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CHAPTER I

RATIONAL DEGISION MAKING IN PORTFOLIO MANAGEMENTS
A BRIEF SURVEY

All investment necessarily invelves the future and, therefore,
uncertainty. The extent of this uncertainty is a major factor in many
investment decisions including the choice among available portfolios.
The theory of the firm deals with the problems faced by business men
in an environment characterized by change and uncertainty. The problems
of portfolio management are similar in many respects. The rational
portfolio manager has goals similar to those of the rational entre-
preneur and is guided by similar criteria in making decisions.

This dissertation 1s a study in applied decision theory. It is
an attempt to analyze how a ratlonal portfolio manager, with specified
probability beliefs, should choose one portfolie to hold out of all
available portfolios. It does not deal with the problem of how to
allocate a portfolio on the basis of probability belle:

bout returns
from individual stocks and bonds. Rathex it deals with the related but
different problem of how to choose among portfolios on the basis of
probability beliefs about returns from portfolios. It is assumed that
the portfollo manager has formed probability beliefs, not necessarily
about returns from individual stocks and bonds, but about returns from
portfolios consisting of groups of stocks and bonds, and wishes to choose
among the portfolios on the basis of these beliefs, For example,



portfolio A in Table l.1 may be allocated 5 to General Motors Common
Stock, «R to UsSe Steel, and .3 to Pacific Gas and Electric. Portfolio
B may consist of the same securities but allocated in different propor-
tions or may consist of entirely different securities including bonds.
1In either case, the problem is to choose between the two portfolios, not
among the individual stocks and bonds making up the portfolicse

The portfolio manager who has & group of stocks and bonds! with
a market price of $100,000 can choose to continue to hold this portfolio
or to substitute any other portfolio available to him at that price.
In real life this choice is influenced by such factors as income and
inheritance taxes, inertia, and lack of knowledge about available port-
folios. BEven so, the rational portfolio manager must ask himself how
he should choose among portfolios aside from these influences, The
present dissertation is an attempt to answer this questionj the objective
is to analyze how his choice among portfolios should be made, not how
it is made usually.

Rational choice among portfolics involves two steps: (a) forming

1 For the purpose of this study it is assumed that the portfolio
manager has interests exactly the same as those of the wealth<holder or
portfolio owner. A portfolio consists of a combination of stock and
bonds and cash which may be considered to be equivalent to high-grade,
short=term, non-interest bearing bonds. Such combinations include h.lﬂu
stock on margin. More than 100 percent of the net value of the por
folio may be invested in stock. The funds borrowed are classed n nlg-
ative bond holding. Negative stock holding consists of selling stock
shert and holding the proceeds in cash. In syabolic form, let b be the
proportion of the not value of the portfolio held in bonds or cash and
q be the proportion held in stock. Then either b or q can be positive or
negative but always b+ q =1 4



probability beliefs about umrmz from portfolios as these returns will
be affected by future occurrencesj and (b) choosing among portfoliocs on
the basis of these bellefss The two steps may be illustrated by

Table 1.1 which shows the probability of occurrence of two future events
labeled "prosperity" and "depression® in the last xow and the estimated
effects of prosperity and depression on the returns from Portfolio A and
Portfolio B is the first two rows. Each such return is here called a
payout, axd a table showing the payout from each available portfollo

for each relevant future occurrence is here called a payout natrisd of

returns.
Table 1.1
Payout Matrix of Returns
Future Occurrence
Prosperity Depression
Portfollo A L0 90
Portfolio B 1.06 1.02
Probability of
Occurrence 8 2
B

2 Let R be the return and i be the gain (or loss) per investment
period per doller of principal. Then R=1 ¢ 1. If a wealth-holder
holds a portfolio which costs 81,000 at the beginning of the investment
period, pays §40 in dividends and interest during the period, and is
sold for $1,060 at the end of the period, his return is 1.10.

3 This is the simplest possible payout matrix. Payout matrices
may well show the combined effects of more than two types of future
occurrences on the one hand and more than two portfolios on the other,
For example, there might be three columns headed "increasing business,"
ngalling business," and "stable business," each with an estimated proba-
bility of occurrence. Returns from five different portfollos might then
be estimated for each of those conditions,




In tems of the payout matrix the portfolio manager has two
problens which correspond to the two steps above: (a) filling in the
payout matrix of returnsj and (b) choosing among portfolios on the basis
of this filled-in matrixe In real life, the first step~—~deciding upen
the size, measured by the number of columns and rows, of the payout
matrix and £illing in the matrix with reasonable estimates of payouts
and probabilities--~is by far the most difficult part of the portfolio
manager's Job, This dissertation has little to say about this pruhl-."
It deals with the second of the two steps in portfolio management: the
problem of how to choose among portfolios on the basis of a filledein
payout matrix., In Table 1.1, for example, this would be the problem of
choosing between Portfolie A and Portfolio B.

The uncertain consequences of choices among portfolios may be
expressed in terms of a payout matrix such as that of Table l.1. Such
matrices will be important tools in the analysis of rational decision
making, They will be used to define and describe the combined effects
of strategles (lses, courses of action) and future occurrences—~combined
effects which are involved in all choices with uncertain outcomes,
including gambling and portfolic management. The matrix in Table l.2,
for example, illustrates the problem of a man who has $1.00 in hand and

4 Probability beliefs about returns from portfolios may be derived
in various ways. For example, the probability distribution of returns
from a specified portfolio may ln built up by first making uﬂutn of
returns from the making up the per thes
returns will be affocted by future occurrences, and than combining these
estimates. Probability beliefs about returns from a specified ponhlio
may also be derived by starting from estimated returns frem hroad
of securities such as the Dow Jones Industrial Average.




has the option to bet or not to bet §1.00 on whether or not heads occurs

on the next toss of a fair coin.

Table L.2
Matrix of Money in Hand After One Toss of a Fair Coin
Outcome of Toss

Strategy Hoads Tails
Bet 2,00 0
No Bet 1.00 1.0

Probability of
Occurrence o5 o5

Payout matrices in general, like that of Table 1.2, show the
probabilities of all relevant future occurrences and the payouts re=
sulting from the combined effects of each possible strategy on the one
hand and each relevant future occurrence on the other. All this infor-
mation is needed to reach a rational decision on the proper choice of
a strategy. Consideration of the entire matrix is here taken to be an
essential requirement of rational decision makings It would be impossible
for a gambler to make a rational choice among strategies if he disre-
garded either the probability of the relevant future occurrences or any
of the possible payouts.

The central problem of rational portfolio management is that of
making repeated cholces among portfollos. The portfolio manager does
not make an irrevocable decision to hold indefinitely a particular group

of stocks and bondss instead, he is able to readjust his portfolio at
cholce of the

the end of any period.



portfolio to hold during each separate investment pcxiud’ must be
considered a separate dcciﬂnn." The consequences of these cholces are
uncertain, Furthermore, the effects of his reiterated choices among
portfolios must be cumulative unless all gains are withdrawn from the
portfolio and all losses are replaced at the end of each year,
Choosing among portfolios on the basis of a filled=in payout
matrix involves the selection of a criterion (that is, measure or
standard to be maximized or minimized) to be used as a guide in making
rational choices among strategiess The remainder of this chapter will
be devoted to a brief survey of the hieraxchy of goals underlying such
2 criteri For 1 of the goals underlying a
rational criterion will be defined first without reference to the

reiterative character of the choices, and then the discussion will be
widened to include repeated choices with cumulative effects.

Ine Hilerarchy of Goals and Guides

Rational choice among jies under of
involves a hierarchy of goals, and of guides for reaching these goals.
This hierarchy consists ofs (1) a goaly (2) a subgoaly (3) a criterion
for choosing among strategles to reach the subgoal (i.es, a measure
which must be maximized to attein the subgoal)s end, finally,
(4) methods for devising strategies which meximize the criterion. Methods

5 Individual investment periods may be days, weeks, months, or years,
but are hercafter called years.

6 Compare the old Wall Street sayings "To hold a stock is to buy
a stocks"



of devising strategies are the subject matter of later chapters of this
dissertation and will not be discussed at this time. The subgoal is a
crucial member of this hierarchy, It will form the basis of later
chapters entitled "Subgoals and Criteria" and "Subgoals and Subjective
Utility." This together with the following section is a brief overview
of goals, subgoals, and criteria.

The goal in rational decision making is the maximization of some
measure of value. Each decision is made for the sake of the différence
the cholce will make in terms of this objectives The measure of value
to be maximized, which will be referred to as the maximand, may be
either a subjective utility measure such as utiles, or an objective
measure such as money or bushels of wheat. The decision maker is con-
fronted with a payout matrix expressed in terms of a maximand and wishes
to select that one from among all available strategies which will
enable him to reach his goals

The goal can be reached only in the futures It cannot be used
as a basis for choosing among strategies with uncertain outcomes since
what strategy will lead to achievement of the goal depends on future
events. For example, congider tho gambler faced with the payout matrix
shown in Table 1.2, This ganbler has §1 in hand and has the option to
bet §1 on the toss of a falr coln. In theevent of heads he will have
42 1f he bets and §1 1f he does not bets In the event of teils he will
have 0 if he bets and $L if he does not bet. The mere fact that this
gambler wishes to maximize his money in hand at the end of the toss (his
goal) does not give him a rational hasis for deciding whother to bet or
not to bet.



Since the goal cannot be used as the basis for choosing among
strategies with uncertain cutcomes, a subgoal is necessary. The subgoal
is an objective which can be reached at the time of msking the choice by
the decision-maker who has a filled-in payout matrix. Subgoals give
bases for choosing among Gourses of action with uncertain outcomess In
terms of the payout matrix in Table 1.2, one subgoal is the maximization
of the of the 7 of cash
in hand at the end of the toss of a coin. This is called the expected~

value subgoal, Another subgoal is the maximization of the cash in hand
after the toss, assuming the most unfavorable outcome of the toss (called
the minimax subgoal).

A subgoal is necessary whenever the outcome of the choice is
uncertain, whether the maximand is expressed in terms of subjective
utility or of an objective measure of value. Consider the payout matrix
in Table 1.3 which is expressed in terms of subjective utility.

Table 1.3
Payout Matrix of Utility of Money in Hand at End of Toss
Qutcome of Toss
Strategy Heads Tails
Bet 3 0
No Bet 1 1
Probability of
Occurrence o5 o5

7 The probability distribution of a set of payouts is the array
of all possible payouts together with their probabilities of occurrences
The mathematical expectation of tho probability distribution of the set



The matrix in Table 1.3 corresponds to the matrix shown in
Table 1.2 when the subjective utility of having §2 in hand is three
times as great as the subjective utility of having §l in hand, The
goal of maximum utility at the end of the toss still is not a sufficient
basis fer choosing in a rational manner whether to bet or net to bet.
If heads occurs, the goal will be reached by betting; if tails occurs,
the goal will be reached by net bettings In this case, too, a subgoal
is necessary for rational choice among strategies.

The choice of a rational subgoal is at tho heart of rational
decision making under conditions of uncertainty. To be rational, a
subgoal must be based on consideration of the whole payout matrix and
must be coupled with the goal in a logical manners Later it will be
shown that one clearly defined subgoal—-the maximization of the proba-
bility, P!, of having a larger payout than from any other specified
strategy, hereafter called the maximum chance subgoale=is a rational
subgoal when cholces are repetitive and effects of these choices are
cumulative. Results from adopting this subgoal will be compared with
results from adopting alternative subgoals.

After a rational subgoal has been selected, it is necessary to
adopt a criterion to use as a guide in choosing among strategies to
reach the subgoal, Some ¢riteria are obvious. For example, the man

of payouts from a strategy is computed by multiplying all possible payouts
from that strategy by their respective probabilities, and then sumaing the
products, The term "arithmetic mean" of a probability distribution here
has exactly the same meaning as the term "mathematical expectation" of
that distribution, One term is used here to Ldentify the criterion and
the other to identify the subgoal.
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who has adopted the expected-value subgoal would use the arithmetic means
of the probability distributions of the payouts from the various strat-
egles as his criterions The man who has adopted the minimax subgoal
would use. the.smallest payoute from the available strategies.as his
criterion, Vhen maximization of P!, the probability of having a bigger
payout than that yielded by any.other specified strategy,.is-taken.as a
subgoal, however, the standard is not so obvious. It will be proved in

the next chapter that P! will be maximized when the geometric mean, G,
R st rhrokatl

of the pxoh-biucy of payouts is maximized,

G is the criterion for those declsion makers who wish to maximize P's
Methods for meximizing the cziteria fall into the fourth order
of the hierarchy of goals and guides for making rational choices. The
man who has adopted the oxpected-value gubgoal would choose that strategy
which has the probability distribution of payouts with the highest
arithmetic mean. The man who adopts the minimax subgoal would choose
that strategy with the highest payout assuming that the most unfavorable
event occurse It is mecessary to devise strategies or choose among

strategies so as to maximize the standard. In terms of portfolic manage-
Dol o s 2t orailzian

F_stocks
tn mlxin.l

lons Portfolios so
Aumhd reaeh &u subgoal nf h‘w portfolio managers Vhether they will

reach his goal will depend on future occurrencess

Goals and Guides for Repeated Cholces
yith Cupulative Effects
Portfolio has two stics which have not yet

been given the emphasis they deserve. In the first olio
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manager must repeat cholces ameny pertfolies year after year and,

secondly, the offects of these choices are usually cusulative, F
purposes of clarity in dealing with these charactoristics of pertfolie
managensant it is specified thats (1) the portfollo mansger is con=
fronted yoar after year with the same payout matrix of returns) and
(2) all returns are rotnvested. The purpose of this section is to
survey briefly, in tholight of these two specifications, the goal,
subgoals, and criteria used in meking rational choices among port=
folles, The findings are not limited to portfolio mansgesent but are
applicable to many other probleas involving recurrent cholces aseng
strategies with uncertain outcomes and cumulative effects.

The goal of portfolio management is taken to be the maximization
of portfollo value at the end of a period of tiee,? Tis period of
tine oxtends to the investment horizen of the portfolio manager and
tends to remain constant from year to year, It Ls breken up into a
large nuaber, n, of individual investaent periods called years. For
exasple, a floor trader may think in terms of day-to-day fluctuations

8 Both of these specifications will be relaxed and modified later,
In real 1ife, the payout matrix will presumably change froa yeer to
yoar, espocially since probability uxm about returns are influenced
by bellefs concerning the stage of the buainess cycle and the general
level of the stock market, This matter Lo discussed in the section en-
titled "Recurrent Risks" beginning on page 6.

9 Seo Frioderich and Vera Lutz, W

(pr! ¥ Princaton Unlm-llty mu. 1951), ps 164 The ultimate
goal pvthlll above corresponds wif nl ch the Professers Luts
asguns to underlie all .m.npnumn mut saxinizing behavier, They
says "We shall suppose that under all ¢ircumstances the entrepreneur will
want to maxialze the rate of return on his own capital over whatever
poriod he has In viewj this procedure will ebviously give hia the maximua
capital oua at the end of the xelevant peried."
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in prices and have an investaent horizon extending over only one calendar
year, In this case the calendar day would correspond to what is called
@ year, At the other extrems, many institutional investors, such as 1ife
i apanies, have an | horizon f1fty or more
years into the future. The individual investment period here may be as
long as one calendar year but, in practice, portfolios are alscst always
evaluated and readjusted much more frequantly, In either case, the

investment horizon recedes as time passes, so that n tends to remain
congtant from year to yur.w The pertfolio manager at both the beginning
of any year (year 1) and at the baginning of year § + L will wieh to
maxlsizo his portfollo at the end of, say, 100 years.

In the final analysis the rational man selects a goal becauss
he believes that achieving this goal will maximize his subjective
utility, There 1s no necessary conflict between maximizing subjective
utility and maxinizing objective pertfolio valus (or profit) except in
the unlikely event that the decision maker prefors lese wealth to more
woalth, other things being equal, It will be shewn later, however,
that one portfolio will have the greatest probability, P', of being
more valvable than any other specified portfollo at the end of n years,
n being large, and that P' for that one pertfollo will approach 1 as
n spproaches infinity,)l Either the portfolls mansger who maxiaires

10 It is ascused that n i¢ large, whether or not it remains
constant. If it does remain constant over time it is, in effect, in=
finitely large, In this case, the portfolio with the largest 0 ll alsost
certain to produce @ larger return than any other epecified portfoello.

11 P! 1s defined as the probability of having & luwr return then
any other specified portfol! The portfolio which produces the urn
return over n years also is the most valuable portfollo at the end
n years. Thus P' also is the probabllity of being more valusble than
any other specified portfollo at the end of n years.
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subjoctive utility will select the portfolio with the maximua P', called
the maximua chance portfollo, or he will select another pertfolio which
1s aloost certaln to be less valuable in the long run, If the utility of
a saall gain or loss varies inversely with the wealth already possessed,
the wealth-holder who bases his actions on subjective utility will
choose the portfollo with maximm p',12

The necessity for subgoals and the relation of these subgoals to
the goal har been indicated, It has been noted that rational subgoals
must ba baged on conaiderstion of the whole payout matrix and must be
logically related to the goal. There are two well known bases for
choosing among portfolioa (here called subgoals) which involve considers=
tion of the whole payout matrix and which are coupled logically with the
goal, These subgoals ares (1) maximization of the mathematical

on of the Y of follo returns
exprossed in monoy terms) and (2) maxiaization of the mathesatical
expectation of the probability distribution of the utilities of the
portfollo returnss These two subgoals will hereafter be called the
oxpected-value subgoal and the expected-utility subgoal. In this etudy
a third subgoal is proposed—the maximization of P'. This subgoal will
be called the maximua chance subgoal.
The cholce of the expected-utility subgoal, that is, the cholce

of that portfollo which has the greatest mathesatical expectation of the
utilities of returns, hes grest intultive sppeals For exasple, consider

12 The reletionships presented in this brief overview are developed
in Chapters II and III,
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the payout matrix in Table 1.3.) Here the gasbler will receive a payout
with a utility of 3 if heads come up and a utility of O if tails come up,
as compared with a utility of 1 if he does not bet, The mathematical
expectation of the utility of the payout after betting is 1.50 (i.e.,
«5x 3+ .5x0) as compared with 1.00 if the gambler does not bet. A
gambler faced with such a matrix probably would be highly tempted to bet.
However, when returns are reinvested, as is specified, the portfolio
which has the greatest mathematical expectation of utilities will net

be necessarily the pertfolio most likely to be the most valuable at the
end of n years. This relationship may be illustrated also by the payout
matrix in Table 1.3 assuaing that the gambler is faced with such a
matrix for n consecutive hluu.“ Such a gambler would maximize the
mathematical expectation of the utility of his payout at the end of n
tosses by betting all of his payouts on each toss, but he also would re-
duce his chances of having any payout at the end of n tossesi!® If he
bet on one toss of the coin, the mathematical expectation of the utility
of his payout would be 1.50 but his chance of having any payeut would be

e

13 Although the example involves gambling rather than pertfolio
management, the principle is the same.

14 This assumption may not be realistic, as the utluty of winning
relative to the utility of holding cash in hand would ly

after each toss. The example does, however, illustrate m pint made
heze.

15 In this example the gambler can phy unly one game at a time.
If he had the option to play many independent at once, he uuuld
maxinize the mathematical expectation of the utﬂlun of the ref
without great risk of total ruin. The problem of diversification of rhn
1s discussed on page 47 . Rigke which cannot be eliminated by diversi-
fication are of primary interost here
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only L out of 2, He would have a payout only if heads occurred. At the

his payout
would be (1.50)", but his probability of having any payout at all would
be only 1 in 2", He would have a payout only in the event of.n hsads and
no tails in n tosses.

end of n tosses the 9'_511{ utility

Thus, in this example, the portfolio with the highest mathematical
expectation of utility does not have the highest probability, P!, of
being the most valuable at the end of n years; instead, an alternative
portfolio will have the greatest P'. It will be proved that the port-
folio having the probability distribution of returns with the highest
geometric mean, called (l,16 also will have the greatest P' under the
conditions now under discussion——that is, when n is large and when all
returns are reinvested. As n becomes larger P' increases, so that when

n becomes very large it becomes almost certain (i

ey P! approaches 1)
that the portfolio with the highest G will be more valuable than any
different portfolie. Selection of the portfolio with the maximum P' is
accepted as a rational way to reach the goal of maximum portfolio value.
There may be other subgeals for choosing among portfolios. These other

subgoals must lead to the choice of either the portfolie with maximum P'

or to these portfolios will almost

16 It should be noted that both the probability distribution of

proof that the strategy having the probability distribution of payouts
with the highest geometric mean is also the strategy which has the highest
P's Later it will be shown that, 1f the utility of money varies in ace
cordance with Bernoulli's utility function, maxinization of G oxpressed

in money also will maximize the mathematical expectation of utility.
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certainly be less valuable at the end of a long series of years than the
portfolio with maximum P's

In summary, the follewing are accopted as rational goals and guides
for a portfolio manager faced with repeated choices having cumulative

effectss

Goal.—Maxinization of portfolio value at the end of n years, n being
large, assuning reinvestment of returns.

