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INTRODUCTION TO THE SERIES

This series consists of a number of hitherto unpublished studies, which

are introduced by the editors in the belief that they represent fresh

contributions to economicscience.
The term economic analysis as used in thetitle of the series has been

adopted becauseit covers both the activities of the theoretical economist

and the research worker.
Although the analytical methods used by the various contributors

are not the same, they are nevertheless conditioned by the common

origin of their studies, namely theoretical problems encountered in

practical research. Since for this reason, business cycle research and

national accounting, research work on behalf of economic policy, and

problems of planning are the main sources of the subjects dealt with,

they necessarily determine the manner of approach adopted by the

authors. Their methodstend to be ‘practical’ in the sense of not being

too far remote from application to actual economic conditions. In

addition they are quantitative rather than qualitative.

It is the hope of the editors that the publication of these studies will

help to stimulate the exchangeofscientific information andto reinforce

international cooperation in the field of economics.

THE EDITORS
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PREFACE

In recent years there has been a steady increase in the investigation of

both theoretical and applied problems of decision making under un-

certainty. To facilitate communication and the exchange of ideas as
they are developing, the National Science Foundation has sponsored

the NSF—-NBER Conference on Decision Rules and Uncertainty. Four

conferences have been held to date: the first two at the Massachusetts

Institute of Technology in May 1971 and January 1972, the third at

the University of lowa in May 1972, and the last at Princeton University

in March 1973. There were a number of papers presented at each of

these conferencesandtheirtitles are given in an appendix following the

bibliography. After the Iowa conference it was decided to publish a

volume. Because of prior commitments many of the papers presented

at these conferences do not appear in this volume while, on the other

hand, several additional papers have resulted from post-conference

interaction and are here included. Although this volumeis notstrictly

a proceedings, we felt that it would be instructive to include not only

papers but comments as well.

In addition to an introductory essay, this volume is roughly divided
into three parts. Part 1 comprises two papers that deal with the con-

ceptual development of the conditional expected utility framework.

Part 2 includes five papers on various micro-aspects of behavior under

uncertainty. The five papers in part 3 are concerned with welfare

economics and general equilibrium. The last paper, as indicated byits

title, was originally a comment on the Kesten—Stigum paper. Sinceit
also provides an excellent discussion on uncertainty and on the problem

of modeling an appropriate equilibrium concept, we felt that by making

it the last paper, it would also serve as a concluding remark for the

volume.

Vil
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CHAPTER |

SOME INTRODUCTORY REMARKS ON BEHAVIOR

UNDER UNCERTAINTY

M. Balch and S. Wu

1.1. Introduction

In the past few decades, economic theorists have become progressively

engaged in developing models to account for the presence and impact

of real world uncertainties. A priori reason for this interest is obvious

enough: the assumptionsof ‘deterministic theory sometimes appearto

be rather far removed from reality’. Indeed, the ‘usual’ microcontext

is in many cases more faithfully described by recognizing uncertainties

that are real world typical for that context, and which contribute to its

operational definition in a significant way. An entrepreneur, for example,

may have to decide ex ante whether to commit resources that could

turn out to be inappropriate ex post; thus, as events would haveit, an

unproductive and unmarketable sunk cost. On the other hand, the

decision not to commit could result in an opportunity forgone, since

the ability to seize such opportunities may depend upon having some

sort of resource structure already in place’.

Our purpose in this essay is to offer an informal discussion of how

uncertainties affect economic behavior, and how behavior in turn

influences the nature and incidence of uncertainty. These microfounda-

tional questions have attracted attention not only because they are of

interest in their own right, but, more broadly, for their explanatory

power concerning the very structure of economic systems and the evo-

lution of economic processes.

' Of course models compete with one another on the basis of their relative power to
explain and predict; this relative power, in turn, depends upon the primitive assump-
tions on which the competing models rest.
In a competitive world in which adjustmentcosts increase sharply with rate of adjust-
ment.



2 M. Balch and S. Wu

An economic actor is concerned with the course of his future, which

course is shaped jointly by his own actions and by circumstances beyond

his knowledge and control — and so in this way from one moment to

the next. Of course some moments are more significant than others

since, by and large, decision makers seem to respond to a status quo

(in the broad experiential sense) by maintaining it. Timeis irreversible

in the true economic sense: opportunities may sometimes arrive but

then vanish soon after, and disasters, once visited, leave their effect for

some time to come. What makesthis interesting is that a decision maker
can often contribute essential ‘karma’ to his environment by putting

himself in the way of such contingencies, or by avoiding their incidence.

His actual choice in any context depends upon howhebelieves action

may resolve and, whenthere is uncertainty aboutthis for at least some

options, upon his attitudes with respect to the bearing of risk. Thus one

Option may appear ‘quite “interesting”, but “risky”’ while, by compa-
rison, another appears “less exciting”, but “reasonable” and “secure” ’

In section 1.2 we discuss these perceptive and attitudinal determinants

as they bear in general upon economic behavior, and as they derive

from environmental context. In particular, we note the intrinsic presence

of endogenously created uncertainties, and suggest a contextual explicant

for the hypothesis of risk avoiding behavior*. In section 1.3 we look

at the mechanisms by which actors in a decentralized economy reduce,

generate and redistribute uncertainties. These not only encompass the

markets, of course, but a variety of topics in industrial and social

organization as well.

G 66

1.2. Behavioral Determinants

The characteristic feature of a decision problem under uncertainty is

that the generic option must be implemented before its precise outcome

can be known (though some options may appear less vague in this

respect than others). A rival’s reaction to an oligopolist’s price reduction

 

> The theory of risk-avoiding behavior has emerged as perhaps the most significant
analytic contribution of the uncertainty view, and its application to a considerable
spectrumof economicsettings will be apparent throughout. This hypothesisis ‘testable’
when consequencescan be represented in a linear space; otherwise we shall be using
the term ‘risk-aversion’ in a heuristic sense.
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cannot be known until price has been reduced; the resolution of a coin
toss cannot be known until the coin is tossed; and similarly, the profit-
ability of a capital expansion cannot be known before the decision to
expand has been executed (in so far as its resolution depends on future
market conditions).
The determinants of individual behavior that operate in a world of

uncertainty subsume (in the ‘proper’ sense) those that operate when
action stands in a one-to-one causal relationship with its outcome’. In
such latter circumstances a decision maker’s perception of causality is
‘perfect’, and his attitudes in respect to the bearing of uncertainty simply
do not come into play. The micro-models of conventional theory are
by and large characterized on this ‘perfect everything’ view: they are
conceived in a way that collapses future time to the present, and in
such fashion that current environment is perfectly and commonly>
perceived by all. Thus it is usually assumed that all decision-relevant
‘truth’ may be perfectly acquired in principle, and that this is costless
to effect in practice. When this necessarily involves the world as it will
be ‘tomorrow’ — as, for example, when production is recognized to be a
process that takes place over time and requires commitments that must
be made ex ante ~ then an appropriate deterministic variant is called
for: viz. that all actors enjoy perfect (and perfectly validated) foresight.
Whether in this way or by simply assuming that productionis instant-
aneousand that every production period is (somehow)perfectly isolated
from all others, it follows that firms produce so as to maximizeprofit:

* There is a complementary sense in which the behavioral determinants that Operate
under uncertainty may be understood to ‘subsume’ those which operate under condi-
tions of certainty. For example, consider a von Neumann~-Morgenstern expected utility
maximizer whose preference order = over a lottery set Y(X) (where X is some convex
subset of an underlying space of commodity bundles in R", say) is represented by a
cardinalutility indicator u: X > Re. The assumption ofrisk aversion for = on Y(X)
is represented by concavity of u. Convexity of the ‘certainty world’ preference sets
P, = {xe X|x Zy} = {xe X|u(x) 2 u(y)} for every ye X (where = on X is just
the restriction of = on Y(X)) is an automatic consequence of the assumption ofrisk-
aversion for = on ¥(X). This serves to indicate the power of model-theoretic robus-
tification: one is hard-put to rationalize behavioral assumption « for certainty model A
(which assumption is usually made for purposes of analytic convenience), but this
appears as an automatic consequence of a ‘more palatable’ behavioral assumption f
for uncertainty model B, where B subsumes A.
This is germaneto the logical construction of the conventional view; thus, while data
set D may not be relevant to the choice problem that faces actor a, he could know this
information if indeed it were relevant.
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a well defined univalent function of known parameters. In logical

complement to this view of production, individuals are assumed to

choose market baskets and make investment decisions under conditions

that leave no room for doubt, anxiety, hope or regret. Traders meet,

not bilaterally, but with impersonal commodity and factor markets

that are perfectly perceived by all who may be concerned. These markets

convene costlessly and clear on the instant, by virtue of a tatonnement

process that informs economicactorsas surely as if they were Newtonian

mass particles in a gravitational field®.
In the real world, however, the actual consequence of an action may

depend upon uncertain circumstances that lie beyond the decision

maker’s control’. That is, notwithstanding the decision maker’s ability

to exercise some conditionalizing influence over his environment,

preferred consequences can no longer be guaranteed by action alone.

The choice of an option, then, must depend upon the decision maker's

relative evaluation of ‘pure’ consequences as well as upon his judgments

concerningtheir relative likelihoods (given implementation of the alter-

natives for which they are conditionally relevant).

When relative likelihoods can be described according to known

statistical distributions, then the decision context has‘full information’

spirit: actors are universally privy to the same characterizing data set of

probability laws. In such cases choice is founded onrisk attitudes alone®.

Whenrelative likelihoods cannotall be so described — and this is quite

the common real world situation — then the basis for ‘universal per-

ceptive agreement’ erodes, and an individual’s personal appreciation of

context becomesrelevant to choice. Indeed, two actors may look at

6 This is not to say that economists have not for some time been quite aware of the

presence and impact of market imperfections, but rather that the formal models that

attempt to deal with these imperfectionsstill rest, by and large, upon an essentially

static tatonnement framework, and thus necessarily bypass those questions that are

associated with the bilateral (multilateral) phenomenon. Cournot equilibrium among

competing oligopolists, for example, conceives what is in fact an ‘extensive’ process

(one that evolves over time in stepwise fashion) as one that may be characterized in

‘normal’ form (in which strategic options are simultaneously played, once andforall).

While this sort of time-collapse is perhaps a not unreasonable place to begin analysis,

it does bypass questions of judgment, learning, and reaction to unexpected changes in

circumstance. Economic intercourse to comeis surely no less vague than the evolution
of a chess game between two humanbeings. Cf. also footnote 11.
Beyond the strategic (or contingency) possibilities for that action.

These subsume, of course, those behavioral determinants that would operate under

conditions of certainty.
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what ostensibly appears to be the same context but still have different

judgments as to how uncertainty ts likely to resolve.
We may consider two codeterminants by which context-perception

can differ among actors.

1.2.1. Information

Ignorance about one’s (non-statistically characterizable) environment

and/or its inherently unclear future plays a fundamental perception-

shaping role. It is sometimes possible to reduce one’s ignorance by

acquiring ‘meaningful’ information, althoughthis is not always the case’.

A decision maker mayfind it mostdifficult, for example, to collect and

assess information regarding uncertainties that are generated by the

interrelated nature of human behavior’°. This is perhaps most evident
in any bilateral context (or more generally, in a multilateral context

with a small number of participants) where the action of one has a

direct bearing on the welfare of the other and where both have a (non-

singleton) set of such options from which to choose. Since the typical

situation is one of conflicting self-interest, each may attempt ex ante to

bluff or otherwise hide useful information from the other, or to rest

upon what he considers to be better staying power; ex post, there may

be possibilities for reneging or for other externality-producing formsof

morally hazardous behavior. The point is that uncertainty generates

from the fact that neither player can completely know the preferences,

judgments and options of the other, nor how these will change with a

change in circumstances, nor therefore the precise influence that his

action will have upon the behavior of the other’.

? Even when this may be feasible — as when an unalterable state of nature obtains in
truth but has yet to be discovered — the (uncertain) benefits of additional information
may be prejudged not worth the costs of acquisition.

‘We concur with Professor Kurz (chapter 13) that uncertainties of endogenously
created origin (which of course include al] future market prices) appear to be more
significant for economic theory than those of the ‘natural disaster’ variety.

'! This subject area is formally addressed by the models and solution concepts of game
theory, of which three have achieved some preeminence.
The notion of the core focuses on the question of where economic blocking power

resides within an actor-set in which coalition formation is permissible. However, this

model employs the notion of a ‘value’ for every coalition that does not depend upon
the behavior of the complementary coalition.
The notion of a Nash equilibrium suffers from this shortfall in another way. It deals

with a decentralized actor-set whose participants have agreed to act simultaneously,
but with no other form of contracting allowed. Moreover, the modelis ‘full information’
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1.2.2. The interpretive filter

An actor’s perception of current truth and future likelihoods is colored

not only by his (imperfect) information about the present, but also by

his experiences and understandings of the past. Heuristically speaking,

these constitute the interpretive filter through which ‘rawdata pass on

their way to becoming subjective judgment. Thus, two actors may look

at the same ‘horse race’ and prejudge its outcome quite differently, each

according to what he ‘knows’ at this moment in time. In particular,

a professional speculator will specialize in obtaining relevant informa-

tion as a primary inputto his decision process. But he acts finally because

he believes that his judgments are more accurate than others that may
currently prevail, and this wisdom is based upon his cumulative past

experiences with, and ‘savvy of, the information-gathering activity.

Average long-run return to ‘betting’ or speculative activities is not so

much a matter ofluck asit is one of better perception, and thus depends

upon the accuracy of both data collection and its interpretation.

1.2.3. The bankruptcy endpointand risk-avoiding behavior

With respect to attitudes on the bearing of uncertainty, it would appear

from the existence of a wide variety of insurance markets and from a

host of nonmarket ‘insurance-surrogateactivities that we shall explore

below that choices are biased, by and large, toward a preference for

‘security, whenever the (opportunity) cost of achieving this is not too

high. This tendency toward risk-avoiding behavior(as characterized, in

the ‘simplest’ case, by a concave utility-of-wealth indicator) may be

understood in the following way. Suppose an act may result either in a

favorable outcomeor, as events might haveit, in an unfavorable one.

This unfavorable contingency, if realized, would bring the decision

in spirit since the option set for each is knownto all. The solution concept is then
developedin termsof(statistically) mixed strategies which, becauseofthe full informa-
tion and simultaneity assumptions, do not depend upon ex ante anticipations of ex post
reactions. This is the game-theoretic analogue of the instantaneous tatonnement
concept of a market.
The notion of a Nash bargaining game does attempt to accountfor the presence of

threat and counterthreat possibilities in the sense that this is tacit backdrop for the
formal description of the model. Because of such mutually sub-optimal possibilities
the solution concept revolves on finding a ‘fairly’ bargained division with respect to a
distinguished starting point (the status quo). Again, however, the modelis full informa-
tion in spirit.
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maker closer to the ‘bankruptcy endpoint’ of the “endowment(or wealth)

half-line’ on which all economic actors necessarily live. This endpoint is

‘fuzzy’, of course, because the meaning of bankruptcyis itself a matter

of context, but its presence and import for the decision makeris clear

enough in a world that does not support the debt of (demonstrable)

paupers without limit'*. In such a world, bankruptcyis (and is seen by

all as) an absorbingbarrier: the closer one comestoit, the more difficult

(in a stochastic sense) it is to escape; once there, the supply of credit

to the actor in question, and therefore his effective opportunity for

escape, vanishes altogether. Given this sort of environment, we might

expect an individual to be more protective of his current wealth (as

measured, say, by how much he will pay for any ‘test’ gamble) the closer

is this endowment to his bankruptcy endpoint’*.
To illustrate this net of ideas, it may be useful here to have an 1m-

pressionistic look at how imperfect perception andrisk-averse attitudes

affect some aspects of economiclife. The general theme1s that economic

actors are often perceptively boundto the local circumstances in which

they find themselves and that aversion to unknowncircumstances has

a tendency to promote ‘middle-of-the-road’ policies that remain stable

over time. We shall have more illustrations in section 1.3.

1.2.4. Entry

The nature of the capital decision is that liquid resources must be

embodied in those specific non-liquid forms that are called for by the

process and, once this precommitment takes place, the return to real

productive capital is thereafter inextricably bound to the market fate

of the process at hand. In neoclassical language, we may say that un-

certainty associates to long-run equilibrium price. (For simplicity; more

precisely, uncertainty associates to the profit stream.) If this price should

realize substantially smaller than would be necessary to justify the

capital decision, then the firm maybe forced into bankruptcy. Of course

a decision to expand is taken in view of this possibility and rests upon

entrepreneurial judgment concerning prospects for success.

The entry decision is something more than just a garden variety

limiting case of the generic expansion question because of characteristic

'2 This would be seen as an inferior risk by the market that faces our Principal Actor.
'> Cf. the remarks of Professor Ross (chapter 6) for a complementary view of this same

question.
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differences in the nature and magnitudeof associated uncertainties. To
begin with there ts the quantum character of the real-productive capital

requirementitself, which is typically bounded from below because of

set-up indivisibilities or for other reasons having to do with economies

of scale. This induces an uncertainty atom of corresponding magnitude
that contributes to the fundamental entry barrier; i.e. an entrepreneur

must be prepared to accept this atom of uncertainty or find others to

share its incidence. In addition, however, a new entrant must survive

the rigors of the birth processitself, and thus faces a spectrum of prob-

lematic questions that established firms have already weathered. These
have to do with initial bugs in the production/marketing process, and

with establishing market position in the company of less vulnerable

rivals who may act to frustrate this purpose. To meet these and other

such contingencies an entering firm must maintain sufficient internal

flexibility in the form of liquid and semi-liquid reserves: external credit

is typically limited for a firm that has not yet demonstrated its earning

power (we shall return to this credit aspect just below). Thus, while

prospects for a successful passage through the birth canal enhance with

scale of flexible reserves, the barrier to entry increases as well.

The entry decision in respect to human capital has similar features,

of course. In this connection we may emphasizetherole of risk-aversion,

which has obvioussignificance for the question of occupational choice

and, thus, interesting implications for the theory of profit and distri-
bution.

1.2.5, The credit constraint

Bankruptcy is a natural Darwinian feature of the economic process;

firms do fail for their inability to survive random shocks in market

environment. Thus, the random profit flow of any given firm may some-

times be negative. This could happen whenever productionis interrupt-

ed'*, for example, or because of random shifts in demand!>. If such

conditions should continue of sufficient magnitude over a sufficiently

long period of time, and if survival prospects should appear to be thus

'* Say due to the nonavailability of essential inputs, or to a sudden prohibitive rise in their
costs.

'* Perhaps because of a shift in tastes, or aggregate income (when incomeelasticity is
greater than 1), or due to the advent of new substitutes that render the firm’s current

operations uncompetitive.
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dimmed, then the firm may be forced into bankruptcy. Indeed, as we

have remarked moregenerally above, this possibility is self-aggravating:

risk-averse investors and creditors will not support a firm that appears

to be headed for economic ruin. Thusthefirm faces an externally imposed

credit constraint which assumes binding force at precisely the worst

momentso far as the question of the firm’s survival is concerned'®.
Of course the result of bankruptcy is that owners would lose their

equity and managers would lose their employment(as well as jeopardize

their possibilities for similar future employment). Given this, and in

view of the credit dynamic just noted, firm management 1s moved to

take internal arbitrage measures in precaution of debilitative market

shocks. In respect to the profit stream, for example, firm management

has operational control over its intertemporal! distribution through

choice of dividend/investment policy. Realized profits are divided

between dividends (discretionary current period return to owners) and

investment, where investment may be undertaken so as to promote the

vitality of the future profit stream'’. The point is that the uncertainty
characteristics of this stream are not independent of investment path,

and the tradeoff between current dividend versus (uncertain) potential

for continued dividend-generating vitality is a reflection of managerial

risk preferences on this matter’®.

