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CHAPTER I 

RATIONAL DEGISION MAKING IN PORTFOLIO MANAGEMENTs 

A BRIEF SURVEY 

All investment necessarily involves the future and, therefore, 

uncertainty. The extent of this uncertainty is a major factor in many 

investment decisions including the choice among available portfolios. 

The theory of the firm deals with the problems faced by business men 

in an environment characterized by change and uncertainty. The problems 

of portfolio management are similar in many respectse The rational 

portfolio manager has goals similar to those of the rational entre- 

preneur and is guided by similar criteria in making decisions. 

This dissertation is a study in applied decision theory. It is 

an attempt to analyze how a rational portfolio manager, with specified 

probability beliefs, should choose one portfolio to hold out of all 

available portfolios. It does not deal with the problem of how to 

allocate a portfolio on the basis of probability beliefs about returns 

from individual stocks and bonds. Rather it deals with the related but 

different problem of how to choose among portfolies on the basis of 

probability beliefs about returns from portfolios. It is assumed that 

the portfolio manager has formed probability beliefs, not necessarily 

about returns from individual stocks and bonds, but about returns from 

portfolios consisting of groups of stocks and bonds, and wishes to choose 

among the portfolios on the basis of these beliefs, For example,



portfolio A in Table lei may be allocated »5 to General Motors Common 

Stock, of to UeSe Steel, and 3 to Pacific Gas and Electric. Portfolio 

B may consist of the same securities but allocated in different propor- 

tions or may consist of entirely different securities including bonds. 

In either case, the problem is to choose between the two portfolios, not 

among the individual stocks and bonds making up the portfolios. - 

The portfolio manager who has a group of stocks and bonds! with 

a market price of $100,000 can choose to continue to hold this portfolio 

or to substitute any other portfolio available to him at that price, 

In real life this choice is influenced by such factors as income and 

inheritance taxes, inertia, and lack of knowledge about available port- 

folios. Even so, the rational portfolio manager aust ask himself how 

he should choose among portfolios aside from these influences, The 

present dissertation is an attempt to answer this question; the objective 

is to analyze how his choice among portfolios should be made, not how 

it is made usually. 

Rational choice among portfolios involves two steps: (a) forming 

l For the purpose of this study it is assumed that the portfolio 
manager has interests exactly the same as those of the wealth-holder or 
portfolio owner. A portfolio consists of a combination of stock and 
bonds and cash which may be considered to be equivalent to high-grade, 
short~term, non~interest bearing bondse ‘Such combinations include holding 
stock on margin. More than 100 percent of the net value of the porte 
folio may be invested in stock, The funds borrowed are classed as neg- 
ative bond holdinge Negative stock holding consists of selling stock 
short and holding the proceeds in cash. In symbolic form, let b be the 
proportion of the net value of the portfolio held in bends or cash and 
q be the proportion held in stock. Then either b or q can be positive or 
negative but always b* q=1,
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probability beliefs about returns” from portfolios as these returns will 

be affected by future occurrences; and (b) choosing among portfolios on 

the basis of these beliefs. ‘The two steps may be illustrated by 

Table 1.1 which shows the probability of occurrence of two future events 

labeled "prosperity" and "depression" in the last row and the estimated 

effects of prosperity and depression on the returns from Portfolio A and 

Portfolio B is the first two rows. Each such return is here called a 

payout, and a table showing the payout from each available portfolio 

for each relevant future occurrence is here called a payout matrix? of 

returns. 

Table 1.1 

Payout Matrix of Returns 

Future Occurrence 

Prosperity Depression 

Portfolio A 1.10 090 

Portfolio B 1.06 1.02 

Probability of 
Occurrence of 2 

amnenemeene 

2 Let R be the return and i be the gain (or loss) per investment 
period per doller of principal. Then R=1¢i. If a wealth-holder 
holds a portfolio which costs $1,000 at the beginning of the investment 
period, pays $40 in dividends and interest during the period, and is 
sold for $1,060 at the end of the period, his return is 1.10. 

3 This is the simplest possible payout matrix. Payout matrices 
may well show the combined effects of more than two types of future 
ececurrences on the one hand and more than two portfolios on the other. 
For example, there might be three columns headed “increasing business," 
"galling business," and "stable business," each with an estimated proba- 
bility of occurrence. Returns from five different portfolios might then 
be estimated for each of these conditions,



In terms of the payout matrix the portfolio manager has two 

problems which correspond to the two steps aboves (a) filling in the 

payout matrix of returns; and (b) choosing among portfolios on the basis 

of this filled-in matrix. In real life, the first step--deciding upon 

the size, measured by the number of columns and rows, of the payout 

matrix and filling in the matrix with reasonable estimates of payouts 

and probabilities—~is by far the most difficult part of the portfolio 

manager's job. This dissertation has little to say about this problea,* 

It deals with the second of the two steps in portfolio managements the 

problem of how to choose among portfolios on the basis of a filledein 

payout matrix, In Table lel, for example, this would be the problem of 

choosing between Portfolio A and Portfolio B. 

The uncertain consequences of choices among portfolios may be 

expressed in terms of a payout matrix such as that of Table 1.1. Such 

matrices will be important tools in the analysis of rational decision 

making. They will be used to define and describe the combined effects 

of strategies (ieee, courses of action) and future occurrencese-combined 

effects which are involved in all choices with uncertain outcomes, 

including gambling and portfolio management. The matrix in Table le2, 

for example, illustrates the problem of a man who has $1.00 in hand and 

4 Probability beliefs about returns from portfolios may be derived 
in various ways. For example, the probability distribution of returns 
from a specified portfolio may be built up by first making estimates of 
returns from the individual securities making up the portfolio, as these 
returns will be affected by future occurrences, and then combining these 
estimatese Probability beliefs about returns from a specified portfolic 
may also be derived by starting from estimated returns from broad groups 
of securities such as the Dow Jones Industrial Average.



has the option to bet or not to bet $1.00 on whether or not heads oceurs 

on the next toss of a fair coin. 

Table 1.2 

Matrix of Money in Hand After One Toss of a Fair Coin 

Outcome of Toss 
Strategy Heads Tails 

Bet 2-00 Q 

No Bet 1 200 1 200 

Probability of 
Occurrence 5 ] 

Payout matrices in general, like that of Table 1.2, show the 

probabilities of all relevant future occurrences and the payouts re- 

sulting from the combined effects of each possible strategy on the one 

hand and each relevant future occurrence on the other. All this infor- 

mation is needed to reach a rational decision on the proper choice of 

a strategy. Consideration of the entire matrix is here taken to be an 

essential requirement of rational decision making. I would be impossible 

for a gambler to make a rational choice among strategies if he disre- 

garded either the probability of the relevant future occurrences or any 

of the possible payouts. 

The central problem of rational portfolio management is thet of 

making repeated choices among portfolios. The portfolio manager does 

not make an irrevocable decision to hold indefinitely a particular group 

of stocks and bonds; instead, he is able to readjust his portfolio at 

the end of any individual investment period. Therefore, choice of the



portfolio to hold during each separate investment period? must be 

considered a separate decision.® The consequences of these choices are 

uncertain. Furthermore, the effects of his reiterated choices among 

portfolios must be cumulative unless all gains are withdrawn from the 

portfolio and all Losses are replaced at the end of each year, 

Choosing among portfolios on the basis of a filled-in payout 

matrix involves the selection of a criterion (that is, measure or 

standard to be maximized or minimized) to be used as a guide in making 

tational choices among strategies. The remainder of this chapter will 

be devoted to a brief survey of the hierarchy of goals underlying such 

a criterion. For convenience of presentation, the goals underlying a 

rational criterion will be defined first without reference to the 

reiterative character of the choices, and then the discussion will be 

widened to include repeated choices with cumulative effects. 

The Hierarchy of Goals and Guides 

Rational choice among strategies under conditions ef uncertainty 

involves a hierarchy of goals, and of guides for reaching these goals, 

This hierarchy consists ofs (1) a goals (2) a subgoals (3) a criterion 

for choosing among strategies to reach the subgoal (i.e., a measure 

which must be maximized to attain the subgoal)s and, finally, 

(4) methods for devising strategies which maximize the criterion. Methods 

§ Individual investment periods may be days, weeks, months, or years, 

but are hereafter called years. 

6 Compare the old Wall Street sayings "To hold a stock is to buy 

a stock."



of devising strategies are the subject matter of later chapters of this 

dissertation and will not be discussed at this time. The subgoal is a 

crucial member of this hierarchy. It will form the basis of later 

chapters entitled "Subgeals and Criteria and "Subgeals and Subjective 

Utility." This together with the following section is a brief overview 

of goals, subgoals, and criteria. 

The goal in rational decision naling is the maximization of some 

measure of value. Each decision is made for the sake of the difference 

the choice will meke in terms of this objective. ‘The measure of value 

to be maximized, which will be referred to as the maximand, may he 

either a subjective utility measure such as utiles, or an objective 

measure such as money or bushels of wheat. The decision maker is con- 

fronted with a payout matrix expressed in terms of a maximand and wishes 

to select that one from among all available strategies which will 

enable him to reach his goals 

The goal can ba reached only in the futures It cannot be used 

as a basis for choosing among strategies with uncertain outcomes since 

what strategy will Lead to achievement of the goal depends on future 

events. For example, consider the gambler faced with the payout matrix 

shown in Table 1.2, ‘This gambler has $1 in hand and has the option to 

bet $1 on the toss of a fair coins In theeent of heads he will have 

$2 if he bets and $1 if he does not betes In the event of tails he will 

have © if he bets and $1 if he does not bet. The mere fact that this 

gambler wishes to maximize his money in hand at the end of the toss (his 

goal) does not give him a rational basis for deciding whether to bet or 

not to bet.



Since the goal cannot be used as the basis for choosing among 

strategies with uncertain outcomes, a subgoal is necessary. The subgeal 

is an objective which can be reached at the time of making the choice by 

the decision-maker who has a filled=in payout matrix. ‘Subgoals give 

bases for choosing among courses of action with uncertain outcomes. In 

terms of the payout matrix in Table 1.2, one subgeal is the maximization 

of the mathematical expectation of the probability distribution’ of cash 

in hand at the end of the toss of a coin. This i¢ called the expected- 

value subgoal. Another subgoal is the maximization of the cash in hand 

after the toss, assuming the most unfavorable outcome of the toss (called 

the minimax subgoal). 

A subgoal is necessary whenever the outcome of the choice is 

uncertain, whether the maximand is expressed in terms of subjective 

utility or of an objective measure of value. Consider the payout matrix 

in Table 1.3 which is expressed in terms of subjective utility. 

Table 1.3 

Payout Metrix of Utility of Money in Hand at End of Toss 

Outcome of Toss 
Strategy Heads Tails 

Bet 3 0 

No Bet 1 1 

Probability of 
Occurrence 5 5 

7 The probability distribution of a set of payouts is the array 
of all possible payouts together with their probabilities of occurrences 
The mathematical expectation of the probability distribution of the set



The matrix in Table 1.3 corresponds to the matrix shown in 

Table 1.2 when the subjective utility of having §2 in hand is three 

times a¢ great as the subjective utility of having $1 in hand. The 

goal of maximum utility at the end of the toss still is not a sufficient 

basis fer choosing in a rational manner whether to bet or not to bet. 

If heads occurs, the goal will be reached by betting; if tails occurs, 

the goal will be reached by net bettinge In this case, too, a subgoal 

is necessary for rational choice among strategies. 

The choice of a rational subgoal is at the heart of rational 

decision making under conditions of uncertainty. To be rational, a 

subgoal must be based on consideration of the whole payout matrix and 

must be coupled with the goal in a legical mannere Later it will be 

shown that one clearly defined subgoal—the maximization of the proba- 

bility, P', of having a larger payout than from any other specified 

strategy, hereafter called the maximum chance subgoale-is a rational 

subgoai when choices are repetitive and effects of these choices are 

cumulative. Results from adopting this subgoal will be compared with 

results from adopting alternative subgoals. 

After a rational subgoal has been selected, it is necessary to 

adopt a criterion to use as a guide in choosing among strategies to 

reach the subgoal. Some criteria are obvious. For example, the man 

of payouts from a strategy is computed by multiplying all possible payouts 

from that strategy by their respective probabilities, and then summing the 
products, The term "arithmetic mean" of a probability distribution here 
has exactly the same meaning as the term "mathematical expectation" of 
that distribution. One term is used here to identify the criterion and 
the other to identify the subgoal.
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who has adopted the expected-value subgoal would use the arithmetic means 

of the probability distributions of the payouts from the various strat- 

egies as his criterione The man who has adopted the minimax subgoal 

would use.the.smallest payouts from the available strategies_as.his 

criterion, When maximization of P', the probability of having a bigger 

payout than that yielded by any other specified strategy, 1s taken as a 

the next chapter that P' will be maximized when the geometric mean, G, 
ornare a eehienaeneaadl 

of the probability distribution of payouts is maximized. Consequently 
G is the criterion for those decision makers who wish to maximize P'. 

Methods for maximizing the criteria fall into the fourth order 

of the hierarchy of goals and guides for making rational choices. The 

man who has adopted the expected-value subgoal would choose that strategy 

which has the probability distribution. of payouts with the highest 

arithmetic mean. The man who adopts the minimax subgoal would choose 

that strategy with the highest payout assuming that the most unfavorable 

event occurs. It is necessary to devise strategies or choose among 

strategies so ag to maximize the standard. In terms of portfolio manage= 

ry 

and bonds in such a manner as to maximize the Griterion. Portfolios so 

allocated reach the subgoal of the portfolio manager. Whether they will 

reach his goal will depend on future occurrences. 

Goals and Guides for Repeated Choices 

with Cumulative Effects 

Portfolio management has two characteristics which have not yet 

been given the emphasis they deserve. In the first rtfolio
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manager aust repeat choices among portfolios year after year and, 

secondly, the effects of these choices are usually cumlative. F 

purposes of clarity in dealing with these characteristics of portfolic 

management it is specified thats (1) the portfolio manager ie con- 

fronted yoar after year with the same payout matrix of returns; and 

(2) all returns are reinvested.” The purpose of thie section is to 

Gurvey briefly, in the light of those two specifications, the goal, 

subgoals, and criteria used in making rational choices among port= 

folios. The findings are not Limited to portfolio manegesent but are 

applicable to many other problems involving recurrent choices among 

strategies with uncertain outcomes and cumulative effects. 

The goal of portfolio management is taken to be the maximization 

of portfolio value at the end of a period of tine.? This period of 

tine extends to the investment horizon of tho portfolio manager and 

tends to remain constant from yoar to year, It is broken up into a 

large number, n, of individual investment periods called years. For 

example, a floor trader may think in terns of day-to-day fluctuations 

8 Both of these specifications will be relaxed and modified a 
In real life, the payout matrix will presumably change froa year to 
year, especially since probability beiiefe about returns are influenced 
by beliefs concerning the stage of the business cycle and the genoral 
level of the stock market. Thio matter ie Patra in the section en- 
titled "Recurrent fisks" beginning on page 7 

9 Seo Friederich and Vera Lutz, Ihe Theory of Invastnent of the 
Eira (Princetons Princeton University. Press, 1951), ps 16. The ultinate 
goal postulated above corresponds with the goal which the Professors Luts 
asoune to underlie all entrepreneurial profit Cibiitctag behavier, They 
saya "We shall suppose that under all circumstances the entrepreneur will 
want to maximize the rate of return on his own capital over whatever 
period he has in views this procedure will obviously give him the maxima 
capital sum at the end of the relevant period,”
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in prices and have an investaent horizon extending over only one calendar 

year, In this case the calendar day would correspond to what is called 

a years At the other extreme, many institutional investors, such as life 

insurance companies, have an investment horizon extending fifty or more 

yoars into tho future. The individual investment perlod here may be as 

long a6 one calendar yoar but, in practice, portfolios are alncst always 

evaluated and readjusted mich more frequently. In either case, the 

investment horizon recedes as time passes, so that n tends to remain 

constant from year to yoar, +9 The portfolio manager at both the beginning 

of any year (year 1) and at the beginning of year 1 + 1 will wish to 

maximizo his portfolio at the end of, say, 100 yoars, 

In the final analysis the rational man selects a goal because 

he belioves that achieving this goal will maximize his subjective 

utility, There is no necessary conflict betwoen maximizing subjective 

utility and maximizing objective portfolio value (or profit) except in 

the unlikely event that the decision maker prefors less woalth to more 

wealth, other things being equal. It will be shown later, however, 

that one portfolio will have the greatest probability, P', of boing 

more valuable than any other specified portfolio at the ond of n years, 

n being Large, and that P* for that one portfolio will approach 1 as 

A approaches infinity, 12 Either the portfolio manager who maxinizes 

LO It 1s aseumed that n ic large, whether or not it renains 
constant. If it does remain constant ovor time it is, in effect, in- 
finitely large, In this eae, the portfolio with the Largest G Le almost 
certain to produce a larger return than any other specified portfolio. 

11 P! is defined as the probability of having a larger return then 
any other specified portfolio. The portfolio which produces the largest 
return over n years also is the most valuable portfolio at the end of 
n years. Thus P' also is the probability of being more valuable than 
any other specified portfolio at the end of n years.
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subjective utility will select the portfolio with the maximus P', called 

tho maximum chance portfolfo, or he will select another portfolio which 

1s almost certain to be loss valuable in the long run, If the utility of 

a eoall gain or loss varies inversely with the wealth already possessed, 

the wealth-holder who bases his actions on subjective utility will 

choose the portfolio with maxima p!,/4 

The necessity for subgoals and the relation of these subgoale to 

the goal har been indicated, It has been noted that rational subgoals 

must be based on conaideration of the whole payout matrix and mist be 

logically related to the goal. There are two woll known bases for 

choosing among portfolios (here called subgoals) which involve considera- 

tion of the whole payout matrix and which are coupled logically with the 

goal. These subgoals aros (1) maximization of the mathematical 

expectation of the probability distribution of portfolio returns 

expressed in monoy termsg and (2) maximization of the mathematical 

expectation of the probability distribution of the utilities of the 

portfolio returns. Those two subgoale will hereafter be called the 

expected-value subgoal and the expected-utility subgoal. In this otudy 

a third subgoal is proposed—the maximization of P'. This subgoal will 

be called the maximum chance subgoal. 

The choice of the expected-utility eubgoal, that is, the choice 

of that portfolio which has the greatest mathematical expectation of the 

utilities of returns, hos great intuitive appeal. For example, consider 

12 The relationships presented in this brief overview are developed 
in Chapters II and III,
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the payout matrix in Table 1.3.9 Here the gambler will receive a payout 

with a utility of 3 if heads come up and a utility of O if tails come up, 

as compared with a utility of 1 if he does not bet. The mathematical 

expectation of the utility of the payout after betting is 1.50 (i.e, 

«5 x 3 + .5 x 0) as compared with 1.00 if the gambler does not bet. A 

gambler faced with such a matrix probably would be highly tempted to bet. 

However, when returns are reinvested, as is specified, the portfolio 

which hag the greatest mathematical expectation of utilities will not 

be necessarily the portfolio most likely to be the most valuable at the 

end of n years. This relationship may be illustrated also by the payout 

matrix in Table 1.3 assuming that the gambler is faced with such a 

matrix for n consecutive tosses.“4 such a gambler would maximize the 

mathematical expectation of the utility of his payout at the end of n 

tosses by betting all of his payouts on each toss, but he also would re= 

duce his chances of having any payout at the end of n tossess2> If he 

bet on one toss of the coin, the mathematical expectation of the utility 

of his payout would be 1.50 but his chance of having any payout would be 

13 Although the example involves gambling rather than portfolio 
management, the principle is the same. 

14 This assumption may not be realistic, as the utility of winning 

relative to the utility of holding cash in hand would presumably change 
after each toss. The example does, however, illustrate the point made 

here. 

15 In this example the gambler can play only one game at a time. 
If he had the option to play many independent games at once, he could 
maximize the mathematical expectation of the utilities of the returns 
without great risk of total ruin. The problem of diversification of risks 
ts discussed on page 47, Riske which cannot be eliminated by diversi“ 
fication are of primary interest here.
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only 1 out of 2. He would have a payout only if heads occurred, At the 

end of n tosses the mathematical expectation of the utility of his payout 

would be {1.50)", but his probability of having any payout at all would 

be only 1 in 2". He would have a payout only in the event of.n beads and 

no tails in pn tosses. 

Thus, in this example, the portfolio with the highest mathematical 

expectation of utility does not have the highest probability, P', of 

being the most valuable at the end of n years; instead, an alternative 

portfolio will have the greatest P'. It will be proved that the port- 

folio having the probability distribution of returns with the highest 

geometric mean, called 6,16 also will have the greatest P' under the 

conditions now under discussion—that is, when n is large and when all 

returns are reinvested. As n becomes larger P' increases, so that when 

n becomes very large it becomes almost certain (i.e., P' approaches 1) 

that the portfolio with the highest G will be more valuable than any 

different portfolio. Selection of the portfolio with the maximum P! is 

accepted as a rational way to reach the goal of maximum portfolio value. 

