is given by

(1.8) r(F, 8) = ri(F, 8) + ro(F, 9)

The risk r(F, 6) will be called simple risk if the underlying weight
and cost functions are simple.

It seems reasonable to judge the merit of any given decision function
8o for purposes of inductive behavior entirely on the basis of the risk
function r(F, &) associated with it. This already permits-a partial
ordering of the decision functions as to their suitability for purposes
of inductive behavior. Clearly, if the merit of any decision function
is judged entirely on the basis of its risk function, the decision function
8; will be preferred to the decision function &, if the following in-
equalities hold:

(1.9) r(F, &) = r(F, &)
for all Fin Q, and
(1.10) r(F, 8;) < r(F, &)

for at least one element F of Q.

If the above inequalities hold, we shall also say that §; is uniformly
better than 5.

As an illustration, we shall discuss briefly the following simple
example. Let X,;, X5, ---, ad inf., be independently and normally
distributed chance variables with variance 1 and common mean 8, the
value of which is unknown. Suppose that the space D! of terminal
decisions contains only two elements d;’ and d,’, where d,® is the deci-
sion to accept the hypothesis H that § < 0, and dy* is the decision to

¢ Formula (1.7) is valid if the probability is 1 that the experiment will be carried
out in a finite number of stages. Otherwise, ro(F, 8) = o, since it will be assumed

in Chapter 3 that the cost of making infinitely many observations is «. The cost
of taking no observations is assumed to be zero.
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reject the hypothesis H. In this case, @ is a one-parameter family of
distributions, since each element F of @ is determined by a particular
value of . We shall assume that the cost of experimentation is pro-
portional to the number of observations made and that the weight
W (0, d*) is given as follows: W (8, d;*) = 0 when # < p and = 1 when
0> p; W, ds*) = 1when 8 < —p and = 0 when § = —p, where p is
a given positive value. Thus we have a simple weight function and a
simple cost function. Consider now the particular decision functions
0; and 3, defined as follows: 8;(0) assigns the probability 1 to the
elementd® = (1,2, ---,9), and 8[z1, - - -, z9; (1, 2, - - -, 9)] assigns the
probability 1 to d;® or ds? according to whether £ = (z; +-- - +29)/9
= 0 or >0. The probability measure 62(0) assigns the probability 1
tod® = (1,2, ---,9),and dfzy, -+, z9; (1,2, - - -, 9)] assigns the prob-
ability 1 to d,® or dy’ according to whether the median £ of (z;, - - -, o)
is <0 or >0. Thus, if §; is adopted, the experimenter makes one
observation z; on X;for7i=1,2, ---, 9, and accepts H if £ < 0 or
rejects H if £ > 0. If §, is adopted, again one observation z; is made
on X; for each 7 < 9, and then H is accepted if £ < 0 and H is rejected
if £ > 0. We shall now compute the risk functions associated with
61 and 8;. Let G(y) be the Gaussian distribution function; i.e.,

1,
(L.11) G(y)=\/2_1rf_ o272 gy

Clearly the probability that the terminal decision d;* will be made
when 6 is true and §; is used is given by

(1.12) P(d:t| 6, ;) = G(—36)

and the probability of the same event when 6 is true and &, is used is

given by .

9 ) .
w13 Pale s = X (5)6-op - a-or-
j=5 \J
The risk associated with 8; ( = 1, 2) is equal to
(1.14) 76, 8;) = 9c + P(ds'|6,8;) wheno < —p
= 9c when —p <0 =<p

=9¢ + P(d:*| 6, 5;) when o >p

where ¢ is the cost of a single observation and P(d2‘| 0, &)
=1— P(di*|6, 8;). Clearly r(6, 5,) = r(6, 65) when | 6| < p. One:
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can verify that r(6, &) < (6, 8;) when | ] > p. Thus §; is uniformly
better. The decision functions 8; and &, are of the classical type, since
according to both decision functions experimentation is carried out
in one stage. Since the cost function assumed in this example does not
depend on the number of stages in which the experiment is carried
out, a reduction of the risk is possible if one uses decision functions
for which the probability is positive that the experiment will be carried
out in more than one stage. Consider, for example, the decision func-
tion 03 defined as follows: 83(0) assigns the probability 1 to d® = (1, 2,
3, 4). 83z, z2, 73, z4; (1, 2, 3, 4)] assigns the probability 1 to
d®*=(56,7 8 9) if —a < (z; +---+24)/4 < a, the probability
1 to d if (z; +---+ 2z4)/4 < —a, and the probability 1 to
dy' if (z; +---4 z4)/4 = a, where a is a given positive number.
Furthermore we put 83[z;, ---, z9; (1, 2, 3, 4), (5, 6, 7, 8, 9)] = & [z,
ceey zg; (1, ---, 9)]. Clearly the expected cost of experimentation
associated with 63 will be smaller than that associated with §;, the
reduction being considerable when |8 | = a. On the other hand, if a
is sufficiently large, the expected value of the loss W (6, df) when &3
is used will for all practical purposes coincide with that corresponding
to é;.

1.2.2 The Performance Characteristic

The probability P(D*| F, §) that the terminal decision will be an
element of a given subset D! of D! when F is true and the decision
function & is adopted becomes a function of the two variables D? and
F if § is specified. For any particular §, say 8y, we shall call the func-
tion P(D* l F, &) the performance characteristic of §, regarding
terminal decisions.

Let g(di% - -+, di® | F, 8) be equal to q(d;*, - -, di’, D' | F, 8), where
q(d:% ---, di*, D*|F, &) is the function defined in (1.4). Thus
q(ds%, ---, di*| F, 8) is the probability, when F is true and & is used,
that the experiment will be carried out in k stages, the first stage in
accordance with d;% ---, the kth stage in accordance with di°. For
any given 8, say &, the function g(d,°, - - -, di* | F, &) will depend only
onk, d% ---,ds’, and F. This function will be called the performance
characteristic of 8y regarding experimentation.

The performance characteristic regarding terminal decisions deter-
mines uniquely the expected value of W(F, d°) for any given weight
function W(F, d*) [see formula (1.6)]. The performance characteristic
regarding experimentation determines uniquely the expected cost of
experimentation for any given cost function, provided that the cost
of experimentation c(x; d;° ---, di’) does not depend on z; i.e.,
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c(z; di° -+, di®) = c(dy® ---, dix®), which will be the case in most
problems arising in applications.

1.3 Admissible Decision Functions and Complete Classes of Decision
Functions
A decision function § will be said to be admissible if there exists no
other decision function 6* which is uniformly better than 3, i.e., if
there exists no decision function &* satisfying the following two con-
ditions:

(1.15) r(F, 6*) < r(F, &)
for all F in Q, and
(1.16) r(F, &) < r(F, d)

for at least one element F of Q.

A class C of decision functions & will be said to be complete if for
any & not in C we can find an element §* in C such that &* is uniformly
better than 4.

A complete class C will be said to be a minimal complete class if
no proper subeclass of C is complete. If a minimal complete class exists,
it must be equal to the class Cy of all admissible decision functions.
This can be seen as follows: Let C; be a minimal complete class.
Clearly Cy must be a subset of C;. Suppose that there exists an
element &’ of C; that is not an element of Co. Then there exists a
decision function 8" which is uniformly better than &’. Since C; is a
minimal complete class, 8" cannot be an element of C;. But then
there exists an element &'” in C; that is uniformly better than &’
and, therefore, also uniformly better than &', which is not possible
since C} is a minimal complete class. Thus C; = Cj.

If the class Cy of all admissible decision functions is complete, it is
evidently a minimal complete class. Since no minimal complete class
exists that is different from Cyp, a necessary and sufficient condition for
the existence of a minimal complete class is that C be complete.

As will be seen in Chapter 3, the class Cp will be complete under
very general conditions. Exceptional cases may arise, for example,
when the space D is not complete in the following sense: there exists a
sequence {d;’} (¢ = 1,2, - -+, ad inf.) such that lim W(F, d;*) = W(F)

i=w®

but no element d? exists such that W(F, d¥) = W(F).
The notions of admissibility and complete classes are of basic im-

portance in the theory of decision functions. They will be studied in
Chapter 3.
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1.4 Bayes and Minimax Solutions of the Decision Problem

14.1 Decision Functions which Minimize Some Average Risk
(Bayes Solutions)

Let Cg be a Borel field of subsets of @ which contains all denumerable
subsets of @ as elements. By a probability measure £ on @ we shall
mean a probability measure defined for all elements of Co. The ques-
tion of how to choose Cg will be discussed in Chapter 3. A probability
measure £ in Q will also be called an a prior: distribution in Q.

If an a priori distribution £ in Q exists and is known to the experi-
menter, a decision function for which the average risk (averaged with
the a priori distribution £), i.e., the expression

(1.17) f r(F, 8) dt = r*(¢, o)

]

takes its minimum value may be regarded as an optimum solution.
A decision function §, which minimizes r*(¢, §), i.e., for which

(1.18) (& %) = r*(§, 0)

for all § is called a Bayes solution relative to the a priori distribution £.
Let £r be the particular a priori distribution which assigns the
probability one to the element F of Q. Then obviously we have

(1.19) r(F, 8) = r*(¢F, 9)

Thus we can interpret the value of r(F, §) as the value of r*(¢r, §). In
what follows we shall write r(%, 8) for r*(%, 8), and r(F, 8) will be used
synonymously with r(¢r, 8§). This can be done without any danger of
confusion.

In many statistical problems the existence of an a priori distribution
cannot be postulated, and, in those cases where the existence of an
a priori distribution can be assumed, it is usually unknown to the
experimenter and therefore the Bayes solution cannot be determined.
The main reason for discussing Bayes solutions here is that they enter
into some of the basic results in Chapter 3. It will be shown there
that under certain rather weak conditions the class of all Bayes solu-
tions corresponding to all possible a priori distributions is a complete
class.

Let {¢} (1 = 1,2, - -+, ad inf.) be a sequence of a priori distributions
and §p a decision function. We shall say that §, is a Bayes solution
relative to the sequence {£;} if
(1.20) lim [Inf; r(&; 8) — r(&;, 8)] =0

f=w
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where the symbol Inf; means infimum with respect to 8.

We shall say that a decision function § is a Bayes solution in the
strict sense if there exists an a priori distribution ¢ such that § is a
Bayes solution relative to £. A decision function § will be said to be
a Bayes solution in the wide sense if there exists a sequence {£;} of a
priori distributions such that § is a Bayes solution relative to the
sequence {£;}.

One of the main results in Chapter 3 is that under very general
conditions the class of all Bayes solutions in the wide sense is a com-
plete class. It is also shown there that, under some further restrictions,
the class of all Bayes solutions in the strict sense is already a complete
class.

Consider the following simple example: Q@ consists of two elements

F; and Fy, where F; = [] Pi(z;) (i = 1, 2), and P;(u) is a given one-
j=1

dimensional distribution admitting a density function p;(u). The
decision space D? consists of two elements d;* and d.?, where d;’ denotes
the decision to accept the hypothesis that the true distribution F is
equal to F; (z = 1, 2). Let g; be the a priori probability that F; is
true (2 = 1, 2). Assume that experimentation is to be carried out in
one stage and consists of m observations; i.e., the values of X3, - -+, X,
are observed. Let the loss due to making a wrong terminal decision
(accepting a hypothesis that is not true) be 1. Then a Bayes solution
will be a decision function given as follows: After the sample z;, -+, Zp,
has been drawn, the a posteriori probability of the hypothesis H; that
F is equal to F; is given by

_ g:pi(21) - -+ Pi(Tm)
g101(@1) - -+ P1(&m) + gop2(21) - -+ D2(Zm)

If g1m > gom, accept Hi; if gim < gom, accept Ha; if g1m = gom, any
chance mechanisms may be used to decide between H; and H,. The
inequalities gom % gim are equivalent to pom/Pim % g1/92, where
Pim = Pi(x1) + - pi(xn). Thus the decision rule may be formulated
as follows: If pom/P1m > 91/92, accept He; if pom/p1m < 91/92, accept
H;; if Pom/P1m = g1/92, any chance mechanisms may be used to decide
between H; and H,. Let 3, denote the above Bayes solution when
g1/g92 = c¢. It follows from the results in Chapter 3 that the class of
all Bayes solutions §, corresponding to all non-negative values of ¢
is a complete class, provided that experimentation is restricted to a
one-stage experiment with m observations.?

Jim (1' =1, 2)

7For a more detailed discussion, see Section 5.1.1.
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142 Decision Functions which Minimize the Maximum Risk
(Minimax Solutions)

A decision function &y is said to be a minimax solution of the decision
problem if it minimizes the maximum of r(F, §) with respect to F,
ie., if

(1.21) Supr r(F, &) < Supr r(F, 8)

for all 8, where the symbol Supr stands for supremum with respect to F.

In the general theory of decision functions, as developed in Chapter
3, much attention is given to the theory of minimax solutions for two
reasons: (1) a minimax solution seems, in general, to be a reasonable
solution of the decision problem when an a priori distribution in @
does not exist or is unknown to the experimenter; (2) the theory of
minimax solutions plays an important role in deriving the basic results
concerning complete classes of decision functions.

There is an intimate connection between minimax solutions and
Bayes solutions. It will be seen in Chapter 3 that under general
conditions a minimax solution is also a Bayes solution. More pre-
cisely, a minimax solution is, under some weak restrictions, a Bayes
solution relative to a least favorable a priori distribution. An a priori
distribution &, will be said to be least favorable if

Infs r(%o, 8) = Infs r(§, 8)
for all &.

In a number of cases a minimax solution can easily be obtained by
finding an a priori probability measure £ and a Bayes solution &
relative to ¢ such that Supr r(F, &) = r(§ &). Obviously & is a
minimax solution and £ is a least favorable a priori distribution.

1.5 Relation to Earlier Theories

1.5.1 Testing a Hypothesis Viewed as a Special Case of the
General Decision Problem

By a hypothesis we mean a statement that the unknown distribution
F of X is an element of a given subset w of 2. For any non-empty
subset w of Q, we shall use the symbol H, to denote the hypothesis
that Few. The problem of testing a hypothesis H is a special case of
the general decision problem. In the case of testing a hypothesis H,
the space D* of terminal decisions consists of two elements d;* and d,,
where d;* denotes the decision to accept H and do’ the decision to
reject H. '

The theories of testing hypotheses, as developed during the last
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thirty years by Fisher, Neyman and Pearson, and their schools, deal
almost exclusively with the case where experimentation is carried out
in a single stage; i.e., it is determined in advance (before experimenta-
tion starts) how many and what kind of observations should be made
during the whole course of experimentation. In other words, the choice
of the experimenter is restricted to decision functions § which satisfy
the following condition: 8(D°|0) = 1 and 8(D*|y; s;) = 1 for any
sequence ¥ of real values and for any subset s; of the set of all positive
integers.

It should also be remarked that the problem of design of experiments
as treated by Fisher [18] and his school is contained as a special case
in our formulation of the decision problem. If experimentation is
carried out in a single stage, the problem of design reduces to deciding
(in advance of the experimentation) how many and what kind of
observations should be made during the whole course of experimenta-
tion. In other words, the problem of design reduces to the question
of how to choose the value 5(0) of the decision function & to be adopted.
As an illustration, consider the following example: Suppose that we
are interested in investigating the yields of m agricultural varieties
vy, ***, Un. Suppose also that for the purpose of experimentation a
piece of land consisting of m? plots {p;;} (3,7 = 1, - - -, m) is available
and that one variety can be planted in each plot p;;. The problem of
design that arises here is the problem of how to assign the varieties
to the different plots. Let the chance variable X;;; stand for the
yield that would be produced on the plot p;; if the variety v; were
assigned to it. Thus there are altogether m® possible chance variables
Xk (4,5, =1, .-+, m). Since we can observe only m? of them (one
variety is to be assigned to each plot), the problem of design here is
simply the problem of which subset of m? chance variables of the set
{Xie} G, 4, k=1, ---, m) of m® chance variables we should select
for observation. But this is precisely the problem of choosing the value
8(0) of the decision function & to be adopted. A subset S of m? chance
variables of the given set {X;;;} of m® chance variables is said to be a
Latin square 8 if for any prescribed values of two of the three indices
1, J, k there is precisely one element X;;; in S having the prescribed
values for these two indices. The solution of the design problem
suggested by Fisher is to select a Latin square at random from the
class of all possible Latin squares. Each Latin square is a particular
element d° of the space D°. Let N be the total number of possible
Latin squares. Then Fisher’s solution of the design problem can be
expressed in our notation and terminology as follows: We choose §(0)

8 See, for example, Fisher [18].
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to be the probability distribution in D® for which §(d® | 0) = 1/N if d°
is a Latin square and §(d° | 0) = 0 if d° is not a Latin square.

It may be of interest to point out the relation between some of the
notions in the present general decision theory (when applied to testing
a hypothesis) and the corresponding notions in the Neyman-Pearson
theory.® For this purpose we shall restrict ourselves to non-randomized
decision functions according to which experimentation is carried out
in a single stage by observing the values of the first N chance variables
of the sequence { X}, since this is the only case treated in the Neyman-
Pearson theory. In this case 8(0) assigns the probability 1 to the
element d* = (1, 2, ---, N), and it is sufficient to define the value of
5(z; s) when s is equal to the set (1, 2, ---, N). Thus, since § is a
non-randomized decision function and since D° consists of the two
elements d;* and dy’, the decision function & can be expressed by a
function d(z,, - - -, zn), which is defined for all real numbers z;, - - -, zn
and can take only the values d,* and dy’ for each point (z;, - - -, zn). If
z, - -+, zn are the observed values of X;, - --, Xy, respectively, then
we accept the hypothesis H under test when d(z,, - - -, znx) = d;® and
reject H when d(z;, - --, z5) = do’. In the Neyman-Pearson theory
the set of all sample points z = (2, ---, znx) for which we decide to
reject H is called the critical region. Thus the choice of a critical
region in the Neyman-Pearson theory is equivalent to the choice of a
decision function in our terminology. Let the hypothesis H under
test be the hypothesis that Few. In the Neyman-Pearson theory, the
probability that H will be rejected when some F, not an element of o,
is true is called the power of the critical region with respect to F. Thus
the power function is a function of F defined for all F not in w. The
probability of rejecting H when some F is true that is an element of w
is called the size of the critical region with respect to F. Thus the size
function is a function of F defined for all F in w. The notions of size
and power are special cases of the notion of risk in the general decision
theory. In fact, let W(F, d°) be defined as follows: W(F, d,*) =0
when Few and = 1 when Few; W(F, do’) .= 1 when Few and = 0 when
Fe¢w. Thus W(F, d°) is a simple weight function. We can disregard the
cost of experimentation here, since we restricted the choice of the
experimenter to decision functions for which the expected cost of experi-
mentation is the same constant. Then the simple risk corresponding
to the above simple weight function is equal to the size of the critical
region when Few, and to (1 — power) when Few.

In the Neyman-Pearson theory the choice of the critical region is
subject to certain conditions imposed on the size function, such as

9 See, for example, [35] and [37].



RELATION TO EARLIER THEORIES 21

that the size function be equal to a prescribed constant «, or that the
size function be bounded from above by a prescribed constant . The
imposition of such bounding conditions on some part of the risk func-
tion may be desirable when the errors due to possible wrong terminal
decisions fall into classes which are of completely different kinds (e.g.,
one type of error may result in loss of life, the others in economic
losses). The general decision theory, as developed in Chapter 3,
remains applicable also when the choice of the decision function is
subject to certain bounding conditions imposed on the probabilities
of some types of errors. This is due to the fact that the class D of
decision functions & to which the choice of the experimenter is re-
stricted, is not assumed to be the class of all decision functions. The
class D is permitted to be any class satisfying a certain set of condi-
tions. This set of conditions remains generally satisfied if bounding
conditions of the above-mentioned type are imposed on the risk
function.

In recent years a sequential method for testing a hypothesis H has
been developed.’® In this theory the restriction that the experiment
is to be carried out in a single stage is removed. It is assumed, however,
in that theory that (1) each stage of the experiment consists of a single
observation, and (2) the chance variable X is observed in the 7th stage.
There is no loss of generality in the first restriction if we assume that
the cost of experimentation depends on the total number of observa-
tions but not on the number of stages in which the experiment is
carried out. The second restriction is more serious, since it does not
leave freedom of choice for the selection of the chance variable to be
observed at any stage of the experiment. In the special case when the
chance variables X;, X, - - -, ad inf., are independently and identically
distributed, there is no loss of generality in the second restriction either.

1.5.2 Point and Interval Estimation Viewed as Special Cases of the
General Decision Problem

The problem of point estimation is the problem of deciding, on the
basis of the results of the experiment, which element F of @ should be
adopted as our estimate of the true (but unknown) distribution of X.
For any element F of Q let dr* denote the terminal decision to adopt F
as our (point) estimate of the true distribution. Thus a point estima-
tion problem is a special case of the general decision problem charac-
terized by the fact that D* consists of the elements dr® corresponding
toall Fin Q.

‘" The theory of point estimation as developed by Fisher and others

 See, for example, [65].
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during the last thirty years * deals almost exclusively with the case
where experimentation is carried out in a single stage by observing
the values of the first N chance variables in the sequence {X;}. It
may be of interest to point out the connection between some of the
notions of the present general decision theory and the corresponding
notions in the point estimation theory of Fisher and his school. For
this purpose we shall restrict ourselves to non-randomized decision
functions § according to which experimentation is carried out in a single
stage by observing the values of X;, ---, Xn. In this case the non-
randomized decision function & can be expressed by a function d(z;,
++-, zy) defined for all real values z;, -+, zxy. For any sample
(z1, * - -, zx) the value of d(zy, - - -, zw) is an element d* of D¢, and the
experimenter makes the terminal decision d(z;, ---, zx) when z; is
the observed value of X; ( =1, ---, N). We shall also assume that
Q is a finite-parameter family of distribution functions F'; i.e., each
element F can be represented by particular values of a finite number
of parameters, 6y, - - -, 6; (say). For the purpose of our discussion it
will be sufficient to consider the case where there is only a single un-
known parameter . We shall use the symbol W (6, 6*) to denote
W (F, dp«*), where 0 is the parameter value corresponding to F and 6*
is the parameter value corresponding to F*. Thus W (6, 6*) is the loss
suffered when 6 is true and 6* is adopted as a point estimate of 6. The
decision function d(z;, ---, x) can be represented by a real-valued
function 6*(zy, - - -, zy) such that the value 6*(z,, - - -, ) is adopted
as our point estimate of 8 when z;, - - -, zx are the observed values of
Xy, ---, Xn, respectively. In the theory of point estimation the
function 6*(xy, - -+, zx) is also called an “estimator.” Since the cost
of experimentation is independent of the choice of the estimator
6*(zy, -+, zn), we shall disregard it in computing the risk associated
with the estimator 6*(z;, - - -, zx). Then the risk is simply the expected
value of W9, 6*(xz;, ---, zx)] when 6 is true. Suppose that
W, 6*) = (6* — 6)2. Then the risk is simply the second moment of
the estimator referred to the true parameter value 6. If 6*(zy, - - -, zn)
is an unbiased estimator, i.e., if the expected value of 6*(X;, - -+, Xn) is
equal to the true parameter value 6, then the risk becomes equal to
the variance of the estimator. A great deal of the literature on point
estimation is devoted to the study of unbiased estimators with min-
imum variance, which are called efficient estimators. This theory
can be regarded as a special case of the general decision theory when
W(, 6*) is given by (6* — 6)>. Minimum variance is not the only
possible criterion for a “best’ estimator. Various other definitions of
1 See, for example, [15] and [16].
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“best” estimators have been considered in the literature. Most of
these theories can be represented as special cases of the general decision
theory corresponding to some particular choices of the weight function
W, 6*). For example, Pitman [41] considered the problem of finding
an estimator 6*(x;, ---, zy) for which the probability that
| 0*(xy, +++, zy) — 0 [ =< c is maximized, where ¢ is a positive value.’?
This becomes equivalent to the problem of minimizing the risk if
W (8, 6*) is defined as follows: W (6, 6*) = O when | 6 — 6* l < ¢, and
=1when|0—6*| >ec.

The problem of interval estimation is again a special case of the
general decision problem. For the purpose of the present discussion
it will be sufficient to consider the case when @ is a one-parameter
family of distribution functions. Let 6 be the unknown parameter.
The problem of interval estimation may be formulated as follows:
Let C be a given class of intervals. For example, C may be the class
of all intervals, or the class of intervals of a given length, or the class
of intervals whose length does not exceed a given value, and so on.
The problem is to decide on the basis of the results of the experiment
which element of C should be adopted as an interval estimate of 6.
For any element I of C let d;* denote the terminal decision to adopt I
as an interval estimate of . Thus an interval estimation problem is a
special case of the general decision problem where D’ consists of the
elements dr* corresponding to all elements I of a given class C of
intervals.

In the theory of interval estimation as developed by Neyman 13 the
only case considered is that where experimentation is carried out in a
single stage by observing the first N chance variables of the sequence
{X;}. In this case any non-randomized decision function & can be

expressed by an interval function I(z,, ---, zx) which associates an
element I of C with each sample (z;, ---, zx). The rule is then to
take the terminal decision d'r,, ..., zyy When z;, ---, zy are the

observed values. The weight function can now be represented as a
function W (9, I) of the true parameter value  and the interval I
adopted as an interval estimate of . We shall disregard the cost of
experimentation, since it is independent of the choice of the decision
rule when experimentation is carried out in one stage by observing
the values of X, -+, X5. Then the risk associated with a given
interval estimator I(z;, ---, zn) is simply the expected value of
w6, I(Xy, -+, Xx)l. A simple choice of W (6, I) is to put W(6,I) = 1

2 Pitman [41, page 401] calls an estimator 6* “best” if the probability that
|o* -0 | < cis maximized for all positive values c.
13 See, for example, [38].
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when 6¢l, and = 0 when fel. Then the risk associated with a given
interval estimator I(z;, ---, zn) is equal to the probability that
I(X,, -+, Xn) will not cover the true parameter value. Neyman
calls an interval function I(z;, ---, zx) a confidence interval if the
probability that I(X;, ---, Xx) will cover the true parameter value
is equal to a fixed value v, no matter what the true value of the pa-
rameter is. This fixed value vy is called the confidence coefficient
associated with the confidence interval I(z;, ---, zx). If the weight
function W (9, I) is defined as above, and if I(z,, - - -, zx) is a confidence
interval with confidence coefficient v, the risk associated with I(z,,
---,zy) isequal to 1 — .

1.6 Interpretation of the Decision Problem as a Zero Sum
Two-Person Game

1.6.1 Definition of the Normalized Form of a Zero Sum
Two-Person Game

The theory of games was developed by von Neumann [55]. It will
be shown in Section 1.6.3 that the decision problem may be viewed
as a zero sum two-person game and, therefore, the theory of such
games can be applied to the statistical decision problem. A precise
definition of a game was given by von Neumann. We shall not give
it here, since for purposes of statistical applications it will be sufficient
to consider merely the so-called normalized form of the game. As
von Neumann has shown, any game can be brought into a normalized
form.

The normalized form of a zero sum two-person game is given by
von Neumann as follows: There are two players, and there is given a
bounded and real-valued function K(a, b) of two variables ¢ and b,
where @ may be any point of a space A and b may be any point of a
space B. Player 1 chooses a point @ in A and player 2 chooses a point b
in B, each choice being made in complete ignorance of the other.
Player 1 then gets the amount K(a, b) and player 2 the amount
—K(a, b). Clearly player 1 wishes to maximize K(a, b) and player 2
wishes to minimize K(a, b).

Any element a of A will be called a pure strategy of player 1, and
any element b a pure strategy of player 2. A mixed strategy of player
1 is defined as follows: Instead of choosing a particular element a of 4,
player 1 chooses a probability measure £ defined over a Borel field A
of subsets of A, and the point a is then selected by a chance mechanism
constructed so that for any element o of A the probability that the
selected element a will be contained in « is equal to £(e). Similarly a
mixed strategy of player 2 is given by a probability measure 5 defined
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over a Borel field B of subsets of B, and the element b is selected by a
chance mechanism so that for any element 8 of B the probability that
the selected element b will be contained in B is equal to »(8). The
expected value of the outcome K(a, b) is then given by

(1.22) K*@E ) = || K(a,b)dtdn
If

We can now reinterpret the value of K(a, b) as the value of K*(%,, 1),
where £, and 7, are probability measures which assign probability 1
to a and b, respectively. In what follows, we shall write K(%, 5) for
K*(¢, 7). Furthermore K(a, b) will be used synonymously with
K(&, nv), K(a, 1) synonymously with K(&, 1), and K(¢, b) synony-
mously with K(%, #5). This can be done without any danger of con-
fusion. The function K(%, ) is called the outcome function of the
game.

1.6.2 Minimax, Minimal, Maximal, and Admissible Strategies
A strategy &, of player 1 will be said to be a minimax strategy if

(1.23) Inf, K(£, n) = Inf, K(£ 7)

for all £. Similarly a strategy o of player 2 will be said to be a mini-
max strategy if

(1.24) Sup; K (£, 7o) < Sup; K(£, 7)

for all 9. Minimax strategies play a fundamental role in the theory
of two-person games, as we shall see in Chapter 2.

A strategy no of player 2 is said to be minimal relative to a strategy &
of player 1 if

(1.25) K(&, mo) = Min, K(&, n)

Clearly, if 5o is 2 minimal strategy relative to £, then 7o is an optimum
strategy for player 2 when player 1 uses the strategy £.

A strategy % of player 1 will be said to be maximal relative to a
strategy » of player 2 if

(1'26) K(EO; 77) = Ma‘xf K(Ey 77)

If player 2 uses the strategy 5, then £ is an optimum strategy for
player 1.



26 THE GENERAL STATISTICAL DECISION PROBLEM

A strategy no of player 2 will be said to be minimal relative to the
sequence {£} (z =1, 2, - -+) of strategies of player 1 if

(1.27) ,li,“& [K (%, m0) — Inf, K(&; 7)] =0

A maximal strategy £, of player 1 relative to a sequence {#;} of strate-
gies of player 2 is defined similarly.

A strategy 5 will be said to be minimal in the strict sense if there
exists a strategy £ of player 1 such that 7 is minimal relative to £&. A
strategy 7 will be said to be minimal in the wide sense if there exists a
sequence {£;} such that % is minimal relative to {f;}. Maximal
strategies £ in the strict and wide sense are defined correspondingly.

A strategy n; of player 2 is said to be uniformly better than the
strategy 79 if

(1.28) K(& m) < K(& n2)
for all £, and if
(1.29) K(& m) < K(§ n2)

for at least one £ Similarly a strategy £ of player 1 is said to be
uniformly better than the strategy & if

(1.30) K(&, 1) = K(&2, n)
for all 9, and if
(1.31) K(&1, 1) > K(&2, 1)

for at least one 7.

A strategy of player ¢ (2 = 1, 2) is said to be admissible if there is
no uniformly better strategy for player <.

A class C of strategies of player ¢ (z = 1, 2) will be said to be com-
plete if for any strategy not in C there exists a strategy in C that is
uniformly better.

1.6.3 The Decision Problem Viewed as a Zero Sum Two-Person
Game

In a decision problem the experimenter wishes to minimize the risk
r(F, 8). The risk, however, depends on two variables F and §, and the
experimenter can choose only the decision function § but not the true
distribution F. The true distribution F, we may say, is chosen by
Nature, and Nature’s choice is unknown to the experimenter. Thus
the situation that arises here is very similar to that of a two-person
game. As a matter of fact, the decision problem can be interpreted as
a zero sum two-person game by setting up the following correspondence.
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Two-PERsON GAME
Player 1
Player 2

Pure strategy a of player 1
Space 4 of pure strategies of player 1
Pure strategy b of player 2

Space B of pure strategies of player 2

Outcome K(a, b)
Mixed strategy ¢ of player 1
Mixed strategy n of player 2

Outcome K (%, 1)
Minimax strategy of player 2
Minimax strategy of player 1

Minimal strategy of player 2
Admissible strategy of player 2

DEcisioN PrRoBLEM

Nature
Experimenter

Choice of true distribution F by Nature

Space @

Choice of decision function & by ex-
perimenter

Space D of all possible decision func-
tions &

Risk 7(F, 8)

A priori distribution £ in ©

Probability measure 7 defined over a
Borel field of subsets of the space
o

rg,m = [ [ (F, 5 dgdn

Minimax solution of decision problem

Least favorable a priori distribution in
Q

Bayes solution

Admissible decision function

It would have been possible to regard only the non-randomized
decision functions as the pure strategies of the experimenter. The
choice of a probability measure (mixed strategy) in the space of all
non-randomized decision functions can be shown to be equivalent to
the choice of some randomized decision function 8. For purposes of
developing the general theory, as given in Chapter 3, it seemed, how-
ever, to be more convenient to regard the randomized decision func-
tions themselves as the pure strategies. By doing so, it will be possible
to disregard altogether mixed strategies for the experimenter, since,
as will be seen in Chapter 3, the choice of a probability measure » in
the space D is equivalent to the choice of a particular element & of D.

The analogy between the decision problem and a two-person game
seems to be complete, except for one point. Whereas the experimenter
wishes to minimize the risk 7(F, §), we can hardly say that
Nature wishes to maximize r(F, §). Nevertheless, since Nature’s
choice is unknown to the experimenter, it is perhaps not unreasonable
for the experimenter to behave as if Nature wanted to maximize the
risk. But, even if one is not willing to take this attitude, the theory
of games remains of fundamental importance for the problem of statis-
tical decisions, since, as will be seen in Chapter 3, it leads to basic
results concerning admissible decision functions and complete classes
of decision functions.
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The theory of zero sum two-person games was developed by von
Neumann for finite spaces A and B, i.e., when both players have only a
finite number of pure strategies at their disposal. In statistical decision
problems, however, the corresponding spaces @ and D generally have
infinitely many elements. In the next chapter the theory of zero sum
two-person games is extended to the case where the players have
infinitely many strategies at their disposal.

1.7 Note on Some Ideas and Results Preceding the Present
Developments

Until about ten years ago, the available statistical theories, except
for a few scattered results, were restricted in two important directions:
(1) only decision functions were treated for which experimentation is
carried out in a single stage; (2) the decision problems were restricted
to problems of testing a hypothesis, and that of point and interval
estimation.

Among the few early results not subject to restriction (1), a double
sampling inspection procedure by Dodge and Romig [14] may be
mentioned. According to their scheme the decision whether or not a
second sample should be drawn before a terminal decision is made
depends on the outcome of the observations in the first sample. The
need for multi-stage experimentation had been recognized long before
any systematic theory regarding such experimentation was available.
This was clearly shown by the occasional practice in the past of design-
ing a large scale experiment in successive stages. A very interesting
example of this type is the series of sample censuses of area of jute in
Bengal carried out under the direction of Mahalanobis [31]. A number
of preliminary sample censuses were taken, and the information con-
tained in these samples was then used to design the final sampling of
the whole jute area.

The possibility of an extension of the theory of testing a hypothesis
H by admitting three terminal decisions, acceptance of H, rejection
of H, and no choice between H and non-H, was considered by Neyman
and Pearson [34] as early as 1933. The “decision” character of the
test and estimation procedures has been emphasized by Neyman, who
termed the adoption of a particular test or estimation procedure
“inductive behavior.”

The basic ideas of a general theory of non-randomized decision func-
tions when experimentation is carried out in a single stage and when
the space D’ of terminal decisions is any general space were first out-

U4 See, for example, [38].
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lined by the author in a publication in 1939 [56]. In this publication
the notions of weight and risk functions are introduced ** and the
nature of the minimax and Bayes solutions are studied. The results
of this paper were considerably extended, and the relationship to the
theory of games was recognized in 1945 [59], but the assumption of
one-stage experimentation had still been maintained.

A major advance in the theory of multi-stage experimentation took
place during World War II with the development of sequential analy-
sis.® This theory deals mainly with the problem of testing a hypothesis
(D? contains only two elements) with no definite upper bound on the
number of stages of experimentation. It is assumed, however, that
the 7th stage of experimentation consists of a single observation on X;
(¢=1,2, ---, ad inf.). Thus, if the experiment is carried out in n
stages, it consists of the observations on X, - -, X,,. The number of
stages of the experiment is, of course, a chance variable, since it depends
on the observed values obtained. The main part of the theory consists
of the development of the so-called sequential probability ratio test,
a particular sequential method for testing a hypothesis. Contributions
to the further development of sequential analysis have been made in
the last few years by several authors in this country and in England,
notably by Anscombe [2], Armitage [3], Barnard [6], Bartlett [8],
Blackwell [10-12], Burman [13], Girshick [19-21], Mosteller [21],
Savage [46], Stein [49-52], Stockman [53], Wald [57, 60-71], and
Wolfowitz [69, 71, 73-75].

A very interesting paper by Bartky in 1943 [7] may be regarded as a
forerunner of sequential analysis. In this paper a multiple sampling
scheme is given for testing the mean of a binomial distribution.

In 1945 Stein [49] published a highly interesting double sampling
method for obtaining a confidence interval of fixed length for the mean
of a normal distribution with unknown variance. His method is
particularly interesting, since no confidence interval of fixed lengtb
can be obtained with any single sampling method.

The concept of a complete class of decision functions was introduced
by Lehmann, and the first result regarding such classes is due to him [30].
He obtained the minimal complete class of decision functions in the
following special case: the chance variables X;, X, ---, X, admit a

15 The idea of assigning weights to the various possible wrong decisions had
already been considered by Neyman and Pearson as early as 1933 [34]. Also the
minimax principle is mentioned in [34] as a possible approach to the decision
problem.

18 See, for example, [48b] and [65].
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joint probability density function f(zj, ---, ., 6) which is known
except for the value of a single parameter 6 (2 is a one-parameter family
of distribution functions). Experimentation is carried out in a single
stage by observing the values of X3, - -+, X,. The function f(z,, - - -,
Zn, 0) satisfies essentially the conditions formulated by Neyman [37]
to insure the existence of a uniformly most powerful unbiased test
[these include the fulfillment of a certain differential equation by the
function f(zy, - - -, zs, 6)]. The problem considered is to test the hy-
pothesis that 6 is equal to a specified value 6.

Soon after Lehmann’s paper appeared, the author obtained general
results concerning complete classes of decision functions in three
successive papers [66, 67, 70], the first of which deals with the non-
sequential case and the second and the third with the sequential case.
It was shown that under very general conditions the class of all Bayes
solutions is a complete class.

The general theory of non-sequential decision functions contained
in the author’s paper in 1945 [59] was extended to the sequential case
in two successive papers in 1947 [67] and 1949 [70]. These papers deal
with the general decision problem where experimentation may be
carried out in any number of stages, but it is assumed that the 4th
stage of the experiment consists of a single observation on X.

Stein [52] was the first to formulate a model for statistical decision
procedures which includes the design of experimentation (selection of
the chance variables to be observed) as a part of the decision problem.
His scheme is, however, restricted in several ways. The space @ and
the space D? of terminal decisions are assumed to be finite.” Further-
more there is a fixed finite upper bound for the total number of observa-
tions that can be made. The problem considered by Stein is related
to, but different from, and more special than, the problem treated in
the present book. He is concerned with the problem of finding a
decision function which is optimum in the sense that, under some side
conditions on the probabilities for making wrong decisions, it minimizes
the expected cost of experimentation when a particular element Fy of Q
is the true distribution. His main result consists in giving sufficient
conditions for a decision function to be optimum in his sense. The
question whether decision functions satisfying his sufficient conditions
always exist is left open. In a number of special cases, however, he
verified that such decision functions exist.

The present book is mainly an outgrowth of several previous publica-

17 Actually it is not assumed that Q is finite, but the theory developed by Stein

is such that only a finite number of elements of Q enter and the rest of the space @
can be disregarded.
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tions of the author on the general theory of decision functions [59, 66,
67, 70], and it contains a considerable expansion and generalization of
the ideas and results obtained in these papers. Particularly, the re-
striction is dropped that the ¢th stage of the experiment consists of a
single observation on X; making it possible to treat the design of
experimentation as a part of the decision problem.