'© Of course this contrasts with the ‘perfect everything’ view which holdsthatfirms do not
face a budget constraint. Rather, inputs may always be purchased — through borrowing,
if necessary — so long as present discountedvalue of the profit stream is positive.

In the real world, however, the presence of a potential externally imposed credit
constraint leads the firm to self-impose a limitation on both the amountandtherate of
borrowing so as not to jeopardize its borrowing power at times when credit1s critical
for its survival. This policy decision — which depends uponcharacteristics of the debt-
equity market — sets the firm’s short-run budget for operating capital purposes.
We may have demand uncertainties in mind, for example, where advertising flow (as
viewed in this investment role) has some positive effect on (random) sales flow, and
wherethe ability of the firm to withstand random market shocks dependsin a positive
way on its relative market position. We shall discuss other conditionalizing mecha-
nisms in the section that follows.
This replaces the simpler perfect foresight notion that firms act so as to maximize the
present discounted value of their profit streams. Of course this rule is predicated on the
idea that all actors (and especially those who supply capital) perceive the same stream,
and that there is no uncertainty regarding its ‘premature’ truncation due to bank-
ruptcy.

18
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1.2.6. Price formation

Weobserve stable prices in a wide variety of real world sectors. While

traditional theory must regard this pricing phenomenon as something

of a theoretical anomaly, such policies make clear economic sense once

it is recognized that they are implemented under and haveinfluence

upon intertemporal uncertainty.

Whena firm produces consumer goods, for example, it may prefer a

stable price policy on the basis of the behavioral characteristics ofits

generic buyer. Consider a population of ‘information myopicindividuals
whose natural perceptive capacities — relative to the complexity of the

world in which they live — are limited. Quite heuristically, we may have

in mind that what an individual ‘knows(is aware of, however ‘vaguely’)

is a‘ “diminishing function”ofgeneralized experiential and psychological

“distances” ’. This intrinsic form of uncertainty is reducible to some

extent through the acquisition of data but, even so, costs of search are

positive and personal resource endowments are limited. Since trans-

actionscosts are also positive, individuals ‘come to market’ at their own

discrete time epochs and do so byfirst visiting those firms which,

according to their subjective preconceptions, offer greatest ‘promise for

satisfaction’. If these confrontations between preconception andreality

(now immediate, and therefore well-perceived) are not sufficiently

‘disturbing’ to warrant further search, then planned purchases will be

(moreorless) carried through. These experiences, in any case, contribute

to the preconceptionsthat will operate at future (individual) purchasing

epochs.

Now suppose that a firm sells consumer goods or services on an

essentially repetitive basis (for example, a restaurant, or a grocery store)

and has decided upona stable price policy. This firm may well acquire

goodwill capital in the form of a ‘clientele’ market; ie. its random

demand flow is drawn from a sub-population that contains some

significant ‘core’ of firm-loyal purchasers. The explanation is simple

enough: in the absence of reasons for searching out other firms, many

consumers may prefer to continue purchasing underrelatively familiar

conditions. More preferable conditions may well exist, but not so far

as our ‘myopic’ consumeris aware (or is disposed to search out). The

'? In general, when discrete individual purchase plans are (randomly) aggregated over a
population stock, resultant demandactivity has the character of a random flow.
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habit effect, in other words, may thus be understood as a generalized

form of risk-aversion in the context of a heterogeneousand differentially

perceived world. By ignoring random short run signals to raise price

(so long as these are thoughtto be‘transitory’), the firm does not chance

a long-run contraction in its clientele market; for once a consumeris

driven to search elsewhere, he may neverreturn (the habit effect again,

this time under more preferable conditions, newly discovered). On the

other hand, because demandvisits our modelfirm as flow, a randomly’°

timed short-term reduction in price may not have anything like the

immediate and dramatic impact that follows under perfect information

assumptions, especially if it is true that event-specific advertising and

word-of-mouth diffusion effects amount to little more than random

noise.

A stable price policy thus appears to reduce uncertainty for both

buyer and seller: what the buyer has experienced before he expects to

experience again; andthe firm hopesto secure a relatively stable future

profit stream through the isolation of its market.

Whena firm produces intermediate goods, on the other hand, pref-

erence for a stable price policy may stem from different reasoning. In a

world of uncertainty firms do face an operating capital constraint (cf.

footnote 16) which is divided between actual production activities and

supporting precautionary and speculative reserves that are intended to

promote the continuity of product flow at minimum cost. Thus, buffer

input inventories may be held against the possibility of bottleneck

shortages. Or, even when the bottleneck question is not at issue, input

inventories may be speculatively purchased at low-price moments.

In general, inventory costs tie up operating capital-time and thus reduce

average rate of product flow (therefore also average quantity of inputs

purchased). When these considerations obtain for the buyer of an

intermediate good, the supplier firm may be led to prefer an inter-

temporally stable pricing policy which it supports by carrying sufficient

inventory to meet ‘normal randomfluctuations in demand; it is typically

the case that the seller enjoys comparative cost advantagesin the storage

of its product. For the supplier firm such policy eliminates demand

uncertainties that would otherwise derive from speculative assault on

its product. On the other hand, such policy eliminates the speculative

20° End of season ‘clearancesales’ do notfall underthis rubric.
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motive for the buyer and diminishes his concern with respect to the

precautionary question. If the incomeeffect that associates to a stable

(as opposed to a random)price policy offsets the concomitant costs of

storage for the supplier, then he will adopt a stable price policy which

— under competitive influences ~- is preferred byall.

In addition to the foregoing there are reinforcing game-theoretic

considerations that may also obtain regardless of the nature of the

product. From the viewpoint of rival firms in an oligopolistic setting,

price policy is one of the most ubiquitous and visible aspects of both

firm operation and game-strategic ‘intent’. Generally speaking, a history

of stable prices not only reflects the feasibility of using standby capacity

and operating inventories as buffers against random shocks, but may

also suggest that rival firms find it mutually beneficial to thus weaken

the possibility of spontaneous price warfare (regarded as suboptimal

by all).

1.3. Structural Responses to Uncertainty

As with any other science, the wellspring for economic theory 1s, of

course, the real world. Economic actors face, generate, influence and

bear uncertainty in many ways. To explore the broad theoretical impli-

cations that follow from the presence of uncertainties we may be guided

as to questionsof significance by the structural mechanismsthatexist for

their manipulation. This is our approach in the sketch that follows.

To mitigate the impact of undesirable (and personally incident) con-

tingencies, an actor may hopeto trade the uncertainty atoms to which

they associate in markets that are expressly constituted for this purpose;

or he may attempt to influence contingency likelihoods and/or to

mitigate contingency impacts through structural changes in the atom

that are within his powerto effect. On the collective level, society has an

interest in lessening the impact of uncertainties on-its members, and in

particular for those who would appear to havethe least ability to bear

them. Legislation and other social mechanismsare institutionalized to

protect such unfortunates, while to governmentfalls the more active

discretionary welfare role: through direct policy intervention, govern-

ment promotes greater stability and less uncertainty in the economy

and, when necessary, also acts as an insurer of last resort. We shall
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have a closer look at these market and non-market mechanisms in the

subsections that follow.

1.3.1. The markets

An atom of uncertainty may associate to the future market value or

profit stream of a real productive asset. If capital requirements for this

asset are so large that no oneactoris willing to assumethe full burden

of undesirable contingencies, then the securities market provides a

mechanism for sharing the financial incidence of the atom howeverit

may resolve. An investor simply chooses his own scale of incidence,

according to his attitudes on risk-bearing and his perception of the

atom, and in view of current market price and his own endowment?!.

The securities market thus plays an essential economic role with respect

to uncertainty that (1) arises in the productive sector, and (ii) is pre-

dominantly borne by risk-averse investors; by diffusing the financial

incidenceof‘large-scale’ atoms, risky activity is the more readily under-

taken.

Of course the ‘common’ sharing of an uncertainty atom maystill

appear too risky for some, and a spectrum of financial instruments will

frequently arise so as to discriminate prevailing risk-bearing attitudes

and perceptive judgments in an ‘optimal way. Thusa corporation offers

debt instruments as well 4s commonstock. The former havepriority in

the event of bankruptcy, but will pay a prespecified interest however

large are the returns to total capital. The terms of these instruments are

adjusted by management so as to optimize the (uncertain) returns to

capital (relative to the ‘predominantly held’ risk attitudes of its equity

holders, say, and subject to other characteristics of the capital market).

Not every uncertainty atom of the asset type can, however, be shared,

nor may an owner wish to have it shared. A ‘sharing’ market may not

exist when the service-producing flow of an asset is intrinsically in-

divisible; home ownership Is a case in point. But even whenthesecurities

market for such an asset does exist it may function quite weakly when

the control of that asset is tied to a decision-making unit for which a

significant question of moral hazard is involved. The case of human

capital is an important example. Since indenture by contractis illegal,

*! For example, when uncertainty associates to the future spot price of a given commodity,
producers may wish to hedge byselling some part of their product on its current
forward market.
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the possibility of ‘irresponsible’ or incompetent behavior on the part

of a debtor becomes a significant consideration for any lender. In
consequence, loans are small scale and are offered only to preferred

risks; left to itself, the capital market provides for an underallocation

in human development. On the other hand, even when an uncertain

asset is market-sharable, a decision maker may prefer to retain full

ownership of that asset. Of course this will happen wheneverits current
market value is too low in view of the decision maker’s speculative

judgments concerning atomic resolution. The classic example is Knight's

entrepreneur. To this person, who is more willing to bear the uncer-

tainty than anyoneelse, falls whatever profit may obtain. An entre-

preneur may also chooseto retain full ownership if this is linked by

investors to his latitudes for managerial control. Schumpeter’s entre-

preneur is one whoearnshis profits by transforming his uncertainty

atom through inventive means that are not perceived by others at the

crucial time; the point is that he must be free to implement these means.
Whether the decision maker purchasesor sells an uncertainty atom,

or some share of an atom, depends upon howhebelievesit may resolve.

Before deciding, he may have some antecedent options for acquiring

further information. He may simply let some time go by in order to

observe the atom in evolution, as for example in the case of any new

prospectus. Or he may perform some small scale test after the fashion

of a Bayesian, to better determine what may already be the ‘truth’, not

yet discovered; for example, an oil firm will test a new field by sending

down a few taps. Or he may decide to search out possible substitute

atoms, to better assess the merits of the one in question; the search for

a better job opportunity and the search for the minimum price are

familiar examples. Such measures for the acquisition of decision-

relevant information are typically limited in principle, especially when

an atom cannotberealized except over time. But even whenit is possible

to know an atom in perfect detail — as perhaps in the case of the oil

firm above — this process may be too costly to effect in practice. A

decision maker must weigh the costs of acquiring information against

the perceptive benefits gained from it; he may accordingly choose to

face some ‘residual’ uncertainty rather than incur the cost of further

search.

A securities market provides for the commonsharing of a given atom,

howeverit may resolve. An insurance market, on the other hand, pools
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resources from a class of atoms that have commonuncertainty character-
istics in respect to an unwelcome and well-specified contingency E.
Moreparticularly, it is usually the case that random realizations of E
within this class are thoughtto be ‘reliably’ governed by stochastic law,
and that one such occurrence bearslittle or no causal relation to any
other. Then membersofthis class may pool insurance premiumsex ante
to spread the impact of realizations ex post; these would otherwise fall
on the unfortunate few. Each atom bearer will pay a small known
premium in exchangefor mitigating the possible impact ofa substantially
larger loss. In most cases this function is orchestrated by insurance
firms because specialization enables them to take better advantage of
the law of large numbers,andit is this law on which the insurance idea
rests. By reducing the financial burden ofat least some sources oflarge-
scale shock, the insurance markets thus allow both households and
firms to specialize in their respective consumptive and productive
activities without having to precommit large contingency reserves.
Indeed, such requirements could be prohibitive in the absence ofinsu-
rance possibilities, and some atoms might not be held in consequence.
Insurance markets thus’have a qualitative effect on aggregate scale and
scope of economic activities similar to that which is promoted by the
existence of securities markets.
The market for a particular contingency E mayfail to form for a

variety of reasons. It mayfail to form if its base (those who chooseto
insure) is notsufficiently large. Since the ‘risk (or loading) component
of an insurance premium varies inversely with the size of the base22,
and demand for insurance varies inversely with premium, this implies
a threshold size for the class in question below which its market will
not form. |
An insurance market mayalsofail to exist by reason of moral hazard:

according to Arrow,in situations(i) where the occurrence ofE is in some
measure subject to the behavioral influence of the insured, and (ii) when
the insurance policy might (by its very availability) alter incentives and
therefore the probabilities upon which the insurance company must
rely. The existence of fire insurance, for example, might induce some

*2 This would follow, for example, if the decision rule for determining the load involved
covering a selected ‘loss interval’ in the Neyman-Pearsonsense. The pointis that the
distribution for average (per-atom) loss peaks more sharply toward its mean as the
size of the base increases.
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people to be less careful with matches. The point 1s this: in the absence

of effective means for.inspection and control, this generates a ‘morally

inflated’ probability number p(E). The market for E may function

nevertheless, but if so the insurance premium is perforce inflated in both

its actuarial and loading components, the latter because per-atom losses

relative to the mean are inflated in the probability sense*’. The effect

on demandis as before. Indeed, an insurance market may not form at

all if the effects of moral hazard are unknown in

a

stochastic sense

(historical data do not exist) and when subjective assessments for p(E)

are, in consequence, too large to support the market. In the same way,

insurance markets are typically nonexistent for contingencies that

depend not only upon the behavior of a would-be insuree, but upon the

behavior of other economic actors as well. Such endogenous uncer-

tainties are usually singular for the situation at hand and, in general,

cannot sensibly be described according to stochastic law.

It is sometimes possible to increase the base of an insurance market

through the elimination or reduction of moral hazard, provided that the

costs of doing so (these are typically passed on to the insuree) do not

offset the demand effect of a lowered net premium. Commonpractices

include inspection and control, and coinsurance. Insurance companies

generally offer lower premiums to those that choose a policy with a

deductible or some other form of coinsurance (of course there is no

transaction or enforcement cost here). To purchase life and health

insurances it is not uncommon that health examinations are required.

In the case of fire insurance, buildings may be subject to periodic

inspection and to theinstallation of appropriate fire prevention equip-

ment.

When an insurance market fails to exist (or when its premium is

prohibitively large), an atom bearer may chooseto self-insure by filling

his portfolio with assets that are both ‘uniformly more secure’ (than the

atom) and‘sufficiently liquid’. Thus the savings activity is, in part, a

homemade form of‘catch all insurance. In the case of the nonexistence

of a particular insurance market, savings may be less efficient than

purchasing a more specialized insurance against E (were this possible)

23 While the use of variance as a surrogatefor ‘risk’ is well known to imply somestrikingly

counter-intuitive results, we may chance an appeal to it here for heuristic purposes:

the variance of a binomial distribution increases as p(E) > 4. It is interesting to note

that the typical insurance market is one for which p(E) is ‘small’.
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but may be second best in the insurance sense. In the event that self-
insuranceis not feasible, then these uncertainty atoms will not be held
and the associated economicactivities will not be undertaken.

1.3.2. Private non-market mechanisms

While the factors that contribute to the resolution of an uncertainty
atom may be exceedingly complex and in someintrinsic measure beyond
the determination of its bearer, he may nevertheless have optionsforits
strategic transformation; for the creation of a new isotope, as it were.
The theory of the firm, as before, is a good vehicleforillustrating the
conditional nature of uncertainty.

Firms have a variety of control instruments for manipulating the

uncertainty characteristics of both revenue and cost streams. These

include inventory, employment and price policies that are designed(i)
to influence, channelor better define the behavior of those who populate
the firm’s markets, and (ii) to organize production in an optimal way.
Oneof the most prevalent internal instruments for these purposes — basic
for production processes that flow over time — is some form ofthe buffer
inventory or standby capacity mechanism. By these devices the firm

may smooth its product flow in the face of randomly fluctuating market

conditions. When output is storable, say, then current sales are taken
from buffer stock and this is replenished at the least-cost?* convenience
of the firm. Or the buffer role may be shared by the existence of standby
capacity and other input stocks. When output cannot bestored, as in
the production of electricity for example, then factor reserves assume
this role alone. By thus internalizing ‘small-scale’ shock, the firm is able
to achieve a more stable relationship with the outside world. Wages,
input employment rate and output price — as ‘external connectors’

under firm control — may remain relatively stable. So far as the firm is
concerned, such stabilities not only help to reduce production costs,
but may also increase revenue by promoting the accumulation and
conservation of goodwill capital (i.e. its markets).
On the input side of the picture, the firm may attempt to secure the

relative smoothnessoffactor flows. By contracting with a supplier as to

** If, for example, random fluctuations in demand are sufficiently regular, and short-
run average production cost is sensitive to scale, then a smooth-production-and-
buffer-inventory policy will be cost minimizing in the stochastic sense.
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quantities, prices and delivery dates, both parties tie down at least some

aspects of their respective uncertainty atoms. The supplier is now more

sure of demand; the firm, of supply. Such simultaneous contractual

determination of both quantity and price may appear to be an over-

determination from a tatonnementview of the market. But when markets

flow over time and evolve under conditions of uncertainty, actors may

choose to make some precommitments based upon their own judgments

concerning priorities and their ability to meet these commitments,

rather than chancing what might otherwise turn out to be ‘opportunities

forgone’. The pointis that such contracts constitute only a proper subset

of all transactions, and are undertaken between actors among whom a

‘priority’ relationship exists. The price-guided allocation mechanism

continues to function, but its cutting edge is composedof those trans-

actions that retain the ‘spot’ character of conventional market theory.
These ‘transactions on the intertemporal margin’ absorb thefull brunt

of market uncertainties, while those under contract follow developing

trends when the time for recontracting falls due.

The mechanism for securing labor supply is necessarily somewhat

different because of the human non-indenture aspect noted earlier. But

an entrepreneur may nevertheless be willing to enter a one-sided

contract that obligates him in respect to wages and other conditions of

employment (though typically not so far as long-term duration of
employmentis concerned, for obvious reasons). In particular, by offering

a constant wage that does not depend upon random realizations of

revenue flow, the firm thus accomodates the ‘smooth consumption

stream’ preferences of its labor force. If, on the other hand, labor were

paid according to its randomly fluctuating value of marginal product

(as computed ex post according to actual sales), then higher turnovers

and training costs might result with (random) short-run changes in

demand; the grass may appear to be greener with respect to employment
opportunities elsewhere. Of course random layoffs could result in even

more dramatic losses in firm-specific human capital. Firm management

is thus under a strong incentive to implement production techniques,

inventory mechanismsand wage policies that promote the continuity of

employment. When this continuity is threatened by laboritself, in the

form of an organized threat to strike, then bargaining in goodfaith is a

mechanism for working out management/union differences with no

interruptions in product flow.
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Onthe output side of the picture, as we haveseen, firms will attempt

to create income and goodwill effects for their consumers by maintaining

a stable price policy. In addition, such a policy diminishes the likelihood

of debilitating price competition.

1.3.3. Industrial and social organization

The ability of a firm to control future market conditions is of course

limited. A particular market may have life and death characteristics of

its own which are simply beyond the influence of the firm. Rather, the

sense of influence is reversed, and this contributes in someessential ways

to the organization of the productive sector. In general, firms have a

tendencyto structure so as to internalize and thus reduce the impact of

intrinsic production and market uncertainties. More particularly, this

is commonly achieved through the risk-smoothing characteristics of size

and diversification.