Subgoal.~Maximization of P', the probability of being more valuable
than any other specified portfolio at the end of n years.

Criterion,—The geometric mean, G, the probability distribution of

eI RPN

Method,~=Allocate that proportion of the portfolle to stock which will

naxiaize G,



CHAPTER II
SUBGOALS AND CRITERIA

In this chapter a gambling model will be used to illustrate the

necessity for a subgoal, the necessity for consideration of the whole

payout matrix, and the relationship between the don of the

mathematical expectation of value of the portfolio and the maximization
of P, the probability of being more valuable than any other specified
portfolios It will be proved that the portfollo having the probability
distribution of returns with the largest geometric mean, G, also has
the greatest P' at the end of a long series of years (n years) assuming
reinvestment of returns, and that P approaches 1 as n approaches
infinity,

Many problems involving probability, including rational decision
making, can be clarified by the use of gambling situations where the
odds are known. The following game was dosigned to be analogous to the
problea of choosing among portfolios, and the payouts in the game were
chosen to illustrate various subgoals and criteria used as guides in
such cholcess

Sanbling Model

Lot a ganbler be given an opportunity to buy tickets which will
cost $1.00 each and which he belleves will surely pay off as shown in

Table 2.1, All wealth must bo bet on one color on every one of a large
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number, n, of tosses of a coln, The gambler wants to choose that coler

which will maximize his wealth at the end of the game (1 at the end

of n tosses)s

Table 2,1

Payout Matrix of Returns

OQutcone of Toss Griteria
Strategy Heads Tails A G
Red 2.50 0 125 0
Blue 2.25 «50 1.37  1.06
Greon 175 75 125 145
Black 1.2 1.0 1,015 1,004
lo Bet 1.00 1.00 1.00 1.00
Probebility of
Oceurrence N 5

The first column of Table 2.1 shows the returns for each color
in the event of heads and the probability of heads occurring., The second
coluan shows the Teturns in the event of tails and the probability of
tails occurring., A ls the arithmetic mean or, in other woxrds, the mathe-
matical expectation of the probability distribution of returns. For
oxaaploy Agq = o5 % 2450 4 o5 X 0 = L.25 where o5 k 2450 4s the proba-
bility of heads occurring multiplied by the return if heads occur, and the
socond torm is the corresponding figure 1f tails occur, In similar
fashion G is the geometric mean of the probability distribution of returnse
Grpg = 2:50°7 x 0% = 0 and 6, = 2.25°7 x ,50°% = 106,
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The terms of Table 2.1 can be adapted to fit not only the general
problen of choosing among courses of action but also the particular prob-
lem of portfollio management. The gambler is faced with the choice among
five strategles (

» possible courses of action)s he can bet on one
of the four colors and he can refuse to bet, The portfolio manager who
has a portfolio with a market price of $1,000 is faced with the choice
among all portfolios (i.e., groups of stocks and bonds, and cash) availe
able to him at that price. There are two relevant outcomes on each tess
of a coini heads and tails, These outcomes correspond to relevant

future in portfolie For example, portfolio A,
in Table 1.1, gives a return of 1,10 if business is prosperous in the
forthconing year (i.es, investment period) and a return of only .90 if
business is depresseds In these terms "prosperity" and "depressions"
are relevant future occurrences. If these are the only relevant future
occurzences, there will be only two payouts for each portfolio, but often
more than two must be considered, For example, tho matrix may contain
a colunn of payouts for the possible occurrence of depression in the
steel industry concurrent with prosperity in textiles.

It is specified that the gambler believes that the coin is faix,
Consequently, he believes that there is a probability of occurrence of
+5 for heads, of .5 for tails, and of 1,0 for either heads or tails.
1f h be the nuaber of heads which may occur in n trials, the gambler
believes that «5 1s the most 1ikely value of h/n when n is an even number,
and that I/n will approach o5 as n incresses.’ In 1ike fashion, the

1 This is not to say that he believes that the absolute difference
between the most likely value of h, that is, n/2, and the sctual value
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portfolio manager may believe that there is a probability of .8 that
business will be prosperous, of .2 that it will be depressed, and of 1
that either one or the other condition will prevail. Whether two or more
relevant future occurrences are included in the matrix, the sum of the
probabilities must add to 1. In other words, the matrix must contain
the payouts for all of the relevant future occurrences. The portfolio
manager may hold the same probability beliefs as to each of a long series
of forthcoming years, If so, the asymptotic properties of the proba-
bilities of business conditions are similar to those of the probabilities
in coin tessings If b is the number of years of good business in n
years, the portfolio manager believes that the most likely value of

ly/n is 8, and that b/n will approach «8 as n incresses,

The matrix (in Table 2.1) showing the payouts from cach strategy
for each future occurrence is expressed in terms of returns which are
defined as payouts per dollar bet (i.e., per dollar committed to a
strategy) per toes of the coin. For example, the return is 1.02 if black
is selected and heads come upe This represents the principal (1.00) plus
the gain (,02) and is equivalent to 1 plus the yield. In similar
fashion, the return from a portfolio consisting entirely of high grade
bonds bought to yleld 2 percent and maturing at the end of the year would
be 1402 A gambler can lose all of the money he has bet, and the port-
folio manager can lose his ontire portfolio but never more than this
amountj consequently, the return is always equal to or greater than 0.

of h will tend to become smeller and saaller s n increasess On the
contrary, the absolute difference, r/2 = h, tends to become larger and
larger as n increases.
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It is specified that the ganbler must bet all of his wealth on one
color on each toss of the coin. This specification is included in the
model in order to make the choices among colors analogous to the choice
among pertfolios and the returns from a color analogous to the returns
from a portfolio. For example, the pertfolio manager may be faced with
the choice between a portft isting entirely of stocks

and a more portfolio of part stocks and part
bondss In similar fashion the gambler is faced with the cholce of blue

tickets or the more conservative green tickets.

The problem of portfolio management may be stated again in terms
of the payout matrix. It is¢ the problem of the decision maker who is
faced with a payout matrix for n years and wants to choose in a rational
manner one from all available portfolios in each of the n years, Con=
struction of a payout matrix giving the outcomes of the strategles as
affected by the relevant future occurrences along with the probability
of each future occurrence is implicit in all rational decision making,
including rational portfolio management, However, it is mot the con-
struction of such matrices but the choice of ono from all of the strate-
gles after the matrix has been constructed which is the preblem under
discussions

The goal of the gambler faced with the cholce among colors 1s to
maxinize his wealth at the end of n tossos of a coin assuming that he
bets all of his wealth on each toss. The goal of the partfolio manager
is assumed to be maximization of wealth at the end of n years, n being
large, assuming reinvestment of all returns. When there 1s no uncertalnty,
the goal itself 1s a sufficlent guide in choosing among courses of actions



In the case of the gambler confronted with payout matrix 2.1, the goal
itself would form the basis for deciding rationally whether to bet or
not to bet. The returns from black tickets are greater than 1.00 whether
heads or talls occur, so the gambler can certainly gain by betting.

When there is certainty of what will happen next, the gambler merely
chooses the color which will maximize his payouts If he is certain that
heads are going to come up next, he will bet on red, the color with the
largest payout when heads occur, He will ignore the consequences of
tails occurring. If he is certain that tails are going to come up next,
he will bet on black, which has the highest payout when tails occur.

Ihe Subgoal

When the decision maker canmot identify the strategy which will
enable him to achieve his goal, a subgoal is needed, The decision maker
who adopts a subgoal does not forego his goal, He merely chooses the
subgoal as the best available landmark on the read to the goal. They
are landmarks which can surely be reached by the decision maker who is
confronted with a filled=in matrix such as that in Table 2.1, which
shows the probability of each relevant future occurrence and all coa~
bined effects of and future For example, the

ganbler cannot choose the particular color, or series of colors, which

will uminly maximize his wealth at the ond of 100 tosses of the coin.
The series of payouts depends not only en color but also on the outcome
of events about which he has only probability beliefs. The gambler can,
however, choose that color which would produce the highest mathemstical
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expectation of value at the end of 100 tosses, and he might make it his
subgoal to do so.

A rational decision maker must adopt a subgoal which is: (a) based
on a balanced consideration of the payout matrixs and (b) logically
coupled with the goals No attempt will be made to define "logically
coupled” in rigorous termss Instead, two subgoals will be presented
which ave logically coupled with the goal, and conditions will be stated
undor which one of these two subgoals might be preferred to the other.?
It is not assumed that there can be no other subgoals logically coupled
with the goals Subgoals fall into two classes depending on whether or
not they involve belanced consideration of the whole payout matrix. The
first class consists of subgoals which arise from a biased evaluation
of the true probabilities and are therefore irrational. It includes the
minimax and maximax subgoals to be described in the next paragraph. The
second class consists of subgoals which give due weight to the true
probabilities and are not ly irrational are they 1ly

rational. This class includes all subgoals based on measures of central
tendency, on dispersion, and on higher moments of the distributions of
payouts from the various strategles,

¥hen a decision maker attempts only to minimize his losees and
glves no weight to possible favorable occurrences, he is sald to have a
ninias’ subgoal. A ganbler adepting the minimax subgoal would examine
iy h 4 s:::ﬁd]::l:n:o ::ug:: subgoal, the expected-utility subgoal,

3 Th inax subgoal is so named because the decision maker who
adopts tM.- lub’ul attempts to minimize the maximum pessible losses.



24
the payouts in the talls column in Table 2.1, and only those in the talls
columns In other words, he would use the payouts in the tails column
as his standard for choosing emong strategies. He would then choose that
color (black) which would give him the greatest return if the unfavorsble
event (i.e., tails) occurs. The minimax subgoal is of specisl interest
in game theory. In game theory, it is assumed that the gambler is playing

against an opponent who can choose among opposing strategles (1. future

occurrences) in such manner as to do the gambler as much damage as
possibles In Table 2.1 these opposing strategles are the occurrence of
heads and tails. If the gambler were convinced that he was playing
against an opponent who wanted to win from him and who could control the
outcome of each toss of the coin, he would be well advised to look for
the worst and to guide himgelf accordingly. Under these circumstances
1t would bs rational to adopt the minimax subgoal. But the minimax subgoal
is irrational in the gambling model here under discussion and in port-
follo managenents There is no opponent who controls the relevant future
occurzences; but rather the probability of each occurrence is known. It
1s not rational under these conditions to disregard the possibility of
favorable payouts in making choices among strategies.

The subgoal of the gambler who attempts to maximize his winnings
1f the most favorable combination of events occurs is called the
maximax subgoal. This subgoal may be adopted by the gambler who be-
lieves that luck 1s on his side and wants to take full advantage of his
luck, He considers only the most favorable payouts (the heads column
in Table 2.1) and chooses that strategy (red) which gives him the maxie
mun return when the most favorable event (heads) occurs. This choice,



1ike the minimax cholce, obviously does not give balanced consideration to
the probabilities of the relevant occurrences and is, therefore,
irrational,

In the gambling model it was specified that the probability of
heads is .5. In other words, the probabilities are indspendent and
future tosses are not affected by past occurrences. Under these circume
stances, it would be irrational for the gembler to take as his subgoal
the cholce of that strategy which might seem to have the greatest possi-
bility of a favorable payoff judged by the past pattern of tosses, It
would be irrational for such a gambler to attempt to improve the odds in
his favor by adopting such a strategy as "pick red after tails have come
up five times in @ rows" In similar fashion, it is specified that the
portfolio manager is dealing with the problem of repeated choice among
strategies when faced with the same payout matrix time after time. In
real life, past has a marked inf! on con=

structing the payout nf.rix." but given the matrix, it has no bearing on
choices among portfolios.

Subgoals which are based on consideration of the whole payout
matrix are not blased but they are not necessarily ratlonals A stretegy
with a probability distribution of payouts which has a small variance
usually is preferred to one which has a large varisnce. This wish to
avold uncertainty about returns cannot be described as irrational, but
1t is not logically coupled with the goal, Minimizing variance must be
rejected as a rational subgoal because it often leads to strategles which

4 This problem 1s discussed further in Chapter V.
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cannot possibly reach the goal. In the example shown in Table 2.1 the
gambler who wished to minimize variance would not bet on black even though
it pays 1.02 if heads occur and 1.01 if tails come up., The rational
gambler, on the contrary, would clearly prefor black to not betting even
though the distribution of returns from black has more variance than the
distribution of returns from not betting.

Two other unblased subgoals already have been identifieds the
expected-value subgoal and the maximin chance subgoals In terms of the
gambling model, ‘the first of these subgoals is the choice of that color
which maxinizes the mathematical expectation of returns at the end of
the game. This color would be blue, which has the probability distri~
bution of payouts with the largest arithaetic mean (A, = 1.37). The
arithmetic mean of the probability distribution of payouts is the
criterion when the expected-value subgeal is adopteds This cxiterion is
maximized when the color blue is ¢hosan, The mathematically expected
return for the gambler who repeatedly bet all of his wealth on blue would
bo 1.37 at the end of one toss and (1.37)" at the end of n tosses. The
latter return 1s the highest possible mathematical expectation of returns
at the end of n tosses. Any single bet on any other color during the

whole series of n tosses would reduce it.
JThe Maxiaun Chance Subaoal

The second unbiased subgoal, already identified, Ls the cholce of
that color which maximizes the probability, P', of having a higher payout
than from any other specified color at the end of n tosses, n being large.
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On an ex post facto basis, each of the colors included in Table 2.1 would
prove to be the best color to have selected for some combination of heads
and tails, For example, the color red, which has the highest payout
(2.50) when heads occur, would be the best color to choose if the next n
tosses were all heads and no tails occurred, The probability of occurrence
of this combination of heads and tails can be calculated exactly by using
the binomial expansion. It becomes smaller and smaller as n increases.
¥When thexe 1s only one toss the probability of occurzence of all heads
and no tails is .5, Under these conditions (1.0. when n =1),
P'oed = <9« Vhen n = 2 the probability of occurrence of all heads and
no talls is .25 so P‘rd = 425, When n = 100, 7"“ 1s 1 in 2'%°, The
P! for each color for any n ¢an be calculated in similar fashion.

The probability, P', of having a higher payout than any other
specified color at the end of n tosses, assuming that all returns are
bet on every toss, depends not only on the payouts from the various colors
but also on n. This is shown in Teble 2.2 which shows the payout matrix
of returns at the end of n tosses with n = 1, 2, 3, and 4.

The first four rows of Table 2.2 corzespond to the payout matrix
in Table 2,1 with the rows and columns trangposed, The fifth xow shows
the proportion of tha possible 404y the Py
in which cach color gives a larger payout than any other color when n = 1.
The red tickets give a larger return than any other tickets when heads
occur and the black tickets glve a larger return when tails occur, Conse-

quently, ‘“rd"’ and l"n-.'-imn‘l. In no outcome does blue
or green give a greater payout than any other colorj so P' for each of
these is zexo.



Table 2.2
Payout Matrix of Returns at End of n Tosses

Qn:au onw;uuy Color of Ticket
0 o
Toss Oceurrence Red Blue Green Black
n=l
hoty 1 0 <0 75 1.01
hyte 5 2,5 2,25 1,75 1,02
Mathy Expectation (A) 1.2 1.37 1.25 1,015
Geometric Mean (G) ] 1.06 LS L0144
P R 0 0 5
n=2
hota 25 [ 25 86 1,02
hyty N 0 112 131 1,03
hato 25 6,25 5406 3,06 1.04
Math, Expectation (A?) 1.56 1.89 1.56 1,03
Geometric Mean (G*) 0 112 L3 1.03
» 25 0 50 25
n=3
hots a2 0 a2 2 1.03
hyta .38 0 56 98 1.04
hatq .38 0 2.53 2.3 1,05
hsto BH] 1565 1140 5.35 1,06
Vath, Expoctation (A%) 1,95 2,60 1.95 1,05
Geometric Mean (G*) 0 119 1.5 1.05
1 BH 38 0 0
n=4
hots, 06 [ 06 a2 1,04
hyty 25 0 -] 4 1,05

hata .38 0 .27 L7 1,06



(Table 2.2~-Payout Matrix of Returns at End of n Tosses=econtinued)

on:- Pnb;:uity Color of Ticket
0 o
Toss Geeurrence Red Blue Green Black
(n=4)
hyts 25 0 5069 403 1,07
heto 06 39,10 25.65 9.35 1,08
Math, Expectation (a*) 2,44 3.58 244 1.06
Geometric Mean (G4) 0 L2 1.73 1.06
P 06 .25 .38 P

The possible outcomes of the tosses when n = 2 are two tails
(hot2)s tailehead, head=tall, and two hesds. The table shows all
possible payouts when n = 2 when all returns ave bet on each toss. Red
gives a larger payout than any othex color when two heads occur (..,
2,50 x 2.9 = 6.25). The probability of this is ,25. Consequently
P'“’ = 425 when n = 2, Correspondingly, green gives a larger return
than any other color when tail-head or head-tail occurs and thus has a
P! of .50 when n = 2,

In the illustrative game the gambler wishes to maximize his
wealth at the end of n tosses of a coin, n being large. The possible
future occurrences when n = 100 congist of all 101 possible combinations
of heads and tails in 100 tosses. The probability of each occurrence and
the payouts in the event that any one of the six colors is chosen is
stated in the form of a payout matrix of returns after 100 tosses in
Table 2.3.



Table 2,3
Payout Matrix of Returns After 100 Tosses

Qx:c;ome P:ob:t;iuty Color of Ticket

Toss Occurrence Red Blue Green Black

hotqeo (1/2)100 0 50100 5100 ) gy100
hytgg 100 x (1/2)'°° 0 2,25 x .50 1.75x.75% 1.02x101%
hiooto (1/2)100 2,50100 ARYRARS peerirfgiaten

Mathematical Expectation
(At00) 1,28%00 1,379  3,28%9%¢  ),015100

Geometric Mean (G'°°) 0 1,061 1,145'9° 1,0141%°

P (1/2)100 010 988 <002

In Table 2.3, hl s with 4 =0, 1y +ssy n , represents the number
of heads which may occur in n tosses of acaln, and ty Tepresents the
number of tails. The 101 possible combinations range from hoti0o to
hjooto when n = 100, The probability of each of these occurrences may
be calculated from the binomial expancion by cemputing ("')(h/,,)‘" s
These probabilities are shown in the first column of Table 2.3. The
first row of Table 2.3 shows the probability (first column) of 100 tails
and no heads in 100 tosses and the payouts from each strategy if this
combination of hoads and tails occurs. In Teble 2,3, A represents the
arithmetic mean of the probability distribution of returns after 1 toss

and A'°° is the mean ( ) of the distri=

bution of returns after 100 tosses. In similar fashion, G represents the



geometric mean of the probability distribution of returns after 1 toss and
G199 4g the moan of the di after 100 tosses.