Chapter 2. ZERO SUM TWO-PERSON GAMES WITH
INFINITELY MANY STRATEGIES

2.1 Conditions for Strict Determinateness of a Game

2.1.1 The Problem of Strict Determinateness of a Game and the
Introduction of an Intrinsic Metric

Extending von Neumann’s definition for finite spaces of strategies
to the infinite case,! we shall say that a game is strictly determined if

1) Sup; Inf, K(£, 1) = Inf, Sup; K(£, 7)

where the symbol Sup; stands for supremum with respect to ¢ and
Inf, stands for infimum with respect to 7. The common value of the
left- and right-hand members of (2.1) is called the value of the game.
The question of strict determinateness is of basic importance in the
theory of games for the following reason. If the game is strictly
determined and both players use minimax strategies, provided that
such strategies exist, then neither player can improve his situation by
finding out his opponent’s strategy; i.e., neither player will have any
inducement, to abandon his own minimax strategy even if he finds out
his opponent’s strategy. Thus, for strictly determined games, the
use of minimax strategies creates a perfectly stable situation and the
minimax strategies may be regarded as good strategies. On the other
hand, if (2.1) does not hold, no stable situation exists; i.e., no matter
what strategies are chosen by the players, at least one of them can
improve his situation by finding out his opponent’s strategy.

The main theorem proved by von Neumann ? states that, if the
spaces A and B of pure strategies are finite, (2.1) always holds; i.e.,
the game is always strictly determined. A game with infinitely many
strategies, however, is not necessarily strictly determined, as shown
by the following simple example. Let A and B each be the space of
all positive integers. The outcome K(a,d) = 1ifa > b, =0ifa = b,
and =—1if a <b. One can easily verify that for this game we have
Sup; Inf, K(%, 9) = —1 and Inf,Sup; K(§, ) = 1. Thus (2.1) does
not hold.

Necessary and sufficient conditions for strict determinateness were
given by the author [58] for the case when the spaces A and B have

1See Section 14.5.1 in [55].
2 See Section 17.6 of [55].
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countably many elements. A special result for spaces A and B with
continuously many elements was obtained by Ville [54]. He considered
the case where A and B are finite and closed intervals of the real axis
and K(a, b) is a continuous function of a and b. He proved that in
this case the game is strictly determined. A more general result was
obtained later by the author [67]. Conditions for strict determinate-
ness will be given here in Sections 2.1.3, 2.1.4, and 2.1.5. The results
contained in Sections 2.1.4 and 2.1.5 go somewhat beyond previously
published results.

To give a precise meaning to the relation (2.1) in the case of infinite
spaces A and B, we have to define the Borel field A of subsets of A
and the Borel field B of subsets of B for which the probability measures
£ and 7 are defined, respectively. We shall define Borel fields ¥ and B
with the help of an intrinsic metric in the spaces A and B. The
(intrinsic) distance §(a;, as) of two elements a; and a, is defined by 3

(22) 5(as, a) = Sups | K(a1, b) — K(az, b) |

Similarly the (intrinsic) distance of two elements b; and bs in B is
defined by

23) 8(by, bg) = Sup, | K(a, b1) — K(a, by) |

The metric in A, as well as that in B, satisfies the triangle inequality,*
but it may happen that two different elements of A, or B, have the
distance zero. We can, however, replace the original spaces A and B
by the spaces A* and B* defined as follows: For any element a of A
let oy be the set of all elements of A which have the distance zero
from a. Clearly, for any two elements a; and ap of A, the sets o,
and a,, are either disjoint or identical. The space A* is then the space
of all subsets a, of A. Let a;* and as* be two different elements of A*.
Then there exist two elements a; and a; of A such that a;* = a5,
as* = a,,, and o, has no common element with a«,,. We put
8(a*, ag*) = 8(ay, az). The space B* and the metric in B* are defined
in a similar way. The distance between two different elements of A*
or B* is always positive. In the theory of games only the spaces A* and
B* play a relevant role. In what follows we shall assume that any
two different elements of A or B have a positive distance. There is
no loss of generality in this assumption, since the spaces 4 and B can

3 A similar distance definition corresponding to a certain function of two variables
was used by Helly [24] in connection with linear spaces. He refers to it as the
“polar distance function.”

4 The triangle inequality is said to be satisfied if for any three points aj, as,
and a3 of the space we have 8(a;, a2) + 3(az, as) = 8(ay, as).
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always be replaced by A* and B¥* respectively. Thus the distance
definitions given in (2.2) and (2.3) make the spaces A and B metric
spaces.

The distance definitions given in (2.2) and (2.3) can be extended to
the spaces of mixed strategies. We put

(2.4) 3(£1, &) = Sup, | K1, n) — K(&s, 1) |
and
(2.5 8(m, n2) = Supg | K¢, m) — K n2) |

Of particular interest are the Borel fields %; and 8B;, where %, is
the smallest Borel field of subsets of A containing all open subsets, in
the sense of the metric (2.2), of A as elements, and 9B, is the smallest
Borel field of subsets of B containing all open subsets of B as elements.
Clearly all denumerable subsets of A and B are elements of ; and B,
respectively. It will be seen in Section 2.1.4 that, if the space A(B) is
separable ¢ in the sense of its intrinsic metric, there will be little interest
in considering a Borel field A(B) different from A;(B;). However,
for non-separable spaces of strategies, the consideration of Borel fields
different from ¥A; and B; may be useful, as Section 2.1.5 will indicate.
Whenever we speak of a subset of A(B), we shall always mean an
element of the Borel field A(B).

Let Ao be the smallest Borel field containing all denumerable subsets
of A as elements, and let By be the smallest Borel field containing all
denumerable subsets of B as elements. We shall consider only Borel
fields A and B which contain Ay and By, respectively, as subfields.

Any theorem or lemma stated in the present chapter is meant to
be valid for % = ¥A; and B = B, unless stated otherwise.

Let C = A X B be the Cartesian product of A and B,% and let € be
the smallest Borel field of subsets of C which contains the Cartesian
product of any member of ¥ with any member of 3. In this study we
shall restrict ourselves to games for which the outcome K(a, b) is a
bounded function of @ and b and is measurable (€). In the next section
we shall prove some lemmas which will then be used to derive con-
ditions for strict determinateness of a game.

It is of interest to note that if A = A;, B = By, and one of the
spaces A and B is separable, K(a, b) is always measurable (§). For
example, let A be separable and let ¥ be the subset of C consisting of
all points (a, b) for which K(a, b) < r, where r is a given real number.
We shall now show that v is a member of €. Let a be the subset of A
consisting of every point a for which there exists an element b of B

42 For a definition of “separable,” see Section 2.1.4.
5 See page 82 of [44].
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such that (@, b) is an element of 4. Clearly « is an open subset of A.
For any positive value p, let S(a, p) denote the closed sphere in A with
center a and radius p; i.e., S(a, p) is the totality of all points a’ whose
distance from a does not exceed p. For any subset o’ of « let B(<’)
be the totality of all those points b of B for which the Cartesian product
o X bisasubset of y. Clearly for any a and p for which S(a, p) C «,
the set B[S(a, p)] is open. Let o* be a denumerable dense subset of «,
and consider the subset v* of C given by
v* = 2 {8(a, p) X BIS(a, P}
a,p

where the summation is to be taken over all pairs (a, p) for which
aea®, p is rational, and S(a, p) is a subset of a. Since for each pair
(a, p), the set S(a, p) X BlS(a, p)] is a member of €, the set v* is
also a member of €. Clearly v* is a subset of y. We shall now show
that v* = v. Let (ap, bo) be any point of yv. We merely have to
show that (ao, bo) is a point of v*. Clearly there exists a positive value pg
such that S(ao, po) X S(bo, po) is a subset of v, where S(b, p) denotes
the closed sphere in B with center b and radius p. Hence there exists
an element a; of o* and a positive rational number p; such that
S(a;, p1) € S(ag, po) and ag is an element of S(a;, p;). Clearly
S(a1, p1) X B[S(a1, p1)] contains the point (ao, bo). Since S(as, p1)
X BiS(ay, p1)] is a subset of 4*, the point (ao, by) must be an element
of 4*. This completes the proof of our statement that K(a, b) is
measurable (€) where one of the spaces A and B is separable.

2.1.2 Some Lemmas

In what follows, for any subset o of A the symbol £, will denote a
probability measure £ on A for which £(a) = 1. Similarly, for any
subset 8 of B, 73 will denote a probability measure 4 on B for which
7(8) = 1. We shall now prove the following lemma.

Lemma 2.1. Let {a;} (2 =1,2 ---, ad inf.) be a sequence of subsets
of A such that o; C a;4q and let a = Eai. Then
=1

26) lim Supe,, Inf, K (£, n) = Supy, Inf, K(ta, )

Proof: Clearly the limit as 7 — « of Supy,, Inf, K (Ea‘,, n) exists and
cannot exceed the value of the right-hand member of (2.6). Put

@27 hin Supg,, Inf, K&, 1) =

and
2.8) Supg, Inf, K(¢s, 7) = p+ 8 (8 =0)
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Suppose that 8 > 0. Then there exists a probability measure £,° such
that

6
(2.9) K& 7D zp+ 3
for all 5. Let £,° be the probability measure given as follows: For
any subset a* of a; we have
£.2(a*)

2.10 - 0(*) = :
( ) ‘( ) an(ai)

Then, since lim (@ — ;) =0 and since K(a, b) is uniformly

=00

bounded, we have
(2.11) lim K(£,0, 1) = K(&°, )

uniformly in %. Hence for sufficiently large ¢ the inequality
6
(2.12) Inf, K(Em'o7 7 Zp+ g
holds. But this is not possible because of (2.7). Thus, § = 0 and

Lemma 2.1 is proved.

Interchanging the role of the two players, Lemma 2.1 yields the
following lemma.

Lemma 2.2. Let {8;} (¢ = 1,2, ---, ad inf.) be a sequence of subsets
of B such that B; C B;y1 and let 8 = D B;. Then
t=1

(2.13) 1.1:1:101° Inf,,p' Supg K(§, 1) = Inf,,B Sup; K(£, 7g)

‘We shall now prove the following lemma.
Lemma 2.3. The inequality
(2.14) Sup; Inf, K(%, 1) < Inf, Sup; K(¢ 7)

always holds.
Proof: Clearly

(2.15) K(¢ 1) < Sup; K(¢ n)
Hence

(2.16) Inf, K(, 7) < Inf, Sup; K(§, 7)
This gives

(2.17) SupE Inffl K n) = Inf'q SUPE K( )
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and our lemma is proved. This proof is essentially the same as that
given by von Neumann [55] for finite spaces A and B.

Lemma 2.4. If there exists a subset o of A such that

(2.18) Supy, Inf, K(£s, n) = Inf, Sup; K (£, 7)

then the game is strictly determined.
Proof: Suppose that there exists a subset a of A for which (2.18)
holds. Clearly

(2.19) Sup; Inf, K(£ 7) = Supy, Inf, K(&, 1)
From this and (2.18) we obtain
(2.20) Supg Inf, K(¢, 7) = Inf, Sup; K(¢, 5)

From Lemma 2.3 it follows that the equality sign must hold in (2.20),
and Lemma 2.4 is proved.

Interchanging the two players, Lemma 2.4 yields the following
lemma.

Lemma 2.5. If there exists a subset B of B such that
(2.21) Inf, . Supg K (£, ng) = Sup; Inf, K(§, 7)
then the game ts strictly determined.

2.1.3 The Case when the Space of Strategies of One of the Players
Is Conditionally Compact

We shall consider here the case when one of the spaces A or B is
conditionally compact in the sense of its intrinsic metric given in (2.2)
or (2.3). A metric space C is said to be conditionally compact if any
sequence {c;} (z =1,2, ---, ad inf.) of elements of C admits a Cauchy
subsequence {c;} (j = 1,2, ---, ad inf.), i.e., a subsequence {c;} with
the property that

lim 8(c;;, c;;) = 0

i iy
2=
where &(ck, ¢;) denotes the distance of the points ¢ and ¢;.

Theorem 2.1. If one of the spaces A and B 1is conditionally compact,
both spaces are conditionally compact.

Proof: Suppose that A is conditionally compact. Then for any
& > 0 there exists a finite subset « of A that is ¢;-dense in A. A subset
a of A is said to be e-dense in A if for any point @ in A there exists
a point a’ in « such that §(g, a’) < e If we replace the space A by
its e;-dense subset ¢, then the metric in the space B, as defined in (2.3),
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will be changed. Let 5,(b;, b2) denote the new distance when A is
replaced by «. Since a is finite, it follows easily from the definition of
da(b1, bs) that for any e; > 0 there exists a finite subset 8(e;) of B
which is e;-dense in B in the sense of the metric §,(by, b2). Clearly

(2.22) | 8(b1, b2) — 8a(by, b2) | < 26

Hence the set B(ez) must be (e; + 2¢;)-dense in B in the sense of the
original metric §(by, by). Since ¢ and e; can be chosen arbitrarily small,
we find that for any § > 0 there exists a finite subset 8 of B that is
5-dense in B according to the original metric §(b;, by). But this is
equivalent to conditional compactness,® and Theorem 2.1 is proved.

Theorem 2.2. If onme of the spaces A and B 1is conditionally compact,
the game s strictly determined.

Proof: Suppose that A is conditionally compact. Then, according
to Theorem 2.1, B is also conditionally compact. Let e be any posi-
tive value. Because of the conditional compactness of the spaces A
and B we can subdivide A and B into a finite number of non-empty
disjoint subsets the diameter of each of which does not exceed e. Let
A,, ---, A, be non-empty subsets of A, and By, ---, B; non-empty
subsets of B satisfying the above conditions; i.e.,

(2.23) Ay +---+A4r=4; B +---+B =

the sets Ay, - -, Ag, By, - -+, B; are disjoint; and the diameter of any
of these sets does not exceed ¢. Let a; be a particular point of A;
(Z=1, ---, k) and b; a particular point of B; j =1, ---, ), and let «
denote the finite subset {a;, ---, ax} of A and B the finite subset
{by, -+, by} of B. With any probability measure £° on A we associate
the probability measure &, defined as follows: £,°(a;) = £°(4,) (¢ = 1,
2, -+, k). Similarly, with any probablhty measure 7° on B, we asso-
clate the probability measure 74° given by 7¢°(b;) = 1°(B;) (_1 =1, 2
-, ). We then have

(2.24) | K&, n) — K(an, IEX

for all 5, and

(2.25) | K, 1) — K& 1% | <

for all £. It follows easily from (2.24) that

(2.26) Sup; Inf, K(¢, 1) — e < Sup, Inf, K(&, )

< Sup; Inf, K(§, 7)
¢ See, for example, page 108 of [23].
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From (2.25) we obtain
.27) Supg, Inf, K (£, 1) < Supy, Inf,  K(£, 15)
= Supy, Inf, K(£, 1) + ¢

Equations (2.26) and (2.27) imply that
(2.28) Supg Inf, K(%, 7) — ¢ < Sup,, Inf, " K(%,, 18)

< Sup; Inf, K(¢, 1) + €
In a similar way, we obtain the inequality
(229)  Inf,Sup; K( 1) — € < Inf,, Supe, K (£, 19)

=< Inf, Sup; K(§, 7) + ¢

According to von Neumann’s theorem, for finite spaces we have

(2.30) Sup,, Inf,,ﬁ K(ta, 18) = Inf,,B Sup;, K(£a, 18)

Since e can be chosen arbitrarily small, Theorem 2.2 follows from
(2.28), (2.29), and (2.30).

In the remainder of this section we shall prove some theorems
concerning the change in the value of the game when the original
spaces A and B are replaced by some subsets « and B, respectively.
In what follows, for any subset o of A and any subset 8 of B, we shall
mean by the game relative to («, ) the game we obtain when A is
replaced by o and B by B. The Borel fields % and 8 will be assumed
to remain unchanged when A and B are replaced by « and B, respec-
tively. Thus the replacement of A(B) by «(B8) simply means that
player 1(2) can use any probability measures £(n) defined over the
elements of A(B) for which £(a)[4(B)] is equal to 1.

Theorem 2.8. If one of the spaces A and B is conditionally compact,
for any € > 0, there exists a finite subset a of A and a finite subset B
of B such that the value of the game relative to (A, B) differs at most by €
from the value of each of the following three games: the game relative to
(a, B), that relative to (4, 8), and that relative to (c, B).

Proof: Let the subsets 4;, ---, Ax of A and the subsets By, -+, B;
of B be chosen as in the proof of Theorem 2.2. Also let @ = {a,, -- -,
ar} and B = {by, - --, bi}, where a; is an element in A; and b; is an
element in B;. It follows from (2.26) and Theorem 2.2 that the value
of the game relative to («, B) differs from that of the game relative to
(4, B) at most by e. Similarly one sees that the value of the game
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relative to (4, B) differs from that corresponding to (4, B) at most by e.
Equation (2.28) and Theorem 2.2 imply that this is true also for the
game relative to (¢, 8). Thus our theorem is proved.

Theorem 2.4. If one of the spaces, say the space A, is finite, then for
any € > 0 there exists a finite subset B of B such that the number of poinis
contained in B does not exceed the number of points contained in A and
the value of the game is not changed by more than e when B is replaced by B.

Proof: According to Theorem 2.3 there exists a finite subset 8* of B
such that the value of the game is changed at most by e¢ when B is
replaced by 8*. If 8* contains more points than A, then, according to
a result by Kaplansky [27], we can replace 8* by a subset 8 of 8* such
that the value of the game relative to (4, B) is the same as the value
of the game relative to (4, 8*) and A and B contain the same number
of elements. This proves our theorem.

Theorem 2.5. If one of the spaces, say A, conststs of m points (m < «)
and if B is compact, then there exists a finite subset B of B such that 8
contains at most m points and the value of the game remains unchanged
when B 1s replaced by B.

Proof: Let {¢;} (=1, 2, ---, ad inf.) be a sequence of positive
numbers such that

l.im € = 0

According to Theorem 2.4 there exists a subset B8; of B such that B;
contains at most m points and the value of the game is changed at
most by ¢; when B is replaced by 8;. Clearly there exists a subsequence
{77} G=1,2, ---, ad inf.) of the sequence {7} (=1, 2, ..., ad inf.)
such that the number of points contained in 8; (=1, 2, ---, ad
inf.) is equal to a fixed integer n, independent of j, and the points in
B; converge to some limit points as j — . Let 8 be the limit of g
asj — . Since the value of the game corresponding to (4, 8;;) con-
verges to the value of the game corresponding to (4, 8), the value of
the game corresponding to (4, B) is equal to the value of the game
corresponding to (4, B). Thus our theorem is proved.

2.14 The Case when the Space of Strategies of One of the Players
Is Separable
A space C is said to be separable if there exists a countable subset v
of C that is dense in C, i.e., a subset v with the property that for any
point ¢ in C there exists a sequence {c;} of points in 4 such that
lime; =¢

ix=



STRICT DETERMINATENESS 41

Separability of one of the spaces A and B does not necessarily imply
the separability of the other space, as shown by the following example.
Let A be the space of all positive integers and B the space of all sub-
sequences of the sequence of positive integers. Thus any element a
of A is a positive integer, and any element b of B is a subsequence of
the sequence of all positive integers. Let K(a, b) = —1 if a is not
an element of the sequence b, and let K(a, b) = 1 when a is an element
of b. In this case A is separable but B is not, since the distance between
two different elements of B is always 2 and the number of elements in
B is non-denumerable.

Theorem 2.6. If one of the spaces A and B, say A, is separable and
tf @ is a dense subset of A, then the class of all probability measures &4
1.e., the class of all probability measures & for which () = 1 is dense in
the class of all probability measures £ in the sense of the metric given
n (2.4).

Proof: Let {¢;} 2 =1, 2, ---, ad inf.) be a sequence of positive
numbers such that im ¢; = 0. Since A is separable, there exists a

sequence {oy, ...} (h =1,2, ---,adinf., ¢ =1,2, ---, ad inf,, .- -,
=12 --+,adinf, k=1,2, ---, ad inf.) of subsets of A such that
the following conditions are satisfied: (1) The sets a;; ... 55 and o, ... 5%
are disjoint for j % 7*; (2) _21 Wiy ooy = Uiy ooy B) 2,y = A

%= 1=1
(4) the diameter of oy ... does not exceed ¢; (5) the intersection
@y ... 0f aand o ... 5 isnot empty. Foranyk, 7y, - -+, ik, let a;, ... 5
be a given point in &; ...;. For any probability measure £° and for
any k, let £° be the probability measure for which £°(a; ... 3)
= %oy, ... ) for all values of 73, - -+, 4. Clearly

(2'31) IK(EO’ 77) - K(Ekoy 77) l S e
for all . Hence
(2.32) ;11339 K&, n) = K&, )

uniformly in 7. Theorem 2.6 is an immediate consequence of (2.32).

If A is separable, there exists a denumerable subset « that is dense
in A. It then follows from Theorem 2.6 that the class of discrete
probability measures £ lies dense in the class of all probability measures
£ A probability measure £ is said to be discrete if there exists a
denumerable subset « of A such that £(a) = 1. Thus, if A is separable
and if the game is strictly determined, the value of the game is not
affected by the choice of the Borel field o, provided that A contains all
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denumerable subsets of A as elements. Hence, if A is separable, from
the point of view of the value of the game it makes no difference what
Borel field ¥ is adopted as long as A contains all denumerable subsets
of A as elements and K(a, b) is measurable (€), where € is the Borel
field defined at the end of Section 2.1.1. The choice of U as the smallest
Borel field ; containing all open subsets of A seems to be satisfactory
in every respect when A is separable, particularly since then K(a, b)
is always measurable (€) (provided that ¥ = 8B;). Thus there is
little interest in considering Borel fields ¥ different from ;.

Theorem 2.7. Let A be separable. Also let {a;} be a sequence of
subsets of A such that a; is conditionally compact, o; C a;41 (2 =1, 2,

«-+,ad inf.), and Y a; = a is dense in A. Then a necessary and suffi-

=1
cient condition for strict determinateness of the game s that
(2.33) lim Inf, Sup,,, K(£,;, 7) = inf, Sup; K(£, 1)

Proof: According to Lemma 2.1 we have
(2.34) }1330 Supy,, Inf, K(£s, 1) = Supg, Inf, K (£, 7)
Since «; is conditionally compact, the game relative to (a;, B) is
strictly determined; i.e.,
(2.35) Supy,, Inf, K(£,, n) = Inf, Sup, K(¢., )
From (2.34) and (2.35) we obtain
(2.36) }1:1; Inf, Sup,,, K(£.,, 7) = Supy, Inf, K(£a, )

From Theorem 2.6 it follows that
(2.37) Supg, Inf, K(£., 7) = Sup; Inf, K(§, n)

The equivalence of (2.33) with the strict determinateness of the game
follows immediately from (2.36) and (2.37).

When the roles of the two players are interchanged, Theorem 2.7
immediately gives the following theorem.

Theorem 2.8. Let B be separable and let {B;} be a sequence of subsets
of B such that B; vs conditionally compact, B; C i1, and Z B: =B 1s
i=1

dense in B. Then a necessary and sufficient condition for strict deter-
manateness of the game s that

(238)  lim Sup; Inf, K(, ) = Supe Inf, K(&, )
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Theorem 2.9. If one of the spaces A and B, say A, ts separable and if
the game 1s strictly determined, then

(i) there exists a denumerable subset « of A such that the game relative
to (a, B) is strictly determined and its value is equal to the value of the
game relative to (A, B);

(ii) for any € > 0, there exists a finite subset o of A such thai the value
of the game relative to (., B) differs from the value of the game relative
to (A, B) at most by e.

Proof: Assume that A is separable and that the game is strictly
determined. Because of the separability of A, there exists a sequence
a={a;} ¢=1,2, ---, ad inf.) of elements of A that is dense in A.
It follows from Theorem 2.6 that the value of the game relative to
(«, B) is the same as that of the game relative to (4, B), and statement
(1) of our theorem is proved. Let «; be the set consisting of the first ¢
elements of the sequence {a;} (j =1, 2, ---, ad inf.). Since the game
is strictly determined, it follows from Theorem 2.7 that

(2:39) lim Inf, Supe,, K (£, ) = Inf, Sup; K(¢, 1)

= Sup; Inf, K(, 7)

For any subset o* of A and for any subset 8* of B we shall denote
by v(a*, %) the value of the game when A is replaced by o* and B
is replaced by B*, provided that the game relative to (o*, g*) is strictly
determined. Since the game relative to (a;, B) is strictly determined,
it follows from (2.39) that

(2.40) lim v(a;, B) = o(4, B)

Thus, for any ¢ > 0, there exists a positive integer 7 such that
(2.41) | (e, B) — v(4, B)| S
This completes the proof of Theorem 2.9.

Theorem 2.10. If both spaces A and B are separable and if the game
18 strictly determined, then

(1) there exists a denumerable subset a of A and a denumerable subset
B of B such that v(4, B) = v(a, B) = v(4, B) = v(e, B);

(i) for any e > 0, there exists a finite subset o of A and a finite subset
Be of B such that each of the values v(ae, B), v(4, Be), and v(a, Be) differs
from v(A, B) at most by e.

Proof: It follows from Theorem 2.9 that there exists a denumerable
subset « of A and a denumerable subset 8 of B such that the games rela-
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tive to (a, B) and (4, B) are strictly determined and
(242) (e, B) = v(4, B) = v(4, B)

For any subset o* of A and any subset 8* of B the following inequalities
obviously hold.

(2.43) Sup;+ Inf, K(£,+, 1) < Sup;,+ Inf, 5 K(£.x, ng%)

< Sup; Inf, o K (& ng»)
and

(2.44) Inf,, Supga* Kt 1) < In'fﬂﬂ* Supfﬂ* K (€, Kk )
< Inf, , Sup; K(, nge)

Replacing o* and g* in (2.43) and (2.44) by «a and B, respectively, it
follows from (2.42)—(2.44) that the game relative to (e, B) is strictly
determined and »(e, 8) = v(4, B). Thus statement (i) is proved.

Let a. be a finite subset of A and B, a finite subset of B such that

(245) |v(aoB) —9(4,B)|<e¢ and |o(4,8) —v(4,B)| <

The existence of such subsets follows from Theorem 2.9. Replacing
o* and B* in (2.43) and (2.44) by «. and B, respectively, it follows from
(2.43) that

(2.46) 'I)(ae, B) = v(a, B) = (4, B

Statement (ii) is an immediate consequence of (2.45) and (2.46), and
the proof of Theorem 2.10 is completed.

2.1.5 General Spaces of Strategies

'We shall now consider the general case where the spaces of strategies
may be non-separable. In the case of a separable space, we have seen
that the class of all discrete probability measures is dense in the class
of all probability measures. This is not necessarily true for non-
separable spaces. We shall, however, study the problem of strict
determinateness under the restriction that the mixed strategy of a
player must be either a discrete probability measure or a limit, in the
sense of the distance definitions (2.4) and (2.5), of a sequence of discrete
probability measures. This restriction is perhaps not too serious from
the point of view of applications.

Theorem 2.11. If the mized strategy used by player 1 must be either a
discrete probability measure or a limit, in the sense of the distance defini-
tion (2.4), of a sequence of discrete probability measures, then a necessary
and sufficient condition for the game to be strictly determined is that there
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exists a sequence « = {a;} (1 =1,2, «--, ad inf.) of elements of A such
that

(2.47) lim Inf, Sup,,, K(£.;, 7) = Inf, Sup; K(¢, 7)

3=

where o; = {ay, - -+, a;}.

Proof: Because of the restriction imposed on the mixed strategy that
can be used by player 1, there exists a sequence {£;} of discrete prob-
ability measures such that

(248) lim Tnf, K (&5, 1) = Supe Inf, K(, )

Since £; is a discrete probability measure, there exists a countable
subset &; such that £,(@;) = 1. Let « = i @;. It then follows from
(2.48) that -

(2.49) Sup,, Inf, K(ta, 1) = Supg Inf, K (£, )

We arrange the elements of « in an ordered sequence. Let a = {a;}
(=12, ---, ad inf.). Since o; = {a;, +--, a;} is finite, the game
relative to (a;, B) is strictly determined; i.e.,

(2.50) Inf, Sup;,. K(£, n) = Supg,, Inf, K(,, 1)

It then follows from Lemma 2.1 that

(251)  lim Inf, Sups,, K(&, ) = Sups, Infy K(ta, )
a — Sup; Inf, K (¢, 7)

The necessity of our condition follows immediately from (2.51). To
prove sufficiency, let « = {a;} be a sequence satisfying (2.47). Clearly
(2.50) and the first half of (2.51) are satisfied for this sequence. It
then follows from Lemma 2.4 that the game is strictly determined and
the sufficiency of our condition is proved.

When the roles of the two players are interchanged, Theorem 2.11
gives the following theorem.

Theorem 2.12. If the mized strategy used by player 2 must be either
a discrete probability measure or a limit, in the sense of the metric (2.5),
of a sequence of discrete probability measures, then a necessary and suffi-
ctent condition for the game to be strictly determined is that there exists a
sequence B = {b;} of elements of B such that
(2.52) lim Supg Inf, K(&, n5) = Supg In, K(, n)

1=

where B; = {by, -~-, b;}. -
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‘We shall now prove the following theorem.

Theorem 2.13. If the space of mized strategies of one of the players,
say player 1, is restricted to the closure, in the sense of the metric (2.4),
of all discrete probability measures & and if the game is strictly determined,
then there exists a countable subset a of A such that v(e, B) = v(A, B),
and for any e > 0 there exists a finite subset o of A such that
| v(ae, B) — v(4, B) l =< e. If the space of mixed strategies is restricted
for each of the players to the closure of all discrete probability measures
and if the game s strictly determined, there exists a countable subset «
of A and a countable subset 8 of B such that v(e, B) = v(4, B) = v(e, B)
= »(4, B), and for any € > 0 there exists a finite subset ac of A and a
finite subset B of B such that each of the values v(ae, B), v(4, B¢), and
v(ee, Be) differs from v(A, B) at most by e.

Proof: Suppose that the space of mixed strategies of player 1 is
restricted to the closure of all discrete probability measures and that
the game is strictly determined. Then according to Theorem 2.11
there exists a sequence a = {a;} of elements of A for which (2.47)
holds. Thus

(2.53) ]-im v(aiy B) = v(A7 B)
Theorem 2.7 and (2.47) imply that the game relative to («, B) is
strictly determined and that

(2.54) lim v(et;, B) = v(a, B)

The first part of Theorem 2.13 is an immediate consequence of (2.53)
and (2.54). To prove the second half of our theorem, assume that the
space of mixed strategies of each of the players is restricted to the
closure of the class of all discrete probability measures and that the
game is strictly determined. Let a be a countable subset of 4, . a
finite subset of 4, B a countable subset of B, and B, a finite subset of B
such that

(2.55) v(a, B) = v(4, B) = v(4, B)
and
(2.56) | (e B) — 0(4, B)| S ¢, | 0(4,8) — v(4, B)| <

The existence of such subsets follows from the first half of our theorem.
It follows from (2.43), (2.44), and (2.55) that the game relative to
(e, B) is strictly determined and that »(«, 8) = v(4, B). Furthermore
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(2.43) and (2.44) imply that

(2.57) v(ae, B) = v(ae; Bo = D(A; Be
Hence
(2.59) | o 8) — 0(4, B)| S ¢

This completes the proof of our theorem.

If the restrictions imposed on the mixed strategies that can be used
by the players are lifted, the conclusions in Theorems 2.11, 2.12, and
2.13 do not necessarily hold, as shown by the following example. Let
the space A, as well as the space B, be the open interval (0, 1) on the
real line. Then any element a of A and any element b of B can be
written in dyadic form as a sequence of 0’s and 1’s.? For each positive
integer k let Sp be a subsequence of the sequence S of all positive

integers such that D, S; = S and Sy, S, - - -, etc., are disjoint. Let
k=1

K(a, b) = —1 if there exists a positive integer k such that a; = b;
for all 7 in Si, where the sequence {a;} ({1 =1, 2, ---, ad inf.) is the
dyadic representation of ¢ and the sequence {b;} is the dyadic repre-
sentation of b. In all other cases we put K(a, b) = 1. Let £ be the
uniform distribution on the interval (0,1); i.e., £°(a) is equal to the
Lebesgue measure of a. Clearly

(2.59) K@#E,b) =1
for all b. Hence
(2.60) K@# 7 =1

for all n. Hence, if A is the class of all Lebesgue measurable subsets
of the interval (0, 1), we have

(2.61) Supg Inf, K(¢, 1) = Inf, Sup; K(§, ) =1

Now let a = {a;} G =1, 2, ---, ad inf.) be a sequence of elements
of A and let {a;;} (j = 1,2, - - -, ad inf.) be the dyadic representation of
a;. Let by be the element of B whose dyadic representation {bo;}
G=1,2 ---, ad inf.) is given as follows: by, = a, for all r in S;
(k=1,2, ---,ad inf.). Clearly

K(£a, bo) = —1
identically in &,.

7To make the dyadic representation unique for the dyadic rational points of
the open interval (0, 1), we shall agree to take the representation which contains
infinitely many zeros.
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Hence for any denumerable subset o we have
(2.62)  Supg, Inf, K(¢, 7) = Inf, Sup;, K(fs, 7) = —1

This contradicts the conclusions in Theorems 2.11, 2.12, and 2.13.

It follows from (2.62) that, if £ is restricted to discrete probability
measures, Sup; Inf, K (%, 7) = —1. On the other hand, Inf, Sup; K(£, 1)
remains equal to 1 even when £ is restricted to discrete probability
measures.? Thus, if player 1 is restricted to the choice of discrete
probability measures £, the game is not strictly determined. If £ is
not restricted to discrete probability measures, the choice of ¥ as the
smallest Borel field containing all open subsets of A would not be satis-
factory here, since any subset of A is open and thus U would be the
class of all subsets of 4, which would narrow down the class of possible
probability measures £ unnecessarily in view of the (total) additivity
condition imposed on £ The reason why any subset of A is open is
that the distance between any two different elements a; and a, of A4 is
equal to 2. This can be seen as follows: Let {a;;} and {as;} (j =1,
2, --+, ad inf.) be the dyadic representations of a; and as, respec-
tively. Let bo be an element of B whose dyadic representation {bo;}
(G=1,2, ---, ad inf.) satisfies the following conditions: Let r be the
smallest positive integer with the property that a;; ¥ as; for at least
one value jin S,. We put by; = a;; for all jin S,. For any k = r, we
put bo;, = 1 — ay;,, where ji is the smallest integer in S;. For all other
integers j, the value bo; may be determined arbitrarily subject to the
only condition that the sequence {bo;} should contain infinitely many
zeros. Then we have K(a;, bp) = —1 and K(as, by) = 1. Hence
(a1, ag) = 2.

2.2 Theorems Concerning the Topology of the Spaces of Mixed
Strategies

2.2.1 Two Convergence Definitions in the Spaces of Mixed
Strategies and Their Relations

An intrinsic metric in the spaces of mixed strategies has been intro-
duced in Section 2.1.1 [see equations (2.4) and (2.5)]. We shall say
that a sequence {£;} of probability measures in A converges in the
intrinsic sense to the probability measure & if lim 8(%;, £) = 0, where

1=
3(¢;, %) denotes the distance defined in (2.4). Intrinsic convergence
of probability measures in the space B is defined similarly.
Another definition of convergence in the spaces of mixed strategies,

80ne can easily verify that for any 7 there exists an element a in A such that
K(a, ) = 1.
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more in accordance with the ordinary notion of convergence, is this:
We shall say that a sequence {£;} of probability measures in A con-
verges in the ordinary sense to the probability measure &, if for any
open subset a of A whose boundary has the probability 0 according
to & we have lim £(a) = £(a). Ordinary convergence in the space

i=e

of mixed strategies of player 2 is defined similarly.

Theorem 2.14. If the space A 1is separable and if {£} 2 =1,2, ---,
ad inf.) is a sequence of probability measures in A such that &; converges
to £ in the ordinary sense, then §; converges to & in the intrinsic sense also.

Proof: Let {£;} be a sequence of probability measures in A such that
lim ¢ = %, in the ordinary sense. For any & > 0, there exists a se-

quence {a;} G =1, 2, ---, ad inf.) of disjoint and non-empty open
subsets of A such that for any ¢ the diameter of «; does not exceed 3,
Eai =4, and $(@; — ;) =0 2=1, 2, -+, ad inf.). Here @;
=1

denotes the closure of a;. Let a; be a particular point of «; and &,*
n=0,1,2, -+, ad inf.) be the probability measure that assigns to a;
the same probability as &, to a;; ie., £*(@;) = &) G =1, 2, ---,
ad inf.). Clearly lim £,* = £* in the ordinary sense and, because of

the uniform boundejiness of K(a, b), we have
(2.63) llm K(&:*, 7) = K(&*, 7)

uniformly in 5. Since the diameter of «; does not exceed §, we have
(2.64) | K@E* n) — K@, n) | <6

for all nand for7 =0, 1,2, ---, ad inf. Since & can be chosen arbi-
trarily small, it follows from (2.63) and (2.64) that

(2°65) lim K(Em 77) = K(EO) 77)

n=o
uniformly in %. But (2.65) is equivalent to convergence of £, to &
in the intrinsic sense, and Theorem 2.14 is proved.

2.2.2 Compactness of the Space of Mixed Strategies when the
Space of Pure Strategies Is Compact

We shall show in this section that, if the space A of pure strategies

is compact, the space of all mixed strategies £ is also compact in the

sense of intrinsic as well as ordinary convergence. It is sufficient to

prove compactness of the space of all mixed strategies in the sense of

ordinary convergence, since, according to Theorem 2.14, this also
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implies compactness in the intrinsic sense. More precisely, we shall
prove the following theorem.

Theorem 2.15. If A is compact and if {£,} is a sequence of probability
measures in A, the sequence {£,} has a subsequence that converges in the
ordinary sense to a limit probability measure.®

Proof: Assume that A4 is compact and let {¢} (6 = 1,2, ---, ad inf.)
be a sequence of positive numbers such that lim ¢z = 0. Let 43, Ao,

k=
-+*y Am, be mutually disjoint open subsets of A such that
Ay +---4 A, = A and the diameter of A; does not exceed ¢.° In
general let {A;;, ...} @G;=1, ---,mj; 7 =1, ---, k) be a system of
mymg - - - my open and disjoint subsets of A such that
mE - .
(266) 21 Aixiz cee gy — Ailiz coo Skl (k = 2, 3, Tty ad mf)
%=

and the diameter of A,;, ..., does not exceed ;. Moreover the sets
4, ..., are chosen so that

(267) En(Z,-l ces gy — A,’l .',‘) = 0

for all values of n, k, 7, - -+, .

Using the well-known diagonal procedure, we can construct a subse-
quence {£,.} (j=1,2, ---, ad inf.) of the sequence {,} such that
lim £,(4;, ... ;) exists for any k, 4y, - -+, 5. For any subset a of 4, let
]aeo
£*(cr) denote the limit of &,(a) as j — «, provided that the limit
exists. Thus we can write
(2.68) ,1117‘1‘ Eni(Ay i) = 844y ... )

Since En(A-ﬁ ,',,) = E-,;(Ail ,‘k), we have E"‘(z‘-{,‘1 ik) = E*(A,-l ,’k).
For any open subset o of 4, let £#(a) denote the least upper bound of
£*(8) with respect to 3, where 8 may be the sum of any finite number of
sets 4;, ..., that are contained in a. Clearly £(a) = 0, £(4) = 1, and
£(oy + a3) = E(oq) + £(ap) for any open and disjoint sets oy and as.
Let {a;} =1, 2, ---, ad inf.) be a sequence of open and disjoint
subsets of A. Let B be the sum of a finite number of sets 4;, ... ;, such

that B is contained in @ = 2 «;. Since A is compact, it follows from
t=1
9 A closely related theorem was proved by Kryloff and Bogoliouboff [28]. Their
convergence definition in the space of the probability measure # is somewhat
different from the one used here.
10 In what follows in this section, for any subset « of A we shall use the symbol @
to denote the closure of a.
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the Borel covering theorem that 3 will be contained in the sum of a
finite number of elements of the sequence {a;}. From this it follows

that £ ) = D #(a;). The measure function £(x) can be
1=1 1=1

extended in the usual way to all elements « of the smallest Borel field
containing all open subsets of A.
Let o be an open subset of A such that

(2.69) t@—a)=0

For any positive integer k, let B; be the sum of all those sets 4, ...,
which have common points with « but are not included in «. Since
@ — a) = 0, we must have

(2.70) lim @) =0

For any k, let 7; be the sum of all those 4, ... ;, which are included in a.
Clearly

(2.71) £n,(Te + Br) = £r,() 2 £, (Fk)

Hence

(272) @ +5) = l'jlli_l_iup £ri(a) 2 llf?_lgf £ni(@) = E*(Tr)
Since

(2.73) E Tk + Br) 2 &) = £()

and since

(2.74) }jﬂ[f*('?k + Br) — £#F)] =0

it follows from (2.72) that

(2.75) }lﬁ Enj(a) = &(a)

Hence Theorem 2.15 is proved.