With respect to the production processitself, for example, contingency

reserves of one form or another (output and input inventories, spare

parts and maintenance pools) increase proportionately less than scale

because the uncertainties that call them forth increase in the same way.

With respect to the markets, there are a variety of typical organiza-

tional forms and optimal strategies that arise in response to character-

istic market uncertainties. Market demand for any given commodity,

for example, may be subject to sudden and permanentcollapse; its

market day in the sun may vanish undera shift in tastes or because of

technological advances that render it economically obsolete. The firm

diversifies its product mix so as to divorceits fate from that of any one

product line and, more generally, in order to isolate its markets in the

long run from uncertainties of the substitution type.

In addition, a firm may face the uncertainty of securing raw materials

during times of prosperity and distributive outlets in times of recession.

The impact of these contingencies depends upon relative market power

in respect of global transformations of the competitive environment.

Thus an increase in scale, perhaps through horizontal merger, may

provide sufficient mass not only to weather such circumstances but

indeed to capitalize on them to further improve competitive position.

The firm may also consider shifting such uncertainties backward and

forward through vertical integrations, at which loci they may pose a

diminished threat to long-run survival. When this appearsto be the case,
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such benefits must still be weighed against the costs — and, indeed, the

uncertainties — of entry into new and specialized activities. In this

connection it may prove optimal to arrange for something less than full

integration; the franchise and principal/agent mechanismsare familiar

examples”°. By preserving the profit incentives that attend a decentral-
ized structure, this sort of arrangement allows both parties to focus

upon their comparative advantages for dealing with source-specific

uncertainties, while at least some of the (dual) uncertainties that would

otherwise obtain at their common transactions node are ‘washed away’

according to the provisions of the contractual arrangement. A national

manufacturer, for example, has the size to buffer uncertainties that

relate to the availability of inputs; its regional franchised outlets are

better suited to dealing with local variations in demand. Anindividual

franchise operatoris assured of perfectly elastic supply up to some limit

at prespecified price. The parent firm, on the other hand, enjoys demand
stability through decentralization. Moreover,this decentralized and pro-

fit-sharing marketing structure promotes an optimalvaluefor total profit,

with tradeoff between short-run profit and total market shareat the stra-

tegic option of the parent(through choiceofcoststo its franchised outlets

and subject, of course, to uncertainties that associate to its own costs).

While vertical and/or horizontal reorganization thus enables a firm

to insulate itself from market uncertainties, these uncertainties may

remain undiminished for weaker rivals to bear in full. An oil shortage,

for example, whatever its origin, impacts first upon the ‘independent’

companies; these depend uponallocations from the reserve inventories

of the ‘major’ companies, and the order of priority is perfectly clear.

This last example illustrates a phenomenon that holds in greater

generality. By way of reducing uncertainties that attend to their own

environments, risk-averse actors often succeed in shifting them for others

to bear. This contributes an interesting. dimension for a welfare-con-

scious society, since uncertainties are typically shifted to and are borne

by those for whom an unhappyrealization would have the greatest

relative impact*®. We have noted above that in the productive sector

25 Contractual arrangements between buyers andsellers are more restrictive in nature,
they constitute a surrogate for vertical integration when the costs of such integration

are considered to outweigh their benefits.
© Strictly speaking, the freedom to impose such externalities is implicit for a laissez faire

system.
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this sort of dynamic promotes the growth of monopoly power, and
conversely. This tendency is countered to someextent through anti-trust
law, which delimits at least some formsof integration.In this way it may
be possible to prevent the shifting of contingency burdens and thus
preserve a small firm sector that would otherwise tend to shrink.

Society sometimes provides institutional relief for individuals who
act myopically or who mayexperience personal difficulties that could
not ‘reasonably’ have been prevented. For example, Aid to Families with
Dependent Children provides some help for single parents whofindit
impossible to rear their children with sufficient material sustenance;
Medicare and Medicaid provide relief for the indigent, the aged and the
poor. A welfare society might rationalize these and other such transfers
as the ‘indemnity’ of a grand insurance scheme, with ‘premiums’ supplied
through tax moniesat large. Welfare-conscious individuals maycollect-
ively reason: there but for the vicissitudes of life goes any of us. Un-
employment compensationis similar, except that employers are required
to contribute to the fund; the productive sector thus assumes partial
responsibility for insuring its work force against layoff. Social Security,
on the other hand, requires individuals to assume responsibility for
their own retirement years. Thisstatistically rationalized and globally
based insurance program provides minimal subsistence benefits for
those elderly who will turn out to have suffered an inability to escape
from a neighborhoodof poverty.
A welfare society also challenges the traditional dictum of caveat

emptor, on the argument that the subtleties of misrepresentation are
easier to practice than they are to recognize, especially by individuals
whose competence and resources for this purpose are naturally limited.
Thus some information/watchdog activities may be more efficiently
dispatched in the public sector. Pure food and drug legislation is a
familiar example; the licensingorcertification of a variety of specialized
agencies (physicians, lawyers) is another.

Because of its enormouscapacities for absorbing shock,the state often
functions as an insureroflast resort. It is common practice, for example,
to provide ex post relief for entire communities that have been struck
by natural disaster. In addition, the state may subsidize some insurance
programs that would not otherwise function adequately from the social
point of view, perhaps because of significant possibilities for moral
hazard, but in any case when nonsubsidized premiums would be so
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large as to discourage the participation of a socially optimal base. Health

care insurance is a case in point.

Finally the state, uhrough direct intervention, plays a uniquerole in

maintaining the stability and reducing the uncertainty of the general

economy. Through the use of automatic stabilizing mechanisms and

other monetary andfiscal policy instruments, it thus attempts to ‘correct’

and stabilize random fluctuations in macrovariables, especially those

which maysignificantly affect investor confidence, and to move the

economy away from a suboptimal equilibrium. The state may also

employ transfer mechanisms such as investment credit and a preferred

rate for capital gains so as to mitigate uncertainties for risk-averse

investors. It may focus on a particular target sector through the use of

policy instruments that effectively reduce or reshape the uncertainties

of that market. The price support of agricultural products and the soil

bank program operate to stabilize activity in the farm sector, where

production and investment are particularly sensitive to changing

market conditions; in this case the concomitant manipulation of

inventory reserves is, perforce, administered by the state.
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CHAPTER 2

ON THE FOUNDATIONS OF DECISION

MAKING UNDER UNCERTAINTY

Peter C. Fishburn

2.1. Introduction

This paper is an exposition of the conditional subjective expected utility

theory for decision under uncertainty developed in ref. [9]. The formu-
lation used in the theory is based on three things: acts, states and

extraneous scaling probabilities. The last of these is included for ma-

thematical tractability and with an eye on the scaling of utilities as

suggested by the expected utility theory of von Neumann and Morgen-

stern [6, 11, 25]. Further discussion of extraneous scaling probabilities
will be deferred to section 2.3, following a more complete treatment of

the basic act-state viewpoint that underlies our theory.

The act-state viewpoint that we shall adopt has early traces in the

developmentof theories of gamesof chance and insurance,andis greatly

influenced by Savage’s formulation for personalistic decision theory 20].

In this formulation, an individual decision maker is to select an act

(which might specify a sequence of actions to be implemented over a

period of time) from a set F of acts when the holistic outcome or conse-

quence of his decision depends both on the act selected and on which

state in a set S of mutually exclusive and collectively exhaustive states

of the world obtains (occurs, is realized, is the ‘true state’). It is generally

presumed that the decision makeris uncertain about whichstate is the

true state and that this state (the state that obtains) is not itself affected

by the act that is implemented. Jeffrey [13, 14] criticizes this latter

aspect of causal independence between acts and states and develops a

theory that allows for interdependence in the sense that the decision

maker’s probability measure on the states can differ depending on which

act is selected. As noted elsewhere [6, 16] it is always possible to re-

25
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formulate an apparently interdependentsituation in such a waythat the
presumed type of independence is obtained, even though a much more

cumbersome arrangement may result from such a transformation.

Although our formulation derives from Savage's, it differs in one

major respect. In his theory, which is detailed in his book and in the

final chapter of ref. [6], each act is a function from S into the set of
consequences. Weshall use act-state pairs rather than consequences.

This change is caused by the fact that in most practical situations the

specification of an act and a state will not determine a unique conse-

quence. Thatis, there is residual uncertainty that is not removed by the

states formulation. Savage’s viewpoint can be seen as an idealization in

whichall relevant uncertainty is accountedfor in the definitionsofstates.

We have simply relaxed this ideal viewpoint.

Because of this relaxation, Savage’s notions of constant acts (which

assign the same consequence to each state) and other special types of

acts are inapplicable. This may be just as well since these special acts

do not often correspond to any real courses of action. Our approach

therefore sidesteps one of the most criticized aspects of Savage’s theory.

But in so doing, it necessitates the adoption of substitute procedures to

handle certain things that Savage deals with through the medium ofhis

special acts.
For one thing, we shall posit direct preference comparisons between

pairs of act-event pairs, of which act-state pairs are a special case.

Savage applies the individual’s preference relation to pairs of acts

throughout his development: comparisons which correspond to our

act-event comparisons are handled in his system by comparisons

between special types of acts.

Second, we no longer have the natural utility comparisons among

consequences underthe different states that prove so useful in Savage’s

and others [1, 5, 8, 18, 21] derivations of a subjective expected utility

model. Because of this, we shall use a special structural axiom that

permits some utility comparison between act—eventpairs under different

events.
These and other aspects of our formulation and theory will be devel-

oped moreprecisely in the next three sections. In the ensuing section we

shall consider our act-event formulation and conditional subjective

expected utility model apart from the use of extraneousscaling probabi-

lities and mixed acts. Mixed acts will be introduced in section 2.3 and
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used in our basic set of axioms in section 2.4. Later sections present

additional axioms and definitions which extend the usefulness of the

basic model.

2.2. Act~—Event Pairs

Since certain important aspects of the approach to decision under

uncertainty that we shall examine can be discussed apart from conside-

rations of extraneous scaling probabilities, we shall begin without the

latter aspect. With this omission, two primitive sets of our theory remain.

Thefirst of these is a set F of acts f, g,..., which are viewed asthe actual

or feasible courses of action open to the decision maker. The second 1s

a set S of states of the world s, s’,..., each of which describes certain

potential realizations of aspects of the decision maker’s environment

that are not subject to his control. Subsets of S$ are called events, which

we denote by A, B, C,.... The empty event is @. By ‘A obtains’ we

mean that some se A obtains, or that A contains the true state.

To effect some generality we shall not assumethat all possible events

are relevant to the concerns of the decision maker. Instead, we suppose

that the set of relevant events is a Boolean algebra « of subsets of S,

with S itself in «. This means that « is closed underfinite unions and

complements: if A, Bees, then AU Beg, and if Aes, then $ — A=

{s:se€S and s¢ A}is in ¢ also. Throughout, weshall let «’ = « — (@},

so that «’ consists of all events in ¢ except for the empty event @. For

Aeéé’, (A) = {A OB: Bese}is the Boolean algebra on A induced by«.
In this section the decision maker’s preference relation > is applied

to act--event pairs in F x «¢’. We interpret (f, A) > (g, B) as ‘f given A 1s

preferred to g given B’, or that the decision maker would rather do f

under the assurance that A contains the true state than do g under the

assurance that B containsthe true state.

There are several potential problems with this viewpoint. First, if

AnB= @, the comparison between (f, A) and (g, B) may seem to

require simultaneous suppositions that each of two incompatible events

obtains. Actually, when comparing (f, A) and (g, B) we would expect the

decision maker to imagine what might happen iff were used and some

state in A were the true state, and then realign his thoughts to imagine

what might happen if g were used and somestate in B were the true

state. His introspection about these two possibilities would then result
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in a preference (or indifference) judgment betweenthe two.In this light,

statements such as‘it is better to free Mr. Accused whenheis in fact

guilty than to convict Mr. Accused whenheis in fact innocent’ would

be considered relevant in our approach.

Second,if A and B are notidentical but have a nonempty intersection,

then there is the possibility that the desired comparison between (f, A)

and (g, B) might end up as a comparison between (f, A 4 B) and (g,

A  B) due to a conscious or unconsciouseffort to reconcile the different

conditioning events. Although such an effect might arise in practice,

it can be minimized in the scaling procedure by avoiding comparisons

between intersecting but different events’.

There is a third aspect of our use of > on F x é’ that, as far as I am

aware, is unique in axiomatizations of subjective expected utility. This

aspect involves the use of > with pairs (f, A) in which A, while not

empty, might be regardedas virtually impossible by the decision maker

and have zero probability in his subjective probability measure on «.

So long as A is not logically impossible or self-contradictory, and we

would expect this much of events in ¢ that are not equal to @, there

seems to be no a priori reason to exclude such events from comparisons

under >. For example, although you may assign zero probability to

the event that New York City will disappear into the Atlantic Ocean

before 1980, this event is not logically impossible (as of 1972) and it

may not seem unreasonable to consider preferences between act—event

pairs that include this event?.

2.2.1. A conditional subjective expected utility model

The numerical representation model for > on F x «’ that we propose

consists of a real-valued utility function u on F x é and finitely

additive probability measure* P, on e(A) = {A B: Bee} for each

Aeé’such that, for all fgeF and A, B, Cee’,

Since Savage’s theory applies > toacts, it might seem that his approach avoids prob-
lems of this sort. However, it appears that his system poses similar if not more serious
problemsby the way in which relevant comparisons are assumed betweenspecialacts,
which in manycases are unrealistic fictions that havelittle relation to available courses
of action.
See ref. [20], p. 39, for further remarks on this aspect.
P, is a finitely additive probability measure on the algebra ¢(A) if and only if
P(A) = 1, P,(B) 2 0 for each Be&A), and P,(BUC) = P,(B) + P,(C) whenever
B,C é&A) and BAC = ©.
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(f, A) > (g, B) if and only if u(f, A) > u(g, B), (2.1)
u(f, AU B) = P4. pA)u(f A) + Py. (Buf B) when AO B= @, (2.2)

P(A) = P-(B)P,(A) when A © BEC. (2.3)

Property (2.1) is the usual order-preserving property for utility.

Property (2.2) is an expectation equation. When A and aredisjoint,

it says that the utility off given A U B equals the weighted sum ofthe

utilities off given A and f given B, where the weights are the decision
maker’s probabilities for A and B conditioned on their union A u B.

(Note that P,4.,,(A) + P4.,(B) = 1, and that (2.2) allows the un-

conditional probabilities of A and B, P,(A) and P,;(B), to be positive

or zero.)

The natural extension of (2.2) is given by

u(f, A) = |4u(f, s)dP4(s). (2.2*)

The correspondentof this for our mixed-act theory is discussed in section

2.6. According to (2.3), if P(A) > 0, where P = Py, then the expression
displayed above is the same as

l
u(f, A) = P(A) {uf s)dP(s).

If P(A) = 0, this latter expression is inapplicable but the former ex-
pression is unaffected.

Property (2.3) is a natural chain rule for the P, measures, and it

plays an important role in extending (2.2) to (2.2*). For example,if A,,
A, and A,are three mutually disjoint events in e’ whose union equals A,
then (2.2) gives

u(f, A) = P(A, U Az)u(f, Ay U Aa) + PY(A3)u, A;)

= P(A, UV Aa)Pac 4(Aru(f Ay) + P4,c4/Auf A2)]

+ P4(A3)u(f, A3).

Property (2.3) applied to this then yields

u(f, A) = P4(A,)u(f, A,) + P4(A2)u(f Az) + P4(A3)u(f, A3),

which is a necessary prerequisite to the derivation of (2.2*).

It should be clear that we intend to obtain a probability measure P,

on (A) for each A ee’ regardless of whether the unconditional proba-

bility of A, P(A), is positive or zero. In fact it would be possible to have
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A, 2A, 2A... such that P4(A,) = 0, P4,(A3) = 0,..., with A;e8

for each i. When P(A) > 0, P, is completely determined from P by

applying (2.3) to get P,(B) = P(B)/P(A) for each Bee(A), but when

P(A) = 0, P, need not be prescribed by P. Nevertheless, it exists.

This has significance for the foundations of Bayesian decision theory.

For example, the outcome of an information-producing experiment in

a sequential process may have a smooth distribution with probability

zero for each outcome value. Nevertheless, some value will be observed

and further action will be based on this observation. Despite the zero
probability for each outcome value, our theory tells us that there is a

conditional probability measure over other aspects of the uncertain

states for each conditioning outcome value.

One other aspect of our model deserves mention, and that is the

question of uniqueness properties for u and the P,. Clearly, if F and S

are finite (or perhaps infinite), there may be more than one P that

satisfies the model, and u need not be unique up to a positive linear

transformation. For scaling purposes it seems desirable to ensure the

usual uniqueness properties by some means or another, and weshall

in fact do this through ourlater use of extraneous scaling probabilities.

2.2.2. Some implications of the modelfor > on F x &
Although formidable mathematical problems preclude presentation of

a set of axioms for > on F x ¢’ that imply the model of this section,

it may be instructive to examine a few of its implications.

Weshall say that a binary relation > on a set K is a weak order

(in the strict sense) if and only if > on K is asymmetric [a > b= not
(b > a)| and negatively transitive. The latter property says that for all

a, b, ce K, [not (a > b) and not (b > c)] = not (a > c) or, equivalently,

a>c=(a>b or b>c). Define ~ (indifference) and 2 (preference-

or-indifference) from > as follows:

a ~ bif and only if not (a > b) and not (b > a),

a = b if and only ifa > bora ~ b.

When > is a weak order, ~ is an equivalence (reflexive, symmetric and

transitive) and = is transitive and complete (a = b or b Za for any
a,b e€ K).

Three simple implications of (2.1) and (2.2) are:

IMPLICATION 1. > on F x &' is a weak order.
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IMPLICATION 2. IfA B= © then[(f, A) > (g, A) & (f, B) > (g, B)] =

(f, A U B) > (g, A Uv B), and [(f, A) Z (g, A) & (f, B) Z (g, B)] = (fA UB)
= (g, AU B).

IMPLICATION 3. IfAAB= Qthen(f AZLB)=(fFA) ZFAVB)=
(f, B).

The first of these should make it clear that we are talking about an
idealized individual with arbitrarily fine powers of preference discrimi-
nation, for in practice it seemslikely [7, 15] that indifference may not
be transitive, and there is evidence [22, 23] that even preferenceis not
transitive in certain situations.
The second implication specifies two ‘sure-thing’ conditions [20].

With A and B two nonempty disjoint events, the first of these says that
if you would rather dofthan g when A is presumed to obtain, and would
rather dofthan g when B is presumed to obtain, then you would rather
do f than g when somestate in A U B is presumedto bethetruestate.
For example, if you would rather go to a movie than stay homeifit
should be snowing outside, and would rather go to a movie than stay
homeif it should not be snowing outside, then you would rather go to
a movie than stay home. The secondpart of implication 2 replaces >
with = throughout.
The third implication is an ‘averaging’ condition [2] that tends to

average out considerations dueto different events. Suppose you consider
act f and, if you could specify which of events A and B would obtain,

you would specify A. That is, you prefer A to B given f, or (f, A) > (f, B).
Implication 3 then prohibits each of (f, A U B) >(f,A) and (f, B) >
(f, A U B), where (f, A U B) > (f, A) would mean that you would rather
specify A U B then A if you could ‘pick’ one of the two.

This might be clearer if we involve Howard’s clairvoyant [12], who
always knows whatobtains and nevertells a lie, and Savage’s preference

between newsitems [13, p. 72]. You are thinking of going to a movie

tomorrow night (act f), and are concerned about whetherit will snow.
When you consult your clairvoyant, he will present you with one of
three pronouncements:

A = ‘it will not snow tomorrow night’,

B = ‘it will snow tomorrow night’,
C = AU B ='J refuse to tell you what will happen tomorrow night’.
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Suppose, under commitment to do f, that you would rather hear A

than B. Implication 3 then says that you would just as soon hear A

as C, and that you would just as soon hearC as B.