The payout matrix of returns for each of the 101 possible
occurrences for each of the five strategies (1

oy Table 2,3) includes

a column showing the distribution of all possible payouts from holding
blue tickets on each of the 100 tosses. Letting h be the number of heads
which may occur in n tosses, the distribution of payouts from the blue
tickets 15 228" x 50" |, since blue pays 225 when heads occur and
+50 when tails occur and all returns are reinvested, The corresponding
distribution of payouts from tho green tickets ts 175" x ;75" |

The returns from the blue tickets are equal to or greater than the re-
turns from the green tickets when

(2.1) 2,280 x 50™ > 1,78 x 7™
ory expressed in logs, when
h(log 2.25) + (n=h)(log .50) > h(log 1.75) + (n=h)(log .7%)

that 1s, when
(242) h/n 3 (log 2.25+10g +75=10g «50=1og 1.75)/(log .75 =1og +50) 3 4615 «

Equation (2.2) indicates that when 62 or more heads out of 100
tosses oceur, the blue ticket gives a grester return than the green ticket.
The probability of 62 or more heads out of 100 tosses of a fair coin is
only 01049 (as obtained from binomial !Ihlll’). s0 green produces greater

5 See, for example, L y of Harvard
of Frob D (Cambridge,

I

8. ! versity




returns than blue in nearly 99 percent of the possible combinations when
n =100, When n = 1000 blue is the better choice in much less than 1
out of a million possible combinations. The return from this 1 in a
million outcome is so large, however, that tho mathematical expectation
of the distribution of returns from blue is greater than the mathematical
expectation of the returns from green.

Similarly, the returns from the black tickets, which return 1.01
when tails occur and 1,02 when heads occur, are equal to or greater than
the returns from the green tickets, which return only .75 when talls
oceur but 1,75 when heads occurs when h/n £ 4355 « Vhen 35 or fowes
heads come up in 100 tosses the black tickets give a larger return than
the green tickets. The probability of this is ,002 . The green tickets
give a larger return in 998 out of 1000 possible combinations of 100 heads
and tailg, The red tickets, which retuzn O when tails occur and 2,50 when
heads occur, are the best tickets only when heads come up on every toss.
The probability of this is 1 in 2'%° but the theoretical return is so
great, Lf this extremely unlikely event occurs, that the mathematical
expectation of returns from the red tickets is equal to the mathematical
expectation of the green tickets.

To sumarize, when n = 100, betting on green gives a larger return
than betting on sny other color (or not betting at all) when not less than
36 and not move than 61 heads oceur out of 100 tosses. The probability
of heads occurring in this range of frequencies is approximately .988,
Thus betting on green gives a higher return than betting on any other speci~
fled color in well over 98 percent of the possible future occurrences.



¥hen n = 1,000 , the chance that one of the other colors will produce
larger return is on the order of 1 in a million,

In the particular oxample shown in Table 2.1, the color with the
largest G (green) has the largest P! when n is large and P! approaches 1
as n approaches infinity, As will be shown below, this relationship
between G and P' holds for all cases where the probability of occurrence
and the size of the returne after n trials can be calculated by using the
binomial expansion.

The color green is selected because it has the highest G. It
glves the highest possible return when h/n = .5 . BSuppose a gambler is
given the option to choose another color, say pink, which glves an equal
or greater return then the return from green when

(2.3) Wnl sS4z

with 0 <z < .5, and not As n & it

becomes more and more unlikely that a combination of heads and talls will
oceur such that h/n > .5+ 2 . So plnk will be less and less likely to
produce a higher return than green. Further, no matter how small a 2 is
specified and how large a P! is specified, with P < 1, it 1s always
possible to choose an n large enough so that the probability of occurrence
of h/n2 5+z 1s less than (1 = P'). Therefore, in the long run, that
color (green) whelch has the probability distribution of returns with the
highest G will have a greater probability (P') of giving a higher return
than any other specified color (pink), even though pink gives a higher
return when over half of the tosses are heads. Further, P' will approach
1 a8 n becomes very large. Analogous stetements can be made when pink
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gives a greater return than green when less than half of the tosses are
heads. These statements can bo genoralized to cover any binomisl distri-
bution by substituting p, for .5 in equation (2.3) where P, i the
postulated probability of occurrence.

of )

In previous sections of this chapter the problems of portfolie
management have been discussed in terms of cholces among portfolios when
there were only two relevant occurrences in oach year. VWhen thero sre
only two relevant occurrences in each year, the probability of occurrence
and the eize of the returns after n yeors (L.e., the payout matrix
after n years) can be calculated by using the binomial expansion. This
and the following section are designed to generalize the problem to
include more than two relevant occurrences in each year. The problem of
choice among portfolios may be stated in terms of the payout matrix in
Table 2.4, It is the problem of the decision maker who is faced with such

Table 2.4
Payout Matrix of Portfolio Returns
Portfollo Relevant Future Cccurrences Criteria
vesesy 39 seseen K A ]
k
1 B1p0 veen Apgr eeey By JEI Py LY
t ! ! : ¢ H
i Agps eeen g venr By Pydyy G.
$ : i i i ¢
t Bypr senr Byge ween By Eopghy O

Probability of
Occurrence Py b sesy )’ yoennr By
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a payout matrix for n years and wants to choose in a rational mannex one
portfolio from all available portfolios in each of the n years.

In Table 2.y py Toprescnts the probabllity of the 3* oceurrence,
with % py =1, e o,y ropresents th retum fron the 1% portfolio,
with 4 = 1y eeey t ¢ if the 3"‘ occurrence takes placey with J = 1, eeuy ke
A return is the payout per dollar of portfolio value per investment period
(yoax). Returns cannot be negatives 80 a;4 20 + A s the mathematical
expectation (i.e., arithmetic mean) of the probability distribution of

X
returns fron the 1% parttolto, w0 A, = I pyiyy Gy 16 the guonatte
¥

moan of the probability distribution of seturns from the 1" portfolio.
Gy also is the antilog of the mathematical expectation of the probability
distribution of the loge of returns from the 1% portfolio so

G; = antilog(z Py log n“).

It 15 assumed that the portfolio manager is faced with a payout
matrix such as Table 2.4 for n years. The portfollo manager who wishes
to maxinize his wealth at the end of n years would wish to maxinize the
product of the n individual M\lrv\l.6 This product is maximized if the
return in each individual yoar is maximized. As long as the investment
horizon and the payout matrix vemain unchanged, proper maximizing action
in one year would also be proper in the next year. 1f portfolio i, for

exanple, is the rational choice in year j it also s the rational cholce
in yoar J + 1, y rational involves

6 Ho also would wish to maxinize tho geometric mean return over n
years. This is the nth root of the product of the individual returns.
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selecting one portfolio and holding it as long as probability bellefs about

returns remain unehmgsd.7
The portfolio manager who wighés to choose a portfolio to maximize

the geometric mean return over n years is faced with a payout matrix of

returns derived from that shown in Table 2:4. This matrix (Table 2.5)

1s expressed in terms of possible combinations of occurrences and

geometric mean returns for n years.

Teble 2.5
Payout Matrix of Geomotric Mean Returns for n Years
Portfollo Combinations of Occurrences Criteria
g soep Ky seep T A G
1 Gat ror Gpr vees 9pn LY G
. . . . . .
q : :q : : :
4 N iy
. . .
H : :
t A. G‘
Probabillty of
Oecurrence Py ses By e Py
In Table 2.5, P is the probability of the keh combination of

oecurrences and the Ik is the geometric mean xeturn over n years if the

7 This does not mean that the individual portfolios must contain
identical securities from year to year. It means only that the payouts
from portfolio i, for example, in yoar (j + 1) have the same probability
distribution as in the year J, The problem of proportionate allocation
of the portfolio in order to maintain continuity in the payout matrix for
the special case where the pmloue ll divided between one risk asset and
one safe asset 1s discussed on page 9
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1* portfolto ts chosen 1n euch of the n years and the kM conblnation of
ocewrrences tokes place. The ceablnations of cceurrences in this matrix
represent all possible combinations of the occurrences reported in

Table 2.4 taken n ot a time, It is directly cemparable to Table 2.3
excopt that returns after 100 years in the former table are expressed in
torng of products rather than as gecaetric means, The value of these g's
and the 1ikelihood of their occurrence (1404 the p's) may be calculated
directly from the matrix in Table 2,4, The A's and G'p in Table 2,5
equal the corresponding figures in Table 2.4—that 13, the arithsetic

and geometric means of the probability distributions of the g's equal
the arithaetic and means of the distributions

of a's.

The portfollo manager can reach his goal Af he can select a port-
folio which will yleld the maximum return in eath year. When the relevent
future is known so that, for exasple, Py =1 in Table 2,4, the chofce is
simple—the portfollo manager merely chooses that portfollo, say the
1”' portfolio, which maxiad 40 Ithen no s certain ond
no portfolio Lo superier to all other portfolies for every possible future
occurrence; howevery it s impoesible to pick a portfolio which will
maxinize with certainty the payout either for one year or for n years.
The portfollo manager has to choose a portfolio ylelding a distribution
of payouts based on probability bellofs about the possible camblinations

of occurrences.

In order to make a rational choice among portfollosy it is
necessary to conslder the whole payout matzix, In this consideration,
the probabLlity that any one portfolte, say the 1™ portfolte In Tuble 2.5,
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will give the best possible return is important, When 9k 1s the highest
soturn in the column sepresenting all possible returns when the k" conm
bination of occurrences takes place, portfollo L gives the highest
possible return in at loast N proportion of the possible combinations

of future occurrences, The sun of all the probebilities of the combine=
tions of occurrences in which portfolio i glves the highest geometric mean
roturn for n yoars is called PL.. 1f upon exaaination of the whole payout
matrix it is found that Pi =1y it 1o cloar that portfolio L should be
chosen. Cholce of that portfollo with the maximum P' is taken as o
rational subgoal in choosing among portfollos,

Proof of the Maximum Chance Theorem

It 15 a fundamental theoren of this dissertation that, when n lo
large and returns are reinvested, the portfollo having the probability
distribution of returns with the highest geometric mean, G, slso has the
greatest probability, P!, of producing a higher return then any other
specified portfollo 4f n 1o sufficlontly large) end P' spprosches 1 as
n approaches infinity. For this reason, G is here accopted as a rational
criterion for choosing among portfolios.

Let P;". with 4 = 1, wuey ty bo the proportion of the possible
combinations of occurrences in which portfollo § produces a bligger return
than any other avallable portfolio when exposed to the ssme risks for n
years, and let Gy be the geometric moan of the probability distribution
of returns, Then the maximum chance theorem states that when portiolio m
is the portfolio with the geometric mean return u.“, and portfolio i le
any other portfolio, so that “ux > Gl then
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P!‘m >Pln

when n ie sufficiently large~=and ".:n approaches 1 as a limit, vhile D;n
approachee O as a limit, as n approaches infinity. In other words,
portfolio m will almost certainly produce a higher return than any other
specified portfolio in the long run.

In order to give general proof it is necessary to cover the
following cases: (a) Cpax =03 (b) Gy > 6 =05 and
(e) G, >6 >0,

Case (a): Gpay = Ov==1f G, =0, 1t noans that for each available

%
portfolio there is some combination of occurrences which will result in
a zero return, so that the portfolio becomes worthless if this combina=
tion occurs. In other words, if G . =0, there is some chance of ruin
in whatever course of action may be adopted. Specifically, it must mean
that the wealth-holder does not have the option of holding a proportion
of his portfolio in cash or other safe asset. Under these mmunu‘
conditions, there can be no Gmax > G; and consequently the maximun
chance subgoal does not apply.

Case (b): G . > Gy =0.—The portfollo with a positive G . clearly
will doninate the portfolio in which G =0 in a larger and larger

8 It ie unmalistic to sssume that G.“ = 0 when the portfolio

manager has the option of holding part or all of his portfolio in cash or
other safe agset. The minimum G.“ for such a portfolio is 1,0—which

can be obtained by holding all cash.
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proportion of the time as n increases. Assume that the return from the
1 portfolto equals 0 when the S coabination occurss that the probse
bility of this is Py when n = 13 and that the return from portfolio m is
greater than the Teturn fron portfolio 1 only when the §*® cosbination
occurse The probability that the ju‘ conbination will not ocour in the
first year is (1 = pj) and the probability that the jm combination will
not occur in n years is (1 = p’)" « This probability becomes smaller
and smaller as n increases, so that the probability of portfolie i glving
a return of 0 becomes greater and greater and approaches 1 as n becomes
very large. When portfolio i gives a 0 return, portfolio m glves a
greater return. Therefore, it becomes more and more likely that port-
folio m will give a higher roturn than portfolio i and ). approaches 1
as a linit as n increases without bound.

Case ()t G.“ >Gl > OuwmProof that P'.‘ > P{n when n is large and
approaches 1 as a Limit when n epproaches infinity depends on the fact
that the arithuetic mean of a random sample of n items from a population
with finite variance tends to approach the population mean as n becomes
large. It can be proved that the probability, ay that samples of n
items from a population with finite variance will have a sample mean
differing from the population by more than a specified emount, z, depends
on n end can be made emaller than any specified number by choosing a

large ne s forms the basis for the



above statement.”

To use Chebyshev's it is to convert the
probability distributions of returns in the rows of Tables 2.4 and 2.5
to distributions of logss All portfolios with a geometric mean of 0 are
excluded (see Case (b) )y s0 all di under have
a finite variances In Table 2.5, 9y with k = 1y evey ¥4 5 the geometric
mean of a random sample of n returns from the probability distribution of
returns of the iﬂ' portfollo shown in Table 2.4. That s, 9y is the

geometric mean of a semple of n items from the probability distribution
of 3y with § = 1y «uuy ke Correspondingly, log gy, is the arithmctic
mean of a sample of n logs from the probability distribution of log |u.
Further, the population mean of the distribution of log L) is log G,

k
In other words, log Gl -jEl yj log ay .

9 A small variance indicates that large deviations from the mean
are improbable. This statement is made moxe precise by Gmmhnv'n
in-qu].ny. Lat X be a randem variable with -un p = E(X) and
variance :' = Var(X) , |nd let % bo any nusber greater than 0. Then,

rr{xep|28g ot =a.

But the random variable X be the sum of n random variables. In thic
cuo 0% (and -lw v'/l' = 8) varies Inversely with n and approaches 0
ind s the probability (a) of the sample

nnn (x) dﬂfcrlng fron the wp\u-ucn mean (k) by more than a specified
amount {2, that is Pe{X = b | > 2} , con bo made smaller than any speci-

led number by choosing a n!ﬂnimly h:qt n. See, for Mlo.
lulhn Feller, An n\ on 0 _Prob; 110
(New York: John + page or & stat
and proof of Mohov'u inwn!lty
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Let o, be the probability that the arithmetic mean of any sample
of n logs from the probability distribution of logs of returns from the
‘t.h portfolio will diffexr from log G1 by z or more, And lot Yy be the
corresponding probability that the same mean of n logs from the probaba=
bility distribution of log L™ will differ from log G by 2 or moxe.
Both ¢ and o and their sumy ay + ¢, depend on n and can be made
snaller than any specified positive number by making n large enoughs

et z¢ (log G, = log G;)/2, Under these conditions returns from
portfolio 4 can be larger than returns from portfolio m only when the
sample mean of n logs fxom the probability distribution of log a4
exceods le‘-H or vhen the sample mean of n logs from the proba-
bility distribution of log By is smaller than log G. -2+ Asis
shown above, the probability of either of these occurrences singly or
together approaches 0 as a limit as n approaches infinity. Thexefore,
as n approaches infinity, the probability, P-'m » that the return from the
’th portfolio will be larger than the return from portfolio i approaches
1 as a linit, Portfollo m is almost certain to give a higher return
than portfolio 1 in the long run.



CHAPTER III
SUBGOALS AND SUBJECTIVE UTILITY

Rational portfolio management involves the problem of choice among
strategies with uncertain cutcomes, This is the ancient problem of the
ganbler who has the option to choose among bets. Classical writers on
probability theory recommended that problems of this kind be solved by
first computing the expected winnings (possibly negative) for each
available bet and then by cheosing that bet which has the highest mathe=
matical expectation of winnings Thelr use of mathematical expectation
was based on grounds of equityj that is, they were interested in which of
two players, if either, weuld have the advantage in a hypothetical bet.
In 1738, Daniel Bernoulli in four short paragraphs demonstrated that the
use of the mathematical expectation of winnings did not always apply and
proposed instead that gamblers should evaluate bets on the basis of the
nethesatical expectation of the utilities of winnings.*

1 Because they bear directly on the problem in hand, the first four

paragraphs of Bernoulli's article on the measurement of risk are queted
in full in the appendix at the end of this chapters Bernoulli's example
is as follows: "Somehow a very poor fellew obtains a lottery ticket that
will yiold with equal probability either nothing or twenty ﬂlﬂulnd ducats.
¥ill this men evaluate his chances of winning at ten thousand duca
Would he not be ill advised to sell this lottery ticket for nine Mulﬂ
ducats? To me it soems that the answer s in the negative. On the other
hand I am inclined to believe that a rich man would be ill-advised to
refuse to buy the lottery ticket for nine thousand ducats. If I am not
wrong then it seems cloar that all men cannot use the same zule to evalu-

o ganble," Daniel Bernoulli, "Exposition of a New Theory on Qh-
surement of Risk," translation by Louise Sommer in
January 1954, ppe 23=24.

2,
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In terns of subgoals 3o dafined in this study, Bernculll showed
that use of the expected=value subgoal did not always lead to cholces
which seesed rational to hia and proposed instead the use of the expected-
utility subgoals Bernoulli's criticisa of the expected-value subgoal
s considered valid, The solution proposed here, however, L8 not recourse
to subjective utility but rather the use of the maxisus chance subjoal—
S404y the maxinization of P'y Bernoulli's significant question concerns
the utility of each possible payout, The significant question studied
here is the long-tera offects of repeated cholces among portfollos.

Bernoulli's exasple is sosewhat aside froa the dally business of
1iving but, when stripped of ite gaabling wreppings and expressed in terss
of payouts and returns, it is seen to represent a major segment of
econoaic decision makings The hypothetical market price of the ticket,
which has an equal probability of paying 20,000 ducats or 0, is 9,000
ducats, This information may be stated in the form of a payout matrix
(Table 3.1) showing actual payments in thousands of ducats and the payments
per ducat ricked,

Table 3.1
Payout Matrices for Bernoulli's Problea
Future Occurrence

Ticket Tieket Criteria
Strategy ns Losas A a
(a) Payouts in
thousands of ducatsi

hold tlekot 2 0 10 0

not hold ticket 9 9 9 9
b) Payouts per ducat riskeds
{ m ticket 2,22 (] L o

not hold ticket 1.0 Lo Lo Lo

Probability of occurzence o5 1
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Both the poor man and the rich man have the option either teo hold
the lottery ticket or to hold 9,000 ducats. Table 3.1 shows this option
expressed in terms of thousands of ducats and in terms of payouts per
ducat risked. Possible payouts range from 2,22 per ducat risked to 0.
Payouts with ranges such as this—indeed, much greater ranges-—are ordinary
econonic occurrences. Practically every business decision involves risks
of this order or greater at the margin. As one example, the department
store manager has to decide whether one more clerk will produce enough
sales or savings to cover his pay or whether the added payroll will be a
dead losss The "poor man" today is also continually faced with implicit
or explicit decisions as serious as that faced by Bernoulli's lottery
ticket omner. He must decide whether to move to a new job, buy a new

home, sign a second mortgage. He is ly offered the ty

to undertake such rieky ventures as buying his own truck, opening a
restaurant, buying some uranium stock, some oil stock, some investment
shares. Some of these options may be highly advantageous, and he must
choose some one course of action in each case. The effects of these
choices are cunulative, that is, the decision maker never comes back to
exactly the same position that he occupied before making the choice. The
najor difference between Bernoulll's problem and other cholces among courses
of action is that the ticket ownex's cholce is clearly defined while the
other opportunities are usually ignored or the choices muddled.

Thus Bernoulli's example is representative of a wide class of
choices. The decision maker is being faced continually with such choices
and the outcome of each declsion affects his entire future. In the
following discussion this example is stated in payout matrices constructed



to illustrate choices based ons (a) classical 1

(ises, the expected=value subgoal)j (b) Bernculli's subjective utility
(1sesy the expectedeutility subgoal); and (c) the maximum chance subgoal.

Expected-Yalue Subdoal

Table 3.2 shows the classical appreach to choosing among risky
ventures, The payout matrix, expressed in terms of thousands of ducats,
shows the possible winnings of a poor man faced with the choice of holding
or selling a lottery ticket which he found and the possible winnings or
losings of @ rich man faced with the cholce of buying or not buying that
same tickets

Table 3.2
Payout Matrix of Gains and Losses
l;::tu:: Oung::: Griterion
Strategy Viins Loses A
(a) Poor Man
Hold ticket 20 ] 10
Sell ticket 9 9 9
(b) Rich Man
Buy ticket 1 - X
Not buy ticket 0 0 0

Table 3.2 shows the probability of the lottery ticket paying off
or not and the net payout to the poor man and to the rich man for each of
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two courses of action. The classical writers would calculate the mathe=
matical expoctation, A, of the net payouts and choose that strategy which
saxinizes A, In this case they would recommend that the rich san buy
the tickat, and that the poor man refuse to sell the ticket for 9,000
ducats.