2.2.3 Separability of the Space of Mixed Strategies when the
Space of Pure Strategies Is Separable

The purpose of this section is to prove the following theorem.

Theorem 2.16. If the space of pure strategies of player 1 is separable,
the space of mized strategies of player t is also separable in the sense of
inlrinsic convergence.

Proof: Let us assume that the space A of pure strategies of player 1
is separable. Let ap be a denumerable and dense subset of A. It
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follows from Theorem 2.6 that the set of all probability measures
for which #(ep) = 1 is dense in the set of all £. The set of all prob-
ability measures £ for which £(ap) = 1 is obviously separable in the
sense of the ordinary convergence definition. Thus, because of
Theorem 2.14, the set of all £ for which £(ap) = 1 is separable also in
the sense of the intrinsic convergence definition. Hence the space of
all £ must be separable in the sense of the intrinsic convergence defini-
tion, and Theorem 2.16 is proved.

2.3 Properties of Minimax Strategies !

In this section we shall state and prove some theorems concerning
minimax strategies.

Theorem 2.17. If & is a mintmax strategy of player 1 and if the
game 1is strictly determined, & s a maximal strategy in the wide sense.
Simalarly, if no is a minimax strategy of player 2 and the game is strictly
determined, 1o 1s a minimal strategy in the wide sense.

Proof: Suppose that the game is strictly determined and &, is a
minimax strategy of player 1. Let {#;} (:=1, 2, ---, ad inf.) be a
sequence of strategies of player 2 such that
(2.76) lim Supg K (£, 7:;) = Inf, Sup; K(£ 7)

3=®

Since £ is a2 minimax strategy, we have

(2.77) Inf, K(%, 7n) = Sup; Inf, K(¢, 7)
Hence
(2.78) Supg K (£, 7:) = K(&, 7:) = Supg Inf, K(§, )

Since the game is strictly determined, it follows from (2.76) and (2.78)
that

(2.79) lim [Supg K(£, 7:) — K(%o, 7:)] = 0

t=o

Hence £, is a maximal strategy in the wide sense. The second half of
our theorem is proved by interchanging the roles of the two players.

Theorem 2.18. If the game is strictly determined, and if & and 7o
are minimaz strategies of players 1 and 2, respectively, then &, s a mazimal
strategy relative to 19, 1o 1S a minimal strategy relative to &, and

(2.80) K(%, no) = Min, Max¢ K (£ #) = Max; Min, K(¢, 1)

11 Most of the results of this section have been stated and proved by von Neumann
for finite spaces of strategies. See Sections 17.8 and 17.9 of [55].
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Proof: Since & and 7o are minimax strategies, the following inequali-
ties must hold:

(2.81) Max; Min, K(§, 1) = Min, K(§, 1) = K(ko, 70)

= Max; K(, no) = Min, Max; K(¢, 1)
Since the game is strictly determined, it follows from (2.81) that
(2.82) Min, K (%, ) = K(&, no) = Max¢ K (£, 10)

and our theorem is proved.

Theorem 2.19. If the game is strictly determined and if &, is a minimax
strategy of player 1 and 7o ts a minimax strategy of player 2, then

(2.83) §0(A — ag) = no(B — Bo) =0

where ag 18 the set of all elements ay of A for which K(ao, 10) = Maz,
K(a, 7o), and Bo is the set of all elements by of B for which K (%o, bo)
= Min, K (%, b).

Proof: Clearly, for any probability measure ¢ for which (4 — «g)
> 0, we must have K(§ n0) < Max, K(a, 70) = K(%, 70). Hence
£(A — ap) = 0. Similarly we can see that (B — Bo) = 0.

We shall say that the space B is weakly compact 2 if for any sequence
{n;} £ =1,2, ---, ad inf.) of probability measures in B there exist a
subsequence {7;} (j = 1,2, - -, ad inf.) and a probability measure 7o
such that

(2.84) hgmf K(& 7;) = K(& n0)

for all £. This is a weaker property than compactness. Even the
existence of a subsequence {7} and that of a probability measure 5o
such that lim K (& ;) = K(&, mo) for all £ is weaker than compactness,

J=o
since compactness requires that the above convergence be uniform in £.
The case when the space B is weakly compact in the sense of the above
definition will play an important role in the theory of statistical decision
functions. It will be seen in Chapter 3 that the space of strategies of
the statistician is weakly compact under very general conditions.

Theorem 2.20. If the space B is weakly compact, a minimaz strategy
Jor player 2 exists.

12 The term ‘‘weak compactness” used here has no relation to the same term
used in the literature with reference to a set of functions. See, for example,
Widder [72]. e :
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Proof: Let {5;} be a sequence of probability measures in B such that
(2.85) lim Sup; K (£, 7;) = Inf, Sup; K(£, 7)

A sequence {#;} with the above property evidently exists. Since B is
weakly compact, there exist a subsequence {7;} (j = 1,2, - - -, ad inf.)
of the sequence {7;} and a probability measure 7o such that

(2.86) liminf K (%, 7;) = K (&, 10)

j=o
for all £ From (2.85) and (2.86) it follows that
Supg K (£ no) = Inf, Sup; K(¢, 7)

Thus 7o is a minimax strategy and Theorem 2.20 is proved.

2.4 Admissible Strategies and Complete Classes of Strategies

24.1 Minimal Complete Class of Strategies

In Section 1.6.2 the notions of admissible strategies and complete
classes of strategies were defined. A complete class C of strategies
will be said to be a minimal complete class if no proper subclass of C is
a complete class.

Theorem 2.21. For each player there exists at most ome minimal
complete class of strategies. If a minimal complete class of strategies
exists, it must be identical with the class Cy of all admissible strategies.

The proof is omitted, since it is essentially the same as that given in
Section 1.3 in connection with decision functions.

One can easily give examples of games where the class of all admis-
sible strategies is not complete. As a matter of fact, one can easily
construct games for which the class of all admissible strategies is empty.
For example, let A consist of a single element a and B of a sequence
{b;} @=1,2, ---, ad inf.) of elements. Let K(a, b;) = 1/7. Clearly
in this case there is no admissible strategy for player 2.

Theorem 2.22. If A is separable and B ts weakly compact, the class
of all admassible strategies of player 2 is a complete class.®

13 This theorem is related to a theorem of Zorn on partially ordered sets (see
Zorn [76] and Lefschetz [29], page 5) but cannot be derived from it, since Zorn
assumes that each simply ordered subset has an upper bound in the system, whereas
in our case merely each denumerable and simply ordered subset can be shown to
have an upper bound. Our theorem, however, could be derived (without the use
of transfinite induction) from some more general results by Milgram [32] which
contain Zorn’s theorem as a special case.
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Proof: Suppose that A is separable, B is weakly compact, and the
class of all admissible strategies of player 2 is not complete. Then
there exists a non-admissible strategy »; such that any strategy 5 that
is uniformly better than #; is also non-admissible. Since #; is not
admissible there exists at least one strategy », that is uniformly better
than #;. Since 7, itself is non-admissible, there must be a strategy 3
that is uniformly better than #, and so on. In this way we obtain a
sequence {7;} (? =1, 2, .-+, ad inf.) of strategies such that »; is uni-
formly better than »; for j > 7. Because of the weak compactness of B
there exists a strategy 7,4 that is uniformly better than any element
of the sequence {7;}. But then there exists a strategy 7,,2 that is
uniformly better than 7,3, and so on. Continuing this procedure,
we obtain a non-denumerable well-ordered set S of strategies 5 such
that any element of this well-ordered set is uniformly better than all
the preceding ones.

Since A is separable, there exists a sequence {a;} of elements of A
that is dense in A. Thus, if 4’ and "’ are two strategies such that »’"
is uniformly better than %/, there exists an integer 7 such that
K(a;, v'") < K(a;, 7). For any positive integer 7 let S; be the well-
ordered subset of S given as follows: An element 5 of S belongs to S;
if and only if there exists an element 7’ in S that is an immediate
predecessor of 7 and K(a;, 7) < K(a;, v'). Clearly ZS; = 8’, where S’
is the set of all those elements of S which have immediate predecessors
in S. Since S’ is non-denumerable, there exists a positive integer ¢
such that S; is non-denumerable. Clearly, for any two elements »’
and 7"’ of S; such that n’ precedes 7", we have K(a;, ') > K(a;, 7"’).
But this is impossible, and Theorem 2.22 is proved.

24.2 Theorems on Complete Classes of Strategies
In this section we shall derive several theorems concerning complete

classes of strategies. First we shall prove the following two theo-
rems.

Theorem 2.23. If A is separable and B is weakly compact, the game
18 strictly determined.

Proof: Since 4 is separable, there exists a sequence {e;} of subsets
of A such that o; C @;41, a; is conditionally compact, and

a; = «a
i=1

is dense in A. The game relative to (a;, B) is strictly determined.
Let #; be a minimax strategy for the game relative to (e, B). Because
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of the weak compactness of B such a minimax strategy exists. Thus
(287) Supfa‘. K(Ea.‘: "71') = Infﬂ SuPea‘. K(Ea.': 77)

Since B is weakly compact, there exist a subsequence {5} (j = 1, 2,
.-+, ad inf.) of the sequence {7;} and a strategy 7o such that

(2.88) liminf K (%, ;) 2 K(£ no)
J= ©

for all £, From (2.87) and (2.88) it follows that for any positive
integer r

(2'89) Sup&zr K (Ea,-’ 770) § hmlnf Supsa, K(Ear’ 77!',-)

< hm Supfa K(Ea, k) ’71,)

j=w

= lim Inf, Sup,, K (e, 7)

J=Q

= llm Inf,, Supga'. K (Ea;': "7)
Hence, since lim Sup;, K(£,,, 70) = Supg, K(¢a, m0),
(2.90) Inf, Sup;, K(£, 1) = 1im Inf, Supsc‘ K (s )

Obviously the left-hand member of (2.90) cannot be smaller than the
right-hand member of (2.90), and therefore the equality sign must
hold. Theorem 2.23 is an immediate consequence of this and Theorems
2.6 and 2.7.

Theorem 2.24. If A is separable, B is weakly compact, and the choice
of player 2 1is restricted to a class C of probability measures n which
contains all discrete probability measures n and which does not destroy
the property of weak compactness, then the game is strictly determined
and its value s the same as if no restriction were tmposed on the chotce of 1.

Proof: Let C be a class of probability measures 7 satisfying the con-
ditions of our theorem. One can easily verify that equations (2.87)
to (2.90) remain valid when 7% is restricted to elements of C. Hence
the game remains strictly determined under the restriction that
must be an element of C. Let the sequence {«;} be defined as in the
proof of Theorem 2.23. It follows from Theorem 2.3 that the value
of Inf, Sup,,, K (¢4, ) remains unchanged when the choice of 7 is re-
stricted to elements of C. This and (2.90) imply that the value of the

game is not changed by restricting the choice of 7 to elements of C
Herice our theorem is proved. -
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Theorem 2.25. If A 1is separable and B is weakly compact, then for
player 2 the class of minimal strategies in the wide sense is a complete class.

Proof: Let A be separable, B weakly compact, and 7o a strategy of
player 2 that is not a minimal strategy in the wide sense. We introduce
a new outcome function K*(a, b) given by

(2.91) K*(a, b) = K(a, b) — K(a, 70)

Clearly the space A remains separable, and the space B remains weakly
compact, when K(a, b) is replaced by K*(a, b). Thus the game corre-
sponding to the outcome function K*(a, b) is strictly determined.
Let 7 be a minimax strategy for the game corresponding to K*(a, b).
Because of the weak compactness of B such a minimax strategy exists.
Since

(2.92) K*(%,m0) =0

for all £, we must have

(2.93) K*&m) =0

for all £. But

(2.94) K*(& ) = K(& 1) — K(& m0)
Hence

(2.95) K (& m) = K(& no)

for all £, According to Theorem 2.17, 7; is a minimal strategy in the
wide sense when K(a, b) is replaced by K*(a, b). But any strategy
that is minimal in the wide sense relative to the outcome function
K*(a, b) is also a minimal strategy in the wide sense relative to the
original outcome function K(a, b). Since 7o is not a minimal strategy
in the wide sense, the inequality sign must hold in (2.95) at least for
some £. Thus 7, is uniformly better than 7o, and our theorem is proved.

Theorem 2.26. If A 1is compact and B is weakly compact, then for
player 2 the class of minimal strategies in the strict sense is a complete class.

Proof: Let A be compact, B be weakly compact, and 7o be a strategy
that is not a minimal strategy in the strict sense. Consider the outcome
function K*(a, b) = K(a, b) — K(a, 79). Clearly the space A remains
compact and the space B remains weakly compact when K(a, b) is
replaced by K*(a, b). Let 7 be a minimax strategy when K*(a, b)
is the outcome function. Then, since K*(§, 7o) = O identically in £,
we have

(2'96) K*(Ea 771) = K(E; 771) - K(E: 770) =0
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identically in £. Let £, be a minimax strategy of player 1 when K*(a, b)
is the outcome function. Such a minimax strategy exists, since 4 is
compact. Then, according to Theorem 2.18, #; is a minimal strategy
relative to & when K*(a, b) is the outcome function. Clearly 7,
remains a minimal strategy relative to £ when K(a, b) is the outcome
function. Since 7o is not a minimal strategy in the strict sense,
K (%, m) #= K(&, 7o) at least for some £. Theorem 2.26 follows from this
and (2.96).



Chapter 3. DEVELOPMENT OF A GENERAL THEORY OF
STATISTICAL DECISION FUNCTIONS

3.1 Formulation of Some Assumptions Regarding the Decision
Problem

3.1.1 Assumptions Concerning the Space Q of Admissible
Distribution Functions F

In developing a general theory of decision functions it seems neces-
sary to make some assumptions concerning the space Q, the weight
function W (F, d*), the space D’ of terminal decisions, the cost function
of experimentation, and the decision functions é at the disposal of the
experimenter. The assumptions we shall make are rather weak, and
they do not restrict in any serious way the applicability of the theory
to problems arising in applications.

In this section we shall formulate some assumptions concerning the
space Q. First we shall introduce some definitions. We shall say that
the stochastic process {X;} (¢ = 1, 2, - - -, ad inf.) underlying the deci-
sion problem is discrete if for any positive integral value r there exists a
denumerable subset M,* of the r-dimensional sample space M, such
that for all elements F of Q the probability is 1 that the sample point
(z1, -+, z,) will be an element of M,*. Here z; denotes the observed
value of X; (1 = 1,2, ---, r). We shall say that the stochastic process
{X;} is absolutely continuous if for any element F of @ and for any
positive integral value r the joint distribution of X3, ---, X, admits a
probability density function.

Assumption 3.1. The stochastic process {X;} i = 1,2, ---, ad inf.)
underlying the decision problem is either discrete or absolutely continuous.

This assumption is not very restrictive from the point of view of
applications, since in most statistical problems arising in practice the
stochastic process {X;} will be either discrete or absolutely continuous.

Clearly, if the stochastic process {X;} is discrete, for each positive
integral value 7 there exists a denumerable subset S; of the real axis
such that the probability that the observed value of X; will fall in S;
is identically equal to 1 for all F. Let the elements of S; be a;1, a2,
---, etc. From the point of view of the theory of statistical decision
functions it is immaterial how the various possible values of X; are
labeled. In particular we may put a;; =j (=1, 2, ---, ad inf.)

59
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without any loss of generality. Thus, in what follows in this chapter
we shall assume that in the discrete case the chance variable X;
(?=1,2, ---, ad inf.) can take only positive integral values.

To formulate the next assumption concerning Q@ we shall introduce a
convergence definition in Q. For every subset M .* of the r-dimensional
sample space M,, let P(M,* l F) denote the probability, when F is
true, that the sample consisting of the observations z;, ---, z, on
X, X3, -+, X,, respectively, will be contained in M,*. We shall say
that F; converges in the regular sense to Fg as ¢ — o if for any positive
integer r we have

3.1) lim P(M,*| F;) = P(M,*| Fo)

uniformly in M*.

The above-defined convergence is called regular in order to dis-
tinguish it from other convergence definitions that will be considered
later.

Assumption 3.2. Q is separable in the sense of the regular convergence
definition given in (3.1).

We shall now show that Assumption 3.2 is a consequence of Assump-
tion 3.1. The reason for formulating both assumptions here is that
some results given later in this chapter remain valid when merely
Assumption 3.2 is postulated (see, for example, Theorem 3.3).

To prove Assumption 3.2, we shall introduce the following distance
definition for each positive integer r: The distance between two
elements F; and F of Q is given by

t(F1, F3) = Supa,s | P(M*| F1) — P(M* | F») |

where M,* may be any subset of the r-dimensional space M, with the
coordinates z;, - -+, z». We shall now show that the separability of @
in the sense of the convergence definition (3.1) is proved if we can show
that Q is separable in the sense of the metric ¢, for each r. For this
purpose, suppose that Q is separable in the sense of the metric ¢, for
each r. Then for each r there exists a sequence {F,;} (=1, 2, ---,
ad inf.) of elements of Q such that {F,;} lies dense in Q in the sense of
the metric ¢,. Let F be any element of 2 and let {¢,} *=1,2, ---, ad
inf.) be a sequence of positive numbers such that lim ¢, = 0. Clearly

r=wx
for each r there exists a positive integer 7, such that ¢.(F, F.;) < €.
Since the distance ¢.(F’, F’) is non-decreasing with increasing r, we
see that lim F,; = F in the sense of the convergence definition (3.1).

r=n
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Hence the double sequence {F,;} (r,7 = 1,2, - --, ad inf.) lies dense in @
in the sense of the convergence definition (3.1), and the separability
of @ is proved.

We shall now prove the separability of @ when the underlying sto-
chastic process is discrete. As shown above, it is sufficient to prove the
separability of @ in the sense of the metric ¢, for each r. Let Q, be the
class of all joint distributions of X;, ---, X, when X; can take only
positive integral values. Clearly the separability of Q in the sense of
the metric ¢, is proved, if we show that @, is separable in the sense of
the metric £,. Let Q.* be the set of all elements F of @, which satisfy
the following two conditions: (1) for any set of positive integers
¢1, -+, ¢ the probability of the joint event that X; = ¢;, X3 = ¢o,
«++, X, = ¢, is a rational number; (2) there exist r integers uy, - - -, ur,
which may depend on F, such that the probability that X; > u; is
equal to zero (¢ = 1, - - -, 7). Clearly Q,* contains only countably many
elements and, as can easily be verified, Q,* is a dense subset of Q, in
the sense of the metric ¢.. This completes the proof of Assumption 3.2
when the stochastic process is discrete.

To prove Assumption 3.2 when the underlying stochastic process is
absolutely continuous, let Q. be the totality of all absolutely continuous
distributions of X, - - -, X,. Itis sufficient to show that Q, is separable
in the sense of the metric £,.

The separability of @, in the sense of the metric ¢, can be seen as
follows.

Let

tr*(Fl:FZ) =Llp(zlr "';erFI) _p(xly ""erF2)Idxl "‘dxr

where p(z;, - - -, z, | F) denotes the density function in M, correspond-
ing to the cumulative distribution function F. It is known that Q,
is separable in the sense of the metric £,*.! Since {* = ¢, the sepa-
rability of @, in the sense of the metric ¢* implies the separability of
Q. in the sense of the metric ¢,. This completes the proof of the state-
ment that Assumption 3.2 is a consequence of Assumption 3.1.

3.1.2 Assumptions Concerning the Weight Function W(F, d*)
and the Space D’ of Terminal Decisions

As explained in Section 1.1.5, for any element F of Q@ and for any
element d° of D* the value of W(F, d’) expresses the loss caused by
making the terminal decision d® when F is the true distribution.

1 See, for example, Banach [5], pages 12 and 228.
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Assumption 3.3. The weight W(F, d°) is a bounded function of F
and d’.

We shall introduce an intrinsic metric in the space D* with the help
of the weight function W(F, d*). The (intrinsic) distance between
two elements d,* and dy’ of D! is defined by the expression

3.2) R(dy", d5*) = Supr | W(F, di*) — W(F, dz") |

Assumption 3.4. The space D' is compact in the sense of the meiric
given in (3.2).

In what follows, by a measurable subset D* of D* we shall mean an
element of the smallest Borel field of subsets of D’ that contains all
open subsets of D. By a measurable subset of D = D’ + D° we shall
always mean a subset whose intersection with D? is measurable. When-
ever we speak of a subset of D, we shall always mean a measurable
subset, even if this is not stated explicitly.

Any finite space D' is evidently compact. Thus Assumptlon 34 is
fulfilled whenever the space D' is finite. For example, Assumption 3.4
is fulfilled for any problem of testing a hypothesis H, since in this case
the space D! contains only two elements d;® and d,’, where d,* denotes
the decision to accept H, and d,’ the decision to reject H. There are,
however, decision problems treated in the literature which in their
conventional form do not fulfill Assumption 3.4. Suppose, for example,
that the stochastic process under consideration consists of a single
chance variable X; and that Q is the class of all normal distributions
with unit variance. Suppose also that the problem is to set up a
point estimate for the unknown mean 6 of the distribution on the basis
of a single observation on X;. Let dg’ denote the terminal decision to
estimate the unknown mean by the value 6*. Then D’ consists of the
elements dg+’ corresponding to all possible real values 6*. Let the
weight function W (6, ds+’) be equal to (9 — 6*)2. Clearly the space D*
is not compaet. It can be made compact, however, by restricting the
domain of 8 and 6* to a finite closed interval.

This is not a very serious restriction from the point of view of appli-
cations, since in most practical problems we will be able to state a
finite closed interval about which we know a priori that it contains
the true parameter value §. The situation will be similar in most of
the point estimation and interval estimation problems treated in the
literature. If the original conventional form of the problem does not
satisfy Assumption 3.4, it will generally be possible to have it fulfilled
by restricting the domain of the unknown parameters to a bounded
and closed subset of the parameter space.
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It would be possible to develop the theory on the basis of a weakened
form of Assumption 3.4 which would be fulfilled for estimation problems
in their conventional form.2 However, for the sake of simplicity we
shall not attempt to do this. Any weakening of Assumption 3.4 would
make the proofs of the main theorems considerably more involved.

3.1.3 Assumptions Concerning the Cost Function of
Experimentation
As defined in Section 1.1.5, the symbol

(3~3) c(x; 81, ** sk)

denotes the cost of experimentation when z was the observed sample,
the experiment was carried out in k stages, and the ¢th stage of the
experiment consisted of the observations on the chance variables X;
for all j that are elements of s;. The function ¢(z; s, - - -, Sg) is defined
for any sequence z = {z;} (=1, 2, ---, ad inf.) for any positive
integer k, and for any disjoint and non-empty subsets s;, - -+, s of
the sequence of all positive integers. Of course, the cost ¢(z; sy, - - -, k)
does not depend on the coordinates z; of = for which 7 is not contained
in any of the sets sy, -+, sg. If 81, - - -, sk are disjoint subsets of the
sequence of positive integers and if s denotes the sequence {sy, - - -, sx},
then, as stated in Section 1.2.1, the symbol c¢(z; s) is used as an alter-
native notation for c(z; sy, - - -, sr); ie.,

(3.4) c(z; 81, + -+, 8x) = c(z; 8)

In what follows, the symbol s will stand for a finite sequence of disjoint
and non-empty subsets of the set of all positive integers.

Assumption 3.5. The cost function c(x; s) satisfies the following three
conditions:

@) c(z; s) = 0 for all z and s, and c(z; s1, -, Sk, Sky1) = c(z; 81,
e 8p).

(ii) For any given s the cost c(z; ) is either a bounded function of =
or c(z; 8) = o identically in z.

(iii) There exists a sequence {c,,} (m =1, 2, ---, ad inf.) of positive
values such that lim ¢, = © and c(z; s) = ¢ for all z, and for all

m=w

s = {s1, - - -, s} for which the set-theoretical sum of sy, - - -, sy contains
at least m elements.

2 This was done in a previous publication [70], but the theory developed there is
restricted to the special case where the sth stage of the experiment consists of a
single observation on X..
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The reason for admitting the possibility that for some values of s
the cost c(z; s) may be equal to « identically in z is that in some
situations certain values of s may be practically impossible. For
example, if the time needed for carrying out a single stage of the experi-
ment is extremely large, no value s = {s;, ---, sz} with & > 1 will be
feasible, and this is expressed by putting c(z;s) = «forany k > 1. It
may also happen that an observation on X; can be made only after
the value of X; has been observed. This can be expressed by putting
c(z; &1, + -+, Sx) = o whenever j is an element of the set-theoretical
sum 8 of sy, - - -, s and ¢ is not an element of S.

Since the objective of the experimenter is to minimize the risk, assign-
ing the value « to c(z; s) for some values of s, say s°, is equivalent to
restricting the choice of the experimenter to decision functions for
which the probability is zero that experimentation will be carried out
in accordance with s°.

The general theory can be reduced to various special cases of interest
by imposing some restrictions on the cost function in addition to those
listed in Assumption 3.5. For example, if we put c(z; s;, + -+, 8§) = ©
for &k > 1, the general theory reduces to the classical case of experi-
mentation in a single stage. If, in addition, we put ¢(z; s;) = 0 when
81 is a subset of the first N integers, and = « otherwise, the general
theory reduces to the special case where the choice of the experimenter
is restricted to decision functions according to which experimentation
is carried out in a single stage by observing the values of the first N
chance variables X;, ---, Xy.

If the cost of experimentation ¢(z; s, ---, sx) depends only on z
and the set-theoretical sum of s,, - - -, s, then, for any decision function
5(z; s) (see Section 1.1.4 for the definition of a decision function), there
exists another decision function §*(z; s) such that according to é*(z; s)
each stage of the experiment consists of a single observation and

r(F, 8*) = r(F, 9)

for all F, where r(F, &) denotes the risk when F is the true distribution
of X = {X;} and & is the decision function adopted (see Section 1.2.1
for the definition of the risk). Thus, if the cost of experimentation.
satisfies the above condition, the general theory reduces to the special
case where the choice of the experimenter is restricted to decision
functions for which each stage of the experiment consists of a single
observation. This is the case considered in the recently developed
sequential tests of statistical hypotheses (see, for example, [65]).
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3.14 Assumptions Concerning the Space of Decision Functions
at the Disposal of the Experimenter

Before formulating the restrictions to be imposed on the decision
functions that can be chosen by the experimenter, we shall introduce a
convergence definition in the space of all decision functions. We shall
have to treat the discrete case and the absolutely continuous case
separately.

If the stochastic process X = {X,} is discrete, we shall say that the
sequence {§;} (# =1, 2, ---, ad inf.) of decision functions converges
to the decision function 8y as ¢ — o, if 3

(3.5) lim 8,(D* | 0) = 8(D* | 0)

lim §;(D* I z; 8) = §o(D* I z; 8)

t=w

for any z, s, and for any open subset D* of D whose boundary has
probability zero according to do(z; s). The topology of the space D
is defined as follows: As stated in Section 1.1.4, the space D is the set
theoretical sum of D’ and D°. By the topology of D‘ we mean the
topology implied by the intrinsic metric introduced in D*; see equation
(3.2). The elements d° of D° are to be regarded as discrete points of D.
Thus any element d° is an open subset of D whose boundary is empty.

We could also define convergence in the absolutely continuous case
by equation (3.5). This definition of convergence appears, however,
to be too strong in the absolutely continuous case, and we shall replace
it by a somewhat weaker one. In Section 1.2.1 we introduced the
symbol p(d,°, ---, di°, D* [ z, 8) [see equation (1.3)] to denote the
probability that the experiment is carried out in k stages in accordance
with d,°, ---, d°, respectively, and that the terminal decision d* is
an element of the subset D* of D when z is the sample point observed
and & is the decision rule adopted. For k = 0, the above symbol
denotes the probability that no experimentation is made and the
terminal decision is an element of D".

Let p(ds®, - - -, di° | z, 8) denote the conditional probability that the
experiment is carried out in at least k stages and that the ith stage is
carried out in accordance with d;° for ¢ = 1, 2, - - -, k when the sample
is known to be equal to z.

For any subset S = {7;, ---, 7,} of the set of all positive integers,
let Rs denote a subset of the r-dimensional sample space with the

3 For the definition of the symbols in (3.5), see Sections 1.1.4 and 1.2.1.
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coordinates z;, - - -, z;,. We put
(36) P(dle) Tt dkey Bt I RS: 6)

=j; p(d,®, ---, di’ Dt I z, 8) dz;, - - - dz;,
S
and

(3'7) P(dle7 ] dke | RS; 6) =j; p(dler Y dke va, 8) dxi'l e dx,-,
S

where S = {173, -- -, i,} denotes the set-theoretical sum of d,°, - - -, di°
in (3.6), and the set-theoretical sum of d,°, ---, d%—; in (3.7). For
k = 0, the left-hand member of (3.6) is defined to be equal to §(D* | 0).
For k = 1, the left-hand member of (3.7) reduces to 8(d;° | 0).

If the stochastic process is absolutely continuous, we shall say that
(3.8) lim &; = &
if there exists a sequence {D%,...;,} (kj=1, ---, r5;5=1, ---, m;
m = 1,2, ---, ad inf.) of subsets of D’ such that

(3.9) lim P(dy*, -+, di%, D%, ...4, | Rs, 8))

= P(d,°, ---, di%, D‘k; oo bom l Rg, &)
and

(3.10) lim P(ds%, ---, di* | Rs, 8) = P(dy", - - -, i"| Rs, &)
=00

for any k, d*, ---, di’, D%, ..1,, and any bounded set Rs, and the
sequence {D%, ...} satisfies the following three conditions:

r1 — rm — —
(3.11) >.D,'=D%, 3, D% ..., =D% ...k,
k=1 k=1
(3.12) Dth coikmoaly *° %y B‘kl ooe km_irm BT€ diSjOiIlt

and
(3.13) Diameter of D%, ...,, converges to zero as
m — oo uniformly in kq, -+ -, kp

We shall refer to a sequence {D%,...,} of subsets that satisfies
(3.11) to (3.13) as a covering net of D*.

The above-defined convergence in the space of decision functions
will be called “regular convergence” (in the discrete as well as the
continuous case) to distinguish it from intrinsic convergence, which
will be considered later.
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Before formulating the restrictions to be imposed on the class of
decision functions at the disposal of the experimenter, we want to
introduce the notion of convexity. We shall say that a set D of decision
functions is convex if, for any two elements §; and &, of D and for any
positive @ < 1, there exists an element § of  such that the following
equations hold for any k, d,°, - - -, dx® and any subset D* of D*:

(3.14a) p(dy®, « -+, di®| z; )
= ap(d,*, -, di’ I z; &) + (1 — a)p(ds®, ---, di’ I z; 82)
(3.14b) p(dy%, - -+, di*, Dt| z; 5)
= ap(@d, -+, a4 D' | 258) + (1 — a)p(ds’, -+ +, &%, D*| ; 52)
The above equations imply that § must satisfy
(3.14c) 8(d%41 | z;dr%, - -+, di?)
ap(@®, -+, duia | 25 8) + (1 — )p(d:, - -+, d%q4a | 23 82)
ap(d®, -+, &t | z; 81) + (1 — )p(dy5, - -+, di® | z; 82)

and

(3.14d) &(Dt| z; dy°, -+, di)
_ap(ds’, -, 4 Dt 25 8) + (1 — )p(dys, -+, &, D[ 2; 8)
C ap(d e, df | 75 8) + (L — @)p(dsd, e, e | 75 8)

2
provided that > p(d,% ---, di°| 2; &) 5% 0. Thus, for any subset D*
i=1

of D = D' 4+ D* equations (3.14a) and (3.14b) determine uniquely
the value of 8(D* | z;d,* - - -, di°), provided that p(d,®, - - -, di*| z; )
# 0. If p(ds% ---, di° [ z; 8) = 0, it is irrelevant what value is as-
signed to 8(D* | z; d,° ---, di°), since it does not influence the risk
r(%, 8). Clearly (3.14¢) and (3.14d) are not only necessary but also
sufficient for the validity (3.14a) and (3.14b).

Obviously the use of a mixed strategy 5 (probability measure on
the space of all admissible decision functions §) which assigns the
probability « to 8; and 1 — « to & is equivalent to the use of a pure
strategy & that satisfies (3.14a) and (3.14b). More generally, one can
easily verify that any mixed strategy is equivalent to some pure
strategy o.

If the space D of decision functions & at the disposal of the experi-
menter is convex and closed (in the sense of regular convergence
defined before), any discrete mixed strategy n (probability measure 3
that assigns the probability 1 to some denumerable subset of D) is
equivalent to a pure strategy 6 that is an element of D.
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We are now in a position to formulate the assumption we want.to
make concerning the class D of decision functions at the disposal of
the experimenter.

Assumption 3.6. The Class D of decision functions & to which the
choice of the experimenter is restricted satisfies the following conditions:

(i) D is convex.

(ii) D ©s a closed subset of the space of all decision functions in the
sense of the regular convergence definition given above.

(i) Forany s = {sy, - -+, s} there exists a positive integer cy depending
only on k, such that for any element & of D we have 8(d° | z; s) = 0 for
any d° that is not a subset of the finite set {1,2, - -+, cx}.

Gv) If c(z; &y -+ -, di®) = o identically in z,

p(dler Y dkelx; 6) = 0

Jor any z and for any element & of D.

(v) A decision function & is an element of D if there exists an element
8o of D and an element dy*® of D* such that for each x and s we have either
8(z; 8) = do(z; 8) or 8(do*| z; 5) = 1.

Condition (v) is postulated to insure the possibility of truncation
of any element & of ». This process of truncation will be used later
in the proofs of some lemmas and theorems (see, for example, Lemma
3.2).

The class D; of all decision functions which satisfy conditions (iii)
and (iv) of Assumption 3.6 for a given sequence {cx} of integers also
satisfies conditions (i), (ii), and (v), as one can easily verify.

The special classes of decision functions mentioned in Section 3.1.3
satisfy Assumption 3.6. In particular, the class of all decision functions
according to which experimentation is carried out in one stage by
observing the first N chance variables X, - - -, Xy will satisfy Assump-
tion 3.6. This assumption is also fulfilled for the class of all decision
functions for which the ith sta,ge of the experiment consists of a single
observation on X; (1 = 1, 2, -- -, ad inf.).

We shall now pomt out the reasons for not 1mposmg the restriction
that 6(z; &1, - -+, sx) = 8(z; &1, ---, §») whenever the set-theoretical
sum of s, ---, sk is equal to that of 'y, - -+, s’s. Such a restriction
would cause difficulties in the absolutely continuous case due to the
assumption that D must be a closed subset of the set of all decision
functions. We shall define below a sequence {6;} (: =0, 1,2, ---, ad
inf.) of decision functions such that §; satisfies the above restriction
for 2 = 1 but §p does not, and lim §; = 3, (in the sense of regular

im0
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convergence). Let D* consist of the two elements d,* and ds?, and let
d® denote the decision to make an observation on X;. The domain
of X;is restricted to the interval [0, 1]. For ¢ = 1, the decision function
d; is determined by the following equations:

3i(d¢1 I 0) = % 5,'(d62 I 0) = %
+1

k k
8:(d?|z;dY) =1 if-=<2 < for some even k
i

= 0 otherwise
8:(d® | z;d") =0  5(D'| z;d) = 1 — 5,(d*?| z;d*)

k k
Bi(d"’l-l z;d%) =1 if-=<1z, <
7

for some even k

.

(2
= 0 otherwise
5d% | z;d%) =0 8(D'| z;d%) = 1 — 5,(d* | z; d%)

k E+1
8:(d® | z;d, d?) =1 if-=z;, < + for even k and — =< z
i

i i
k+1

< for some odd k&

= 0 otherwise
85:(Dt | z; d?, d°%) = 1 — 8,(d*® | z; d°, d*?)
5:(d® | z; d°2, d*) = 8,(d*® | z; d*!, d°?)
5i(Dt l del’ dez) = 6,—(D‘ I de2’ del)
8:(Dt| z; d%, d°%, d®) = 8,(D*| z; d*?, d°, d*%) = 1
and, for any s,
8:(d;t| z;s) = 38Dt | z;8) (G =1,2)

For any s = {s, - - -, sz} for which §(z; s) is not yet determined by
the above equations and by the condition that é(z; sy, - - -, sp) = 8(z;
sy, ++-, &) if the set-theoretical sum of sy, - - -, s is equal to that of
81, + -+, §'r, we put

8dit|z;8)=33G=1,2)
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It can easily be seen that §; converges to 8y as ¢ — o, where §; is the
decision function determined by the equations

30(d1 | 0) = 80(d*2| 0) = } 50(d? | z;d") =
sodt| ;4" =3 (G =1,2) 5@ | z;d%) = %
S0@t|z;d?) =3(G=1,2) So(d*® | z; 41, d*%) = }

So(dit| 2;d",d?) =3 (1=1,2)  &@?|z;d?d") =0
Bo(djtl z; dez’ del) = _%. (.7 = 1’ 2) 50(d_-," I z; del, dez, dea) — _%
(G=12)

The extension of the definition of §y(z; s) for s for which the above
equations do not yet determine the value of §o(z; s) can be done in
the same way as was done for 8;(z; s) (: = 1). Whereas §; (forz = 1)
satisfies the restriction that 8;(z; sy, - - -, sx) = 8:(x; §'1, - -+, ;) if the
set-theoretical sum of sy, ---, s is equal to that of s'y, ---, &', the
decision function 8y does not satisfy this restriction.

3.1.6 Measurability Assumptions

In this section we shall formulate some measurability conditions
which will insure the existence of the various integrals that appear in
the formulas defining the risk function (see Section 1.2.1).

Let M be the infinite dimensional sample space; i.e., M is the totality
of all sequences z = {z;}. Let B be the smallest Borel field which
contains all sets of points z which are satisfied by the relations

z;<a; (1 =1,2, ---, ad inf.)

where the a; are real numbers or 4. Furthermore let H be the small-
est Borel field of subsets of @ which contains any subset of @ that is
open in the sense of the convergence definition (3.1). Finally, let T
be the smallest Borel field of subsets of D = D' + D° which are open
in the sense of the topology of the space D defined in Section 3.1.4.

By the symbolic product H X T we shall mean the smallest Borel
field of subsets of the Cartesian product @ X D which contains the
Cartesian product of any member of H by any member of T. The
symbolic product H X B is similarly defined.

Only subsets of €, D, and M will be considered which are measurable
(H), (T), and (B), respectively, even if this is not stated explicitly.
The following measurability assumptions are made:

Assumption (u;). W(F, d*).is a function measurable (H X T).
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Assumption (u3). For any positive integer m, f(%1, +++, Zm | F), as
a function of z and F, is measurable (H X B), where fu(21, *++, Zm | F)
denotes the joint elementary probability law of X, --+, X,,, when F 1s
the true distribution of X.4

Assumption (u3z). For any element D* of the Borel field T and for
any s = {sy, - - -, sk}, the function 5(D* | z; s) is measurable (B).

Assumption (uy). For any s = {s1, - - -, s}, the cost function c(z; s)
s measurable (B).

The validity of the above measurability assumptions will be postu-
lated throughout this and subsequent chapters, even if this is not stated
explicitly.