2.2.3. Two more implications
In concluding this section we mention two other implications of the

model. These focus on the inclusion of nonempty events which are

considered to be virtually impossible by the decision maker.

IMPLICATION 4. If A A B = @, and if (f, A) ~(g, A), (6 B) > (g, B) and

(f, Av B) ~ (g, A U B), then (h, A U B) ~ (h, A)for allhe F.

IMPLICATION 5. IfA A B= @,if (f, A) > (f B) or (ff, B) > (f, A), and if

(f, AU B) ~ (f, A), then (h, A U B) ~(h, A) for all he F.

These implications derive, respectively, from the extreme cases allowed

by implications 2 and 3. Accordingto (2.1) and (2.2), if the hypotheses

of either implication 4 or 5 hold, then P,.,3(B) = 0, so that, by 2.2,

u(h, A U B) = u(h, A) for every h in F. Hence,by (2.1), (h, A U B) ~ (h, A).

In terms of the clairvoyant-snow example given above, the hypotheses

of implication 5, namely (f, A) > (f, B) and (f, A U B) ~ (f, A), signify

that no snowis preferred to snow under a commitmentto go to a movie

tomorrow night, but that B (snow) is considered virtually impossible,

which might be true if our decision maker lives in Miami and tomorrow

is July 1. If this were the case then the novelty value of snow might

well give (f; B) > (f, A).

2.3. Extraneous Probabilities and Mixture Sets

The third and final set used in the axioms of this paper is [0,1], the

interval of real numbers from 0 to 1. The numbers in this set, denoted

a, B,..., are viewed as probabilities for chance events that need have

no direct connection to the events in «. Appropriate extraneousevents

could be things like the event that a ball drawn at random from an urn

containing five red and 95 green balls will be red, or the event that a

pointer spun on a circular disk will come to rest within a specified arc

of the disk.

Our use of extraneous events or extraneous probabilities is by no

means novel in axiomatizations of subjective expected utility. Indeed,



Decision making under uncertainty 33

the first outline of such an axiomatization [19] uses an even—chance
event (intended to have probability 5) to scale utility, and Suppes’ later
‘completion’ [21] of Ramsey’s ideas employs the same device. Extraneous
events or probabilities appear in a numberofother theories 1, 4, 5, 8, 18],
and even Savage [20], while not explicitly incorporating such things in
his axioms, shows (pp. 38-39) how extraneous events can enter his
formulation of the set of states of the world.
The extraneous probabilities in [0,1] will be used to construct mixed

acts in precisely the way that is done in game theory [17, 25] or in
statistical decision theory [3, 24]. With f ge F, $f+ 4g is an even-
chance mixed act, implemented byflipping a fair coin and usingf if
‘heads’ or g if ‘tails’. More generally, each mixed act will be represented
by a simple probability distribution* x on F, with x(f) the probability
that f will be used if x should be adopted. For convenience weshall
refer to such distributions as Acts.

Ifx and yare Acts and0O <a < 1, then ax + (1 — a)y, the direct linear
combination of x and y with (ax + (1 — a)y)(f) = ax(f) + (1 — a)y(f)
is also an Act. ax + (1 — «)y could be implementedin onestagedirectly,
or be broken into twostages byfirst choosing x or y according to the
probabilities « and (1 — «) respectively and then implementing the
chosen one of x and y.

2.3.1. Mixture sets

Having introduced Acts, whose main purposewill be to provide struc-
tural support through extraneous scaling probabilities for the derivation
of the conditional subjective expected utility model, I will need no
further to refer to acts since each act fis represented by the ‘degenerate’
Act x that has x(f) = 1.

Going one step beyond this in generality, we shall use the Herstein—
Milnor [11] notion of a mixture set, which consists of a nonempty set X
and a function from [0,1] x X x X to X that satisfies the following
three axiomsfor all «, 6 e[0,1] and all x, yeX:

Ix + Oy =x, (2.4)

ax+(1—a)y=(1 — a)y + ox, (2.5)

afBx + (1 — By] + (1 — ay = afx + (1 — aB)y. (2.6)

* x(f) 2 0 for each fe F, ¥, x(f) = 1, and ¥, x(f) = | for somefinite subset G of F.
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Our interpretation of X will of course be that a, f, ... are extraneous

scaling probabilities and x, y,... are Acts. Underthis interpretation the

set of Acts is clearly a mixture set. In our axioms, > will be applied to

the set X x e’ of all Act-event pairs in which the event is nonempty.

(x, A) represents the composition of ‘doing’ Act x and having event A

obtain, and (x, A) >(y, B) is viewed in a manner analogous to our

previous interpretation of (f| A) > (g, B).

With X a mixture set and «¢ a Boolean algebra of events, the set

X(A) = {(x, A): xe X} for Ace’ can be viewed as a mixture set with

a(x, A) + (1 — a)(y, A) = (ax + (1 — «)y, A): the event A simply tags

along as an index. Thus X x «’ can be thought of as a family { X(A):

Aeéé'}of essentially similar mixture sets, one for each conditioning event

in ¢’. The importance of this viewpoint will be noted shortly.

In this connection it should be remarked that when A # B, the

expression a(x, A) + (1 — «)(y, B) has no meaning in our system. We

have deliberately avoided any notion of mixing different events in €’,

mainly because of the conflict that could result between the mixing

probabilities and the decision maker’s beliefs about the relative like-

lihoods of A and B containingthe truestate.

2.3.2. Linear utility

As a final prelude to our axioms, we recall the axioms of Herstein and

Milnor [11] for > on a mixture set. To make clear the connection
between their axioms and ours, and to indicate how their axioms will

be used in the derivation of our model, we state their axioms for > on

the mixture set X(A) as follows:

> on X(A) is a weakorder, (2.7)

{o:(ax + (1 — a)y, A) Z (z, A)} and {a:(z, A) Z (ax + (1 — ay, A)}

are closed (in the relative usual topology for [0,1]), (2.8)

(x, A) ~(y, A) => (gx + 32, A) ~ Gy + 32, A). (2.9)

For the given conditioning event A €é’, these are to holdforall x, y,

ze X. The second axiom,(2.8), is a form of continuity or Archimedean

axiom that is required to obtain a one-dimensional (real-valued) linear

order-preserving utility function. The third axiom is a weak form of

sure-thing axiom. Presuming that A obtains, (2.9) says that if you are
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indifferent between Acts x and y, then you should be (or will be) in-
different between Acts $x + $z and 4y + 42z.
As Herstein and Milnor prove, (2.7), (2.8) and (2.9) imply that there

is a real-valued function u on X(A) suchthat, for all x, ye X and we [0,1]

(x, A) > (y, A) if and only if u(x, A) > u(y, A),

u(ax + (1 — a)y, A) = au(x, A) + (1 — w)u(y, A).

Thefirst of these is similar to (2.1) in its order preservation. The second

is a linearity or expectation form. Whenit holds, we say that u is linear

on X(A). If u on X(A) satisfies the above expressions, then so does v

on X(A) if and only if v = au + b for real numbers a > 0 and b. We

abbreviate this by saying that u is unique up to a positive linear trans-
formation.

The first three axioms in our system imply (2.7), (2.8) and (2.9) for

each Ace’. Hence, for each Ace’, there is a linear order-preserving

function on X(A) whichis unique up to a positive linear transformation.

Our approach is to align these separate functions, by appropriate

positive linear transformations, so that they provide oneoverall function

u on X x &for which (x, A) > (y, B) if and only if u(x, A) > u(y,B).

We pursue this further in the next section.

2.4. The Basic Model

Having developed the basic components of our theory and suggested

the type of representation model that we are interested in, we turn to

the axioms and their implications. Throughout this and succeeding

sections, X is a mixtureset, ¢ isa Boolean algebra of events, e’ = « — {@},

and > is a binary relation on X x &’.

Our general system includes eight axioms, the first six of which are

put forth in this section. The seventh axiom enables the derivation of

appropriate properties for probability measures and is discussed in the

next section. The eighth axiom permits the extension of our basic model

to an integral form like (2.2*) under conditions which are described in

section 2.6.
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2.4.1. The first six axioms

The following six axioms apply to all A, B, Ce’ and all x, y,z, we X:

AXIOM 2.1. > on X x é&'is a weak order.

AXIOM 2.2. fa: (ax + (1 — a)y, A) Z (z, B)} and fa: (z, B) Z (ax +
(1 — a)y, A)} are closed.

AXIOM 2.3. [(x, A) ~ (z, B) & (y, A) ~ (w, B)] = (Gx + Zy, A) ~

(52 + 3w, B).

AxioM 2.4. IfA 0 B = @ then (x, A) & (x, B) > (x, A) 2 (x, AUB) Z
(x, B).

AXIOM 2.5. (x, S) > (y, S) for some x, ye X.

AXIOM 2.6. IfA 1 B = @ then (x, A) > (x, B) & (y, B) > (y, A)for some

x, yEeX.

The first three axioms are extensions of the Herstein—Milnor axioms

(2.7), (2.8), (2.9) of the preceding section. Axiom 2.1 applies > to all of

X x éand clearly implies (2.7) for each X(A) = {(x, A): xe X}. Axiom
2.2 differs from (2.8) only to the extent that different conditioning events

may be used: when A = B in axiom 2.2,(2.8) results. Axiom 2.2 is the

continuity or Archimedean axiom of our system.

The third axiom extends (2.9), since the latter is obtained from

axiom 2.3 by setting B = A and w = y. (Since (y, A) ~ (y, A) is presumed,

axiom 2.1 is involved also in a minor way.) Although axiom 2.3 is a

fairly weak form of sure-thing axiom, based entirely on indifference,it

is the only direct sure-thing axiom in our system with the exception of

axiom 2.8 (in section 2.6). The correspondent in the X x « system to

the sure-thing implication 2 of section 2.2 1s the following:

If AN B= @ then [(x, A) > (y, A) & (x, B) > (y, B)] = (x, AU B) >

(y, A U B), and [(x, A)  (y, A) & (x, B) Z (y, B)] = (% AUB) Z
(y, AU B).

As can be seen from theorem 2.1 below, this is implied by axioms 2.1

through 2.6. Part of this sure-thing principle can be obtained from

axioms 2.1 and 2.4. For example, if A A B = @, (x, A) Z (y, A), (x, B) Z
(y, B) andif, in addition, (x, B) 2 (y, A) and (X, A) Z (y, B), then axioms2.1
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and 2.4 imply (x, A U B) 2 (y, A U B). But, generally speaking, others
of axioms 2.1 through 2.6 are required to establish the foregoing.
Axiom 2.4 is an averaging condition that is the direct copy of impli-

cation 3 for the present context. Our previous comments on implica-
tion 3 apply equally well to axiom 2.4.
The fifth and sixth axiomsare structural conditions which, unlike the

first four axioms, are not wholly necessary for the model presented in
theorem 2.1. Axiom 2.5 is rather innocuous since it simply says that
there are two nonindifferent Acts.

On the other hand, axiom 2.6 is a majorstructural restriction. It will

fail if and onlyif there are disjoint events A and B in ¢’ such that (x, A) =

(x, B) for every x € X. Thatis, if there are nonemptydisjoint events such
that, for every Act, the decision maker would just as soon see thefirst
event obtain as see the second obtain, then axiom 2.6 is false. It is not
difficult to construct simple examples which violate the axiom, and in
such cases the only way to salvage our system is to introduce some
artificial prizes or penalties, or someartificial acts, that will rectify the
difficulty.

Nevertheless, axiom 2.6 is generally less restrictive than axioms or
constructions in other systems whichserve a similar purpose, namely to
allow comparison or direct alignment of preferences under different
events. For example, Savage’s formulation, which takes all conse-
quences as relevant under every event, obtains complete interevent
comparisonsand,in effect, identical utility ranges under each event. In
our theory, each pair A, B of disjoint events in ¢’ has an act z for which
(z, A) ~ (z, B), but there may be only one z which satisfies this in-
difference statement.

In light of our remarks at the end of the preceding section, axiom 2.6
(along with axioms 2.4 and 2.5) plays a crucial role in the alignment
of the linear order-preserving utility functions defined on the X(A). If
something like this axiom is not used, then it may be impossible to
obtain the basic model described in theorem 2.1. Further details on
this point and on the alignment process are presented in section 3 of
ref. [9].

2.4.2. The basic model

Ourso-called basic model is summarized in the following theorem.Its
proof and that for theorem 2.2 are given in ref. [9].
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THEOREM 2.1. Suppose that axioms 2.1 through 2.6 hold. Then there is a

real-valuedfunction u on X x &' and, for each A, Be &for which AQ B=

@, there are unique nonnegative real numbers P.,, (A) and P,., p(B) that

sum to 1, such that, for all x, ye X and all A, Bes,

(1) (x,A) >(y, B) if and only if u(x,A) > u(y, B),
(11) u is linear on X(A),

(ii) u(x, AU B) = P,., p(A)u(x, A) + Py, p(B)u(x, B)whenAN B= ©.

Moreover, when (i)-(i1i) hold, u on X x &' is unique up to a positive linear

transformation.

This basic model has many of the properties of the model discussed in

section 2.2. Because of our use of Acts in place of acts (or the use of

extraneous scaling probabilities), the model of theorem 2.1 has the

linearity property (ii) along with the stated uniqueness properties.

The deficiency of the basic model when comparedto the section 2.2

modellies in the omission of any mention of probability measures or

the chain rule P(A) = P-(B)P,(A) when A G&BCC. To besure,

P,.,(A) + P,. ,(B) = 1, so that these numbers behave somewhatlike

probabilities and could be estimated or scaled with the useof(i11) once

u has been estimated, but axioms 2.1 through 2.6 do not imply that each

P, is finitely additive or that the chain rule holds. We explore this

further in the next section.

2.5. Finitely Additive Probability Measures

To examine further the question of probabilities on events under

axioms 2.1 through 2.6, weshall first present an example usedin ref. [9].

The example has twoacts and three states. We shall let x denote the

Act that has probability x for the first act and probability 1 — x for the

second. With A, B and C thethree single-state events, e’ = { A, B, C,

AUB,AUC,BUC,S}. For the quantities described in theorem 2.1 let

Pag pA) = (0.6, Py. p(B) = 0.4,

PP, c(A) = 0.1, Pag AC) = (0.9,

Ps. c(B) = 0, Pail) = 1.0, —

P(A) = 0.1, P(BUC) = 02, (P = Ps)
P(B) = 0, P(AU C) = 100,
P(C) = 0.5, P(A U B) = 0.5,
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and

u(x, A) = x,

u(x, B) = 1 — x,

u(x, al 3s
u(x, B) = 0.4 + 0.2x,

Me Cy OAS 4 Ole

u(x, BU C) = 5,

u(x, S) = 0.45 + O.1x.

It 1s easily checked that(11) and (iii) of theorem 2.1 hold, and (i) holds

on defining > as dictated by uw in (i). Moreover, it is not hard to see that
all of axioms 2.1 through 2.6 hold. Hence the P values specified above
cannot be altered. Note that these values are all nonnegative, and each
row pair sumsto | as specified in the theorem. However,P is not additive
since P(A) + P(B) = 0.1 and P(A U B) = 0.5. In addition, the chain
condition fails since P(A) = 0.1 and P(A U B)P,., ,(A) = 0.3.

2.5.1. Axiom 2.7

Clearly then, something more than axioms 2.1 through 2.6 is required

to obtain the desired probability aspects of the model in section 2.2.
To rectify this problem weshall use a seventh axiom that, like axiom 2.6,

Is a Special structural condition.

AXIOM 2.7. If A, B and C are mutually disjoint events in &', and if there

isan x € X such that (x, A) ~(x, B), then there is a ye X such that exactly

two of (y, A), (y, B) and (y, C) are indifferent.

As notedin the preceding section, if A 1 B = @, then axioms2.1 through
2.6 imply that (x, A) ~ (x, B) for some x e X. Hence, so long as ¢’ con-

tains three mutually disjoint events, the hypotheses of axiom 2.7 are

guaranteed for each suchtriple of events by our previous axioms. In each

case, then, axiom 2.7 requires that there be an Act y, which may or may

not equal x, such that exactly two of (y, A), (y, B) and (y, C) are indifferent
(with the third preferred to or less preferred than the indifferent two).
The failure of axiom 2.7 in our exampleis easily noted. There is only

one x there, namely = 2 for which two of u(x, A) u(x, B) and u(x, C)

are equal. But when x = 5 all three of these utility values are equal,
and therefore axiom 2.7 fails,



 

40 Peter C. Fishburn

In essence, axiom 2.7 provides precisely the type of structure that,

in the context of the previous axioms, is required to establish additivity

for the P, functions. Readers who are interested in the details of this

should consult the final subsection ofref. [9].
With the addition of the new axiom we have

THEOREM 2.2. Suppose axioms 2.1 through 2.7 hold, with u and the P,

having the properties described in theorem 2.1. Then P, on &A) is a

finitely additive probability measure for each A €&', P(A) = P-(B)P;(A)

whenever A © B €C and A, B, Ces’, and if xe X and A,,..., A, are

mutually disjoint events in &’ whose union equals A, then

(iv) u(x, A) = P,(A,)u(x, A,) + P4(A,)u(x, A,) +...

+ P4{A,)u(x, A,).

As seen by the example that began this section, expression (iv), extend-
ing (111) of theorem 2.1, may be false when only axioms 2.1 through 2.6

are assumed.

2.6. Measurable and Bounded Conditional Acts

If ¢ is finite then theorems 2.1 and 2.2 give a complete account of the

conditional subjective expected utility model that arises from our

axioms. However, when 1s infinite, it remains to consider the extension

of (iv) to

(v) u(x, A) = {4u(x,s)dP,(s) for (x, Ae X x &,

where(x, s) is an abbreviation for (x, {s}).° Since u(x, s) is defined in our
system only if {s} ee’, we assume {s! ee’ for all seS.

Special definitions will be used in our examination of (v). First,

(x, A)e X x &'is measurable if and onlyif {s: u(x, s)e I} 7 A is an event
in ¢ for each interval J of real numbers. Equivalently, (x, A) is measurable
if and only if {s: se A and u(x, s) < a} eeand {s:se Aand u(x, s) > ase
for each real number a. It follows easily from this and our previous

assumptions that (x, A) is measurable if and only if A {s: (y,t) >
(x, s)bee and An {s: (x, s) > (y, t)} €é for each (y, the X x S. If ¢ were

the set of all subsets of S, as in Savage’s theory, then each (x, A) would

> See section 10.3 of ref. [6] and chapter 9 of ref. [10] for definitions of the integration
process involved here.
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be measurable. If some (x, A) were not measurable in our system, then

the last characterization of measurability given above indicates how «é

could be expanded to ensure measurability without necessarily requiring

all subsets of S to be in «.

Measurability 1s introduced for technical reasons, for if (x, A) were

not measurable then, even under axiom 2.8 presented below,the integral

in (v) need not be well defined. a

A measurable (x, A) 1s bounded below (with probability 1) if and only

if P4({s:s¢A and u(x, s) = a}) = 1 for some real numbera, and bounded

above if and only if P4({s: se A and u(x,s) < b}) = 1 for somereal
number b. Finally, (x, A) 1s bounded if it is bounded above and below.

2.6.1. Axiom 2.8

The axiom that we use in a partial extension of(iv) to (v) is a general

sure-thing or dominance principle that is related to Savage’s final

axiom (P7) and to axiomsin refs. [5], [6] and [8] that we developed
together. Later in this section we comment on another condition that

ensures(v) for all measurable (x, A). The following applies to all x, ye X

and all A, Bee’.