The mathematical expectation of the probability distributions of
the payouts was recoasended as a basis for reaching this decislon as a
matter of equity, If a great nusber of tickets for independent drawings
ware sold at a price equal to the mathematically expected payout,
neither the buyer nor the seller would be likely to benefit greatly frea
the transaction, Presuaably both would end up about where they started.
If large nusbers of tickets were exch d at a significantly diff

price oither the buyer, or the seller, prebably would gain at the expense
of the other party to the transaction.

Stated in other torms, when a decision maker can surely bet the
same saall asount on @ large numbor of independent trials, he can maximize
the expocted value of his gain, and aleo the likelihood of having more
galn than can be obtalned by any other plan, by choosing that set of
bets which gives hin the greatest mathesatically expected payout. For
exasple, Lf Bernoulli's poer man had found 10,000 tickets invelving
10,000 independent dn;vlml, oach with a payout oqually likely to be
2 ducats or 0, he clearly would be unwise to sell his block of tickets
for 9,000 ducats. IHis winnings on 10,000 different trisls would be almost
cortainly very closa to 10,000 ducats, the mathesatical expectation of
the value of the set of tickets, and the advice of the classical writers
would be sound.
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‘The arithmetic mean, as is indicated above, is a good criterien
when there are large numbers of independent trials. Even decision makers
who make repeated choices with cumulative effects, for example the
operators of roulette wheels and insurance companies, are rightly inter
ested in thls average when each risk is small in relation to total wealth.
There 1s 1ittle or no conflict between the use of the arithmetic mean as
@ criterion and the use of the geometric mean of the probability distri-
butions of payouts per dollar of wealth (i.e., G) as a criterion under
these conditions. This is indicated in Table 3.3 which shows the con-
trast between returns when each risk involves 100 percent of wealth and
when it involves only 1 percent of wealth. Table 3.3 is based on the
ganbling model shown in Chapter 1I.

Table 3.3
Payout Matrix of Returns

Possible Occurrence Criteria
Strategy Hoads Teils A G
Gamo 1--100 percent of wealth bet on each toss
Red 2,50 0 1.25 o
Blue 2425 50 137 1,06
Groen 175 #75 128 1145
Black 1,02 1.0 1,015 1,014
No Bet 1,00 1.00 1.00 1.00
Game 1I-~1 percent of wealth bet on each toss
Red 1,025 99 1,007
Blue 1.0225 995 1.0086
Green 1.0178 9975 1.0074
Black 1.0002 1.0001 10001
No Bet 1.00 100 1.00
Probability of '
Occurrence 5 o5
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In Game II the payout per dollar bet 1s exactly the same as in
Game I but the payout per dollar of wealth is much lower, as only 1 percent
of wealth 1s risked on each tosss Under the latter condition, the blue
tickets have the highest G and P' and would be selected by the gambler
vho has adopted maximization of P' as his subgoal, even though these tickets
do not have the highest G when 100 percent of wealth is risked as in
Gane L. In this case the choice of that ticket which has the highest
arithmetic mean payout per dollar risked (f.e., per dollar of wealth when
100 percent of wealth is risked) would be a good guide to maximization of
P', This is true in general when the amount risked is small in proportion
to total wealth,

Expacted=UELLLy Subdoal

Bernoulli used the lottery ticket oxample to show that the mathe-
matical expectations of the probability distributions of xeturns are not
good guides in making choices involving large risks. He proposed, in=
stead, that the mathematical expectations of the probability distributions
of the utilities of the returns be used as guidess Table 3.4 expresses
hypothetical utilitles of the poor man who is faced with the choice of
selling or not selling the ticket and the rich man who may buy the ticket.

The utilities shown in Table 3.4 are purely hypotheticals The
underlying assusptions azet (1) the poor man has 1,000 ducats plus the
lottery tickety (2) the rich man has 100,000 ducatsy and (3) the utilities
of the payouts (1,0., wealth at the end of the lottery) vary directly as



Table 3.4
Payout Matrix of Utility of Wealth at End of Lottery

Future Occurreice
T

cket Ticket Criterion

Strategy Wing Loses A

(a) Poor Man
Hold ticket 132 0 66
Sell ticket 1,00 1,00 1.00

(b) Rich Man
Buy ticket 2.05 1,96 2,005
Not buy ticket 2,00 2,00 2,00

Probability of
Ocourrance 0 o5

the logarithms of the xuynun.2 If the poor man sold the lottery ticket
for 9,000 ducats he would have total wealth of 10,000 ducats whother or
not the ticket wins, The utility of this wealth is taken to be 1.00
(i.es, log 10)s 1If, on the other hand, he holds the ticket, he would
have total wealth of 21,000 ducats with a utility of 1.32 (lse., log 21)
1f the ticket wins and a totel of 1,000 with a utility of 0 if the ticket
loses. The mathematical sxpectation of the utilities of holding (i.e.,
+66) 1s lower than the mathematical expectatlon of the utilities of
golling the ticket, so Bernoulli would advise the poor man to sell his
ticket. The total utility of the rich man's wealth of 100,000 ducats is
taken to be 2,00, This wealth would be reduced to 91,000 ducats with a

2 Thic assumption as to utilitice also is made by Bernoulld.
See page 55.
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utility of 1,96 if a losing ticket were bought for 9,000 ducats and
ralsed to 111,000 with & utllity of 2,05 through the purchase of &
winning ticket. Since purchase of the ticket increases the mathesatical
expectation of the utilities of the payouts, Bernoulll would advise the
rich man to purchase the ticket.

Yhether or not particular payout matrices, such as Table 3.4,
expressed in terms of subjective utility are realistic is not 4 problea
heres But Bernoulll's procedure is very much at issuo. He defines the
"moan utility" of a course of action as the mathesatical expectation of
the probability distribution of the possible utilities froa that course
of actions He then merely states, with no discussion, that this mean
utility (now called meral expoctation) can be used as & basis for
valuing risks, that 1s, as a basis for choosing msong courses of n:um.’
In other words, he explains why he expresses his profits (or losses) in
terns of subjoctive utility, but does not give any justification for
maxinizing the mathematical expectation of these utilities. Bernoulli's
use of subjective utility has had wide recognition, but his use of
mathesaticel expectation has not been adequately lulynd.‘

3 See paragraph 4 in the sppendix to Chapter III,

4 The uge of the mathesatical expectation of the probability
dietribution of the utilities of the payouts has not beon questioned,
Rathor mathesatical expectation now is used as a basis for defining
utility, The present emphasis on the ul-luu opproach to utility ds
largely derived from John von leusann and Oskar Morgenstern, Theory of

(Revised edij Princotont Mnaun University
Press, 1953). On pago 28 they sayr 'We hm‘nnetluuy defined
nuaerical utility as being thet thing for which the calculus of mathe=
matical expectations 1o logitisate,"



JThe Maxiaun Chance Subgoal

Bernoulli's problem also can be solved by the use of the maximun
chance subgoal. Table 3.5 shows the payout matrix of returns for a poor
man, who ie assumed to have a wealth of 1,000 ducats aside from his
lottery ticket, and a rich man, who is assumed to have wealth of 100,000

ducats.
Table 3.5
Payout Matrix of Returns
Future Occurrence Criteria
Ticket Ticket
Strategy Wins Loses A 19
(a) Poor Man
Hold ticket 2,1 ol L 4b
Sell ticket 1.0 L.0 L0 1.0
(b) Rich Man
Buy ticket L1l 91 1,0L  1.005
Not buy ticket 1.00 1.00 1.00 1.00
Probability of
Oceurrance - o5

The payout matrix of returns in Table 3.5 shows each possible
return from the various strategles. The poor man has an initial wealth
of 1,000 ducats plus a lottery ticket which he has an option to sell at
9,000 ducats, giving him a total initial wealth of 10,000 ducats, If he
solls the ticket he will get a return of 1.0 on this amount whether the
ticket wins or loses. If he holds the ticket and wins he will have 21,000
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ducats or & return of 2.1, If he holds and loses hie wealth will be
only 1,000 ducats, giving hin a retusrn of .1. In similar fashien, the
rich man has initial wealth of 100,000 ducats and the opportunity to buy
the lottery ticket for 9,000 ducats. His wealth will either increase to
111,000 or decline to 91,000 ducats if he buys the lottery ticket, thus
giving him a return of either 1,11 or .9l. The arithmetic mean, A, of
the probability distribution of payouts is higher for the poor man when he
holds the ticket and for the rich man when he buys the ticket. The
geometric mean, G, of returns for the poor man is higher when the ticket
1s sold, however, and the G for the rich man is higher when he buys the
tickets

Over a long enough period of time meny economic choices involving
zeturns of the same order of magnitude repest themselvess Besnoulli's
poor man may never find another lottery ticket, but he probably will have
many options among courses of action with as wide, or wider, a range of
returns, It ig assumed here that both the rich man and the poor man will
have many opportunities to risk the same proportions of their respective
fortunes on approximately the same terms and that both men prefer more
wealth to less wealth, everything else being equal. If these assumptions
are valid, the maximization of P', the probability of having more wealth
at the end of a long serles of such choices than can be obtained by any
other specified course of action, is a rational subgoal and G is a
rational criterion., The uge of the maximum chance subgoal results in
courses of action for the rich man and for the poor man which seemed
rational to Bernoulli.
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The docision maker who is interested in maximizing his wealth at
the end of a long sories of choices should ask himsolf how he would coms
out in the long run if he made the same choice on the same terms over and
over again. It is not necossary for him to ask himself what is his
individual subjective utility of winning. This is not to say that other
goals, rather than the goal of maximum wealth at the end of a long series
of choices, are irrational. Indeed, the use of subgoals based on the
goal of maximum wealth often may be irrational. For example, the man who
desperately needs $10 to escape a jail sentence and who has only §1 may
well be justified in taking a gamble to get his money even though this
gamble would not stand the maximum chance subgoal tests  Even under these
conditions, however, it would be useful for the man to know that he shodd
not often act in such a manner, if he wants to build up his fortune so
as to avoid like predicaments in the future,

Bexngulli'e Utlldsy Functlon
In his paper Bernoulli reaches the conclusion that, in general,
the utility resulting from any small increase in wealth will be in-
versely proportional to the quantity of goods previously possessed.
This is generally credited with being the first use of a utility funce

tion. Through a combination of graphic analysis and the calculus he then
develops a rule for estimating the valus of a risky propniuon.’

5 See Harold T. Davis, m.}m:x.ﬂufm (Bloonington,
Indianas The Principia Press, 1941), pp. , for a derdvation of

Bernoulli's formula from his n modern mathematical teras.
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Bernoulli's rule is as followss YAny gain must be added to the fortune
previously possessed, then this sum must be raised to the power given by
the number of possible ways in which the gain may be obtained; these terms
should then be multiplied together. Then of this product a root must be
extracted the degree of which is given by the number of all possible cases,
and finally the value of the A must be d

what then remains indicates the value of the risky proposition in
txunhlnm-"6 1t is apparent that Bernoulli's "gain" plus "the fortune
previously possessed" corresponds to portfolio payout and that Bernoulli
is saying in effect that the value of the risky proposition is measured
by the geometzric mean of the probability distrilution of pertfolie
payouts less the original cost. In his papexr Bernoulli gives two
measures of the value of a risky venture, Thase measures are: (1) the
geometzic mean of the payouts (see above), and (2) the mathematical ex-
poctation of the utilities of the payouts.” There is no conflict betwaen
these two measures when the utilities of the payouts vary as their
logarithms, as is assumed by Bernoulli, Both measures then lead to the
same choices among risky ventures since the geometric mean of a proba-
bility distri of returns is when the mean of

the logs of the returns is maximized,
Bernoulli gives a number of applications of his formula to
ganbling and to insurance. In each instance he is able to give a

6rBernoulll, gps glfes pe 28,
7 See last sentence on page 67.
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specific answer. He says that everyone who bete any part of his fortune
on a mathematically fair game of chance is acting irrationally, and he
then detexnines what odds & gambler, with a specified fortune, must ob-
uW::nk even in the long run. Most of his problems still are inter-
esting in their own right and many have a bearing on proper portfolio
management. For instance, he demonstrates, with numerical oxamples, the
advantages of diversification among equally risky ventuzres and between
risky and safo msets,

Bernoulli's approach to the valuation of risky ventures is not
contradictory to the maximun chance approach, Not only do the two ap-
proaches lead to the came conclusion when they both can be applied but
they tend to support one another, Wealth-holders may be divided into
two groups. The first group contains those wealth<holders to whom each
risk 1s 2 unique event either because they do not expect it to recur or
because they keep its effects entirely separate from the results of
other risks. For example, the man who each year sets aside a small sum
to bet on the races during his vacation with the intention of 1iving it
up Af he wins and writing it off to experience if he loses, presumably
1s not actuated by long-run profit maximizing motives. The effects of
each risk are kopt separste, Analysis based on maximum chance has nothing
to offer this first class of wealth-holders. The cholce between profit
and safety or expected return and variance is a matter of subjective
utility, Bernoulli's assusption that the satisfaction derived from a
snall gain tends to vary in inverse proportion to the initial wealth may
or may not be a shrewd guess.



The second class of woalth-holders includes those who expect to
be faced repeatedly with risks of the same general type and magnitude,
This group includes those making most business and portfolio decisions
and hence is of great importance, It includes, specifically, all those
who want to maximize the values of their portfolio at the end of n years
assuning reinvestment of all returns. Here there is a definite rule for
choosing between risk and return, based on maximum chance principles.
This class may be subdivided further into (a) those who undertake only
one risky venture at a tine, and (b) those who are able to diversify
their risky ventures. Because so many economic phenomena, including
ylelds on stocks, tend to fluctuate together over time, diversification
emong risky ventures cannot go as far towards eliminating risk as
otherwise would be the cases Final cholce among efficient portfolios
for both groups(a) and (b) is based on maximization of G not because
this maximizes subjective utility but because it maximizes P!,

Bernoulli states that the wealtheholder (here called portfolio
nanager) should ask hinself whether the added satisfaction assoclated
with the expected gain justifies undertaking the risky venture. He
bases an exact rule of behavior on his assumption as to how the added
satisfaction vories with the size of the potential gain or loss in rela-
tion to the size of the portfolio. The rule may or may not be empirically
useful, but it is grounded on rather shaky evidence as to the exact
shape of the utllity function., According to maximum chance analysis
the wealth=holder or portfdio manager should ask himself how he can
maximize his chances of getting a better return than can be obtained
with any other specified plan sssumingthat he riske the same proportion



of his portfolio on the samo terms over and over again. It turns out
that the formula which enables the portfollo manager to answer the
maximum chance question is the samo as that developed by Bernoulli on
grounds of subjective utility,

In conclusion Bernoulll says:

Though a person who is fairly judicious by natural instinct might
have zealized and spontancously spplied much of what I have here
explained, hardly anyone belleved it possible to define these
problems with the precision w | have oq:lmd in our mlu.
Since all of our with

1t would be wrong to neglect them as abstractions resting upen
precarious hypotheses. 8

Professor Stigler, in a review u—ush.’ gives considerable space
to Bernoulli's hypothes!

in reforence to the slope of the wealth~
holder's utility function even though the major emphasis of the article
13 on utility not affected by probability. He refers to the fact that
LaPlace and Marshall, among others, have dccapted the law as & realistic
guide, He alse points out the similarity of Bernoulli's law to the

ber-Foch ychologi that the just incre~
ment to any stimulus is propertion to the stimulus, Stigler says,

"Bernoulll was right in seeking the explanation'® in utility and he was
wrong only in making a special assusption with respect to the slope of

8 Ibidey pe 310

9 George J. Stigler, "The Development of Utility Theory," Jouznal
Volu'ss (190), amdmr,

10 Bernoulli 1s explaining the reason for the limited value of the
gane involved in the St. Petersburg paradox. This game is a type of
risky venture with an infinitely large -m—tmny expected value
but with an extremely small probability of winning,



the utility curve for which there was no evidence and which he subaitted
to no testen!!

More recently Professor L. J. Savage in a section of "Histerical
and Critical Comments on Utility" had this to says

Bernoulli went further than the law of diminishing marginal
utility and suggested that the slope of utility as a function
of wealth might, at least as a rule of thumb, be supposed, not
only to decrease with, but to be inversely propertional to,
tlu euh value of wealths To this day, no other function has

as a better for Y utility
mmm. + o o«Though it nld\t be @ reasonable approximation
to a person's utility in a moderate range of wealth, it cannot
be taken seriously over extreme ranges, 12

JIndividual Risk Preference

As indicated in the previous section, Bernoulll took the following
steps to develop his utility function and to justify diversification
among risky ventures and between risk assets and safe assets: (1) He
showed--gubject to the implicit

umption as to
subgoals~that the value of a risky venture to the individual wealth=
holder is not the arithmetic mean of the probability distribution of
returns (1.8., the mathematical expectation of returns) but may be taken
to be the arithmetic mean of the probability distribution of the utilities
of the returnss (2) He stated that, in the absence of the unusual, the
gain in utility resulting from any emall increase in wealth may be
assumed to be inversely proportional to the quantity of goods previously
(3) Ho o formula for the utility of &

11 stigler, gp, Cit., pe 375,

12 Leonard J. Savage, (New Yorks
John Wiley and Sons, Inces 1954)s Pe 94s
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risk asset to the indivi Lth=holder using as a Hon the

utility function developed in step 2, According to Bernoulll the sub=
Jective utility of the wealth~holder's assets, including the risky venture,
1s measured by the geometric mean, G, of the probability distribution

of payouts from such assets. (4) Using this formuls, he was able to
calculate exactly the utility of the wealth-holder'

8y including
the risky venture, and to show that diversification among risky ventures
increases this utility.)?

Bernoulli's step 2 may be a reasonable assumption as to mmy“-"
but is subject to so many qualifications and exceptions (it does not
explain gambling, for example) that it has not been accepted as a sult~
able basis for erecting the superstructure of steps 3 and 4 The
valuation of risky ventures has been left to individual risk preference
without any criterion as to what this preference is likely to be, For
example, muhu.m presents a hypothetical table in which an asset's
marginal contribution is determined by adding together its contribution

13 Bernoulll, gps cifs, Ppe 24, 25, 28, 30.

14 Cfs Alfred Marshall, %m (8th edsj New Yorks
The Macaillan Co,, 1950), p. 135. 11 sayss "In accordance with a
suggestion made by Danfel Bernoulli, we may regard the satisfaction which
a person derives from his income as commencing when he has onough to
support 1ife, and afterwards as increasing by equal amounts with every
equal successive percentage that is added to his incomey and vice versa
for loss of incone."

15 ln 2180 L. J. Savay conment quoted on page 59 of this
dissertatis

16 Holen Makowez ;;) Ihrnhnl, Assets, Prices and Marketing
v 1288, AJB.A,
(uuum H chard D, Irwin, 19!:). Vols V1, 301~
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to "lucrativity" and safety measured in "lucrativity units" determined
by the safety preference rate for a single individual, These individual
safety preference rates, in tuxn, are a matter of taste and must be
accepted 4o given. Friedman and unm” build on Bernoulli’s step 1
but modify step 2 by developing 3 doubly inflected curve cemparing
utility with imome,

Markowitz starts off his analysis of pertfolio selection by
pointing out that "the portfolio with the maximum expected return is
not necessarily the one with the minimum variance, There is a rate at
which the investor can gain expected return by taking on variance, or
reduce variance by giving up expected nturn."“ He assumes that the
investor considers, or should consider, expected return a desirable thing
and variance of return an undesirable thing, and he defines an efficient
portfollo as a portfolio with minimum variance for a given expected return
or more and a maximum expacted return for a given variance or less. He
develops a method for selecting efficient portfolios from the set of all
possible portfollos but does not give any basis for choice among the ef=
flclent portfolios except the individual's safety preference rate. This
dissertation sets forth an objective basis for choosing among efficlent

portfollos without the of d on risk
preferences,

17 Milton lnnnn and L. J. Savage, "The Utility Analysis of
Ghoices Involving Risk," Jouznal of Political Kconomy, 56 (1948),
279-304.