There may be other subgoals for choosing among portfolios. These other 

subgoals must lead to the choice of either the portfolio with maximum P! 

or to different portfolios; these different portfolios will almost 

16 It should be noted that both the probability distribution of 
returns and G are expressed in terms of an objective measure of value. 
If payouts are expressed in terms of subjective utility, there is no 
proof that the strategy having the probability distribution of payouts 
with the highest geometric mean is also the strategy which has the highest 
P', Later it will be shown that, if the utility of money varies in ace 
cordance with Bernoulli's utility function, maximization of G expressed 
in money also will maximize the mathematical expectation of utility.
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certainly be less valuable at the end of @ long series of years than the 

portfolio with maximum P', 

In summary, the following are accepted ag rational goals and guides 

for a portfolio manager faced with repeated choices having cumulative 

effects: 

Goal.—Maximization of portfolio value at the end of n years, n being 

large, assuming reinvestment of returns. 

Subgoal.--Maximization of P*, the probability of being more valuable 

than any other specified portfolio at the end of n years. 

Criterion.—The geometric mean, G, of the probability distribution of 

PRERESLSE REREENG 

tore ethod.—-Allocate that proportion of the portfolio to. stock which will 

maxinize Go



CHAPTER II 

SUBGOALS AND CRITERIA 

In this chapter a gambling model will be used to illustrate the 

necessity for a subgoal, the necessity for consideration of the whole 

payout matrix, and the relationship between the maximization of the 

mathematical expectation of value of the portfolio and the maximization 

of P*, the probability of being more valuable than any other specified 

portfolio. It will be proved that the portfolio having the probability 

G@istribution of returns with the Largest geometric mean, G, also has 

the greatest P* at the end of a long series of years (n years) assuming 

reinvestment of returns, and that P* approaches 1 as n approaches 

infinity. 

Many problems involving probability, including rational decision 

making, can be clarified by the use of gambling situations where the 

odds are known. The following game was designed to be analogous to the 

problem of choosing among portfolios, and the payouts in the game were 

chosen to illustrate various subgoals and criteria used as guides in 

such cholcese 

Gambling Medel. 

Let 2 gambler be given an opportunity to buy tickets which will 

cost $1.00 each and which he believes will surely pay off as shown in 

Table 2.1. All wealth must be bet on one color on every one of a large
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number, n, of tosses of a coin. The gambler wants to choose that color 

which will maximize his wealth at the end of the game (i.e,, at the end 

of n tosses). 

Table 2.1 

Payout Matrix of Returns 

Outcome of Toss Criteria 
Strategy Heads Tails A G 

Red 2650 0 1.25 0 

Blue 2.25 50 1.37 1,06 

Green 1.75 075 1625 9 14145 

Black 1.02 1.01 1,015 1.014 

No Bet 1.00 1.00 1,00 1.00 

Probability of 
Occurrence 5 05 

The first column of Table 2.1 shows the returns for each color 

in the event of heads and the probability of heads occurring. The second 

column shows the returns in the event of tails and the probability of 

tails occurring. A is the arithmetic mean or, in other words, the mathe- 

matical expectation of the probability distribution of returns. For 

examples A,.g = +5 % 2050 + 05 XO = 125 where +5 x 2050 is the proba- 

bility of heads occurring multiplied by the return if heads occur, and the 

second term is the corresponding figure if tails occur, In similar 

fashion G is the geometric mean of the probability distribution of returns. 

Gigg = 2450°7 x 072 = 0 and G, = 2.25°9 x .50° = 1.06,
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The terms of Table 2.1 can be adapted to fit not only the general 

problem of choosing among courses of action but also the particular prob- 

lem of portfolio management. The gambler is faced with the choice among 

five strategies (ise. possible courses of action)s he can bet on one 

of the four colors and he can refuse to bet. The portfolio manager who 

has a portfolio with a market price of $1,000 is faced with the choice 

among all portfolios (i.e., groups of stocks and bonds, and cash) avail~ 

-able to him at that price. There are two relevant outcomes on each toss 

of a coint heads and tails. These outcomes correspond to relevant 

future occurrences in portfolio management. For example, portfolio A, 

in Table 1.1, gives a return of 1,10 if business is prosperous in the 

forthcoming year (i.e., investment period) and a return of only .90 if 

business is depressed. In these terms "prosperity" and "depressions" 

are relevant future occurrences. If these are the only relevant future 

occurzences, there will be only two payouts for each portfolio, but often 

more than two must be considered, For example, the matrix may contain 

a column of payouts for the possible occurrence of depression in the 

steel industry concurrent with prosperity in textiles. 

It is specified that the gambler believes that the coin is fair. 

Consequently, he believes that there is @ probability of occurrence of 

+5 for heads, of .5 for tails, and of 1.0 for either heads or tails. 

If h-be the number of heads which may occur in n trials, the gambler 

believes that «5 is the most likely value of h/n when n is an even number, 

and that b/n will approach .5 a6 n inereases.! In 1ike fashion, the 

1 This 4s not to say that he believes that the absolute ae 
between the most likely value of h, that is, n/2, and the actual vali
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portfolio manager may believe that there is a probability of .8 that 

business will be prosperous, of .2 that it will be depressed, and of 1 

that either one or the other condition will prevail. Whether two or more 

relevant future occurrences are included in the matrix, the sum of the 

probabilities must add to 1. In other words, the matrix must contain 

the payouts for all of the relevant future occurrences. The portfolio 

manager may hold the same probability beliefs as to each of a long series 

of forthcoming years. If so, the asymptotic properties of the proba- 

bilities of business conditions are similar to those of the probabilities 

in coin tossing. If b is the number of years of good business inn 

years, the portfolio manager believes that the most likely value of 

b/n is 08, and that b/n will approach .é as n increases, 

The matrix (in Table 2.1) showing the payouts from each strategy 

for each future occurrence is expressed in terms of returns which are 

defined as payouts per dollar bet (ise, per dollar committed to a 

strategy) per toes of the coin. For example, the return is 1.02 if black 

is selected and heads come upe This represents the principal (1.00) plus 

the gain (.02) and is equivalent to 1 plus the yield. In similar 

fashion, the return from a portfolio consisting entirely of high grade 

bonds bought to yield 2 percent and maturing at the end of the year would 

be 1.02. A gambler can lose all of the money he has bet, and the port- 

folio manager can Lose his entire portfolio but never more than this 

amounts consequently, the return is always equal to or greater than 0. 

of h will tend to become smaller and smaller as n increases. On the 
contrary, the absolute difference, n/2 «= h, tends to become larger and 
larger as nm increases.
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It is specified that the gambler must bet all of his wealth on one 

color on each toss of the coin. This specification is included in the 

model in order to make the choices among colors analogous to the choice 

among portfolios and the returns from a color analogous to the returns 

from a portfolio. For example, the portfolio manager may be faced with 

the choice between a portfolio consisting entirely of speculative stocks 

and a more conservative portfolio consisting of part stocks and part 

bonds. In similar fashion the gambler is faced with the choice of blue 

tickets or the more conservative green tickets. 

The problem of portfolio management may be stated again in terns 

of the payout matrix. It is the problem of the decision maker who is 

faced with a payout matrix for n years and wants to choose in a rational 

manner one from all available portfolios in each of the n years, Con- 

struction of a payout matrix giving the outcomes of the strategies as 

affected by the relevant future occurrences along with the probability 

of each future occurrence is implicit in all rational decision making, 

including rational portfolio management. However, it is not the con- 

struction of such matrices but the choice of one from all of the strate~ 

gies after the matrix has been constructed which is the problem under 

discussion. 

The goal of the gambler faced with the choice among colors is to 

maximize his wealth at the end of n tosses of a coin assuming that he 

bets all of his wealth on each toss. The goal of the pgrtfolio manager 

is assumed to be maximization of wealth at the end of n years, n being 

large, assuming reinvestment of all returns. When there is no uncertainty, 

the goal itself 1s a sufficient guide in choosing among courses of action.



In the case of the gambler confronted with payout matrix 2.1, the goal 

itself would form the basis for deciding rationally whether to bet or 

not to bet. The returns from black tickets are greater than 1.00 whether 

heads or tails occur, so the gambler can certainly gain by betting. 

When there is certainty of what will happen next, the gambler merely 

chooses the color which will maximize his payout. If he is certain that 

heads are going to come up next, he will bet on red, the color with the 

largest payout when heads occur, He will ignore the consequences of 

tails occurring. If he ig certain that tails are going to come up next, 

he will bet on black, which has the highest payout when tails occur. 

The_Subgoeal 

When the decision maker cannot identify the strategy which will 

enable him to achieve his goal, a subgoal is needed. The decision maker 

who adopts a subgoal does not forego his goal, He merely chooses the 

subgoal as the best available landmark on the road to the goal. They 

are landmarks which can surely be reached by the decision maker who is 

confronted with a filledein matrix such as that in Table 2.1, which 

shows the probability of each relevant future occurrence and all com- 

bined effects of strategies and future occurrences. For example, the 

gambler cannot choose the particular color, or series of colors, which 

will certainly maximize his wealth at the end of 100 tosses of the coin. 

The series of payouts depends not only on color but also on the outcome 

of events about which he has only probability beliefs. The gambler can, 

however, choose that color which would produce the highest mathematical
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expectation of value at the end of 100 tosses, and he might make it his 

subgoal to do so. 

A rational decision maker must adopt a subgoal which ise (a) based 

on a balanced consideration of the payout matrixg and (b) logically 

coupled with the goal. No attempt will be made to define "logically 

coupled" in rigorous terms. Instead, two subgoals will be presented 

which axe Logdeally coupled with the goal, and conditions will be stated 

under which one of these two subgoals might be preferred to the other.” 

It is not assumed that there can be no other subgoals logically coupled 

with the goal. Subgoals fall into two classes depending on whether or 

not they involve balanced consideration of the whole payout matrix. The 

first class consists of subgoals which arise from a biased evaluation 

of the true probabilities and are therefore irrational. It includes the 

minimax and maximax subgoals to be described in the next paragraph. The 

second class consists of subgoals which give due weight to the true 

probabilities and are not necessarily irrational--nor are they necessarily 

rational. This class includes all subgoals based on measures of central 

tendency, on dispersion, and on higher moments of the distributions of 

payouts from the various strategies. 

When a decision maker attempts only to minimize his losees and 

gives no weight to possible favorable occurrences, he is said to have a 

minimax? subgoal. A gambler adopting the minimax subgoal would examine 

2 A third logically coupled subgoal, the expected-utility subgoal, 
will be discussed in the next chapter. 

imax subgoal is so named because the decision maker who 
adopts Any fevooe attempts to minimize the maximum possible losses.
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the payouts in the tails column in Table 2.1, and only those in the tails 

column. In other words, he would use the payouts in the tails column 

as his standard for choosing among strategies. He would then choose that 

color (black) which would give him the greatest return if the unfavorable 

event (i.e,, tails) occurs. The minimax subgoal is of special interest 

in game theory. In game theory, it is assumed that the gambler is playing 

against an opponent who can choose among opposing strategies (i.e., future 

occurrences) in such manner as to do the gambler as much damage as 

possible. In Table 2.1 these opposing strategies are the occurrence of 

heads and tails. If the gambler were convinced that he was playing 

against an opponent who wanted to win from him and who could control the 

outcome of each toss of the coin, he would be well advised to look for 

the worst and to guide himself accordingly. Under these circumstances 

it would be rational to adopt the minimax subgoal. But the minimax subgoal 

is irrational in the gambling model here under discussion and in port- 

folio management. There is no opponent who controls the relevant future 

occurrencess but rather the probability of each occurrence is known. It 

is not rational under these conditions to disregard the possibility of 

favorable payouts in making choices among strategies. 

The subgoal of the gambler who attempts to maximize his winnings 

if the most favorable combination of events occurs is called the 

maximax subgoale This subgoal may be adopted by the gambler who be- 

lieves that luck is on his side and wants to take full advantage of his 

luck, He considers only the most favorable payouts (the heads column 

in Table 2.1) and chooses that strategy (red) which gives him the maxi~ 

mum return when the most favorable event (heads) occurs, This choice,
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like the minimax choice, obviously does not give balanced consideration to 

the probabilities of the relevant occurrences and is, therefore, 

irrational, 

In the gambling model it was specified that the probability of 

heads is .5. In other words, the probabilities are independent and 

future tosses are not affected by past occurrences. Under these circum- 

stances, it would be irrational for the gambler to take as his subgoal 

the choice of that strategy which might seem to have the greatest possi- 

bility of a favorable payoff judged by the past pattern of tosses. It 

would be irrational for such a gambler to attempt to improve the odds in 

his favor by adopting such a strategy as "pick red after tails have come 

up five times in a rows In similar fashion, it is specified that the 

portfolio manager is dealing with the problem of repeated choice among 

strategies when faced with the same payout matrix time after time. In 

real life, past performance undoubtedly has a marked influence on con= 

structing the payout matrix,” but given the matrix, 1t has no bearing on 

choices among portfolios. 

Subgoals which are based on consideration of the whole payout 

matrix are not biased but they are not necessarily rationale A strategy 

with a probability distribution of payouts which has a small variance 

usually 1s preferred to one which has a large variance. This wish to 

avoid uncertainty about returns cannot be described as irrational, but 

it is not logically coupled with the goal, Minimizing variance must be 

rejected as a rational subgoal because it often leads to strategies which 

4, This problem is discussed further in Chapter V,



2% 

cannot possibly reach the goal. In the example shown in Table 2.1 the 

gambler who wished to minimize variance would not bet on black even though 

it pays 1.02 if heads occur and 1.01 if tails come up. The rational 

gambler, on the contrary, would clearly prefer black to not betting even 

though the distribution of returns from black has more variance than the 

distribution of returns from not betting. 

Two other unblased subgoals already have been identifieds the 

expected-value subgoal and the maximum chance subgoal.e In terms of the 

gambling model, the first of these subgoals is the choice of that color 

which maximizes the mathematical expectation of returns at the end of 

the games This color would be blue, which has the probability distri- 

bution of payouts with the largest arithmetic mean (Aj),,, = 1.37). ‘The 

arithmetic mean of the probability distribution of payouts is the 

criterion when the expected-value subgoal 1s adopted. This criterion is 

maximized when the color blue is chosen. The mathematically expected 

return for the gambler who repeatedly bet all of his wealth on blue would 

be 1.37 at the end of one toss and (1.37)" at the end of n tosses. The 

latter return is the highest possible mathematical expectation of returns 

at the end of n tosses. Any single bet on any other color during the 

whole series of n tosses would reduce it, 

The Maximum Chance Subaoa), 

The second unbiased subgoal, already identified, is the choice of 

that color which maximizes the probability, P', of having a higher payout 

than from any other specified color at the end of n tosses, n being large.
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On an ex post facto basis, each of the colors included in Table 2.1 would 

prove to be the best color to have selected for some combination of heads 

and tails. For example, the color red, which has the highest payout 

(2.50) when heads occur, would be the best color to choose if the next n 

tosses ware all heads and no tails occurred. The probability of occurrence 

of this combination of heads and tails can be calculated exactly by using 

the binomial expansion. It becomes smaller and smaller as n increases. 

When these is only one toss the probability of occurrence of all heads 

and no tails is .5. Under these conditions (i.0., when n = 1), 

Pr ied = *5+ When n = 2 the probability of occurrence of all heads and 

no tails is .25 so P!_ 4, = «25. When n = 100, PY, ds 1 in 21°, The 

P' for each color for any n can be calculated in similar fashion. 

The probability, P', of having a higher payout than any other 

specified color at the end of n tosses, assuming that all returns are 

bet on every toss, depends not only on the payouts from the various colors 

but also on n. This is showm in Table 2.2 which shows the payout matrix 

of returns at the end of n tosses with n = ly 2) 35 and 4. 

The first four rows of Table 2.2 correspond to the payout matrix 

in Table 2,1 with the rows and columns transposed. The fifth row shows 

the proportion of the possible occurrences (i.e., the probability, ?') 

in which each color gives a Larger payout than any other color when n = 1. 

The red tickets give a larger return than any other tickets when heads 

occur afd the black tickets give a larger return when tails occur, Conse~ 

quently, PP, = +5 and Ph =F when n= 1, In no outcome does blue 

or green give a greater payout than any other colors so P! for each of 

these 16 zero.
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Payout Matrix of Returns at End of n Tosses 

— or Color of Ticket 
° ° : 

Toss Oseurrence Red Blue Green Black 

n=] 

hot 05 6 250 075 1.01 

hyto § 2.50 2025 1,75 1,02 

Math» Expectation (A) 1,25 1.37 1.25 1.015 

Geometric Mean (6) 0 1.06 1. 145 1 2014 

pe 5 9 0 05 

n=2 

hota 225 16) 25 56 1,02 

hyty 50 0 1.12 1.32 1.03 

hato «25 6.25 5.06 3.06 1.04 

Math, Expectation (a*) 1.56 1.89 1.56 1.03 

Geometric Mean (G*) r) 1,12 1.32 1.03 

p 025 9 250 ond 

n=3 

hots 12 0 212 42 1.03 

hyta 238 0 -% +98 1.04 

hat, «38 0 2.53 2.30 1.05 

hsto el2 15.65 11.40 5.35 1.06 

Vath. Expectation (A>) 1.95 2.60 1.95 1.05 

Geometric Mean (G7) 0 1.19 1.50 1.05 

Pp! 012 «38 0 -0 

n= 

hot, +06 0 +06 +32 1.04 

hats 025 0 a o%, 1.05 

hata 38 9 1,27 1.72 1,06



(Table 2.2—-Payout Matrix of Returns at End of n Tosses--continued) 

Outcome Probability Golor of Ticket 
of of 

Toss Gceurrence Red Blue Green Black 

(n * 4) 

hat, 25 0 5.69 he03 1.07 

hate 06 39,10 25.65 9635 1,08 

Math, Expectation (a*) 2hh 3.58 2.44 1.06 

Geometric Mean (G*) 0 1.27 1.73 1.06 

PI +06 25 38 +31 

The possible outcones of the tosses when n = 2 are two tails 

(hota), taileheads head=tail, and two heads. The table shows all 

possible payouts when n = 2 when all returns are bet on each toss. Red 

gives a lasger payout than any other color when two heads occur (i.ée, 

2.50 x 2.50 = 6.25). The probability of this is .25. Consequently 

oem = .25 when n = 2 Gorrespondingly, green gives a larger return 

than any other color when tail~head or head-tail occurs and thus has a 

P! of .50 when n = 2, 

In the illustrative game the gambler wishes to maximize his 

wealth at the end of n tosses of a coin, n being largee The possible 

future occurrences when n = 100 consist of all 10] possible combinations 

of heads and tails in 100 tosses. The probability of each occurrence and 

the payouts in the event that any one of the six colors is chosen is 

stated dn the form of a payout matrix of returns after 100 tosses in 

Table 2.3.



Table 2,3 

Payout Matrix of Returns After 100 Tosses 

Outcome Probability Color of Ticket 

Ne eles Red Blue Green Black 

hotyoo (1/2)19° 0 250100 675109 = 4.9, 100 

hytgs 100 x (1/2)'9° 0 2.25 x .50°° 1.75 x.75% 1.021019? 

. ‘ F : ° . 

: : ; i 4 , 

Niooto (1/2) 1¢8 2.50799 RERPOe REO Raat 

Mathematical Expectation 
(Ato#) Leeptee ia7'o? 152538" 1,015'9° 

Geometric Mean (G'°°) 9 1.068? =. 245'°" 201410? 

pI (1/2)'9° = oO 988 002 

In Table 2.3, hy » with i =O, 1, «ee, mn y represents the number 

of heads which may occur in n tosses of acainy and t, represents the 

number of talis. The 10] possible combinations range from Kotyoo tO 

Kyooto when n = 100, The probability of each of these occurrences may 

be calculated from the binomial expansion by computing (T) (n/n) 12° P 

These probabilities are shown in the first column of Table 2.3. The 

first row of Table 2.3 shows the probability (first column) of 100 tails 

and no heads in 100 tosses and the payouts from each strategy if this 

combination of heads and tails occurs. In Table 2,3, A represents the 

arithmetic mean of the probability distribution of returns after 1 toss 

and a’°° ts the arithmetic mean (mathematical expectation) of the distrie 

bution of returns after 100 tosses. In similar fashion, G represents the
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geometric mean of the probability distribution of returns after 1 toss and 

G9 ig the geometric mean of the distribution after 100 tosses. 

The payout matrix of returns for each of the 101 possible 

occurrences for each of the five strategies (1.e., Table 2,3) includes 

a column showing the distribution of all possible payouts from holding 

blue tickets on each of the 100 tosses. Letting h be the number of heads 

which may occur in na tosses, the distribution of payouts from the blue 

tickets is 2025" x .50"" , since blue pays 2425 when heads occur and 

+50 when tails occur and all returns are reinvested, The corresponding 

distribution of payouts from the green tickets is 1.75" x hl . 

The returns from the blue tickets are equal to or greater than the re= 

turns from the green tickets when 

(2.1) 2426 x 450° > 1.75" x 99h 

or, expressed in loge, when 

h(log 2.25) + (n»h)(log .50) 2 h(log 1.75) + (n=h) (log .75) 

that is, when 

(202) h/n > (log 2.25+1og .75-1log .50-1og 1.75)/(log «75 10g .50) > .615» 

Equation (2.2) indicates that when 62 or more heads out of 100 

tosses occur, the blue ticket gives a greater return than the green ticket. 