AXIOM 2.8. [(x, s) > (y, B) for all se A] = (x, A) Z (y, B),

[(x, A) > (y, s) for all se B] = (x, A) Z (y,B).

Thefirst part of this says that if x given s is preferred to y given B for

each s in A, then x given A is preferred or indifferent to y given B. The

second part is similar. Axiom 2.8 1s implied by our other axioms when

S is finite, but is not implied by them when is infinite.

THEOREM 2.3. Suppose axioms 2.1 through 2.8 hold, with u and the P., as

specified in theorems 2.1 and 2.2. If (x, A)e X x &’ is measurable then

(a) {u(x, s)dP4(s) is well defined andfinite,

(b) u(x, A) = |4u(x, s)\dP,(s) if (x, A) is bounded below,
(c) u(x, A) < [4u(x, s)dP4(s) if (x, A) is bounded above, and

(d) u(x, A) = |4u(x, s)dP,(s) if (x, A) is bounded.

As far as I have been able to determine, axioms 2.1 through 2.8 do not
imply that u is bounded, although boundednessdoesarise in some other

theories [5, 8], including Savage’s (see ref. [6], p. 206). Of course if u
is bounded then (v) holds for every measurable (x, A) as noted in part
(d) of theorem 2.3.
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The proof of part (d) is essentially the same as the proof of theorem 2

in ref. [9]. The role of axiom 2.8 in this prooflies in its implication that
u(x, A) 2 a when P,({s: u(x,s) 2 a} A) = 1, and u(x, A) <b when

P,({s: u(x,s) Sb} A A) = 1.

The other parts of theorem 2.3 follow easily from part (d). Since

u(x, A) = P,(A* )u(x, A*) + P.,(A7)u(x, A~) for an arbitrary measurable
(x, A) when A* and A’, defined by AT = An {s: u(x,s) 2 0! and
A” =An\s: u(x, s) < 0}, are nonempty, it will suffice to consider an

A for which u(x, s) 2 0 for all se A.

Thus, suppose that (x, A) is measurable, that u(x, s) 2 O for all se A,

and that (x, A) is unbounded above. Let

A, = An {s: u(x, s) < n},
B, = An {s: u(x, s) 2 n},

forn = 1,2,...,withA = A, UB,, A, GA, SA S..., 1A, = A,

and u(x, A) = P,(A,)u(x, A,) + P,(B,)u(x, B,) provided that A,, B,e€&’.

Since B, € &for all n (by measurability and unboundedness) and 4, € é’

for all sufficiently large n, we can assume with noreal loss in generality

that A,, B,€&for all n.

Now axiom 2.8 guarantees that u(x, A,) 2 0 and u(x, B,) 2 n forall n,

so that u(x, A) 2 nP,(B,) for all n. Since u(x, A) is finite, this requires

that P,(B,) ~ 0 as n> o, so that P,(A,) > 1 as n> o. By definition,

{4u(x, s)dP4(s) = sup{),u(x, s)\dP4(s) + nP,(B,):n = 1,2,...},

where the expression in braces does not decrease as n increases, and

[4,ulx, s)dP,(s) — P,(A,) [4,,u(x, s)dP4(s) — P(A,)u(x, A,),

using part (d) of theorem 2.3. Thus |,u(x, s)dP4(s) equals the least upper

bound of {P,(A,)u(x, A,) + nP4(B,)}, and since

u(x, A) — P(A,)u(x, A,) + P4(B,)u(x, B,) 2 P(A,)u(x, A,) + nP,(B,,),

it follows that u(x, A) = |4u(x, s)\dP,(s), which in effect verifies part (b)
of theorem 2.3. Part (c) is proved in a similar way, and part (a) follows

from these.

2.6.2. A final condition

The foregoing analysis, besides establishing the parts of theorem 2.3

that do not appear in ref. [9], shows what is required in addition to
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axioms 2.1 through 2.8 to obtain (v) for all measurable Act—event pairs,

bounded or unbounded.I will state this condition in terms of u and the
P, although it is not hard to see how the u part can be replaced by
statements which use >.

CONDITION 2.1. Suppose A, A,, A>, ...€& with A, SA, S... and

n=1 A, = A. Then u(x, A,) > u(x, A)asn > 0 ifP,(A,) ~ lasn— oo.

With {A,} an increasing sequence of events whoselimit is A, this says

that if the likelihood that A, obtains, given that A obtains, approaches

certainty as n gets large, then the utility of x given A, approaches the

utility of x given A as gets large. Hence condition 2.1 has some intuitive

appeal. The condition says nothing about the behavior of {u(x, A,)}

relative to u(x, A) when P,(A,) does not approach unity, as could
happen if P, is not countably additive.

The effect of condition 2.1 on a measurable, unbounded-above(x, A)

with u(x, s) 2 0 for all se A is easily noted. Since P,(A,) > 1 in our

previous analysis of this case, condition 2.1-requires u(x, A,) > u(x, A),

and hencethat P,(A,)u(x, A,) > u(x, A). Since nP,(B,) > O for all n, we

conclude that sup{ P.,(A,)u(x, A,) + nP4(B,)} = u(x, A), or |4u(x, s)dP_(s)
= u(x, A). Along with part (b) of theorem 2.3, this gives (v).

It follows that (v) holds for all measurable (x, A)e X x e’ when

axioms 2.1 through 2.8 and condition 2.1 hold.
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COMMENTS

On recent developments in subjective expected utility*

Michael Balch

C2.1.1. Introduction

The theory of subjective expected utility that Professor Fishburn

proposes here’ amounts essentially to an axiomatic recasting of the

classical Savage [8] paradigm for decision making under uncertainty,

and 1s significant for several reasons.

First, the Fishburn variant sidesteps a structural requirement of the

Savage system that had markedly circumscribed the applicability of the

paradigm. To see that limitation, recall that in the subjectivist frame-

work the subject chooses (and implements) an act in the face of un-

certainty, uncertainty is‘resolved when nature ‘chooses’ a state, and the

conjunction of these results in a consequence to the subject. In the

Savage system, acts are regarded as mappings from set of states to a

set of consequences, and the subject is required (this is the delimiting

structural condition noted above) to express binary preference over the

set of all such formal mappings. The subject is thus called upon to make

sense of the generic ‘act’ which associates an arbitrarily prescribed

consequence c to an arbitrarily prescribed state s. The difficulty is that

this does not allow for the analytic treatment of ‘consequences’ which

cannot be logically characterized (conceived of) except through the

occurrence of a given distinguished state. And of course, this is the

commonplace; for example, the ‘consequence’ to me of buying a bicycle

today dependsintrinsically upon whether or not my right leg is broken

tomorrow. Fishburn’s solution is simple and to the point: regard acts

and states as the basic contextual primitives (as indeed they are), and

* This is an expanded version of a commenton the paperpresented by Peter Fishburn [4]

at the Third NSF-NBER Conference on Decision Rules and Uncertainty, Iowa City,

May 1972. I am indebted to Sam Wufor his critical comments on the preliminary

draft, and to Bert Schoner for some highly stimulating discussion throughout.

' This theory is developed, complete with proofs, in ref. [3].
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require binary preference over probability mixtures of their conjunctions.

Weshall have an interpretive look at this in the sections to follow;

suffice it to say here that the system does enjoy conceptual integrity.

Second, the Fishburn development achieves an explicit axiomatic

synthesis between the subjectivist and frequentist traditions by incorpo-

rating the streamlined behavioral assumptions of Herstein and Milnor

[5] in very nearly pure form; this is perhaps not surprising, given the

sketch which closes the paragraph above. These axiomsare instrumental

in relating attitudes toward ‘objectively defined risk and subjective

‘degree of belief’ judgments for more general uncertainty contexts

(those which are not necessarily presented to the subject in ‘lottery’

form). Of course the Savage system accomplishes this end as well

(indeed, it blazed that trail), but in a way that (a) makesessential use of

‘acts’ which I cannot (in general) comprehend, and (b) blurs the dis-

tinction between uncertainty which arises in ‘natural’ fashion from the

particular decision context at hand and uncertainty which for scaling

purposes 1s ‘fair-spinner induced’. Still, his explicit Herstein—Milnor

substructure notwithstanding,it is by no means obvious from Fishburn’s

existence proof how it is that his subjective probability measures are

conceptually generated. In the final section of this paper I will show?

that the Fishburn mixture system extends in a unique way to one which

admits an elementary conceptual mechanism by which subjective

probabilities are directly scaled.

Finally, the Fishburn theory bears someclose similarities to — and

thus helps to cast new light upon — the recent ‘conditional’ model of

Luce and Krantz [7]. This work addresses the long-standing need for a
general theory of choice under uncertainty which does not require (as

does the Savage theory) that acts be without (causal) influence in deter-

mining the state that obtains. The Luce—Krantz framework, however,

incorporates a structural condition (the strong algebraic closure

properties required for the choice set of the theory) that leads at once

to an interpretive paradox. Morespecifically*, the set of alternatives

2 Professor Fishburn informs me that he had worked througha similar extension before
arriving at the final version of his theory, but rejected it at the time in the face of the
Bolker objection (to be discussed in the final section of this paper). We shall see,
however, that one can provide an appropriate set of mind experiments with respect to
which the Bolker objection is sidestepped.

> Weshall have a closer look at this in the next section, after the Luce-Krantz system
has been properly introduced.



Comments 47

with respect to which choice is exercised is required to be closed under
two operations(disjoint union and non-null restriction, by name) which
together with the semantic understanding given for the primitives of
the system imply a model-theoretic paradox of the Russell type. For to
begin with, every alternative is itself to be regarded as atomic in the
sense that, once implemented, the subject has no further influence over
what may be the outcome.But this understandingis at once contradicted
by the structural requirements just noted: non-null restriction creates
a new atomic alternative by ‘decomposing’ what was supposed to have
been an atomic alternative itself; and disjoint union goes the other way
around by ‘combining’ two atomicalternatives to create what is supposed
to be a new atomic one. Since these closure properties are structurally
necessary for the Luce-Krantz theory, we might hopeto reinterpret the
primitives of their system in order to avoid the paradox just noted. But
somehow or other we must clearly identify the atomic alternatives;
otherwise we have model-theoretic confusion over which (uncertain)
environments a decision maker may or may not choose to inhabit.
Although Fishburn avoidsthis kindof difficulty, and despite some close
resemblances between his act-state pairs and the conditional decisions
of Luce and Krantz (these are the (not quite) atomic alternatives of
their system), it is nevertheless the case that the Fishburn primitives are
not fully conditional in the Luce—Krantz sense. In the post-conference
paper which follows this one, Balch and Fishburn [1] develop a theory
that fills this gap.

Before leaving these introductory remarks, it is worth noting that
both the Savage and Luce—-Krantz difficulties, though somewhatdiffer-
ent, appear in common to owe to a basic conflict between competing
model-theoretic imperatives. On the one hand, if we aim at the kind of
representational mode that is characteristic for models of subjective
expected utility, then we must provide sufficient structural richness
within the system. On the other hand, there is the argument that the
subject should express binary preference only over the set of atomic
alternatives, rather than over the (larger) set of possible consequences.
Indeed, this is the tradition, beginning already with the axiomatic
cornerstone of von Neumann and Morgenstern. Fishburn departs (as do
Balch and Fishburn) from this requirement at some cost in model-
theoretic ‘testability’; i.e. if a consequence cannotbe presented as‘avail-
able for choice’ (but rather has the character of a ‘contingency’, given
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choice of someact), then binary preference between such things cannot

be put to the behavioral test. But this seems ‘second order’ to me in

comparison with the conceptual hiatus that appears when a decision

maker is presented with an atomic alternative that he finds impossible

to interpret*.

C2.1.2. The paradox

Wenowtake a closer look at the Luce-Krantz system. Theprimitive ./

is an algebra of subsets, called conditioning events, of a given set of

chance outcomes>*. The primitive J is a set of mappings, called condi-

tional decisions, each of which is defined on some element of .% and

takes image in a set of consequences @ (also primitive). The generic

conditional decision f, is indexed by its domain of definition a€ A;

every element in J is presumed available to the decision maker. The

idea for regarding f, to be defined only on a is the authors’ observation

that choice of an action invariably has an effect on the chance outcomes

that can occur; for example, if I choose to travel from ‘here’ to ‘there’

by car (rather than by airplane, say) then I cannot die on this trip in an

airplane crash. Once an action f, is chosen, the uncertainty as to which

outcome obtains (will actually occur) does not disappear, it simply

‘redistributes’ over the subsets of a in the appropriate way. Axiom | of

Luce and Krantz requires that enjoy algebraic closure with respect

to the operationsof:

(i) Disjoint union: iff,,g,¢@ and an Bp = ©,then

f, On a
\) =

(ii) Non-null restriction: iff,¢ @ and 6 < y (and 6 € of is not regarded

as impossible by the subject), then the restriction off, to 6 is also in &.

is also in J.

4 Note added after receiving the Krantz and Luce reply [6] that appears later in this

volume: Krantz and Luce correctly point out that the ‘atomic closure paradox’ noted

above (and further discussed below) vanishes if Y contains‘lotteries’ only (this solves

the twin riddles: (1) when is the ‘union’ of two atomic alternatives itself atomic? and

(2) how may an atomic alternative have consequences that are also atomic?). To

preserve the ‘atomic alternative only’ view of the Luce-Krantz 9, then, it would seem

that uncertainty must appearin ‘objective’ form only, as a well-specified and universally

understood set of ‘probability experiments’.

> J have kept to the notational formats in refs. [4] and [7], though some of the symbols

have been changed to avoid confusion between the primitives of the two systems. In

identifying «, I have reported the authors’ phraseology without change.
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The authors posit a preference relation > on J, and together with
additional behavioral and structural axiomssufficient to their purpose,
prove a representation theorem the conclusion of which reads: there
exists a function u: Y > Re and a probability measure P on » such that

ta > Ip iff u(f,) > u(gz), (C2.1)
and

ifaa p= @, then

u(f, U 9g) = Pla|av B)u(f,) + P(B| a v B)ulgs).

Of course (C2.1) is just the order-preserving property of u, thefirst
requirement of any utility function. It is the decomposition expression
(C2.2) that contains the essence of what is meant by conditional expected
utility: it says that the utility assignmentfor the action f, U gg (which,
once taken, guarantees an outcomein « U f) is the weighted sum of
utility assignments for f, and gg, the weights P(a|« U B) and P(B | a u B)
(= 1 — P(a|«U B)) reflecting the subject’s personal probability as to
which of « or B does in fact obtain (will in fact occur). The intended
spirit here is, of course, that once he choosesf, U gg the decision maker
has already exercised his ‘conditioning influence’ over nature: it then
remains for God to have the final say (and for the subject to await its
revelation). But now comesthe conceptual difficulty. Iff, pg € QZ, with
am B= @, then axiom | (ii) requires that the restrictions to a and B,
sayf, and f, respectively, also be available for choice. Andif, say, f, >i
the decision maker will simply choose f, for sure; but then what was
the meaning of f, Uf; (=/f,U,) in the first place, that is, what is the
meaning of the ‘probability weight P(« | U f) in (C2.2)? On the other
hand,iff, and g, are separately available for choice, with «7 B = @,
then axiom | (i) requires that f, U gg is also available, but then what is
it that generates the uncertainty as to which of « or B will obtain? The
point is that the answer to ‘which of f, or gg is (will be) operative in
J, U gg? should either be under the control of the decision makeror not:
the twin conditions (i) and (ii) of axiom 1 imply that we can haveit
both ways.

The Fishburn framework avoidsthis difficulty altogether, while pre-
serving something of the spirit of the Luce-Krantz approach®. The

(C2.2)

° As noted above,cf. ref. [1] for a theory thatstarts from a set of fully conditional primi-
tives.
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problem we have observed centers on a confusion over which (uncertain)

environments the subject may choose to inhabit, and which circum-

stances are beyondhis ability to influence. Fishburn returns to Savage

(on this question) by insisting that what one shall mean by an eventis

something that is subject to the ‘choice’ of God alone.

Fishburn starts with a set of acts (or strategies) F which are presumed

available to the decision maker, where the consequence of any given

actfdepends upon whichstate ofnature s in a set S of mutually exclusive

and collectively exhaustive states actually obtains. It is assumed that

the ‘true’ state is unknownto the subject at the moment when he must

exercise choice and, as noted above, the description of S is such that

no act (once chosen) can affect whateveris the true state. It is important

to note that although Fishburn starts with these Savage primitives,

there is no‘sufficient richness’ requirementin this theory for S, and only

a modest’ such requirementforF (i.e. we are essentially free to describe

these sets acuording to the context of the decision makingsituation at

hand). Fishburn further departs from Savage in denoting ‘the conse-

quenceof act f whenstate s obtains’ by thepair(f, s), rather than by the

functional notation f(s)e@ (where in the Savage system, as noted

earlier, the set of consequences @ was primitive and F was the set of

maps from S to ¢)®. More generally, the set of events &’ is a Boolean

algebra of subsets of S with the empty set missing, and for Ae &’,(f, A)

is whatever may happen whenf is chosen and it is presumed that some

sé A obtains. Fishburn specifies a preference relation on F x & =

{(f, A)|feF, Aeé’}, but takes great care to point out that such act—

event pairs are not actually available as objects of choice (unless A = S,

or unless A is regarded by the subject as virtually certain to obtain),

since events (as conceived here) are not ‘appropriable’ on demand; the

subject is simply asked to expresshis ‘druthers’ (to God,if to no oneelse)

between a commitment to do act f under the supposition that some

This is necessary in order to treat certain anomalies that might be loosely described

as arising with ‘model-theoretic measure zero’; a complete discussion is undertaken

in ref. [1].
At face, of course, this is no more than a different name for the same thing (even when

f> (fs) is regarded as a correspondence, as Fishburn provides for to accommodate

‘residual uncertainty’), but the older notation has long been associated with a theory

that does not treat ‘consequences’ which are characterizable only in relation to dis-

tinguished states.

8
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sé A obtains and a commitmentto do act g under the supposition that

some sé B obtains’.
Nowseveral things should be noted. First, (f, A) pairs have something

(but not all) of the character of both ‘conditioning events’ and ‘con-

ditional decisions’, since they reflect the subject’s partial influence over

his environment through f Indeed,iffis the act ‘travel by car’ and S =

AWA, where A is the event ‘airplane crashes’ and A its complement,

then (f, S) does not contain the chance circumstance ‘I die in an airplane

crash’. Moreover, although we must give up on the idea that (f, A) can

be appropriated by the subject on demand,we do allow (indeed require)

him to consider the circumstance. And if A should in fact obtain (say

as the first part of a sequential process) then (f, A) does, after all, have

similar effect (from that point forward) to the corresponding ‘conditional

decision’ of Luce and Krantz.

Second, the Fishburn counterpart to the decomposition expression

(C2.2) is

ifAA B= Q@,thenu(f,A vu B) = P,.,,(A)u(f, A) + Py.p(B)ul(f, B). (C2.3)

Here there is no question that the probability weights are associated

with natural environmental uncertainty. To be sure, the Fishburn

counterpart of LK axiom 1 (11) must be relaxed in the sense noted above:

in general, neither (f, AU B) nor its restrictions (f, A) and (f, B) are

actually available to the subject on demand. Heis being asked to muse

over ‘what ifs’, and it is just this price that buys the candle.