8 Harry Markowitz, "Portfolle Selection,” Journal of Finance,
v (I-m 1952), page 7.



The lieed fox an Colective Critexion
The difficulty of risk and the
need of an dterlon is well indicated in the following

quotation from a recent Journal article dealing with selection of an
optimun combination of crops for a farmers

The Lntnaueuon of risk into an ccona-h model of a firm
and y into a linear model of a firm has
been ueqlh!ud by deseribing risky m:aalu as probability
distributions and choosing from among alternmate possible dis-
tributions by the expected utility hypothesis,

Two basic weaknesses have appeared in applying this method
of incorporating risk. One dilﬂsuny arises ln choosing &
value for the constant o, which in this case is some sort of
risk aversien indicator, uld h. n some degree, governed by
the personal A large vali
for o indicates that the cntupnm places great weight on
the variance as a deciding factor and is consequently highly
averse to risk, and vice versa. The estimation of such a con-
stant to be used in a model 1s thus quite important; the wrong
choice will invalidate any results obtained. The derivation
of this constant is a delicate task beyond the scope of this
papers 19

A major advantage of the criterion for choice ameng risky ventures

H

developed in this dissertation is that it avoids the necessity for direct
subjective determination of such factors as Marschak's "lucrativity
units" or Freund's "risk aversion indicator." As Roy remarks: "A man
who seeks advice about his actions will not be grateful for the sug-
gestion that he maximize expected utility,"20

19 Rudolph J. Freund, "The Introduction of Risk into a Programming
" Beononetrica, 24 (July 19%), 253-263.

20 A. D. Roy, "Safety First and the Holding of Assets,"

30 (199). 433, CQuoted in Gleon Harrell, "Formal Interrelationships
tweon Economics and Probability Theory,"

m Novenber 17, 19%.
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The criteria for choice between risk and safety in portfolle man=
agesent can be illustrated by sssualng that a geabler has the cholce
of holding his money in cash or of betting on a geabling device which,
with equal probability, will return R = s on loss occasions and R ¢ §
on gain occasions with an expected return of R per dollar played, with
R greater than 1 and R = & less than 1, The gaabler's portfolio at any
tine consists of the proportion of his wealth held in cash plus the
proportion bet on the gaabling device. The expected returns and standard
deviations of returns of all portfolios divided between the safe asset
(4404, cach) and tho risk ssset (1,e., bots on the gasbling device) are
shonn in Figure 2.1,

Flgure 2,1

Expected Portfolio Return (A) and Standard Deviation (8) of
Portfollo Returns Distributed by Proportion Bet on &
Gaabling Davice Equally Probably Paylng R ¢ s
or R =& per §1,00 Bet

Propertion Bet

¥hon the gaabler bats O propertion of his wealth, the expected
roturn froa his portfolio is 1.0 and the standard deviation of returns
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is 0, As the proportion bet increases both the expected portfolio return
and the standard deviation of returns increase. When ho bets all of
his wealth, the expected portfolio return is R and the expected standard
deviation of returns is s. As long as R is greater than 1.0 and R = s
is less than 1.0, all possible combinations of the two assets in this
range are efficient portfolios in that any one of the combinations
glves the maximum possible expected return for some standard deviation
or variance and the minlmm standard deviation or variance for some
expected returns Nelther Marschak, nor Friedman and Savage, nor
Markowitz would be able to help the gambler in choosing among these
effficient portfolios beyond telling him that he should gamble heavily
1f he has a high preference for risk, and should be very conservative
in his betting if he has @ high risk aversion factors In this disser-
tation an attempt is made to give the geabler (and wealth-holders in
general) an objective criterion for making this choice.

The wealth-holder whe adopts the maximum chance subgosl can
roach this subgoal by using the geometric mean, G, of the probability
distribution of returns as his eriterion and choose that portfolio which
has the probability distribution of returns with the highest G, Bernoulli
also has shown that choice of that portfolioc with the highest G is a
rational choice ifs (1) maxi don of the mathematical

of the utilities of the payouts s a retional subgoals and (2) if the
utility of a small gain or loss varies inversely with the amount of wealth
already possessed,

Most economists recegnize that the mathematical expectation and
the variance of the probability distribution of returns, and the chance
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of ruin, are important to the wealth«holder==but thoy leave it to
individual risk preference to balance one factor against the others.
G depends on both the mathematical expectation and the variance of the
probability distribution of returns, and when G is maximized there is
no chance of ruin if the wealth-holder's probability beliefs are

7 1 of G falls within the generally

mccepted range of rational bshavior. This is not to say that G is

ithe only rational criterion for portfolio managementj it is to say,
nowever, that it is a useful criterion when dealing with a broad range
of problems, When the portfolio with maximum G is not chosen, there
nust be justification for choosing to hold a portfollo which has little
shance of being the most valuable portfolic in the long run.



APPENDIX TO GHAPTER LII
(Pron Econonetrica, 22, January 1954, pp. 23+24)

Excerpt from
EXPOSITION OF A NEW THEORY ON THE
MEASUREMENT OF RISK®

By Daniel Bernoulll

le Bver since mathematicians first Legan to study the measure-
ment of risk there has been general agreement on the following propo=
sitions

on of cases which ax of th
probability is insisted upon. If this rule be accepted, what remains
to be done within the framework of this theory amounts to the enumeration
of all alternatives, their breakdown into equi-probable cases and,
finally, their insertion into corresponding classifications.

2, Proper examination of the numerous demonstrations of this
proposition that huvv come furth lndlnuu that they all reﬂ upon one
hypothnin X 0 1 hat of two 0

No characteristic of the persons themselves ouoht to
be taken into considerationj only those matters should be welghed
cuafuuy that pertain to the terms of the risk. The relevant finding
might then be made by the highest judges established by public
authority, But really there is here no need for judgment but of

deliberation, i zules would be set up whexeby anyone could esti-
nate his prospects from any risky undertaking in light of one's specific
financial circumstances.

1 Translated from Latin into English by Dr. Louise Sommer, The
Anerican University, Washington, D. C., from "Specimen Theoriae Novae
de Mensura Sortis,"

Tomus V (Papers of the Imperial Academy of Sciences
in Petersburg, Vol. ¥), 1738, pps 175-192
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3. To make this clear it is perhaps advisable to consider the
following examples Somehow a very poor fellow obtains a lottery ticket
that will yield with equal probability either nothing or twenty
ducats. Will this man evaluate his chance of winning at ten thousand
ducats? Would he not be ill-advised to sell this lottery ticket for
nine thousand ducats? To me it seems that the answer is in the negative.
On the other hand I am inclined to believe that a rich man would be ill-
advised to refuse to buy the lottery ticket for nine thousand ducats.

If I am not wrong then it seems clear that all men cannot use the same
rule to evaluate the gamble. The rule established in 1, must, therefore,
be discarded. But anyone who considers the problem with perspicacity
and interest will ascertain that the concept of yalue which we have
used in this rule may be defined in a way which renders the entire

ly P jour To do this the
determination of the yalue of an item must not be based on its price,
but rather on the utility it yields. The price of the item is dependent
only on the thing itself and is equal for everyonej the utility,
however, is dependent on the particular circumstances of the person
making the estimate. Thus there is no doubt that a gain of one thousand
ducats is more significant to a pauper than to a rich man though both
gain the same amount.

4+ The discussion has now been developed te a point where
anyone may proceed with the tigation by the mere of
one and the same principle, However, since the hypeth;uh is entirely
dakt 1 S

new, it may nevertheless require some eluci ave,
decided to explain by example what I have explored. Meanwhile, let us

use this as a fundamental rules




CHAPTER IV
METHODS OF ALLOCATING PORTFOLIOS SO AS TO MAXIMIZE

THE GEOQMETRIC MEAN PORTFOLIO RETURN

In previous chapters reason has been given for accepting G,
the geometric mean of the probability distribution of portfolic

returns,

@ rational criterion for choosing among portfolios. This
measure may be used in choosing among all possible portfolios on the
basis of probability beliefs about returns from ;Juu portfolios. The
aim will then be to select the portfolio with the highest G. This
chaptor deals with the subject of how to do so, insofar as the problem
is one of allocation of the portfolic value between a group of risk
assets, on the one hand, and a group of safe assets, on the other.

In simplest form, the central problem of the first three chapters
of this study has been the choice between portfolic A and portfolio B
when faced with a payout matrix showing the probability distributions
of returns from the two portfolios, Such a matrix is shown in Table 4ele

Table 4a1

Payout Matrix of Returns

Gain Year Loss Year Criteria

A G
Portfolio A 1,365 o825 1,095 1.061
Portfolio B 1.260 900 1,08 1,065

Probability of
Occurrence o5 o5
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It has been shown that choice of that portfollo with maximun G
(Lseey portfolio B in Table 4.1) will maximize the probability (P?) of
having a larger return than can be obtained from any other specified
portfolio at the end of n years, n being larges For this reason G is
accepted as a rational criterion for choosing among portfolies.

Portfolio A and portfolio B in Table 4.1 may consist of two
groups of securities allocated in different proportions. For example,
portfolio A may consist of a portfollo allocated 90 percent to common
stocks and 10 percent to bonds, and portfolio B may consist of a porte
folio allocated 60 percent to the same stocks and 40 percent to bonds
(see Table 4.3). Changes in allocation between risk assets and safe
assets affect both the arithmetic mean and the geometric mean of the
probability distribution of portfolio returnss There is some one
allocation which will maximize Gu

The present chapter is devoted to the prectical problem of how
0 allocate 2 portfolio between a safe asset (typically a group of high-
grade bonds or cash) and a risk asset (typically a group of stocks) in
such a manner as to maximize G, The portfolio manager is faced with &
payout matrix showing the probability distributions of returns from
stock and bonds and wishes to divide his portfolio between these two
types of assets in such manner as to maximize the probability of getting
a higher return than can be obtained from any other specified allocation
between the two assetss Such a matrix is shown in Table 4.2.

The portfolio manager forms probability bellefs about returns
from stock, such as those reflected in the payout matrix in Table 42,
and wishes to allocate his portfolio between bonds and stock on the basis
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of his bellefs. Bond-stock allocations which maximize G probably will
change during the course of a business cycle but this change will be
brought about by changes in payout matrices==not by changes in proper
maximizing action, given the payout matricess The portfolio manager's
opinion as to the general level of the stock market and the stage of
the business cycle presumably will influence his probability beliefs
about returns from stock and bonds. Consequently the probability
distributions of psyouts from stock and bonds, such as is shown in
Table 4.2, presumably will change from year to year. However, for

Table 4.2
Payout Matrix of Returns

Occurrence
Gain Yoar Loss Year Criteria
A G
Stock 1.40 «80 110 1,058
Bonds 1,05 1.05 1.05 1,05
Probability of
Occurrence o5 o5

any given payout matrix there is only one allocation which maximizes
Ga
Alkocation ¥hen Returns are Binenlally Pistributed
sithp=,5
In this section the problem of proper allocation of a portfolic
between a risk asset and a safe asset, in gambling and in portfolio
management, will be stated for the simplest possible distribution of
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roturns from the risk asset (i.e., the binomial distribution with the
occurrence of each of two possible returns equally probable).

Let a gambler be given the option to bet any amount he wishes on
each of n tosses of a fair coin with a return of $3.00 per $1.00 bet
if heads occur and a return of 0 if tails occurs His problem is to
maxinize his wealth at the end of n tossese It has already been
established that choice of that course of action which produces the
highest G is a rational choice under these conditions. It is now

to d ine the proper dure to maximize Go

Let q be the proportion of the total wealth bet on each toes of
the coins Then, if heads occur, the return on the proportion bet is
3,00 and on the proportion held in cash (i.esy 1 - @) 1s 1.00, so that
the total return is qx3+ 1 x(1~-q) =29+ 1 . If talls occur,
the return is 1 - qo In Table 4¢3 these returns are stated in the form
of a payout matrix.

Table 4.3
Payout Matrix of Returns
Strategy 'mg:wmnc;' i i Criteria @
Bet 1.0 of wealth 3.00 0 1.50 0
Bet q of wealth 1+2 1-4q 1442 (1+2)(1-q
Bet 0 of wealth .00 1.00 1.00 1.00
Pmﬂ.‘" B o5
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The geometric mean of the probability distribution of returns,
G, is maximized when G%, which equals (1 ¢ 2q)(1 - q) is maxinized.
A necessary conditien for this is for dG/dq =0 . The value of q which
satisfies this condition, called Gpaxs 18 «25. The G from betting
25 percent of wealth on each toss is 1,061, This is the return when
heads occur in exactly half of the tosses, and is the highest possible
return for this combination of heads and tails for the gambler who
bets the same proportion of his wealth on each tosss The relationship
between q and G is illustrated in Table 4.4, which shows the payout
matrix of returns from betting various proportions of total wealth on

each toss in this game.

Table 4eé
Payout Matrix of Returns

0po: of Criteria
Total Wealth Bet Heads Talls
1.00 3.00 o
. 2,80 +10 «529
80 2,60 +20 1
70 2.40 «30 +849
60 2,20 «40 +938
50 2,00 50 1,000
+40 1.80 «60 1,039
+30 1,60 <70 1,058
25 1.50 o5 1,061
» 140 «80 1,058
10 1.20 490 1,039
+00 1.00 1,00 1.000
Probability of

Occurrence o5 it
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1In Table 4.5 a payout matrix, such as that in Table 4.3, is stated
in terms of returns from speculative stocks and high=grade bonds in
gain and loss years.

Table 4.5
Payout Matrix of Returns

Portfolio QOccurrence Criteria :

Gain Yoar  Loss Year A G
All stock 140 «80 1.10 1.058
60 percent stock 1.26 «90 1.08 1.065
All bond 1.05 1.08 1.05 1.050
Probability of

Oceurrence 3 o5

Table 4.5 shows the probability of eccurrence and the returns
from portfolios in gain years and loss ysars. When a portfolio manager
believes that gain years and loss years are equally probable and that
stock will return 1.40 in 2 gain year and .80 in a loss year, as
against 1,05 from bonds in both years, he can maximize the geometric
mean of the probability distribution of returns by placing 60 percent
of his portfolio in stock at the beginning of each year. In the long
zun, such an allocation between stock and bonds is almost certain to
result in a higher return than can be obtained by any different

allocations
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Allocation With Aoy Distribution of Returns

The general problem of allocating a portfolio between a risk asset
and a safe asset in order to maximize G may be etated in terms of the

payout matrix of returns shown in Table 4.6

Table 4.6

Payout Matrix of Returns

Portfollo Relevant Future Occurrences
» eeey Jy sees K A G
ALl stock Ryy seep Ryp soey By R G
. ) i . . s
H H H H H :
q stock b bonds  QRy 4 BC, seey GRy D0 wery QR SDC  GRADC Gg
¢ s . . :
ALL bonds Sk siny O, oepd ¢ c
Probability of
Qecurrence Py ooy Pys ooy Py

In Table 4s6y q represents the proportion of the portfolio put
in stock at the baginning of each year and b represents the pwoportion
put in bonds, with p #+ b=1, The returns from an all-stock portfolio
(ie04, q = 1.0) are represented by the probability distributien of
returns from stock, Ry with §J = 1, 4sey ke This distribution has an
arithastic mean of i and a geonotric mean of Gy, where G) is the G when
1.0 of the portfolio is allocated to stocke The certain return from
en all bond portfolio is C» The arithmetic mean return from a portfolio
divided q in stock and b in bonds is qi + bC and the geometric mean



hﬂ'. The problem here being considered is to allocate the portfollo
ht-h-in-dluﬂin-d\nl—-unlnhluﬁq. This is a
Mnmm-ﬂmmhﬂﬂhdmﬁqh\md
logs and differentisting with respect to q. Based on Table 4.6 it is
apparent that

10g G = py 1og(ay +10)+ coetpy (@R +1C)+ vout iy LoglaRy + 1C)
but b=1-gq s0
(A1) log G =py Log(C 4 a(Ry=C)] + cuatpy Log [CHalR, =)l + e
+ 9 log[C+ q(R, =C)] +

u.x-umuummmn«me.-mnwnq
is 0, In gnother form, 0.-0., ‘when L1 s and
d log &

—g- 0. That is, when
RaC R =C R =C
W) o g e By T Y ST O

Hquation (4.2) may be solved directly, or by trial and erver, to
obtain the proper M.ofﬂ- to place in stock at
the beginning of each of the forthcoming n years in order to meximize Gy
the geometric mean of the probability distribution of portfolio returns.
Equation (41) may then be solved, using the glven q .o in arder to find
the maximum geometric average portfolio return (i.0.y G-‘) which can be
obtained 1f the most likely cosbination of veturns from stock oceurs. For

exanple, 1f Ry =0, Ry = 3.0, py = .5, Pa = .5, and C = 1,0, equation (4.2)

reduces to



WS-/ = g )]+ o502/ +2q, J] =0,

from which G © +25 « This is the Dk uged by the gambler faced with
the payout matrix shown in Table 4.3.

G and g, Estinated fron the Arithoetic Wean and
Vnigq of Rgumg from the Risk Asset

Equations (4:1) and (4.2) may be used to determine Gy the geometric
mean of the probability distribution of portfolio returns, and [, the
proportion of the portfollo to allocate to risk assets in order to maximize
Gs However, these eouations involve the whole probability distxibution
of returns from the risk assets and consequently may be difficult to apply.
In this section a method ig developed for approximating G and Bax based
on the arithmetic mean and variance of returns from the risk asset. This
method does not give good estimates of G end Cax in all cases. It does,
however, fit a wide variety of distributions with reasonable accuracy,
ineluding typical distributions of returns from stocks.

Table 4,7 shows the payout matrix of returns from a portfolio
allocated between a safe asset glving a return of C and a risk asset which
will return B + s in a gain year and R ~ g in & loss year with gain years
and logs years equally probable.

The first row of Table 4.7 shows the returns from a portfolio
allocated entirely to the risk asset, The erithmetic mean of the probe-
bility distribution of returns from the risk asset is R and the variance
of this distribution is o* where n = Ll . The geanetric mean is a function

hen n > 15"“ variance 16 not exactly e®. However, when s/R 18

emall n that (8/R)> and higher powors of /R may be neglected, 6* 46
good estimate of the varlance for all n's.



Table 4.7
Payout Matrix of Returns

Proportion in Future Occurrence Criteria
Risk Asset Gain Year Loss Year A [
1.0 Rés R-s R (R2 - 42)*5
q q(R+8) + ¢ gR-s) +EC R+ 1bC S
0 c c [ [

Probability of
currence o 5

of the orithnetic mean and 8%, That is
G =R+ 9 (R -9)F
= @ - o1)*?
The second row shows corresponding figures for a portfolio allecated
q in stock and b in bonds with q+b =1 . In this case
G; = [qlk + s) + bC][q(R = &) + £C]
= (cil + bC + q8) (R + BC = qs)
(443) ﬁ: = (g + 1C)? = (gs)? .

Here, too, the geometric mean is a simple function of the arithmetic mean
and s

Gg 49 naxinized (Liews G =G,,) when q= q .« A condition
for this 1s that the derivative of G with respect to q should ecual zero.
Differentisting equation (4,3) and eollecting texme, it is apparent that
thie condition is satisfied when



et e

The geometric meen of the probability distribution of annual returns
for n years is equal to the corresponding geomgtric mean for one vluz
-mmu_“menmmmum»\n-uxma for any period
of years. Consequently equations (4.3) and (4.4) give exact values for
G and q,. for any poriod in terms of Gy Ry and o, when the risk asset
returns R + g in gain years and R -~ s in loss years, with gain years and
loss yesrs equally probable, C is the return from the safe asset and R
is the erithmetic mean of the probability distribution of the returns from
the risk asset. Whenn =1, s* is the variance of this distribution.
Equations corresponding in form t0 (4.3) and (4.4) aleo give good
estimates for G and L for many other distributions of returns, This
is true in all eases where the square of the geometric mean of a sot of
returns is approximately equal to the square of the arithmetic mean less

the variance. That isy where

(4e5) GEaGR= AR g?,

with G' being the estimated geometric -nn.’ Table 4.8, which shows the
zelationship of G' to G for three sets of returns, indicates that this
approximation may be valld for a wide variety of distributions.