We shall now show that the above conditions guarantee that for
any & the risk 7(F, 8) (defined in Section 1.2.1) is a function of F
measurable (H). We shall first consider the absolutely continuous
case. It follows from Assumption (u3) that p(d;®, -- -, di*, D*| z, 8)
[defined in (1.3)] is, as a function of z, measurable (B). Hence, because
of Assumption (us), ¢(d:, - - -, di®, D* ] F, 5) [defined in (1.4)] éxists
and, as a function of F, is measurable (H).* From this it follows that
P(D!| F, ) [defined in (1.5)] exists and, as a function of F, is measur-
able (H).

Because of the compactness of D?, the integral [see formula (1.6)]

ne®, 9 = [ WF, @) ap@*| F, 9
can be represented as the limit of functions r;; (F, 8) as ¢ — «, where
1“ —
ra(F, 8) = ) W(F, d;;)P(D:}* | F, 5)
=1

u; is a finite positive integer, d;; is an element in D;;%, and D;;* is an
element of T. Since W(F, d;;*) is measurable (H), r;;(F, 8) is also
measurable (H), and therefore r;(F, 8) is also measurable (H).

It follows from Assumptions (u3) and (pg4) that the integrand
e(z; di®, -+ -, di2)p(ds®, - -+, di?, D*| z, ) [see formula (1.7)] as a func-

¢ If the stochastic process is discrete, fn(21, - ) Zm | F) denotes the probability
that X; = 21, Xo = 22, --+, and X, = 2. If the stochastic process is abso-
lutely continuous, fm(z1, *+) Zm | F) denotes the density at the point zy, -« -, Zm.

§ The integral in (1.4) can be written in the form funp(:c, F) dB(z),and Theorems
9.3 and 9.10 in Saks [44, Chapter III] are applicable. B(z) stands for Borel measure.
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tion of z is measurable (B). From this and Assumption (u) it follows
that ¢

[ etas s, -, dypi@st, -, i, D[ 3, 8) dF @)
M

is, as a function of F, measurable (H). Hence ro(F, §) [defined in
(1.7)] must be measurable (H). Since r(F, 8) = ri(F, 8) + r(F, d),
the funection r(F, 8) is measurable (H).

The proof that r(F, §) is measurable (H) in the discrete case is very
similar, except that the integrals in question have to be replaced by
sums.

3.2 Weak Intrinsic Compactness of the Space of Decision Functions

3.2.1 Compactness of the Space of Decision Functions in the
Sense of Regular Convergence

The main objective of this section is to prove that the space D of
decision functions is compact in the sense of regular convergence
defined in Section 3.1.4. This result will be used in the following section
to prove weak intrinsic compactness of the space D. More precisely,
we shall prove the following theorem.

Theorem 3.1. If Assumptions 3.1 to 3.6 hold, the space D of decision
Sunctions at the disposal of the experimenter is compact in the sense of
regular convergence defined in Section 3.1.4.7

Proof: First we shall consider the case when the stochastic process
X={X;}1(G=12, ---,adinf.)is discrete. As pointed out in Section
3.1.1, in this case we may assume without loss of generality that for
each j the chance variable X; can take only positive integral values.
For any s = {sy, - -, sk}, let D denote the subset of D consisting of
all elements d* of D’ and all elements d° of D° for which d° is a subset
of the set {1, 2, ---, ¢x}, where ¢, is a positive integer chosen so that
condition (iii) of Assumption 3.6 is fulfilled. Clearly §(D, I z;s8) =1
for any element & of D and for any z and s. Since D; contains only a
finite number of elements outside D?, it follows from Assumption 3.4
that D, is compact. Hence, if {§;} ? = 1,2, ---, ad inf.) is a sequence
of elements of D, for any given z and s there exist a subsequence
{271 G=1,2, -+, ad inf.) of the sequence {z} and a probability set

¢ Also this integral can be written in the form fM¢(z, F) dB(2).

7 This theorem is closely related to known theorems on the ‘“weak’ compactness
of a set of functions. See, for example, Theorem 17b (page 33) of [72].
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function d(D* l z; s) defined for all measurable subsets D* of D Such
that

(3.15) lim 8,(D* | z; s) = 80(D* | z; 5)

j=w

for any open subset D* of D whose boundary has probability zero
according to the probability set function 8. The subsequence {%;}
may depend on z and s. However, since there are only denumerably
many elements s, and since for any given s the coordinates =, - - -, z;,
of z on which the value of §(z; s) depends can take only denumerably
many values, the well-known diagonal procedure can be used to obtain
a fixed subsequence {7;} (independent of z and s) for which (3.15) is
fulfilled. Thus our theorem is proved in the discrete case.

To prove Theorem 3.1 in the absolutely continuous case, let {;}
(G=1,2, ---,ad inf.) be a subsequence of the sequence {7} of positive
integers chosen so that, for any d,°, - - -, di° and for any cube Ts with
rational vertices in the finite dimensional sample space eorresponding to
S (S is the set-theoretical sum of d,° - - -, di°), the completely additive
set function P(d, ---, di’, At| Ts, &;) defined for all measurable
subsets A? of D* converges to a completely additive set function
IJ'(A‘ l di’, - -+, di, Ts); ie., '

(3'16) lim P(dley ) dkey Zt | TS; 61,) = ”(Zt I dley ) dkc’ TS)

j=w

for any open subset Z* of D* for which u(Z* — Zt| d,°, ---, di’, Ts)
= 0. Since d;° ---, di° and Ts can take only denumerably many
values, and since the space of all probability measures on a compact
metric space is compact (Theorem 2.15), a subsequence {7;} with the
above property can be constructed with the help of the diagonal
procedure.

For any given subset A’ of D* and for given d,°%, - - -, d;°, the function
p(At| dy®, - -+, di?, Ts) defined for all rational cubes T's can be extended
to a completely additive set function u(A?|d;% ---, di, Rs) defined
for all Borel measurable subsets Rgs of the sample space corresponding
toS. We shall use the symbol P(Rs | ds°, - -+, di®, A?) synonymously
with u(At| ds®, - - -, di’, Rs); i.e., we put

(3'17) P(RS l dle: ) dk‘, At) = F(At | dle) ] dkc7 RS)

This notation will be particularly convenient when we want to keep
Al dy®, - - -, dyf fixed.
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We choose the covering net {D%, ...} subject to the following two
restrictions:

(a) For any element D% ..., of the covering net we have
D%, ...k, © Z%, ...1,, Where Z;, ..., denotes the open kernel® of
DY, ...1, and Z%, ..., is the closure of Z;, ...,

®) p(Z% .ty — 24y ...k | d1% -+, &5, Ts) =0 and P(dy°, ---,
&’y Z% ...kn — 2%, ...1n | Ts, &) = 0 for any element D%, ...y, of
the net, for any j, d;°, ---, di°, and any Ts.

It follows from (3.16), (3.17), and the restriction (b) that

(3.18) Lm P(d;%, -+, di, D% ...pn | Ts, 8)
Jm e
= P(Ts l dr% -, A5y Dtk; k,.)

Since the above equation holds for every Ts, it must hold for every
bounded and measurable subset Rg; i.e.,

(3:19) lLim P(d, ---, di% D%, ..., | Bs, &)

Jmw
= P(RS l dley ) dke; Dtk; -uk,,)

One can easily verify that the subsequence {:;} can be chosen so
that in addition to (3.16) the following relation holds for some set
function P(Rs | dy°, - - -, di?):

(3.20)  lim P(ds*, -+, di°| Rs, 8;) = P(Rs| dr*, - - -, di?)

= ®
In this equation, S denotes the set-theoretical sum of d;°, ---, d%_i,
while in (3.19) it denotes the sum of d;%, - - -, di°.

We shall now establish some properties of the set functions
P(Rs|dy® ++-,ds’, D4, ...:,) and P(Rs | dy% -+, di®). Clearly

(3.21a) P(Rs|ds® ---,dx) =0
P(Rs|dy® +--,di*, DY, ...,) 20
(3.21b) %}P(Rg | di%, - --, di, DY, ... k)
= P(Rs|dy% -+, di’, DY, ...1_,)
Since
p(dy*, -+, d%—1, D*| 2, &) + %; p(ds®, -+, dit| z, 8)
=p(ds% -, d%—1 | 7, &)

the above relation remains valid when z is replaced by Rs and p by P.
It then follows from (3.19), (3.20), and from the fact that d;° can take

8 A point d* belongs to the open kernel of a subset Af of D* if and only if there
exists a sphere with center d* and positive radius contained in A,
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only a finite number of values when d,°, - - -, d%_, are given [condition
(iii) of Assumption 3.6}, that

(3'210) P(RS I dle: Tt dek—l; Dt) + dz P(RS I dle’ tt dks)
k‘
= P(Rs|ds*, « -+, d%—1)

Let Z be any element of the sequence {Zy, ... ,} and let {Z’} be a
subsequence of the sequence {Z,---s,} such that the elements of
{Z’} are disjoint and D Z/ = Z. Then, because of the complete

2
additivity of the set function u(A® I dy°, - -+, di’, Ts), we have
(3’21d) P(TS l dlc; ] dl‘,e: Z) = Z P(TS I dley % dl;e) ZJ)
)
For any d;° ---, di* and any subset A* of D’ the set functions
P(Rs|dy*, ---, di’, A) and P(Rs | dy%, -, di) are absolutely con-

tinuous. Hence, for any d,°, - - -, di° and A’ there exists a pair of func-
tions p*(z | ds°, -+ -, di’, A*) and p(z | dy°, - - -, di") such that

(3.22) L p*@ | die, -+, dif, AY) = P(Rs | dif, -+, dit, AY)
S
and
62 [ pe|dt, o d) = PE |4 -, i)
S
It follows from (8.21a) to (3.21d) that for almost all z the following
conditions hold:
(3.242) p*(= | di® -+, di% D%, .o) 20, p(z I di% -, d) 20
(3.24b) % p* | di% -+ -, &t DY,y o)
= p*(a: I di® -0, diy Dtkl -"km-l)
(3.24c) p*(z I dy% -++,d%_1, DY) + dE p(z l 1% -+, &)
k.

=p(z|di® -+, d%—1)
and

(3'24d) P*(zl dley ° % dbcy Z) = Z Z_)*(Zl dley ) dbc’ Z’)
j
where Z and Z’ are subject to the same conditions as in (3.21d). It
follows immediately from restriction (b) that also the condition
(3248) p*(:v I dle, ceey dke, Dth km) = p*(a: I dle, ey dk‘, Zth k,,,)
= p*(z | dlo’ °t % dkoy Z‘kl oo km)
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is satisfied for almost all z. One can easily choose the functions p
and p* such that (3.24a) to (3.24e) are satisfied for all z.

For any z, d,°, - - -, di° and for any open subset Z’ of D’ (not neces-
sarily an element of {Z%, ...;.}), let

(3.25) p(z | i’y - -+, di, Zt) = l;l*tb p*(x l di° -+, di, Z*t)

where Z*' may be the sum of any finite number of elements of the
sequence {Z%, ...1,} such that the closure Z*t of Z*: is a subset of Z°.
For any z, d,°, ---, di°, the function p(z l d,% .-+, di’, Z°%) can be
extended to a completely additive set function p(z | dy°, - - -, di°, A?)
defined for all measurable subsets A* of D*? It follows from (3.24d)
and (3.25) that
(3.26) p(x|di® -+, di, Z4, ...1,) = (x| di®, -+, A%, 2%,y .. 1)
Smcez Z)p*(x | di®, - oo,k 24, ..o k) = DPHE| a4 -+ -, if, DY)
= p(x | d,°,- d;, , DY), it follows from (3.26) that p(z | ds°, - - -, ds*,
Zk1 - ka k,.) = 0. Hence
3.27) p(x | ds?, -+, di?, Dhy ...n) = D*(z| i, -+, di%, DY,y ...1)
Let 8y be the function defined by the equations

p(x I dl » " dkcy At)

3.28 So(At | z;dy" -+, di®) =
(3.28) o( Ia: 1 %°) (x|d1,“',dk°)

and " | ~
p(z|ds’ -, dek+1)
3.29 So(d® ;1% -ee, di) =
( ) 0( k+1l$ 1) ’ k) p(x|d1°, . d},e)
If p(z I di° -+, di®) = 0, we put Bo(dek.H I z; dy®% <+, dx®) = 0 and
do(d* | z;dy® -+, di°) = 1 for some given element d* of D‘
It follows from (3 28) that, for any z, d,°, ---, di*, the set function

so(A? | z; di° -+, di*) is non-negative and completely additive.
From (3.24¢), (3. 28), and (3.29) we obtain

(3.30) 5o(D* | z;ds% -+, d2?) +dZ So(d%q1 | z;di® -+, 1) = 1
el

Hence & is a decision function.. Clearly

(331) Py, -+, di°| 7, 80) = plz | d®, -+ -, du?)

and

(331a) p(dr® -+, di’, At| 2, 8) = p(z| dy®, -+ -, di¥, AY)
9 A proof of this is implicit in the-proof of Theorem 2.15.
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The convergence of §;; to § as j — o« is an immediate consequence of
the above two equations and equations (3.19), (3.20), (3.22), (3.23),
and (3.27). This completes the proof of Theorem 3.1.

3.2.2 Proof of Weak Intrinsic Compactness of the Space of
Decision Functions

Let {8;} (: =1,2, ---, ad inf.) be a sequence of decision functions.
We shall say that §; converges in the intrinsic sense to §, as ¢ — o if
(3.32) lim (F, &;) = r(F, &)
uniformly in F. The above equation implies that

lim (g, &;) = r(£, &)

uniformly in all a priori distributions £ If merely the relation
(3.33) liminf r(%, 8;) 2 (£, )

i=w
is fulfilled for all £, we shall say that 8; converges weakly to § in the
intrinsic sense.

The space D of decision functions at the disposal of the experimenter
is said to be compact in the sense of weak intrinsic convergence if,
for any sequence {8;} (: =1, 2, ---, ad inf.) of elements of D, there
exist an element 8 of D and a subsequence {3;;} (j = 1,2, -+, ad inf.)
of the sequence {4;} such that
(3.34) liminf r(%, 5;) = r(£, &)

Jj=e
for all £ In this section we shall prove the following theorem.

Theorem 3.2. If Assumptions 3.1 to 3.6 hold, regular convergence of
8; to 89 as 1 — oo implies weak intrinsic convergence of 8;to &. Further-
more, if Assumptions 3.1 to 3.6 hold, the space D of decision functions
18 compact in the sense of weak intrinsic convergence.

Proof: The second half of Theorem 3.2 follows immediately from
Theorem 3.1 and the first half of Theorem 3.2. Therefore it is suffi-
cient to prove the first half of Theorem 3.2.

Let {5;} be a sequence of decision functions such that hm 3; = & in

the regular sense. Also let £ be any a priori probabﬂlty measure on Q.
If liminf 7(¢, §;) = o, the first half of Theorem 3.2 is obviously fulfilled.

Therefore it is sufficient to consider probability measures ¢ for which
liminf r(¢, §;) < ». But then we may restri¢t ourselves to a subse-

{mo
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quence {5‘.,,} of the sequence {3;} such that lim r(¢, 8‘.,_) = liminf r(, §;).
J=c 300
Therefore, for proving the first half of Theorem 3.2, it is sufficient to
consider probability measures £ for which r(¢, §;) is a bounded function
of 7. We shall make this restriction throughout the following proof.

The discrete case: Let {38;} be a sequence of elements of D and let £
be an a priori probability measure such that r(§, 6;) is a bounded
function of 7 (¢ = 1) and §; converges to §p as ¢ — « in the regular
sense. Because of Theorem 3.1, Theorem 3.2 is proved if we show that
(3.35) liminf r(%, 8;) 2 (% d)

Let D! be any open subset of D* whose boundary has probability
zero according to the probability measures do(z; d1° - - -, di®) for all
% .-+, di%, and z. It follows from the regular convergence of §;
to & that
(336) limp(ds’, --+, &%, D*| 7, 8) = p(d:*, - -+, &%, D*| z, &)

Let fn(21, -+, Zm|F) denote the probability that X; = z;, «--,
Xm = Z,, when F is true. Furthermore let

B3T) sy e Tm| D) = Lfm(xl, oo 2m | F) dE

Thus fr(z1, ** -, Zn l £) is the probability that X; = z;, -+, Xpp = zm
when £ is the a priori distribution. Let

(3.38) g(d:% -+, di’, Dt| g, 5)
= Z p(dley B dkey Et | z, s)fm(zly Ty Tm I E)
z1, e, Zm

where m is a positive integer such that d;° is a subset of {1, ---, m}
fori =1, -..,k._Fork = 0, the left-hand member of (3.38) is defined
to be equal to 8(D* | 0). It follows from (3.36) that

(3.39) }1-12 g’ -+, i, D*| £, 8) = q(d:", - -+, di*, D*| &, 80)

It follows from condition (iii) of Assumption 3.5 and the boundedness
of (¢, 8;) that for any positive value p there exists a positive integer k,,
depending only on p, such that the probability that the number k of
stages of experimentation will not exceed k, is 2 1 — p when £ is the
a priori distribution in Q and §; is used; i.e.,

kP

(340) > > g’ -, ds DHg8) =1 —p(E 1)
k=0 d,°---, d;°
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Because of condition (iii) of Assumption 3.6, for any j the set of
possible values of d;° is finite. From this and relations (3.39) and
(3.40) it follows that

ko

(3'41) E Z Q(d167 T dke’ Dtl £ 80) =1-»p
k=0 di%---, dz®
Since p can be chosen arbitrarily small, we obtain from (3.40) and (3.41)

(3.42) Z Z OV D!|g8) =1

k=0 d,5-
z=0,1,2 ---, ad inf.)
Let
643 nG s a0 = [[[ W @ d@s, - b,
D|F, 5) a
and let

(3.44) ro(f, 85445, - -+, di)
= Z C(Z; dle, ] dkc)p(dle: ) dke: Dt I e 6)fm(x1; cyTm l 5)

Tt Tm

where m is such that d;° is a subset of {1, ---, m} fors=1,2, ... k.
It follows from (3.42), (3.43), and (3.44) that

(345) T(E, z) = z=:1 z_% dg Z rJ(E’ 6:: dl y " dke)
(z=0,1, ---, ad inf.)

Since W(F, d*) is a continuous function of d*, and since D* is compact,
it follows from (3.39) that

lim | W, d)de@:’, -+, ', D'|F, )
= [ W@, g, -+, i, B F, a0

Since W(F, d°) is bounded, the above relation and (3.43) imply that
(846)  limri(§ 8;5d1% -+, di®) = 11(% 80; di%, - -+, ")

According to condition (ii) of Assumption 3.5, for any given d,°, - - -,
dif and k, c(z, d1°, - - -, di°) is either equal to « identically in z or is a
bounded function of z. Since r(%, ;) is a bounded function of %, it
follows that p(d,%, - - -, di°, D’ | z, §;) = 0 (¢ = 1) for any z for which
c(z; dy® -+, di®) = oo, except perhaps for points z = (z;, - - -, ) for
which f(z1, ** +, Zm | E) 0. Hence, because of (3.36), p(d1 , e, dif
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D‘I z, &) = 0 also for any z for which c(z; d,° ---, dx®) = . But
then it follows from (3.36) and (3.44) that

(347) hfn 7'2(5, H dler M) dke) = TZ(E) do; dle, % dke)

Equation (3.35) is an immediate consequence of (3.45), (3.46), and
(3.47). This completes the proof of Theorem 3.2 in the discrete case.

The absolutely continuous case: In proving the theorem in the
absolutely continuous case, we shall make use of the following lemma.

Lemma 3.1. Let T:(S) (:=0,1, 2, ---, ad inf.) be a non-negative
completely additive set function defined for all measurable subsets S of
the r-dimensional sample space M,. It is assumed that

(3.48) T8 = V(S

forallS (2 =0,1,2, - -, ad inf.), where V(S) denotes the Lebesgue meas-
ure of S. Let g(xy, - - -, z,) be a non-negative function such that

(3.49) Lrg(:cl, e, z)dry oo dr, <
Then, if

(3.50) lim T;(8) = To(S)

we have o

@51)  lim [ gl -, 2,) dT; = f 9@, -+, 2,) dTo
M, M,

t=o

Proof: Let M, . be the sphere in M, with center at the origin and
radius ¢. Clearly

3.52) lim | gz, -+, 2,) dmy - dz,
c=o c

=f 9(21, +++, ;) dzy -+ - dzs
M,

Hence, because of (3.48), we have

c=

(3.53) lim [ [ o, zhar- g(xl,---,z,>dn~]=o
Mr.c M"

uniformly in 2. Hence our lemma, is proved if we show that

@59 lm [ gy, ezl [ g, ez Ty

1= e
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for any finite c. Let ga(zy, - -+, z,) = g(z1, - -+, z,), when g(zy, + * *, 25)
=< A, and = 0 otherwise. Since

. lim (g —ga)dzy ---dz, =0
A=w J My,

it follows from (3.48) that

(3.55) hm . (g—g4)dT:=0

=

uniformly in 7. Hence our lemma is proved if we can show that

(3.56) L ga dT; f ga dTy

for any ¢ > 0 and any A > 0. Let S; be the set of all points in M, .
for which

3.57) (G — e = ga <Je

where e is a given positive number. We have

(3.58) 2G—De|dTs = gadT; < 3 je| dT;
j S; JM;. j S;

(G=0,1,2 ---, ad inf.)

Since, for any e, j can take only a finite number of values, and since
can be chosen arbitrarily small, Lemma 3.1 follows easily from (3.50)
and (3.58).

First we shall show that it is sufficient to prove Theorem 3.2 for
any finite space D®. For this purpose, assume that Theorem 3.2 is
true for any finite terminal decision space, but that there exist a non-
finite compact terminal decision space D? and a sequence {8;} ( = 0, 1,
2, - -+, ad inf.) of decision functions such that lim §; = 3¢ in the regular

=

sense, and

(3.59) 11n3mf r(& 8;) = r(§ %) — p

for some £ (o > 0). Since lim §; = 3y, there exists a covering net, i.e.,

asequence {D%, ...} (kj=1, ---,rj;7=1,-++,m;m=1,2, -
ad inf.) of subsets of D* satlsfymg the relatlons (3 11) to (3.13) and
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such that (3.9) and (3.10) hold; i.e.,

(3.60) lim P(dy*, ---, di’, D%, ...1, | Bs, &)

= P(dle, Y dke) Dtk; vk l RS) 80)
and
(3.61) lim P(dy, - -+, di*| Rs, 8) = P(d:°, - -+, di’ | Rs, d)
where S in (3.60) denotes the set-theoretical sum of dy° ---, di%, and
in (3.61) the sum of d;°, ---, d°%—;. Let mg be a fixed value of m, and
consider the corresponding finite sequence {D%, ... kny} Of subsets of D",
Let h be the number of elements in this finite sequence. We select
one point from each element of the finite sequence {D%, ... P I
the points selected be dy?, - - -, d?, and let D* denote the set consisting
of the points dy?, - - -, d’. Let §; be the decision rule defined as follows:

5:(d°| z; 8) = 8:(d°| z; 9)
(3.62) ) _ (¢6=0,1,2, -, ad inf.)
5: (dut| 2;8) = 8; (D", ... by | 739)

where d,’ is the element in the sequence {d:’, - - -, dx'} which is con-
tained in D%, ...4,,. Clearly, because of (3.60) and (3.61),

(3.63) lim &; = &

Given any ¢ > 0, for sufficiently large mo we obviously have
(3'64) I T(E, 8:) - T(E) Sz) | Se

fori=0,1,2, ---, ad inf.
Since for finite D’ our theorem is assumed to be true, we have

(3.65) liminf (¢, &) = r(& &

i=®

Choosing € < p/3, we obtain a contradiction from (3.59), (3.64), and
(3.65). Thus it is sufficient to prove Theorem 3.2 for finite D’.. In
the remainder of the proof we shall assume that D? consists of the points
dit, -, dit.

Let S = 1, - -+, ¢, denote the set-theoretical sum of d;°, - - -, d® and
let f(x; S | F) denote the marginal joint density function of X;,, - - -, X,
corresponding to the element F of @. Then, when £ is the a priori
distribution in @ and § is adopted, the probability that the experiment
will be carried out in k stages in accordance with d,°, - - -, di°, respec-
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tively, and that the terminal decision will be equal to d,’ is given by
(3'66) q(dle7 Y dke) d‘ut l E; 6)

- f p@:*, -, dit, dut| z; O)f(z; S| £) de
Mg

where Mg denotes the r-dimensional Cartesian space with the coordi-
nates z;, - -+, z; and f(z; Sl £) = j;f(:c; SIF) d¢. Equation (3.66)
can also be written as

(3'67) 9(d1°, Tt dker d’ut l £ 6)

- [ @819 dPa@ye, -+, des, ut | Bs, )
where the set function P is defined in (3.6). Since §;, as ¢ — oo,
converges to d in the regular sense, we have

(3.68) lim P(ds%, «++, di%, du’ | Rs, &) = P(dy*, -+, di", du*| Rs, &)

It follows from (3.67), (3.68), and Lemma 3.1 that
(3-69) lim Q(dley M) dke’ dut l E, 8:') = q(dler M) dksy dut l E} 80)

Similarly to the discrete case, it follows from condition (iii) of
Assumption 3.5, from the boundedness of r(¢, 8;) (¢ = 1), and from
equation (3.69) that

(3.70) > > q@d® e, di5, D g 8) =1
k=0 d;° di®

(6=0,1,2, ---, ad inf.)
Let

BT nE &di -, &)

h
= Z QW(Fy d‘u‘)q(dlcy ) dke, dut l F) 8) dt
u=1
and
(372) 7'2(5’ 9; dlcy Y dke)
= [ s de, -+, A, -, i, D 3, 9z | ©) da

8

where 8 = {%y, +--, i,} is the set-theoretical sum of d,° ---, d;* and
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Mg denotes the r-dimensional Cartesian space with the coordinates
Ty, ++ ¢, Z;. It follows from (3.69) and (3.71) that
(3.73)  limri(§ 8;di -+, di’) = ri(§, do; d1° -, di°)

Equation (3.72) can be written
(3~74) 72(2’ o; d1¢7 ) dke)

- L o(z; du¥, -+, dO)f(@; 8| £) dP@L*, - -+, dit, D*| Rs, 9)
S

It follows from (3.70) that
2

(8.75) r(g, &) =:;1 go " Z rJ(E, S di’, -, i)
(2=0,1,2, ---, ad inf.)
Because of the regular convergence of §; to &y, we have
(3.76) lim P(dy*, -, di’, D*| Rs, &) = P(ds", -, ds", D*| s, d)

1= 00

We shall now show that
(3'77) lim rZ(E’ 61'; dler ] dk‘) = 7'2(5’ 80; dle, M) dke)

1=
According to condition (ii) of Assumption 3.5, for any given d,°,
-, dix® and k, c(z; d,° ---, di°) is either equal to » identically in z
or is a bounded function of z. Since r(%, §;) is a bounded function of ¢
@ = 1), it follows that

(3'78) q(dle) Y dke7 D | E, Bz) =0 (1' = 1)

for any d,°, -, di° for which ¢(z; d;° -+, di®) = = identically in z.
Because of (3.69) this remains true also for ¢ = 0. Thus in equation
(3.75) we can restrict summation with respect to d;°, - - -, di® to values
dy®, -+, dif for which c(z; d,° ---, di®) is a bounded function of z.
But then it follows from (3.74), (3.76), and Lemma 3.1 that
(3.79)  limra(§, 8;5 di°, -+, di®) = 72(§, 05 1% + -+, di”)
1= .
The first half of Theorem 3.2 is an immediate consequence of (3.75),

(8.73), and (3.79). The second half follows from the first half and
Theorem 3.1.

The proof of Theorem 3.2 given above in the discrete as well as in
the absolutely continuous case shows immediately the validity of the
following theorem.
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Theorem 3.2a. If Assumptions 3.1 to 3.6 hold, and if only decision
Sfunctions & are admitted for which the probability is 1 that the number
of stages of the experiment does not exceed a given integer ko, and if for
any s the cost c(x; s) is a bounded function of z, then lim 8; = &y in the

y i=

regular sense implies lim (¢, 8;) = r(&, d) for all £ (the convergence is

t=o

not necessarily uniform in £).

3.3 Intrinsic Separability of the Space @

For any positive integral value m, let D™ denote the set of all decision
functions 6 which are elements of D and have the property that the
probability is 1 that experimentation will be earried out in at most m
stages when 6 is adopted. We shall denote an element of D™ by &™.
For any given m, we shall consider the following four distance defini-
tions in the space Q.

(3.80) pi(Fy, F3) = Supz | P(R| Fy) — P(R| Fy) |

where R may be any subset of the m*-dimensional space of all (zy, - - -,
Zn+) and m* is a function of m only chosen so that for any element
8™ of D™ the probability is zero that an X; will be observed with
1 > m*. The existence of a finite m* with the above property follows
from condition (iii) of Assumption 3.6. The symbol P(R l F) denotes
the probability measure of the set R when F is the true distribution
of X.

(3.81) p2(Fy1, Fa) = Supgn | 7(F1, 8™) — r(Fa, &™) l
(3.82) p3(Fy1, F2) = Supat | W(Fy, d°) — W(F,, d") |
(3.83) ps(Fy, F3) = p1(F1, F2) + p3(Fy, F3)

We shall call py(F;, Fy) the intrinsic distance of F; and F relative
to ™. We shall now prove the following theorem.

Theorem 3.3. If Assumptions 3.2 to 3.6 hold, then for any positive
integer m the space @ s separable in the sense of the intrinsic metric
PZ(F 1, F. 2)'

Prooi: It follows from Assumption 3.2 that Q is separable in the sense
of the metric p,(Fy, Fs).

We shall now show that Q is also separable in the sense of the metric
p4(F1, F3). Since D* is compact by Assumption 3.4, it follows from
Theorem 2.1 that Q is conditionally compact in the sense of the metric
p3(Fy1, F3). Hence, for any e > 0, it is possible to subdivide @ into a
finite number of disjoint subsets @1, - - -, @, such that the diameter of
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2 (Z=1,2 ---, r) according to the metric p3 does not exceed e.
Since Q is separable in the sense of the metric p; there exists a denumer-
able subset w; of Q; that lies dense in ©; according to the metric p;
Z=1,2 -+, r). Let w be the set-theoretical sum of w;, ---, w.
Clearly w is denumerable and lies 2e-dense in @ in the sense of the metric
ps. Since e can be chosen arbitrarily small, the separability of @ in
the sense of the metric py is proved.

Theorem 3.3 is proved if we can show that, if lim F; = F in the

i=o

sense of the metric py, then hm F; = Fy also in the sense of the metric

=

pg. Let {F;} (¢ =1,2, ---,ad inf.) be a sequence for which lim F; = F,

in the sense of the metric ps. Then
(3.84) lim W(F,, d¥) = W(F,, d*)
uniformly in d*, and
(3.85) lim P(R | F;) = P(R | Fo)
uniformly for all subsets R of the m*-dimensional Cartesian space with
the coordinates zy, - - -, Zp

For given values 1, « -+, Zpx, let Hizy, «++, Zpx, 6™) denote the
conditional expected value of W(F;, d*) when ™ is the decision rule
adopted (: =0, 1,2, ---, ad inf.). Also let L(z;, ««*, Zp ™) denote
the conditional expected cost of experimentation when z;, ---, Z,»
are the observed values of X3, - -+, X,,» and ™ is the decision function
adopted. Clearly

3.86) r(Fs 5 = [ Hiws, -+, 2, 87 dFs
Mo

+f L(ZI, Tty Ty 6,") dF;
Mp*

where M+ is the m*-dimensional Cartesian space with the coordinates
21, * ) Type It follows from (3.84) that

(387) lim Hi(xly *ty Ty Bm) = HO(xly Ctty Ty 8m)

uniformly in zy, + + +, Z,,%, ™. Hence
(3 88) hm [Ht(xly * 0y Tmxy Bm) - HO(xh *tty Ty 6m)] dF‘l =0

uniformly in 6™. Since Ho and L are uniformly bounded,® it follows

19 The uniform boundedness of L follows from condition (ii) of Assumption 3.5
and condition (iv) of Assumption 3.6.
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from (3.85) that

(3.89) lim f HydF; = f HydFq
i=w J Mp* Mp*

and

(3.90) lim f LdF; = L tL dF,

uniformly in §™.
Hence we obtain from (3.86), (3.88), (3.89), and (3.90)

(3.91) lim r(F,;, &™) = f HydF, +f L dFy = r(Fy, ™)
isw M Mn*
uniformly in §™. This completes the proof of Theorem 3.3.

3.4 Strict Determinateness of the Decision Problem Viewed as a
Zero Sum Two-Person Game

In proving the strict determinateness of the statistical decision
problem, we shall make use of the following lemma.

Lemma 3.2. If Assumptions 3.1 to 3.6 hold, for any positive e there
exists a positive integer m, depending only on e, such that

(3.92) Infm (¢, &™) < Infsr(%, 8) + €

for any m = m, and for any a priort probability distribution & in Q.

Proof: Let n denote the total number of observations made during
the course of experimentation and let prob. {n = m.| £, 8} denote the
probability that » = m. when £ is the a priori distribution in € and §
is the decision function adopted. Let W, be an upper bound of
W(F, d), and let m, be a positive integer such that

W 2
(3.93) c(z;s) = -2
€

for any z and for any 8 = {s;, -+, s} for which § = 8 +---+ s
contains at least m. elements.! The existence of such a value m.
follows from condition (iii) of Assumption 3.5.

Let 8, be any decision function which is 2 member of ®. There are
two cases to be considered: (a) prob. {n = m,l £ 6} = ¢/Wy; (b)
prob. {n = m.| ¢ &} < ¢/Wo. It follows from (3.93) that in case
(@) we have r(§, ;) = W,. In this case, let 85 be the rule that we
decide on some terminal d* without taking any observations. Clearly

1 The symbol + stands for “set-theoretical sum.”
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we shall have r(§, 8) < W, and, therefore, r(§ &) < r(%, 8;). In
case (b), let &5 be defined as follows: 82(z; s) = 81(z; s) for any z and
for any s = {s;, ++-, s} for which S = s; 4 .-+ s contains less
than m, elements. d&s(dp’ l z; 8) = 1 whenever S contains at least
me elements, where do’ is a fixed element of D2 Obviously the number
of stages of experimentation, when &, is adopted, cannot exceed m,.
Since prob. {n = m,| £, 8} < ¢/Wo, we have

(3.94) (€ 82) = 7(§ 81) + €
Thus Lemma 3.2 is proved.
We are now in a position to prove the following theorem.

Theorem 3.4. If Assumptions 3.1 to 3.6 hold, the decision problem,
viewed as a zero sum two-person game, is strictly determined; i.e.,

(3.95) Sup; Inf; 7(¢, 6) = Inf; Supg r(£, 8)

Proof: It was shown in Chapter 2 that a two-person game is strictly
determined if the space A of strategies of the first player is separable
in the sense of its intrinsic metric and the space B of strategies of
player 2 is weakly compact in the sense of its intrinsic metric (Theorem
2.23). When this result and Theorem 2.24 are applied to the statis-
tical decision problem, it follows from the convexity of D [condition (i)
of Assumption 3.6] ¥ and Theorems 3.2 and 3.3 that

(3.96) Sup; Infsm r(£, 8™) = Infsm Supg (£, §™)
It follows from Lemma 3.2 that for any ¢ > 0 there exists a positive
integer m. such that for m = m,
(3.97) Supg Inf; r(%, 8) < Sup; Infsm r(§, 6™) < Sup; Inf5 (£, 8) + ¢
From (3.96) and (3.97) we obtain
(3.98) Supg Inf; 7(§, 8) + € = Infm Supg r(, 6™)

= Inf; Sup; r(¢ 6) -
Since € can be chosen arbitrarily small, it follows from (3.98) that
(3.99) Sup; Inf; 7(¢, 6) = Inf; Sup; (£, 6)

Theorem 3.4 is an immediate consequence of (3.99) and of Lemma 2.3
in Chapter 2.

12 Tt follows from condition (v) of Assumption 3.6 that &2 is a member of D.

18 The convexity of D together with condition (ii) of Assumption 3.6 insures that
any discrete mixed strategy of the experimenter is equivalent to a pure strategy &
that is an element of D, as pointed out'in Section 3.1.4. -
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3.6 Theorems on Bayes and Minimax Solutions of the Decision
Problem

In this section we shall prove various theorems concerning Bayes
and minimax solutions.

Theorem 8.5. If Assumptions 3.1.to 3.6 hold, then for any a prior:
distribution & there exists a decision function 8; such that &; is a Bayes
solution relative to £; t.e.,

(3.100) (&, &) = Inf; (¢, 8)

This theorem is an immediate consequence of Theorems 3.1 and 3.2.
We shall say that hm £; = & in the ordinary sense if

(3.101) lim £;(w) = &(w)

for any subset w of @ which is open in the sense of the intrinsic metric
o(Fy, F3) = Sup; l r(Fy, 8) — r(Fsq, 8) | and whose boundary has prob-
ability measure zero according to &.

We shall now prove the following theorem.

Theorem 3.6. Let lim &; = o in the ordinary sense. Then, if Assump-

i=ow

tions 3.1 to 3.6 hold, we have
(3.102) lim Inf; 7(£&;, &) = Inf; r(%, 6)

1=

Proof: For any positive integral value m, let D™ be the subset of D
consisting of those elements & for which the probability is 1 that
experimentation is carried out in at most m stages. Let

(3.103) p(F1, F3, m) = Supsm | 7(Fy, ™) — r(Fa, ™) |
where 6™ is an element of D™. Clearly
(3.104) p(F1, F2, m) < p(F1, Fy)

Thus any subset w of @ that is open in the sense of the metrie
o(Fy, F3, m) is open also in the sense of the metric p(Fy, F3). It then
follows that lim £ = & in the ordinary sense also when D is replaced

t=o
by ™. According to Theorem 3.3, the space Q is separable in the sense
of the metric p(Fy, F2, m). Hence Theorem 2.14 is applicable* and
U For the application of Theorem 2.14 to our case it is necessary that r(F, &™)

be a bounded function of F and ™. But this follows from condition (ii) of Assump-
tion 3.5 and conditions (iii) and (iv) of Assumption 3.6.
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we obtain
(3.105) lim (&, &™) = r(&, &™)

t=o

uniformly in ™. It follows from the above relation that
(3.106) lim Infsm r(£;, 8™) = Infmr(&, 0™)

gm0
Theorem 3.6 is an immediate consequence of (3.106) and Lemma 3.2.

Theorem 3.7. If Assumptions 3.1 to 3.6 hold, there exists a minimaz
solution; 1.e., there extists a decision function &y such that

(3.107) Supr r(F, &) < Supr r(F, 8)

for any é.

Proof: Let {6;} (=1, 2, ---, ad inf.) be a sequence of decision
functions such that
(3.108) hm Supr r(F, &;) = Inf; Supg r(F, 8)
It follows from Theorems 3.1 and 3.2 that there exist a subsequence
{i;} G=1,2, -+, ad inf.) of the sequence {7} and a decision function
8o such that

(3.109) liminf r(F, 8;) = r(F, &)
j=o
for all F. Because of (3.108), we have
(3.110) liminf »(F, 6;) < Inf; Supr r(F, )
j=o
Hence

r(F, &) < Inf; Supr r(F, 8)
for all F, and therefore
(3.111) Supr r(F, &) < Inf; Supp r(F, 6)

Obviously the equality sign must hold in the above relation, and
Theorem 3.7 is proved.

Theorem 3.8. If Assumptions 3.1 to 3.6 hold, any minimaz solution
s a Bayes solution in the wide sense.

Proof: Let 3, be a minimax solution and {£;} a sequence of a priori
distributions such that

(3.112) ll.m Inf; r(%;, 8) = Supg Inf; r(%, 5)

imo
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Since &y is a minimax solution, we have

(3.113) Supr r(F, 8) = Inf; Supg (%, 3)
Hence, because of Theorem 3.4, we have

(3.114) Supr r(F, &) = lim Inf; r(£;, 8)
and therefore

(3.115) r(¢;, %) < lim Inf; r(%; 3)

Theorem 3.8 is an immediate consequence of (3.115).

Theorem 3.9. If Assumptions 3.1 to 3.6 hold, and if & is a least
Jfavorable a priort distribution, then any mintmaz solution is also a Bayes
solution relative to &.