Third, a counterpart for LK axiom (i) is required by Fishburn as
well, through the introduction of extraneous lotteries over act—event

pairs with the event held fixed. Recall that the interpretive difficulty for
LK axiom 1 (i) had to do with the meaning off, U g, when both f, and

gg were separately available to the decision maker, i.e. what then was

the nature of the uncertainty associated with « U f? Luce and Krantz
recognized this question, and proposed informally that f, U gg represent
a laboratory experiment, in the form of a well-defined lottery with

‘prizes’ f, and g,. What Fishburn has doneis to incorporate this idea

formally by embedding F x &in X x &' = {(x,A)|xeX, Acé&},
where X is the mixture set of simple lotteries with prizes in F. It fol-

° This idea had already been employed by Bolker [2] in a more simplified decision-
theoretic context.
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lows at once that X x 6’ can be written (and conceived) as the union

LL) {(x, A)| xe X}
Ace &’

of a family of mixture sets, each of which is X suppositioned on fixed

Aeéé&’. That is, the ‘prizes’ of any lottery suppositioned on an event A

are themselves lotteries (perhaps degenerate) suppositioned on the

same A. Fishburn doesnotfind it necessary (nor conceptually palatable)

to consider lotteries of the form ‘(x, A) if heads, (y, B) if tails’ when

A # B; indeed, they are not elements of X x &’. I shall have more to

say on this in the next section’®. Of course the preference relation > is
now assumed primitive over X x 6’, and is instrumental in relating

attitudes toward risk (as realized by trials of a fair spinner) and sub-

jective judgments on the ‘distribution of uncertainty over events in é”.

C2.1.3. The Bolker objection and Supergenie

Axioms1-3 in ref. [3] are those ‘natural extensions of the corresponding

Herstein—Milnor axiomsfor ordered mixture sets which are appropriate

to the present system. They are necessary as well as a subset of the

sufficient conditions for Fishburn theorem 1 to hold; there is no hope

for a suppositional expected utility theory without them. And once the

conceptual framework provided by axiom 1 1s accepted, axioms 2 and 3

seem as palatable as their simpler parents. The extensions chosen serve

double duty: they Herstein-Milnor order every {(x, A)|x¢X} sepa-

rately, and also provide considerable cardinal linkage across elements

of &' (cf. lemmas 1-5 in ref. [3]). Recall in this latter connection that

‘lotteries’ of the form 35(x, A) + 5(y, B) are not elements of X when

A # B. Fishburn declines the construction of a system that includes

such things on the Bolker argument that ‘this creates a direct conflict

between the mixture (scaling) probabilities and the decision maker’s

beliefs about the relative likelihoods of A and B’(from p. 10 in ref. [3]).
The ideais that our decision maker would have every right to challenge

(place little faith in) an experimenter’s ability to ‘award’ A or B on the

toss of a coin. And yet the interesting mathematical fact here ts:

It is possible to embedthe Fishburn system in an axiomatic structure that

encompasses all such ‘forbidden lotteries, and from which emerges a

'° For now, compare footnote 2 and the paragraph to whichitrefers.
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cardinal utility that agrees (after adjustment of zero and unit) with the
Fishburn utility indicator on the Fishburn restriction: moreover, the
(unique) Fishburn conditional probability measures P, for A€&' can in
fact be computed directly from such lotteries.

To show this I will first describe the set of mind experiments that
justifies the extended system on conceptual grounds. Thuslet F and &’
be as before, and suppose that you are owned by a Supergenie who can
bring any event to pass with a snap ofhis fingers (which lends some
force to the notion of ownership!). His particular sport is to place you
in binary choice situations (from which you maynotpolitely withdraw)
between pairs of alternatives of the form A(f, A) + (1 — A)(g, B), with
the following understanding: you spin a fair pointer (the Sg agrees not
to interfere in its outcome) andif, say, that predetermined arc associated
with the probability number 2 obtains, the Sg ‘wills’ A and requires
your commitment to act f’ The Sg makes no value judgments on your
tastes, and is entirely ethical with respect to the rules of his game. With
this procedural understanding between you and the Sg, the Bolker
objection is obviated, and it is to your advantage to pairwise order all
such alternatives!!.

Mathematically, this amounts to assuming a preference relation > on
M\F x &'), the mixture set of lotteries with prizes in F x &’. Note that
this set contains the Fishburn primitive

M(F) x & = \).M(F) x {A}
Aeé’

as a special subset (where I have written .W(F) for X). Now assumethe
usual Herstein—Milnor axioms for > on .@(F x 6’); these reduce to
Fishburn’s axioms 1-3 for the restriction of > to W(F) x &’. Suppose
moreover that Fishburn axioms 4-6 also hold forthe restriction of +
to MF) x &’, so that Fishburn Theorem 1 applies. It follows from the
uniqueness part of this theorem (more precisely, from lemma 6 of
ref. [3]) that the Fishburn system and Herstein—Milnor supersystem
have utility indicators that agree (after adjustment of 0 and unit) on
MF) x &. Thus u is extended to all of .W(F x &’), and is linear on

'" Of course this little fantasy need not have been spun as a drama(against a backdrop
having game-theoretic overtones); Supergenie is nothing more than our decision
maker’s conceptual mechanism for expressing his ‘druthers’,
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that set (i.e. u(Aé + (1 — An) = Aug) + (1 — Aju(y)for (4, ¢, me [0,1] x

MF x &') x MF x &’)). To see how the probability assignments’ of

theorem 1 are generated by an elementary canonical mind-experiment

involving choice between Supergenie lotteries in “(F x 6), let A,

Beé&' with An B = @,and suppose that xe X is such that

(x, A) > (x, B). (C2.4)

This construction is guaranteed by part of axiom 6. By theorem 1, there

exist unique non-negative numbers P4.,,(A) and P4,,(B) summingto |

such that

u(x, A U B) = Pyp(A)u(x, A) + P4cp(B)u(x, B). (C2.5)

On the other hand, using construction (C2.4), axiom 4 and the Archi-

medean property of a Herstein-Milnor order (on (F x 6é°)), there

exists a unique 2€[0,1] such that

(x, AU B) ~ A(x, A) + (1 — A)(x, B). (C.26)

By the order preserving and linearity property of the extended u this

implies, together with (C2.4) and (C2.5), that 2 = P4,(A). In other

words, given the commitment to do x in any case, the objective pro-

bability for obtaining A that I would require of my Supergenie in the

lottery on the right hand side of (C2.6), in order to be just indifferent

to taking my ‘natural’ chances on A under the supposition that A U B

obtains, is just precisely the P4.,,(A) that emerges from the Fishburn

theory. Moreover, the argument did not depend on x (except in so far

as (x, A) ~ (x, B) is false; otherwise any mix would do and we could

not then infer P,.,,(A) by this procedure).
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CHAPTER 3

SUBJECTIVE EXPECTED UTILITY

FOR CONDITIONAL PRIMITIVES

Michael Balch and Peter C. Fishburn

3.1. Introduction

The classical Savage paradigm [12] for decision making under uncer-

tainty requires that ‘states-of-the-world’ be so conceived as to remain

uninfluenced by any act the decision maker may choose to implement.

In this paper we develop an expected utility theory which relaxes this

conceptual requirement by casting primitives in conditional form.

Although the need for a conditional theory has been recognized for

some time, the first general treatment along these lines has been given

only recently by Luce and Krantz [9]. Unfortunately, this latter

theory is haunted by a structural requirement that leads to an inter-

pretive paradox for its primitives. It is partly in responseto this dif-

ficulty — a discussion of which appears in ref. [1] — that our present

effort has emerged. Our model descends directly from the one devel-

oped in ref. [5] (see also ref. [6]) which, though successful in avoiding
conceptual paradox, did notitself start from a set of conditional primi-

tives.
Webriefly recall the case for a conditional theory. For the decision

maker of the Savage theory, the consequence of implementing an act

depends upon whateveris (happensto be) the true ‘state-of-the-world’,

but this true state is not known with certainty at the moment when

choice is exercised. The subject is to envisage a mutually exclusive and

collectively exhaustive set S of candidate states-of-the-world; each of

these is at least logically possible, and of course one of them in fact

obtains (is true). Now the Savage theory requires that this set S must

in principle be so described by the subject (according to his own per-

ceptions) that if an arbitrary se S were indeed the true state, then no

57
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act which he maychooseto implementcan alter that fact’. The practical

difficulty with this requirementis that there are typical decision contexts

for which the formulation of an appropriate Savageset S is intrinsically

rot obvious and, indeed, exceedingly complex. For an elementary

example, consider a salesman who must decide on advertising expend-

iture for the coming marketing period. The determinants of demand

are of course impossibly intricate, but the decision makerbelieves that

the sales volume seé[0, 00) which is realized by the end of the period

will indeed have been somehow influenced by the advertising level
x €[0, 00) that was selected at the start of the period. An appropriate

set of Savage states for this problem is by no meanstransparent.

Instead, we shall associate to each act its own ‘natural’ set of act-

conditional outcomes’, and develop an expected utility theory for these

conditional primitives; i.e. the theory will not rely on a set of Savage
states. The advantage of this approachis that it is usually obvious how

to describe these sets from the context of the particular decision making

situation at hand. Andsince it is always possible to formally generate

a Savage set from a full collection of act-conditional outcome sets (as

illustrated for the advertising/sales example in footnote 3), our shift in

framework provides a gain for conceptual simplicity and analytic

' Thus Professor Savage, by way of indicating possible directions for the extension ofhis

theory, asks [13, p. 307]: ‘Is it good, or even possible,to insist, as this preference theory

does, on a usage in which(a) acts are withoutinfluence on events, and (b) events without

influence on well-being? In (a), Savage is calling for a conditional theory; in (b), for a

theory that does not rely on ‘conceiving’ acts which award any given consequencefor
any givenstate (the point here is that, when ‘consequences’ are holistically interpreted
and thus inextricably related to the state that obtains(this is, strictly speaking, always
the case), then it defies logic to ‘conceive’ an act that, say, awards for state s a conse-

quence c which dependsholistically on state t (#s)). The present theory is delimited by
neither (a) nor (b).

Anearlier version of this idea appearsin ref. [3], pp. 21-30, 36-39.
Thusit is natural for the advertising/sales example above to take S, = [0, 00) as the
x-conditional outcomeset for every x E X = [0, 0). The fact that these S, are identical
(for this very simple example) is merely incidental; [0, oo} cannot serve as a Savageset
of states-of-the-world (i.e. the salesman of this example perceives otherwise). Now we
may formally construct a Savage set 2 as the set of mappings

r= {6:X > US,lo(xJES,}.
xeX

Thus a ‘state’ o € 2 consists in naming a sales volume o(x) eS, for every advertising
level x eX. It 1s clear that the function set & has the Savage property, but note its
formidable size and consequent conceptual complexity. The point is that 2 has no
role to play in the conditional theory.
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tractability with no attendant loss of generality. The more unwieldyset

of Savage states appropriate to any given situation may rest comfortably

behind the scenes.

Before presenting the details of our theory, some further remarks are

in order. It is the case for all theories of expected utility known to us

that, in order to guarantee existence of and uniqueness for the desired

representation, there must be sufficient structural richness within the

system. This will not surprise anyone who hasreflected upon the truly

ambitious nature of that representation, especially when the theory also

seeks to account for ‘natural’ uncertainty (those situations which dre

not already presented to the decision maker in ‘lottery form and,

indeed, for which ‘statistical’ (or ‘risk’) interpretations simply do not

apply)*. Now with respect to the systemic placement of requisite struc-

tural richness, the first consideration mustbe for the conceptualintegrity

of the system; otherwise, the theory may be incomprehensible at its very

foundation. We achieve this desideratum and satisfy the structural

imperative noted above by asking the subject of our theory to express

his ‘druthers’ as between various conceivable (as he understands the

term) resolutions of natural uncertainty. That is, he is to express prefer-

ence between suppositioned circumstances of the form ‘act f 1s imple-

mented and the f-conditional event A obtains’. Indeed, we shall ask him

to consider ‘lotteries’ which offer such suppositioned circumstances as

‘prizes’; for this purpose the subject is to imagine a Supergenie prize-

master whose authority over nature is complete (we shall give full

interpretive details below). It is important to understand that while we

do require the subject thus to exercise his imagination (and in a nor-

matively consistent way), we shall never present for his consideration a

suppositioned circumstance that he does not comprehendaslogically

possible”.
A final remark. Our theory provides for a direct conceptual link

between objective probabilities (which associate to a partitioning of the

circumference of a fair spinner, say) and subjective probabilities (which

* In the present theory, for example, we shall elicit a probability measure for each act

(on subsets of its outcome set) which may be interpreted as reflecting the subject’s

personal appraisal of relative likelihoods (with respect to the question: which of two

events (conditioned by the sameact) is ‘morelikely’ to contain the true state?).

> Wehave already remarked in footnote 1 on a majorcriticism of the Savage theory

in this vein. See also discussions in refs. [1], [5] and [9].
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may be interpreted as reflecting ‘degree of belief, as noted earlier).
Indeed, we employ the former in a canonical mind experiment to scale
the latter directly°. This experiment, which is elementary in conception
and of evident heuristic appeal (once the notion of a Supergenie lottery
is understood), will automatically reflect whatever ‘prize-distortion’ or
‘superstition’ effect is intrinsically operative for our subject. That is, the
subject is allowed to feel that ‘something as good as “this” must (could
never) happen to me’. This sort of thing is usually ruled out in other
theories of subjective expected utility (in the Savage theory, for example)
on the grounds that whether or not a given event obtains has nothing
to do with an arbitrarily superimposedprize structure. Of coursethis is
true. But subjective feelings concerning relative likelihoods are not
God-given; they are, after all, subjective, and it is these feelings which
our theoryelicits.

3.2. Theory Core

We have in mind a given decision making situation under uncertainty.

The only way in which our subject can attempt to influence his en-
vironmentis by implementing an act. In general, he is uncertain as to
what will be the outcome of any given act at the moment when choice
is exercised, though he does have a subjective picture of what might
happen.

Thus let the primitive Y be the set of acts presumed available for
choice, and for eachfe F,let S, be a mutually exclusive and collectively
exhaustive set of logically possible ‘states-of-the-world-as-conditioned-
by-f’. The subject understands that precisely one of these f-conditional
states obtains(is true, will be realized when f is implemented), though
he cannot(in general) a priori identify the true f-conditional state with
certainty. More generally, let &; be a Boolean algebra of subsets of S,;

for convenience we put &; = &, — {©}. An element Ae@,, is called

© This idea is employedin ref. [11] for a decision context which is circumscribed,in part,
by the full quotation in footnote 1. The authors stop just short of ‘proclaiming’ Super-
genie (a conceptual imperative, in general, for this kind of mind experiment), preferring
ratherto illustrate by specific examples in which the role played by Supergenieis easily
anthropomorphized (for example by the ‘sporting’ President of the XYZ Company,
pp. 8-9 in chapter 2).
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an f-conditional event, and is said to obtain if somef-conditionalstate in

A obtains. Wetreat the collection {6,},.g of act-conditional Boolean
algebras (therefore also {S,},.¢) aS primitive.
The holistic consequences of our theory are act-event pairs (f, A),

where for any such pairit is always understood that A € 6. The subject
is to think of (f, A) as that circumstance, perhaps uncertainstill, which
is conditioned by choice off and suppositioned on the occurrenceof A.
That is, he is to imagine what might happenif indeed the true jf-con-
ditional state were in A. In particular, (f, { s}) is whatever may happen
if f is implemented and the f-conditional state s obtains (the ‘atomic’
state s need not describe a conditionofcertainty), while (f, S,) is whatever
may happen when f is implemented. We call (f, A) a suppositioned
circumstance, and let @ denote the set {(f, A)|fe ¥, Ae &,} of all such
pairs.

Let .@(@) be the mixture set’ of all simple probability measures on 2°.
A generic element in .@(@) may be written as a convex combination

n

a ai(fi A;)

of elements (f;, A;) in @(a; 2 0 for i= 1, 2,..., n, and S7_, a; = 1).8
Then our final primitiveis a preference relation > on .W(@), with the
following operational meaning: the subject is to (a) interpret every
element of .@(@) as a ‘lottery’ (perhaps degenerate) with ‘prizes’ in @,
and then (b) pairwise order suchlotteriesas if they were actually available
for choice. Of course most” of these lotteries must be viewed as hy-

’ The powerset 2° is the set ofall subsets of @. A probability measure x € .()is simple
if x(C) = 1 for somefinite C € 2°. .@(@)is closed undera natural mixture operation for
probability measures: if x, ye @(@) and 4 [0, 1], then Ax + (1 — A)y is also in “(8),
where

(Ax + (1 — Aly) (C) He Ax(C) + (1 — AVC)

for all C € 2%. For more on mixture sets see, for example,ref. [4], pp. 110, 111.
Strictly speaking, a generic x € .@(@) should be written

n

x= » AIXf;, Ai)
i=]

where, for each ce @, X, is that degenerate probability measure for which &({c!) = 1.
It is standard practice to relax this strict pedagogic form in the interest of notational
economy.
The sub-mixture set of lotteries which are indeed real-world available is
MUS S)Ife F }).
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pothetical constructs, inasmuch as @ is no ‘ordinaryprize set to begin

with: no mortal can guarantee ‘delivery’ of the generic suppositioned

circumstance (f, A) (Everyman’s influence over nature extending

no further than his ability to implement f). But we shall suppose that

our subject has no difficulty in imagining his real world to be embedded

in one whichis also inhabited by a Supergenie. A Supergenie, by defini-

tion, can bring any logically possible act-conditional event to pass with

a snap ofhis fingers. In particular, the lottery a(f, A) + (1 — «)(g, B), if

‘offered’ by the Supergenie and ‘chosen’ by the subject, is to be under-

stood according to the following procedure: the subject determines the

‘prize’ by means of an ordinary probability experiment, and if the prize

is (f, A), say, then the subject implements act f and the Supergenie

‘wills’ event A (that is, guarantees that the true f-conditional state is

indeed somewhere in A). We need hardly emphasize that for this inter-

pretation of the primitive > on .@(@), game-theoretic considerations

(that might be thought to obtain ‘between’ the subject and Supergenie)

such as ‘cheating’, ‘reneging’, ‘outguessing’, and so forth are simply not

relevant here; Supergenie,after all, lives in the mind of the subject and

is conjured up by him for the purpose of expressing his ‘druthers’.

Of course the preference order > on -@(@) is to satisfy requirements

of the usual type for normative consistency. We thus assumethroughout

that the primitives (¥, {@+}seg, >) satisfy

> is a weak order'® on the mixture set M(€). (A3.1)

For all x, y, z€. M(@), the sets {xe [0,1] |ax + (1 — ay Zz}

and {ae[0,1]|ax + (1 — a)y Sz}are closed. (A3.2)

For all x, y, z€-(@) andfor all x € [0,1],

x~ysoaxt(l—a)z~ayt+ (1 — wz. (A3.3)

For everyfe F and A, Be &, with AN B= ©,

(AZBY=>(LAZULAV BZ, B). (A3.4)

10 A binary relation > ona set X is a weak order(in the strict sense) if it is asymmetric

(x > y > not y > x) and negatively transitive (not x > y and not y > z > not x > 2);

transitivity (x > y and y >z => x > 2) follows. Indifference (~) and preference-or-

indifference (2) are defined

x~y iff notx > yandnot y > x,

xZy iff x>yorx~y.

When > is a weak order, ~ is an equivalence(reflexive, symmetric, transitive) and =

is transitive and complete (x 2 y or y 2 for all x, ye X).
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A3.1-A3.3 are the well-known Herstein—Milnor axioms [7] for an
ordered mixture set, and A3.4 is that version of the Bolker [2]—Fishburn
[5] averaging condition which is appropriate for the present conditional
framework. The Herstein—Milnor axioms have been extensively dis-
cussed in the literature'’ for ‘ordinary’ prize sets @ from the viewpoint
of their model-theoretic efficacy; this discussion is no way altered for
the present paradigm, given our conceptual understanding for > on
M6). With respect to their structural role for the present theory, the
Herstein-Milnor axioms contribute in two essential ways. The first
(lemma 3.1 below) provides the utility function u: .@(@) > Re of the
theory; u is order-preserving, linear, and unique up to positive affine
transformation. The second (lemma 3.2 below) is an Archimedean
property which, together with A3.4, is central for the determination of
subjective probabilities (as will be evident from lemma3.3 below).