2 See the paragraph following Table 2.5 on page 3¢.

3 This -pmumm holds if deviations (x) are emall compared
with the of the 50 that (x/A)3 and mwu
powers of x/A uy bc mqlo:hd. See George U, Yule and M. Ga
An_Intreduction t of Statistics (14th ed.:; New Yorks

ner o-. s pe 1504




Table 4.8

of with Actual Heans
of Sets of Returns

N By Frequency log10R, flogl0Ry fR  £R{
(a) Set of 252 Returns Distributed Normally into Seven Classes

25 1 +3%8 vh o2 o
50 1 699 9.8 70 3.5
.75 61 875 53.4 4507 34e3
1,00 100 1,000 100.0 100.0  100.0
1.25 61 1,097 66.9 76.3  95.3
1.50 U 1,17 16.5 200 35
1.7 1 1,23 1.2 1.8 .1
Sum b1 82 2520 3
Average L=1,985 A=1.0 X%1,063
A?=1.0
(b) Set of 252 Returns with Logs Distributed Normally into Seven Classes
35 1 550 6 o4 0
50 14 700 9.8 7.0 35
7 61 850 51,9 43, 2.8
1,00 100 1| 100.0 100.0  100.0
14 6L 1,15 .1 86,0 121.2
z.gg 1 1.3;2 18.2 zs.g 56,0
2 1 14 1. 2. 7.
- i) i %
Average L=.00 A=1,06 X*=1,267
A®=1.125
(¢) Set of 252 Returns with Squaze Roots Distributed Normally into Seven Classes
316,100 1 4000 ) o K
. 296 14 A 646 4l L2
TR 59 61 775 47.3 36.3 2.6
1,000 1,000 100 1,000 100,0 100,0  100.0
1,228 1,52 61 1177 0.8 91.6 137.5
iﬁ gm U 11.35“5 12.6 zz.z 6;.2
Pl md  md Wt
Average L =197 A=1.080 x* = 1,314
A*=1,102

Statistics of Distzibution of Returns
[ a2 s* [ Gt e
g z I.Nﬂ W25 1,000 063 937 «968 966

W38 1025 W42 983 992 1,00
1050 W6 1002 22 890 943 935
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Table 4.8 shows three sets of 252 returns distributed into
seven classes in various ways, The returns 5 Rys in set (a) range from
+25 £0 1,75 and are distributed approximately normally into seven classes
with a mean of 1,00 and a standard deviation of +25 . The returns in
set (b) range from ,35 to 1,82 and ave distributed so that the logs of
10 R4 are distributed nomally with a neen of 1,00 and & standsrd dovi-
ation of ,15 . The returns for set (¢) range from .10 to 2,84 and are
distributed go that the square roots of the returns are distributed
~normally with a mean of 1,00 and a standard deviation of .288, The table
shows the arithmetic mean of the logs of returns, i, the arithmetic mean
return, Ay and the arithmetic mean square return, X?, for each set of
returns, These datay in turn, were used to calculate the statistics of
the distributions shown at the bottom of the table with G = antilog L ,
sf =X o Aty and G =T o8t

It is apparent that the arithmetic mean and the vardance form
a good basis for estimating the geometric mean for the sets of returns in
Table 4,8, In set (a), the geometrie mean differs from the arithmetic
mean by ,034, yet the estimated geometric mean, G', is only .002 greater
than G, In set (b), the geometric mean ic 061 less than the arithmetic
mean, yet G' is only .008 less than G, In set (c) the difference between
A and G is very large, being 116, yet G' is only .008 greater than G.
This evidence supports the conclusion that equation (4.5) gives a good
estimate of G for distributions of returns which fall within the tabled

4 logs of mﬁ1 are tabled rather than logs of N‘ a8 a matter
of convenience. Log Ryy of course, equals log 10R; = 1.0 .
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range of di

lon and lari It seems to believe that
many probability distributions of returns from stock fall within this range.
Ex_post distributions of stock returns are used later in this paper to
support this conclusions

Let a portfolio be divided q in stock and (1 = ) in bonds, The
stock has a probability distribution of returns with an arithmetic mean of
R and a variance of s*, the bonds have a sure return of C. The arithnetic
mean portfolis return, A, is equal to qf + (1 - q)C . The variance 1s
(qs)? . Equation (4,5) becones

(446) GArola =i+ (L= q) = (a)® o

Gq is app when G'q is that is, when
-C

(4e7) g'“sq.u"_k_c), i

Equation (447) corresponds to equation (4e4) except that s* now is
the variance of the distribution of returns not only when n =1 but for
all values of ne a7

Qoviously equations (446),do not apply when any one return is 0
proportion of K = s, For example, consider the wealth- holder who is given
the opportunity to bet on o gambling device which will xeturn 1.40 in §
out of 6 possible occurrences and O in the other occurrence. If ecuation
(4+6) gave a good estimste umoer these conditions, a wealth-holder who bet
all of his wealth on oach roll of the dice would be estimated to receive

§ See page //0-



a longerun geometric average return of approximately 1.08 . In fact,
however, he would lose all of his wealth at the first unfavorable occur=
rence so that the long=run geometric average return is zero. Equation
(41) must be used to calculate G with this distribution of returns,
and equation (4.2) must be used to calculate Gax®

A portfolio manager may form probability beliefs about the
variance and arithmetic mean of the probability distribution of returns
and wish to allocate his portfolio on the basis of these beliefs. He can
use equation (447) to derive an estimate of the proportion of the port=
folio to put into stock at the beginning of each of the next n yearss
n being large, tv maximize portfollo returns if the mean and variance
of the forthconing n returns actually do agree with the mean and the
varlance believed most likely to occur. In this manner he will maximize
his chance of obtaining a higher portfolic return than can be obtained
by any other plan if his probability beliefs are correct and provided
that the underlying distribution of returns from stock is not badly
skewed,

ects of Varl on Hean R

The effects of variance on estimated geometric mean returns are
shown in Table 4.9. This table is based entirely on hypothetical datas
It shows the relationship between the arith means end vari of

sets of returns from stock on the one hands and, on the other hand, the
estinated geometric mean return, G', from portfolios allocated either in
whole or in part to that stocke The table shows an array of estimated
geometric mean portfolio returns based on sete of returns from stock with

hypothotical combinations of sample means and variances. The semple
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Table 449
Arrays of Estimated Geometric Mean Portfolio Returns
The return from bondsy Cy is 1404 per annum while the returns from stock
have a sewple arithmetic mean of Ry with K = 1,04s sesp 1el0, and a sample
variance of 8% with s® = 2, sees 400 &

As Al Stock foldo

q=1.0
S\R__1, 1.0 06 Lo 1,08 1 1,10
3 918 928 940 «951 <962 9% 985
«20 9% 950 961 972 «983 994 1,005
<16 1960 97 982 992 1,003 1,004 1.025

a2 «98L 1 1,002 1.012 1,023 1,033 14044
<08 1,000 1,011 1,02 1.032 1.042 1.052 1,063
04 1.020 1,051 1,041 1,051 14061 1.0

1.082
200 1 .g I.Og 1,060 l.gg 1.080 1.@ 1.100

B, Diversified Portfolio
q = 45 at beginning of each year
C=1,04

TR
ad 1,040 1045 1.0%0 1,055 1,060 1,065 1,070

06 1,011 1,006 1.020 1
05 1,016 1.02 1,026 1.031 1.036 1,041 1,046

L 1 1,0 1,06 1 1.08 1 1.10
o2 093 088 081 07 057
2 077 K K 1059 1043
16 2061 4085 049 044 1026
a2 +045 2040 03 029 012
.08 +030 +025 018 04 -s002
Ol 2015 -017

. +010 4004 000
200 000 =:00; =010 =:0L;
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means range from 1,04 to 1,10 and the semple variances range from «24 to 0,

Table 4e9A shows the ostimated geometric mean returns for a portfolio allocated

entirely to stock. For example, the upper left hand corner shows the G'
for n years for a portfolio allocated entirely to stock which has a set
of yearly returns during the n years with an arithmetic mean of 1,04 and
a variance of «24 + Using equation (447) this geometric mean is estimated
to be

G612 = (R? = ¢2)08 = (1,047 = 124)%% = 918,

Table 4498 shows the geometric mean returns for a portfolio
allocated at the beginning of each year half to bonds returning 1.04 and
half to stock with the same returns as in A. For example, the upper loft
corner of Table B shows the G' from a portfolio divided half in bonds and
half in stock having a set of returns with an arithmetic mean of 1.04 and
a variance of +24 » The variance of a set of portfolio returns from a
portfolio allocated 5 o a safe asset and o5 to stock with a variance of
+2% is (06 and the estinated geometric mean return from the portfolio is
1,010, The estimated geometric mean portfolio return, when stock returns
have a sample mean of 1,04 and a sample variance of .24, thus is <7< when
the portfolio is allocated entirely to stock and 1,01 when the portfolio
is allocated .5 to bonds and ,5 to stock, This difference is 409 in favor
of the diversified portfolio, Corresponding differences are tabulated for
other sample means and variances in the last section of Table 4.9 «

Table 4e9 shows that, in spite of the fact that the bond return is
no larger than the lowest mmn:mg:k return, the ostimated geometric
mean return over n years from the diversifled portfolio ie larger than the
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estimated mean return from the allwstock portfolio for meny of the combina=
tions of stock returns and varfences, The table also indicates that, if
the arithmetic mean return from stock is sufficiently large, geometric
mean returns from an all stock portfolio ere larger than the geometric
mean returns from a half stock-half bond ponfouo.6 For example, when
bonds return 1.04 snd stock has a sample mean return of 1.08, the estimated
geometric mean return from an all stock portfolio is larger then the G'
from an equally apportioned portfolio even when the variance of stock
returns is as large as 404 (that 1s, when the standard deviation 1s as
large as +20)e Table 449 indicates that the G' from the all stock porte
follo 1s 1,061 under these conditions while the G' from the half stock
portfolio is only 1,056, .

It is indicated in Table 4.9 that the we,ltheholder who feels
confident that stock returns in the forthcoming n years will have an
arithmetic average of between 1,04 and 1,09 and will have a variance of
«06 or over can feel at least equally confident that a portfolio divided
half in stock and half in bonds will give a better return than a portfolio

6 The table shows only two portfolioss the all stock portfolio
(1ve0y q = 1,0) and the half stock=half bond portfolio (1seey q = 45)s
The allocations to stock which actually would give the highest geometric
mean veturn under the specified conditions (l.e.y u‘u) night fall be=

tween o5 and 1.0 or might be less than .5 or greater than 1.0 . In
most cases where the all stock portfolio gives a higher geometric meen
roturn than the half stock portfolio, retusns on the equity in the port-
folio would be maxinized by borrowing on margin to buy stock (i.es,

Guax > 1)¢ See page 0%



placed entirely in stock.! Hhen the wealtheholder knows the meen and
varience of the distribution of all possible stock returns (as in honost
games of chance) he also knows that the forthcoming set of returns may
have a geometric mean higher than the most likely geometric mean and,
hence, that the all=gtock portfolio may give a higher return than the
diversified portfolio, This may happen either because the erithmetic
mean of the forthcoming set of returns is higher than the most likely
arithmetic mean or the variance of the set of returns is lower than the
most 1ikely variance, or boths Such a wealth-holder can estimate the
proportion of occasions on which either event may occur. When the wealth
holder is not certain of the mean and veriance of the distribution of all
possible risk asset returns, he will be unable to state after the unexpected
occurrence whether the results ceme about by chance or because his
probability beliefs were wrong.

Chapter Sum,

This chapter has dealt with the problem of discovering what
proportion of a portfolio to allocate to a risk asset in order to maximize
Gy the geometric mean of the probability distribution of portfolio returns.
The proportion of the portfolio to place in the risk asset at the beginning
of each year in order to maxinize G is called q In terms of the whole
probability distribution of returns from the risk asset, G and Gy 3

7 A woalth=holder with guch beliefs would be less certain about
the advantages of holding a halfestock portfollo as against the advantages
of holding an allebond portfolio, For a number of states of nature within
his confidence range it would be better to hold only bonds yielding .04



deternined by equations (A1) and (4e2), that ist

(401) log Gq = pq 1og[C + q(Ry = C) + yau + By log[C + q(xz.1 ~C) 4+ oes

+py Log[C + q(Ry = )]
Ry =G Ry =C
Wd) mermTogt T Ty = Cloe "
B -C

+pk‘m§’0-

These equations involve the whole probability distribution of
returns and, consequently, are often difficult to solve except, possibly,
by trial and error, It is possible, howsver, to develop equations which
give good estimates of G and S for many probability distributions of
returns from the risk um.s These equations depend on the arithmetic
mean, Ry and varlance, s?, of the distribution of returns from the risk

asset and are as follows:

(4.6) c; ~c': sq+ (1=q)Ce(gs)?

(4e7) Bax ® x * 3 f'n"_“c ¥

8 The problem of forming probability beliefs about returns from
portfolios based on probability beliefs about individual stocks also may
be simplified if it can be approached by means of standard returns in
gain years and loss years. The standard return in a gain year is (R + o)
and the standard return in a loss yeer is (R = s), with gain years and
loss years equally probable, This problem is not part of the subject
matter of this dissertation,



In the last section of the chapter a hypothetical numerical example
is worked out to show the effacts of variance on the estimated geometric
mean returns §rom portfolios either entirely or half allocated to stock.
This illustration is abstract but does demonstrate ¢learly that forming
proper implicit or explicit beliefs as to variance is an essential part
in ratlional portfolio allocation,



CHAPTER V
PEFINITIONS AND APPLICATIONS

In previous chapters the subgoals, criteria, and methods of
rational portfolio management have been illustrated by the use of
hypothetical payout matricess In the first part of this chapter, an
attempt will be made to explore some of the implicit and explicit

the payout matri Later in the chapter,
ex pogt returns From stock and bonds in two reference periods will
be used to show the hypothetical results of maximum chance portfolio
allocation,

Both portfolio management and gambling often involve

(1) returns which eccur in series over time; (2) some reinvestment
of returns so that a series of gains and losses is compoundeds (3) some
risk which cannot be elininated by diversificationj (4) repeated ex~
posure to approximately the same risks time after time; (5) willingness
and ability of the portfolio manager to take proper maximizing action;
and (6) other Each of these will be dis-

cussed in turn.

Betuzns fron Stocks and RBonds DPefined

Returns from stock and bonds occur in series over times The
exact deternination of these returns for any one investment period is
the subject of this section,
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Both stocks and bonds are held in anticipation of a serles of
money payments to the owner over time. The series of payments for a
bond held to maturity consists of the annual or semi-annual interest
payments plus the principal amount at maturity. With high-grade bonds
actual paynent of the promised emounts is considered highly probable
(hence the "high grade" rating) and the estimated yleld to maturity
closely approaches the promised yield to maturity. When the bond is
sold before maturity, the series of payments is the interest receipts
plus the estimatod sales price. The estimated yield to planned sales
date may differ widely from the indicated maturity yield. The estimated
return (yield plus one) for the long-term bond held for one year is the
interest receipts during the year plus estimated sales price at the
end of the year per dollar of cost at the beginning of the year.

Stocks are held in anticipation of a series of dividend payments
plus sales price at the end of the holding period. Both the future sales
price and the future dividend receipts have to be estimated, The
relative importance of the two estimates depends on the length of the
planned holding peried. Stocks may be thought of as longwterm invest=
ments and be valued exclusively on the basis of anticipated dividend
nc-inu.l or, on the other hand, anticipated price changes may recelve

1 John Burr Willians, (Cambridge s
Harvard University Press, 1938). On page 6, Williams defines investe
ment value as "the present worth of the f\lb\m dividends in the case
of a stock, or of the future coupons and principal in the case of a
bond,"™ He gives elaborate formulas for estimating the present value
of expected dividends from "stocks with growth completed," "stocks with
growth oxpected," as well as from stocks with other time-shapes of
expected dividends.
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2 'l.uiuu’ divides stock buyers into investorsand

major consideration.
speculators depending on whether they give primary attention to future

dividends or future narket price changes, However, the wealth~holder

who looks for long-term growth in dividends, for example, also tends to
look for market price and the sp who is

with price changes may well base his anticipations as to prices on
anticipated earnings and dividends. Consequently, the rational "spacu~
lator," interested in capital growth, and the rational "investor"
interested in dividends, may adopt the same investment plan.

It is agreed generally that the income of a firm for any given
year consists of the gain in net worth for the year plus any withdrawals.
The return for the year is the net worth st the end of the year plus
withdrawals during the year per dollar of net worth at the beginning of
the year. This holds true whether or not the firm holds assets with a
productive life of greater than one year. The difficulty in measuring
the rate of return for any particular firmeyear arises largely because
of the difficulty of determining the net worth at the beginning and at
the end of the year, In like fashlon, the gx post return from a stock
for a specified year for both speculators and investors is the value at
the end of the year plus dividend receipts per dollar value at the
beginning of the year. The return from stock anticipated by a long=term
investor, who thinks of stock as a and di ird

2 The "Dow Theory," for example, deals with price trends exclusively
and disregards dividends. See Barzon's for the current coument of "The
Dow Analyst.'"

3 Williens, opa Glke) pe 4 o



market prices, may differ widely from the return from the same stock
based on anticipated market prices at the beginning and end of the year
merely because of the different bases used in calculating the returns.

In this dissertation stock and bond holdings are not valued as
permanent investments but are valued at going mht‘pﬂcu at the
beginning and end of each year. The gx pogh return from stock for a
year is defined as the dividends received during the year plus market
price at the end of the year, per dollar invested at the beginning of
the years This definition of returns combines market gains and losses
and dividend receipts, It permits exact calculation of gxX pogt returns
for any year and pernits comparison of these returns with other time
series such as interest rates. In setting up a portfolio management
model it is essential to have a clearly defined definition of returns.
Returns are here considered a series of payouts occurring over time. The
portfollo manager forns bellefs about the probability distribution of
this series and wishes to allecate his portfolio on the basis of these
beliefss

Beinvastnent of Returng

1t is essential that there be some compounding of a sexies of
gaing and losses in order to justify the use of the geometric mean of the
probability distribution of portfolio returns as a criterion, When there
1s no compounding, each gain and loss stands separately and total wealth
aftor a sories of such gains and losses is the sum, not the product, of
the individual returns. Much gambling and practically all portfolio man-
agement involves some compounding of @ series of gains and losses. In
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order to state the ultimate objective in the simplest terms, it has been
postulated that the wealth=holder wishes to maximize his wealth at the
end of a long series of gains and losses assuming reinvestment of all
M\n-m.l’

This goal still is a valid objective even if all returns are not
reinvested or if funds are added to the portfolic from time to time. Let
a0 with 4 = 1, weay ny be the actual portfolio return in the i forth
coming year- let (1 - "l) be the proportion of the portfolic withdrawn so
that % s the proportion mal.m‘i’ and let w‘ be the portfolio value
at the end of the l‘h year, Then the portfolio value at the end of one
year is Wy = WgaqXy , that is, tho wealth at the end of one year equals
the initial wealth times the yeturn times the proportion retained. Like=
wise, the wealth at the end of two years is

lig = Wyagxy = Womyxyxa o

and the wealth at the end of n years is

n
(5.1) W=y I o Ox, o
L I "R Bt |

4 The goal is stated in terms of total wealth at one date rather
than in tems of a set of payments at various future dates in order to
avoid the problem of time discounting. Su h-ln Ae Muhhn. "The Rate
of Interest, Fisher's Rate of mu'm over Cost Internal Rate
of Retuzn,® 45 (Dmnbn 1955). 935-90. for a
discussion of bases for euwu ng various time-shapes of anticipated
zeturns. The following quotation may apply! "If the time paths of the net
receipts of the compared options are identical (except for a proportionality
{utn) th. Keynesian internal rate of return ranking will agree with

Fisher's maximum wealth criterion. In other wordsy in order to have the
Kmoum ranking agroe with Figher's, either we must assume exactly

simller time paths, or we must assume the net receipts from the two dtu‘-
natives can be immediately and perpetually reinvested at their own intermal
rates of return.”