Proof: Let £ be a least favorable a priori distribution; i.e., £ satisfies
the relation

(3.116) Inf; 7(%, 8) = Sup; Inf; r(¢, 8)

Let 8y be a minimax solution. Then

3.117) Supr r(F, 6) = Inf; Sup; r(£, 9)
Hence, because of Theorem 3.4,

(3.118) r(&o, o) = Supr r(F, 8) = Inf; (%, 8)
and our theorem is proved.

Theorem 3.10. Let & be a least favorable a priort distribution, 8y a
minimaz solution, and w the set of all elements F of Q@ for which

r(F, 8) < Supr r(F, &)

Then, if Assumptions 3.1 to 3.6 hold, &(w) = 0.
Proof: According to equation (3.118) we have

(3.119) Supr r(F, ) = Infs r(&, )
Clearly the above equation implies that
(3.120) Supr r(F, &) = (o, d0)

But (3.120) can hold only if £(w) = 0, and our theorem is proved.

We shall say that an element F of Q is degenerate relative to the a
priori distribution £ if there exists a subset w of @ such that « contains
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F, w is open in the sense of the intrinsic metric o(F;, F3)
= Sup; | 7(Fy, 8) — r(F, 8) |, and &(w) = 0.

Theorem 3.11. If & is a least favorable a priort distribution and 3
is a minimaz solution, and if Assumptions 3.1 to 3.6 hold, then

(3.121) r(F, &) = Maxp r(F, &)

for all F which are not degenerate relative to &.
Proof: Suppose that there exists an element Fy such that Fy is not
degenerate relative to & and

(3.122) r(Fo, 8) < Supr r(F, 3)

Then there exists an open subset w [in the sense of the intrinsic metric
p(F,, F,)] that contains Fy and such that

(3.123) r(F, &) < Supr r(F, d)
for all F in w. Since Fy is not degenerate, we have
(3.124) fo(w) >0

Equations (3.123) and (3.124) contradict Theorem 3.10. Hence
(3.122) is impossible and our theorem is proved.

We shall now show that there exists a minimax solution which is a
limit of a sequence of Bayes solutions in the strict sense. For this
purpose, we shall need the lemmas stated and proved below.

We shall say that a decision function §, is obtained from the decision
function 8 by truncation after the mth stage of the experiment if

(3.125) o1(z; di® -, di®) = o(z; dr’ - -+, di)
for any k¥ < m and if
(3.126) 51(Dt| z;d1% -+, dm®) =1

Lemma 3.3. If 80™ is a decision function obtained from & by truncation
after the mth stage, and if Assumptions 8.1 to 3.6 hold, then

(3'127) lim T(E’ 50”') = T(E, 80)

m=w

Proof: If the probability is positive that the experimentation will
go on indefinitely when &, is adopted and £ is the a priori probability
measure, then r(§, &) = « and lim r(%, ;™) = «. Thus it is suffi-

cient to consider the case when the probability in question is zero.
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Let ri(, 6, d% - - -, di®) and ro(¢, 8, d;°, - - -, di°) be defined as in (3.43)
and (3.44).% We have

2 ©
(3.128)  r(§ %) =2, 2, 2 i 8o, dr% -, drY)
=1 k=0 d,° ---,di*

Clearly

(3.129) Z Z E Tie B, di®y -+, di) S (6, 067

E E E T;i(f, 607 dle’ ) dke) + PmWO
=1 k=0 d°,
where W, is an upper bound of W(F, d‘) and P,, is the probability that
experimentation will be carried out in at least m stages when §, is
adopted and £ is the a priori probability measure. Since the prob-
ability is zero that experimentation will go on indefinitely, we have
(3.130) lim P, =

m=co

Lemma 3.3 follows from (3.128), (3.129), and (3.130).

Lemma 3.4. Let{&} (1 =0,1,2, ---, ad inf.) be a sequence of a priors
probability measures such that

(3.131) lim Supm | r(&;, 8™) — r(k, ™) | = 0

form =1,2,3, ---, ad inf. Then, if Assumptions 3.1 to 3.6 hold, fo.
any decision function & we have

(3.132) liminf 7(£;, 60) Z 7(fo, d0)

Proof: Let {&} (: =0, 1,2, -- -, ad inf.) be a sequence of probability
measures for which the conditions of Lemma 3.4 are fulfilled. Let &,
be a decision function and let ;™ be a decision function obtained from
8o by truncation after the mth stage of the experiment. It follows
from (3.131) that

(3.133) lim (g, 8™) = 7(ko, 36™)

i=

If liminf r(¢;, §p) = o, Lemma 3.4 obviously holds. Therefore it is
sufficient to consider the case when liminf r(§;, &) < «. Let {7;}

i=w

15 Equations (3.43) and (3.44) refer to the discrete case. It is clear what the
corresponding formulas are in the absolutely continuous case.
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(7=1,2, ---, ad inf.) be a subsequence of the sequence {z} such that
(3.134) lim 7(§;, 8) = liminf r(&;, &) <

j=o i=o
Let Pj, be the probability that the experiment will be carried out in
at least m stages when & is adopted and £;; is the a priori probability
measure. Since T(Ei,., d0) is a bounded function of j, we have
(3.135) lim Pj, =0

m=co

uniformly in j. Hence, for any e > 0, there exists a positive integer
m., depending only on ¢, such that

(3.136) (&, 80™) = (€ %) + €
for all m = m,. From (3.133) and (3.136) it follows that
(3.137) im r(&;, 8) Z r(o, 5™) — ¢

j=o

for all m = m. Thus, because of Lemma 3.3, we have
(3.138) lim r(&;;, 80) = r(fo, 80) — ¢
)=

Since the above equation holds for any e > 0, Lemma 3.4 is proved.

Lemma 3.5. Let {£} (¢ =0,1,2, ---, ad inf.) be a sequence of a prior:
probability measures such that lim £;(w) = &(w) for any open set w whose

1=
boundary has probability zero according to &. The terms “open” and
“boundary” are meant here in the sense of the following convergence
definition in Q: F; converges to Fo as ¢ — o if lim F; = Fq in the sense

i=o

of regular convergence [see equation (3.1)] and if lim W (F;, d*) = W(Fo,

i=o

d®) uniformly in d*. Then, if Assumptions 3.1 to 3.6 hold, the sequence
{&} @=0,1, 2, ---, ad inf.) satisfies the condition (3.131) of the
preceding lemma.

Proof: Let {&} (2 =0, 1,2, - -, ad inf.) be a sequence of probability
measures which satisfies the assumption of Lemma 3.5. For any
positive integral value m, let

(3.139) p(Fy, F2, m) = Supgm | r(Fy, &™) — r(Fy, &™) |
and
(3.140) p(¢, £, m) = Supsm | r(¥, ™) — r(", &™) |

In proving Theorem 3.3, we have shown that convergence in the
sense of the definition given in Lemma 3.5 implies convergence in
the sense of the metric (3.139) for any m. Let mg be a positive integer
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and wg be a subset of @ such that wp is open in the sense of the metric
po(F1, Fa, mg) and the boundary of wo [in the sense of the metric
o(Fy, Fa, mp)] has probability zero according to £. Since convergence
in the sense of the definition in Lemma 3.5 implies convergence in the
sense of the metric p(Fy, F, myg), it follows that « is open in the sense
of- Lemma 3.5, and the boundary of wp in the sense of Lemma 3.5 is a
subset of the boundary of wg in the sense of the metric p(Fy, Fa, my).
Thus, because of the assumption of Lemma 3.5, we have lim £;(wq)

i= o

= £o(wo). More generally, lim £;(w) = £(w) if there exists a positive

integer m such that o is open in the sense of the metric p(F;, Fa, m)
and the boundary of  [in the sense of p(F;, F3, m)] has probability
zero according to £. Lemma 3.5 follows from this and from Theorem
2.14 in Chapter 2.

Lemma 3.6. If Assumptions 3.1 to 3.6 hold, there exists a fixed
sequence {&;} (1= 1,2, ---, ad inf.) of probability measures such that
for any positive integer m the sequence {£;} lies dense in the space of all
£'s in the sense of the metric (3.140).

Proof: According to Theorem 3.3, © is separable in the sense of the
metric (3.139). It then follows from Theorem 2.16 that the space of
all ¢'s is separable in the sense of (3.140). Hence, for any positive
integer m, there exists a sequence {£:,} (1 = 1,2, ---, ad inf.) that is
dense in the space of all #'s in the sense of the metric (3.140). A
sequence {£;} that contains every £;, as an element obviously satisfies
Lemma 3.6.

Theorem 3.12. Let {¢} (: =1, 2, ---, ad inf.) be a fired sequence
of probability measures on Q such that for any positive integer m the
sequence {£;} is dense in the space consisting of all &, (1 = 1,2, ---) and
of all ¢r (F may be any element of Q) in the sense of the metric (3.140),
where &p denotes the probability measure that assigns the probability 1
to F. Then, if Assumptions 3.1 to 3.6 hold, there exist a minimaz solu-
tion 8y and a sequence {6;} (j = 1,2, ---, ad inf.) of decision functions
such that lim 8; = 8o and, for each j, 3; is a Bayes solution relative to

)=
some probability measure £; that is a linear combination of a finite
number of elements of the sequence {£;}.

Proof: Let §; be a minimax solution of the decision problem when
the choice of £ is restricted to linear combinations of &, - - -, £ with
non-negative coefficients; i.e., §; satisfies the condition

(3:141) Max r(&;, ;) < Max r(%;, 8)
$S; <5
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for any 8. The restriction imposed on the choice of £ makes the decision
problem equivalent with a two-person game where the possible pure
strategies of the first player are represented by £, ---, . Thus §;
must be a Bayes solution relative to some linear combination ¢'; of
&, -+, &. Let 8 be the limit of a convergent subsequence of {4;}.
It then follows from Theorem 3.2 and (3.141) that %

(3.142) Sup; r(&;, 8) =< Sup; r(&;, 8)
for any 6. It follows from Lemma 3.4 that
(3.143) Supi T(Ei: 8) = SuPF T(F; 8)

Thus §, is a minimax solution when no restriction is imposed on the
choice of £ and our theorem is proved.

It may be of interest to mention some particular possibilities for
the choice of a sequence {£;} that lies dense in the space consisting of
all £ and all ¢ in the sense of the metric in (3.140) for all m. Let
{F;} ¢=1,2, ---, ad inf.) be a sequence of elements of 2 such that
for any positive integer m the sequence {F;} lies dense in © in the sense
of the metric (3.139). Let £; be the probability measure that assigns
the probability 1 to F;. Then {&;} is dense in the set of all £’s
in the sense of the metric (3.140) for all m. It is also possible to choose
a sequence {£;} (1 =1, 2, ---, ad inf.) such that £,(F;) > 0 for all j,

> &(F;) =1, and {£&]} lies dense in the space consisting of all £;
i=1

and £7’s in the sense of the metric (3.140) for all m. . .
We shall now formulate an additional assumption which will make
it possible to prove some stronger theorems.

Assumption 3.7. The space Q is com_paét in the sense of regular con-
vergence defined in Section 3.1.1. If im F; = Fq in the regular sense, then
(3.144) lim W(F;, d°) = W(Fo, d°)
uniformly in d’.

Theorem 3.13. Let {&} (1 =0, 1,2, ---, ad inf.) be a sequence of a
priort probability measures such that lim £(w) = Eo(w) for any open

subset w (in the sense of regular convergence in Q) whose boundary (in the
sense of regular convergence in @) has probability zero according to &.
Then, if Assumptions 3.1 to 3.7 hold,

@ Iiﬂr(éi, ™) = r(&, o™)

16 The argument in showing (3.142) is essentially the same as that used in proving
Theorem 2.23. ’ ’ ’ o
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uniformly in 8™ for any m.
(ii) lim Inf; r(&;, 8) = Inf; r(fo, 9)
1=

(i) limin r(&;, 5) Z (fo, )

Proof: Let {£;} be a sequence of probability measures satisfying the
condition of our theorem. Statement (i) is an immediate consequence
of Assumption 3.7 and Lemma 3.5. It implies that

(3.145) h_m Infgm r(£;, 8™) = Infm r(&, 6™)

Statement (ii) is an immediate consequence of (3.145) and Lemma 3.2.
Statement (iii) follows from Statement (i) and Lemma 3.4.

Theorem 3.14. If Assumptions 3.1 to 3.7 hold, there exists a least
favorable a priort distribution.

Proof: Let {£;} be a sequence of probability measures such that
(3.146) lim Infs 7(&;, 8) = Supg Inf; 7(¢, 9)
It follows from Theorem 2.15 that there exists a subsequence {i;}
(G=1,2, ---, ad inf.) of the sequence {i} and a probability measure
£ such that

(3.147) 1151 £(w) = fo(w)

for any open set « (in the sense of regular convergence in 2) whose
boundary has probability zero according to &. Hence, because of
Theorem 3.13,
(3.148) lim Inf; 7(¢;, 8) = Inf; r(%o, 8)

j=o
It follows from (3.146) and (3.148) that &, is a least favorable a priori
distribution, and our theorem is proved.

Theorem 3.15. If Assumptions 3.1 to 3.7 hold and if &y is a Bayes
solution in the wide sense, 8y is also a Bayes solution in the strict sense.
Proof: Let 8, be a Bayes solution relative to the sequence {£;}
(1=1,2, ---; ad inf.) of probability measures. Let {¢;} (z =1, 2,
- - -, ad inf.) be a subsequence of the sequence {£;} and £, a probability
measure such that lim £;(w) = &(w) for any open set w (in the sense

of regular convergence) whose boundary has probability zero according
to &. It follows from Theorem 3.13 that
(3.149) lim Inf; r(&;, 8) = Inf; r(%o, 8)



98 DEVELOPMENT OF A GENERAL THEORY

Since 9 is a Bayes solution relative to the sequence ¢’;, we have
(3.150) lim [r(¢';, &) — Infs7(£'s, 8)] = 0

1=

From (3.149) and (3.150) we obtain
(3.151) lim r(¢';, 80) = Inf; r(fo, 8)

i=o

From statement (iii) of Theorem 3.13 it follows that
(3.152) lim r(&;, 80) 2 (&, &)

Theorem 3.15 is an immediate consequence of (3.151) and (3.152).

Theorem 3.16. If Assumptions 3.1 to 3.7 hold, a limit of a sequence
of Bayes solutions in the strict sense s itself a Bayes solution in the strict
sense.

Proof: Let {&} (=1, 2, ---, ad inf.) be a sequence of probability
measures, and {§;} (=0, 1, 2, ---, ad inf.) a sequence of decision
functions such that, for each 7 > 0, §; is a Bayes solution relative to
¢; and lim §; = §p. There exists a subsequence {7;} (j=1,2, ---, ad

inf.) of the sequence {i} and a probability measure & such that
lim £;,(w) = £o(w) for any open set w (in the sense of regular conver-
j

gence in Q) whose boundary has probability zero according to &. It
then follows from Theorem 3.13 that

(3.153) lim r(¢;, 8;) = Inf; r(fo, )

j=o

Let 3™ be the decision function determined as follows:

(3.154) 0™(x; di -+ -, di®) = 8:(x; d1%, - -, di°)
for k¥ < m, and
(3.155) M(dot | 75 d1%, -0, dm®) =1

where do’ is a fixed element of D*. Let P;,, denote the probability that
experimentation will consist of at least m stages when £;; is the a priori
distribution and §;; is adopted. Since (£, é;,) is a bounded function
of 7, we have

(3.156) lim ij =

uniformly in j. From this it follows that for any ¢ > 0 there exists a
positive integer m,, depending only on ¢, such that

(3.157) T(Ei,-’ 6|'im) = T(Efi’ 8"1') +e
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for all m = m,.. From this and (3.153) we obtain

(3.158) limsup r(§;, 8;™) = Infs r(to, 8) + e
Jjmeo

for m = m.. According to Theorem 3.13, we have

(3‘159) lim [T(Ei;, 81,m) - T(EO: Bt,m)] =0
=9

Hence

(3.160) limsup r(k, 8™) < Infs (&, 8) + ¢
j=oo

for m = m,. Clearly

(3.161) lim §;™ = "

J=w
Thus, because of Theorem 3.2, we have
(3.162) liminf (&, &™) = r(fo, %™)
From (3.160) and (3.162) it follows that
(3.163) r(&, 80™) =< Infs r(%o, 8) + €
for m = m.. According to Lemma 3.3, we have
(3164) lim T(Eo, 80’") = T(EO: 60)

Equations (3.163) and (3.164) imply that r(%, &) = Inf; (%, 6), and
our theorem is proved.

3.6 Theorems on Complete Classes of Decision Functions

The notion of admissible decision functions, that of a complete class
of decision functions, and that of a minimal complete class were defined
in Section 1.3. In this section we shall define some additional notions
of completeness and then prove several theorems on complete classes
of decision functions.

Let D’ be a given subset of the set D of all decision functions which
may be chosen by the experimenter. A class C of decision functions
is said to be complete relative to ®’ if for any & in D’ not in C we
can find a & in C such that §* is uniformly better than 6. A class
C of decision functions is said to be essentially complete relative to D’
if for any § in D’ we can find an element §* of C such that r(F, &*)
= r(F, §) for all F.7

17 This definition of essential completeness coincides with that given in [66].

In [67], the term ‘“‘complete class” is used in the sense of an essentially complete
class in our present terminology.
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In what follows in this section, let D; denote the set.of all -decision
functions & which are elements of D and for which r(F, é) is a bounded
function of F.

Theorem 3.17. If Assumptions 3.1 to 3.6 hold, the class of all Bayes
solutions in the wide sense is complete relative to Dy.

Proof: Let 5y be an element of D; which is not a Bayes solution in
the wide sense. Let

(3.165) W*(F, d*) = W(F, d*) — r(F, 3)

Clearly Assumptions 3.1 to 3.6 remain valid if we replace W(F, df) by
the weight function W*(F, d’). Thus all theorems proved under
Assumptions 3.1 to 3.6 can be applied to the decision problem with
W*(F, d*) as weight function. Let 8, be a minimax solution when
W (F, d*) is replaced by W*(F, d’). The existence of a minimax solution
follows from Theorem 3.7. According to Theorem 3.8, é; is a Bayes
solution in the wide sense.”* Hence, since § is not a Bayes solution
in the wide sense,

(3.166) (F, 8,) #= r(F, &)

for at least one F.
Let 7*(F, 6) be the risk function when the weight function is given
by W*(F, d*). Clearly

(3.167) *(F, 8) = r(F, 8) — r(F, &)

Hence r*(F, 8) = 0 identically in F. Since §; is a minimax solution,
we must have

(3.168) ™(F, 8;) = r(F, 8,) —r(F, 8) =0

for all F. It follows from (3.166) and (3.168) that §; is uniformly
better than &y, and Theorem 3.17 is proved.

By the closure C of a class C of decision functions we shall mean the
class of decision functions given as follows: a decision function é is an
element of C if and only if § is either an element of C or a limit (in the
regular sense) of a sequence of elements of C.

Theorem 3.18. Let « be the class of all a priori probability measures &
for which there exists a finite subset w of @ with £(w) = 1. Let C, be the
class consisting of all decision functions which are Bayes solutions (in
the strict sense) relative to members of v. Then, if Assumptions 3.1 to
3.6 hold, the closure Cy of Cy is essentially complete relative to D.

BIf a decision function is a Bayes solution in the wide sense when W*(F, d°) is
the weight function, it retains this property when W*(¥, d") is replaced by W(F, d*),
and vice versa.
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Proof: Let 8y be any element of Dy, and let W*(F, d¥) = W(F, d*)
— W(F, &y). As mentioned before, Assumptions 3.1 to 3.6 hold for
the decision problem corresponding to the new weight function W*(F,
d’). Since v contains the set of all £ as a subset, it follows from
Theorem 3.12 that there exists a minimax solution §; of the decision
problem corresponding to W* which is an element of C,. Since 7*(F,
3) = 0 identically in F, we have

(3.169) ™(F, 8) = r(F, &) — r(F, %) = 0
for all F. Hence Theorem 3.18 is proved.

Theorem 3.19. Let ¢t be a class of all a priori probability measures &
with the property that for any £ not in ¢ there exists a sequence {£;} (2 = 1,
2, ---, ad inf.) of elements of ¢ such that lim £;(w) = &(w) for all subsets

w of Q. Let C; be the class consisting of all decision functions which are
Bayes solutions (in the strict sense) relative to members of t. Then, if
Assumptions 3.1 to 3.6 hold, the closure C¢ of Cy is essentially complete
relative to Dp.

Proof: Let 8, be any element of D, and let W*(F, d¥) and r*(F, §)
be defined as before. If lim £i(w) = £ (w) for all subsets w of Q, then

£; converges to £ in the sense of the metric (3.140) also when r(§, §™)
is replaced by r*(¢, 6™). Hence it follows from Theorem 3.12 that
there exists a minimax solution 8; of the decision problem correspond-
ing to W* such that §; is a member of C;. Since r*(F, §) = 0 iden-
tically in F, r*(F, 6;) = r(F, &) — r(F, 8p) < 0 for all F, and Theorem
3.19 is proved.

Theorem 3.20. If Assumptions 3.1 to 3.7 hold, the class of all Bayes
solutions in the strict sense is complete relative to Dp.

This theorem is an immediate consequence of Theorem 3.17 and 3.15.

The classes of decision functions stated in Theorems 3.17 and 3.20
become minimal complete classes if we exclude the Bayes solutions
which are not admissible. The conditions under which a Bayes solu-
tion is admissible have not yet been thoroughly investigated. The
following remarks, however, may be of interest. We shall say that
two decision functions &, and &, are equivalent if 7(F, §;) = r(F, 83)
identically in F. Clearly, if all Bayes solutions relative to a given
a priori measure ¢ are equivalent, any Bayes solution relative to £ is
admissible. Similarly, if {£;} (¢ = 1,2, - - -, ad inf.) is a given sequence
of a priori probability measures, and if all Bayes solutions relative to
{¢;} are equivalent, then any Bayes solution relative to {£,] is admis-
sible. A simple sufficient condition for the admissibility of a strict



102 DEVELOPMENT OF A GENERAL THEORY

Bayes solution can be given when the choice of the experimenter is
restricted to decision functions §™ for which the number of stages of
experimentation cannot exceed m, where m is a given positive integer.
Clearly r(F, &™) is a continuous function of F in the sense of the metric
p(Fy, Fo, m) given in (3.139). Let £ be an a priori probability measure
such that £(w) > 0 for any subset  of @ which is open in the sense of
the metric p(F;, F2, m). Then any Bayes solution relative to £ must
be admissible. Suppose, to the contrary, that §; and 8, are Bayes
solutions relative to £ and &, is uniformly better than §;. Then there
exists an element Fy of Q such that r(Fo, ;) < r(Fo, 8;). Because of
the continuity of 7(F, 8) in F, there exists an open set w which contains
Fy and is such that r(F, &) < r(F, &) for any F in ». But then
r(%, 82) < r(§, 6;) in contradiction to the assumption that both &
and &, are Bayes solutions relative to &.



Chapter 4. PROPERTIES OF BAYES SOLUTIONS WHEN
THE CHANCE VARIABLES ARE INDEPENDENTLY AND
IDENTICALLY DISTRIBUTED AND THE COST OF
EXPERIMENTATION IS PROPORTIONAL TO
THE NUMBER OF OBSERVATIONS!

4.1 Development of the General Theory

4.1.1 Introductory Remarks

In this chapter we shall deal exclusively with the case where the
successive chance variables X;, X,, - -, etc., are independently and
identically distributed and the cost of experimentation is propor-
tional to the number of observations. Since in this case the cost of
experimentation depends only on the total number of observations
made, we can restrict ourselves, as was pointed out in Section 3.1.3,
to decision functions & for which each stage of experimentation consists
of exactly one observation. Furthermore, because of the assumption
that X;, X, ---, etc., are independently and identically distributed,
we can assume without loss of generality that the ith stage of the
experiment consists exactly of a single observation on X; (z =1, 2,
-+, ete.). Let d;° denote the decision to take an observation on X;.
Then our condition on é can be expressed

4.1) 5(D°| 0) = 8(ds*| 0)
3D | z; dy%, -+, ) = 8(d%41 | 750 -+, dY) (=1,2,--)

In what follows in this chapter, we shall restrict ourselves to decision
functions & which satisfy (4.1). We shall use the symbols 3(1 | 0) and

8¢ + 1|:c1, -+, ;) synonymously with 8(d;*|0) and 8(d%s | z;
d,®, ---, d;°), respectively; i.e.,
4.2) 5(1] 0) = 8(d:*| 0)

3 4+ 1|2y, +o, 7)) = 8% | 7501 - -+, d°)

Thus 8(1 | 0) is the probability that we shall take an observation on
Xy, and 8 + 1 | zy, *-+, ;) is the conditional probability that we
shall take an observation on X;; knowing that X;, - --, X; have been
observed and the values z;, - - -, z;, respectively, have been obtained.

1 Most of the results given in this chapter appeared in an earlier publication by
Wald and Wolfowitz [71].
103
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For any subset D¢ of D!, we shall use the symbol 8(D!| z;, - - -, 2:)
to denote 8(D* | z; d;°, - - -, d:°).

For any element F of Q, let f(x; l F) denote the elementary prob-
ability law of X; when F is the true distribution of X. Thus f(z; I F)
denotes the density function of X; when F is absolutely continuous,
and the probability that X; = z; when F is discrete. Let f*(z; l F)
denote the cumulative distribution function of X;; i.e.,

4.3) ralp = el pa

in the absolutely continuous case, and

(4.4) @ | F) = t%f(t | F)

in the discrete case.

If £ is the a priori probability measure on @, for given values zy, - - -,
Z,, of the first m chance variables the a posteriori probability of a
subset w of Q is given by
[re1m - sem| Pyt

w

(4'5) g-(“’ | &, oo, x‘m) =

[P - fem| P
Let W(£, d°) be defined by

4.6) W, ) = fn W, &) d

Because of the compactness of the space D?, Ming W (%, d¥) obviously
exists.

For any non-negative integer m, let ™ denote a decision function
for which the probability is 1 that the total number of observations
will not exceed m. For any a priori probability measure £ on 2, we put

pm(E) = Infem r(£, 0™)

“.7)
p(&) = Inf; r(¢, 9)
In particular,
(4.8) po(£) = Infy r(f, 8°) = Ming W (%, d°)

In the next section we shall study the functions p(£) and p,(£).

It will be assumed throughout this chapter that Assumptions
3.1 to 3.4 hold, even if this is not stated explicitly. Assumption 3.5 is
automatically fulfilled, and Assumption 3.6 is replaced, by the assump-
tion that any decision function & subject to (4.1) may be used.
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4.1.2 Properties of the Functions p(£) and p,, (%)

In this section we shall derive several theorems concerning the
functions p(£) and p,(§).

Theorem 4.1. The following recursion formula holds:

@9 pmsa® = Min [o(®, [ on(e) d*@| 9 + )

(m=0,1,2, ---,ad inf.)
where

@.10) taw) = $(w ]| & a)

/!9 = [ el P a

Proof: Let p,*(¢) (m =1, 2, ---, ad inf.) denote the infimum of
r(£, 8) with respect to 8, where & is restricted to decision functions for
which the probability is 1 that the number of observations is =1 and
=m. Obviously

(4.11) pm+1(8) = Min [po(8), p*m-41(£)]

Let pm*(£| a) denote the infimum with respect to 6 of the conditional
risk (conditional expected value of W(F, d°) plus conditional expected
value of cost of experimentation) when £ is the a priori probability
measure on Q, the observed value of X; is equal to a, and the choice
of the experimenter is restricted to decision functions & for which the
probability is 1 that the number of observations is =1 and =m.
Clearly

(412) P*m+1(E I a) = pm(&) +c
Since
(4.13) praa® = [ ptuiae| 0 il

—00

equation 4.9 follows from (4.11), (4.12), and (4.13).
Theorem 4.2. The function p(£) satisfies the equation
(4.19) p® = Min [o(®), [ o) d*@| 9 + o

The proof of this theorem is omitted, since it is essentially the same
as that of Theorem 4.1.
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Theorem 4.3. The following inequalities hold:

W 2
(4.15) 0 = pm(®) — p(®) < j (m=1,2,---,ad inf.)

where W denotes the least upper bound of W(F, d*).

Proof: Let {8;} (=1, 2, ---, ad inf.) be a sequence of decision
functions such that
(4.16) lim r(%, 6;) = p(%)

t= o

Also let P;(£) denote the probability that at least m observations will
be made when §; is the decision function adopted and £ is the a priori
probability measure on Q. Since p(£) = W, and since

(4.17) r(§, 8;) = emPy(§)
it follows from (4.16) that

w
(4.18) limsup P;(¢) < -0
L= cm
Let 8,™ be the decision function obtained from §; as follows: §;™(1 | 0)
=8(1]0), ™0 + 1|z, -+, 2) = 8ir+ 1|2y, -+, 2,) forr < m,
5(D* | 0) = 8(D*| 0), and (D" | 1, ---, z.) = 8(D* |, -+, )
for any subset D* of D* and for any 7 < m, and 8;"(do* | 21, * * *, Zm) = 1,
where dy’ is a fixed element of D!. Clearly
(4¢.19) (¢, &™) = (¢, &) + Pi(HWo
From (4.16), (4.18), and (4.19) it follows that

: Wo?
(4.20) h{pffp r(§ 8™) = p(®) + o

Since p,,(£) cannot exceed the left-hand member of (4.20), the second
half of (4.15) follows from (4.20). The first half of (4.15) is obvious,
and the proof of our theorem is completed.

An immediate consequence of Theorem 4.3 is the relation 2

(4.21) Lim pm(§) = p(£)

me= o
uniformly in £.

A Bayes solution relative to a given a priori probability measure &,
can immediately be given in terms of the functions p(£) and po(%) as

2 A proof of (4.21) is contained implicitly in a paper by Arrow, Blackwell, and
Girshick [4].
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follows: If p(%) = po(£o), do not take any observation and make a
final decision do’ for which W(fo, do’) = po(f0). If p(%0) < polo),
take an observation on X; and compute the a posteriori probability
measure £, = {(v | £o, z1) corresponding to foand z1. If p(£s,) = po(ty),
stop experimentation and make a final decision d* for which W (%,,, d)
= po(%:,). If p(£;,) < po(£,,), take an observation z; on X,. In gen-
eral, after the observations z;, - - -, Z,, have been made, take an addi-
tional observation if p(%,,,...z,) < po(%zy,.--2,), and stop experimenta-
tion with a proper terminal decision if p(£,, ... .,) = po(&y,- .. z,), Where
&,,,- -z, denotes the a posteriori probability measure corresponding to
£, 21, * ¢ Zme

If the choice of the experimenter is restricted to decision functions
o™ for which the probability is 1 that the total number of observations
will not exceed m, the construction of a Bayes solution relative to a
given a priori probability measure £ can easily be carried out with the
help of the functions po(£), p1(£), * - *, Pm(£) asfollows: If pm (&) = po(%o),
a proper terminal decision is made without any experimentation. If
pm(£0) < po(f0), an observation z; on X, is made and the a posteriori
probability measure &,, is determined. If pp_1(%;,) = po(£s,), experi-
mentation is stopped with a proper terminal decision. If pp_;(%,,)
< po(%;,), an observation z, on X, is made. In general, after the
observations z;, ---, zr have been made (¥ < m), experimentation
is continued when pn_i(fs,,.... ) < Po(%zy,-..z), and experimenta-
tion is stopped with a proper terminal decision when pn_r(%.,,... )
= po(ksy,....mp). Starting with po(£), the functions py(£), - - -, pm(£) can
be determined step by step with the help of the recursion formula (4.9).

A recursive method of construction for Bayes solutions with a fixed
finite upper bound m for the number of observations was given also
by Arrow, Blackwell, and Girshick [4]. Although their method is
applicable also to non-linear cost functions, the number of steps re-
quired by their method is of the order m? instead of m, owing to the
fact that the solution corresponding to r + 1 (r < m) cannot be
obtained in a single step directly from the solution corresponding to
r, but through a recursive procedure starting with m = 1.

Theorem 4.4. If & and & are two probability measures on Q such that®

(4.22) 8@ _ 4
£2(w)

for all w, then

(4.23) p(f1) = (1 + &p(E)

3The ratio on the left-hand side of (4.22) is defined to be equal to 1 if
#1(w) = fa(w) = 0. This remark refers also to any similar ratios that occur later.



108 PROPERTIES OF BAYES SOLUTIONS
Proof: It follows from (4.22) that

(4.24) (b, 8) S 1k, )1 + ¢

for all . Hence (4.23) must hold.

This theorem permits the computation of a simple, and in many
cases useful, lower bound for the quantity

(4.25) f p(&a) df*(a| &)

—o

that occurs in (4.14). A lower bound for (4.25) can be obtained as
follows: For any real value a, let ¢, be a non-negative value determined
so that ¢

) _ L

2
(4.26) ) =

for all w. Then

wm [ el zf O il

—» —olt e
al : — —df*a] 9
Since €, = 0 and since po(£) = p(£), we obviously have
w2 o[ Z —— @l
2 p(®) — [1 _: 4] Ol

Hence we obtain the inequality

1
1+ e
An upper bound of (4.25) is obtained by replacing p by po; i.e.,

df*(a| 9]

@2 [ o) dfald 2z o0 - po®l1 - [

(4.30) [ ewraralos[ wedraly

— o0

The bounds given in (4.29) and (4.30) may be useful in constructing
Bayes solutions, since the following theorem holds.

¢ The improper value « is admitted for e,.
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Theorem 4.5. If

31) w® > [ we) drial 9 +e
tenp® <m® U T
432) wl - [ ——aralol<e

then p(£) = po(8).

This theorem is an immediate consequence of (4.14), (4.29), and
(4.30). With the help of this theorem, we can decide whether p()
< po(§) or p(¥) = po(£) whenever ¢ satisfies (4.31) or (4.32). It is
particularly useful when the class of probability measures £ for which
neither (4.31) nor (4.32) holds is small.

The following continuity theorem is an immediate consequence
of Theorem 3.6 in Chapter 3.

Theorem 4.6. Let

(4-33) {Ez} (¢=0,12, - *, ad inf.)
be a sequence of probability measures on Q such that
(4.34) lim £(w) = £o(w)

1=

Sor all subsets w of Q. Then
(4.35) lim p(&:) = p(k0)

4.1.3 Characterization of Bayes Solutions

For any probability measures £ on @, one of the following three con-
ditions must hold:

(4.36) po(8) < r(%, 8) for all & for which 5 (1|0) =1
4.37) po(%) = (¢, 9) for all & for which 5(1|0) = 1

= r(¢, 8) for at least one & with (1 | 0) = 1
(4.38) po(§) > r(¢ 8) for at least one & with 5(1|0) = 1

Let p*(£) denote the infimum of (%, 8) with respect to 8, where § is
subject to the restriction 8(1|0) = 1. It follows from the general
existence theorem given in Chapter 3 (Theorem 3.5) that there exists
a decision function 6* such that

(4.39) p*(®) =7, ) and &*(1[0) =1
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Because of (4.39), the conditions (4.36), (4.37), and (4.38) are equiv-
alent to po(£) < p*(8), po(§) = p*(£), and po(£) > p*(£), respectively.

We shall say that a probability measure £ on  is of the first type if it
satisfies (4.36), of the second type if it satisfies (4.37), and of the third
type if it satisfies (4.38). Since the a posteriori probability measure
defined in (4.5) is also a probability measure on @, any a posteriori
probability measure will be of one of the above-mentioned three types.

For any sample point z and any decision function 8§, let m(z, §)
denote the smallest non-negative integer with the property that
d(m+ 1|2y, -+, @m) = 0; for m =0, 8(m + 1|z, - -+, 2,) reduces
to 8(1| 0). We shall now prove the following theorem characterizing
Bayes solutions.

Theorem 4.7. A mecessary and sufficient condition for a decision
function 8¢ to be a Bayes solution relative to a given a prior: distribution
£o 18 that the following three relations be fulfilled for any sample point =
(except perhaps on a set whose probability measure s zero when & is the
a priori probability measure in Q):

(@) For any m < m(z,d) the a posterior: probability measure ¢(w | £o,
Z1, * -+, Tm) 18 of either the second or the third type (for m = 0, the above
a posteriort probability measure reduces to the a priori probability meas-
ure &). If (o l %0, Ty, ***, Tm) 18 of the third type, d(m + 1 l Zy, -,
Tm) = L.

() For m = m(z, &), the a posteriori probability measure {(w | %o, 21,
-+, Znm) 18 of either the first or the second type.

(c) For m = m(z, &) we have

80(Dlsyy ez | 21, vy Zm) = 1
where DY, ... .. denotes the set of all elements d* of D* for which
Wt (w I £oy T1, ** *y Tm), @] = Ming W[t (w I Eo, T1y -y Tm), dF]

Proof: The sufficiency of (a), (b), and (c) can easily be verified.
To prove the necessity of (a), (b), and (c), let us assume that &, is a
decision function that violates at least one of the relations (a), (b),
and (c) on a set M* of sample points = whose probability measure
P(M* | &) according to £, is positive; i.e.,

(@.40) parefto = [[| [ ar| o >0

For any 8, the set M* is Borel measurable, so that the probability
(4.40) always exists. The measurability of M* can be proved with the
help of the measurability assumptions in Section 3.1.5 as follows:
Let M,* be the set of z’s for which (a) is violated, Mo* the set of s
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for which (b) is violated, and M3* the set of z’s for which (c) is violated.
It is sufficient to show that M ;*( = 1, 2, 3) is measurable. Let M;*
denote the subset of M ;* for which the first violation of the correspond-
ing condition occurs for the sample z;, - -, z;. We have merely to
show that M;* is measurable for all 7 and ¢. The measurability of
M¢* follows from the fact that m(z, 8) and 8(D%,, ... .. | 21, -+, Zm)
are Borel measurable functions of 2, - - -, 2,,. To show the measurabil-
ity of My* and My,*, it is sufficient to show that the set of samples
zy, *++, 2 for which {(w l f0, 71, -+, zs) isof typez (=1, 2, 3) is
measurable. The latter is certainly true if pol¢(w | &, 21, - - -, ;)] and
Mt (w | %, 71, **+, z:)] are Borel measurable functions of z;, - - -, z.
On the basis of the measurability assumptions in Section 3.15, the
function pol¢(w | £, 21, - - -, 2:)] can easily be seen to be Borel meas-
urable. From (4.9) and (4.21) it follows that p[{(w I £, 21, **+, 21)] is
also a Borel measurable function of z;, ---, ;. The measurability of
ot (w | %, T1, - - -, ;)] follows from the relation

p*[g_(w I 30) Ty, xt)] =c
+f : ple (@ | g0, 21, = -+, 2, @] df*a] $(w | &0, 21, - -+, )]

Hence M* is proved to be Borel measurable.

For any z in M*, let {(x) be the smallest integer =0 such that at
least one of the relations (a), (b), and (c) is violated for the finite
sample z,, zg, - -, Tiz). Clearly, if z is a point of M*, any sample
point y for which y; = z1, * +, Yiz) = Zi(z) Is also in M*. Thus with
every sample point z in M* there is associated a cylindric subset M *
of M* consisting of all points ¥ whose first £(x) coordinates are equal
to the corresponding coordinates of z. Clearly M* can be represented
as a sum of such cylindric sets which are disjoint. Let z° be a particular
point in M*, and let M *, be the corresponding cylindric subset of M*.
For any decision function & for which 8¢ + 1| z,°, ---, %) > 0 for
i=0,1, ---, t(z°) — 1, let (%, 8, 2,°, - -+, 2%9) denote the condi-
tional risk when £, is the a priori probability measure on Q, § is the
decision function adopted, and the first #(z°) observations are equal
to 2,%, - - -, 2%, respectively. In other words, (%, 8, 2:°, - - -, z%¢9)
is the conditional expected value of the loss W(F, d*) plus the condi-
tional expected cost of experimentation when & is the a priori probabil-
ity measure in £, § is the decision function adopted, and the observa-
tions 2%, - - -, 2%¢ have been made.