The probability of 62 or more heads out of 100 tosses of a fair coin is 

only .01049 (as obtained from binomial tables’), 60 green produces greater 

5 Sees for example, Computation Laboratory of Harvard University, 
Tables of the Gum Binomial Probability Di (Cambridge, 

$$, ¢ versity Press, .



returns than blue in nearly 9 percent of the possible combinations when 

n = 100. When n = 1000 blue is the better choice in much less than 1 

out of a million possible combinations. The return from this 1 in a 

million outcome is so large, however, that tho mathematical expectation 

of the distribution of returns from blue is greater than the mathematical 

expectation of the returns from greene 

Similarly, the returns from the black tickets, which return 1,01 

when tails occur and 1,02 when heads occur, are equal to or greater than 

the returns from the green tickets, which return only .75 when tails 

oceur but 1.75 when heads occur, when h/n < 0955. When 35 or fener 

heads come up in 100 tosses the black tickets give a larger return than 

the green tickets. The probability of this is .002. The green tickets 

give a larger return in 998 out of L000 possible combinations of 100 heads 

amd tails. The red tickets, which return 0 when tails occur and 2.50 when 

heads occur, are the best tickets only when heads come up on every toss, 

The probability of this is 1 in 2'°° but the theeretical return is so 

great, if this extremely unlikely event occurs, that the mathematical 

expectation of returns from the red tickets is equal to the mathenatical 

expectation of the green tickets. 

To summarize, when n = 100, betting on green gives a larger return 

than betting on any other color (or not betting at all) when not less than 

3% and not more than 61 heads occur out of 100 tosses. The probability 

of heads occurring in this range of frequencies is approximately .988. 

Thus betting on green gives a higher return than betting on any other speci~ 

fied color in well over 98 percent of the possible future occurrences.
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When n = 1,000 , the chance that one of the other colors will produce a 

larger return is on the order of 1 in a million. 

In the particular example shown in Table 2.1, the color with the 

largest G (green) has the Largest P! when n ie large and P approaches 1 

as Nn approaches infinity, As will be shown below, this relationship 

between G and P! holds for all cases where the probability of occurrence 

and the size of the returns after n trials can be calculated by using the 

binomial expansion. 

The color green is selected because it has the highest G. It 

gives the highest possible return when h/n = .5 . Suppose a gambler is 

given the option to choose another color, say pinky which gives an equal 

or greater return than the return from green when 

(2.3) h/n > 542 

with 0 <z<¢.5.» and not otherwise. As n increases indefinitely it 

becomes more and more unlikely that a combination of heads and tails will 

oceur such that h/n >.5 42. So pink will be less and less likely to 

produce a higher return than green. Further, no matter how emall a 2 is 

specified and how large a P! is specified, with P' <1, it is always 

possible to choose an n large enough so that the probability of occurrence 

of h/n>.5+2 is less than (1 = P'), Therefore, in the long run, that 

color (green) wheich has the probability distribution of returns with the 

highest G will have a greater probability (P*) of giving a higher return 

than any other specified color (pink), even though pink gives a higher 

return when over half of the tosses are heads. Further, P' will approach 

1 a6 n becomes very large. Analogous statements can be made when pink
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gives a greater return than green when loss than half of the tosses are 

heads. These statements can be genoralized to cover any binomial distri- 

bution by substituting Py for .5 in equation (2,3) where Pp is the 

postulated probability of occurrence, 

AL c St of jon olio 

In previous sections of this chapter the problems of portfolio 

management have been discussed in terms of choices among portfolios when 

there were only two relevant occurrences in each year. When there are 

only two relevant occurrences in each year, the probability of occurrence 

and the size of the returns after n years (i.e., the payout matrix 

after n years) can be calculated by using the binomial expansion. This 

and the following section are designed to generalize the problem to 

include more than two relevant occurrences in each year. The problem of 

choice among portfolios may be stated in terms of the payout matrix in 

Table 2.4, It is the problem of the decision maker who is faced with such 

Table Reh 

Payout Matrix of Portfolio Returns 

Portfolio Relevant Future Occurrences Criteria 
liseves 3; eeeres k k A G 

1 4)? eres yy eeery %), PA P5"ij 3, 

; 3 i : ? : 
« . ‘ . . . 

4 @q)0 eens yy" ean rt z Pig G, 

: ; i : : : 
t yy) ones 5° eer Sey z P5%ey a 

Probability of 
Occurrence Py beeen Py poesey PL
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a payout matrix for n years and wants to choose in a rational manner one 

portfolio from all available portfolios in each of the n years. 

In Table 2.4» py represents the probability of the j*” ccourrence, 
with % py #1.» and ay, represents tho return fron the 4" portfolio, 
with 1 © Ly ssey t » df the J*” occurrence takes places with § = 1p sssy ke 

A return is the payout per dollar of portfolio value per investment period 

(year). Returns cannot be negative, so a)420 + Ay is the mathematical 

expectation (ieee, arithmetic mean) of the probability distribution of 

k 
returns from the gth portfolio, so Ay =~ Py Fi G, is the geometric 

ja 74 

mean of the probability distribution of seturns from the 1°” portfolio. 

G, also is the antilog of the mathematical expectation of the probability 

distribution of the logs of returns from the i*” portfolio so 

It is assumed that the portfolio manager 1s faced with a payout 

matrix such as Table 2.4 for n years. The portfolio manager who wishes 

to maximize his wealth at the end of n years would wish +o maximize the 

product of the Individual returns, This product is maximized if the 

return in each individual year 1s maximized. As long as the investment 

horizon and the payout matrix remain unchanged, proper maximizing action 

in one year would also be proper in the next year. if portfolio i, for 

examples 1s the rational choice in year j it also ts the rational choice 

in year j + 1, Consequently, rational portfolio management involves 

6 He algo would wish to maximize the geometric mean return over n 
years. This is the nth root of the product of the individual returns.
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selecting one portfolio and holding it as long as probability beliefs about 

returns remain unchanged.’ 

The portfolio manager who wighes to choose a portfolio to maximize 

the geometric mean return over n years is: faced with a payout matrix of 

returns derived from that shown in Table 2.4. This matrix (Table 2.5) 

is expressed in terms of possible combinations of occurrences and 

geonetric mean returns for n years. 

Table aed 

Payout Matrix of Geometric Mean Returns for n Years 

Portfolio Combinations. of Occurrences Criterla 
9 eeey ky seag F fi G 

L Qype seer Gye eoee yy Ay Gy 
e * e e ° . 

* ; 24 ; 3 : 

A oe A & 
e e J ° e. ° 

$ $ ‘ 3 M4 ° 

t Sy)? tees Sey? eens 9%, A, G. 

Probability of 
Occurrence Py eee P, eee Py 

In Table 2.5, p,, is the probability of the k™ combination of 

occurrences and the tp is the geometric mean return over n years if the 

7 This does not mean that the individual portfolios must corte? 
identical securities from year to year. It means only that the 
from portfolio 4, for example, in yoar a +1) have the same peopandiity 
distribution as in the year j, The problem of proportionate allocation 
of the portfolio in order to maintain continuity in the payout matrix for 
the special case where the pea inca “ divided between one risk asset and 
one safe asset is discussed on page 9
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ith portfolio 4s chosen in each of the n years and the k*” combination of 

occurrences tekes place. The combinations of occurrences in this matrix 

represent all possible combinations of the occurrences reported in 

Table 2.4 taken n at a tine, It is directly comparable to Table 2.3 

except that returns after 100 years in the former table are expressed in 

terms of products rather than as geometric means, The value of these g's 

and the likelihood of their occurrence (1.¢.) the p's) may be calculated 

directly from the matrix in Table 2.4, The A's and G's in Table 2,5 

equal the corresponding figures in Table 2.4—that is, the arithmetic 

and geometric moans of the probability distributions of the g's equal 

the arithmetic and geometric means of the corresponding distributions 

of a's. 

Tho portfolio manager can reach his goal if he can select o port- 

folio which will yleld the maximus return in each year. then the relevant 

future is known so that, for exaaple, Dy = 1 in Table 2.4, the choice is 

simple—the portfolio manager merely chooses that portfolio, say the 

yth portfolio, which maximizes ayy When no cecurrence is certain ond 

no portfolio ie superior to all other portfolios for every possible future 

occurrence, however, it is impossible to pick a portfolio which will 

maxinize with certainty the payout either for one yoar or for n years. 

The portfolio manager has to choose a portfolio yielding a distribution 

of payouts based on probabiiity beliofs about the possible combinations 

of occurrences. 

In order to make a rational choice among portfolios, it is 

nocessary to consider the whole payout matrix, In this consideration, 

the probability thet any one portfolio, say the 1°” portfolio in Table 2.5,
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will give the best possible return is important, Mhen Ty is the highest 

return in the column representing all possible returns when the hal Com 

bination of occurrences takes pleco, portfolio 1 gives the highest 

possible return in at loast P, Proportion of the possible combinations 

of future occurrences, The sum of all the probabilities of the conbina- 

tions of occurrences in which portfolio i gives the highest geometric mean 

return for n years is called Pin* If upon examination of the whole payout 

matrix it is found thet Pi =1, it 4s clear that portfolio 1 should be 

chosen. Choice of that portfolio with the maximum P' is taken as a 

rational subgoal in choosing among portfolios, 

Proof of the itaximum Chance Theoren 

It 1s a fundenental theorem of this dissertation that, when n is 

largo and returns are reinvested, the portfolio having the probability 

distribution of returns with the highest geometric moan, Gy also has the 

greatest probability, P', of producing a higher return thon any other 

specified portfolio if n io suffielontly large) ond P' approaches 1 as 

n approaches infinity. For this reason, G is here accepted as a rational 

criterion for choosing mong portfolios. 

Let Pin? with 1 = 1) sees ty) bo the proportion of the possible 

combinations of occurrences in which portfolio i produces a bigger return 

than any other available portfolio when exposed to the same risks for n 

years, and let G, be the geometric moan of the probability distribution 

of returns. Then the maximum chance thoorem states that when portfolio m 

Ls the portfolio with the geonetric mean return Gas! and portfolio 4 ie 

any other portfolio, so that Ee > Gy thon
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when n is sufficiently Large-=and an approaches 1 as a limit, while P! 
in 

approaches 0 as a limit, as n approaches infinity. In other words, 

portfolio m will almost certainly produce a higher return than any other 

specified portfolio in the long run. 

In order to give general proof it is necessary to cover the 

=0; (b)G  >G,=05 and following cases: (a) G max > St 
max 

(c) Gs >G, > 0 ‘ 

Case (a): Gs a 

portfolio there is some combination of occurrences which will result in 

* Oa If Ge = 0, it means that for each available 

a zero return, so that the portfolio becomes worthless if this combina= 

tion occurs. In other words, if Goss = 0, there is some chance of ruin 

in whatever course of action may be adopted. Specifically, it must mean 

that the wealth-holder does not have the option of holding a proportion 

of his portfolio in cash or other safe assete Under these unrealistic’ 

conditions, there can be no G ny > G ani consequently the maximun 

chance subgoal does not apply. 

Case (b): es > G, = 0.—-The portfolio with a positive Gay clearly 

will dominate the portfolio in which Gy = 0 in a larger and larger 

$ It is unrealistic to assume that Say = 0 when the portfolio 

manager has the option of holding part or all of his portfolio in cash or 
other safe asset. The minimun i. for such a portfolio is 1.0—which 

can be obtained by holding all cash.
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proportion of the time as n increases. Assume that the return from the 

i™ portfolio equals 0 when the §*” combination occurss that the proba~ 

bility of this is Py when n * 1g and that the return from portfolio m is 

greater than the return from portfolio { only when the j*” combination 

occurs. The probability that the jt combination will not occur in the 

first year is (1 ~p,) and the probability that the j* combination will 

not occur inh years is (1 = p,)" « This probability becomes smaller 

and smaller as n increases, so that the probability of portfolio i giving 

a return of 0 becomes greater and greater and approaches 1 as n becomes 

very large. When portfolio i gives a 0 return, portfolio m gives a 

greater return. Therefore, it becomes more and more Likely that port- 

folio m will give a higher return than portfolio i and Pl. approaches 1 

as a limit as n increases without bound. 

Case (c): Gay 7 Sy > OxemProof that Pl, > Pi. when n is large and 

approaches 1 as a limit when n approaches infinity depends on the fact 

that the arithmetic mean of a random sample of n items from a population 

with finite variance tends to approach the population mean as n becomes 

large. It can be proved that the probability, ay that samples of n 

items from a population with finite variance will have a sample mean 

differing from the population by more than a specified amount, z, depends 

on n and can be made smaller than any specified number by choosing a 

sufficiently large ne Chebyshev's inequality forms the basis for the
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To use Chebyshev's inequality it is necessary to convert the 

probability distributions of returns in the rows of Tables 2.4 and 205 

%0 distributions of logs, All portfolios with a geometric mean of 0 are 

excluded (see Case (b) ), so all distributions under consideration have 

a finite variance. In Table 2.5, Type with k = ls esey fs 45 the geometric 

mean of a random sample of n returns from the probability distribution of 

returns of the 1°" portfolio shown in Table 2.4. That isy g,, 48 the 
geometric moan of a sample of n items from the probability distribution 

of ayy with J = 1, oery ke Correspondingly, log sy is the arithmetic 

mean of a sample of n logs from the probability distribution of log 845° 

Further, the population mean of the distribution of log 945 is log G,, 

k 
In other words, log G, = & p, log ay. o Jatt? Daal © 

9 A small variance indicates that large deviations from the mean 
are improbable. This statement is made more precise by Chebyshev's 
inequality. Let X be a random variable with mean p = E(X) and 
variance 9* = Var(X) , and let g be any number greater than 0. Then, 
according to Ghebyshev's inequality, 

Ken [2ds ot =a, 
But the random variable X be the sum of n random variables. In this 
case o* (and also 9*/z* =a varies Inversely with n and approaches 0 
as n approaches infinity. Consequently, the probability (a) of the sample 
mean (X) differing from the population mean (4) by more than a specified 

amount (2), that is Pr{x=p | >2}, con be made smaller than any speci- 
fied number by choosing a sufficiently large n. See, for rah 
William Feller, An Introduction to Probability Th Lic 
(ew Yorks: John Wiley and Sons, Inc., gaye page es To a appescatsen 
and proof of Chebysher's ineweatity.
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Let Gy be the probability that the arithmetic mean of any sample 

of mn logs from the probability distribution of logs of returns from the 

ath portfolio will differ from log G, by 2 or more, And let 4, be the 

corresponding probability that the same mean of n Logs from the prokaba~ 

bility distribution of log On§ will differ from log G, by 2 or more. 

Both Gand @, and their sum, a +s depend on n and can be made 

smaller than any specified positive number by making n laxge enough, 

Let 2 ¢ (log G, = log G,)/2, Under these conditions returns from 

portfolio 4 can be larger than returns from portfolio m only when the 

sample mean of n logs from the probability distribution of log ayy 

exceeds log Ge +2 or when the sample mean of n hogs from the proba- 

bility distribution of log Bj is smaller than log q, ~z. Asis 

shown above, the probability of either of these occurrences singly or 

together approaches 0 as a limit as n approaches infinity. Therefore, 

as n approaches infinity, the probability, Me » that the return from the 

a” portfolio will be larger than the return from portfolio i approaches 

1 as a Limit. Portfolio m is almost certain to give a higher return 

than portfolic i in the long run.



CHAPTER Id 

SUBGOALS AND SUBJECTIVE UTILITY 

Rational portfolio management involves the problem of choice among 

strategies with uncertain outcomes. This is the ancient problem of the 

gambler who has the option to choose among bets. Classical writers on 

probability theory recommended that problems of this kind be solved by 

first computing the expected winnings (possibly negative) for each 

available bet and then by choosing that bet which has the highest mathe- 

matical expectation of winning. Their use of mathematical expectation 

was based on grounds of equity; that is, they were interested in which of 

two players, if either, would have the advantage in a hypothetical bet. 

In 1738, Daniel Bernoulli in four short paragraphs demonstrated that the 

use of the mathematical expectation of winnings did not always apply and 

proposed instead that gamblers should evaluate bets on the basis of the 

mathematical expectation of the utilities of winnings. 

1 Because they bear directly on the problem in hand, the first four 
paragraphs of Bernoulli's article on the measurement of risk are quoted 
in full in the appendix at the end of this chapter. Bernoulli's example 
is as follows: "Somehow a very poor fellow obtains a lottery ticket that 
will yield with equal probability either nothing oz twenty thousand ducats. 
Will this men evaluate his chances of winning at ten thousand ducats? 
Would he not be ill advised to sell this lottery ticket for nine thousand 
ducats? To me it seems that the answer is in the negative. On the other 
hand I am inclined to believe that a rich man would be illeadvised to 
refuse to buy the lottery ticket for nine thousand ducats. If I am not 
wrong then it seems clear that 311 men cannot use the same rule to evalu- 
ate the gamble." Daniel Bernoulli, "Exposition of a New Theory on br 
Measurement of Risk," translation by Louise Sommer in Econometrica, 22 
January 1954, pp. 23-24,
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In terms of subgoals a6 defined in this study, Bernoulli showed 

that use of the expected-value cubgoal did not always lead to choices 

which seemed rational to him and proposed instead the use of the expected- 

utility subgoal., Bernoulli's criticisa of the expected-value subgoal 

4s considered valid, The solution proposed here, however, Ls not recourse 

to subjective utility but rather the use of the maxiaum chance subgoal— 

dees, the maximization of P', Bernoullife significant question concerns 

the utility of each possible payout, The significant question studied 

here 4s the long-tern offects of repeated cholcea among portfollos, 

Bernoulli's example is somewhat aside from the dally business of 

living but, when stripped of ito gaabling wrappings and expressed in terns 

of payouts and returns, it 1s seen to represent a major seguent of 

econoaic decision making. The hypothetical market price of the ticket, 

which has an equal probability of paying 20,000 ducats or 0, is 9,000 

ducats, This information may be stated in the form of a payout matrix 

(Table 3,1) showing actual payments in thousands of ducats and the payments 

per ducat risked. 

Table 3.1 

Payout Matrices for Bernoulli's Problea 

Future Occurrence 
Ticket Ticket Criteria 

Strategy Wins Loses A G 

(a) Payouts in 
thousands of ducatss 

hold tlekot 0 10 0 
not hold ticket 9 9 9 9 

b) Payouts per ducat riskeds 
( rid ticket 2.22 0 lll Oo 

not hold ticket 1,0 1.0 1.0 1,0 

Probability of cccurrence 5 5 
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Both the poor man and the rich man have the option either to hold 

the lottery ticket or to hold 9,000 ducats. Table 3.1 shows this option 

expressed in terms of thousands of ducats and in terms of payouts por 

ducat risked. Possible payouts range from 2,22 per ducat risked to 0, 

Payouts with ranges such as this—indeed, much greater ranges--are ordinary 

economic occurrences, Practically every business decision involves risks 

of this order or greater at the margin. As one example, the department 

store manager has to decide whether one more clerk will produce enough 

sales or savings to cover his pay or whether the added payroll will be a 

dead loss. The "poor man” today is also continually faced with implicit 

or explicit decisions as serious as that faced by Bernoulli's lottery 

ticket owner. He must decide whether to move to a new job, buy a now 

home, sign a second mortgage. He ig continually offered the opportunity 

to undertake such risky ventures as buying his own truck, opening a 

restaurant, buying some uranium stock, some oil stock, some investment 

shares. Some of these options may be highly advantageous, and he must 

choose some one course of action in each case. The effects of these 

choices are cumulative, that is, the decision maker never comes back to 

exactly the same position that he occupied before making the choice. The 

major difference between Bernoulli's problem and other choices among courses 

of action is that the ticket ownex's choice is clearly defined while the 

other opportunities are usually ignored or the choices muddled. 

Thus Bernoulli's example is representative of a wide class of 

choices. The decision maker is being faced continually with such choices 

and the outcome of each decision affects his entire future, In the 

following discussion this example is stated in payout matrices constructed
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to illustrate choices based ons (a) classical mathematical expectation 

(ices, the expected-value subgoal)s (b) Bernoulli's subjective utility 

(ieee, the expected-utility subgoal); and (c) the maximum chance subgoal. 

Expected-Value Subdoal 

Table 3.2 shows the classical approach to choosing among risky 

ventures. The payout matrix, expressed in terms of thousands of ducats, 

shows the possible winnings of a poor man faced with the choice of holding 

or selling a lottery ticket which he found and the possible winnings or 

losings of a rich man faced with the choice of buying or not buying that 

same ticket. 

Table 3.2 

Payout Matrix of Gains and Losses 

Future Occurrence Criterion 
Ticket Ticket 

Strategy Wins Loses A 

(a) Poor Man 

Hold ticket 20 0 10 

Sell ticket 9 9 9 

(b) Rich Man 

Buy ticket ll 4 i 

Not buy ticket i) 0 0 

Probability of 
Occurrence 5 35 

Table 3,2 shows the probability of the lottery ticket paying off 

or not and the net payout to the poor man and to the rich man for each of
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two courses of action, The classical writers would calculate the asthe- 

matical expectation, A, of the net payouts and choose that strategy which 

maxinizes A, In this case they would recommend that the rich aan buy 

the ticket, and that the poor man refuse to sell the ticket for 9,000 

ducats. 