5 %, will be groater than 1 if funds axe sdded to the portfolio,
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In words, the portfolio value at the end of n years is a product
of the initial wealth, the returns for each of the n years, and the
proportion of the portfolio value retained in cach year. For any given
set of xy, with L = 1, ..., n, the portfolio value at the end of n years
is maxinized when a; is meximized. Rational spending policy--that is,
the determination of xy—is not the subject matter of this dissertation,
It is assumed that the proportion of the portfolio value withdrawn
during the 1th yeary with L = 1, .44y 0, 1s hold constant or is other
wise specified. When x; is specified, the portfolio manager who
maxinizes a3 (or the nth root of a;, which is the forthcening geometric
mean portfolio return) also will maximize the portfolio value at the end
of n years.

In real-life portfolio management often the dividends and
interest receipts are withdrawn and tho vemainder of the returns (i.0.,
the capital gains and losses) are reinvested, This corresponds to the
situation above, The wealth-holder who plans to withdraw all cash divi=
dends and interest, which he estimates to be a fixed propertion of his
portfolio value so that x; = x}, with L = 1, ..s, n, and who wishes to
maxinize the value of his portfolio at the end of a number of years is
Justified in adopting exactly the same investment plan as the wealth~
holder who maximizes his wealth assuning reinvestaent of all returnse

Blsk thich Cannot Be Ellninated

In portfolio management the standard deviation of the probability
distribution of portfolio returns often can be reduced, without lowering

the L expoctation of the distribution, by proper
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anong the underlying securities. W¥hen returns from a group of stocks
yflunultu together, however, it 1s impossible to eliminate all risks.
This dissertation attempts to deal with risks which cannot be eliminated
by diversification-~that is, it deals with choices among whole portfollos.
Cholce Anong Efficient Poztfolios

The problem of the allocation of portfolies among risk assets is
not the subject matter heve, Markowitz has outlined a basis for
deternining a set of efficient portfoliosS—that is, portfolios with
minimun variance for a specified expected return and with maximum kKex-
pected return for a specified variance--on the basis of the expected
returns, the variances, and the covariances of the available risk assets.
Equation (4.4) may bo used to choose the maximum chance portfolio from
among these officient portfolios. Figure 5.1(a) is a scatter diagram
with the dots representing the expected returns, Ay, with L = 1, «esy 0y
and standard deviation, s{, of all possible portfolios. The line with a
positive slope marking the lower boundary of this set of dots represents
the expected returns and standard deviations of returns from the efficient
portfolios, The expected returns and standard deviations of returns of
the efficient sets necessarily fall on a line (but not necessarily a
straight 1ine) because for any one specified expected return, A, there is
only one minimum variance, :2, and y, for any one

variance there is only one maxisum expected return, Figure 5.1(b) shows
the estimated geometric mean returns, @', and expected returns from the

6 Harry Markowitz, "Portfolio Selection,! Jouxnal of Finances VII
(March 1952), 7791,
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efficient portfolios shown on Figure 5.1(a). G' is derived from
aquation (4,5) with GJ* = 4F - 6} . The maximum chance portfols 1s

the efficient portfolio with the highest G'.

RBecurzent Rigke

In order to illustrate the problem of recurrent risks the port-
follo manager will be compared in this section with a professional gambler
who is betting on a simple game such as dice. The gambler knows the odds
and believes that he will be able to take the same type of risk time after
time. 1In like fashion, it is postulated that the portfolio msnager forms
probability beli
probability beliefs may be stated Lmpbicitly or explicitly in the form of

about forthcoming returns from risk assets. Such

a payout matrix of returns, It Ls not necessary to separate probability
a8 o measure of relative froquency from probability as 8 measure of degreo
of bellef. The following is an illustration (used later in this chapter)
of a portfolio menages's probability bollefs as to returns from etocks and
bonds: "I look for conditions in the next ten years to bo very similar
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to those prevailing in 1926 through 1935, I am certain that bonds will
yleld five percent per annua during the whole period. Some day we are
golng to have a boonm and a bust in the stock market but I do not know
which 1s going to come first."

The ganbler knows the probability distribution of payoffs and
knows that he will be told before this payoff is changed. 1In like
manner the portfolio manager knows his probability beliefs about returns
and will know when he changes his beliefs. Just as the gambler wants
to £ind the best betting plan given the present odds, so does the port~
folio manager want to find the best investment plan given his present
probability beliefs about returns.

It is not necessary for the professional gambler to be convinced
that he will have unlimited opportunity to play the same game on the same
odds in order to justify his use of the maximum chance criterion for
betting., He may recognize that he will have only one or few chances to
bet at this time but thinks it 1ikely that such opportunities will
recur, He wants to maximize his chance of doing better than can be
done with any other betting plan in a long series of such recurrent
opportunities. In other words, the series of bets on game A may be
interrupted by bets on games By C, essy Ne In the long run he will
maxinize his chance of woalth at the end of a series of bets on such
games if he maximizes his chance of wealth from cach game separately.

The situation in vegard to portfolio management is exactly analogous, It
is only necessary for the portfolio manager to recognize that there are
recurrent opportunities to buy risk assets and that his portfolio will be



exposed to the same general type of risk time after time.

Whether rational probability beliefs about returns from stock are
apt to remain relatively stable over time or are apt to fluctuate when
priceschange is not at issue here. Vhether such beliefs fluctuate widely
from period to period or whether they tend to be stable, the rational

folio manager is in his chances of having a
greater portfolio value than can be obtained by any other plan over a
sories of gains and logses and will adjust his investment plan accord-
ingly, In similar faghion, the rational gambler would bet the same
proportion of his wealth on the next toss whether he expected to play
game A for a long period and then shift to game B or whether he mixes
up the series of games.

‘Exoper Maxindzing Action

The setional portfolio manager like the rational gambler must
actually carry out the plan which most nearly fulfills his cbjectives in
the light of his probability bellefs, A proper series of maximizing
actions does not include "letting the profits ride" either in the

gambling or in This action prebably will
lead to poorer results than can be obtained by adopting the maximum
chance plans The gambler must bet the maximlzing proportion, quaxy of
his assets on cach toss, If he won the previous toss this involves some
holding of winnings in the form of cashy if he lost, some money must be
added to the amount in play. In like fashion, the portfolio manager must
adjust his portfolio so that he holds that proportion in stock at the



9

beginning of each year which is corzect in the light of his probabllity
beliefss If his beliefs change, the maximizing proportion also changes
but otherwise it xemains constant.

At the beginning of each year, the portfolio manager reviews his
portfolio and readjusts it in the light of the probability beliefs about
zeturns from securities which he holds at that time. Presumably his
probability beliefs about returns will change to some extent from year
to year and, it seems 0 to some ‘changes

in the composition of the portfolio from year to year and some shift
from safe assets to risk assets and vice versa. On the other hand, if
the probability beliefs as to returns remain unchanged from year to year,
the maxinizing proportion to hold in the risk asset, gugy, Will remain
constant. For example, if the probability beliefs at the beginning of
one year, year i, are such that the maximum chance allocation of the
portfolie is 40 percent in bonds and 60 percent in steck and these
beliefs remain the same at the beginning of year i # 1, then the maximum
chance allocation again will be 40 percent in bonds and 60 percent in
stock at the beginning of the year i # 1. If the relative prices of
stocks and bonds have changed between the two dates, 1t will be necessary
for the portfolie manager to make some sales and purchasas in his port-
folio to bring it into 1ine with the desired proportions even if the pro-
portions themselves have not chlng-d.” Under this plan of action, the

7 Allocating a fixed proportion of the portfolio to risk assets
at the beginning of each year is somewhat similar in effect to the
constant ratio, or cqulhing. formula investment plan. In this type of
investnent plan, the total fund is divided initially into determined

of rdtd l gy 50 percent
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portfolic manager whose probability beliefs about returns from stocks and
bonds remain unchanged exposes the same proportion of his portfolie to
the same risk time after time.

Reference Pexiod Returns

The years 1926=1935 and 1890=1839 may be used as two reference
periods to i1lustrate the results of portfollo diversification. Actual
stock returns for these periods are tabulated in Tables 5.1 and 5.2
These returns are based on a very high proportion of the total value of
all stocks listed on the New York Stock Exchange. They are derived
£rom a series stock prices cash devel-
oped by Alfred Cowlos and published by the Cowles C-hllen.‘ This
series includes reinvested dividends so the return per dollar invested

in the year t is equivalent to tho ratio of the index for the year t + 1
to the index for the year t.

Returns from stock for the 10 individual years in the 1926-1935
period varied from 1.47 to .55 per annum per dollar invested. The

stock-50 percent bonds) and then the aggressive and defensive funds are
adjusted periodically to restore these percentages. However, the adjust~
ment schedule usually depends on changes in relative values rather than
time. For example, a 50 percent stock fund may be restored to the
desired ratio by sppropriate purchases and sales whenever the stock pro-
portion falls to 45 percent or rises to 55 percent. This dissertation
1s concerned with the problem of determining a proper allocation between
risk assets and safe assots based on beliefs about forthcoming returns.
It is not an attempt to find a formula which will sssure satisfactory
investment performance by arbitrary uijusmnn. See J, Fred Weston,
VSome Theoretical Aspects of Formula

Timing,'
Wmi XXIT (1949), ZW. for a discussion o’ sone of
¢ assunptions underlying formula investaent plans.

8 Alfred Cowles and Associates, (Bloomington,
Indianas Principia Press, 1939), pp. » 1694




Ex Post Stock Returns and Hypothetical Portfolioc Returns
1926-1935 Reference Period

Table 5.1
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Stock Stock VP Port= yp Cumul ative
Price Return  folio Returns (a ) Portfolio Value (W)
Index 1.0 q Jan, 1, 1926 = 1,0
S R Feb %6 =8  a%h a=6 =8 g®l0
1926 4%  L.25 143 L7 L2l L1317 L2 125
1927 572 132 L6 L2 L2713l 142 LSk .65
1928 756 131 L5 L2 126 LA LT 194 216
1929 993 82 96 Sl «87 145 156 169 177
1930 813 W66 B9 82 W 129 128 1,25 147
1931 540 .55 uBS 75 .65 110 .96 8L .6k
1932 297 137 108 L24 L3 129 119 106 .88
1933 408 109 Ll 13 106 144 134 L2 105
193, 486 1,02 1,08 1,09 LAl 155 146 137 147
1935 546 147 1.2 130 139 189 1.9 1.8 LT3
19% 804
Axithoetic
Mean (A) 1,106 1.073 1.083 1.097
Geanetric
Hoan (G) 1,057 1,065 1,067 1.065
Variance (qs)® .093 015  .033 060
G'AAT T (qe)? 1,063 1,064 1,069 1,068

$ t Stock Prices Including Cash Dividends, Alfred Cowles and Asgocistes,
Bloomington, Indisnat Principla Pressy 1939),

Common_Stock
¢ C-1, ppe
Ryt SenfSy
€t 1,05

gt R (1 =q)

AU

69
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arithnetic mean of these returns was 1,06 and the geometric mean was
14057, The latter figure indicates the average annual long-term return
from one cross-section share of stock held over the whole period with
all dividends reinvested. That is, an average annual yield of 5.7 percent
would have been obtained if one cross-section share of stock had been
held for the whole ten years. This continuous holding results in a
higher dollar investment in stocks when prices prove to be high on an
2% post basis and yields are low or negative and a lower dollar investe
ment when gx post prices are low and ylelds are high, The long=-term
stock return, that is yield plus one, is equivalent to the geometric
average of the one year returnss The arithmetic average of the ylelds
for one year investment periods is higher than the long~term yieldss It
shows what the average results would have been if exactly the same
amount of money had been invested in stocks in each of the years and
held in stocks for one year.

returns and lative values for portfolios with

specified proportions put in stock are also shown in Tables 5¢1 and 5.2
For example, the first row of the table shows that a portfolio allocated
40 percent to stock (ieeey q = +4) and 60 percent to bonds yielding

5 porcent per annum would have produced a portfolio returr of J.13 in
1926 and would have had a value of 1,13 at the end of that year if all
returns are reinvested (the value on January 1, 1926, being taken as 1).
The table shows also the arithmetic means, the geometric means, and the
variances of the portfolio returns, as well as G' which is an estimate

of G based on the arithmetic mean and varlance of the returns.
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Table 5.1 shows that a portfolio adjusted at the beginning of each
year to 40 percent in bonds ylelding 5 percent per annum and 60 percent
in stock at the actual ylelds prevailing in 1926-1935 would have
ylelded approximately 6.7 percent per annum for the period as a whole,
rather than the 5.7 percent which would have been obtained if all of
the portfolio had been concentrated in stocks or the 5 percent which
would have been obtained Lf all of the portfolio had been held in bonds.
In other words, diversification would have ylelds from 5.7

percent for the all stock portfollo and 5 percent for the all bond port~
folio to 6,7 percent for the diversified portfolio in this period.

The hypothetical portfolio returns shown in Tables 5.1 and 5.2
are based on the assumption that the wealth-holder kept the same
probability beliefs as to returns from stock throughout the poried and
8o adjusted his portfolio to hold the same proportion, g, with
G = ohy essy L0y in stock and (1 = q) in bonds at the beginning of
each of the ten reference years. It 1s an attempt to give a numerical
exanple of the results of maximizing behavior based on correctly knowing
the returns for a set of ten forthcoming years but not the order of
occurrences In real life, there is l1ittle doubt that the wealth-holder
would have changed his probability beliefs at some point. These changes
could have beon for the better, so that he would have held a bigger
proportion of stock when stock proved to be low on an gx post basisy or
for the worse, so that the wealtheholder increased his stock heldings st
the peak prices and got more conservative at the bottom of the depression.
A wealtheholder who changed his beliefs in a correct direction so that
he could recognize the opportunity to buy more stock when they afterwards
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proved to be low, and recognized the opportunity to sell more when they
proved to be high could get a bigger portfolio return than that obtained
from a constant proportion placed in stocks Even such a wealth-holder
would need to know how to reallocate his portfolie after he changed his
beliefs about forthcoming returns.

lsgative Bond Holding

So far it has boen assumed that the proportions of the portfolio
placed in bonds and stock at the beginning of each year are positive,
though there are no restrictions of this nature in the various equations.
Henceforth, it is assumed that a wealth-holder owns the equity in a
group of securities and this equity will be called his portfolio. A
wealtheholder's portfolio includes not only his securities but alse the
associated debt, if anys The proportion of the portfollio, as thus
defined, held in bonds can be elther positive or negative. Negative
bond holding corresponds to borrowing to buy stocke In all cases the
proportion of the net value of the pertfolio in bonds, plus the propor-
tion in stock add to one (i.e., p # b= 1). The propertion, q, of the
net portfollo held in stock can be adjusted over a very wide range. A
negative value for q corresponds to selling stock short and holding the
proceeds in cash or in bonds. A value of q greater than L implics
negative bond holding, that is, holding stock on margin, In practice,
some portfolio managers may not be able to sell stock short or hold stock
on margin, but elither option often is available.

The stock returns for 1890-1699, shown in Table 5.2, may be
used to give a further exasple of the use of both stock and bonds (that
1is, borrowing) to obtain a larger yleld on the net value of the portfolle



Table 5.2

Ex Post Stock Returns and Hypothetical Portfolio Returns
1890=1899 Reference Period

Stock Stock Port- Cumulative
Price Return  follo Returns (a ) Portfolio Value (W)
Index q=1.0 b Jan, 1, 1890 = 1,0

s R 2.0 ¢=3.0 qF40 a*2.0 q=3.0 =40

180 320 100 .9% .93 .90 96 93 90
1esl 319 115 .27 1,39 LA 1,22 1,28 1436
1892 367 50 7 W64 «51 94 W82 69
1893 3% 96 90 .83 g B4 69 52
1894 318 1.08 113 148 1,23 95 .81 .64
2895 343 97 92 86 «81 87 0 52
1896 334 110 117 124 L3l 102 .86 .68
1897 367 18 133 148 163 1.36  1.27 110
1898 433 1.2 155 L8 2,07 210 2031 2.2
1899 5% 102 1,00 .99 .97 211 2.28 2.23

Arithmetic
dean (A) 1,065 1,100 1.35 147
Seometric
Hean (G) 1,059 1,077 1,086 1,083

fartance (g8)? 014 055 123 220
;-./Al_(q.)z 1,058 1,074 1.080 1.072

5 + Stock Prices Including Cash Dividends, Alfred Cowles and Associates,
Common Stock Ind-n* Bloomington, Indiana: Principia Press, 1939),
° s PPe

bt S /5
21 1.03
vt R+ (1-q)C

X (l,'_l)lqt
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than can be obtained either from an all stock or from an all bond port-
folios In those reference years, a portfolle adjusted at the beginning
of each year so that the investor borrows §2.00 at 3 percent for each of
his own dollars and invests all in stock, would yleld 8.6 percent on the
equity as against an arithmetic stock yleld of 6.5 percent and a geometric
average return from stocks oquivalent to a yleld of 5,9 percent, It is
to be noticed that the small variance in the 1890-1899 set of stock
returns, as reflected in the gmall difference between the arithmetic and
the geometric average returns, makes such large scale borrowing possible
and profitable., In the 1926-1935 peried, borrowing on the same scale
would have resulted in a return of zero in one or more years and the
consequent elimination of the portfolio. A lot of people jumped out of
the window in 1929 and 1930 because they underestimated the variance of
stock returns for that period.

These results,in themselves, indicate that it is not necessary to
appeal to individual risk preference or other utility considerations to
Justify portfolio diversification, that is, the use of both stocks and
bonds or borrowing. Allocation of a portfolio between a risky security
giving a high expected yleld and a safe security giving a lower certaln
yleld usually is justified by a gain in portfolio value at the end of
n years provided that the specified proportions are correctly chosens In
some instances the maximizing proportion to be allocated to stock (lses,
ﬁu) may be 1 or O« This does not affect the general conclusion.



Enpdzicq) Togts of Forpulas

In Chapter IV two methods were described for calculating the
geometric means, Ggy of the probability distributions of portfolio returns
and for selecting the proportion, Qpaxs to allocate to stock in order to
maxinize Gqo One method (equations 4.1 and 4e2) involved using the full
probability distribution of returns from stock as a basis for calculating
Gg and Quaxe The second method (equations 4.3 and 4e4) 16 much simpler
and ig based solely on the arithmetic mean and variance of tho probability
distribution of returns from stock, In this section the reference peried
returns are used to compare results from using these two methods.