We shall now show that there exists a decision function §; such that

(4.41) 7(&o, 61) < r(%o, 50)
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We choose the decision function §; such that the following conditions
are satisfied: For any z not in M* we have

4.42) 80|z, --,2:) = 8Dt | 21, +++,2:) (@ =1,2,---,adinf)
and
443)  HGE+ 1|z, o) =sG+ 1|z, -, 20)

((=1,2 ---,adinf.)

For any r in M*, §; satisfies the above equations for 7 < #(z). Fur-
thermore §; satisfies the conditions (a), (b), and (¢) of our theorem.
Clearly such a decision function &; exists. Let z° be a particular
point in M*, and consider the conditional risk

(4.44) (6o, 81, 21°, -+, 2°en)

Since §; satisfies the conditions (a), (b), and (¢), we can easily verify that
(4.45) r(ko, 81, 21", - -+, 2%e0) = Mins (&, 8, 21%, - -+, 2%q9)

where § is restricted to decision functions for which

(4.46) 3G+ 1|2 -+, 2% >0 for 5 < #(2°)

On the other hand, since §, violates one of the conditions (a), (b), (c)
for the sample (z,° - -, 2%9), we can easily see that

(447) T(Eo, 80’ xlo) Tty xol(z")) > MinB 7'(50; 67 xloy Sty xot(x"))

where 6 is restricted to decision functions which satisfy (4.46). Equa-
tion (4.41) follows from (4.40), (4.45), and (4.47). This completes the
proof of Theorem 4.7.

A class C of probability measures £ on £ will be said to be convex if,
for any two elements £ and £; of C and for any positive A < 1, the
probability measure £ = A\; + (1 — N)&; is an element of C.

For any element do* of D?, let C; 4, denote the class of all probability
measures £ of type 7 (z = 1, 2, 3) for which

(4.48) W (£ do°) = Ming W(£, d)

Let Cy denote the set theoretical sum of C; 4 and Cp4. We shall now
prove the following theorem.

Theorem 4.8. For any element d°, the classes Cy gt and Cz are convex.
Proof: Let £ and £ be two elements of Cy 4. Then for any decision
function & for which 8(1 | 0) = 1 we have

(449) W, d) <r(£,8) and Wk, d) <r(&, d)
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Let £ = N\&; + (1 — N)&;, where \ is a positive number < 1. Clearly

(4.50) W, d) = \W (&, d°) + (1 — VW (&, d*)
and
(4'51) T(E) 8) = XT(EI’ 6) + (1 - >‘)7'('{’:2: 8)

From (4.49), (4.50), and (4.51) we obtain
(4.52) W(d) <r 8 and  W( d") = Ming W(¢, d)

Hence £ is an element of Cy4, and the convexity of Cy g4 is proved.
The convexity of Cy can be proved in the same way, replacing < by =<
in (4.49) and (4.52).

Theorem 4.9. Let & be an element of Cy 4 and &, an element of C 4.
Then for any positive N < 1 the probability measure £3 = N\ + (1 — N,
is an element of Cy gt

Proof: Let £, £, and £ be probability measures satisfying the
assumptions of Theorem 4.9. Clearly

W&, d*) < r(&, 8) and W (e, d%) = r(£, 9)

for any & for which &(1 | 0) = 1. From this, (4.50), and (4.51) it
follows that
W (g, dY) < (4 9)

for any 5 for which 8(1|0) = 1. Since
W (¢s, d) = Ming W (&, d)
£3 must be an element of C} &, and our theorem is proved.

We shall say that a set L of probability measures £ on Q is a linear
manifold, if for any two elements & and £ of L, £ = af; + (1 — a)&;
is also an element of L for any real value « for which a&; + (1 — )&,
is a probability measure. A linear manifold L will be said to be tangent
to Cg if the intersection of L and Cj 4 is not empty, but the intersec-
tion of L and C4 4 is empty.

For any decision function § and for any element d* of D¢, let L(3, d°)
denote the linear manifold consisting of all probability measures £
which satisfy the equation

(4.53) Wt d) = r(§ 9)

Theorem 4.10. Let & be an element of Cs 4, and let 8y be a decision
Sfunction such that §o(1 | 0) = 1 and W(k, d°) = r(f, do). Then the
linear manifold L(3y, d*) is tangent to Cy.
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Proof: £ is obviously an element of L(8, d®). Thus the intersection
of L(3o, d*) with Cy 4 is not empty. For any element £; of C; 4 we have

(4.54) Wk, d) < (&, 8)
for any & for which 8(1| 0) = 1. Hence
(4'55) W(El: d‘) < T(El; 80)

and, therefore, £ cannot be an element of L(8, d®). This proves our
theorem.

414 The Case where X; Can Take Only Two Values

In this section we shall discuss in somewhat more detail the special
case where X; can take only two values, 0 and 1, say. Let & be the
a priori probability measure, and let £;; denote the a posteriori prob-
ability measure after 7 0’s and j 1’s have been observed. The prob-
ability measure £ reduces, of course, to the a priori probability meas-
ure £&. Suppose that there exists a positive integer m such that

(4.56) polimi) Sc¢  and  polkim) ¢ (5,5 =0,1, ---, m)
It follows from (4.56) that
(4.57) P(Emj) = PO(Emj) and p(Eim) = po(Eim)

(i’j=0; 1’2; ’m)

Applying formula (4.14) to our special case, we obtain the recursion
formula

(4.58) p(&:;) = Min [po(£:7), piie(Eiy j41) + (1 — pije(§iza, ) + ¢l

where p;; denotes the probability of obtaining the value 1 in a single
trial when £;; is the a priori probability measure; ie.,

(4.59) puj = fsz (| F) dgs

With the help of (4.57) and the recursion formula (4.58), the values of
p(£;;) can easily be determined step by step for all (7, j) for which
1 < mandj < m. Infact, (4.57) and (4.58) yield the values p(£n—1,5)
and p(f;m—1) for i<m —1 and j = m — 1. After the values
p((n—1, j) and p(%;, m—1) have been determined, the recursion formula
(4.58) can be used to compute p(¢n_2, ;) and p(&;, m—2) C = m — 2
and j £ m — 2), and so on. A Bayes solution can be given in terms
of the quantities p(%;) (¢, =0, 1, 2, ---, m) as follows: If p(£go)
= po(%00), a terminal decision d* is made for which W (&g, d*) = po(%00)-
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If p(f00) < po(foo), experimentation is continued as long as p(£:;)
< po(%:;). The first time that p(£;) = po(£:;) experimentation is
stopped with a terminal decision d* for which W(g;, d¥) = po(&:;).
It follows from (4.57) that experimentation will stop at some (%, 7)
for which ¢ < mand j < m.

Since X; can take only the values 0 and 1, any distribution function
F of X; can be represented by a non-negative number p < 1, where p
denotes the probability that X; = 1. Thus, in the weight function
W(F, dt), we may replace F by p;i.e., W(p, df) denotes the loss incurred
when 7 is the true probability that X; = 1 and the terminal decision d*
is made. The space @ can now be represented by the closed interval
[0, 1].

It is of interest to investigate the conditions which guarantee the
existence of a positive integer m for which (4.56) holds. In this con-
nection we shall prove the following theorem.

Theorem 4.11. A positive integer m satisfying (4.56) exists if the
Jollowing three conditions are fulfilled:

(1) The a priori probability measure &, assigns a positive probability
to any open subset of the interval [0, 1].

(i) If lim p; = po, then lim W (p;, d*) = W (po, d°) uniformly in d'.

(iii) For any p there exists a terminal decision d* such that W (p, d*) = 0.
Proof: Assume that conditions (i), (ii), and (iii) are fulfilled. For
any positive e let P;;(¢) denote the a posteriori probability that p lies

in the interval ( J - — ¢, L + € ) after 7 0’s and j 1’s have been
e o 1+
observed. We can easily verify that, because of (i),
(460) hm P,-,-(e) =1
uniformly in j, and
(4.61) lim P;j(e) = 1
Jﬂ”

uniformly in <.

Let d;;* be a terminal decision for which
won w (i) =0

. Z +J’ J

The existence of such a terminal decision follows from condition (iii).
Also let

(4.63) W;j(e) = Max, W(p, dijt)



116 PROPERTIES OF BAYES SOLUTIONS

. . . J J
hy he interval - . -
where p is restricted to the interva (1,' 7 6> iy + e) It fol
lows from (4.62) and condition (ii) that

(4.64) lim Wij(é) =0
=0

uniformly in ¢ and j. Clearly

(4.65) W (&5, di") < Pij()Wii(e) + [1 — Pii(e)]Wo

for any ¢ > 0, where W, is an upper bound of W(p, d*). It follows
from (4.60), (4.61), (4.64), and (4.65) that

(4.66) Hm W (&, dii”) = 0

uniformly in j, and
(4.67) lim W (&5 dii*) = 0
Jj=
uniformly in 7. Since po(£:;) < W (&5, ds;"), Theorem 4.11 follows from

(4.66) and (4.67).
The bounds for

[ rearaly

given in (4.29) and (4.30) are particularly simple to compute when
X; can take only the values 0 and 1. To illustrate this, consider the
case where Q consists of three points, py, ps, and p3 (say), and D* con-
sists of the elements d,%, d.’, and ds’. Let

(4.68) Wpsd) = Wij =1 ifisj
=0 ifi=j
Any probability measure £ on 2 can be represented by a vector (¢, £, &),
where £* denotes the probability that p; is true. Clearly
(4.69) po(§) = 1 — Max (&, £, &%)

Let £ = (&, £, ) denote the a posteriori probability measure when &
is the a priori probability measure and one trial was performed yielding
the value zero. Similarly let £ = (&, £2, £8) denote the a posteriori
probability measure when £ is the a priori probability measure and
one trial was performed giving the value 1. Then
. & : 1 — p)
g’ = 3275 and E" = ..s(—p)s

2 pi’ 2 1 —p)#

je=1 j=1

(4.70)
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The upper bound given in (4.30) becomes equal to

] 3 3

(4.71) f po(ta) df*(a| &) = prs") po]) + (1 — le,-s*)po@
—a0 =1 1=

Let

i 1—p;
(4.72) Max;; (?— - 1) <e and Maxi,:;( L 1) e
P; 1—p;

Then we can put ¢, = ¢, and the lower bound given in (4.29) becomes
equal to

1 €
(4.73) p(§) — po(%) (1 - m) = p(&) — po(®) T+e

Applying Theorem 4.5, we arrive at the following result: If
3 3
474)  po(® > (Z pi&‘) po®) + (1 — 2 pit)po®) + ¢

=1 =1

then p(§) < po(§). If .
(4.75) po()) —— <c

1+ e
then p(£) = po(8).

An example.’ The method given in this section has been applied
to obtain a Bayes solution for the following problem: Let X, X, - - -,
etc., be independently and identically distributed chance variables.
The chance variable X; can take only the values 0 and 1; let p denote
the probability that X; = 1. The value p is unknown, and the problem
is to test the hypothesis H that p < 4. Let d;® denote the decision
to accept H, and do’ the decision to reject H. We assume that D*
consists of the elements d;* and d’, and that

W, di*) =0 forp <3, =1 forp=$
W(p,d2¥) =0 forp > %, =1 forps%

The cost of experimentation is assumed to be proportional to the
number of observations. Let ¢ = 0.004 be the cost of a single observa-
tion. Furthermore let the a priori distribution of p be the rectangular
distribution with the range [0, 1]. In Table I the numbers in the upper
halves of the cells give the values of po(£;;) forz,5 =0, 1, ---, 10 and

the value pg(£10,11) = po(£11,10)- Since po(£10,7) = po(i10) < cforj <
10, we see that

p(&10.5) = po(£10,7) and p(£,10) = po(&j,10)

5 The author is indebted to Mr. Milton Sobel for carrying out the computations
for this example.-
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TABLE I
Num-
ber Number of 1's
of — —
0’s 0 1 2 3 4 5 6 7 8 9 10 11

0 | .2500 .0625 .0156 [ .0039 .0010 .0002 .0001 .0000 .0000 .0000 .0000
.0252 .0212 .0126 | .0039 .0010 .0002 .0001 .0000 .0000 .0000 .0000

1|.0625 .1563 .0508 .0156 |.0046 .0013 .0004 .0001 .0000 .0000 .0000
.0212 .0265 .0225 .0141 |[.0046 .0013 .0004 .0001 .0000 .0000 .0000

2 |.0156 .0508 .1035 .0376 |.0129 .0042 .0013 .0005 .0001 .0000 .0000
.0126 .0225 .0250 .0210 |.0129 .0042 .0013 .0005 .0001 .0000 .0000

3 .0039 |.0156 .0376 .0706 .0273| .0100 .0035 .0012 .0004 .0001 .0000
.0039 | .0141 .0210 .0225 .0185| .0100 .0035 .0012 .0004 .0001 .0000

4 .0010 .0046 .0129 | .0273 .0489 .0198| .0076 .0028 .0010 .0003 .0001
.0010 .0046 .0129 | .0185 .0210 .0161 | .0076 .0028 .0010 .0003 .0001

5 .0002 .0013 .0042 .0100| .0198 .0343 .0143 | .0056 .0022 .0008 .0003 ....
.0002 .0013 .0042 .0100 | .0161 .0176 .0136) .0056 .0022 .0008 .0003 ....

6 .0001 .0004 .0013 .0035 .0076| .0143 .0243 | .0103 .0042 .0016 .0006
.0001 .0004 .0013 .0035 .0076 | .0136 .0143 | .0103 .0042 .0016 .0006

7 .0000 .0001 .0005 .0012 .0028 .0056 .0103 | .0173 | .0075 .0031 .0012 ....
.0000 .0001 .0005 .0012 .0028 .0056 .0103 | .0115| .0075 .0031 .0012 ..

8 .0000 .0000 .0001 .0004 .0010 .0022 .0042 .0075 | .0124 | .0054 .0023
.0000 .0000 .0001 .0004 .0010 .0022 .0042 .0075 | .0094 | .0054 .0023

9. .0000 .0000 .0000 .0001 .0003 .0008 .0016 .0031 .0054 | .0090 | .0039
.0000 .0000 .0000 .0001 .0003 .0008 .0016 .0031 .0054 | .0079 | .0039

10 .0000 .0000 .0000 .0000 .0001 .0003 .0006 .0012 .0023 .0039 .0064 .0028
.0000 .0000 .0000 .0000 .0001 .0003 .0006 .0012 .0023 .0039 .0074 ....

11 -... .0028

for 7 < 10. Using the recursion formula (4.58) for ¢ = j = 10 and the
given value of pg(£10,11) = po(£11, 10), we find that

p(£10,10) = po(¢10,10)

The values of p(¢;;) for 7,5 = 0, 1, - - -, 10, as given in the lower halves
of the cells in Table I, were obtained step by step by repeated applica-
tion of the recursion formula (4.58).

The heavy lines in Table I include those cells (Z, j) for which p(£;;)
< po(£:;). In all other cells (¢, j) we have p(&:;) = po(%:;)- Thus a
Bayes solution is given by the following rule: Continue taking observa-
tions as long as the pair (%, j) is represented by a cell inside the heavy
lines, where 7 is the number of 0’s and j is the number of 1’s obtained.
At the first time when (¢, j) is represented by a cell outside the heavy
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line, stop experimentation. At the termination of experimentation,
accept H if © > j, reject H if 7 < j; either decision can be made if 7 =.j.

4.2 Application of the General Theory to the Case where @ and D!
Are Finite

4.2.1 The Case where Q Consists of Two Elements

In this section we shall apply the general results of Section 4.1 to
the special case where @ consists of two elements F; and F; (say), and
D¢ consists of two elements d,* and d,.. Here d; denotes the terminal
decision to accept the hypothesis H; that F; is true (¢ = 1, 2). Let

476) W(F,df) = Wij=0 fori=j and >0 forss=j

An a priori probability measure is now given by a vector £ = (£, £2),
where the component £ is the probability that the true distribution F
is equal to F;( = 1,2). Of course, £ = 0 and & + £ = 1.

Let £ be the a priori probability distribution given by the vector
(1,0), and £, the a priori probability distribution given by the vector
(0,1). Clearly Cj; contains £ but not &, and Cg, contains £; but not £;.
It follows from Theorems 4.6 and 4.8 that C;,: and Cgy are closed and
convex sets of probability measures £. Furthermore we obviously have

(£.77) EWo S E Wy,

for all £ in Cyy, and

(4.78) EWa Z £ Wy

forall£in Cye. Let & = (%!, £&°7) be the probability measure for which
(4.79) £°Wa1 = £0'Wie

Clearly, because of (4.77) and (4.78), £ < & for any £ in Cy¢ and
£2 = &? for any £ in Cye. Since Cye and Cyype are closed and convex,
there exist two positive numbers A’ and A"’ such that

(4.80) 0<h=gH*=h'<1

and such that the class C,,¢ consists of all £ for which £ < b/, and the
class Cj, consists of all £ for which £ = h”. It follows from Theorem
4.9 that C 4. consists of the single element £ for which £ = 1/, and
Cs.4y consists of the single element £ for which £ = b’

Applying Theorem 4.7, we arrive at the following characterization
of a Bayes solution corresponding to a given a priori probability meas-
ure: Let &; denote the a posteriori probability measure after © observations
have been made (1 = 1, 2, ---, ad inf.), and let £ be the a priori prob-
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ability measure. If &2 < h', accept Hy. If £&° = b/, decide between
accepting Hy and taking an observation on X, by any independent chance
mechanism. If h' < &2 < h”, take an observation on Xy. If &2 = h”,
decide between accepting Hy and taking an observation on X; by any
independent chance mechanism. If £&2 > h", accept Hy. If the fore-
going procedure resulted in taking an observation on Xy, compute & and
proceed in a stmilar way, except that &, s now replaced by & and X, by
Xo. If this rule results in taking an observation on Xy, compute £, and
s0 on.

The a posteriori probability 2 of Hj after ¢ observations have been
made is given by

tEof(x1 | Fa) -+ f(z:| Fa)
(oYf (@1 | F1) -« f(z:| F1) + £*f(z1 | Fa) - - - f(z:| F2)

The Bayes solution described above is identical to the sequential prob-
ability ratio test procedure for deciding between H; and Hs,. The
sequential probability ratio test is defined as follows (see [65]): For
any positive integer 7, let

D2 _f(x1 l Fy) ---f(inFz)

481) &=

4.82 = =
(482) i f@i| Fy) -+ f(z:| Fy)
and let
(4.83) Po_ 4
P1o

Two positive constants A and B (B < A) are chosen. The procedure
for carrying out the experimentation and making a terminal decision
is identical to the procedure for the above-described Bayes solution,
except that &2 is replaced by p2:/pis, ' by B, and h” by A. Since
Poi/P1s is a strictly monotonic function of &2, the above-described
Bayes solution coincides with the sequential probability ratio test for
properly chosen values of the constants A and B.

The above definition of a sequential probability ratio test differs
slightly from the one given in earlier publications (see [65]). In [65]
the constant B is restricted to values <1 and the constant A to values
>1. No such restriction is made here. Furthermore in [65] it is
required that experimentation be stopped when pey/p1n = A or = B,
whereas here experimentation may be continued in this case. Of
course, if the probability (under H; and Hs) is zero that pen/pim = A
or = B, as it usually is when the distributions are absolutely continuous,
the difference between the two definitions of the sequential probability
ratio test is of no consequence.
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It follows from Theorem 3.20 in Chapter 3 that the class of all Bayes
solutions for deciding between H; and H, is a complete class. Since
any Bayes solution is equivalent to a sequential probability ratio test
corresponding to some values of the constants A and B, we arrive at
the following result.

Theorem 4.12. The class of all sequential probability ratio tests corre-
sponding to all possible values of the constants A and B is a complete
class of decision functions for deciding between H; and Hy.®

4.2.2 The Case where Q Contains More than Two Elements

It will be sufficient to discuss the case when © consists of three ele-
ments F,, Fs, and F3, since the extension to any finite number >3
will be obvious. Let

W(Fi, djt) = W-;j =0 forz =j
(¢,7=1,23)
>0 foris=j

Any a priori distribution ¢ = (&, £, £) can be represented by a
point with the coordinates £, £2, and £2. The totality of all possible
a priori distributions ¢ will fill out the triangle T with the vertices
Vi1, Vi, V3, where V; represents the a
priori distribution # whose 7th component
£ is equal to 1 (see Fig. 1). Clearly the
vertex V; is contained in Cyr. Thus, ac-
cording to Theorem 4.8, the set Cy: (2 = 1,
2, 3) is a convex subset of T containing V.

If one of the components of §, say &,
is zero, then H; can be disregarded, and
the problem of constructing Bayes solu-
tions reduces to the previously considered Fia. 1
case where k¥ = 2. Thus, in particular,
the determination of the boundary points Py, Py, - - -, Pg of Cyy, Cyy,
and Cj;y, which are on the boundary of T, reduces to the previously
discussed case where k = 2.

We shall now show that Csg4¢ consists precisely of the boundary
points of Cy:, provided that the sets Cypr, Cyy, and Cyy are disjoint.
It follows immediately from Theorem 4.9 that Cs 4 must be a subset
of the boundary of C;r. Thus we have merely to show that if & is a
boundary point of Cyy, then £ is a point of Cs4r. Since & is a point of

¢ This theorem follows also from an optimum property of the sequential prob-
ability ratio test proved by Wald and Wolfowitz [69].
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C,+, we must have po(%) < p*(%). Let {£} (¢ =1,2, ---,adinf.) be a
sequence of a priori measures such that lim & = £ and & (¢ > 0) is not

contained in any of the sets Cyy, Cg,, and Cge. Such a sequence {£;}
exists, since £ is a boundary point of Cy: and the sets Cyy, Cyyr, Cyyt are
disjoint. Clearly po(¢;) > p*(%:) for =1, 2, ---, ad inf. Since
lim po(&) = po(%0) and lim p*(&;) = p*(%o) [the continuity of p*(£) can

1= ®

be proved in the same way as that of p(£)], we must have po(%) = p*(%0)-
Hence po(%) = p*(%o) and, therefore, £, must be an element of Cy 4t

Tangents to the sets Cyp, Cay, and Cye can be constructed at the
boundary points Py, Ps, - - -, Pg as follows: Consider, for example, the
boundary point P; of Cg4;¢ (Fig. 1) which is on the line V; V5. Let £ be
the probability distribution represented by the point P;. Since the
a priori probability of Hj is zero according to £, we can disregard H3
in constructing a Bayes solution relative to £. Let §; be a sequential
probability ratio test for testing H; against H; such that §; is a Bayes
solution relative to £ and §;(1 | 0) = 1. Since £ is a boundary point,
such a decision function §; exists. Thus we have

(4.84) W(t, dif) = r(&, 81) = Infs (%, 9)

Let o;; denote the probability of accepting H; when H; is true and &, is
the decision function adopted. Also let n; denote the expected number
of observations when H; is true and §; is adopted. Then for any
a priori probability measure £ we have

(4.85) r(¢ &) = ; EWijoui + ¢ ; gn;
and
(4.86) W, dif) = 2 EWa

2

Thus the linear manifold L(3;, d;?) is simply the straight line given
by the equation

(4.87) 2 EWa = 2 EWijas; + ¢ 2 &'
i % v

This straight line goes through P; and, because of Theorem 4.10, it is
tangent to C;r. Tangents at the points P, Ps, - -+, Pg can be con-
structed in a similar way.

More general results concerning the case of finite @ and D, admitting
also non-linear cost functions, were obtained by Arrow, Blackwell, and
Girshick [4].



Chapter 5. APPLICATION OF THE GENERAL THEORY TO
VARIOUS SPECIAL CASES

6.1 Discussion of Some Non-Sequential Decision Problems

6.1.1 Non-Sequential Decision Problems when the Spaces @ and
D' Are Finite

By non-sequential decision functions we mean decision functions §
according to which the probability is 1 that experimentation is carried
out in a single stage. In this section we shall discuss decision problems
for which the spaces @ and D? are finite and experimentation is carried
out in a single stage by observing the values of the first N chance
variables in the sequence {X;} : =1,2, --+,ad inf.). Let Fy, ---, Fi
be the elements of , and d,? - - -, d, the elements of D’. Since experi-
mentation is carried out in a single stage by observing the values of
Xi, -+, Xu, any decision function & can be represented by a vector

function &(z;, ---, zx) with u components 8;(z1, - -+, Zw), * -, Su(z1,
-+, zy) satisfying the conditions

ai(xly "'7>xN) 20 (7'= 17 '”’u)
(5.1)

Z B’i(x].} ] IN) =1

i=1
Here z; denotes the observed value of X;, and §8;(z1, ---, zx) is the
probability that we shall make the terminal decision d;’ when the
sample (z;, *--, zy) is observed. After the sample (z;, ---, zx) has
been obtained, the actual selection of the terminal decision d* is made
with the help of a chance mechanism constructed in such a way that
the probability that d;* will be selected is equal to 8;(z;, ---, zx). In
the special case when the functions 8;(z;, --+, zx) ¢ =1, --+, u) can
take only the values 0 and 1, we have a non-randomized decision
function.

Let fi(x1, -+, zx) denote the joint elementary probability law of
Xy, -+, Xy when F; is the true distribution, ie., fi(z1, *--, zn)
denotes the probability density at z;, ---, zxy when F; is absolutely
continuous, and the probability that X; = z; for all valuesj < N when
F; is discrete. Let W,; denote the loss W(F;, d;*) when F; is the true
distribution and the terminal decision d;’ is adopted. Since only
decision functions are admitted for which experimentation is carried

123
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out in a single stage by observing the values of X;, - -+, Xy, the cost
of experimentation does not depend on the choice of the decision func-
tion and, therefore, it can be disregarded altogether. The risk when
F; is true and the decision function § is adopted is then given by

(52) rF;,8 =, f Wi 8i(z1, -+, an) dF (21, <+, TN)
j=1J My

where My denotes the space of all samples (z;, ---, zn), and F;(z;,
«++, zpy) denotes the joint cumulative distribution of X3, -+, Xx.

We shall now study the nature of the Bayes solutions of the decision
problem. Any a priori distribution in @ can be represented by a vector
£ = (&, ---, &), where £; denotes the a priori probability that F; is
true. After the sample (z;, - - -, zx) has been drawn, the a posteriori
probability that F; is true is given by

Efi(zy, -+, 2N)

(5.3)\ ¥ =
Z Eff:‘f(xly P xN)
j=1

(=12, ""k)

The a posteriori risk associated with the terminal decision d;, i.e., the
a posteriori expected value of W(F, d;*) (determined on the basis of the
a posteriori distribution in ), is given by

k
(5.4) ri@y, e aN) = D E Wy (G=1,2 -, %)

i=1
The following characterization theorem holds.
Theorem 5.1. A mnecessary and sufficient condition for a decision

Sfunction & to be a Bayes solution relative to a given a priori probability
measure £ 18 that

(5.5) 8i(xy, -+, zn) =0

for any sample (x,, - - -, zx) (except perhaps on a set of E&-measure zero)!
and for any j for which

(5'6) Tj(zb ] xN) > Min [rl(xla ) xN); ] r‘u(xl; ) xN)]

The proof of this theorem is very simple and is omitted. Since
rij(z1, + - -, zx) is proportional to the function

k

(6.7 ti(@y, -+, 2n) = 2 EWiifi(zy, -+, 2N)
i=1

we can replace 7; by t; in the above theorem.

K
1By the z-measure of a subset R of the sample space we mean 21 £ L dF;.
i=
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If for any pair 7, j the set of all samples (z;, -+, zx) for which
t; = t; is of &measure zero, then Theorem 5.1 shows that the following
Bayes solution is essentially unique: Take the terminal decision dj,
where j is the smallest positive integer satisfying the equation ¢; = Min
(t1, ++-, tu). Any other Bayes solution can differ from this particular
one only on a set of &measure zero.

Applying Theorem 3.20 of Chapter 3, we obtain the following
theorem.

Theorem 5.2. The class of all Bayes solutions & corresnonding to all
possible a priori probability measures £ is a complete class of decision
Sunctions.

In what follows in this and subsequent sections of the present chapter,
we shall regard two decision functions &' and 82 as identical if &' differs
from &2 only on a set of sample points = whose probability measure is
zero under any element F of Q.

If for any a priori probability measure there exists only one Bayes
solution, the class of all Bayes solutions is merely a (k¢ — 1)-parameter
family of decision functions.

Theorems 3.7, 3.9, 3.10, and 3.14 of Chapter 3 yield immediately
the following theorem.

Theorem 5.3. There exist an a priori distribution £ = (&°, - - -, £&°)
and a decision function 8° such that

(i) 4° 75 a Bayes solution relative to £°.

(i) 8° is @ minimaz solution, i.e., Maz; r(F;, &°) < Max; r(F; 8)
for all 5.

(iii) For any i for which £° > 0, we have r(F;, 8°) = Mazx; r(F;, &°).

(iv) £ is a least favorable a prior: distribution; i.e.,

Inf; [Zki £°r(F, 3)] = Inf; [i & (Fs, 5)]

=1 =1
for any &.

Because of Theorem 3.9, the essential difficulty in constructing a
minimax solution is solved if we can find a least favorable a priori
distribution £2. We have merely to study the Bayes solutions relative
to £, at least one of which must be a minimax solution. A Bayes
solution &° relative to £° will be a minimax solution if and only if

(5.8) r(F;, 8°) = Max; r(F;, &%)
for all 7 for which £2 > 0.
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As to the problem of finding a least favorable a priori distribution
£, the following remarks may be helpful. For any a priori distribu-
tion £, let 6; be the particular Bayes solution given by the following
rule: Decide on d;* where j is the smallest integer for which

(59) ti(xl’ e

Consider the average risk

k
r(& &) = D tr(Fs, &)

=1

*y IN) = Min [tl(xl’ Y xN)’ ) tu(xl, ) IN)]

(5.10)

This is a function of &, £, - - -, & only. An a priori distribution £ isa
least favorable one, if it maximizes r(§, 8;); i.e., if

(5'11) T(Eoy 650) = T(E; 6E)

for all £ Thus the problem of finding a least favorable distribution is
reduced to the problem of finding a probability measure £ for which
(5.11) is satisfied.

We shall now apply Theorems 5.1, 5.2, and 5.3 to the case where
the number of elements in Q, as well as in D, is equal to two, and
d;(j = 1, 2) represents the decision to accept the hypothesis that F;
is the true distribution. Since accepting the hypothesis that F; is true
when F'; is actually true is a correct decision, we put Wy; = Wy = 0,
while W;; and Wy, are assumed to be positive. Then Theorem 5.1
gives the following necessary and sufficient condition for a decision
function é to be a Bayes solution relative to an a priori distribution £:
81(z1, --+, xn) = 0 whenever Wisfi(z1, -+, zn) < &EWarfa(z1,
-+, zn), and 8 (z1, ---, zx) = 1 whenever &Wisfi(zy, -+, xw)
> EoWayfo(z1, - -+, zn) (except perhaps on a set of £&measure zero).
When £ Wizfi(21, - -+, 2x8) = EWarfo(21, - -+, z8), 81(21, - - -, Zy) may
take any value in the closed interval [0, 1].

We shall say that § is a probability ratio decision function if there
exists a non-negative constant h (the value A = « is also admitted)
such that

x y .. -, x
S1(xy, -+, zy) =0 wheneverfz( ! v) >h
1Ty, -y xN)
and \
z ’ . -’ x
81(xy, -, zn) =1 wheneverfz( : ul <h
fl(xh "'72N)

Clearly any Bayes solution is a probability ratio decision function

(except perhaps on a set of &measure zero).

We can easily verify

that the converse is also true; i.e., if é is a probability ratio decision
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function, there exists an a priori distribution £ such that § is a Bayes
solution relative to £ Thus the class of all Bayes solutions coincides
with the class of all probability ratio decision functions. Hence the
class of all probability ratio decision functions is a complete class.

The above results are closely related to a well-known theorem by
Neyman and Pearson [37]. They have shown that, if § is a probability
ratio decision function corresponding to some finite and positive
value h, § is an admissible decision function; i.e., no uniformly better
decision function exists. This theorem follows immediately from the
fact that a probability ratio decision function corresponding to a finite
and positive value & is a Bayes solution relative to some £ with posi-
tive components. The complete class theorem is, in a sense, the con-
verse of the Neyman-Pearson theorem. While the Neyman-Pearson
theorem shows that for a decision function 6 to be admissible it is
sufficient that & be a probability ratio decision function, the complete
class theorem shows that this is also necessary.

The special case where the number of elements in D? is equal to that
in Q and where

(5.12) Wi=1 forz = j
=0 fort =3

is of particular interest. In this case we may interpret d;’ as the decision
to accept the hypothesis that F; is the true distribution. The risk
r(F;, ) is then simply the probability of making a wrong decision when
F; is true and & is the decision function adopted.

Theorem 5.4. All components of a least favorable distribution & must
be positive if the following conditions are fulfilled:

(i) The number of elements in D* is equal to the number of elements in Q.

(ii) The quantities W; satisfy (5.12).

(iii) There exists a decision funciion & such that r(F;, 8) < 1 for all 1.

(iv) If R is a subset of My for which, dF = 0 for some 1, then
f dF; = 0 for all values of 1.

Proof: Let k be the number of elements in @ and let §° be a minimax
solution. Since, by assumption, there exists a decision function § for
which r(F;, §) < 1 for all 7, we have

(5.13) r(F;, &) < 1

fori=1,2, ---, k. Let £° be a least favorable a priori probability
measure. Then & is a Bayes solution relative to £°. Suppose that
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one of the components of £, say £, is zero. It follows from Theorem
5.1 that for any decision function & = [6;(zy, -+, zn), -+, Ok(z1,
.-+, zx)], which is a Bayes solution relative to £, we must have
81(z1, -+, zy) = 0, except perhaps on a set whose £-measure is zero.
Thus, in particular, §,°(2;, -+, zx) = 0, except perhaps on a set of
£-measure zero. Because of condition (iv) of our theorem, the excep-
tional set R in which 8,°(z;, - -+, zx) # 0 must satisfy the equation

de,- =0fori=1,2, .-,k Hence r(Fy, &°) = 1. But this contra-
R
dicts (5.13), and our theorem is proved.

If @ and D* have the same number of elements and if (5.12) holds, a
Bayes solution relative to a given a priori probability measure £ is
given by the following simple rule: Decide on d;* where j is the smallest
integer for which

(514) Eifi(xb Y xN) = Max (Elfl; Tty Ekfk)
For any &, let §; denote the Bayes solution given by the above rule.
If, for every constant ¢, the set of samples z,, - - -, 2y for which f;/f; =

has the probability measure zero under every F;(z,j,l = 1,2, .-+, k),
the Bayes solution §; is essentially unique; i.e., any other Bayes solu-
tion can differ from &; only on a set of &measure zero. Suppose that the
conditions of Theorem 5.4 are fulfilled and that for any £ the decision
function §; is (essentially) the only Bayes solution; then the problem
of finding a minimax solution is reduced to the problem of finding a
probability measure £ in Q such that

(5.15) r(F1, 8p0) = 1(Fa, 8p0) = --- = r(Fy, 0p)

A probability measure £ for which (5.15) holds must be a least favor-
able one, and 8,0 is a minimax solution.?

As an illustration we shall discuss a few simple examples. Let
N = 2, and let X; and X, be independently distributed with a com-
mon distribution. We shall assume that X; can take only the values 0
and 1 and that Q consists of two elements F; and F,. Let the probabil-
ity that X; = 1 be equal to 14 when F; is true, and equal to 24 when
F,istrue. Furthermore, we put Wy; = Wy = 0and Wiy = Wy = 1.
We can verify that there exists a Bayes solution 8,0 relative to the
probability measure £ = (14, 14), for which (5.15) holds. Hence £
is a least favorable a priori distribution. In order that a decision
function & be a Bayes solution relative to £° it is necessary and sufficient
that '

(5.16) 50,00=1 and &@1,1)=0
t See in this connection Theorem (17:D), page 161 of [55].
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The values of §,(0, 1) and 8,(1, 0) may be chosen arbitrarily. Clearly,
not every Bayes solution relative to £ will be a minimax solution. For
example, if we put 8;(0, 1) = 8;(1, 0) = «, where « is a positive num-
ber % 14, the resulting Bayes solution will not be a minimax solution.
A minimax solution is given by the Bayes solution corresponding to
81(0, 1) = 8,(1, 0) = 14, as can easily be verified.

As a second example, consider the case where N = 4 and X, X,
X3, and X, are independently distributed with the same normal dis-
tribution having the variance ¢ = 4. Suppose that Q@ consists of
three elements F;, Fa, and F3. The mean of the common normal dis-
tribution is —1 according to F;, 0 according to F3, and 1 according to
F;. The space D? consists of three elements, d;’, do’, and d3’; let
W = 1for ¢ 5 j, and = 0 for ¢ = j. For any a priori distribution £,
let §; denote the Bayes solution relative to £ given by the following
rule: §8;(z;, ---, z4) = 1, where j is the smallest integer for which
£* = Max (5%, &*, £*) and £* denotes the a posteriori probability
that F; is true after the sample z, - --, 24 has been drawn. We can
easily verify that £*( = 1, 2, 3) depends only on the a priori dis-
tribution £ and the arithmetic mean Z of the observations. Further-
more we can easily verify that, if for some value of Z, say £ = ¢, we
have &* = Max (&% &* &%), then &* = Max (&% &% &*) for any
value Z < ¢. Similarly, if £5* = Max; (&*) for £ = ¢, then £&* = Max;
(&*) for any > c. Hence there will be two constants ¢; and c;
(¢1 £ ¢;) depending only on £ such that &* = Max; (£*) if and only
if £ =<c¢;, and &* = Max; (£*) if and only if £ = c;.* Hence the
decision function &; can be given as follows:

01(x1, -++,2) =1 whenZ =¢
(5.17) Sz, -, 24) =1 whenc; <Z =Z ¢
83(z1, <o, 2e) =1 when Z > ¢

Since the set of all samples for which Z is equal to a given constant ¢
is of measure zero, the Bayes solution &; is (essentially) unique.

Now let ¢; and c; be any two constants such that ¢; = ¢p, and let
8., be the decision function given by (5.17). We can easily verify
that there exists an a priori distribution £ such that §; is identical to
dc,crr To determine a £ for which 6 = é.,.,, we have to solve the two
equations in the components of £:

Elcl* = Max (5201*’ 5361*)
(5.18)
E3cz* = Max (Elcz*; EZcz*)

3 The constants c; and c; may take the improper values —« and .
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where &;.* denotes the a posteriori probability of F; when % = c.t
Thus the class of all Bayes solutions coincides with the class of all
decision functions §,, ., corresponding to all possible values of ¢; and ¢,
(c1 = c2).5 Hence the class of all decision functions 3., ., corresponding
to all possible values of ¢; and ¢, is a complete class.

To find a minimax solution of our decision problem, we have merely
to find two values ¢; and ¢, such that

1 = ¢
(5.19)
T(Fl; acl,cz) = 7'(F2: 6c1,c2) = T(F3: ch.cz)

With the help of a table of the normal distribution the values ¢; and
co [satisfying (5.19)] can easily be found. They are equal to —0.803
and 0.803, respectively. Solving the equations (5.18) corresponding
to these values of ¢; and ¢, we obtain the corresponding a priori dis-
tribution ¢ = (0.203, 0.593, 0.203), which is a least favorable a priori
distribution for our problem.®

5.1.2 Non-Sequential Tests of a Hypothesis when 2 Is a
Parametric Family of Distribution Functions

In this section we shall consider the case where the elements F of @
can be described by a finite number of parameters, 6;, - - -, 6; (say).
Then each element F of @ can be represented by a point 6 = (6y, - - -, 6x),
called a parameter point, in the k-dimensional Cartesian space. The
totality of all possible parameter points 6 is called the parameter space.
Since there is a one-to-one correspondence between the elements of @
and the elements of the parameter space, it will cause no confusion
if we use the symbol @ to denote the parameter space also.

For the sake of simplicity, we shall restrict ourselves to problems
when the elements F of Q are absolutely continuous. As in Section
5.1.1, we shall consider only decision functions § for which the prob-
ability is 1 that experimentation is carried out in a single stage by
observing the values of the first N chance variables X;, ---, Xx.
Let f(zy, -+, 2w | 6) denote the joint density function of X, ---, Xn
when @ is the true parameter point.