The mathematical expectation of the probability distributions of 

the payouts was recoanended as a basis for reaching this decision as a 

matter of equity. If a great nuaber of tickets for independent drawings 

were sold at a prica equal to the mathematically expected payout, 

neither the buyer nor the seller would be likely to benefit greatly frea 

the transaction. Presumably both would end up about where they started. 

If large numbers of tickets were exchanged at a significantly different 

price oither the buyer, or the seller, probably would gain at the expense 

of the other party to the transaction. 

Stated in other terms, when a docision maker can surely bet the 

same saall amount on a large numbor of independent trials, he can maxinize 

the expected value of his gain, and aleo the likelihood of having more 

gain than can be obtained by any other plan, by choosing that set of 

bets which gives him the greatest mathematically expected payout. For 

example, Lf Bernoulli's poor man hed found 10,000 tiekets involving 

10,000 independent drertace) each with @ payout equally Likely to be 

2 ducats or 0, he clearly would be unwise to cell his block of tickets 

for 9,000 ducats. His winnings on 10,000 different trials would be almost 

certainly very closo to 10,000 ducats, the mathematical expectation of 

the value of the set of tickets, and the advice of the classical writers 

would be sound.
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The arithmetic mean, as is indicated above, is a good criterion 

when there are large numbers of independent trials. Even decision makers 

who make repeated choices with cumulative effects, for example the 

operators of roulette wheels and insurance companies, are rightly intere 

ested in this average when each risk is small in relation to total wealth. 

There is little or no conflict between the use of the arithmetic mean as 

a criterion and the use of the geometric mean of the probability distri- 

butions ef payouts per dollar of wealth (4.¢., G) as a criterion under 

these conditions. This is indicated in Table 3.3 which shows the con- 

trast between returns when each risk involves 100 percent of wealth and 

when it involves only 1 percent of wealth, Table 3.3 is based on the 

gambling medel shown in Chapter II. 

Table 3.3 

Payout Matrix of Returns 

Possible Occurrence Griteria 
Strategy Heads Tails A 

Game I--100 percent of wealth bet on each toss 

Red 2.50 0 1.25 6 
Blue B25 050 1.37 1,06 

Green 1.75 Py bs] 1.25 1. 145 

Black 1,02 1.01 1.015 1,014 

No Bet 1.00 1.00 1,00 1.00 

Red 1.025 ° 1.0075 1,0073 
Blue 1.0225 0995 1.0087 1.0086 

Green 1 +0175 29975 1 0075 1 0074 

Black 1.0002 1.0001 1.0001 1.0001 

No Bet 1.00 1.90 1.00 1.00 

Probability of’ 
Occurrence 5 5
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In Game II the payout per dollar bet is exactly the same as in 

Game I but the payout per dollar of wealth is much lower, as only 1 percent 

of wealth is risked on each toss. Under the latter condition, the blue 

tickets have the highest G and P' and would be selected by the gambler 

who has adopted maximization of P' as his subgoal, even though these tickets 

do not have the highest G when 100 percent of wealth is risked as in 

Game I. In this case the choice of that ticket which has the highest 

arithmetic mean payout per dollar risked (iee., per dollar of wealth when 

100 percent of wealth is risked) would be a good guide to maximization of 

P', This is true in general when the amount risked is small in proportion 

to total wealth. 

Expected=Utility Subaoal 

Bernoulli used the lottery ticket example to show that the mathe= 

matical expectations of the probability distributions of returns are not 

good guides in making choices involving large risks. He proposed, in= 

stead, that the mathematical expectations of the probability distributions 

of the utilities of the returns be used as guides. Table 3.4 expresses 

hypothetical utilities of the poor man who is faced with the choice of 

selling or not selling the ticket and the rich man who may buy the ticket. 

The utilities shown in Table 3.4 are purely hypothetical. The 

underlying assumptions axes (L) the poor man has 1,000 ducats plus the 

lottery tickets (2) the rich man has 100,000 ducatss and (3) the utilities 

of the payouts (1.¢., wealth at the end of the lottery) vary directly as
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Payout Matrix of Utility of Wealth at End of Lottery 

Future Occurrence 
Ticket Ticket Criterion 

Strategy Wins Loses A 

(a) Poor Man 

Hold ticket 1,32 ft) 66 

Sell ticket 1,00 1,00 1.00 

(b) Rich Man 

Buy ticket 2.05 1,96 2.005 

Not buy ticket 2.00 2.00 2.00 

Probability of 

Occurrence 05 5 

the Logarithms of the payouts.” If the poor man sold the lottery ticket 

for 9,000 ducats he would have total wealth of 10,000 ducats whether or 

not the ticket wins, The utility of this wealth is taken to be 1.00 

(i.e., log 10). If, on the other hand, he holds the ticket, he would 

have total wealth of 21,000 ducats with a utility of 1.32 (iee., log 21) 

4f the ticket wins and a total of 1,000 with a utility of 0 if the ticket 

losese The mathematical expectation of the utilities of holding (ieee, 

266) is lower than the mathematical expectation of the utilities of 

selling the ticket, so Bernoulli would advise the poor man to sell his 

ticket. The total utility of the rich man's wealth of 100,000 ducats is 

taken to be 2.00. This wealth would be reduced to 91,000 ducats with a 

2 This assumption as to utilities also 1s made by Bernoulli. 
See page 55:
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utility of 1.96 if a Losing ticket were bought for 9,000 ducats and 

raised to 111,000 with a utility of 2.05 through the purchase of a 

winning ticket. Since purchase of the ticket increases the mathematical 

expectation of the utilities of the payouts, Bernoulli would advise the 

rich man to purchase the ticket. 

Whether or not particular payout matrices, such as Table 3.4, 

expressed in terms of subjective utility are realistic is not 4 probles 

here. But Bernoulli's procedure is very much at issue. He defines the 

"moan utility" of a course of action as the mathematical expectation of 

the probability distribution of the possible utilities from that course 

of action. He then merely states, with no discussion, that this moan 

utility (now called moral expectation) can be used as a basis for 

valuing risks, that 1s, as a basis for choosing among courses of action,? 

In other words, he explains why he expresses his profits (or losses) in 

terme of subjective utility, but doos not give any justification for 

maxinizing the mathematical expectation of these utilities. Bernoulli's 

use of subjective utility has had wide recognition, but his use of 

mathomatical expectation has not been adequately analyzed, 

3 See paragraph 4 in the appendix to Chapter III, 

4 The uso of the mathomatical expectation of the probability 
distribution of the utilities of the payouts has not beon questioned, 
Rathor mathematical expectation now is used a6 a basis for defining 
utility. The present emphasis on tho axiomatic approach to utility ds 
largely derived from John von Neumann and Oskar Morgenstern, Theory of 

(Revised ed.j Princeton: Princeton University 
Press, 1953). On page 28 they sayy "We have practically defined 
numerical utility as being thet thing for which the calculus of mathe- 
matical expectations is legitinate."



The Maxioun Chance Subsea), 

Bernoulli's problem also can be solved by the use of the maximum 

chance subgoal. Table 3.5 shows the payout matrix of returns for a poor 

man, who ig assumed to have a wealth of 1,000 ducats aside from his 

lottery ticket, and a rich man, who is assumed to have wealth of 100,000 

ducats. 

Table 3.5 

Payout Matrix of Returns 

Future Occurrence Criteria 
Ticket Ticket 

Strategy Wins Loses A G 

(a) Poor Man 

Hold ticket 2el ~ al lel «46 

Sell ticket 1.0 1.0 1.0 1.0 

(b) Rich Man 

Buy ticket 1.1 91 1,01 1,005 

Not buy ticket 1.00 1.00 1.00 1.00 

Probability of 
Occurrence 05 65 

The payout matrix of returns in Table 3.5 shows each possible 

return from the various strategies. The poor man has an initial wealth 

of 1,000 ducats plus a lottery ticket which he has an option to sell at 

9,000 ducats, giving him a totel initial wealth of 10,000 ducats. If he 

sells the ticket he will gat a return of 1.0 on this amount whether the 

ticket wins or loses. If he holds the ticket and wins he will have 21,000
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ducats or a return of 21. If he holds and loses hie wealth will be 

only 1,000 ducats, giving him a return of o1. In similar fashion, the 

ich man has initial wealth of 100,000 ducats and the opportunity to buy 

the Lottery ticket for 9,000 ducats. His wealth will either increase to 

111,000 or decline to 91,000 ducats if he buys the lottery ticket, thus 

giving him a return of either 1.12 or .9l- The arithmetic mean, A, of 

the probability distribution of payouts is higher for the poor man when he 

holds the ticket and for the rich man when he buys the ticket. the 

geometric mean, G, of returns for the poor man is higher when the ticket 

is sold, however, and the G for the rich man is higher when he buys the 

ticket. 

Over a long enough period of time many economic choices invelving 

returns of the same order of magnitude repeat themselves. Bernoulli's 

poor man may never find another Lottery tleket, but he probably will have 

many options among courses of action with as wide, or wider, a range of 

returns, It igs assumed here that both the rich man and the poor man will 

have many opportunities to risk the same proportions of their respective 

fortunes on approximately the same terms and that both men prefer more 

wealth to less wealth, everything else being equal. If these assumptions 

are valid, the maximization of P', the probability of having more wealth 

at the end of a long series of such choices than can be obtained by any 

other specified course of action, is a rational subgoal and G is a 

rational criterion. The use of the maximum chance subgoal results in 

courses of action for the rich man and for the poor man which seemed 

rational to Bernoulli.
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The decision maker who is interested in maximizing his wealth at 

the end of a long series of choices should ask himself how he would come 

out in the long run if he made the same choice on the same terms over and 

over again. It is not necessary for him to ask himsel? what is his 

individual subjective utility of winning. This is not to say that other 

goals, rather than the goal of maximim wealth at the end of a long series 

of choices, are irrational, Indeed, the use of subgoals based on the 

goal of maximum wealth often may be irrational. For example, the man who 

desperately needs $10 to escape a jail sentence and who has only §1 may 

well be justified in taking a gamble to get his money even though this 

gamble would not stand the maximum chance subgoal test. . Even under these 

conditions, however, it would be useful for the man to know that he shoud 

not often act in such a manner, if he wants to build up his fortune so 

as to avoid Like predlcaments in the future, 

Bernoulli's Uiility Function 

In his paper Bernoulli reaches the conclusion that, in general, 

the utility resulting from any small increase in wealth will be in- 

versely proportional to the quantity of goods previously possessed. 

This is generally credited with being the first use of a utility func- 

tion. Through a combination of graphic analysis and the calculus he then 

develops a rule for estimating the value of a risky proposition.” 

5 See Harold T. Davis, » Tie thears_of Seongnalxaca (BL 
Indianas The Principia Press, 1941 or a derivation of 
Bernoulli's formula from his postulates in modern mathematical terms.
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Bernoulli's rule is as followss “Any gain must be added to the fortune 

previously possessed, then this sum must be raised to the power given by 

the number of possible ways in which the gain may be obtained; these terms 

should then be multiplied together. Then of this product a root must be 

extracted the degree of which is given by the number of all possible cases, 

and finally the value of the possessions must be subtracted therefrom 

what then remains indicates the value of the risky proposition in 

question." It is apparent that Bernoulli's "gain" plus "the fortune 

previously possessed" corresponds te portfolio payout and that Bernoulli 

is saying in effect that the value of the risky proposition 1s measured 

by the geometric mean of the probability distrifution of portfolio 

payouts less the original cost. In hie paper Bernoulli gives two 

measures of the value of a risky venture. These measures ares (1) the 

geometric mean of the payouts (see above), and (2) the mathematical ex- 

pectation of the utilities of the payouts.” There is no conflict between 

these two measures when the utilities of the payouts vary as their 

logarithms, as is assumed by Bernoulli. Both measures then Lead to the 

same choices among risky ventures since the geometric mean of a proba- 

bility distribution of returns is maximized when the arithmetic mean of 

the logs of the returns is maximized. 

Bernoulli gives a number of applications of his formula to 

gambling and to insurance. In each instance he is able to give a 

6rBernoullis ops Glies pe 28 

7 See Last sentence on page 67.
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specific answer. He says that everyone who bets any part of his fortune 

on a mathematically fair game of chance is acting irrationally, and he 

then determines what odds a gambler, with a specified fortune, must ob- 

sata’ peek even in the long run. Most of his problems still are inter- 

esting in theiz own right and many have @ bearing on proper portfolio 

management. For instance, he demonstrates, with numerical examples, the 

advantages of diversification among equally risky ventures and between 

risky and safe asets, 

Bernoulli's approach to the valuation of risky ventures is not 

contradictory to the maximum chance approach. Not only do the two ap- 

proaches lead to the same conclusion when they both can be applied but 

they tend to support one another. Wealth-holders may be divided into 

two groups. The first group contains those wealth-holders to whom each 

risk is a unique event either because they do not expect it to recur or 

because they keep its effects entirely separate from the results of 

other risks. For example, the man who each year sets aside a small sum 

to bet on the races during his vacation with the intention of living it 

up if he wins and writing it off to experience if he Loses, presumably 

1s not actuated by Long-run profit maximizing motives. The effects of 

each risk are kept separate, Analysis based on maximum chance has nothing 

to offer this first class of wealth-holders. The choice between profit 

and safety or expected return and variance 1s a matter of subjective 

utility. Bernoulli's assumption that the satisfaction derived from a 

small gain tends to vary in inverse proportion to the initial wealth may 

or may not be a shrewd guess.



The second class of wealth-holders includes those who expect to 

be faced repeatedly with risks of the same general type and magnitude, 

This group includes those making most business and portfolio decisions 

and hence is of great importance. I[t includes, specifically, all those 

who want to maximize the values of their portfolio at the end of n years 

assuming reinvestment of all returns. Here there is a definite rule for 

choosing between risk and return, based on maximum chance principles. 

This class may be subdivided further into (a) those who undertake only 

one risky venture at a time, and (b) those who are able to diversify 

their risky ventures, Because so many economic phenomena, including 

yields on stocks, tend to fluctuate together over time, diversification 

among risky ventures cannot go as far towards eliminating risk as 

otherwise would be the casee Final choice among efficient portfolios 

for both groups(a) and (b) is based on maximization of G not because 

this maximizes subjective utility but because it maximizes P', 

Bernoulli states that the wealth-holder (here called portfolio 

manager) should ask himself whether the added satisfaction associated 

with the expected gain justifies undertaking the risky venture. He 

bases an exact rule of behavior on his assumption as to how the added 

satisfaction varies with the size of the potential gain or loss in rela- 

tion to the size of the portfolio. The rule may or may not be empirically 

useful, but it is grounded on rather shaky evidence ag to the exact 

shape of the utility function. According to maximum chance analysis 

the wealth-holder or portfdio manager should ask himself how he can 

maximize his chances of getting a better return than can be obtained 

with any other specified plan assumingthat he risks the same proportion



of his portfolio on the samo terms over and over again. It turns out 

that the formula which enables the portfolio manager to answer the 

maximum chance question is the samo as that developed by Bernoulli on 

grounds of subjective utility, 

In conclusion Bernoulli sayss 

Though a person who is fairly judicious by natural instinct might 
have realized and spontaneously applied much of what I have here 
explained, hardly anyone believed it possible to define these 
problems with the precision we have employed in our examples, 
Since all of our propositions harmonize perfectly with experience 
it would be wrong to neglect them as abstractions resting upon 
precarious hypotheses. 8 

Professor Stigler, in a review article,? gives considerable space 

to Bernoulli's hypothesis in reference to the slope of the wealth- 

holder's utility function even though the major emphasis of the article 

is on utility not affected by probability. He refers to the fact that 

LaPlace and Marshall, among othere, have accapted the law as a realistic 

guide, He also points out the similarity of Bernoulli's law to the 

Weber~Fechner psychological hypothesis that the just noticeable incre- 

ment to any stimulus is proportion to the stimulus. Stigler says, 

"Bernoulli was right in seeking the explanation? in utility and he was 

wrong only in making @ special assumption with respect to the slope of 

8 Thides De 31. 

9 George J. Stigler, "The Development of Utility Theory," Journal 
Vols 58 (1950), 373-3776 4 

10 Bernoulli is explaining the reason for the limited value of the 
game involved in the St. Petersburg paradox. This game is a type of 
risky venture with an infinitely Large ppt yee nto ena expected value 
but with an extremely small probability of winning.
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the utility curve for which there was no evidence and which he submitted 

to no testein!+ 

More recently Professor L. J. Savage in a section of “Historical 

and Critical Comnents on Utility" had this to says 

Bernoulli went further than the law of diminishing marginal 
utility and suggested that the slope of utility as a function 
of wealth might, at least as a rule of thumb, be supposed, not 
only to decrease with, but to be inversely proportional to, 
the cash value of wealth. To this day, no other function has 
been suggested as a better prototype for Everyman's utility 
function. » » «Though it might be a reasonable approximation 
to a person's utility in a moderate range of wealth, it cannot 

be taken seriously over extreme ranges. 12 

Individual Risk 2 

As indicated in the previous section, Bernoulli took the following 

steps to develop his utility function and to justify diversification 

among risky ventures and betveen risk assets and safe assets: (1) He 

showed=~-subject to the previously discussed implicit assumption as to 

subgoals—that the value of a risky venture to the individual wealth- 

holder is not the arithmetic mean of the probability distribution of 

returns (1.¢., the mathematical expectation of returns) but may be taken 

to be the arithmetic mean of the probability distribution of the utilities 

of the returnse (2) He stated that, in the absence of the unusual, the 

gain in utility resulting from any emall increase in wealth may be 

assumed to be inversely proportional to the quantity of goods previously 

possessed. (3) He developed a formula for calculating the utility of a 

11 Stigler, op, cit., p» 375. 

12 Leonard J, Savage (New Yorks 
John Wiley and Sons, hae 1954), Pe 9de
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risk asset to the individual wealth~holder using as a criterion the 

utility function developed in step 2, According to Bernoulli the sub- 

jective utility of the wealth-holder's assets, including the risky venture, 

is measured by the geometric mean, G, of the probability distribution 

of payouts from such assets. (4) Using this formula, he was able to 

calculate exactly the utility of the wealth-holder's assets, including 

the risky venture, and to show that diversification among risky ventures 

increases this utility. 

Bernoulli's step 2 may be a reasonable assumption as to utility4el5 

but is subject to so many qualifications and exceptions (it does not 

explain gambling, for example) that it has not been accepted as a suit- 

able basis for erecting the superstructure of steps 3 and 4. The 

valuation of risky ventures has been left to individual risk preference 

without any criterion as to what this preference is likely to be. For 

example, Marschak?© presents a hypothetical table in which an asset's 

marginal contribution is determined by adding together its contribution 

13 Bernoulli, pos cit», pp+ 24, 25, 28, 30, 

14 Cf. Alfred Marshall, Panaccomevuaeeraramce (8th ed.j New Yorks 
The Macmillan Co., 1990), p. 135. 11 sayst "In accordance with a 
suggestion made by Daniel Bernoulli, we may regard the satisfaction at 
a person derives from his income as Cre when he has enough to 
support life, and afterwards as increasing by equal amounts with every 
equal successive percentage that is added to "de incomes and vice versa 
for loss of income," 

15 See also L. J. Savage's comment quoted on page 59 of this 
dissertation. 

16 He Helen Makower bre sents ager Hag obo Prices and Marketing 
vq 

fadaieed Richard D. Irwin, 1982), Vol. V1, "So."
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to "luerativity" and safety measured in "Lucrativity units" determined 

by the safety preference rate for a single individual, These individual 

safety preference rates, in turn, aro a matter of taste and must be 

accepted as given. Friedman and Savage!” build on Bernoulli's step 1 

but modify step 2 by developing 4 doubly inflected curve comparing 

utility with inpme, 

Markowitz starts off his analysis of portfolio selection by 

pointing out that "the portfolio with the maximum expected return is 

not necessarily the one with the minimum variance. There is a rate at 

which the investor can gain expected return by taking on variance, or 

reduce variance by giving up expected return,18 He assumes that the 

investor considers, or should consider, expected return a desirable thing 

and variance of return an undesirable thing, and he defines an efficient 

portfolio as a portfolio with minimum variance for a given expected return 

or more and a maximum expected return for a given variance or less, He 

develops a method for selecting efficient portfolios from the set of all 

possible portfolios but does not give any basis for choice among the ef= 

ficient portfolios except the individual's safety preference rate. This 

dissertation sets forth an objective basis for choosing among efficient 

portfolios without the necessity of depending on individual risk 

preferences. 