A wealth=holder may have probability beliefs such ass "I look for
conditions in the next ten years to be very similar to those prevailing
in 1926 through 1935, I am certain that bonds will yleld five percent
per ennum during the whole period, Some day we are going to have a boom
and a bust in the stock market, but I do not know which is going to come
first," These beliefs may be stated in terms of the payout matrix of
returns shown in Table 5.3, It should be noted that the usual content of
rows and columns i reversed in this matrix, The firet coluan lists the

possible future that is, the of a year such as

1926, .4vy 1935, and the last column lists the probability of each such

occurrence (1 «1). The middle five columns show the matrix of returns

for each possible future occurrence when .0, «ss) 1.0 of the portfolio
1s allocated to stocks

In Table 5.3, the column headed .4, for example, shows returns
from a portfolio divided .4 In stock and .6 in bonds if a series of years
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Table 5.3

Payout Matrix of Returns

Occurrence of Year Proportion Allocated to Stock Probability of
ich Ass 20 A 26 28 1.0

1926 105 L3 L17 L2l .28 o
1927 105 L6 L2l 127 L3R o
1928 ©OL05  Ld5 LRl L6 L3l L
1929 105 W96 W91 W87 R B
1930 105 W89 R W k6 S
1931 105 W85 75 65 58 a
1932 105 L8 L4 L3l 137 B
1933 1.05 L1 1.13 1.16 1.19 ol
1934 105 108  L09  lal 12 ol
1935 105 L2 130 139 L7 5%

Arithaetic Mean (Aq) 105 1,073 1,083 1.097 1.106
Geometric Mean (Gq) 1,05 1,065 L.067 1.065 1.057

such as 1926-1935 occurs. The arithmetic mean of the probability distri-

bution of returns, Aq, with q = .0, +usy 1.0 , increases as q increase:

¥hen q = 1, that is, when the portfollo consists of stock, Aq = R The

geonetric mean, Gy, apparently reachs peak when q = .60 + The wealth-
holder, with probability bellefs such as those reflected in the matrix,

would maximize A by holding an all stock portfolios He would meximize G
by allocating approximately .6 of his portfolio to stock and .4 to bonds

at the beginning of each year.
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Table 5.4 shows a payout matrix of returns for the portfolio
manager who bases his probability beliefs on the actual returns from
stock during the 1890-1899 reference periods Such @ portfolio manager
assunes that the forthcoming retuzn is equally likely to be like that of
any one of these ten years. He believes, for oxample, that there is a
o1 probability of the occurrence of such a year as 1896 in which stocks
returned 1.10, This also is the portfolio return when the proportion
of the stock allocated entirely to stock is 1.0, The return on the net
portfolio when a year such as 1896 occurs and when the proportion allocated

to stock is 2,0 (shown in the second column of the matrix) is 1179

Table 5.4

Payout Matrix of Returns

Occurrence of Year Proportion Allocated to Stock Probability of
Such Ast 10 2,0 3.0 4

1890 1.00 96 93 W90 &
1891 L5 L.27 139 L5 ol
1892 50 o77 64 «51 ol
1893 %6 «90 8.7 ol
1894 1.08 1.3 118 L.23 ol
1695 97 92 .86 »B1 ol
1896 110 L7 L24 L3l ol
1897 118 1.33 148 1.63 ol
1898 129  1.55 L8l 2.07 ol
1899 L2  1.00 B W97 ol

Arithnetic Hean (Ag) 1065 1,000 1.135 1,171

Geometric Mean (Gg) 1.059 1.077 1,086 1,083

9 Under these conditions the wealth-holder borrows $100 at an
interest cost of §3 and holds $200 in stock for cach $100 of net portfolio
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This matrix indicates that Gg is approxisately meximized when
Quax = 3+0 o that 1o, when §3.00 io held in stock and §2.00 is borrowed
for each $1.00 of net portfolio value. The gecmetric mean return from
the portfolio with q = 3,0 is greater than the corresponding return from
the portfolio with q = 2,0 or with q = 4.0 «

Ag was shown in Chapter IV, probability beliefs about returns
£rom stock often can be stated, with little loss of information, in
toxms of the arithmetic mean and variance of the probability distribution
of returns. Tho wealth-holder who has the probability beliefs stated
in Table 5.3, that is, who uses the 1926-1935 reference period as a
basis, believes that the probability distribution of returns from stock
has an arithaetic mean, R, of 1,106 and a variance, g2 4 of 4093 (l.e.,
the standard deviation s = 4305)s Gg and gpay can be estimated directly
from these statistics by using equations (446) and (4s7)s That Ls,

(46) G; o m; = A: = (g8)*
and
(47 B = ey =

GY is conpared directly with Gy at the foot of Tables 5.1 and 5.2 «
[ +65 when probebility beliefs are based on the 1926-1935 reforence
period and qi;, = 2,85 whon beliefs are based on 1890-1899. It is
apparent that, with probability beliefs such as these, the G' and of,,
baged on the mean and variance of returns from stocks differ little from

those based on the whole probability distribution of returns.

value, The gain from the §R00 in stock would be $20 so the net gain per
1100 o7 pertisiie valus 16 817 fhug the retars 1 Ler7s Lz
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Standard Returne in Galn Years and Loss Years

In the absence of the unusual, probability beliefs about returns
from common stocks and from portfolios consisting of stocks and bonds often
can be represented by a payout matrix such as Table 5.5.10 In matrices
ach as this, comnon stocks are looked upon as risk assets which equally
probably will return R + s, which may be called the standard return in a
gain year, and R - s, which may be called the standard return in a loss

year,
Table 55
Payout Matrix of Returns
C=1.05 R=1.106 =.305
Proportion of
Portfolio in Occurrence Criteria
Stock Gain Year Loss Year A G
L0 1l «80 1.106 1,063
65 1.28 89 1.086 1,069
0 1,05 1.05 1,05 1.05
Probability of
Occurrence ] o5

The payout matrix in Table 5.5 is based on the 1926-1935 reference
perlods R+ 821,106 #4305 = LAl and R = & = 1,106 - ,305 = .80,
These values for R and & (and C = 1,05) result in a qu,, of .65 and a
Gaay Of 1069,

10 The matrix of retusns in Table 5.5 has alzeady been used for illus=
trative purposes as Table 4.5, It is repeated here for convenience in
reference.
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Table 546, below, shows a corresponding payout matrix of returns
when the wealth-holder has probability beliefs based on returns in the
1890-1899 reference periods

The matzix of portfollo returns in Table 5.6 is based on the
assumption that the wealth-holder can borrow to buy stocks at a net
interest cost of 3 percent. The portfolie is the equity in a group of
securitios, To say that 4.0 proportion of the portfolie is placed in
stock, for example, s to say that the wealth-holder horrows $300 out of
each $400 invested in stock. Gq ds maximized when q = 2,85 under these
conditions,

Table 5.6
Payout Matrix of Returns

Proportion in Oceurrence Criteria
Stock Gain Year Loss Year A G
40 Lo642 +698 L7 1,072
2,85 Lo466 <79 1,130 1,080
2.0 1.3% 864 1,100 1,074
1.0 1.183 <947 1,065 1.058
0 1.030 1.030 1.030 1.030
Probability of
Oecurrence o5 o5

Payout matricos such as those in Tables 5.5 and 5.6 often may be
good representations of probability beliefs about returns frem stock.
¥hen this is so, equations (4.6) and (4.7) are useful tools for allocating
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portfolios between stocks and bonds and for estimating the geometric mean
of the probability distribution of portfolio returns.

Acelication of Fornulag

A wealth-holder who adopts the maximum chance subgoal will be
guided by equation (4e2) or (4¢7) in determining the portion of his wealth
he should riek repeatedly on the same terms. He also would use
equation (4.1) or (446) to detexmine how much a risk asset or the
avoidance of a risk would be worth to him. When the underlying proba-
bility distribution of returns is highly skewed, as in disaster
insurance or lottery tickets, the wealtheholder would have to deter=
mine his quqy and G by using equations (4.1) and (4s2). When the chances
of gain and loss are more evenly distributed about the mean, as is
usually the situation in allocating a portfolio between stocks and
bonds, equations (4e6) and (4e7)—i.ee, the standard returns method—
may give eatisfactory results.

Whether the long formulas or the short formulas are used, the
proper allocation of a wealth=holder's resources between risk and
safety depends on the return from the safe asset and the level and
dispersion of returns from the risk asset. The interrelations of
these theee factors have a considerable bearing on proper maximizing
behavior, For example, the theoretical effects of risk on the demand
for funds to buy stock by a wealth<~holder who adopts the maximum chance
subgoal is shown dramatically by comparing the effects of various assump=
tions as to interest rates on proper maximizing behavior by a wealth=
holder faced with distributions of stock returns similar to those which
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occurzed in the two reference periods shown in Tables 5.1 and 5.2, These
effects are shown in Table 5.7 «

Table 5.7

Maximum Chance Proportion of Portfolio to be Placed in Stock
with Specified R and s? for Varfous Anticipated Bond Yields

Anticipated Maximum Chance Froportion (g} )

X e 1526-1935 1890-1699
c-1 Reference Period Reference Period

R=1,106 $%=,093 R=1,065 s%=,014

00 129 6.50
03 90 2,80
05 65 110
o7 w2 .00

Sources Equation (447) g * .—ILR—;RQC—C)—.

Table 5.7 shows the interrelations betwesn specified C, R, and s,
on the one hand, and q;“ on the other. For example, the third line in
the table shows that, whon bonds yield 5 percent and R and s® equal those
of the 1926-1935 reference period, ql‘nx = .65 but when R and s* equal
those of the 1890-1899 reference period, %'“ = 1,10, Vhen the "maximum
chance® portfolio manager looks for highly varylng stock returns, such as
those which occurred in 1926-1935, and anticipates that bonds will yleld
5 percent, the table indicates that he should hold .65 of his portfollo
in stock in order to maximize Geebut if he anticipates that bonds will
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yleld only 3 percent, he should hold 490 of his portfolio in stock. That
is, he will hold .35 of his portfolio in bonds if he looks for bonds to
yield 5 percent and 410 in bonds if he looks for bonds to yleld 3 pexrcent.
Under these conditions a two point difference in anticipated interest
rates would account for a difference in bond holdings equivalent to

25 percent of the net portfollo of the maximizing wealth-holder. On

the other hand, when such a wealth-holder expects stability in stock
returns such as occurred in 1690-1899.“ the same difference in
anticipated interest rates would account for a difference in borrowing
or negative bond holding equivalent to 170 percent of his net

portfolio,

11 Table 5.6 shows the results of various interest rate assump=
tions on proper maximizing action under these conditions. 1f the
"maximum chance" portfolio manager could borrow at 3 percent he would
borrow 180 percent of his net portfolio and use the pro s to hold
stock (1,04, Uox ™ 2,80), If he had to pay § percent interest he would

borrow only a small amount, «1 of his net portfolio, and would hold 1:10
of his net portfolio in stock.




CHAPTER VI
SUMMARY AND CONCLUSIONS

This dissertation is concerned with rational decision making
in portfolio managements Every wealth-holder who has & portfolio con-
sisting of stocks, bonds, and cash, with a given market price can choose
to continue to hold this combination of as

or can choose to hold
any other combination (including holding stocks on margin) available

to him at this price. Rational choice among portfolios involves

forning probability bellefs about returns from portfolios and choosing

among portfolios on the basis of these belie!

Probability beliefs
as to portfolio returns may be expressed in terms of payout matrices
which show the probability of all relevant future occurrences and the
payouts resulting from the combined effects of the holding of each
available portfolio on the one hand and each relevant future occurrence
on the other. The relevant future occurrences may include such possi=-
bilitles as "prosperity" and "depression" or "gain year" and "loss year."

The first three chapters of the study are devoted to an analysis
of rational choices among portfolios on the basis of given probability
beliefs. The fact that these choices are repetitive in nature with
cunulative effects is used as the key factor in developing a goal, a
subgeal, and a criterion for choosing among portfolios.

The goal of portfolio management is taken to be maximization of
portfolio value at the end of a perlod of time broken down into a large
number of investment periods called years, Since it is impossible to
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specify which portfolio actually will be the most valuable at the end of
a number of years, it is necessary to use another basisw~the subgoales
for choosing among portfolios.

The subgoal 1s an objective which can be reached at the time of
making the choice by the dscision maker who has a filled-in payout
matrix, For example, choice of that portfollo which has the highest
mathenatically-expected value at the end of a number of years (lees,
the expected-value subgoal) may be the subgoal of a portfolio manager
who takes as his goal the maximization of portfolio value at the end
of the same period of times The expected-value subgoal is not accepted
as a rational subgoal because, in meny instances, another pertfolio
is almost cortain to be more valuable at the end of a long period of
years than the portfolio with the highest mathematical expectation of
Teturns.

To be rational, a subgoal must be based on balanced consideration
of the probabilities and payouts from all relevant future occurrences.
The minimax subgoal (i.e., maxinization of returns if the most unfavor=
able event occurs) is rejected for pertfolio managenent for this reason.
It gives weight only to unfavorable occurrences and disregards the
probability of favorable occurrences. The subgoal also must be related
logically to the goal. Selection of the portfolio having the probability
distribution of returns with the smallest variance, for example, is re-
Jected because such portfolios often are certain to be less valuable at
the end of a number of years than other portfollos whatever the relevant

future occurrencese
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The maximun chance subgoal proposed in this dissertation is based
on balanced evaluation of the whole payout matrix of returns and 1s
coupled logically with the goal. It 1s the cholce of that portfolle
which has the greatest probability (P') of being more valuable than any
other specified portfolio at the end of n years, n being laxge., It is
proved that P' for that one p: lasn

infinity, Consequently, the portfolie with highest P' when n is large
is almost certain to be more valuable than any other specified portfolio
in the long run. Selectlon of the portfolio with the maximum P' when
n is large is accepted as a rational way to reach the goal of maximum
long run portfolio values

A criterion, or messure, to be maximized is needed in order to
enable the decision maker to reach his subgoal. It is shown that the
portfolio with the probability distribution of returns with the highest
geonetric mean (G) also has the greatest probability of being more
valuable than any other specified portfolio at the end of n years, n
being larges For this reason G is accepted as a rational criterion for
choice among portfolioss

The classical writers used the mathematical expectation of the
probability distribution of payouts as the basis for cholce among risky
ventures, Daniel Bernoulli showed that this approach sometimes gave
results which seemed ifrational to hims He proposed, instead, that the
mathematical expectation of the utilities of the payouts be used as a
basis for choice. He suggested that often the utility of a small gain or
loss varies inversely with the amount of wealth possessed. When this is
80, the mathematical expectation of the utilities of the payouts is
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maxinized when the geometric mean of the probability distribution of
original wealth plus or minus gains or losses (i.es, G) is maximized.
For this reason he advocated the use of G as a basis for choice among
risky ventures. Bernoulli's criticisa: of the expected value subgoal
is widely accepted today but his utility function is not generally used.
Uhat portfolio to hold or what risky venture to undertake is left to
individual risk preference.

The wealth=holder who adopts the maximum chance subgoal can reach
this subgoal by using the geemetric mean, G, of the probability distri-
bution of returns as his criterion and by choosing that portfolio which
has the probability distribution of returns with the highest G.
Bernoulli also has shown that choice of that portfolie with the highest
G is a rational choice ifs (1) maximization of the mathematical expec~
tation of the utilities of the payouts is a rational subgoaly and
(2) if the utility of a small gain or loss varies inversely with the
amount of wealth already possesseds

Nost. i that the 1 and

the variance of the probability distribution of returns, and the chance

of ruin, are imp to the wealthehs they leave it to

individual risk preference to balance one factor against the others.

The geometric mean of the probability distribution of returns (G) depends
on both the mathematical expectation and the variance of the distribution.
Purther, G would equal zero if there were any possibility of a return of
zexo (1,04, zuin). When the portfolio with the highest G is chosen, with
G greater than zero, there is no chance of ruin if the wealtheholder's
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probability beliefs are corrects Consequently, maximization of G falls
within the generally accepted range of rational behavior. This is not
to say that G is the only rationsl criterion for portfolio menagement;
it is to say, however, that it is a useful criterion when dealing with
a broad range of problems, When the portfolio with maximum G is not
chosen, there must be justification for choosing to hold a pertfolio
which has little chance of being the most valuable portfolio in the
long run,

Chapter IV deals with the problem of determining what proportien
of a portfolio to allocate to a risk asset in order to maximize G, the
geometric mean of the probability distribution of portfolio returns.
Both G and this proportion (1ses, Guey) are functions of the whole
probability distribution of returns from the risk asset and may be
deterained by means of equations (4.1) and (442)s These equations in-
volve the whole probability distribution of returns and, consequently,
are often difficult to solve except, possibly, by trlal and exrors.
However, equations involving only the mean and variance of the probability
diatribution of roturms fron the sisk asset often give good estisates
of G and q,,,. These oquations, that 1s, equations (4.6) and (4.7),
also may be used when probability beliefs take the form of estimated
standard returns in gain years and standard returns in loss years. A
standard return for the risk asset in a gain year is R + s and in a loss
year is R = s, with gain years and loss years equally probable.

The analysis in this study is based on a number of concepts
underlying the payout matrices and the equations which determine proper
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maximizing action, Two of the most important of these concepts have to
do with returns and with proper maximizing action. Returns occur in
series over time. In order to determine the return for a specified year
it is necessary to know the value at the beginning and at the and of
the year as well as the cash dividend and interest receipts during the
year. iarket values are used as a basis for this determination. If
the probability beliefs as to returns remain unchanged from year to
year, the maxialzing proportion to hold in the risk asset (q,,) will
remain constant. For example, if the probability beliefs at the
beginning of the year, year i, are such that the maximum chance allo=
cation of the portfolio is 40 percent in bonds and 60 percent in stock
and these beliefs remain the same at the beginning of year i + 1, then
the maximun chance allocation again will be 40 percent in bonds and
60 percent in stock at the beginning of the year i + 1, If the relative
prices of stocks and bonds have changed between the two dates, it will
be necessary for the portfolio manager to make some sales and purchases
in his portfolio to bring it into line with the desired proportions even
1f the proportions themselves have not changed. Under this plan of
action, the portfolio manager whose probability beliefs about returns
from stocks and bonds remain unchanged exposes the same proportion of his
portfollo to the same risk time after times

Reference period returns were used in Chapter V to illustrate the
hypothetical results of proper allocation of a portfolio between bonds
and stocks, Stock returns in the 1926-1935 period ranged between .55 and
1,47, The arithmetic mean return was 1,106 and the geometric mean return

wag 1,057, If 40 percent of an hypothetical portfolio had been placed



122

in bonds ylelding 5 percent at the beginning of each year and 60 percent
had been placed in stock, the geometric mean portfolio return over the
whole period would have been 1.067. Such diversification would have
increased yields from 5.7 percent for the all stock portfolie and § per=
cent from the all bond portfolio to 6.7 percent for the diversified
portfolio in this periods In the 1890-1899 period, on the other hand,
returns from stocks ranged only from «90 to 1429 with an arithmetic mean
return of 1,065 and & geometric mean return of 1,059, In those reference
years, a portfolioc adjusted at the beginning of ocach year so that the
investor borrowed §2.00 at 3 percent for each of his own dollars and
invested all in stock would have yielded 8.6 percent on the equity. The
emall variance in the 1890-1899 set of stock returns made such

VP In the 1926-1935 period borrowing
on the same scale would have resulted in a return of zoro in one or more
years and the consequent elimination of the portfolio.

The proper allecation of a wealtheholder's resources between
stock and bonds (or borrowing) depends on returns from bonds and the
cost of borrowing on the one hand, and the probability distribution of
returns from stock on the others The effects of different levels of
interest rates on Yax depends on the probability distribution of returns
from stocke A given difference in interost rates will have lesa effect
0N Guay When the probability distribution is dispersed than when the
variance is small, These relationships may be quantified in the case of
the wealth-holder who uses the maximum chance subgoal as the basis for
his decisions. If the wealth-holder believes that a standard gain year
and a standard loss year are equally probable and that stocks will return
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1.41 in the gain year and .80 in the loss year, a two point difference
in anticipated interest rates (5 percent vs. 3 percent) would account

for a di in bond heldi ivalent to 25 percent of the net
value of the portfolio. If he believes that stocks will return 1,183 in
the gain year and .947 in the loss year, the same two point difference
in anticipated interest rates would account for a difference in borrowing
or negative bond holding equivalent to 170 percent of his net portfolio.
This analysis indicates the effect of uncertainty on the interest
elasticity of demand for funds to buy stocks.
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GLOSSARY OF NATHBIATICAL SYMBOLS
the arithmetic mean (i.¢., mathematical expectation) of the proba-
bility distribution of portfolio returns.

the arithaetic mean (i.e., mathematical expectation) of the proba-
bility distribution from portfolio i.

an estimate of Ay.
the return from portfolie i if the J* event occurs.

the proportion of the portfolio allocated to bonds (or other safe
asgets) at the beginning of each year.

the return from bonds (or other safe assot).

the geometric mean of the probability distribution of portfoliec
Teturnse

the geometric mean f_ﬁ' the probability distribution of portfolio
roturns from the i®0 portfolie.

the geometric mean of the probability distribution of returns from
the portfolio having the highest G.

the geometric mean of the probability distribution of returns from
the portfolin allocated q to stock at the beginning of each yoar,

an estimate of G,

the geometric mean olio return from the ith pertfolio if the
3th combination of events occurs.

nuaber of investment periods called years.

the probability of having a larger return than any other specified
pertfolio.

the probability of portfolio i being more valuable than any other
specifiod portfolio at the end of n yearss

the probability of the Jth oceurrences

the proportion of the portfolio allocated to stock (or other risk
asset)at the beginning of each year,

the proportion of the portfollie to be allocated to stock at the
beginning of cach year in order to maximize G.
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Ggay 8M estinate of Gugy o

Ror Re the arithmetic mean of the probability distribution of returns
from stock (i.e., the risk asset).

Rj ¢ the return from stock if the J"’ event occurs,

the standard deviation of the probability distribution of returns
from the risk asset (stock).

the deviation from R in a gtandard gain year and a standard loss
years
Sy ¢ Stock price index including cash dividends in year t.
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