LEMMA3.1. (Herstein—Milnor). Let > on M(@) satisfy A3.1-A3.3. Then

there is afunction u: M(€) —> Re such thatforall x, ye M(@) and «€ [0,1]

(1) x > y iff u(x) > u(y), and
(11) u(ax + (1 — aw)y) = au(x) + (1 — a)u(y).

Moreover, if v: M(€) — Re also satisfies (i) and (11), then v = au + b for

some a, be Re with a > 0.

Lemma3.1 is a restatement of theorems 7 and in ref. [7].

LEMMA 3.2. (Herstein—Milnor). Let > on M(@) satisfy A3.1—-A3.3, and

consider x, y, z€-M(@) such that x = y Zz. If x > z, then there exists a

unique «€[0,1] such that y ~ ax + (1 — wz. If x ~ z, then y ~ Bx +
(1 — B)z for all Be [0,1].

Lemma3.2 is a restatement of theorems | and 6 in ref. [7]. The intuitive
appeal of the Archimedean property expressed in this lemmais obvious.
With x, y, z€-W@(€) appropriately specialized, it provides the canonical

dichotomous choice algorithm by which our paradigm generates sub-
jective probability numbers for act-conditional events. We introduce
some convenient terminology.

'! See refs. [7] and [10]. A related set of axiomsis discussed in ref. [8] and in ref. [4],
pp. 107-110. These are all modifications of the basic von Neumann—Morgenstern [14]
system.
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If A, Be &, and An B= @, then the two-elementset { A, B} <é,

is called a dichotomy of events forf(note that a dichotomy,in this usage,

is not necessarily a partition of S,). If {A,B} © &; is a dichotomy, and

(f, A) ~ (f, B) is false, then fis said to bifurcate the dichotomy A, B}.

LEMMA 3.3. Let > on @(@) satisfy A3.1-A3.4, and let {A,B} © &, be

a dichotomyforf. Iffbifurcates { A, B\, then there exists a unique x € [0,1 |

such that

(ff, AU B)~ aff, A) + (1 — wf, B).

Iff does not bifurcate {A,B}, then (f, AU B) ~ Bf, A) + (1 — BY, B)

for every Be [0,1].

Proor. Suppose without loss of generality that (f, A) Z (f, B). Then

(f, A) = (f, 4A uv B) ZU, B) by A3.4, and lemma3.3 follows from lemma
3.2 by identifying (cf. footnote 8) (f, A), (4 Av B), and (f, B) with x,

y and z.

For the case that f bifurcates the dichotomy { A, B}, the interpretation

of the unique probability number « in lemma 3.3 is clear: given the

subject’s commitment to implement f in any case, a is that (objective)

probability for obtaining A that he would truly require of Supergenie

(if there really were such a fellow) in the hypothetical lottery a(f, A) +

(1 — «)(f, B), in order to be just indifferent to taking what he perceives

to be his ‘natural’ chances on the occurrence of A under the supposition

that AUB obtains. We give this uniquely determined « the name

PJ,(A) (similarly, P4.,(B) = 1 — «). It then follows at once from

(f, AU B) ~ Phui(A), A) + Paun(BYE B), (3.1)

and the order-preserving and linearity properties of u: .@(@) — Re, that

u(f, AU B) = P4ig(A)u(f, A) + Pacn(B)uls, B). (3.2)

This is the fundamental decomposition formula for subjective expected

utility. It expresses the utility assignment for the suppositioned circum-

stance (f, A U B) as a convex combination of the utility assignments for

the ‘component’ suppositioned circumstances(f, A) and (f, B), the weight

PJ,(A) reflecting subjective degree of belief that the true /-conditional

state is to be found in A under the supposition that it lives already in

AUB.
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The core of our theory is now in hand, though it does remain totie
up some loose ends. To begin with, we must consider the indeterminacy
that arises whenf fails to bifurcate a dichotomy { A, B}. Forin this case,
the canonical experimentoflemma 3.3 loses the powerfor discrimination
by which P4_,,(A) is otherwise uniquely determined. In the next section
we shall reduce this “knife-edge’ anomaly in a mannerthat ‘faithfully’
reflects the subject’s underlying appraisal of relative likelihoods. We
then go on to establish the obvious generalization of (3.2) for multi-
chotomies of f-conditional events; in the process, we show that the
generic set function Pj: {A 7 D| Ae &,} > Reis indeed a probability
measure.

3.3. Theory Closure

In order to treat the anomalous ‘degree of belief’ indeterminacy that
arises for unbifurcated dichotomies, we introduce the notion of Savage
equivalence. We shall define this below (in terms of primitives aiready
introduced) as an equivalence relation « on ¥ in such a waythat those
acts which belong to a given *-equivalence class (a) share a common
event algebra, and (b) are indistinguishable with respect to the proba-
bility numbers they may (separately) uniquely determine (according to
the canonical experiment (3.1)) for any dichotomyin that algebra. Of
course it may happen that a given act does not bifurcate a given dicho-
tomy; indeed, the idea is then to generate the appropriate probability
numbers for this case by means of some (any) Savage-equivalent act
which does bifurcate that dichotomy. Finally, this aspect of the model
is Closed by assuming (A3.5 below) that every Savage class in ¥/x is
sufficiently ‘bifurcation rich’ in the sense just described!?.

'? A3.5 and A3.6 (to follow) are conditional (and somewhat weakened) versions of com-
parable robustness conditions developed for the ‘uniformly Savage’ framework of
ref. [5].

This structural robustness, which we formally require to close the model, may(if
necessary) be informally conceived in a way that does not burden our understanding
for F as theset of real-world acts presumed available for choice. Thus we may have the
following kind of subject-implemented and ‘Savage-invariant’ generating device in
mind: for Ae &, imagine an act f, which is precisely the same as f except that the
subject himself is to free-dispose of (say) a ten dollar bill if A should in fact obtain. To
incorporatethis in a formal way would involve axiomatizing a free-disposal commodity
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To define * on ¥ wefirst construct an antecedent binary relation #

on ¥ according to

ForallfgeF,f#¥ g iff

(a) &€,=6,

(b’) if {A, B} is a dichotomyin &;,
iff bifurcates { A, B}, and

if(f, AU B) ~ off, A) + 1 — a), By,

then (g, A U B) ~ a(g, A) + (1 — a)(g, B),

(b’’) same as (b’) with f, g interchanged.

—

The relation # on ¥ is reflexive and symmetric, but not necessarily

transitive!*. Then in terms of this relation we define « on ¥ according to

For all fi ge F, fxg iff

f#h = g#h,forallheF.

It is easily verified that this relation is indeed an equivalence; we denote

the generic Savage class in ¥/* by [f], and the commonclass-condi-

tional event algebra for [f] by &,,, As anticipated above, we assume

For every fe ¥ and dichotomy {A, B} & &,,, there is some

g €[f] which bifurcates { A, B}. (A3.5)

Then for the case that f itself does not bifurcate a dichotomy A,B},

we just put

P4.p(A) Df P4(A)

for the g €[f] asserted by A3.5. That P4.,,(A) is thus well defined (does

not depend on choice of ge[f]) follows from the fact that * on ¥ is

an equivalence. We accordingly relabel P4,,(A) as Pf! ,(A). Thus for

any dichotomy {A,B} € &,,, we have

(f, A UB) ~ PlaA)UL A) + Paia(B)(F B) (3.3)

(say money) of which ‘moreis preferred to less’, and an assumption that, indeed, a

‘prize-distortion’ or ‘superstition’ effect (on subjective probabilities) does not obtain for

‘small’ free-disposal perturbations of the type just illustrated. But from the structural

point of view, the model is complete on the basis of A3.1-A3.6.

'3 Suppose, for example, thatf # hand h # g and that (h, A) ~ (h, B) for some dichotomy
{ A, B\; we maystill have uniquely determined P4,,,(A) and P%,,(A) which do not

agree.
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and

u(f, A UB) = PY),(A)u(f, A) + PY),(B)ulf, B) (3.4)

for uniquely determined P!Y! ,(A).
Moregenerally, let {D,, D2, ..., D,} be an n-chotomyin &,,; thatis,

D;€é@,y, for i= 1, 2,..., n and D,A D,; = © for i #j. Let &({D,})
denote the algebra generated by {D,, D,,..., D,\, put D = (J", D,
and define PY\D) = 1, PY @) = 0. To complete our theory we must
extend (3.4) to

n

u(f, D) = dX PSD,)ulf, D,), (3.5)

and show that the set function Pif!: &({D;') > Re is finitely additive,
and therefore a probability measure.

It suffices to consider’* the case n = 3. Thus let {A, B,C} be tri-
chotomyin &,, and, for arbitrary ge[f], let «, B,..., v be the unique
probability numbers for which

ug, AU BUC) = aug, A U B) + (1 — a)u(g, C),

u(g, A U B) = Bulg, A) + (1 — B)u(g, B),
ug, AU BUC) = yu(g, A) + (1 — y)ulg, BU C),

u(g, BU C) = du(g, B) + (1 — d)u(g, C),
ug, AU BUC) = pu(g, B) + (1 — pu(g, AU OC),

u(g, AU C) = vu(g, A) + (1 — v)u(g, C).

Telescoping these by successive pairs we have

u(g, A UBU C) — apu(g, A) + o(1 _ B)u(g, B) + (1 a a)u(g, C),

ug, AV BUC) = wl — p)u(g, A) + pu(g, B) + (1 — w)(1 — v)ug, C).

Now suppose for the moment that these decompositions for u(g,
AU Bu C)are in fact identical; we shall guarantee this in A3.6 below.
Then, in particular, we have y = af and pw = a(1 — B). Together, these

(a) givea=y+ uy, or

PYpiclA U B)= PYpuc(A) + PYac(B),
which proves additivity for PY}, -:

'* The developmentto follow is that modification of the one given in ref. [5], pp. 39-41,
whichis appropriate for the present theory; we include it here for completeness.
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(b) translate directly to the chain rule

PY)puclA) = PYpi clA VU B)PY{!(A),

PYpu c(B) = PYpucl(A U B)P'f! a. AB); and

(c) imply the generalization of (3.4) to

ug, AU BUC) = PYSpicl(A)u(g, A) + PY)ac(B)u(g, B)

+ PYaic(QCutg, C) for all g E [fl.

On the other hand, if the decompositions in (3.6) were not identical,

we should have some non-zero triple of real numbers(€, , ¢) for which

€+n+C0=0, and

Eu(g, A) + nu(g, B) + Cu(g, C) = 0 for all ge[/'].

Wetherefore preclude this by positing

For every fe F and trichotomy {A, B, C} & &{p, there exist h, ke [f]

such that the set of 3-tuples

f(1, 1, 1), (u(h, A), u(h, B), u(h, C)), (u(k, A), u(k, B), u(k, C))}

is linearly independent. (A3.6)

Of course this structural condition is invariant under positive affine

transformation of u. We havestated A3.6 in termsof derived rather than

primitive concepts (we need not have); by so doing we realize a hand-

some notational saving, and perhaps communicate more effectively

the idea that A3.6 simply performs the same kind of yeomanservice as

did A3.5 (by sidestepping yet another possible ‘knife-edge’ anomaly).

For an informal way to achieve A3.6, recall the discussion in footnote 12.

We summarize:

THEOREM. Let (¥, {6+}peg, >) satisfy A3.1-A3.6. Then there is a func-

tion u: M(€)— Re and finitely additive probability measure P'f!:

{EQ D| E€&,,} > Re for every [f] S F/* and De &,,, such that

(i) wu preserves > on M(@),

(ii) uis linear on M(@),

(iii) if B, CE jp, and B SC, the measures PYf! and Pi! satisfy the

chain rule

PU(A) = PLB) PYA)
for every AE &,,, such that A SB,
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(iv) u(f, AU B) = PY!(A)u(f, A) + PY! .(B)u(f, B) for everyfe F and
dichotomy (A, B} © &(py.

Moreover, the measures P'{! are unique and u is unique up to positive

affine transformation.
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COMMENTS

The interpretation of conditional expected-utility theories

David H. Krantz and R. Duncan Luce

C3.1.1. Discussion

Balch [1] alleges a logical paradox arises in specifying an empirical

interpretation for the conditional expected-utility theory of Luce and

Krantz [5], which the work of Fishburn [4] and, especially, that of
Balch and Fishburn [2] is said to overcome. In our view, however,
it is at least as easy to specify an empirical interpretation for the Luce

and Krantz (LK) axioms as for the Balch and Fishburn (BF) axioms,

as we now argue.

A conditional decision is a function that specifies an outcome for

each state in a conditioning event. To facilitate comparability with BF,

we makea trivial change in our notation for conditional decisions: let

f, denote the restriction to the domain A of a function f whose domain

includes at least the event A. This makes the LK object f, exactly

comparable to the BF object (f, A). Our notation permits some brevity

in specifying new functions. For example, if A and B are disjoint events

and f, g are conditional decisions with domainsrespectively including

A, B, then wewritef, U gz for the function whichis restriction to A U B

of the relation fv g.

In specifying an empirical interpretation, difficulties arise from the

structural axiomssince they force the set of objects over which prefer-

ence, =, is defined to be larger than is comfortable. The LK system

includes two non-trivial groups of structural conditions: closure ones

and solvability ones. The closure conditions, which are those Balch

criticized, state that iff, and gp, are conditional decisions, with An B= ©,

then f, U gz is also a conditional decision; and that, if f,.,, 1s a condi-

tional decision, then so is f,. (For simplicity here, we exclude the possi-

bility of null events other than @, and we assumeany event symbolized

by A, B, etc., is non-null.) The solvability conditions (which were not

criticized, but which in fact pose practical difficulties for finding an

70
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acceptable empirical interpretation) specify, first, that given any A and
any gp, there exists f, such that f, ~ gz; and, second, given

AY 0 gpg face h?? U Gp»

there exists h, with h, U gp ~face.

The BF system likewise has two groups of structural conditions:

mixture space conditions and a continuity axiom.Thefirst states that all

lotteries on finite sets of conditional decisions are in the domain of the

preference relation. The second states, in effect, that there are no dis-

continuities in preference as a function of lottery probabilities.

Balch’s criticism of the LK closure axiomsis, in brief, the assertion

that f,, gg, and f, U gz, A B = @, cannot simultaneously be available

for choice, and so onepart or the other of the closure axiom 1s necessarily

invalid. The argumentis that if f, and gz, are available for choice, then

the decision maker controls whether A or B occurs. Sof, U gz is difficult

to interpret, since whether or not the event A occurs, given A U B, 1s

not determined by any natural mechanism external to the decision

maker. For example, if one is free to choose between traveling byair,

fa, or by bus, gz, then it is ‘silly both to decide to travel and to let the

choice of A or B depend on a chance mechanism. On the other hand,

if f, U gp is a ‘natural option (for example, one decides to make the

trip, but without knowing whether air reservations are available) then

f, simply is not, at that time, available as a unitary act.

To this criticism we reply that, if f, and g, are natural options, but

ft, Gz IS not, then our closure condition necessitates that we form a

lottery, with the conditional probability of A given AWB fixed by a
chance mechanism at the disposal of an experimenter. This is certainly

less restrictive than the BF mixture space requirement, which entails the

consideration of not one, but arbitrary lotteries between f, and gp.

In the other case, where f,.,, 1S a natural option but f, cannot be de-

livered, we are perfectly prepared to delete the event A from our algebra

of events, incorporating Aw B and f,.,, into a simpler structure for

purposes of the analysis. (Alternatively, we may be able to keep the

structure intact and use other axioms to make inferences about the

preference for the unavailable f,. For example, if it is known that

face Sfp this certainly entails, with the other axioms, that f, 2fyp-)
In short, for mathematical reasons, the natural alternatives, whose

utilities we wish to analyze, must be embedded in structure with the
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proper closure conditions. This means, in practice, that the natural
alternatives must sometimes be supplementedbyartificial ones in order
to attain a measurementstructure. This is no different in principle from
other artificial constructions in measurement, for example, sets of
standard weights used in connection with a pan balance. Andcertainly
it compares favorably with the mixture space apparatus of the BF
system, which has lotteries run by a ‘Supergenie’.
The issue of behavioral observations versus hypothetical choices

seems an extraneous one. It 1s perfectly true that if a man is free to
choosetravel by air or bus, f, or gg, then it may be difficult to persuade
him to choose instead between f, U gz, where whether A or B occursis
determined by throwing a die, and hz, going by bus with a bonus of

$100, for example. He simply may not submit to having only those two
choices actually available to him, and so we mayhaveto pose the choice
as a hypothetical one and hopethat the utilities and subjective proba-
bilities determined in this way will predict actual choices in other
situations. But this is a very general problem in the theory of preference,
and it has no special bearing in the present framework. The LK axioms
do not commit us, by their formal structure, to any fixed method of
determining the = relation.

So far, we conclude that the closure restrictions in the LK system
are less bothersome for empirical interpretation than the mixture-space
apparatus of BF. Thepictureis a little less clear if we take account of
the other structural restriction in LK, namely the solvability properties.
The solvability properties require that we be able to manipulate f

while holding A fixed — that is, systematically vary the outcomes associ-
ated to different states of A. This is not always ‘natural’. It means that
to measure the utility of a natural decision, f,, we must introduce
artificial modifications of the assignment of outcomes to states. (For
example, we could harass weary commuters on the LongIsland Railroad
by asking their preferences between f, U gy and h,, where gr is a train
trip and h, is the same trip supplemented with a $0.25 rebate for each
minute behind schedule.) The BF system has no such requirement
because of the great richness of its mixture space with numerical pro-
babilities.

It seems to us that the chief difference between the two systems lies
right at this point: the LK system imposesgreat richness on its outcome
structure, but can get on with as few as three atomic events (or even two,
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with a little extra effort); the BF system can deal with any set of basic

action alternatives, but utilizes the elaborate mixture-space apparatus.

Presumably the latter apparatus could be made more qualitative by

moving in the direction of the Savage axioms [7]; but in anycase,

whatis required is a very fine-grained structure of events or probabilities.

The essence of this difference is familiar from the contrast between the

utility measurement procedure of refs. [3] and [6]. Does one best

measure utility by trading off value and probability or by trading off

value against value? The latter has more face validity and is more

easily generalized to situations where the subjective probabilities are

not well behaved; it is the method of Davidson et al. and of the LK

system. The former method gets along with a much simpler structure

of basic options; it is the method of Von Neumann and Morgenstern,

Mosteller and Nogee, Savage, and others, and is the basis of the BF

system.

It seems to us that both methods have their uses, and that the real

contribution of the BF system is to extend the mixture space analysis

to cover intrinsic conditional probabilities associated with decisions.

However,in oir opinionit does not have the advantagein interpretation

over the LK system claimed by its authors.
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Frameworks for preference

Richard C. Jeffrey

C3.2.1. Discussion
If I now prefer p to q, what sorts of entities are the prospects p and q?

In 1954, Savage [10] answered this question in what he took to be
behavioristic terms: prospects — the terms of the preference relation —
are functions from a set S of states uf nature to a set C of consequences.