17 Milton Friedman and L. J. Savage, "The Utility Analysis of 
Choices Involving Risk," Journal of Political Economy, ’ 
279304, 

8 Harry Markowitz, "Portfolio Selection,” Journal of Finance, 
Vil (ares 1952), page 7%.



The Need fox an Qulective Gritexion 

The difficulty of evaluating subjective risk preference and the 

need of an objective criterion is well indicated in the following 

quotation from a recent journal article dealing with selection of an 

Optimum combination of crops for a farmers 

The introduction of risk into an economic model of a firm 
and consequently into a linear programming model of a firm has 
been accomplished by describing risky outcomes as probability 
distributions and choosing from among alternate possible dis- 
tributions by the expected utility hypothesis, 

Two basic weaknesses have appeared in applying this method 
of incorporating risk. One difficulty arises in choosing a 
value for the constant ao, which in this case is some sort of 
risk aversion indicator, and 1s, to some degree, governed by 
the personal characteristics of the entrepreneur. A Large value 
for a indicates that the entrepreneur places great weight on 
the variance as a deciding factor and is consequently highly 
averse to risk, and vice versa. The estimation of such a con- 
stant to be used in a model is thus quite important; the wrong 
choice will invalidate any results obtained. The derivation 
of this constant is a delicate task beyond the scope of this 

paper. 19 

A major advantage of the criterion for choice among risky ventures 

developed in this dissertation is that it avoids the necessity for direct 

subjective determination of such factors as Marschak's "lucrativity 

units" or Freund's "risk aversion indicator." As Roy remarks: "A man 

who seeks advice about his actions will not be grateful for the sug- 

gestion that he maximize expected utility."9 

we? Rudolph J. Freund, "The Introduction of Risk into a Programming 
Model," Econometrica, 24 (July 1956), 253-263. 

20 As D. Roy, "Safety First and the Holding of Assets," 
ed Aaah 433. Quoted in Cleon Harrell, "Formal Interrelationships 

n Economics and Probability Theory," 
caatinn November 17, 1956.
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The criteria for choice between risk and safety in portfolio man- 

agement can be illustrated by assuning that a geabler has the choice 

of holding his money in cash or of betting on a geabling device which, 

with equal probability, will return AR = 8 on loss occasions and R¢ 5 

on gain occasions with an expected return of R por dollar ployed, with 

R greater than 1 and R= less than 1, The gaabler's portfolio at any 

tine consists of the proportion of his wealth held in cash plus the 

proportion bet on the gambling device. The expected returns and standard 

deviations of returns of all portfolios divided between the safe asset 

(1,06, cash) and tho risk asset (i,e., bets on the gambling device) are 

shown in Figure 201. 

Figure 2.1 

Expected Portfolio Return (A) and Standard Deviation (&) of 
Portfolio Returns Distributed by Proportion Bet on a 

Gambling Device Equally Probably Paying Re s 
or R= 6 per $1,00 Bet 

Proportion Bet 

When the gambler bets 0 proportion of his wealth, the expected 

return from his portfolio ie 1.0 and the standard deviation of returns
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is 0, As the proportion bet increases both the expected portfolio return 

and the standard deviation of returns increase. When he hets all of 

his wealth, the expected portfolio return is R and the expected standard 

deviation of returns is 8. As long as R is greater than 1.0 and R= 5 

is less than 1.0, all possible combinations of the two assets in this 

range are efficient portfolios in that any one of the combinations 

gives the maximum possible expected return for some standard deviation 

or variance and the minimum standard deviation or variance for some 

expected return. Neither Marschak, nor Friedman and Savage, nor 

Markowitz would be able to help the gambler in choosing among these 

effficient portfolios beyond telling him that he should gamble heavily 

if he has a high preference for risk, and should be very conservative 

in his betting if he has a high risk aversion factor. In this disser- 

tation an attempt is made to give the gambler (and wealth-holders in 

general) an objective criterion for making this choice. 

The waalth-holder whe adopts the maximum chance subgoal can 

reach this subgoal by using the geometric mean, G, of the probability 

distribution of returns as his eriterion and choose that portfolio which 

has the probability distribution of returns with the highest G, Bernoulli 

also has shown that choice of that portfolio with the highest G is a 

rational choice ifs (1) maximization of the mathematical expectation 

of the utilities of the payouts 1s @ rational subgoals and (2) if the 

utility of a small gain or loss varies Inversely with the amount of wealth 

already possessed, 

Most economists recognize that the mathematical expectation and 

the variance of the probability distribution of returns, and the chance
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of ruin, are important to the wealth-holder=-but thay leave it to 

individual risk preference to balance one factor against the others, 

1G depends on both the mathematical expectation and the variance of the 

probability distribution of returns, and when G is maximized there is 

mo chance of ruin if the wealth-holder's probability beliefs are 

Gorrect. Consequently, maximization of G falls within the generally 

accepted range of rational behavior. This is not to say that G is 

ithe only rational criterion for portfolio managements it is to say, 

nowever, that it is a useful criterion when dealing with a broad range 

Df problems. When the portfolio with maximum G is not chosen, there 

must be justification for choosing to hold a portfolio which has little 

chance of being the most valuable portfolio in the long run.



APPENDIX TO GHAPTER III 

(From Econogetrica, 22, January 1954, pp. 23=24) 

Excerpt from 

EXPOSITION OF A NEW THEORY ON THE 

MEASUREMENT OF RISK? 

By Daniel Bernoulli 

le ver since mathematicians first seqan to study the measure-— 
ment of risk there has bean general agreement on the following propo- 
sitions | 

gain by i 

heorvs the consideration of cases which are al) of the same 
ty is insisted upon. If this rule be accepted, what remains 

to be done within the framework of this theory amounts to the enumeration 
of all alternatives, their breakdown into equi-probable cases and, 
finally, their insertion into corresponding classifications. 

2. Proper examination of the numerous demonstrations of this 
proposition that have come forth indicates that they all rest upon one 

hypothesis: since there jg ne reason to assume that of two persons 

No Ghorertaristis of Fy persons Thensalven auenk t4 equal in value, 
be taken inte considerations only those matters should be weighed 
carefully that pertain to the terms of the risk. The relevant finding 
might then be made by the highest judges established by hi 
authority, But really there is here no need for judgment but of 
deliberation, lees, rules would be set up whereby anyone could esti- 
mate his prospects from any risky undertaking in light of one's specific 

financial circumstances. 

1 Translated from Latin into English by Dr. Louise Sommer, The 
American University, Washington, De Ce, from "Specimen Theorlae Novae 
de Mensura oi 
Petropolitanae, Tomus V (Papers of the Imperial Academy of Sciences 
in Petersburg, Vol. ¥), 1738, pp» 175-192.
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3. To make this clear it is perhaps advisable to consider the 
following examples Somehow a very poor fellow obtains a lottery ticket 

that will yield with equal probability either nothing or twenty 
ducats. Will this man evaluate his chance of winning at ten thousand 

ducats? Would he not be ill-advised to sell this lottery ticket for 
nine thousand ducats? To me it seems that the answer is in the negative. 
On the other hand I am inclined to believe that a rich man would be ill- 
advised to refuse to buy the lottery ticket for nine thousand ducats. 
If I am not wrong then it seems clear that all men cannot use the same 
rule to evaluate the gamble. The rule established in 1. must, therefore, 
be discarded. But anyone who considers the problem with perspicacity 
and interest will ascertain that the concept of value which we have 
used in this rule may be defined in a way which renders the entire 
procedure universally acceptable without reservation. To do this the 
determination of the value of an item must not ba based on its 
but rather on the utility it yields. The price of the item is dependent 
only on the thing itself and is equal for everyone; the utility, 
however, is dependent on the particular circumstances of the person 
meking the estimate. Thus there is no doubt that a gain of one thousand 

ducats is more significant to a pauper than to a rich man though both 
gain the same amount. 

4. The discussion has now been developed te a point where 
anyone may proceed with the investigation by the mere paraphrasing of 
one and the same principle, However, since the hypothesis is entirely 
new, it may nevertheless require some elucidation. I have, therefore, 

decided to explain by example what I have explored. Meanwhile, let us 
use this as a fundamental rule: 

eA DO : “Ht i = vy sats SHBG = =i% 



CHAPTER IV 

METHODS OF ALLOCATING PORTFOLIOS SO AS TO MAXIMIZE 

THE GEOMETRIC MEAN PORTFOLIO RETURN 

- In previous chapters reason has been given for accepting GS, 

the geometric mean of the probability distribution of portfolio 

returns, as a rational criterion for choosing among portfolios. This 

measure may be used in choosing among all possible portfolies on the 

basis of probability beliefs about returns from these portfolios. The 

aim will then be to select the portfolio with the highest G. This 

chapter deals with the subject of how to do so, insofar as the problom 

is one of allocation of the portfoliec value between a group of risk 

assets, on the one hand, and a group of safe assets, on the other. 

In simplest form, the central problem of the first three chapters 

of this study has been the choice between portfolio A and portfolio B 

when faced with a payout matrix showing the probability distributions 

of returns from the two portfolios. Such a matrix is shown in Table dele 

Table 4el 

Payout Matrix of Returns 

Gain Year Loss Year Criteria 
A G 

Portfolio A 1.365 0825 1.095 1.061 

Portfolio B 1.260 «900 1.08 1.065 

Probability of 
Occurrence 05 05
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It has been shown that choice of that portfolio with maximum G 

(ises, portfolio B in Table 41) will maximize the probability (P*) of 

having a larger return than can be obtained from any other specified 

portfolio at the end of n years, n being large. For this reason G is 

accepted as a rational criterion for choosing among portfolios. 

Portfolic A and portfolio B in Table 4.1 may consist of two 

groups of securities allocated in different proportions. For example, 

portfolio A may consist of a portfolio allocated 90 percent to common 

stocks and 10 percent to bonds, and portfolio B may consist of a porte 

folio allocated 60 percent to the same stocks and 40 percent to bonds 

(see Table 4.3). Changes in allocation between risk assets and safe 

sass affect both the arithmetic mean and the geometric mean of the 

probability distribution of portfolio returns. There is some one 

allocation which will maximize G, 

The present chapter is devoted to the practical problem of how 

to allocate a portfolio between a safe asset (typically a group of high- 

grade bonds or cash) and a risk asset (typically 3 group of stocks) in 

such @ manner ag to maximize G, The portfolio manager is faced with s 

payout matrix showing the probability distributions of returns from 

stock and bonds and wishes to divide his portfolio between these two 

types of assets in such manner as to maximize the probability of getting 

a higher return than can be obtained from any other specified allocation 

between the two assets. Such a matrix is shown in Table 4.2. 

The portfolio manager forms probability beliefs about returns 

from stock, such as those reflected in the payout matrix in Table 402, 

and wishes to allocate his portfolio between bonds and stock on the basis
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of his beliefs. Bond-stock allocations which maximize G probabiy will 

change during the course of a business cycle but this change will be 

brought about by changes in payout matrices--not by changes in proper 

maximizing action, given the payout matrices. The portfolio manager's 

opinion as to the general level of the stock market and the stage of 

the business cycle presumably will influence his probability beliefs 

about returns from stock and bonds. Consequently the probability 

distributions of psyouts from stock and bonds, such as is shown in 

Table 4.2, presumably will change from year to year. However, for 

Table ed 

Payout Matrix of Returns 

Occurrence 

Gain Yoar Loss Year Criteria 
A G6 

Stock 1.40 «80 1,10 1,058 

Bonds 1.05 1.05 1.05 1,05 

Probability of 
Occurrence 5 05 

any given payout matrix there is only one allocation which maximizes 

G. 

Allocation When Returns are Binomially Distributed 
with p= 

In this section the problem of proper allocation of a portfolio 

between a risk asset and a safe asset, in gambling and in portfolio 

management, will be stated for the simplest possible distribution of
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returns from the risk asset (i.e., the binomial distribution with the 

occurrence of each of two possible returns equally probable). 

Let a gambler be given the option to bet any amount he wishes on 

each of n tosses of @ fair coin with a return of $3.60 per $1.00 bet 

if heads occur and a return of 0 if tails occur. His problem is to 

maximize his wealth at the end of n tosses. It has already been 

established that choice of that course of action which produces the 

highest G is a rational choice under these conditions. It is now 

necessary to determine the proper procedure to maximize G,. 

Let q be the proportion of the total wealth bet on each toes of 

the coine Then, if heads occur, the return on the proportion bet is 

3.00 and on the proportion held in cash (Lees, 1 — q) 48 1.00, s0 that 

the total return is qx3+1x(l-q) =2q+1. If tails occur, 

the return is L - qe In Table 4.3 these returns are stated in the form 

of a payout matrix. 

Table 43 

Payout Matrix of Returns 

Strategy Occurrence Criteria 
Heads Tails A + 

Bet 1.0 of wealth 3-00 0 1.50 0 

Bet q of wealth 1 + 2q l-q L+o/2 = (1 + 2q){1-4) 

Bet 0 of wealth 1.00 1.00 1,00 1.00 

Probability of 
Oceurrence 5 05
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The geometric mean of the probability distribution of returns, 

G, is maximized when @*, which equals (1 + 2q)(1-q) is maximized. 

A necessary condition for this is for dG/dq=0. The value of q which 

satisfies this condition, called Wax 18 «25. The G from betting 

25 percent of wealth on each toss is 1.061. This is the return when 

heads occur in exactly half of the tosses, and is the highest possible 

return for this combination of heads and tails for the gambler who 

bets the same proportion of his wealth on each toss. The relationship 

between q and G is illustrated in Table 4.4, which shows the payout 

matrix of returns from betting various proportions of total wealth on 

each toss in this game. 

Table 404 

Payout Matrix of Returns 

Proportion of Occurrence Griteria 
Total Wealth Bet Heads Tails A G 

1.60 3.00 1.50 0 
. 2.80 _ 0d 145 0529 
080 2.60 +20 1.45 e721 
70 2.40 30 1.35 0849 
60 2,20 40 1.30 0938 

«50 2000 50 1.25 1,000 
040 1.80 60 1.20 1.039 
+30 1.60 270 1.15 1,058 
025 1.50 2715 1.125 1.061 
20 1.40 080 1.10 
lO 1.20 «90 1.05 1.039 
00 1.00 1.90 1.00 1.000 

Probability of 
Occurrence Py) 05
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In Table 4.5 a payout matrix, such as that in Table 4.3, is stated 

in terms of returns from speculative stocks and high-grade bonds in 

gain and loss years. 

Table 4.5 

Payout Matrix of Returns 

Portfolio Occurrence Criteria 
Gain Year Loss Year A G 

Ail stock 1.40 #80 1.10 1.058 

60 percent stock 1.26 290 1.08 1.065 

All bond 1.05 1.05 1.05 1,050 

Probability of 
Occurrence 5 5 

Table 4.5 shows the probability of eccurrence and the returns 

from portfolios in gain years and loss years. When a portfolio manager 

believes that gain years and loss years are equally probable and that 

stock will return 1.40 in a gain year and .80 in a loss year, as 

against 1.05 from bonds in both years, he can maximize the geometric 

mean of the probability distribution of returns by placing 60 percent 

of his portfolio in stock at the beginning of each yeare In the long 

run, such an allocation between stock and bonds is almost certain to 

result in a higher return than can be obtained by any different 

allocation.
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Allocation With Any Distribution of Returns 

The general problem of allocating a portfolio between a risk asset 

and a safe asset in order to maximize G may be stated in terms of the 

payout matrix of returns shown in Table 4.6. 

Table 4.6 

Payout Matrix of Returns 

Portfolio Relevant Future Occurrences 
9p eee9 j 9 tees A $ 

All stock Ri» eeen Ry» eeey R, R G 

e ° am e e 3° 

: : : : : 

q stock b bonds QR, # DC, veey GRy #DCy vee, GR, FDC GR*DC Gy 
: : : : : : 

All bonds Cc, ees Gy tees Cc Cc Cc 

Probability of 
Occurrence Pir eves Pgs vvey Py 

In Table 406, q represents the proportion of the portfolio put 

in stock at the beginning of each year and b represents the proportion 

put in bonds, with p+b=1,. The returns from an all-stock portfolio 

(iee., q = 1.0) are xepresented by the probability distribution of 

returns from stock, Rys with j = 1, soe, ke This distribution has an 

arithmetic mean of R and a geometric mean of G,, where G, is the G when 

1.0 of the portfolio is allocated to stocke The certain return from 

an all bond portfolio is © The arithmetic mean return from a portfolio 

divided q in stock and b in bonds is qk * bC and the geometric mean



is é. The problem here being considered is to allocate the portfolio 

between bonds and stock in such a manner as to maximize G_. This is a 

simple maximizing problen which can be solved by stating G_ in ters of 

logs and differentiating with respect te q. Based on Table 4.6 it is 

apparent that 

log s, = py log (qh, +bC) + vont py (Ry +bC)+ vootp, Log (aR, + be) 

but b=legq se 

(hed) leg 4, - Pr logiC + @(R,-C)]} > roe? Py log [c+aik, =¢)] + see 

+ >, log(C+ qiR, -¢)] . 

G, 1s maximized when the derivative of log G, with respect te q 

is 0, In another form, o7 4. when “* 4. and 

d log & 
sO That is, when 

Ry, <-C Rg, = C at 

(he2) Py Ta oe ty RES Te 

Equation (4.2) may be solved directly, or by trial and error, to 

obtain the proper propertion, Gast of the portfolio te place in stock at 

the beginning of each of the forthcoming n years in order to maximize Gy 

the geometric mean of the probability distribution of portfolio returns. 

Equation (4.1) may then be solved, using the given Snax? in order to find 

the maximum geometric average portfolio return (i,e., G_.) which can be 

obtained if the most likely combination of returns from stock oceurs. For 

example, if Ry = 0) Rg = 3.0, py = 5, pg = 45, and C = 1,0, equation (4.2) 

reduces to



S[1/(1 = Guay) + 5[2/(L + 2q, J] #0, 

from which Ga * +25. This is the Gass uged by the gambler faced with 

the payout matrix shown in Table 4,3. 

& and Gis Estimated from the Arithmetic Mean and 

Variance of Returns from the Risk Asset 

Equations (4.1) and (4.2) may be used to determine Gy the geometric 

mean of the probability distribution of portfolio returns, and Tax? the 

proportion of the portfolfo to allocate to risk assets in order to maximize 

Ge However, these equations involve the whole probability distribution 

of returns from the risk assets and consequently may be difficult to apply. 

In this section a method is developed for approximating G and aay based 

on the arithmetic mean and variance of returns from the risk asset. This 

method does not give good estimates of G and , ae in all cases. It does, 

however, fit a wide variety of distributions with reasonable accuracy, 

including typi¢al distributions of returns from stocks. 

Table 4.7 shows the payout matrix of returns from ea portfolio 

allocated between a safe asset giving a return of C and a risk asset which 

will return R + 5 in a gain year and R - 6 in @ Loss year with gain years 

and loss years equally probable. 

The first row of Table 4.7 shows the returns from a portfolio 

allocated entirely to the risk asset. The arithmetic mean of the proba- 

bility distribution of returns from the risk asset is R and the variance 

of this distribution is s? where n= 1. . The geometric mean is a function 

1 When n > 1, the variance is not exactly ¢*. However, when 6/f 1s 
tma}l s0 thet (e/R5? and higher powers of o/R may be neglected, 6” 18 2 
good estimate of the variance for all n's.



Table 4.7 

Payout Matrix of Returns 

Proportion in Future Occurrence Criteria 
Risk Asset Gain Year Loss Year A 

1.0 R46 R-5 R (R? - 92)*3 

q q(R+s) +b g(R-s)#bC GR +bC G, 

0 C c Cc Cc 

Probability of 
Occurrence 05 5 

of the arithmetic mean and 6*, That is 

G, = (R+ 8)" (R= 5)" 

= (Ra - s?)"? 

The second row shows corresponding figures for a portfolio allocated 

q in stock and b in bonds with q+b*#1. In this case 

Gi = [alk + 5) + bC][q(R = s) + bc] 

= (qh + bC + qs) (qk + bC = qs) 

(4.3) " = (qh + BC)? = (qs)? . 

Here, too, the geometric mean is a simple function of the arithmetic mean 

and 5”, 

6, 4 maximized (is@es S, #6.) when g* qi, + A condition 

for this is that the derivative of G with respect to q should equal zero. 

Differentiating equation (463) and collecting terms, it is apparent that 

this condition is satisfied when



(4.4) Spex * ST 

The geometric mean of the probability distribution of annual returns 

for n years is equal to the corresponding geometric mean for one year™ 

and the oe which maximizes G when n = 2 will maximize G for any period 

of years. Consequently equations (4.3) and (404) give exact values for 

G and q.. for any period in terms of Cy Ry and o%, when the rick asset 

returns AR + ¢ in gain years and R ~ s in loss years, with gain years and 

loss years equally probable, C is the return from the safe asset and R 

is the arithmetic mean of the probability distribution of the returns from 

the risk asset. When n=1, s* is the variance of this distribution. 

Equations corresponding in form to (4,3) and (4.4) also give good 

estimates for G and aos for many other distributions of returns, This 

is true in all cases where the square of the geometric mean of a sat of 

returns 4¢ approximately equal to the square of the arithmetic mean less 

the variance. That is, where 

(4e5) G* wGt# = A? - 57, 

with G being the estimated geometric iabetic? Table 4.8, which shows the 

relationship of G' to G for three sets of returns, indicates that this 

approximation may be valid for a wide variety of distributions. 