4 We can easily verify that (5.18) always has a solution. If ¢; < ¢, the solution
1S unique.

5 This characterization of the class of all Bayes solutions is contained as a special
case in a more general characterization theorem given by Sobel [48].

¢ Since the Bayes solution relative to a given £ is essentially unique, the above
minimax solution must be admissible. The components of the least favorable

8, priori distribution, as given above, do not add up precisely to one due to rounding
off errors.
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Let w be a given subset of the parameter space Q, and suppose that
the problem is to test the hypothesis H that the true parameter point 6
is included in w. Then the space D* consists of two elements d,* and d,*
(say), where d;* denotes the decision to accept H and d,° denotes the
decision to reject H.

The weight function W (6, d°) is assumed to be a non-negative func-
tion such that W (6, d,) = 0 for any 6 in w and W (4, d5*) = O for any
0 in ® =Q — w. For the sake of simplicity, we shall consider here
only simple weight functions W (6, d°), ie., weight functions which
can take only the values 0 and 1. Let w, denote the set of all points 6
for which W (9, ds¥) = 1. Clearly w, is a subset of . We shall refer
to w, as the zone of preference for acceptance of H. Furthermore,
let w, denote the set of all points 6 for which W (6, d,*) = 1. Clearly w,
is a subset of ® = @ — w, and we shall refer to it as the zone of prefer-
ence for rejection of H. The set wy = @ — w, — w, is called the indif-
ference zone. Clearly W (6, d,%) = W (6, d2*) = 0 for any 6 in wy.

A decision function & can be represented by a real-valued function
8(xy, - -+, zx) such that 0 < 8(zy, - - -, zy) < 1 for all values z;, - - -,
zy. The decision procedure is then given as follows: After the observa-
tions z;, - -+, zx have been made, perform a chance experiment with
two possible outcomes, 1 and 2 (say), such that the probability of the
outcome 1 is equal to §(zy, ---, zx). Accept H if the outcome of this
chance experiment is 1, and reject H if the outcome is 2.

Since the cost of experimentation is independent of &, we can dis-
regard it. The risk (6, §) is then given by

520) 100, 8) = L 1| 0)8() de if 6 s in o,

=fM f| O — s(x)]dr  if 6is in w,
=( ifOiSian

Here My denotes the totality of all samples (z;, - - -, zx), and z stands
for (z1, -+, znx). In the Neyman-Pearson theory, the risk (6, &)
for 6 in w, is called the size of the test, and 1 — r(6, &) for 0 in w, is
called the power of the test.

Any probability measure £ on € can be given by a cumulative dis-
tribution function £(6) in Q. If #(9) is the a priori distribution and if
z = (2, ++, zx) is the observed sample, the a posteriori probability
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of any subset w of Q is given by
[ sl 2@
(5.21) P(o|§2) = —
[ 119 a0
A necessary and sufficient condition for a decision function § to be a
Bayes solution relative to a given a priori distribution £ is that
(5.22) 8(z) =1 whenever P(w, l £ 1) > P, | £ )
and
(5.23) 8(z) = 0 whenever P(w, | £ z) < Plw, I £ )
except perhaps on a set of £measure zero.” Since P(w | £, ) is propor-

tional to, f f(= | 6) d&(9), conditions (5.22) and (5.23) are equivalent to

(5.24) 6(z) =1 whenever | f(z|6) ds(6) > f f(z | 6) d&(6)
and a wr

(5.25) &(x) =0 whenever| f(z | 0) dt(6) < f flz ] ) d&(6)

respectively. For any £, let §; denote the particular Bayes solution
for which

(5.26) 8(x) =1 when| f(z|06)de©) > f fz | 6) d&(6)
o wa or

(5.27) 5(z) = 0 for all other points z

If the set of points z for which

(5.28) Lﬂﬂ@&@=£ﬂﬂ®&@

holds is of #measure zero, the Bayes solution is (essentially) unique;
i.e., any other Bayes solution & relative to £ can differ from & only on a
set, of &measure zero.

In order to make the theory developed in Chapter 3 applicable to
the problem studied in this section, we shall impose some restrictions
on the class of density functions f(z I 6) which will guarantee the valid-

7 By the z-measure of a subset R of the sample space we mean j; L flz | 0) dz dt.
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ity of Assumption 3.7 postulated in Chapter 3. Assumptions 3.1 to
3.6 hold without any restrictions on f(z, §). We shall formulate the
following assumption.

Assumption 5.1. If {6*} ({ =0, 1,2, ---, ad inf.) is a sequence of
parameter points such that lim 6* = 6°, then

=

(5.29) lim ]’(:z: ') dz = f(a: 0°) dz

$= «©
uniformly in all subsets R of the sample space M y.

In some problems it may not be easy to see whether Assumption 5.1
holds. The following lemma is useful in this connection.

Lemma 5.1. If f(z l 6) is continuous in 6, Assumption 5.1 holds.

This lemma is an immediate consequence of some results obtained
by Robbins [43]. Infact, Robbins [43] has shown that, for any sequence
{fix)} ¢ =0,1,2, ---, ad inf.) of density functions,

(5.30) z!i=n«1°fz-(ac) = fo(2)

in measure is equivalent to

(531) tim [ fite) dz = [ fole) do
i==Jp R

uniformly in all Borel sets B. We say that lim fi(z) = fo(z) in measure

if, for every ¢ > 0 and for every R with finite Borel measure, the set
Si(R, €) of all z in R for which

(5.32) | fi(z) — fol@) | > ¢
satisfies the relation

5.33 I f dz =
(5.:33) ilﬂ S:(R,¢) v
As Robbins [43] remarks, it can be shown that
(5.34) lim fi(z) = fo(2)

almost everywhere implies (5.30) but not conversely, and that
(5.35) m | |ie) ~fo(e) | do = 0

z

is equivalent to. (5.31).
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Since (6, §) = 0 identically in § for any 0 in w7, we can disre-
gard the indifference zone wy and © can be replaced by the set-theo-
retical sum of w, and w,. Thus, in what follows, by the parameter
space @ we shall mean the set-theoretical sum of w, and w,. Further-
more we shall consider only cumulative distribution functions £(6) for

which
[ a0 + [ a0 =1

We shall now formulate two more assumptions.

Assumption 5.2. w, and w, are closed subsets of the k-dimensional
Cartesian space.

Assumption 5.3. Q is a bounded subset of the k-dimensional Cartesian
space.

We can easily verify that Assumptions 5.1, 5.2, and 5.3 imply the
validity of Assumption 3.7 of Chapter 3.

The definition of regular convergence in the space of all decision
functions 4, as given in Section 3.1.4, reduces in the case considered in
this section to the following: Let {6;} (! =0, 1,2, ---, ad inf.) be a
sequence of decision functions. We say that lim 8; = &, (in the regular

=

sense) if

(5.36) lim f 8i(z) dz = f do(z) dz
i=wJp R
for any bounded subset R of the sample space My.

Let C; be the class of all decision functions § for which (5.24) and
(5.25) hold for some ¢ (except perhaps on a set of z’s with &measure
zero). Furthermore, let C, be the class of all decision functions & for
which (5.26) and (5.27) are fulfilled for some £ Clearly C, is a sub-
class of C;. Let C; be the closure of C; ( = 1, 2) in the sense of the
convergence definition given in (5.36).

Theorem 3.20 of Chapter 3 yields the following two theorems.

Theorem 5.5. If Assumptions 6.1 to 6.3 hold, Cy is a complete class
of deciston functions.

Theorem 5.6. If Assumptions 5.1 to 6.3 hold, and if for any £(8) the
set of sample points z satisfying (5.28) is of Lebesgue measure zero, then
C. is a complete class of deciston functions.

Theorem 3.19 of Chapter 3 yields the following theorems,
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Theorem 5.7. The class Cy has the following property: For any & not
in C, there exists an element &* of Cy such that r(6, 6*) < r(6, 8) for all 6;
i.e., Cy is essentially complete.

Theorem 6.8. 1If for any £(6) the set of sample points = satisfying
(6.28) is of Lebesgue measure zero, C, has the following property: For
any & not in Cs, there exists an element §* of Cp such that (6, 5*) < (6, 5)
for all 6; i.e., Cs 1s essentially complete.

We shall now discuss briefly a few simple examples. Let X;, X,
, X~ be independently distributed with a common normal dis-
tribution having unit variance. Suppose that the mean 6 is unknown
and we wish to test the hypothesis that 8 < 0. Let the set w, be given
by the inequality 6§ < —p, and the set w, by the inequality 6 = p,
where p is a given positive number. In this case the necessary and
sufficient conditions (5.24) and (5.25) for a decision function & to be a
Bayes solution relative to a given a priori distribution £(6) reduce to

6(3:1; M) xN) =1

whenever
—p -]
(5.37) f eNso— 50 J£(6) > f )
— I}
and
6(3:1) R} xN) =0

whenever

(5.38) f eNss— 3430 J5(9) < f eNs3— 340" 5 9)

where Z denotes the arithmetic mean of the observations z;, - -+, zx.
One can easily verify that there exists a constant ¢y, depending only
on £, such that the inequalities in (5.37) and (5.38) are equivalent to
% < ¢pand & > ¢y, respectively. The constant ¢y is equal to — when

f d£(0) = 0, and to « when f de@e) =

For any constant ¢, let §.(z1, - -+, 2x) denote the decision function
given as follows: 8.(zy, - -, 2x) = 1when & < ¢,and §.(zy, -+, 2x)= 0
when % = ¢. Since the set of sample points for which £ = ¢ is of
Lebesgue measure zero, any Bayes solution must be (essentially)
identical with 8.(z;, ---, zn) for some value ¢. The converse is also
true, as can easily be verified; i.e., for any given ¢, there exists an a
priori distribution £(6) such that 8.(zy, ---, zx) is a Bayes solution
relative to £(6).
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‘We can even find an a priori distribution £(6) with the above property
and such that the set consisting of the two points § = =p has prob-
ability 1. Thus the class C; in Theorem 5.6 coincides with the class
of all decision functions 8.(zy, ---, zx) corresponding to all possible
values of ¢.® Since any decision function § which is a limit of a sequence
of members of C, is itself a member of Cy, we have C; = Cs. Applying
Theorem 5.8, we arrive at the following result: For any decision func-
tion § there exists a constant ¢ such that

(5.39) r(6, 8c) < (6, 9)

for all 6.

Let £(6) be the cumulative distribution function that assigns the
probability 14 to each of the points § = +p. Furthermore let §, be
the decision function for which §o = 1if Z <0 and 6, =0 if Z = 0.
Then & is a Bayes solution relative to &. Since

(5.40) (p, &) = 1(—p, 80) = Max, (6, &)

£0(6) is a least favorable ‘a priori distribution and §, is a minimax
solution.

As a second example, consider the case where X, - -+, Xy are again
independently distributed with a common normal distribution having
variance 1, but the hypothesis H to be tested is that the unknown
mean 6 lies in the interval (—p, p), where p is a positive number. Let
the zone w, be given by the inequality | 6 | = p1, and the zone w, by
the inequality l 0‘ = pg, where p; and p; are given positive numbers
such that py < p < ps. A necessary and sufficient condition for a
decision function § to be a Bayes solution relative to a given a priori
distribution £(6) will now be given by

8(zy, - zv) =1

whenever
(5.41) f eN#—YiNe? de(9) < f eNz0—%iN6? dz(9)
16]Zp2 16] =
and
8(z1, -y 2N) =0
whenever
(5.42) f oN#—1NO? G (g) > f ¢N39—14NE® e 5)

1612p2 10] =m1

8 This characterization of the class of all Bayes solutions for the given problem
is contained as a special case in a characterization theorem by Sobel relating to a
more general class of problems [48].
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except perhaps on a set of Lebesgue measure zero. Let ¥, (%) denote the
integral on the left-hand side of the inequality in (5.41), and ¥5(Z) the
integral on the right-hand side of the same inequality. We can easily
verify that both ¥, (Z) and ¥»(Z) can be differentiated under the integral
sign with respect to Z any number of times. Thus

2y (=
- ‘bf) - szazezm— ¥iNe* dE(6)
dz 16 =p2
(6.43) () s
. 167 . 2
#9) = w2 [peva-me age

18] =p1
It follows immediately from (5.43) that
d%¥, () > d*¥2(Z)

(5.44) = =

whenever ¢, (%) = ¢»(Z). Clearly, if f d£(6) > 0 and f dg(6) > 0,
10] Zp2 10] Se1
fﬂ[‘h@) — (@] =
-li?,[%(j) —¥(D)] = »

It follows from (5.44) and (5.45) that there exist two constants ¢; and
¢ such that ¢; < ¢; and

(5.45)

(5.46) ¥1(2) — ¥2(2) >0
when Z < ¢; and Z > ¢, and
(5.47) 1(@) — ¢2(2) <0

when ¢; < # < ¢;. The constants ¢; and ¢; may take the improper

values —« and 4. For example, if f dt@) = 1, then ¢ = —oo,

16] =,
¢a = ®, and ¥4(2) — ¥2(2) < O for all z. Similarly, if f dt0) = 1,
161 2p2
then ¢; and ¢, are equal to © and ¢, (%) — ¢¥2(Z) > 0 for all Z.

For any constants ¢; and ¢, (¢; < ¢2) let &, (21, - - -, zx) denote the
decision function given as follows: &, .,(x1, +*, 2x) =0 when Z =< ¢;
Or & = C2; 8¢y (21, *++, zv) = 1 for all other samples. Since the set
of sample points (z;, ---, zx) for which Z is equal to a constant ¢ is
of Lebesgue measure zero, the Bayes solution relative to a given a
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priori distribution £(6) is (essentially) unique and coincides with &,
for some values of ¢; and ¢,. Conversely, as can easily be shown, for
any ¢, and c, there exists an a priori distribution £(6) such that s, .,
is a Bayes solution relative to £(6). Such an a priori distribution exists
even if we restrict ourselves to distributions £(8) which assign the prob-
ability 1 to the set consisting of the three points 8 = —ps, 0, ps. Hence
the class C; in Theorem 5.6 is identical to the class of all decision func-
tions .., corresponding to all possible values of ¢; and cp.® The
closure Cs of C; is obviously equal to C;. Hence Theorem 5.8 yields
the result: For any decision function & there exist two constants ¢, and co
such that r(8, 5.,.,) = (8, 8) for all 6.2

For any positive value a < 34, let £,(6) denote the a priori dis-
tribution which assigns the probability « to each of the points § = —p;
and @ = py, and the probability 4 — a to each of the points § = —p,
and 6 = p,. It follows from reasons of symmetry that there exists a
constant c,, depending only on «, such that a Bayes solution relative
to £, is given by 6_,.,. Furthermore it is clear that

(5.48) (=6, 8 cpea) = 76, S—cpca)

and

(5.49) Maxg 7(6, 6—cper) = Max [r(p1, —cpca)s T(P2) S=cpea)]
We can easily verify that there exists a value g such that
(5.50) P(P1y 8- cayin) = (P2 S—capear)

Clearly £,, is a least favorable a priori distribution, and 8 capeay 1S 2
minimax solution.

65.1.3 Non-Sequential Point and Interval Estimation when Q Is a
Parametric Family of Distribution Functions

As in Section 5.1.2, we shall again assume that any element F of @
can be represented by a parameter point 8 = (6y, - - -, 6%) in the k-dimen-
sional Cartesian space, and we shall use the symbol Q@ to denote the
parameter space. Again we shall consider only decision functions &
according to which experimentation is carried out in a single stage by
observing the values of Xy, --+, X5. For the sake of simplicity we
shall assume that the elements F of Q are absolutely continuous and

? This characterization of the class of all Bayes solutions, together with other
more general results, is contained in a paper by Sobel [48].

10 A similar result was obtained by Lehmann [30] in the case of testing the
hypothesis that 6 is equal to a specified value 6o.
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let f(zy, -+ -, zn | 6) denote the joint density function of Xj, ---, Xy
when 4 is the true parameter point.

We shall consider first the problem of point estimation. For any
parameter point 6*, let dg«’ denote the terminal decision to estimate the
true parameter point 6 by 6*. The space D’ consists of all elements
dg+’ corresponding to all possible parameter points 6*. We shall use
the symbol W (6, 6*) to denote W (8, dy+’) ; i.e., W (8, 6*) is the loss suffered
if @ is the true parameter point and our point estimate of 6 is 6*.

A decision function & can now be represented by a function 6(0| z1,
«-+, zy) of 6, zy, -+, zx such that for any given sample z,, ---, zx
the function 8(0 | z1, **+, Zx) is a cumulative distribution function in Q.
After the sample (zy, -+, zx) has been obtained, the actual selection
of a point estimate * is made with the help of a chance mechanism
constructed in such a way that the probability that 6* is included in a

subset w of Q is equal to f do(e l zy, * -+, zy). Since the cost of experi-
mentation is independent of § and can, therefore, be disregarded, the
risk is given by

(5.51) (0, 8) = L . [ j; W (@, 6*) ds(6* | x)] fz|6) dz

where z = (x,, -+ -, zx) and My denotes the sample space.

In Chapter 3 the assumption was made that D’ is compact. In
order to guarantee the compactness of D, we shall make the following
assumption.

Assumption 5.4. Qs a bounded and closed subset of the k-dimensional
Cartesian space, and W (8, 6%) vs continuous jointly in 0 and 6*.

This assumption, together with Assumption 5.1 formulated earlier,
implies the validity of Assumptions 3.1 to 3.7 of Chapter 3.
For any probability distribution £ = £(6) in Q, let

(5.52) W, 0 = [ W 0 ko)

For any a priori distribution £ and for any sample point z, let w,,
denote the totality of all parameter points 6 for which

(5.53) W(Es, 6) = Mings W(¢, 6%)

where £, denotes the a posteriori distribution in @ after the sample z
has been observed.

A necessary and sufficient condition for a decision function & to be
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a Bayes solution relative to the a priori distribution £ is that

(5.54) f ds@|z) =

w,
¢z

except perhaps on a set of sample points £ whose £ measure is zero.
The special case where, for any ¢ and z, w;, consists of a single
element 6; .* is of considerable interest. In this case, the Bayes solu-
tion relative to any given £ is unique (except perhaps on a set of z’s
with &measure zero) and is identical to the decision function &:(6 I z1,
-+, zx), which assigns the probability 1 to the parameter point 6;,.*.
Since Assumptions 5.1 and 5.4 imply the validity of Assumptions
3.1 to 3.7, the results obtained in Chapter 3 yield the following theorem.

Theorem 5.9. If Assumptions 5.1 and 5.4 hold, then

(i) A least favorable distribution £(6) exists.

(i) A minimaz solution exists.

(iii) The class of all decision functions 5(9 | xy, + -+, Ty) which satisfy
(5.54) for some & (identically in x) is a complete class of decision functions.

As an illustration, we shall consider the following example. Let
Xj, +++, Xn be independently distributed with the same normal dis-
tribution having variance = 1. The problem is to give a point esti-
mate for 8. Let W(f, 6*) = (6 — 6*)%, and let the domain of 6 be
restricted to the finite interval [a, b] (¢ < b). In this example, for any
£ and any z the set wg,; will consist of a single point 6; ,*. We have

b

f QeNz0— YsNo* ds(g)

(5.55) Op* = — = ¢;(NZ) (say)
f eN#— YiNe® de(g)

Clearly
(5.56) a S Y(NZ) =b
for all z.
We shall now derive a necessary and sufficient condition for a func-
tion ¥(t) to be such that there exists a & for which ¢(t) = ¥(t) for all

real t. For any £(6), let £*(9) be the cumulative distribution function
for which

e~ %Ne? ()

(5.57) f dE*(0) =
f e— ViNe6? ds(a)

a



SOME NON-SEQUENTIAL DECISION PROBLEMS 141
for any subset w of Q. Clearly, if ¢(£) = ¥:(0),

b

0e*? de*(6)

. (G

(5.58) o = = - ‘: ((»)
f ew dE*(a)

a

where ¢(f) is the moment-generating function of # when £*(9) is the
distribution of 6; i.e.,

(5.59) 80 = [ aer0)

and ¢’(?) is the derivative of ¢(f) with respect to .

Thus a necessary condition for ¥(t) to be such that there exists a £
for which ¢(f) = ¢;(t) is that ¢(t) = ¢'(f)/#(t), where ¢(f) is the
moment-generating function of a chance variable with the range
[a, b]. To show the sufficiency of this condition let us assume that

¢'(t)
t = —_———
¥(0) o0

where 5
60 = [ 60
a
and £ (6) is a cumulative distribution function in . Then

b
8e*® d&,(9)
(5.60) ¥ =———
[ e o

Let £,(6) be the distribution function which satisfies the equation

%N di, (6)
(5.61) f dea(6) = ————
° f N0 d, (9)

It then follows from (5.60) that

b

feto— ¥5N* dt, (6)
(5.62) v(l) = —
[ o0 )
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Hence ¢(t) = y4,(t), and the sufficiency of our condition is proved.
Thus we arrive at the following necessary and sufficient conditions for
a decision function §(6 l xy, +-+, zy) to be such that there exists an
a priori distribution £ relative to which (8 l z1, ++-, Ty) is a Bayes
solution:

(5.63) (6 | z, - -+, Ty) assigns the probability 1 to § = Y(NZ)
(except perhaps on a set of Lebesgue measure zero), and

#0)
5. ) = ——
(5.64) ¥(0) o0
where ¢(t) is the moment-generating function of some chance variable
u with the range [a, b].

Since Assumptions 5.1 and 5.4 are obviously fulfilled for our prob-
lem, it follows from Theorem 5.9 that the class of all decision functions
8 which satisfy (5.63) and (5.64) is a complete class.

It is interesting to note that ¢(f) = t{/N does not satisfy (5.64),
since ¢'(t)/¢(t) = t/N is possible only when ¢(¢) is the moment-gener-
ating function of a normally distributed chance variable, but not of a
chance variable with finite range. Thus the decision function 6(0] x1,
---, zx) which assigns the probability 1 to Z is not an admissible
decision function. We can also show that §(6 | zy, -+, Zy) is not
an admissible decision function if it assigns the value 1 to Z when
a =% <b, toa when £ < a, and to b when £ > b. The reason for
this somewhat surprising result is that we limited the range of 6 to a
finite interval. If no restrictions are imposed on the domain of 6, the
decision function 8(8 |z, ---, zy) that assigns the probability 1 to
6 = % can be shown to be a minimax solution of the problem.

The following two interesting examples of minimax solutions are
due to J. Hodges and E. L. Lehmann:

I. Minimax Point Estimate of the Mean of a Binomial Variate.'* Let
X be a binomial random variable, i.e.,

pI‘Ob. {X = z} = (N> 02(1 - B)N_z (z = 0, 1: B N)
T
Let W (6, 6¥) = (6 — 6*)2. Then the minimax estimate of 6 is
) 1 ( L 1)
= —\—=1z _
1+ VN\VN~ 2

11 H. Rubin found the minimax estimate of the mean of a binomial variate before
Hodges and Lehmann did.
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where z is the observed value of X. In other words, the minimax
decision function &(8 | z) assigns the probability 1 to the parameter
value 6*(z). This can be shown as follows: It is easily checked that
when

1 1

CVEGRVE M 2T ve

then

1

2 - -
E(eiX +cx—6)° = 10+ VN
independent of 4. It is, therefore, sufficient to prove that the above
estimate is a Bayes estimate. Straightforward calculation shows that
the Bayes estimate corresponding to d&(6) = Co*~*(1 — 6)5~1 do
(o, 8>0)is

z+ a

a+B+N

Hence, 6*(z) = ciz + c2 is the Bayes estimate corresponding to
a=8=VN/

II. Minimax Point Estimate of the Mean of a Chance Variable with
Range [0, 1]. Let X;, :--, Xx be independently and identically dis-
tributed over the interval [0, 1]. The common distribution is assumed
to be entirely unknown. Let E(X;) = 6, and suppose that the problem
is to construct a point estimate of 6. Let W (8, 6*) = (6 — 6*)2. Then
the minimax estimate of 6 is

6(z) =

6*(x) = 1t _\/— (\/_:c + %‘

where

Z 4 e+ ay
T=—T-—"—

N

and z; is the observed value of X;. This can be seen as follows: Since
the above estimate is the minimax estimate when the X’s can take
on only the values 0 and 1, it is sufficient to show that the risk of this
estimate is bounded above by 1/[4(1 4+ \/]V)Z]. This is easily verified,
since

EWNceiX + ¢, — 602 = N2012032 + [(Ney — 1)8 + co?
But

g’ = ]%[E(Xz) -0 = %(a — )
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which is the variance in the binomial case. Hence the risk takes on
its maximum value in the binomial case.

We shall now discuss briefly the problem of interval estimation.
For simplicity, we shall consider the case of a single unknown param-
eter 6; i.e., k = 1. For any closed interval I of the real axis, let dr*
denote the terminal decision to state that the true parameter value 6
isincluded in I. The space D? consists of all elements d;’ corresponding
to all possible intervals 1.2 Any interval I is characterized by its
midpoint 6* and its length I. Let W(, 6*, ) be the loss suffered when 6
is the true value and estimate 8 to be included in the interval with
midpoint 6* and length 1.

A decision function & can be represented by a function §(6, l| x5,
.-+, zx) such that for any given sample z;, :--, zxy the function
86, L]z, - -, zw) is a cumulative distribution function in the space
of all pairs (6, I). After the sample z;, ---, zx has been drawn, the
actual selection of 6* and [ is made with the help of a chance mechanism
such that for any given real values 6y and I, the probability that
6* < 89 and I < 1y is equal to §(6y, Iy | Ty, ***, TN)-

Since the cost of experimentation may be disregarded, the risk is
given by

(5.65) r(6, 8) = L . [ L JV (@, 6%, 1) da(e*, 1 :c)] fz|6) dz

where Q* denotes the space of all pairs (6%, I).
We shall make the following assumption.

Assumption 5.5. Q 1is a bounded and closed subset of the real axis and
W8, 6%, 1) is continuous jointly in 6, 6%, and 1.

This assumption, together with Assumption 5.1, implies the validity
of Assumptions 3.1 to 3.7 formulated in Chapter 3.
Let

(5.66) WG, 0 1) = [ W, 04,0 a0

For any a priori distribution £ and for any sample z = (zy, -+, zn),
let D, denote the totality of all pairs (6%, I) for which

(5.67) W (s, 6*, 1) = Minz; W(k, §, 1)
where &, denotes the a posteriori distribution in @ after the sample z
has been observed.

12]n some problems the admissible intervals may be restricted to a certain
subclass of the class of all intervals, such as the class of all intervals whose length
does not exceed a given value, or whose length is equal to a given value, ete.
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A decision function (6%, llx) is a Bayes solution relative to a
given a priori distribution £ if and only if

(5.68) ds(e*, 1| z) =1
D¢,

for all z, except perhaps on a set of &measure zero. In the special case
where for any z the set D, , consists of a single element, the Bayes
solution relative to £ is unique (except perhaps on a set of &measure
Zero).

Since Assumptions 3.1 to 3.7 of Chapter 3 follow from Assumptions
5.1 and 5.5, the results of Chapter 3 yield the following theorem.

Theorem 56.10. If Assumptions 5.1 and 5.5 hold, then

(i) A least favorable distribution £(6) exists.

(ii) A minimazx solution exists.

(iii) The class of all decision functions 80, 1|z, -+, zn) which
satisfy (5.68) for at least one £ is a complete class of deciston functions.

Let us consider the following example: The chance variables X,
.-+, Xx are independently distributed and they have the following
common density function: f(z; | @) =1for— Y5 +0=<z;,<15+6and
= 0 elsewhere. The mean 8 is unknown, but the domain of 6 is re-
stricted to the closed interval [a, b]. For any probability distribution
¢in @ and for any real numbers a’ and b’ (o’ < b’) for which the common
part of [a, b] and [a’, b’] has a positive &measure, let &, denote the
conditional distribution of § when 6 is restricted to the interval [a’, b’].
We then have, for any subset » of the interval [a’, b'],

R0)
(5.69) Jaewo = f‘;s :

| az0)

Let
(5.70) uw = Min (z;, - -, zn) and v = Max (zy, * -, zx)

If £ is the a priori distribution in @, the a posteriori distribution after
the sample z has been drawn is given by

(6.71) &= b %uty

as can easily be verified.
To simplify our problem, we shall admit only a single value I, for
1(0 < ly < 14) and restrict the choice of the experimenter to the
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choice of the midpoint 6*. The weight function W (8, 6*, ly) is assumed
to be given as follows:

(5.72) W, 6*%5,) =0 fo*x—lh<0=<6*+1
=@—-0+k)?® ifo<e—1l
=0—0—1L)? o>+

For any distribution £(6) in 2 we then have

(573) We ot k) = [0 - 0"+ 102 &0 + [o-o - 02 a0

0 <6*—1lg 0>0%+1o

For any £, u, v, let v, denote the totality of all values 6* for which
W (- s5u+35 6% lo) becomes a minimum. Then the necessary and
sufficient condition for a Bayes solution given in (5.68) reduces to 2

(5.74) f 438 |z, -+, zw) = 1
“Eu,0

for all z = (x4, - -+, zn) except perhaps on a set of &#measure zero.
There does not seem to be a simple characterization of the class of
all the Bayes solutions. Instead we shall study the Bayes solutions
relative to the uniform a priori distribution which have some interest-
ing properties, as will be seen below.
Let £°(9) be the uniform a priori distribution; i.e.,

(5.75) £06) =

0—a
b —
for any 6 in the interval [a, b]. Let 8,,, be the midpoint of the intersec-
tion of the intervals [v — 14, u 4+ 4] and [a, b]. If the length of this
intersection is greater than or equal to 2ly, w0, , consists of the single
point 8, ., as can easily be verified. If the length of the intersection is
less than 2lp, w0, consists of all points 6* for which the interval
[6* — lo, 6% + ly] covers the intersection in question. For any 6 in
the interval [a + 1, b — 1}, the probability is 1 that [v — 14, u + 14]
is contained in [a, b]. Then, if the length of the interval [v — 14,
u + 14] is greater than or equal to 2y, 6., is equal to (u + v)/2.

Let 80(0 | Ty, -+, zx) be a Bayes solution relative to £. It can be
shown that (6, &) is constant over the é-interval [a + 1, b — 1].
Furthermore we can easily verify that Maxg r(6, 8y) is equal to the

13 The argument ! in 5(6, I | Zy, * -+, zn) is dropped, since  is restricted to a fixed
value lo.
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constant value of r(, &) in the interval [e + 1, b — 1]. From this it
follows that

(5.76) lim [Maxg (6, &) — r(£°, 8)] = 0
Hence e

56.77) lim [Maxg (6, §o) — Inf; Maxy r(6, 8)] = 0
ond b—a)—> =

(5.78) o }zl)n_l' ”[Infs (£, 8) — Sup; Inf; r(¢, 8)] = 0

Thus for sufficiently large b — a the distribution £ is for all practical
purposes a least favorable distribution and &, is for all practical pur-
poses a minimax solution.

5.1.4. Non-Sequential Decision Problems when D’ Is Finite and
Q@ Is a Parametric Class of Distribution Functions

The case where D’ consists of two elements was treated in Section
5.1.2. Here we shall deal with the case where D’ is finite and contains
more than two elements. Let d%, ---, d,’ be the elements of D*
(w > 2). As before, we shall admit only decision functions § according
to which experimentation is carried out in a single stage by observing
the values of X3, ---, Xy. For any parameter point § = (6y, - - -, 6x)
we shall assume that the corresponding joint distribution of X3, - - -, X
is absolutely continuous.. Let f(z;, - - -, zx l ) denote the joint density
function of X3, ---, X when 6 is the true parameter point. Let

(5.79) Wi(6) = W, d:)

i.e., W:(6) is the loss when 4 is the true parameter point and the decision
d; is made.

Any decision function & can be represented by a vector function
8(xy, -+ -, zy) with the components 8;(z,, - - -, zn), - - -, dul21, - - -, ZTN)
satisfying the relations

u°
(5.80) &;(x1, -+, zxy) =0 and > 8y, oy zy) =1

i=1
Here 6;(x;, -+, zn) is equal to the probability that we shall decide
on d;! when (z;, ---, zy) is the observed sample. The cost of experi-
mentation being disregarded, the risk when 6 is true and § is adopted is
given by

(5.81) (9, 8) = i N Wi(6) 8:(x)f(z | 6) d=

==l
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where z = (2, ---, zy) and My denotes the sample space (totality
of all samples z).

For any probability distribution #(9) in Q, let W;(¢) denote the ex-
pected value of W;(6); i.e.,

(5.82) Wi = [ W0 aeo)

For any a priori distribution £, let £, denote the a posteriori distribution
in © after the sample z has been observed. We shall refer to the quan-
tity W(£.) as the a posteriori risk associated with the decision d;’.

A necessary and sufficient condition for a decision function & to be a
Bayes solution relative to a given a priori distribution £ is given as
follows: For all sample points = (except perhaps on a set of &measure
zero) we have

(5.83) 8:(x) =0

whenever W (£;) > W;(£,) for some j.
The proof of the above statement is very simple and is omitted. We
shall now formulate the following assumption,

Assumption 5.6. Q 1is a closed and bounded subset of the k-dimensional
Cartesian space and W;(0) (: = 1, -- -, u) is a continuous function of 6.

Assumption 5.6, together with Assumption 5.1 formulated earlier
(Section 5.1.2), implies the validity of Assumptions 3.1t03.7. Assump-
tions 3.1 to 3.6 hold when W;(9) is a bounded function of § (z = 1, 2,
-« -, u) without any restriction on @ and f(z | ).

Let C denote the class of all Bayes solutions; i.e., a decision function
& is an element of C if and only if there exists an a priori distribution &
such that & is a Bayes solution relative to £. Also let C denote the
closure of C [in the sense of the convergence definition given in (5.36)].
Applying the results of Chapter 3, we obtain the following two
theorems:

Theorem 5.11. If Assumptions 5.1 and 5.6 hold, then

(i) There exists a least favorable a priort distribution.

(ii) There exists a minimaz solution which must be a Bayes solution
relative to any least favorable a prior: distribution.

(iii) C is a complete class of decision functions.

Theorem 5.12. If W;(6) is bounded for ¢ = 1,2, ---, u, then

(i) There exists a minimaz solution.

(i) The class C has the property that for any & not in C there exists
an element §* of C such that (8, ) < r(9, 8) for all 8; i.e., C is essentially
complete. o
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As an illustration, we shall discuss the following simple example:
The chance variables X;, -+, Xy are independently, normally, and
identically distributed. The variance of the common normal distribu-
tion is assumed to be equal to 1 and the mean 6 is unknown. Let aand
b be two real numbers such that a < b. Also let H; be the hypothesis
that 8 < a, H, the hypothesis that a < § < b, and H3 the hypothesis
that @ = b. The space D’ consists of the elements d,’, dy’, and d3’,
where d;* denotes the decision to accept H;.

Let p be a positive number < (b — a)/2. We put

Wi =0 foro <a-+p, =1 for6=a+op
(5.84) Wy =0 fora—p<6<b+p, =1 for all other ¢
W3(@) =0 for6 >b— p, =1 ford<b—op

Let £ be the a priori distribution in €, and £, the a posteriori distri-
bution after the sample z = (zy, - - -, zx) has been observed. Clearly

Wit = f 3£,(0)

6za+p
(5.85) Wat,) = f d,(0) + f PO
6<a—p 0=b+p

Wteo) = [ 20

0=<b—p
We shall now study the character of the set of z’s for which
(5.86) Wi(E:) < Wa(k)

The above inequality can be written as

(5.87) a0 < fae0

at+p=0<b+p O=a—p,
or

(5.88) f L f R )

a+p=<0<b+p 0<a—p

where Z is the arithmetic mean of the observations z;, - -+, zy. We
can easily verify that the set of values Z for which the above inequality
holds either is empty or is an open interval (—o, ¢’), where ¢’ is a
finite constant or «. We can also verify that, if ¢’ is a finite constant,
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Z = ¢’ is the only value of & for which the left-hand and right-hand
members in (5.88) are equal. Thus, the set of all z satisfying W, (£.)
< Wy(£,) is either the empty set, or the whole real axis, or there exists
a finite constant ¢’ such that Wy(£;) < Wa(ts), Wi(E:) = Wa(g:), or
Wi(t:) > W(£s), according to whether £ < ¢/, Z = ¢/, or & > ¢'.

In a similar way we can show that the set of z’s satisfying W, (¢;)
< W3(¢,) is either empty, or the whole real axis, or there exists a
constant ¢’ such that Wy(¢;) <, or =, or > Wj(%;), according to
whether £ <, or =, or > ¢”. Hence the set of all z’s for which

(5.89) W1(t:) < Min [Wa(E2), Ws(£)]

is either empty, or the whole real axis, or there exists a finite constant
¢* such that the relation <, or =, or > holds between the two sides
of (5.89), according to whether £ <, or =, or > c*.

In a similar manner we find that the set of z’s for which

(5.90) Ws(£:) < Min [W1(£), Wa(E:)]

is either empty, or the whole real axis, or there exists a finite constant
¢** such that the relation <, =, or > holds in (5.90) according to
whether £ >, =, or < ¢**.

The above results show that there exist two constants ¢; and ¢,
(the improper values —« and +« being admitted) such that

(5.91) Wi(¢:) < Min [W (&), Ws(E:)]

when % < ¢;,

(5.92) W3(&) < Min [W1(%2), Wa(£:)]
when ¢; < & < ¢, and

(5.93) W3(¢:) < Min [W1(£,), Wa(£)]

when £ > c,.

For any constants ¢; and ¢; (¢; = ¢3), let 62 denote the decision
function for which §,°**(x) =1 when % < ¢;, 8;°*(z) = 1 when
¢t £ % = ¢, and §3%(z) = 1 when £ > ¢;. It follows from the above
results that any Bayes solution must be identical to ¢ for some
values of ¢; and ¢y (the values —« and 4 being admitted) except
perhaps on a set of z’s of Lebesgue measure zero. It is not difficult
to prove that the converse is also true. We can even show that for
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any ¢; and ¢; (¢; = co) there exists an a priori distribution #(8) such
that £(0) assigns the probability 1 to the set consisting of the three
points 8 = a — p, (@ + b)/2, b 4+ p and such that 5" is a Bayes
solution relative to £(6). Thus the class C of all Bayes solutions coin-
cides with the class of all §°"°* corresponding to all possible values of
¢; and c,.** Since the closure C of C is identical to C, Theorem 5.12
gives the following result: For any decision function & there exist two
constants ¢; and ¢z (¢; = cg) such that r(6, 6°°%) = r(6, 8) for all 6.

5.2 Discussion of Some Specific Sequential Decision Problems

5.2.1 Introductory Remarks

The problem of choosing a terminal decision d’ after experimentation
has been completed is essentially the same in the sequential as in the
non-sequential case. Consider, for example, the problem of finding
a Bayes solution relative to a given a priori probability measure £ on Q.
Let £, denote the a posteriori probability measure on @ after experi-
mentation has been terminated. A terminal decision do’ is optimal

if W(g,, d) = f W(F, d°) d¢, takes its minimum value for d* = dy'.
Q

This holds for sequential, as well as for non-sequential, decision
problems. The main difficulty in constructing Bayes solutions in
the sequential case lies in the problem of finding an optimum rule for
carrying out the experimentation. No such problems arise, of course,
in the treatment of the non-sequential case, where experimentation is
carried out in a single stage by observing the values of the first N chance
variables Xy, - -+, Xy.

The purpose of the present Section 5.2 is to discuss in some detail a
few specific problems which will serve as illustrations of the general
theory and which are indicative of the nature of the difficulties that
arise in the construction of optimum rules for carrying out the experi-
mentation.