2 See the paragraph following Table 2.5 on page 36. 

3 This approximation holds if deviations (x) are small compared 
with the arithmetic mean of the daeinetion $0 that (x/A)3 and higher 
powers of x/A may be neglected. See George U. Yule and M. Ge Kendall, 
an Ertreduetien to tbe Ly of Statistics (14th ed.3 New York 

9 Pe



Table 4.8 

Comparison of Estimated with Actual Geometric Means 
of Sets of Returns 

My. Ry Frequency Log 10 Ry £ log 10 R, #R i 

(a) Set of 252 Returns Distributed Normally into Seven Classes 

Sun 

Average 

2398 oh oa 

+699 9.6 7.0 
2875 Dae4, 4507 

1.000 100.0 100.0 

1,097 66.9 76.3 
1.176 16.5 21.0 
1, 243 1.2 Zi: «8 

BiB.2 252.0 
L=1.985 A=1.0 

A? =1.0 

(b) Set of 252 Returns with Logs Distributed Normally into Seven Classes 

Sum 

Average 

(¢) Set of 252 Returns with Square Roots Distributed Normally into Seven Classes 

316 

772 
1.000 
1,228 
1.456 
1.684 

Sum 

Average 

A 

®) 1,000 

b) 1,062 
(c 1,050 

,100 

1,000 
1.502 
2.120 
2.840 

2550 -) ays As) 

700 9.8 7.0 305 
0850 51. 43-4 Rd. 

1.000 100.0 100.0 100.0 
1,150 7.1 86,0 12le2 
1.300 18.2 28.0 56.0 
1.450 ly 2.8 CP 

L=,00 A =1.062 X* = 1,267 
A® = 1,125 

000 .0 P| .0 
AT 606 ps 12 
775 47-3 36.3 21.6 

1.000 100.0 100.0 100.0 
1,177 70.8 91.6 137.5 
8 18.6 pen — 

Yoh £5 Be Fi 
mt we DY 

L=1.971 A= 1,050 x* = 1,314 
A# =1,102 

Statistics of Distribution of Returns 

s a® 3* gta Gt 

625 1,000 0063 +937 2968 
-38 1 +125 ‘ 142 983 992 

46 1,102 eal2 +890 943 

G 

966 
1,000 
935
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Table 4.8 shows three sets of 252 returns distributed into 

seven classes in various ways. The returns » Ry» in set (a) range from 

225 to 1.75 and are distributed approximately normally into seven classes 

with a mean of 1.00 and a standard deviation of .25. The returns in 

set (b) range from 35 to 1,82 and are distributed so that the logs of 

lo a4 are distributed normally with a meen of 1.00 and a standard devi- 

ation of .15. The returns for set (¢) range from .10 to 2,84 and are 

distributed so that the square roots of the returns are distributed 

“normally with a mean of 1,00 and a standard deviation of .288, The table 

shows the arithmetic mean of the logs of returns, &, the arithmetic mean 

return, A, and the arithmetic mean square return, X*, for each set of 

returns. These data, in turn, were used to calculate the statistics of 

the distributions shown at the bottom of the table with G = antilog L , 

s* =X? = At, and G4 = 4? ~ 98, 

Tt is apparent that the arithmetic mean and the variance form 

a good basis for estimating the geometric mean for the sets of returns in 

Table 4.8, In set (a), the geometric mean differs from the arithmetic 

mean by -034, yet the estimated geometric mean, G', is only .002 greater 

than G. In set (b), the geometric mean is .061 less than the arithmetic 

mean, yet G' is only .008 less than G. In set (c) the difference between 

A and G is very large, being .116, yet G' is only .008 greater than G. 

This evidence supports the conclusion that equation (4.5) gives a good 

estimate of G for distributions of returns which fall within the tabled 

4 Logs of 4OR, are tabled rather than logs of Ry as a matter 

of convenience. Log Rys of cours®s equals log lok, #10.
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range of dispersion and regularity. It seems reasonable to believe that 

many probability distributions of returns from stock fall within this range. 

Ex post distributions of stock returns are used later in this paper to 

support this conclusion.” 

Let a portfolio be divided q in stock and (1 - q) in bonds. The 

stock has a probability distribution of returns with an arithmetic mean of 

R and a variance of s*, the bonds have a sure return of C, The arithmetic 

mean portfolio return, A, is equal to gh + (l= aq)C. The variance is 

(qs)* . Equation (4,5) becomes 

(426) Gece =i + (L + q)G = (qs)* . 

a, is approximately maximized when , is maximized, that is, when 

(4.7) es x Gaax = x a ce ‘ 

Equation (4.7) corresponds to equation (4.4) except that s* now is 

the variance of the distribution of returns not only when n = 1 but for 

ali values of ne ana. 7 

Obviously equations (4.6),do not apply when any one return is 0 

proportion of R- s, For examples consider the wealth- holder who is given 

the opportunity to bet on a gambling device which will return 1.49 in § 

out of 6 possible occurrences and 0 in the other occurrence. If equation 

(426) gave a good estimate umer these conditions, a wealth-holder who bet 

all of his wealth on each roll of the dice would be estimated to receive 

§ See page //?.



a longerun geometric average return of approximately 1.08 . In fact, 

however, he would lose all of his wealth at the first unfavorable occure 

rence so that the long-run geometric average return is zero. Equation 

(401) must be used to calculate G with this distribution of returns, 

and equation (4.2) must be used to calculate q,..« 

A portfolio manager may form probability beliefs about the 

variance and arithmetic mean of the probability distribution of returns 

and wish to allocate his portfolio on the basis of these beliefs. He can 

use equation (4.7) to derive an estimate of the proportion of the port- 

folio to put into stock et the beginning of each of the next n yearss 

nt being Large, te maximize portfolio returns if the mean and variance 

of the forthcoming n returns actually do agree with the mean and the 

variance believed most likely to cecur. In this manner he will maximize 

his chance of obtaining a higher portfolio return than can be obtained 

by any other plan if his probability beliefs are correct and provided 

that. the underlying distribution of returns from stock is not badly 

skewed, 

Effects of Variance on Geometric Mean Return 

The effects of variance on estimated geometric mean returns are 

shown in Table 4.9. This table is based entirely on hypothetical data. 

It shows the relationship between the arithmetic means and variances of 

sets of returns from stock on the one hands and, on the other hand, the 

estimated geometric mean returns G', from portfolies allocated either in 

whole or in part to that stock. The table shows an array of estimated 

geometric mean portfolio returns based on sets of returns from stock with 

hypothetical combinations of sample means and variances. The sample
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Table 4.9 

Arrays of Estimated Geometric Mean Portfolio Returns 

The return from bonds, Cy, is 1.04 per annum while the returns from stock 

have a semple arithmetic mean of Ry with R= 1eQde seep Led0, and a sample 
variance of 8*, with s* = oh, cces 000 

Ae All Stock Portfolio 

q=1.0 

S\R 1.04 1.05 1.06 1.07 1.08 1.09 1.10 

+24, £918 928 1940 951 -962 974 0985 
+20 1939 .950 6961 .972 -983 1994 14005 
‘ 9 .992 003 «= «1,014 0285 
«12 198) 99. «1.002 «= ONR—id2OZB-Ss«d124408Ds1 OLA, 
008 1.001 1,011 1,922 1.032 1,042 1.052 1.063 
004, ' 1,02) 1.031 1.041 1,052 1.061 1,071 1.082 
200 i. 1.0 1,060 1,070 1.080 1. 1.100 

Ba Diversified Portfolio 

q = 05 at beginning of each year 

C= 1.04 

QR 
agB\_ 16080 1604510050 14055 1060 16065 14070 

206 1,011 1.016 1,022 1.026 1.032 1.036 1.042 
205 1,016 1,021 1,026 1.032 1.036 1,042 1.046 
004 1,023 1.026 1,031 1.036 1.041 1.046 1-051 
03 1.026 1,032 1.036 1,041 1.046 1.051 1.056 
202 1,032 1.036 1,049 1,046 1.051 1,056 1,061 
201 1.036 1.041 1.045 1.051 1.056 hore 1.065 
00 1 5 

$ FR i. 1.0 1.06 1.07 1.08 i, 1.10 

224 +093 2088 081 2074 « 2062 2057 

® 0077 +065 0059 2053 0047 e 
+16 061 2055 049 044 2038 2032 2026 
012 0045 2040 e034 0029 2023 2018 e012
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means range from 1,04 to 1.10 and the semple variances range from .24 to 0, 

Table 4.9A shows the estimated geometric mean returns for a portfolio allocated 

entirely to stock. For example, the upper left hand corner shows the G! 

for n years for a portfolio allocated entirely to stock which has a set 

of yearly returns during the n years with an arithmetic mean of 1,04 and 

a variance of 24. Using equation (4.7) this geometric mean is estimated 

to be 

GIR = (R? g*)* = (1,04? = 24)09 = 918 , 

Table 4098 shows the geometric mean returns for a portfolio 

allocated at the beginning of each year half to bonds returning 1.04 and 

half to stock with the same returns as in Ae For example, the upper left 

corner of Table B shows the G' from a portfolio divided half in bonds and 

half in stock having a set of returns with an arithmetic mean of 1.04 and 

a variance of 24. The variance of a set of portfolio returns from a 

portfolio allocated .5 to a safe asset end 5 to stock with a variance of 

o24, is .06 and the estimated geometric mean return from the portfolio is 

1.010. The estimated geometric mean portfolio return, when stock returns 

have a sample mean of 1.04 and a sample variance of .24, thus is .¥e when 

the portfolio is allocated entirely to stock and 1.01 when the portfolio 

is allocated .5 to bonds and ,5 to stock. This difference is .09 in favor 

of the diversified portfolio, Corresponding differences are tabulated for 

other sample means and variances in the last section of Table 4.9 « 

Table 4e9 shows that, in spite of the fact that the bond return is 

no Larger than the lowest az itnadtis,/stoek return, the estimated geometric 

mean return over n years from the diversified portfolio is larger than the
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estimated mean return from the allestock portfolio for many of the combine= 

tions of stock returns and variances. The table also indicates that, if 

the arithmetic mean return from stock is sufficiently largey geometric 

mean returns from an all stock portfolio are larger than the geometric 

mean returns from a half stock-half bond portfolio.” For example, when 

bonds return 1.04 and stock has a sample mean return of 1.08, the estimated 

geometric mean return from an all stock portfolio is larger than the G! 

from an equally apportioned portfolio even when the variance of stock 

returns is as large as .04 (that is, when the standard deviation is as 

large a$ +2). Table 4.9 indicates that the G! from the all stock porte 

folio is 1,061 under these conditions while the G! from the half stoek 

portfolio is only 1.056, 

It is indicated in Table 4.9 that the we,jth=holder who feels 

confident that stock returns in the forthcoming n years will have an 

arithmetic average of between 1.04 and 1.09 and will have a variance of 

06 or over can feel at least equally confident that a portfolio divided 

half in stock and half in bonds will give a better return than a portfolio 

6 The table shows only two portfolios: the all stock portfolio 
(i.ee, qs 1,0) and the half stockehalf bond portfolio (iee., qs +5) 

The allocations to stock which actually would give the highest geometric 
mean return under the specified conditions (iss, a might fall be= 

tween «5 and 1.0 or might be less than .5 or greater than 1.0. In 
most Cases where the all stock portfolio gives a higher geometric mean 
return than the half stock portfolio, returns on the equity in the port- 
folio would be maximized by borrowing on margin to buy stock (ies, 
Guay ? tds See page /o4.



placed entirely in stocks’ then the wealthsholder knows the mean and 

variance of the distribution of all possible stock returns (as in honest 

games of chance) he also knows that the forthcoming set of returns may 

have a geometric mean higher than the most likely geometric mean and, 

hence, that the allestock portfolio may give a higher return than the 

diversified portfolio, This may happen either because the erithmetic 

mean of the forthcoming set of returns is higher than the most likely 

arithmetic mean or the variance of the set of returns is lower than the 

most likely variance, or both. Such a wealth-holder ean estimate the 

proportion of occasions on which either event may occur. When the wealth- 

holder is not certain of the mean and variance of the distribution of all 

possible risk asset returns, he will be unable to state after the unexpected 

occurrence whether the results cane about by chance or because his 

probability beliefs were wrong. 

Chapter Suma 

This chapter has dealt with the problem of discovering what 

proportion of a portfolio to allocate to a risk asset in order to maximize 

G, the geometric mean of the probability distribution of portfolio returns. 

The proportion of the portfolio to place dn the risk asset at the beginning 

of each year in order to maximize G is cabled Gaax" In terms of the whole 

probability distribution of returns from the risk asset, & and Giax oF? 

7 A waalth=holder with such beliefs would be less certain about 
the advantages of holding a halfestock portfolio as against the alvantages 
of holding an allebond portfolio. For a number of states of nature within 
his confidence range it would be better to hold only bonds yielding .04 .



determined by equations (4.1) and (4.2), that iss 

(42) Log G,* Pt Log[ + q(Ry = C) + vee + Py leg[C + a(R, - C) + wes 

+p, log[ + q(R, = C)] 

Ry <6 Re 
(4.2) Py Cet Ry =O, tee * Py The eee 

=-C 

Keren * ‘ kC+ R. C)qaax 

These equations involve the whole probability distribution of 

returns and, consequently, are often difficult to solve except, possibly, 

by trial and error. It is possible, however, to develop equations which 

give good estimates of G and Fe for many probability distributions of 

returns from the risk asset? These equations depend on the arithmetic 

mean, Ry and variance, s*, of the distribution of returns from the risk 

asset and are as follows: 

(4.6) Ge s cr = qh + (1 = q)C = (qs)* 

R - cc (407) chan © hoe FORE 

8 The problem of forming probability beliefs about returns from 
portfolios based on probability beliefs sbout individual stocks also may 
be simplified if it can be approached by means of standard returns in 
gain years and loss years. The standard return in a gain year is (R + s) 
and the standard return in a loss year is (R = s)» with gain years and 
loss years equally probable. This problem is not part of the subject 
matter of this dissertation. 
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In the last section of the chapter a hypothetical numerical exemple 

is worked out to show the effects of variance on the estimated geometric 

mean returns from portfolios either entirely or half allocated to stock. 

This illustration is abstract but does demonstrate clearly that forming 

proper implicit or explicit beliefs as to variance is an essential part 

in rational portfolio allocation,



CHAPTER V 

DEFINITIONS AND APPLICATIONS 

In previous chapters the subgoals, criteria : and methods of 

rational portfolio management have been illustrated by the use of 

hypothetical payout matricese In the first part of this chapter, an 

attempt will be made to explore some of the implicit and explicit 

assumptions underlying the payout matrices. Later in the chapter, 

SX post returns from stock and bonds in two reference periods will 

be used to show the hypothetical results of maximum chance portfollo 

allocation, 

Both portfolio management and gambling often involve 

(1) returns which occur in series over times (2) some reinvestment 

of returns so that a series of gains and losses is compoundeds (3) some 

risk which cannot be eliminated by diversification; (4) repeated ex- 

posure to approximately the same risks time after times (5) willingness 

and ability of the portfolio manager to take proper maximizing action} 

and (6) other restrictions, Hach of these assumptions will be dis- 

cussed in turn. 

Returns from Stocks and Bonds Defined 

Returns from stock and bonds occur in series over time. ‘The 

exact determination of these returns for any one investment period is 

the subject of this section.
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Both stocks and bonds are held in anticipation of a series of 

money payments to the owner over times The series of payments for a 

bond held to maturity consists of the annual or semi-annual interest 

payments plus the principal amount at maturity. With high-grade bonds 

actual payment of the promised amounts is considerad highly probable 

(hence the "high grade" rating) and the estimated yleld to maturity 

¢losely approaches the promised yield to maturity. When the bend is 

sold before maturity, the series of payments is the interest receipts 

plus the estimated sales price, The estimated yield to planned sales 

date may differ widely from the indicated maturity yield. The estimated 

return (yield plus one) for the long-term bond held for one year is the 

interest receipts during the year plus estimated sales price at the 

end of the year per dollar of cost at the beginning of the year. 

Stocks are held in anticipation of a series of dividend payments 

plus sales price at the end of the holding period. Both the future sales 

price and the future dividend receipts have to be estimated, fhe 

relative importance of the two estimates depends on the length of the 

planned holding peried. Stocks may be thought of as longeterm invest= 

ments and be valued exclusively on the basis of anticipated dividend 

receipts,- or, on the other hand, anticipated price changes may receive 

1 John Burr Williams, (Cambridge 
Harvard University Press, 1938), On page - Williams defines invest= 
ment value as "the present worth of the future dividends in the case 
of a stock, or of the future coupons and principal in the case of a 
bond." He gives elaborate formulas for estimating the present value 
of expected dividends from "stocks with growth completed," "stocks with 
growth expected," as well as from stocks with other time-shapes of 
expected dividends.
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a Willdans? divides stock buyers into investorsand major consideration. 

speculators depending on whether they give primary attention to future 

dividends or future market price changes. However, the wealth-holder 

who Looks for Long-term growth in dividends, for example, also tends to 

look for market price appreciation, and the speculator who is concerned 

with price changes may well base his anticipations as to prices on 

anticipated earnings and dividends. Consequently, the rational "specu= 

lator," interested in capital growth, and the rational "investor" 

interested in dividends, may adopt the same investment plan, 

It is agreed generally that the income of a firm for any given 

year consists of the gain in net worth for the year plus any withdrawals. 

The return for the year is the net worth at the end of the year plus 

withdrawals during the year per dollar of net worth at the beginning of 

the years This holds true whether or not the firm holds assets with a 

productive life of greater than one year. The difficulty in measuring 

the rate of return for any particular firm-year arises largely because 

@ the difficulty of determining the net worth at the beginning and at 

the end of the year, In like fashion, the ex post return from a stock 

for a specified year for both speculators and investors is the value at 

the end of the year plus dividend receipts per dollar value at the 

beginning of the year. The return from stock anticipated by a long-term 

investor, who thinks of stock as a permanent investment and disregards 

2 The "Dow Theory," for example, deals with price trends exclusively 
and disregards dividends. See Barzon's for the current comment of "The 
Dow Analyst.'* 

3 Williams, Qpe Sit., -pe ho
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market prices, may differ widely from the return from the same stock 

based on anticipated market prices at the beginning and end of the year 

merely because of the different bases used in calculating the returns. 

In this dissertation stock and bond holdings are not valued as 

permanent investments but are valued at going market prices at the 

beginning and end of each year. The ex post return tron stock for a 

year is defined as the dividends received during the year plus market 

price at the end of the year, per dollar invested at the beginning of 

the year. This definition of returns combines market gains and losses 

and dividend receipts. It permits exact calculation of ¢x% post returns 

for any year and permits comparison of these returns with other time 

series such as interest rates. In setting up a portfolie management 

model it is essential to have a clearly defined definition of returns. 

Returns are here considered a series of payouts occurring over time. The 

portfolio manager forms beliefs about the probability distribution of 

this series and wishes to allocate his portfolio on the basis of these 

beliefs. 

Reknvestnent of Rotums 

It is essential that there be some compounding of a series of 

gains and losses in order to justify the use of the geometric mean of the 

probability distribution of portfolio returns as a criterion. When there 

is no compounding, each gain and loss stands separately and total wealth 

after a series of such gains and losses is the sum, not the product, of 

the individual returns. Much gambling and practically all portfolio man- 

agement involves some compounding of a series of gains and losses. In
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order to state the ultimate objective in the simplest terms, it has been 

postulated that the wealth-holder wishes to maximize his wealth at the 

end of a long series of gains and losses assuming reinvestment of all 

returns.4 

This goal still is a valid objective even if all returns are not 

reinvested or if funds are added to the portfolio frdém time to time. Let 

ays with 4 = 1, wees ny be the actual portfolio return in the i*” forthe 

coming year~ let (1 ~ x,) be the proportion of the portfolio withdrawn so 

that x, 4¢ the proportion retaineds” and let W, be the portfolio value 

at the end of the ath year. Then the portfolio value at the end of one 

year is Wy, = Woagx, , that is, the wealth at the end of one year equals 

the initial wealth times the return times the proportion retained. Like= 

wise, the wealth eat the end of two years is 

Wa = Wyaexg = Woayxyxe » 

and the wealth at the end of n years is 

n 

(5.1) W, = Mo i, ax, . 

4 The goal is stated in terms of total wealth at one date rather 
than in terms of a set of payments at various future dates in order to 
avoid the problem of time discountinge See Armen A. Alchian, "The Rate 
of Interest, Fisher's Rate of Return over Cogts and Keynes! Internal Rate 
of Return," American Economic Review, 45 (December 1955)» 938-943, for a 
discussion o ses for comparing various time=shapes of anticipated 
returns. The following quotation may apply: "If the time paths of the net 
receipts of the compared options are identical (except for a proportionality 
factor) the Keynesian internal rate of return ranking will agree with 
Fisher's maximum wealth criterion. in other words, in order to have the 
Keynesian ranking agree with Fisher's, either we must assume exactly 
similar time paths, or we must assume the net receipts from the two altex- 
natives can be immediately and perpetually reinvested at their own internal 

rates of return." 

5 x, will be greater than 1 if funds are added to the portfolio,
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In words, the portfolio value at the end of n years is a product 

of the initial wealth, the returns for each of the n years, and the 

proportion of the portfolio value retained in each year. For any given 

set of xy, With 1 = 1, see, ny the portfolio value at the end of n years 

is maximized when a, is maximized. Rational spending policy--that is, 

the determination of x4--is not the subject matter of this dissertation, 

It is assumed that the proportion of the portfolio value withdrawn 

during the ath year, with i = 1, ..+, a, is held constant or is other= 

wise specified. When x; is specified, the portfolio manager who 

maximizes ay (or the nth root of a,, which is the forthcoming geometric 

mean portfolio return) also will maximize the portfolio value at the end 

of n years. 

In real-life portfolio management often the dividends and 

interest receipts are withdrawn and the remainder of the returns (lece, 

the capite] gains and losses) are reinvested, This corresponds to the 

situation above. The wealth<holder who plans to withdraw all cash divi- 

dends and interest, which he estimates to be a fixed proportion of his 

portfolio value so that x; = xz, with i = 1, 4.6, n, and who wishes to 

maximize the value of his portfolio at the end of a number of years is 

justified in adopting exactly the same investment plan as the wealth- 

holder who maximizes his wealth assuming reinvestment of all returnse 

Risk Which Cannot Be Eliminated 

In portfolio management the standard deviation of the probability 

distribution of portfolio returns often can be reduced, without lowering 

the mathematical expectation of the distribution, by proper diversification
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among the underlying securities. When returns from a group of stocks 

} "unels together, however, it is impossible to eliminate all risks. 

This dissertation attempts to deal with risks which cannot be eliminated 

by diversification--that is, it deals with choices among whole portfolios. 

i 

The problem of the allocation of portfolios among risk assets is 

not the subject matter here, Markowitz has outlined a basis for 

determining @ set of efficient portfolios®—that is, portfolios with 

minimum variance for a specified expected return and with maximum kex- 

pected return for a specified variance--on the basis of the expected 

returns, the variances, and the covariances of the available risk assets. 

Equation (4.4) may be used to choose the maximum chance portfolio from 

among these efficient portfolios. Figure 5.i(a) is a scatter diagram 

with the dots representing the expected returns, Ay, with 1 = 1, eos, My 

and standard deviation, s;, of all possible portfolios. The line with a 

positive slope marking the lower boundary of this set of dots represents 

the expected returns and standard deviations of returns from the efficient 

portfolios, The expected returns and standard deviations of returns of 

the efficient sets necessarily fall on a line (but not necessarily a 

straight line) because for any one specified expected return, A, there is 

only one minimum variance, *, and correspondingly, for any one specified 

variance there is only one maximum expected return, Figure 5.1(b) shows 

the estimated geometric mean returns, G', and expected returns from the 

6 Harry Markowitz, "Portfolio Selection,” Journa) of Finance, VII 
(March 1952), 77=91.
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efficient portfolios shown on Figure 5el(a). G* is derived from 

equation (4.5) with of? = rt - of « The maximum chance portfolio is 

the efficient portfolio with the highest G!, 

Recurrent Riske 

In order to illustrate the problem of recurrent risks the port- 

folio manager will be compared in this section with a professional gambler 

who is betting on a simple game such as dice. The gambler knows the odds 

and believes that he will be able to take the same type of risk time after 

time. In like fashion, it is postulated that the portfolio manager forms 

probability beliefs about forthcoming returns from risk assets. Such 

probability beliefs may be stated impbicitly or explicitly in the form of 

a payout matrix of returns. It is not necessary to separate probability 

ag a measure of relative frequency from probability as a measure of degree 

of belief. The following is an illustration (used later in this chapter) 

of a portfolio manager's probability beliefs as to returns from stocks and 

bonds: "I look for conditions in the next ten years to be very similar
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to those prevailing in 1926 through 1935. I am certain that bonds will 

yield five percent per annum during the whole period. Some day we are 

going to have a boom and a bust in the stock market but I do not know 

which is going to come first,'! 

The gambler knows the probability distribution of payoffs and 

knows that he will be told before this payoff is changed. In like 

manner the portfolio manager knows his probability beliefs about returns 

and will know when he changes his beliefs. Just as the gambler wants 

to find the best betting plan given the present odds, so does the port~ 

Folio manager want to find the best investment plan given his present 

probability beliefs about returns. 

It is not necessary for the professional gambler to be convinced 

that he will have unlimited opportunity to play the same game on the same 

odds in order to justify his use of the maxiaum chance criterion for 

betting. He may recognize that he will. have only one or few chances to 

bet at this time but thinks it likely that such opportunities will 

recur. He wants to maximize his chance of doing better than can be 

done with any other betting plan in a long series of such recurrent 

opportunities. In other words, the series of bets on game A may be 

interrupted by bets on games By C, cee, Ne In the long run he will 

maximize his chance of wealth at the end of a series of bats on such 

games if he maximizes his chance of wealth from each game separately, 

The situation in regard to portfolio management is exactly analogous, It 

is only necessary for the portfolio manager to recognize that there are 

recurrent opportunities to buy risk assets and that his portfolio will be



exposed to the same general type of risk time after time. 

Whether rational probability beliefs about returns from stock are 

apt to remain relatively stable over time or are apt to fluctuate when 

priceschange is not at issue heres Whether such beliefs fluctuate widely 

from period to period or whether they tend to be stable, the rational 

portfolio manager is interested in maximizing his chances of having a 

greater portfolio value than can be obtained by any other plan over a 

series of gains and losses and wil] adjust his investment plan accord- 

ingly. In similar fashion, the rational gambler would bet the same 

proportion of his wealth on the next toss whether he expected to play 

game A for a long period and then shift to game B or whether he mixes 

up the series of games. 

- Proper Maxiaizing Action 

The rational portfolio manager Like the rational gambler must 

actually carry out the plan which most nearly fulfills his objectives in 

the light of his probability beliefs, A propor series of maximizing 

actions does not include "letting the profits ride either in the 

gambling situation or in portfolie management. This action probabiy will 

lead to poorer results than can be obtained by adopting the maximum 

chance plans The gambler must bet the maximizing proportion, Guay, of 

his assets on each toss. If he won the previous toss this involves some 

holding of winnings in the form of cashg if he lost, some money must be 

added to the amount in play. In like fashion, the portfolio manager must 

adjust his portfolio so that he holds that proportion in stock at the
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beginning of each year which is corvect in the Light of his probability 

bellefse If his beliefs change, the maximizing proportion also changes 

but othezwise it remains constant. 

At the beginning of each year, the portfolio manager reviews his 

portfolio and readjusts 1% in the light of the probability beliefs about 

returns from securities which he holds at that time. Presumably his 

probability beliefs about returns will change to some extent from year 

to year and, consequently, it seems reasonable to anticipate some changes 

in the composition of the portfolio from year to year and some shift 

from safe assets to risk assets and vice versa. On the other hand, if 

the probability beliefs as to returns remain unchanged from year to year, 

the maximizing proportion to hold in the risk asset, Gj9y, will remain 

constant. For example, if the probability beliefs at the beginning of 

one year, year i, are such that the maximum chance allocation of the 

portfolio is 40 percent in bonds and 60 percent in steck and these 

beliefs remain the same at the beginning of year i + 1, then the maxinum 

chance allocation again will be 40 percent in bonds and 60 percent in 

stock at the beginning of the year i+. If the relative prices of 

stocks and bonds have changed between the two dates, it will be necessary 

for the portfolio manager to make some sales and purchases in his port- 

folio to bring it into line with the desired proportions even if the pro- 

portions themselves have not changed.” Under this plan of action, the 

7 Allocating a fixed proportion of the portfolio to risk assets 
at the beginning of each year 1s somewhat similar in effect to the 
constant ratio, or equalizing, formula investment plan. In this type of 
investment plan, the total fund is divided initially into determined 
percentages of aggressive and defensive securities testes 50 percent
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portfolio manager whose probability beliefs about returns from stocks and 

bonds remain unchanged exposes the same proportion of his portfolio to 

the same risk time after time. 

Reference Period Returns 

The years 1926~1935 and 1890~1899 may be used as two reference 

periods to illustrate the results of portfolio diversification. Actual 

stock returns for these periods are tabulated in Tables 5.1 and 5.2. 

These returns are based on a very high proportion of the total value of 

all stocks listed on the New York Stock Exchange. They are derived 

from a series representing stock prices including cash dividends devel~ 

oped by Alfred Cowles and published by the Cowles Commission.® This 

series includes reinvested dividends so the return per dollar invested 

in the year t is equivalent to the ratio of the index for the year t +1 

to the index for the year t. 

Returns from stock for the 10 individual years in the 1926-1935 

period varied from 1.47 to .55 per annum per dollar invested. The 

stock-50 percent bonds) and then the aggressive and defensive funds are 
adjusted periodically to restore these percentages. However, the adjust- 
ment schedule usually depends on changes in relative values rather than 
time. For example, a 50 percent stock fund may be restored to the 
desired ratio by appropriate purchases and sales whenever the stock pro- 
portion falls to 45 percent or rises to 55 percent. ‘This dissertation 
is concerned with the problem of determining a proper allocation between 
risk assets and safe assets based on beliefs about forthcoming returns. 
It is not an attempt to find a formula which will assure satisfactory 
investment performance by arbitrary adjustaents. See J. Fred Weston, 
"Some Theoretical hgh 4 Formula Timing, " Journal of Business of the 
Srivershty of hisede, Mt I (1949), 250-263, for a Sinassalee of some of 

¢ assumptions underlying formula investment plan 

8 Alfred Cowles and Associates, Poanep Stock Indexes (Bloomington, 
Indiana: Principia Press, 1939), pp. 168, 169.
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Table 5,1 

Ex Post Stock Returns and Hypothetical Portfolio Returns 

1926=1935 Reference Period 

Stock Stock Hypothetical Port=- Hypothetical Cumul ative 
Price Return folio Returns (a_) Portfolio Value (W) 
Index =1.0 q Jan, 1, 1926 = 1,0 

$ R Ge =e 8 Gh G6 G8 gtl.d 

1926 4599-1625) e9 Ss edk7? Ss ed Lold Xcl7 Re@l 125 

1927 7h 4992 HO a a Pe) ame cr ee 7 Se 

1928 15 31 1S 2622 1626 1.5L 1.71 1.94 2416 

1929 993 082 06 91 287 1.45 1.56 1.69 1.77 

1930 813 66 289 82 eM = eRD08B 025 IT 

1931 549 055 85 75 65 1.10 696) «8h 

1932 297 1637 lh Lh 103 1.29 1.19 1.06 .8 

1933 408 1.19 ell 1613 1616 1.44 1636 1623 1.05 

1934 48 1,12 41,08 2.09 2.al 1.55 1.46 1.37 1.17 

1935 SiS OLGAY) AMA: AO 1 1.89 1.91 1.89 1.73 

1936 84 

Arithmetic 
Mean (A) 1.106 1.073 1.083 1,097 

Geometric 
Mean (G) 1,057 1.065 1,067 1,065 

Variance (qs) .093 .015 .033  .060 

Gta/A® —(qs)* 1.063 1,064 1.069 1,068 

S$: Stock Prices Including Cash Dividends, Alfred Cowles and Associates, 
Comon Stock Indoxea (Bloomington, Indiana? Principia Press, 1939)» 

e 9 PP 

Ry! Se4y/% 

ct 1,05 

ad (1 = qe 

He a) Mae
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arithmetic mean of these returns was 1.06 and the geometric mean was 

1.057. The latter figure indicates the average annual Long-term return 

from one cross-section share of stock held over the whole period with 

all dividends reinvested. That is, an average annual yield of 5.7 percent 

would have been obtained if one crosg-section share of stock had been 

held for the whole ten years. This continuous holding results in a 

higher dollar investment in stocks when prices prove to be high on an 

ex post basis and yields are low or negative and a lower dollar investe 

ment when ex post prices are low and yields are high. ‘The longeterm 

stock return, that is yield plus one, is equivalent to the geometric 

average of the one year returns. The arithmetic average of the yields 

for one year investment periods is higher than the long-term yields. It 

shows what the average results would have been if exactly the same 

amount of monay had been invested in stocks in each of the years and 

held in stocks for one year. 

Hypothetical returns and cumulative values for portfolios with 

specified proportions put in stock are also shown in Tables 501 and Sen. 

For example, the first row of the table shows that a portfolio allocated 

40 percent to stock (ieee, q = 04) and 60 percent to bonds yielding 

5 percent per annum would have produced a portfolio return of J.13 in 

1926 and would have had a value of 1.13 at the end of that year if all 

returns are reinvested (the value on January 1, 1926, being taken as 1), 

The table shows also the arithmetic means, the geometric means, and the 

variances of the portfolio returns, as well as G* which is an estimate 

of G based on the arithmetic mean and variance of the returns.
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Table 5.1 shows that a portfolio adjusted at the beginning of each 

year to 40 percent in bonds yielding 5 percent per annum and 60 percent 

in stock at the actual ylelds prevailing in 1924-1935 would have 

ylelded approximately 6.7 percent per annum for the period as a whole, 

rather than the 5.7 percent which would have been obtained if all of 

the portfolio had been concentrated in stocks or the 5 percent which 

would have been obtained Lf all of the portfolio had been held in bonds. 

In other words, diversification would have increased ylelds from 5.7 

percent for the all stock portfolio and 5 percent for the all bond port- 

folio to 6.7 percent for the diversified portfolio in this period. 

The hypothetical portfolio returns shown in Tables 5,1 and 5.2 

are based on the assumption that the wealth-holder kept the same 

probability beliefs as to returns from stock throughout the period and 

so adjusted his portfolio to hold the same proportion, q, with 

G * ehy ee, leOy in stock and (1 = q) in bonds at the beginning of 

each of the ten reference years. It 1s an attempt to give a numerical 

example of the results of maximizing behavior based on correctly knowing 

the returns for a set of ten forthcoming yoars but not the order of 

occurrence. In real Life, there is little doubt that the wealth-holder 

would have changed his probability beliefs at some point. These changes 

could have been for the better, so that he would have held a bigger 

proportion of stock when stock proved to be low on an ox post basis; or 

for the worse, so that the wealth-holder increased his etock holdings at 

the peak prices and got more conservative at the bottom of the depression. 

A wealth-holder who changed his beliefs in a correct direction so that 

he could recognize the opportunity to buy more stock when they afterwards
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proved to be low, and recognized the opportunity to sell more when they 

proved to be high could get a bigger portfolio return than that obtained 

from a constant proportion placed in stock. Even such a wealth-holder 

would need to know how to teallocate his portfolio after he changed his 

beliefs about forthcoming returns. 

Negative Bond Holding 

So far it has been assumed that the proportions of the portfolio 

placed in bonds and stock at the beginning sf each year are positive, 

though there are no restrictions of this nature in the various equations. 

Henceforth, it is assumed that a wealth-holder owns the equity in a 

group of securities and this equity will be called his portfolio. A 

wealth=holder's portfolio includes not only his securities but also the 

associated debt, if anys The proportion of the portfolio, as thus 

defined, held in bonds can be either positive or negative. Negative 

bond holding corresponds to borrowing to buy stock. In all cases the 

proportion of the net value of the portfolie in bonds, plus the propor- 

tion in stock add to one (i.e., p* b= 1). The proportion, q, of the 

net portfolio held in stock can be adjusted over a very wide range. A 

negative value for q corresponds to selling stock short and holding the 

proceeds in cash or in bonds. A value of q greater than 1 implies 

negative bond holding, that is, holding stock on margin, In practice, 

some portfolio managers may not be able to sell stock short or hold stock 

on margin, but either option often is available, 

The stock returns for 1890-1899, shown in Table 5.2, may be 

used to give a further oxample of the use of both stock and bonds (that 

is, borrowing) to obtain a larger yield on the net value of the portfolio



Table 5.2 

Ex Post Stock Returns and Hypothetical Portfolio Returns 

1890#1899 Reference Period 

Stock Stock Hypothetical Port- Hypothetical Cumulative 
Price Return folio Returns (a) Portfolio Value (W) 
Index q=1.0 4 Jan. 1, 1690 = 1,0 

§ R 2.0 gEB.0 ge qe G*Be0 qed 

ime 6 ei a 290 96 ©6693 0 
Reol no 15" Le LW OC A 1.22 1628 1036 
ORs, BI eM cca eS] 1% =o ol 
£893 3x0 96 9 8). eT? 84° Ys GR 

ngo4 3318S ss.08 = 13161813 os) A 

2895 343°0—tii«iwdSTti«dédS +86 +81 7 lw OR 
6. 98h lO AM) Bh ed 1.02 .8 .68 
£897,367) eS 039) KB 1636 1.27 1.10 
ee) ae ee rs a i: AS eee mee | 
1899 = «5589——s«i14W02-s:1,00 99 7° 6 6 RES me 8D 

Arithmetic 
ean (A) 1.065 1.100 1.135 L171 

zeometric 

Variance (qs)? 014 055 123 220 

Stal Aa dex (qs)* 1.058 1,074 1.080 1.072 

$ + Stock Prices Including Cash Dividends, Alfred Cowles and Associates, 
Common Stock Indexes (Bloomington, Indiana: Principia Press, 1939), 

@ 9 Ppe 9. 

bt Se4s/% 

= t 1.03 

a! oR + (L = g)C 
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than can be obtained either from an all stock or from an all bond port- 

folio. In those reference years, a portfolio adjusted at the beginning 

of each year so that the investor borrows (2.00 at 3 percent for each of 

his own dollars and invests all in stock, would yield $.6 percent on the 

equity as against an arithmetic stock yield of 6.5 percent and a geometric 

average return from stocks equivalent to a yield of 5.9 percent. It is 

to be noticed that the small variance in the 1890-1899 set of stock 

returns, ag reflected in the emall difference between the arithmetic and 

the geometric average returns, makes such large seale borrowing possible 

and profitable, In the 1926-1935 period, borrowing on the same scale 

would have resulted in a return of zero in one or more years and the 

consequent elimination of the portfolio, A lot of people jumped out of 

the window in 1929 and 1930 because they underestimated the variance of 

stock returns for that period. 

These results,in themselves, indicate that it is net necessary to 

appeal to individual risk preference or other utility considerations to 

justify portfolio diversification, that is, the use of both stocks and 

bonds or borrowing. Allocation of a portfolio between a risky security 

giving a high expected yleld and a safe security giving a lower certain 

yield usually is justified by a gain in portfolio value at the end of 

nh years provided that the specified proportions are correctly chosene In 

some instances the maximizing proportion to be allocated to stock (ieee, 

Gnax) may be 1 or 0. This does not affect the general conclusion.
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Gnpdzical Tests of Foxmulas 

In Ghapter IV two methods were described for calculating the 

geometric means, Gg, of the probability distributions of portfolio returns 

and for selecting the proportion, q,,,»5 to allocate to stock in order to 

maximize Gg» One method (equations 401 and 462) involved using the full 

probability distribution of returns from stock as a basis for calculating 

Gq and dmaxe The second method (equations 4.3 and 404) is much simpler 

and is based solely on the arithmetic mean and variance of the probability 

distribution of returns from stock. In this section the reference period 

returns are used to compare results from using these two methods. 

A wealth-holder may have probability beliefs such ass "I look for 

Gonditions in the next ten years to be very similar to those prevailing 

in 1926 through 1935. I am certain that bonds will yield five percent 

per annum during the whole period. Some day we are going to have a boom 

and a bust in the stock market, but I do not know which is going to come 

first." These beliefs may be stated in terms of the payout matrix of 

returns shown in Table 5.3. It should be noted that the usual content of 

rows and columns is reversed in this matrix. The first column lists the 

possible future occurrences, that is, the occurrence of a year such as 

1926, +++, 1935, and the last column lists the probability of each such 

occurrence (4.,e., .1). The middle five columns show the matrix of returns 

for each possible future occurrence when .0, ss., 1.0 of the portfolio 

is allocated to stock. 

In Table 5.3, the column headed .4, for example, shows returns 

from a portfolio divided .4 in stock and .6 in bonds if a series of years



Table 5.3 

Payout Matrix of Returns 

Occurrence of Year Proportion Allocated to Stock Probability of 
Such Ass 20 yA Ail A 1.0 0 

1926 OL ee Cy ee > ye ol 

1927 1005 bel6 Le@) = ek? 0 ol 

1928  SNOS. Bek MRD. —daNiin cdg Sh ol 

1929 105 0% 91 87 =o 2 ol 

1930 1.05 08 82 °74 6 eh 

1931 105. 08575 5 SS el 

1932 1005 e181 S037 od 

1933 1605 = Ladd. 1693 = BGG el 

1934, 1605 1008 §= 109 ell «= 1012 ol 

1935 1605. Le@2 090039 10k ol 

Arithmetic Mean (Aq) 1.05 1.073 1-083 1.097 1.106 

Geometric Mean (Gq) 1.05 1.065 1.067 1.065 1.057 

such a$ 1926-1935 occurs. The arithmetic mean of the probability distri- 

bution of returns, Ago with q = .0, .«+, 1.0 , increases as q increases, 

When q = 1, that is, when the portfolio consists of stock, Ag = R. The 

geometric mean, Sy» apparently reaches a peak when q = 260. The wealth- 

holder, with probability beliefs such as those reflected in the matrix, 

would maximize A by holding an all stock portfolioe He would maximize G 

by allocating approximately .6 of his portfolio to stock and 4 to bonds 

at the beginning of each year,
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Table 5.4 shows a payout matrix of returns for the portfolio 

manager who bases his probability beliefs on the actual returns from 

stock duzing the 1890-1899 reference period. Such a portfolio manager 

assumes that the forthcoming return is equally likely to be like that of 

any one of these ten years. He believes, for example, that there is a 

el probability of the occurrence of such a year as 1896 in which stocks 

returned 1.10, This also is the portfolio return when the proportion 

of the stock allocated entirely to stock is 1.0, The return on the net 

portfolio when a year such as 1896 occurs and when the proportion allocated 

to stock is 2.0 (shown in the second column of the matrix) is 1.170? 