5.2.2 A Two-Sample Procedure for Testing the Mean of a Normal
Distribution

We shall consider the following decision problem: The chance

variables X, Xj, - - -, etc., are known to be independently distributed

with the same normal distribution. The variance of the common

normal distribution is equal to 1, and the mean is known to be equal

14 This characterization of the class of all Bayes solutions is contained as a special
case in a more general result obtained bv Sobel [48].
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to one of the values — A and A, where A is a given positive number.
Thus @ consists of two elements F; and Fs (say), where F; denotes the
distribution of X = {X,;} when the mean is — A, and F; the distribu-
tion corresponding to the mean A. The space D® is assumed to consist
of the two elements d;’ and d,°, where d.;’ denotes the decision to
accept the hypothesis that F; is the true distribution of X. Let

(694) WEF,df) =1 ifi=<j and=0 ifi=j

We shall assume that the cost of experimentation is proportional to
the number of observations. Let ¢ denote the cost of a single observa-
tion. We shall assume, furthermore, that experimentation must be
carried out in at most two stages; i.e., only decision functions & are
admitted according to which the probability is 1 that experimentation
is carried out in at most two stages. Since the chance variables X,
X5, ---, ete., are independently and identically distributed, it is
irrelevant which chance variables are observed, and we can assume
without loss of generality that the first stage of the experiment consists
of the observations on X, - - -, X, and the second stage of the observa-
tions on X, 41, - -+, Xmyn, where m and n are non-negative integers.
To simplify the problem further, we shall assume that m is a predeter-
mined positive integer not chosen by the experimenter. Thus the
experimenter’s choice is restricted to the choice of 7 as a function of the
observations zy, - -+, Zp.

A decision function & can now be represented by a sequence of
functions {8;(z1, +--, zn)} (¢ =0, 1, 2, ---, ad inf.) and a function
d4(x1, -+, Tmyn) defined for all real values z;, - - -, Znyn and for any
non-negative integer m. The functions §; are non-negative and

> 8; = 1. Furthermore d4(z1, -+, Tmyn) can take only values be-
i=0

tween 0 and 1. On the basis of the above functions the decision
procedure is carried out as follows: First we make the observations
Z1, -+, Tm- To determine the size n of the second sample, we perform
a chance experiment constructed so that the probability that the
sample size ¢ will be selected is equal to §;(zy, -+ -, z,) 2 =0,1,2, -- -,
ad inf.). After both samples, consisting of the observations z;,
***, Zm4n, have been drawn, the terminal decision is made with the
help of a chance mechanism constructed so that the probability of
accepting the hypothesis that A is the true mean is equal to 6. (i,
e, Tgn)-

We shall now study the nature of the Bayes solutions of this deci-
sion problem. Let £; denote the a priori probability that F; is true
(Z=1,2). Also let &, denote the a posteriori probability that F; is
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true (¢ = 1, 2) after the first m observations have been made; i.e.,

: 10~ 0um
Lm = —Aym Aym
(5.95) 314 + £zt
- Egelvm
" et - gyotum
where
(5.96) Yu=21F- -+ 24

for any integral value u. Let n denote the size of the second sample
drawn. After both samples have been drawn, the a posteriori prob-
ability that F; is true is given by &; .4, Where £;,, is defined by the
expression we obtain from (5.95) when m is replaced by w.

A necessary condition for a decision function § to be a Bayes solution
is clearly the following: For any x (except perhaps on a set of measure
Zero),

oi(zy, *) Tman) =1 whenE,,,,,,>l
(5.97) +( 1y ’ +n. 2,m -4 :lz
2

6+(x1, ceey Im+n) =0 when 52,m+n <

Since the set of samples (z1, -, Zmyn) for which £ min = 35 is of
measure zero, the above condition determines 6,(z1, -, ZTmin)
uniquely (except on a set of measure zero). Thus the problem of
finding a Bayes solution is reduced to the problem of a proper choice
of the functions 8;(zy, +-+, 2m) ¢ =0, 1, -+, ad inf.). To deal with
the latter problem, we shall study the conditional risk when z;, -« -, z,,

and n are given and 8, (2, * -+, Tmyn) satisfies (5.97).
For given zy, ---, zn, and n, let a(z;, *«*, Zn, n) be the conditional

probability that we shall accept Fs when F is true, and 8(zy, « « *, Zpm, 7)
the conditional probability that we shall accept F; when F, is true.
Thus «(z;, ---, Zm, 7) is equal to the conditional probability of the
inequality

(598) EzeA""'*" > EIG—A”""P"

when F; is the true distribution, and 1 — B(zy, - - -, Zm, n) is equal to
the conditional probability that (5.98) holds when Fj is true. The
above inequality can be written as

(5.99) 4 > %”i = hn (say)

where

(5100) 2n = Ymgn — YUnm



154 APPLICATION TO SPECIAL CASES

If n = 1, the conditional probability that (5.99) holds can easily be
expressed in terms of the Gaussian function

1 o
5.101 G@®) = f e~ ¥’ dy
(5.101) ® i)
One can readily obtain the following results:

(5.102) alzy, -y Tmyn) = G [;:g\}}mﬁ + \/ﬁA] mnz=1)

and

(5-103) 1-— B(zly Tty Ty n) =@ [

log A,
2AV'n

—\/EA] (nz1)

For n = 0, we have

(5.104) oafzy, -, Zm, 0) =1 —B(z1, -+, Zm, 0) =0 whenh, >1

=1 whenh, <1
Since £;.,, is the a posteriori probability of F; (z = 1, 2) when z,,
-+, Zn, are given, the a posteriori risk when z;, - - -, z, and n are given
is equal to

(5°105) T($1, 2ty Tmy n)
= Elma(xly c0ty Ty n) + E2m6(x11 ***y Tm,y n) + c(m + n)

For any given values z;, - -+, Zn, we shall be interested in values of
n for which r(zy, ---, Tnm, n) takes its minimum value. Clearly the
minimum of r(zy, ---, Zm, n) with respect to n can be taken only for
valuesn < 1/c. For any given sample (z;, - - -, Zn), let N(zy, -« -, Zm)
denote the set of all integral values n for which 7(zy, - - -, Zn, n) takes
its minimum value. Thus N(zy, -« -, Z») is a subset of the set of all
non-negative integers not exceeding 1/c.

A necessary and sufficient condition for a decision function § to be a
Bayes solution relative to a given a priori distribution £ = (¢, &) is
given as follows: 8 (z1, « -+, Tm4n) satisfies (5.97), and 6:(z1, -+, Zm)
= 0 for any < that is not an element of N(z1, « -+, Zn) (except perhaps on
a set of Lebesgue measure zero). If N(zy, ---, z,) consists of a single
element for each sample (z3, -+, z,), then there is (essentially) only
one Bayes solution.

To compute the set N(zy, « -+, Zn), it is helpful to consider n as a
continuous variable; i.e., n is allowed to take any non-negative real
value. For non-integral values n, we define a(z;, *++, Zm, 1) and
B(z1, - -+, Zm, n) formally by the equations (5.102) and (5.103). The
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partial derivative of r(zy, - - -, Zm, n) With respect to n is then given by
(5.106) ar(zy, *+*) Tm, M)
an
N
e

The set N(zy, - -+, =) can be established by studying the roots of
the equation

a y oty Ty
(5.107) @, I
an

in n.

It is of interest to note that r(zy, -+, zm, n) is a function of
Yn =121+ -+ 2z, and n only. This follows immediately from
equations (5.102) to (5.105). Hence the set N(zy, - -+, z) depends
only on ¥, = z; ++ -+ z,. This fact greatly facilitates the tabula-
tion of N(z;, - -+, Zn). Since for any n the value of r(zy, - -+, Zm, n)
can easily be computed on the basis of formulas (5.102) to (5.105), the
set N(zy, - -+, ) can be established by trial and error.

One can easily verify that Assumptions 3.1 to 3.7 of Chapter 3 are
fulfilled for the decision problem under consideration here. Thus all
the results obtained in Chapter 3 can be applied to this problem. In
particular, the following statements are true: (i) The class of all Bayes
solutions relative to all possible a priort distributions £ s a complete class
of decision functions; (ii) there exists a least favorable a priori distribu-
tion &; (iii) there exists a minimaz solution; (iv) a minimax solution is
also a Bayes solution relative to any least favorable a priort distribution &.

We shall now show that £ = (14, 14) is a least favorable a priori
distribution. It follows from reasons of symmetry that when £ is
the a priori distribution we have N(zy, -- -, z,) = N(—2zy, -+, —Zn)-
Hence there exists a Bayes solution &° relative to £° such that §°(z;,

o, Zm) = 82(—2y, *++, —Zn). Furthermore for any Bayes solution
8° relative to £° we have 0p(ry * Tmgn) = 1if 2y -+ 2y > 0,
and = 0 when z; 4+ Zp4n < 0. It follows from symmetry con-
siderations that for any Bayes solution &° relative to £° for which
8i(z1’ R} xm) = 61'(—11, B _xm)y we have

(5.108) r(Fy, &%) = r(Fg, 8%
The above equation shows that £ = (14, 14) must be a least favorable
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a priori distribution and any Bayes solution &° relative to £ satisfying

the condition 8;(z1, -+, Zn) = 8(—xy, -++, —24) ¢=0,1,2, ---,
ad inf.) must be a minimax solution.
It was remarked before that r(z;, --:, zm, n) depends only on

Ym = 21 ++- -+ 2, and n. Thus we may write 7(y,, n) instead of
r(zy, +++, Tmy n). Let

(5.109) PYm) = Min, r(Ym, n)

Furthermore let ¢;(m) denote the expected value of p(y,) when F; is
true (z = 1, 2); i.e.,
(5.110) Yi(m) = __L_fw ( )e_%" (llm+mA)2d
) ! V2rvV'm _,,P Ym Ym
and
o (ym—mA)?

1 ® -
G pam) = == [ plame =T dy,

Then for any a priori distribution £ = (&, &) we have
(6.112) Min; 7(§, 8) = &1¥1(m) + Expe(m)

If the value of m can be chosen by the experimenter, an optimum
choice would be a value m for which the right-hand side of (5.112)
becomes a minimum. The functions ¢;(m) and y¥o(m) are, however,
difficult to compute. A crude approximation to y;(m), but perhaps
sufficient for some practical purposes, may be obtained from p(y,)
by replacing y,, by its expected value under F;; i.e.,

(5.113) Y1(m) ~p(—mA)  and  ¥3(m) ~ p(mA)

6.2.3 A Sequential Procedure for Testing the Means of a Pair
of Binomial Distributions

In this section we shall discuss the following decision problem: Let
X, X, - - -, ete., be independently distributed chance variables where
each chance variable X; can take only the values 0 and 1. The prob-
ability that X; = 1 is equal to p when 7 is odd, and equal to p* when ¢
is even. The constants p and p* are unknown, but it is known that
(p, p*) is equal to either (p1, p1*) or (pz, p2*), where p1, pz, p1*, and po*
are given positive numbers < 1. We shall assume that p; # p, and
p1* # po*. Let F; represent the distribution of the sequence X = {X;}
when (p, p*) = (p;, pi*) ¢ = 1, 2). Thus the space © consists of the
two elements F; and F,. The space D’ is assumed to consist of the
two elements d;° and d5%, where d;’ denotes the terminal decision to
accept the hypothesis that F; is the true distribution of X. We put

(5.114) WEF:;df) =1 fi%j, and =0 ifi=j
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The cost of experimentation is assumed to be proportional to the total
number of observations made and to be independent of anything else.
Thus, if n is the total number of observations made, the cost is ¢n,
where ¢ denotes the cost of a single observation.

It will be convenient to use the symbol Y; to denote the chance
variable Xp;_; (Z = 1,2, -+ -, ad inf.), and Z; to denote the chance vari-
able X5; (1 = 1,2, ---,ad inf.). Similarly y; will stand for z5;_;, and z;
for zy;. Since the cost of experimentation does not depend on the
number of stages in which the experiment is carried out, we can
restrict ourselves to decision functions § according to which each stage
of the experiment consists of precisely one observation. Since the Y
chance variables, as well as the Z chance variables, have a common
distribution, we may impose the following further restriction on §:
Whenever a y-observation is made, we observe the value of Y; with
the smallest index ¢ that has not yet been observed; and whenever we
make a z-observation, we observe the value of Z; with the smallest
index 7 that has not yet been observed. In view of the above restric-
tions, a decision function & can be represented by four functions
8:(y1, -, Ym; 21, - -, 2n) (2 = 1, 2, 3, 4) satisfying the conditions

8, -y Ymy 2, o, 20) 20
(5.115)

4

; 31:(1/1; tyYm;y 21, zn) =1

1=
Here 8;(y1, ** ), Ym; 21, - -, 2s) denotes the probability of making the
terminal decision d;* (z = 1, 2) when the sample y1, -+, Ym; 21, ** ) 22
has been observed; 83(y1, +-*, Ym;] 21, * -+, 2n) is the probability of
continuing experimentation by observing the value of Yy,.; and
84(y1, ***, Ym; 21, * * -, 2a) Is the probability of continuing experimenta-
tion by observing the value of Z, ;. The functions é; are defined also
form=n=0. If m=n =0, §; is equal to the probability of the
corresponding action before the start of experimentation.

The problem under consideration here is somewhat different from
the type of problems treated in Chapter 4, since in Chapter 4 we
assumed that all chance variables X; (z = 1, 2, - - -, ad inf.) have the
same distribution. Nevertheless, most of the results in Chapter 4
will be applicable to the present case, as will be indicated later.

Any probability distribution in @ can be represented by a number &
between zero and 1, where ¢ denotes the probability that F, is true.
For any £, let £"...%" denote the a posteriori probability distribution
in © (the a posteriori probability that F; is true) when £ is the a priori
probability distribution and the sample (y1, -+, Ym; 21, -, 2) has
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been observed. If m = 0, the above symbol reduces to g ¥
Similarly, if m = 0, the above symbol reduces to &¢,...,. If
m = n = 0, the symbol £ 7" reduces to £. Clearly
(5.116) guniim

gl’i ‘m—%ﬂi g’—;‘ ”—gzi
gt A—p) ' (@M Q—p*) !

n

m

Zu m—Zu; 2z n—2z
gt 1—p) ' (@™ Q—m*

g!{i m-gﬂi ﬁzi n—§
+ A =8pt (1 —p2) ' (¥ (1 —p*)

For any non-negative integer k, let 8 denote a decision function
such that the probability is zero that more than k observations will
be made when &* is adopted. As in Chapter 4, we define

25

(5.117) pr(®) = Infpr(§, 8*) (k=0,1,2, -+, ad inf)
Clearly
(5.118) po(§) = Min (§, 1 — §)

The following recursion formula holds:

(5.119)  pr41(§) = Min [po(£), ao(£)pr(£”) + a1(E)pr(E")
+ ¢, bo(E)px(to) + b1 (E)pr($1) + ]

where
(5.120) a0()) = £1 — p1) + (1 — ) — p2)
a1(§) = &1 + (1 — Hp2
and
b = &1 — pt* 1-—  mo¥
(5.121) o) = £ — ™) + (1 — 51 — po*)

bi(§) = gpr* + (1 — &)po*

The proof of the above recursion formula is omitted, since it is essen-
tially the same as that of the corresponding recursion formulas given
in Chapter 4 (see Theorem 4.1).

The relation

(5.122) ,}:ﬂ pi(§) = p(§) = Inf;r(¢, &)

can be proved in exactly the same way as the corresponding relation
in Chapter 4 was proved; see equation (4.21).
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The functions po(£), p1(£), p2(£), -+, pr,(£) can be used to give a
complete characterization of Bayes solutions when only decision func-
tions § are admitted for which the probability is zero that the number
of observations needed for the experiment will exceed a prescribed
number-ky. For this purpose, we shall define three subsets, S,.1, Su.2,
and S, 3 of the interval [0, 1], depending on a parameter « which can
take only positive integral values. S, is defined as the set of all
values £ for which

(5.123) po(§) > pu(f)
S..2 is the set of values £ for which
(5.124)  ao(¥)pu—1(t®) + a1(E)pu—r (&) + ¢
> Min [po(£), bo(§)pu—1(f0) + b1(E)pu—_1(£1) + ¢l
S..3 is the set of all values £ for which
(6.125)  bo(&)pu—1(0) + b1(E)pu—s(1) + ¢

> Min [po(£), ao()pu—1(t®) + a1()pu_i (&) + ¢l

A decision function 8, subject to the restriction that the probability
is zero that the number of observations will exceed ko, is a Bayes
solution relative to the a priori distribution £ if and only if the following
five conditions are fulfilled:

(5126) 81(y17 *t 0y Yms 21, °"1Zn) =0
if g5 < 14,
(5.127) d2(Y1, ***y Ym; 21, *+ 5 22) =0

if g0 > 14,
(5128) 51(1!1, ctyYmy B, c ey, Zn) = 82(?/1, cyYmy 21y 0y Z‘n) =0

if m + n < ko and £ 7" is an element of Sg,—pm—n1,

(5.129) 63(1/1; ty Ymy 21, zn) =0
ifm 4 n =ko,orif m + n < ko and £..:Y is an element of Sg,—m—n 2
(5130) 64(?/17 y Ymy 21, 0y, zn) =0

fm -+ n=koorif m +n < koand £. ¥ is an element of Sy, —r 3.

The above five conditions are satisfied for the following decision rule:
Continue experimentation as long (and only as long) as m + n < kg
and £2:..¥ is an element of Sy,_,,—,1. If the sample (y1, -+, Ym;
23, -+ *, 2,) has already been obtained and the application of the above



160 APPLICATION TO SPECIAL CASES

rule requires ta,king an additional observation, take a y-observation
when &1 lies in Spy—m—n3, and a z-observation otherwise. If
expenmentatlon is terminated with the sample (y1, -, Ym; 2., = - *, 2a),
decide for dy‘ when £2:¥» > 14 and for do’ when £ < %.

Let S; denote the set of values £ to which S, ; reduces if u is replacad
by « and p,(¥) by p(¢) (¢ =1, 2, 3). A characterization of Bayes
solutions with no restrictions on the number of observations can be
given in terms of the sets S;. A decision function é is a Bayes solution
relative to £ if and only if (5.126) to (5.130) are satisfied when k, is
replaced by « and S, ; by S;. A decision rule satisfying these condi-
tions may be given as follows: Continue experimentation as long (and
only as long) as £, ¥™ is an element of S;. If (y1, -+, Ym; 21, **+, 2n)
has already been observed and if &7 is in S, take a y—observatxon
when £}%" is in Sa, and a z-observatlon otherwise. If the sample
, -, y,,,, 21, - -+, 2,) has already been obtained and £’ is not
in 8y, decide for d,* when g > 14 and for dyf otherwxse

Let S;* denote the complement of S;; i.e., S;* consists of all values £
which do not belong to S;. The intersection of S;* with the interval
[0, 14] is the set that was denoted in Chapter 4 by Cg,, and the inter-
section of S;* with [14, 1] is the set that was denoted in Chapter 4 by
C;:. The proof that the sets Cy,c and Cy ¢ are closed and convex, given
in Chapter 4, applies without modification to the present case. Thus
C;: and Cgyy are closed intervals. Clearly Cj¢ contains the point
£ = 1, and Cj, contains the point £ = 0. Let a be the upper endpoint
of Cy,, and b the lower endpoint of C4e. Clearly S;* is the set-theoreti-
cal sum of the intervals [0, a] and [b, 1]. Thus 8; is the open interval
(a, b).

It can be shown that the intersection S,Ss of the sets Sy and S; is
precisely equal to the set-theoretical sum of the half-open intervals
[0, @) and (b, 1]. The proof of this is omitted because it is essentially
the same as that of Theorem 4.9 in Chapter 4.

By using the above results concerning the nature of the sets Sy, Ss,
and S3, the characterization of Bayes solutions can be given in the
following form: A decision function § is a Bayes solution if and only if
1t satisfies the following conditions: (1) If the a posterior: probability of Fy
is < a at some stage of the experiment,’ experimentation s stopped and
the termanal decision do® is made. (ii) If the a posteriori probability of
Fy is > b, experimentation is stopped and the terminal decision dy® is

(iii) If the a posteriort probability of F1 is > a and < b, an addi-
tional observation s made. (iv) If an additional observation ts made, it

- 18 The a posteriori probability of Fy is-to be replaced by the a pnon probability
of F; when experimentation has not yet started.
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must be a y-observation if the a posterior: probability of Fy is a point in
Ss, and a z-observation if this a posteriori probability is a point in Ss.
(v) If experimentation is terminated when the a posteriori probability
of Fy is equal to a (b) and if a < V4 (b > 14), the terminal decision
ds'(d1?) is made.

Let S’; be the intersection of S; with the open interval (a, b) (z = 2,
3). Since no point £ in (a, b) belongs to the intersection of S; and Ss,
the sets S’; and 8’3 are disjoint. The set S’s consists precisely of those
points £ in (a, b) for which

(5.131)  ao(®)p(E®) + ar(B)p(E) > bo(E)p(%0) + b1(£)n(£1)

and the set S’z consists of the points £ in (a, b) for which

(5.132)  ap(®p(E®) + a1(®)p(E) < bo(®)p(%0) + b1(£)p(%1)

The nature of the sets defined by the inequalities (5.131) and (5.132)
has not been studied. It is not unlikely that these sets have a simple
structure; perhaps they are frequently intervals.

Clearly Assumptions 3.1 to 3.7 of Chapter 3 are fulfilled for the
decision problem under consideration here. Thus all results obtained
in Chapter 3 are applicable to this case. In particular, the following
statements hold: (i) The class of all Bayes solutions is a complete
class of decision functions; (ii) there exists a value £ such that ¢ = ¢
is a least favorable a priori distribution; (iii) a minimax solution exists
and any minimax solution is a Bayes solution relative to any least
favorable a priori distribution.

The foregoing results can easily be generalized in two directions:
(1) Instead of assuming that each Y-variable and each Z-variable can
take only the values 0 and 1, we may work with any general (abso-
lutely continuous or discrete) common distribution for the Y-variables,
and any general common distribution for the Z-variables; (2) instead
of assuming that the sequence {X;} can be split into two subsequences
such that the chance variables belonging to the same subsequence have
a common distribution, the more general case can be treated where
{X;} can be split into a finite number of disjoint subsequences such
that the chance variables belonging to the same subsequence have a
common distribution.

5.2.4 Discussion of a Decision Problem when @ Consists of Three
Rectangular Distributions

As an illustration of the various ideas and notions of the general

decision theory, we shall discuss here a rather simple decision problem.
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The chance variables X;, X, - - -, etc., are assumed to be independently
and identically distributed. The common distribution is known to
be a rectangular distribution with unit range. The midpoint 6 of the
range is unknown, but it is known that it is equal to one of the values:
—14, 0, and 4. Thus in this problem @ consists of three elements.
The space D! of terminal decisions is assumed to consist of three
elements dy%, ds?, and ds’, where d;’ denotes the decision to reject the
hypothesis H; that § = —14, d,’ denotes the decision to reject the
hypothesis Hy that 6 = 0, and ds’ denotes the decision to reject the
hypothesis H; that § = 1{. Let W(F;, d;*) = 1if ¢ = j, and = 0 if
1 # j, where F; denotes the distribution of X = {X;} when H; is true.
In other words, the loss due to the terminal decision d;’ is 1 if H; is
true, and 0 if H; is not true. The cost of experimentation is assumed
to be proportional to the number of observations. Let ¢ be the cost
of a single observation. We shall assume that 0 < ¢ < 14.

The above decision problem is a special case of the general decision
problem treated in Chapter 4. Thus we shall use the terminology and
notation adopted in Chapter 4. An a priori distribution in @ is given
by a vector £ = (&, £, £5), where £° denotes the a priori probability
that H; is true (z = 1, 2, 3).

Let z = (24, -+, ) be a sample of m observations (z; is the ob-
served value of X;), and let £, denote the a posteriori distribution when
£ is the a priori distribution and z = (21, ---, z,) is the observed
sample. Clearly ¢, =¢if —Y/ =<z, =Y for2=1, «--, m. If
Min (z1, - -+, Tm) < —Y, then £2 = 0. If Max (z, +- -, zm) > Y,
then £, = 0. Thus, if Min (21, - - -, Zm) < —14 or Max (zq, -+, Zm)
> 14 we can make a terminal decision without any (a posteriori)
risk. The probability that an observation will lie outside the interval
[—14, ¥4] is equal to 14 under each hypothesis H; (z = 1, 2,3). Hence
for any a priori distribution ¢ the probability is equal to !4 that an
observation will fall outside [—14, 14]. From this it follows that if
experimentation is continued until we obtain an observation outside
[—14, Y4], the expected number of observations is equal to 2. Hence

(5.133) p(§) =2

where p(¢) = Inf;r(¢, &) [see Section 4.1.1]. The minimum risk
po(£)—see equation (4.8) in Section 4.1.1—when a terminal decision
is to be made without any experimentation is given by

(5.134) po(§) = Min (¢, &, £)

Since the a posteriori distribution £, coincides with the a priori prob-
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ability distribution £ as long as no observation falls outside the interval
[—14, 4], it is clear that

(5.135) p(§) = Min [po(%), 2¢] = Min (¢, £, £, 20)

Bayes solutions can easily be constructed with the help of the functions
po(®) and p(£). We have to consider the following three cases.

1. Min (8, £, £2) > 2c. In this case a Bayes solution is given as
follows: We take observations until we obtain one that lies outside the
interval [—14, ¥4]. If the last observation z, is < —14 and = —14,
we choose the terminal decision ds®. If z, < —14 we may choose
between do’ and d3’ at random. If z, > 1{ and < 14, we choose d,’.
If z, > 15, we may choose between d;* and ds’ at random. Using the
notation introduced in Section 4.1.1, we can express this as follows:
3G+ 1|z, -++, z) = 1if =% < Min (zy, -+, 2;) < Max (z1, -+,
z) £ Y, and 3G+ 1 | zy, ++-, ;) = 0 otherwise. &(d; | Ty, e,
z,) = 0 if the observations z;, - - -, z, fall inside the range correspond-
ing to H,.

II. Min (£, £, £) = 2c. For a decision function & to be a Bayes
solution it is necessary and sufficient that the following conditions be
fulfilled (except perhaps on a set of samples whose probability measure
is zero according to H,, H,, and Hj): (1) 8(d; l 0) = 0 for any < for
which Si > Min (Ely 52: 53); (2) a(d‘it l Ty, ©° 0y I,-) =0 if Ei > Min (517
£, &) and all the observations z;, ---, z, are inside the interval
(-4, Y41; @) 8¢+ 1|z, -+, 2,) =0 if 2, ++-, 2, are inside
[—Y4, Y] and z, is outside [—14, 4]; (4) 8(d: |1, -+, z) = 0 if
the observations z;, - -, z,—; are inside [—14, 14] and z, is outside
[—14, ¥4] but inside the range corresponding to H,.

III. Min (£, £, £) < 2c. In this case a necessary and sufficient
condition for a decision function § to be a Bayes solution is that

3
> 8(d|0) =1 and 8(d;*| 0) = 0 for any j for which ¢ > Min (¢,
1=1
£, 8).

Let 8y be the decision function determined as follows: §y(1 | 0) =1
8@+ 1|z, -y @) = 1if =Y <z; < Yforj=1,---,3. 8|z,
-+, z,) = 1 if the observations z;, - -+, z,_; are inside the interval
[—Y4, Y], z. is outside [—14, 4], and ¢ is the smallest integer such
that the range corresponding to H; does not contain z,. Clearly
r(0, &) = 2¢ for 8 = —14, 0, 14. Hence, if we can show that §, is a
Bayes solution relative to some a priori distribution £, &, is a minimax
solution. Let ¢ < 14. Then §, is a Bayes solution relative to
£ = (14, 15, 14). Thus §, is a minimax solution when ¢ < 14.
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Let Cy be the class of all decision functions § which satisfy the
following two conditions (except perhaps on a set of samples whose
probability measure is zero according to Hy, Hs, and H3):

@) If 2, ---, 2p_y are in [—14, 1], . is outside [—14, 14], and if
8(1]0)82| z1) -+~ 8(n| 2y, -+, Zay) >0, then s(n+ 1|2z, ---,
z,) =0 and 8(d; | Zy, +++, zn) = 0 for any 7 for which the range
corresponding to H; contains .

(ii) There exists a positive integer ¢ < 3 such that a(di‘[ Zy, -,
z;) = 0 for any sample z;, ---, z, for which —1{ < z; < 1 for
j =1, ---, rand for which §(1 | 0)5(2 | zy) +-- 8(r | 2y, -+, 2r_1) > 0.

We shall show that Cj is a minimal complete class of decision func-
tionsif 0 < ¢ < 14. First we show that, if § is a Bayes solution relative
to some a priori distribution £, & is a member of Cy. Clearly § must
satisfy (i). Since ¢ < 14, there exists a positive integer 7 < 3 such
that £ > 2c. A Bayes solution § must satisfy condition (ii) for any ¢
for which & > 2c. We shall now show the converse. Let & be any
member of Cj, i.e., any decision function which satisfies (i) and (ii).
Suppose that (ii) is satisfied for ¢ = 7. Let £ = (&, &2, £&°) be the
a priori distribution given as follows: £ = 1 — 4¢ and &7 = 2¢ for
j # 1. Clearly & is a Bayes solution relative to . Furthermore &
must be an admissible decision function, since all components of £ are
positive. Hence Cy is identical with the class of all Bayes solutions
and each member of Cy is an admissible decision function. It then
follows from Theorem 3.20 that Cy is a minimal complete class of
decision functions.

65.2.60 Sequential Point Estimation of the Mean of a Rectangular
Distribution with Unit Range

In this section we shall discuss the following problem: Let X,
X,, ---, ete., be independently and identically distributed chance
variables. The common distribution is known to be a rectangular
distribution with unit range, but the mean 6 is unknown (may take
any real value). Thus Q is a one-parameter family of distribution
functions. The problem is to set up a point estimate for 6. For any
real value 6*, let ds' denote the terminal decision to estimate the
unknown mean 6 by the value 6*. Thus D* consists of the elements
dg+’ corresponding to all real values 6*. We shall put

(5.136) W, dest) = (6* — 6)?

The cost of experimentation is assumed to be proportional to the
number of observations. Let ¢ denote the cost of a single observation.
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The problem considered here is again a special case of the general
problem treated in Chapter 4. We shall deal here with the question
of finding a minimax solution for our problem. For this purpose we
shall first derive the Bayes solution when the a priori distribution of 6
is a rectangular distribution with a given range [a, b], where a < b.
Suppose that m observations z;, - - -, z,, have been made. Let

(5.137) w = Min (21, -+, Tm) and v=Max (z1, -+, Tm)

Then the a posteriori probability distribution of 6 is again a rectangular
distribution whose range is equal to the common part of the intervals
[a, b] and [v — 14, u + 14]. Let I(u, v) denote the common part
of [a, bl and [v — 14, u + 14], and let {(u, v) denote the midpoint of the
interval I(u, v). It is clear that the optimum terminal decision is to
estimate 6 by £(w/, v’), where u’ and v’ are the values of » and v, respec-
tively, at the termination of the experimentation. Thus the problem
of finding a Bayes solution reduces to the problem of finding an opti-
mum rule for stopping experimentation.

Clearly, whether a rectangular distribution £ in Q is of type 1, type 2,
or type 3 (for a definition of the three types see Section 4.1.3) depends
only on the length I of the range of £ Thus it is possible to subdivide
the non-negative half of the real axis into three disjoint sets R;, R,,
and R; such that when [ is a point in R; the distribution £ is of type
1(t=1,2,3).

Let 1,, denote the length of the interval I(u, v) after m observations
Z1, < -, Zn have been made (m = 1,2, .-, ad inf.). We define [y as
the length of the range of the a priori distribution; ie., lp = b — a.
With the help of the sets Ry, R, and R3, a Bayes solution can be given
as follows: At the mth stage of the experiment (m =0, 1, 2, - - -, etc.),
compute l,. If I, is a point in R;, stop experimentation and make the
proper terminal decision. If [, is a point in Ry, we can decide at
random between taking an additional observation and making the
proper terminal decision. If I, is a point of R3, an additional observa-
tion is made. Thus the problem of constructing a Bayes solution
reduces to the problem of determining the sets Ry, R,, and R;.

If experimentation is terminated with the mth observation, the
a posteriori risk associated with the terminal decision is equal to the a
posteriori expected value of [§ — t(u, v)]* which is simply equal to
1.2/12. For the purpose of determining the sets R;, Rs, and R, it
will be necessary to determine the conditional expected value of
pn11/12 when I, = 1 and 1 is a given positive number (m =0, 1, 2,
---, ad inf.). A simple computation shows that the conditional
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expected value in question is given by

l2m+1 l2 ls
(5.138) E( L, = z) B r
12 12 24
when O £1<1,and
lzm+1 1 1
(5.139) E ln =1 ——_—
12 12 241
when 1 = 1.
Let
(5.140) @ 2 E( mHig z)
' AT 12 | ™
Then
l3
5.141 ) =—
( ) ()] o
when ! < 1, and
12— 1
5.142 D) = -
( ) () 5 + o1l

when ! = 1. The quantity ¢(l) is simply the expected decrease in
the a posteriori risk associated with the terminal decision due to an
additional observation when ! is the length of the interval I(u, v)
before the additional observation is made. Clearly ¢(l) is strictly
increasing with increasing ! over the whole range of I. Thus the
equation in I

(5.143) ¢(@) = ¢ (c = cost of a single observation)

has exactly one root. Let I = I be the root of this equation. Since
¢(l) is a monotonic function of I, and since ly,y1 <1, (m =0, 1, 2,

-, ad inf.), we can easily verify that R; consists of all values I <
I, R, contains the single value I, and Rj consists of all values I > 1.

Thus, if the a priori distribution in Q is a rectangular distribution,
a Bayes solution is given by the following rule: At the mth stage of
the experiment, for each non-negative integral value m compute the
value of l,. If I, <1, stop experimentation and make the proper ter-
minal decision. If 1, > I, take an additional observation. If I, = I,
we can decide at random between making a terminal decision and
taking an additional observation.

Let 3¢ be the decision rule given as follows: At least one observation
is made. Experimentation is stopped at the mth observation with the
adoption of (un + v,)/2 as the point estimate of 6, where m is the
smallest positive integer for which (uy — vy + 1) = I, upn = Min (24,
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©ee, Tp), and v, = Max (z1, -, »). We shall show that § is a
minimax solution of our decision problem. Clearly r(6, &) is constant
over the whole domain of 6. Let ry be the constant value of r(8, &).

For any positive integer k, let £; be the rectangular distribution in @
with range [—k, k]. Let 6 be the Bayes solution relative to £ accord-
ing to which experimentation is stopped as soon as I, < I. For any
k > Max (2, [/2), we have

(5144) 7'(0, Bk) = r(ai 80) =To

for —(k— 1) <6 =<k—1. The above equation is an immediate
consequence of the fact that &, coincides with §; when I 0\ <k-—1.
Suppose now that §p is not a minimax solution. Then there exist a
decision function §* and a positive value ro* < rq such that

(5.145) r(6, &%) < ro* <o

for all 6. Clearly

(5.146) limsup r(¢x, 8%) =< ro*
k=

It follows from (5.144) that
(5.147) liminf T(Ek, 51,) = To
k=o
Since 6 is a Bayes solution relative to £, equation (5.146) cannot

hold. Thus we arrive at a contradiction, and our statement that &,
is a minimax solution is proved.
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Dodge, H. F., 28
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terval estimation, 145
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Lefschetz, S., 54n
Lehmann, E. L., 29, 138n, 142n
Linear manifold of probability measures
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Loss function, see Weight function

Mabhalanobis, P. C., 28
Maximal strategy, 25, 26, 52
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theory, 70
Metric, on space of a priori distribu-
tions, relative to space of trun-
cated decision functions, 94
on space of admissible distribution
functions, 85
intrinsic, 89
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Metric, on space of admissible distribu-
tion functions, relative to space
of truncated decision functions,
intrinsic, 85, 89, 94

on space of terminal decisions, in-
trinsic, 62

on spaces of mixed strategies, intrin-
sic, 34

on spaces of pure strategies, intrinsic,
33

Milgram, A. N., 54n

Minimal complete class of decision func-
tions, 15, 29, 101

Minimal complete class of strategies, 54

Minimal strategy, 25, 26, 52, 57

Minimax solution, 18

as a Bayes solution relative to least
favorable a priori distribution,
18, 91
in wide sense, 90
existence of, 90, 95
for non-sequential case when @ and
D* are finite, 125-128
for non-sequential parametric case
when D* is finite, 148
for non-sequential parametric in-
terval estimation, 145
for non-sequential parametric point
estimation, 140
risk function of, 91, 92
for non-sequential case when Q and
D? are finite, 128
Minimax strategy, 25, 52, 53
Minimum variance estimator, 22
Mixed strategies, spaces of, 24, 44, 48
compactness of, 49
convergence on, see Convergence
intrinsic metric on, 34
separability of, 51

Mixed strategy, 24, 44

Mosteller, F., 29

Nature viewed as a player in zero sum
two-person game, 27

Neyman, J., 10n, 19, 23, 28, 29n, 30,
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Neyman-Pearson theory of testing hy-
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Non-randomized decision function, 6;
see also Decision function
Non-sequential decision function, 8, 64,

123-151;seealso Decision function
Normal distribution with known vari-

ance, non-sequential choice
among three possible values of
mean of, example, 129

non-sequential choice among three
ranges for mean of, 149

non-sequential point estimation of
mean of, 140

non-sequential test of hypothesis that
mean is < 0, 135

non-sequential test of hypothesis that
mean lies in a bounded interval,
136

two-stage sequential test about mean
of, 151-156

Number of observations, 6; see also Ex-

perimentation

sufficient conditions to insure bound-
edness of, in binomial case, 87

Observation, 4; see also Experimentation

Optimal terminal decision, 3, 151

Optimum property of sequential prob-
ability ratio test for choosing be-
tween two distribution functions,
121n

Outcome function of a game, 25, 34

Parametric case, 2, 22, 130-151
Pearson, E. 8., 19, 28, 29n, 127
Performance characteristics regarding
experimentation and terminal de-
cisions, 14
Pitman, E. J. G, 23
Point estimation, 21
as a special case of the general de-
cision problem, 22
non-sequential non-parametric, ex-
ample, 143-144
non-sequential parametric, 138-143
Polar distance function, 33n
Power function of a test, 20, 131
Probability distribution, see A priori
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Decision function, Distribution

177

function, Mixed strategy, Prob-
ability law, etc.
Probability law, elementary, 71n, 104
densities, 71n, 104
convergence of sequence of, in
measure, 133
discrete, 71n, 104
Probability measure on space of de-
cisions, see Decision function
Probability measures on @, see also A
priori probability distribution,
A posteriori probability distribu-
tion
convexity of certain classes of, 112,
113, 119, 121
linear manifolds of, 113, 122
Probability ratio decision function for
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Pure strategies, spaces of, 24, 44
Borel fields on, 33, 34, 41, 48
Cartesian product of, 34
compactness of, 49
conditional compactness of, 37, 38
game relative to finite and denu-
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separability of, 34, 41, 51
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Pure strategy, 24

Randomized decision function, 7, 27; see
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mean of, 145
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sible values of mean of, example,
161-164
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measurability of, 71
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Robbins, H., 133
Romig, H. G., 28
Rubin, H., 142n
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ber of observations
Sample space, 11, 70
Borel field on, 70
Savage, L. J., 29
Separability, 40
of space of admissible distribution
functions, 60, 85
of spaces of mixed strategies, 51
of spaces of pure strategies, 34, 41, 51
Sequential analysis, 21, 29, 64
Sequential decision function, 8, 103-122,
151-167; see also Decision func-
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for choosing between two distribution
functions, 120
optimum property of, 121n
Size of a critical region, 20, 131
Sobel, M., 117n, 130n, 136n, 138n, 151n
Statistical decision function, see De-
cision function
Statistical decision problem, formula-
tion of, 1, 10
interpretation of, as a zero sum two-
person game, 27
strict determinateness of, 88
Stein, C., 29, 30
Stochastic process, 1
absolutely continuous, 59, 65
assumptions on, in general decision
theory, 59, 71
in special case, 103-104
discrete, 59, 65
Stockman, C. M., 29
Strategies, complete class of, 26, 54, 57
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uniformly better of two, 26
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Strict determinateness of statistical de-
cision problem, 88
Strictly determined games, 32; see also
Zero sum two-person game
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optimal, 3, 151
performance characteristic regarding,
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