Table 54 

Payout Matrix of Returns 

Occurrence of Year Proportion Allocated to Stock Probability of 
Such As: 1,0 2.0 320k 

1890 1.00 0% 093 290 ol 

1891 1.18 1627 0 ©«=1639 1 5 ol 

1892 090 77 e64 eS ol 

1895 96 0° 8 a7 el 

1894 1.08 1.23 1.18 1.23 el 

1895 97 92 +86 81 el 

1896 Bel0. LDF, Le8h. 1031 el 

1897 1.18 1.33) 1.48 1.63 el 

1898 1.29 1.55 1.81 2.07 el 

1899 1.02 1.400 99 = 97 el 

Arithmetic Mean (AQ) 1,065 1,100 1.135 1,171 

Geometric Mean (Gy) 1.059 1.077 1.08 1,083 

9 Under these conditions the wealth-holder borrows $100 at an 
interest cost of §2 and holde {200 in stock for each $100 of net portfolio
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This matrix indicates that Gg is approximately maximized when 

Guay = 300 5 that is, when $3.00 is held in stock and $2.00 is borrowed 

for each $1.00 of net portfolio value. The gecmetric mean return from 

the portfolio with q = 3.0 is greater than the corresponding return from 

the portfolio with q = 2.0 or with q = 4.0 

Ag was shown in Chapter IV, probability beliefs about returns 

from stock often can be stated, with little loss of information, in 

terms of the arithmetic mean and variance of the probability distribution 

of returns, The woalth-holder who hag the probability beliefs stated 

in Table 5.3, that is, who uses the 1926-1935 reference period as a 

basis, believes that the probability distribution of returns from stock 

has an arithmetic mean, Ry of 1.106 and a variance, g2, of .093 (ise, 

the standard deviation s = 0305). Gy and Gay can be estimated directly 

from these statistics by using equations (4.6) and (407). That is, 

(466) of f G! 4 = a = (qs)? 

and 

5 O(a 
(4.7) Guax * nex = ¢ * =o + 

Gt is compared directly with G, at the foot of Tables 51 and 5.2 » 

2,4, = #65 when probability beliefs are besed on the 1926-1935 reference 

period and qi,, = 2085 when beliefs are based on 1890-1699. It is 

apparent that, with probability beliefs such as these, the G® and hax 

based on the mean and variance of returns from stocks differ litthe from 

those baged on the whole probability distribution of returns. 

value, The gain from the 200 in stock would be 420 so the net gain per 
$100 of portfolio value is $17. Thus the return is 1.17.
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Standard Returns in Gain Years and Loss Years 

In the absence of the unusual, probability beliefs about returns 

from common stocks and from portfolios consisting of stecks and bonds often 

can be represented by a payout matrix such as Tabie 5.5.29 In matrices 

auch as this, common stocks are looked upon as risk assets which equally 

probably will return R + s, which may be called the standard return in a 

gain year, and R ~ s, which may be called the standard return in a loss 

years 

Table 5.5 

Payout Matrix of Returns 
1.05 R=1.106 3.305 

Proportion of 
Pertfolie in Oceurrence Criteria 

Stock Gain Year Loss Year A S 

1.0 1.41 «80 1.106 1,063 

065 1.28 89 1.086 1,069 

1°] 1.05 1.05 1,05 1.05 

Probability of 
Occurrence . 5 

‘The payout matrix in Teble 5.5 is based on the 1926-1935 reference 

perlode R+ 8 = 14106 #305 = le4l and R- & = 1,106 - .305 = .80. 

These values for R and @ (and C = 1,05) result in a qig, of .65 and a 

Gray OF 14069 

LO The matrix of retuzns in Table 5.5 has alzeady been used for illus= 
trative purposes as Table 4.5. It 1s repeated here for convenience in 
references
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Table 506, below, shows a corresponding payout matrix of returns 

when the wealth-holder has probability beliefs based on returns in the 

1890-1899 reference period. 

The matrix of portfolio returns in Table 5.6 is based on the 

assumption that the wealth-holder can borrow to buy stocks at a net 

interest cost of 3 percent. The portfolio is the equity in a group of 

securities. To say that 4.0 proportion of the portfolio is placed in 

stock, for example, i¢ to say that the wealth-holder borrows $300 out of 

each $400 invested in stock. Gy is maximized when q = 2,85 under these 

conditions, 

Table 5.6 

Payout Matrix of Returns 

Proportion in Occurrence Criteria 
Stock Gain Year Loss Year A G 

40 1.642 698 L273 1.072 

2.85 1.466 © 794 1.130 1.080 

2.0 1.336 864 1.100 1,074 

1.0 1.183 0947 1.065 1.058 

«0 1.030 1.030 1.030 1.030 

Probability of 

Occurrence 05 05 

Payout matrices such as those in Tables 5.5 and 5.6 often may be 

good representations of probability beliefs about returns from stock. 

When this is so, equations (4.6) and (4.7) are useful tools for allocating
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portfolios between stocks and bonds and for estimating the geometric mean 

of the probability distribution of portfolio returns. 

épplication of Fomulas 

A wealth-holder who adopts the maximum chance subgoal will be 

guided by equation (402) or (407) in determining the portion of his wealth 

he should risk repeatedly on the same terms. He also would use 

equation (401) or (406) to determine how much a risk asset or the 

avoidance of a risk would be worth to him. When the underlying proba- 

bility distribution of returns is highly skewed, as in disaster 

insurance or lottery tickets, the wealth-holder would have to deter= 

mine his q.,, and G by using equations (4.1) and (42). When the chances 

of gain and loss are more evenly distributed about the mean, as is 

usually the situation in allocating a portfolio between stocks and 

bonds, equations (406) and (4e7)—ivee, the standard returns method— 

may give satisfactory results. | 

Whether the long formulas or the short formulas are used, the 

proper allocation of a wealth-holder's resources between risk and 

safety depends on the return from the safe asset and the level and 

dispersion of returns from the risk asset. The interrelations of 

these three factors have a considerable bearing on proper maximizing 

behavier. For example, the theoretical effects of risk on the demand 

for funds to buy stock by a wealth-holder who adopts the maximum chance 

subgoal is shown dramatically by comparing the effects of various assump- 

tions as to interest rates on proper maximizing behavior by a wealth- 

holder faced with distributions of stock returns similar to those which



114 

occurred in the two reference periods shown in Tables $.1 and §.2. These 

effects are shown in Table 5.7 » 

Table 5.7 

Maximum Chance Proportion of Portfolio to be Placed in Stock 

with Specified R and s* for Various Anticipated Bond Yields 

Anticipated Maximum Chance Froportion (q? 

Sond Yield 1926-1935 1890-1899 
Ce} Reference Period Reference Period 

R=L.206 $*=,093 R*1,065 s*=,014 

200 129 6.50 

293 +90 2.80 

295 65 1.10 

OF +42 200 

Sources Equation (4.7) a. = — = mr 

Table 5.7 shows the interrelations between specified C, R, and s*, 

on the one hand, and e.. on the other. For example, the third Line in 

the table shows that, when bonds yield 5 percent and R and s* equal those 

of the 1926-1935 reference period, q).. = «65 but when R and s* equal 

those of the 1890-1899 reference period, q! ‘iy # 1.10. When the "maximum 

chance" portfolio manager looks for highly varying stock returns, such as 

those which occurred in 1926-1935, and anticipates that bonds will yield 

5 percent, the table indicates that he should hold .65 of his portfolio 

in stock in order to maximize Ge-but if he anticipates that bonds will
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yleld only 3 percent, he should hold .90 of his portfolio in stock. That 

is, he will hold .35 of his portfolio in bonds if he looks for bonds to 

yield 5 percent and 10 in bonds if he looks for bonds to yield 3 percent. 

Under these conditions a two point difference in anticipated interest 

rates would account for a difference in bond holdings equivalent to 

25 percent of the net portfolio of the maximizing wealth-holder. On 

the other hand, when such @ wealth-holdez expects stability in stock 

returns such as occurred in 1890-1899, 2 the same difference in 

anticipated interest rates would account for a difference in borrowing 

or negative bond holding equivalent to 170 percent of his net 

portfolio, 

11 Table 5.6 shows the results of various interest rate assump= 
tions on proper maximizing action under these conditions. If the 
‘maximum chance" portfolio manager could borrow at 3 percent he would 
borrow 180 percent of his net portfolio and use the proceeds to hold 
stock (i.e, q',, = 2.80), If he had to pay § percent interest he would 

borrow only a small amount, 1 of his net portfolio, and would hold 1.10 

of his net portfolio in stock.



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

This dissertation is concerned with rational decision making 

in portfolio management. Every wealth-holder who has a portfolio con- 

sisting of stocks, bonds, and cash, with a given market price can choose 

to continue to hold this combination of assets or can choose to hold 

any other combination (including holding stocks on margin) available 

to him at this price. Rational choice among portfolios involves 

ferning probability bellefe shout returns fron pertfelios and chessing 
among portfolios on the basis of these beliefs. Probability beliefs 

as to portfolio returns may be expressed in terms of payout matrices 

which show the probability of all relevant future occurrences and the 

payouts resulting from the combined effects of the holding of each 

available portfolio on the one hand and each relevant future occurrence 

on the other. The relevant future occurrences may include such possi- 

bilities as "prosperity" and "depression" or "gain year"! and "Loss year." 

The first three chapters of the study are devoted to an analysis 

of rational choices among portfolios on the basis of given probability 

beliefs. The fact that these choices are repetitive in nature with 

cumulative effects is used as the key factor in developing a goal, @ 

subgoal, and a criterion for choosing among portfolios. 

The goal of portfolio management is taken to be maximization of 

portfolio value at the end of a period of time broken down into a large 

number of investment periods called years, Since it 46 impossible to
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specify which portfolie actually will be the most valuable at the end of 

a number of years, it is nacassary to use another basis--the subgoale= 

for choosing among portfolios. 

The subgoal is an objective which can be reached at the time of 

making the choice by the decision maker who has a filled-in payout 

Matrixe For example, choice of that portfolio which has the highest 

mathematically~expected value at the end of a number of years (Lees, 

the expected-value subgoal) may be the subgoal of a portfolio manager 

who takes as his goal the maximization of portfolio value at the end 

of the same period of time. The expscted-value subgeal is not accepted 

as a rational subgeal because, in many instances, another portfolio 

is almost certain to be more valuable at the end of a long period of 

years than the portfolio with the highest mathematical expectation of 

returns. 

To be rational, a subgoal must be based on balanced consideration 

of the probabilities and payouts from all relevant future occurrences. 

The minimax subgoal (i.e., maximization of returns if the most unfavor= 

able event occurs) is rejected for portfolio management for this reason. 

It gives weight only to unfavorable occurrences and disregards the 

probability of favorable occurrences. The subgoal also must be related 

logically to the goal. Selection of the portfolio having the probability 

distribution of returns with the smallest variance, for example, is ree 

jected because such portfolios often are certain to be less valuable at 

the end of a number of years than other portfolios whatever the relevant 

future occurrencese
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The maximum chance subgoal proposed in this dissertation is based 

on balanced evaluation of the whole payout matrix of returns and 1s 

coupled logically with the goal. It is the choice of that portfolio 

which has the greatest probability (P') of being more valuable than any 

other specified portfolio at the end of n years, n being large, It is 

proved that P' for that one portfolio approaches 1 as n approaches 

infinity, Consequently, the portfolio with highest P' when n is large 

is almost certain to be more valuable than any other specified portfolio 

in the long run. Selection of the portfolio with the maximum P* when 

n is large is accepted as a rational way to reach the goal of maximum 

long run portfolio value. 

A criterion, or measure, to be maximized is needed in order to 

enable the decision maker to reach his subgoal. It is shown that the 

portfolio with the probability distribution of returns with the highest 

geometric mean (G) also has the greatest probability of being more 

valuable than any other specified portfolio at the end of n years, n 

being large, For this reason G is accepted as a rational criterion for 

choice among portfolios. 

The classical writers used the mathematical expectation of the 

probability distribution of payouts as the basis for choice among risky 

ventures. Daniel Bernowlli showed that this approach sometimes gave 

results which seemed izratienal to him. He proposed, instead, that the 

mathematical expectation of the utilities of the payouts be used as a 

basis for choice. He suggested that often the utility of a small gain or 

loss varies inversely with the amount of wealth possessed. When this is 

so, the mathematical expectation of the utilities of the payouts is
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maximized when the geometric mean of the probability distribution of 

original wealth plus or minus gains or losses (ieee, G) is maximized. 

For this reason he advocated the use of G as a basis for choice among 

risky ventures. Bernoulli's criticiem: of the expected value subgoal 

is widely accepted today but his utility function is not generally used, 

What portfolio to hold or what risky venture to undertake is left to 

individual risk preference. 

The wealth-holder who adopts the maximum chance subgoal can reach 

this subgoal by using the geometric mean, G, of the probability distri- 

bution of returns as his criterion and by choosing that portfolio which 

has the probability distribution of returns with the highest 6. 

Bernoulli also has shown that choice of that portfolio with the highest 

G is a rational choice ifs (1) maximization of the mathematical expec- 

tation of the utilities of the payouts is a rational subgoalg and 

(2) if the utility of a small gain or loss varies inversely with the 

amount of wealth already possessed. 

Most economists recognize that the mathematical expectation and 

the variance of the probability distribution of returns, and the chance 

of ruin, are important to the wealth-holder==but they leave it to 

individual risk preference to balance one factor against the others. 

The geometric mean of the probability distribution of returns (G) depends 

on both the mathematical expectation and the variance of the distribution. 

Further, G would equal zero if there were any possibility of a return of 

zero (i,ee, ruin). When the portfolio with the highest G is chosen, with 

G greater than zero, there is no chance of ruin if the wealth-holder's
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probability beliefs are correct. Consequently, maximization of G falls 

within the generally accepted range of rational behavior. This is not 

to say that G is the only rational criterion for portfolio management; 

it is to say, however, that it is a useful criterion when dealing with 

a broad range of problems, When the portfolio with maxiqum G is not 

chosen, there must be justification for choosing to hold a portfolio 

which has Little chance of being the most valuable portfolio in the 

Long run, 

Ghapter IV deals with the problem of determining what proportion 

of a portfolio to allocate to a risk asset in order to maximize G, the 

geometric mean of the probability distribution of portfolio returns. 

Both G and this proportion (i.e., qag,) are functions of the whole 

probability distribution of returns from the risk asset and may be 

determined by means of equations (401) and (402). These equations in- 

volve the whole probability distribution of returns and, consequently, 

are often difficult to solve except, possibly, by trial and error. 

However, equations involving only the mean and variance of the probability 

distribution of returns from the risk asset often give good estinates 

of G and q,,,+ These equations, that 18, equations (4.6) and (he7)s 
also may be used when probability beliefs take the form of estimated 

standard returns in gain years and standard returns in loss years. A 

standard return for the risk asset in a gain year is R + 6 and in a loss 

year is R= s, with gain years and loss years equally probable, 

The analysis in this study is based on a number of concepts 

underlying the payout matrices and the equations which determine proper
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maximizing action. Two of the most important of these concepts have to 

do with returns and with proper maximizing action. Returns occur in 

series over time. In order to determine the return for a specified year 

it is necessary to know the value at the beginning and at the end of 

the year as well as the cash dividend and interest receipts during the 

year. Market values are used as a basis for this determination. If 

the probability beliefs as to returns remain unchanged from year to 

year, the maximizing proportion to hold in the risk asset (q,,,) will 

remain constant. For example, if the probability beliefs at the 

beginning of the year, year i, are such that the maximum chance allo- 

cation of the portfolio is 40 percent in bonds and 60 percent in stock 

and these beliefs remain the same at the beginning of year i + 1, then 

the maximum chance allocation again will be 40 percent in bonds and 

60 percent in stock at the beginning of the year i +1, If the relative 

prices of stocks and bonds have changed. between the two dates, it will 

be necessary for the portfolio manager to make some sales and purchases 

in his portfolio to bring it into line with the desired proportions even 

if the proportions themselves have not changed. Under this plan of 

action, the portfolio manager whose probability beliefs ahout returns 

from stocks and bonds remain unchanged exposes the same proportion of his 

portfolio to the same risk time after times 

Reference period returns were used in Chapter VY to illustrate the 

hypothetical results of proper allocation of a portfolio between bonds 

and stocks. Stock returns in the 1926-1935 period ranged between 55 and 

1,47- The arithmetic mean return was 1,106 and the geometric mean return 

was 1.057. If 40 percent of an hypothetical portfolio had been placed
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in bonds yielding § percent at the beginning of each year and 60 percent 

had been placed in stock, the geometric mean portfolio return over the 

whole period would have been 1.067. ‘Such diversification would have 

increased yields from 5.7 percent for the all stock portfolio and 5 per} 

cent from the all bond portfolio to 6.7 percent for the diversified 

portfolio in this period. In the 1890-1899 period, on the other hand, 

returns from stocks ranged only from .90 to 1.29 with an arithmetic mean 

return of 1.065 and a geometric mean return of 1.059. In those reference 

years, a portfolio adjusted at the beginning of each year so that the 

investor borrowed $2.00 at 3 percent for each of his own dollars and 

invested all in stock would have yielded 8.6 percent on the equity. The 

gmall variance in the 1890-1899 set of stock returns made such 

hypothetical borrowing profitable. In the 1926-1935 period borrowing 

on the same scale would have resulted in a return of zero in one or more 

years and the consequent elimination of the portfolio. 

The proper allecation of a wealth-holder's resources between 

stock and bonds (or borrowing) depends on returns from bonds and the 

cost of borrowing on the one hand, and the probability distribution of 

returns from stock on the other. The effects of different levels of 

interest rates on q.., depends on the probability distribution of returns 

from stocke <A given difference in interest rates will have less effect 

OM Gagy When the probability distribution is dispersed than when the 

variance is small. These relationships may be quantified in the case of 

the wealth-holder who uses the maximum chance subgosl as the basis for 

his decisions. If the wealth-holder believes that a standard gain year 

and a standard loss year are equally probable and that stocks will return
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1.41 in the gain year and .80 in the loss year, a two point difference 

in anticipated interest rates (§ percent vs. 3 percent) would account 

for a difference in bond holdings equivalent to 25 percent of the net 

value of the portfolio. If he believes that stocks will return 1.183 in 

the gain year and .947 in the loss year, the same two point difference 

in anticipated interest rates would account for a difference in borrowing 

or negative bond holding equivalent te 170 percent of his net portfolio. 

This analysis indicates the effect of uncertainty on the interest 

elasticity of demand for funds to buy stocks.
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GLOSSARY OF MATHEMATICAL SYMBOLS 

the arithmetic mean (i.e., mathematical expectation) of the proba- 
bility distribution of portfolio returns. 

the arithmetic mean (i.e., mathematical expectation) of the proba- 
bility distribution from portfolio i. 

an estimate of Aye 

the return from portfolio i if the qth event occurs. 

the proportion of the portfolio allocated to bonds (or other safe 
assets) at the beginning of cach year. 

the return from bonds (or other safe asset). 

the geometric mean of the probability distribution of portfolio 
returns. 

the geometric mean of the probability distribution of portfolio 
returns from the ith portfolio. 

the geometric mean of the probability distribution of returns from 
the portfolio having the highest G. 

the geometric mean of the probability distribution of returns from 
the portfolin allocated q to stock at the beginning of each year. 

an estimate of G, 

the geometric mean portfolio return from the ith portfolio if the 
jth combination of events occurs. 

number of investment periods called years. 

the probability of having a larger return than any other specified 
portfolio. 

the probability of portfolio 1 being more valuable than any other 
specified portfolio at the end of na years. 

the probability of the jt? occurrence. 

the proportion of the portfolio allocated to stock (or other risk 
asset)at the beginning of each year, 

the proportion of the portfolio to be allocated to stock at the 
beginning of each year in order to maximize G.



125 

Geax! an estimate of Snax * 

Ror Re the arithmetic mean of the probability distribution of returns 

Ry 

S, 

from stock (i.e., the risk asset), 

the return from stock if the gh event occurs. 

the standard deviation of the probability distribution of returns 
from the risk asset (stock), 

the deviation from R in a standard gain year and a standard Loss 
yeare 

Steck price index including cash dividends in year t.
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