He called such functions ‘acts. A decade or so later, Bolker and I

answeredit differently: prospects are propositions, i.e. (nearly enough)
sets of possible states of nature where the human agentis taken to be
part of nature and his acts are thus ingredients in states of nature. Now,
branching off from work of Luce and Krantz, Balch and Fishburn
propose a hybrid answer: prospects are act-event pairs and probability
mixtures of such pairs. With Savage, they treat man and nature — acts
and events — dualistically. Their treatmentof acts is far more satisfactory
than Savage’s, and they are to be commended for the step toward
holism which they take in dropping Savage’s extraneous set C of
consequences. But I will argue for the fully holistic or naturalistic
position in which preference is a ranking of events (or propositions),
some of whichareacts.

With Balch and Fishburn, I find Savage’s system unacceptable.
Choice ought to reveal preference to at least this degree: the prospect
which the agent chooses ought to be one ofthe highest in his preference
ranking which he takes to be options for him. But in Savage’s system,
prospects seem to be entities of a sort among whichfinite beings cannot
choose. For Savage, choice of an ‘act’ is choice of a scheme which
associates a definite consequence with each of the infinity of possible
states of nature. If these are acts, then only God could know whatactis
being performed. After performance, the human agent may learn what
consequencehisact associated with the actualstate of nature, but neither
before nor after its performance can he be expected to know what
consequences the act associates with the rest of the possible states.
Thus, for us, choice of an act cannot be choice of a particular function

from states to consequences. To make Savage’s scheme humanly
applicable, one would have to modify it so as to make preference a

714



Comments 75

relation between sets of functions from states to consequences. Choice
of an action would then be choice of such a set, an unknown member
of which will be realized. God knows which function is realized, and the
human agent has opinions about the matter, expressed by a subjective
probability distribution over the chosen set.
Balch and Fishburn seem to be making just this sort of complaint

about Savage’s theory in their footnote 3, where they contrast their
theory with Savage’s by temporarily formulating their proposal in
something like his terms. The humanly available acts are various
possible expenditures on advertizing, the consequences are various
possible incomes from sales, and it is the states which are functions,
namely, all functions from expenditures to incomes. Here human un-
certainty has its proper object: not the identity of the act whichis being
performed, but the identity of the actual state of nature. I see this move
as a definite conceptual improvement over Savage’s representation of
matters, and over the alternative just noted, of viewing preference as a
relation between sets of Savage-style acts.

But Balch and Fishburn note this move only in passing, as a possi-
bility. Their own moveis to scrap Savage’s consequences along with his
functions from states to consequences. Hesitantly holistic, they take the
basic prospects to be pairs (f, A) where f is a humanly possible act
(not one of Savage’s functions) and A is a subset of the set Sy Ofall
possible f-conditioned states of nature (which need not be functions
either). I take it that the agent prefers act f to act g when heprefers the
pair (f, S,) to the pair (g, S,): human choice is among unconditioned
acts, 1.e. among vacuously conditioned acts. The point of including such
pairs as (f, A) and (f, S, — A) in the preference ranking is presumably
to allow the agent to analyze his attitude toward itself, i.e. toward
(f, S,), as a function of his degree of belief infgiven A andofhis attitudes
toward f as they would be if he knew that the true state would be in A
and if he knew that the true state would not be in A.

But why not be a bit more holistic, and view the agent as part of
nature? A state of nature would then specify whatact the agent performs,
along with everything else one usually takes it to specify. Preference
would be a relation on a Boolean algebraof subsets of the set S ofall
such holistic states. Underlying the preference ranking would be func-
tions u and P on states and sets of states respectively: A would be
preferred to B if and only if the conditional expected utility E(u | A) of u
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on A were greater than E(u | B), where both expectations are computed

according to the probability measure P. Then prospects are proposi-

tions: sets of states. For the most part, prospects would be outside the

agent’s power to affect, for example, he might prefer fine weather

tomorrow to rain tomorrow, even though there are no acts he can

perform to realize either prospect. But among the prospects there would

be certain propositions which he can maketrue or false as he pleases,

and such propositions do duty as acts, for example, the act of taking

his umbrella as he leaves the house in the morning would be represented

by the set of states in which he does just that. Remember: the agentis

part of nature, and his acts are ingredients in states of nature. In terms

of the more conventional representation, in which the states of nature

do not specify the agent’s acts, my set S might be thought of as the

cartesian productofthe set of states with the set of acts (where the acts

are not thought of as functions). But I prefer to think of acts as ingre-

dients in states ab initio.

Such is the view which I put forth in my book andarticle of 1965 [6.5].

The thing would have been impossible but for the prior mathematical

work of Bolker, set forth in full in ref. [2], condensed in ref. [3] and

presented without technical details in ref. [4]. Bolker’s existence and

uniqueness theorems are novel and important from a measurement-

theoretical point of view, as are his methods, which look to von Neu-

mann’s work on continuous geometries rather than to Holder’s theorem

on ordered groups.

It was the work of von Neumann and Morgenstern [9] which per-

suaded economists and statisticians that cardinal utilities do, after all,

make sense, and it was the work of Savage [10] which persuaded them

that subjective probabilities make sense. In each case, the process of

persuasion took some time, and in each case there was prior work(by

Ramsey and DeFinetti) which might have done the job of persuasion

but did not: it was von Neumann—Morgenstern and Savage whofinally

got the ear of the public. By now, one no longer hasto earn the right to

deliberate in terms of subjective probabilities and utilities by first

rebutting the ordinalists of the 1930s. Therefore I think it proper to

characterize the notion of an ideally satisfactory preference ranking as

one for which there exist a random variable-u and a probability measure

P relative to which the conditional expected utilities E(u|-) mirror

preferences: A is at least as high as B in the ranking if and only if
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E(u| A) = E(u| B). From this characterization one can deduce that the
preference relation is transitive, connected, etc. (Under ‘etc’ we have
the averaging condition: if A and B are disjoint prospects, then their
unionlies in the closed interval between them,in the preference ordering).
One might take theset of all such consequencesto be the general theory
of preference. This is not to deny the importance of existence theorems
like Bolker’s, which give conditions on the preference ranking and on
the algebra of prospects from which one can deduce the existence of
functions u and P as above. On the contrary: it is because we have
such existence theorems that the foregoing procedure seemsfeasible.
Note, however, that Bolker’s conditions are not intended as axiomsfor
the general theory of preference. Those conditions restrict the algebra
of prospects in important ways, and makecertain special assumptions
aboutthe preference ranking, so that their consequences neither exhaust
nor lie wholly within the general theory of preference as defined above.
But that is inevitable: one cannot expect the conditions to be necessary
as well as sufficient for existence of the functions u, P.

But there remains a uniqueness problem, even if we sidestep the
existence problem as I have suggested above. Consider the preference
relation which is determined by a particular pair u, P, where u is bounded
above or below. One might expect that any other pair u’, P’ which
determined the same preference relation would berelated to thefirst
pair by the conditions P’ = P and u' = au + b where

a

is positive.
But in fact these strong conditions do not hold. In fact (Bolker’s uni-
queness theorem) the relevant group of transformations for u is not
simply positive affine: it is a certain more comprehensive subgroup of
the projective transformations (with positive determinant). Nor is P
uniquely determined by the preference relation: there will be a certain
‘quantization’ or uncertainty about the probabilities of propositions
which appear above or below S in the preference ranking.

This underdetermination of u and P by the preferencerelation (unless
u is unbounded above and below)is fascinating, but may be seen as a
flaw. (Must one have preferences of unlimited intensities in order to
have a perfectly sharp subjective probability measure?) If so, the flaw
is removable, for example, by using two primitives: preference and
comparative probability. With these primitives, one ought to be able to
drop some of Bolker’s restrictions on the algebra of prospects in favor
of conditions on comparative probability and conditions connecting



78 Richard C. Jeffrey

preference and comparative probability. I would expect that in this way

one could get significantly closer to an existence theorem in which the

conditions are necessary as well as sufficient for existence of u and P,

while obtaining the usual uniqueness result: P is unique, and uw is

determined up to a positive affine transformation. It would be a job

worth doing.

To see the situation clearly, let us now think of prospects as proba-

bility measures over a measure algebra of subsets of S. On S there is a

fixed random variable u which assignsutilities to possible states, and

one prospect is preferred to another when the (unconditional) expected

utility of u is greater when computed according to the first probability

measure than when computed according to the other. If we take the set

of prospects to include all probability measures over the underlying

measure algebra, the preference relation determines u up to a positive

affine transformation as in the von Neumann-Morgenstern theory. But

in the Bolker—Jeffrey theory, the prospects form a much thinnerset than

that: they stand in one-to-one correspondence with the probability

measures P(-| A) which are obtainable from a fixed measure P (the

agent’s actual subjective probability measure) by conditionalization

relative to the various measurable subsets A of S to which P assigns

positive values. (Note that the unconditional expectation of u relative to

the measure P(-| A) is the conditional expectation of u on A relative to the

measure P.) Preferences among prospects in this thin set determine u

only up to a widerset of transformations, and the basic measureP is not

uniquely recoverable from preferences if u is bounded aboveor below.

But to get the stronger determination of u, one need not fatten the

set of prospects very much: it would be enough to have one additional

prospect Q which is not of form P(-| A) for any measurable subset A

of S but which is knownto be (say) a 50-50 mixture of two such pros-

pects: Q = 5P(-| A) + 5P(-| B) for measurable subsets A and B of S

where P(A) 4 0 # P(B) and P(- | A) is preferred to P(-| B). One would

then know that the expected value of u relative to Q is exactly half way

between the expected values of u relative to P(-| A) and to P(-| B), and

could use this fact to determine P uniquely and determine u up to a

positive affine transformation. In these terms, the Balch—Fishburnsort

of move would beto fatten the Bolker—Jeffrey set of probability measures

by closure underall mixing operations: aP(-| A) + (1 — a)P(-| B) with

0 <a <1 would be a prospect whenever P(-| A) and P(-| B) are.
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These comments have been frankly tendentious and partisan. With
Bolker, I applaud the Balch—Fishburn constructions as a real advance
over Savage’s approach, and over that of Luce and Krantz in so far as
the latter continues to treat acts as functions, albeit partial functions,
on

a

set of act-free states of nature. But I see the step from the Balch—
Fishburn framework to Bolker’s and mine as a further, natural advance
to a truly holistic standpoint. If I have been noisy in my advocacyit is
because that’standpoint has not previously been called to the attention
of foundationally-minded economists and because Bolker’s methods
have not yet found their place in the toolkits of measurement theorists.
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Remarks on ‘Subjective expectedutilityfor conditional primitives’

Ethan D. Bolker

C3.3.1. Discussion

I am pleased to have this chance to add to the remarks I madeseveral
years ago [4] on the problems addressed here by Michael Balch and
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Peter Fishburn. The style and mathematical level of ref. [2] splendidly

combinerigor and accessibility. The model they choose has twostriking

advantages. First, it is truly conditional: acts do affect the state of the

world. Second, consequencesare holistic: your reward for actionis the

world as you have helped to makeit.

There are, however, aspects of their theory which I find less satis-

factory. The ‘Bolker objection’ (which could just as well have been

namedthe Jeffrey objection) says that it is unreasonable to ask a decision

maker to express preferences about events or lotteries he feels cannot

occur. We must ask when the Balch—Fishburn lottery

a(f, A) + (1 — «)(g, B) (C3.1)

legitimately lies in the domain of the decision maker’s preference order

>. The most restrictive answer would be ‘Only whenf # g, A = S, and

B = S,. Lottery (C3.1) is then merely a mixed strategy on the set {fig}.

But with so few allowed gambles there might be no theory. I see little

objection to lottery (C3.1) provided f# g, even when A # S, and

B # S,. To consider(f, A) the decision maker must ask himself how he

would feel if he chose act f and event A occurred. That should not

overtax his imagination even thoughhe can in no waycausethe logically

possible event A to cometo pass.

When f ¥ g the events (f, A) and (g, B) occur in different conditional

worlds, no a priori subjectively correct « accompanieslottery (C3.1) and

so our decision maker might agree to consider (C3.1) for every value

of a. However, when f= g he may say ‘I cannot conceive of lottery

(C3.1), because in choosing f I have already changed the world as

muchas I can. I don’t believe that then P4,,(A) = «. I cannot conjure

up a Supergenie who could makeit so, since I do not believe in magic

and my subjective feelings about probabilities in &, are as much a part

of that world as its events. That is the Bolker objection conditioned by f,

and it still stands. The objectionable lotteries are just what Balch and

Fishburn use to determine subjective probabilities in &;, for ifA 1 B= ©

and there is a unique « for which

(f, AU B) ~ aff, A) + (1 — a)B)

then they sensibly define P4.,,(A) to be «. That seems to me a super-

ficial deduction of numerical subjective probabilities from ordinal
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utilities. It is tantamount to asking the decision makerdirectly for his
estimate of P4,,,(A).

It may be that the subjective probabilities of events in é, can be
recovered from preferences amongthe allowed mixedstrategies. If such
were the case Balch and Fishburn could counter my objection and
avoid the ad hoc introduction of direct scaling for subjective proba-
bilities. But I would still prefer a lottery-free theory, one in which no
reference was made even to those non-objectionable gambles. It may
not be necessary to construct such a theory, however, since presumably
real as well as hypothetical decision makers are familiar with lotteries
nowadays, and Herstein and Milnor’s results [7] cry out for application.
I once attempted a lottery-free theory [3, 4]. That theory was technically
cumbersome; it used countably additive measures and a continuum
of states. Balch and Fishburn avoid both these psychologically un-
realistic requirements. There are somestructural similarities between
my theory and theirs.

I recognized onedifficulty they encounter, that of finding a consistent
definition for P4,,,(A) when (f, A) ~ (f, B). Theirsolutionis to postulate
Savageclasses satisfying a robustness axiom A3.5 and an independence
axiom A3.6. I can imaginesituations in which both axiomsfail because
Lf] = (f}: the Savage class is a singleton. In fact, that would seem to
me more typical than not, for in a truly conditional theory such as
theirs &; # &, whenf ¥ g and so,a fortiori, g ¢ [f]. | find the alternative
to Savage classes sketched in footnote 12 unconvincing: if the hypo-
thetical side paymentreally exists it is already counted in the construction
of &,; if it does not, the Bolker objection prevails.

I resolve unbifurcated dichotomiesbyfinding a C disjoint from A U B
for which f bifurcates {A, BU C}. A technical observation showsthat
it suffices to bifurcate those dichotomies, for which there is such a C.
My Axiom ii (impartiality), like Balch and Fishburn’s A3.6, guarantees
that the probabilities thus obtained are both well defined and additive.
A similar idea might work in Balch and Fishburn’s theory. I think they
could modify their model and their methods so as to answer the ob-
jections I have raised without sacrificing the clarity and elegance they
have achieved.

Myfinal reservations apply to all theories of this kind, including my
own.I wonderif such axiomsreally describe behavior, whether‘practical’
military and political decision makers really use these theories and,
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if they do, whether they ought to. Perhaps what we need instead is an

axlomatization of morality.
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Some comments on some axioms for decision making under uncertainty*

John W. Pratt

C3.4.1. Introduction and miscellany

To the extent that these comments are not ex cathedra, they are about

only the three papers by Balch and Fishburn in this volume [1-3]. To

bound my task, and for other reasons, both good and base, I have not

delved into the antecedents of these papers or into axiom systems for

decision theory generally. A convenient cover for some preliminary

remarks is, however, provided by mentioning some desiderata which

might be invoked for such axiom systems, particularly whenthe resulting

model is not at issue.

* This originated as a comment on the paper presented by Fishburn [3] at the Third

NSF-NBERConference on Decision Rules and Uncertainty, lowa City, May 1972.

Oversights may have occurred in adapting it to take account of the two subsequent

papers [1,2]. If so, I apologize. I am grateful for the support of the National Science

Foundation (Grant GS-2994) and the John Simon Guggenheim Memorial Foundation.
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C3.4.1.1. Simplicity is one. Unfortunately there is no clear way to
define it. If one axiom system actually contains another which leads to
the same conclusion, then thesituationis clear. If two systems overlap,
we mighttry to talk about some axioms implyingothers, in the presence
of still others. But even if we succeed in avoiding a quagmire,is this
kind of thinking relevant to the simplicity that matters? Suppose two
systems are identical except that two axioms in system A are replaced
by one in system B. Is system B necessarily better? Not if its one axiom
is incomprehensible and A’s two areintuitively appealing. The simplicity
that matters is not a technical concept.

C3.4.1.2. Elegance. Whatever the definition, Savage certainly gets high
marks for having fundamentally internal calibrating events rather than
grafting on or implicitly assuming the necessary calibration.If, however,
the decision makeris in fact going to calibrate by reference to an external
or hypothetical event, this elegance is of peripheral importance. Thus
I am sympathetic to bringing in mixed acts. Oncethis is done, however,
both the set of acts and the set of events are fundamentally as infinite
as Savage’s, since the acts and events comparable to Savage’s include
the mixed acts and the mixing events. It is unfair to compare just the
unmixed acts and internal events with Savage's [1, p. 50].

C3.4.1.3. Mathematical difficulty of proofs. This is really irrelevant to
the value of an axiom system,if not to the chancesofgetting it published.

C3.4.1.4. Weakness. Providedit gives the desired result, a weaker system
is generally better, though even this isn’t universal if the weaker system
is incomprehensible; see section C3.4.1.1. Though weakness and
simplicity are undoubtedly related, they are certainly not identical in
relation to one of the issues of occasional concern here: what is the
most innocuous enrichment of the available acts and events enabling
one to prove the expected utility theorem? It is tempting to trumpet
others’ enrichments while hiding one’s own in footnotes and obscure
axioms. Balch and Fishburn rarely succumb [2, axioms A3.5 and A3.6
and perhapsfootnote 12], but comparing innocuousnessis an inherently
vexing problem. Are Savage’s requirements more or less nocuous than
Supergenie lotteries? Furthermore, some writers may have included
unnecessary acts or events for simplicity or through oversight when the
richness seemed inconsequential to them. Fairness then requires pruning
their systems where this is easy but not where it is hard — a delicate
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distinction. What acts does Savage really need and what could be

eliminated?

More fundamentally, enrichment has onedesirable aspect: it general-

izes the conclusions. Among other advantages, this may facilitate

assessment of probability and utility; see section C3.4.1.5 below. To

play the elimination gameproperly, then, one would haveto distinguish

carefully the minimum neededto prove existence from additions needed

to extend the domain of applicability.

Most authors don’t bother, and I don’t blame them. I doubt it would

be worth the candle. Whatever the professional players’ other purposes,

the main purpose of the axiomsis to convince intelligent amateurs that

expected utility ought to guide decision making. This calls for com-

promise in manyrespects, including elimination. Nice distinctions don't

help. Once convinced, even for a limited class of problems, decision

makers will extend the method as necessary without hesitation. They

will even adopt act-dependent probabilities when appropriate. It would

surprise me if anyone has truly been deterred from accepting the faith

by scruples over the unavailability of any of the acts commonly intro-

duced, or over act-dependent probabilities, even if these are occasional

debating points for those committed to other faiths.

C3.4.1.5. Constructiveness. If a decision maker is to use subjective ex-

pectedutility theory to reach decisions, what assessments or hypothetical

choices will he make? Many axiom systemsare like Balch and Fish-

burn’s, which might lead him to think, if he didn’t know better, that he

was expected to preference-order the entire mixture set .4@(@), or at

least to assess a utility function on all act—-event pairs. They drop contrary

hints in the accompanying text, of course, including several references

to scaling, albeit as a concession, and aninterest in obtaining eventually

a true expectation representation (3, p. 29 (2.2*), p. 40 (iv), (v), etc.;

2, p. 67 (3.5), but obscured in the later theorem]. Perhaps in papers. for

professionals only it goes without saying that, regardless of how the

axioms look, the decision maker will actually assess only enough pro-

babilities to determine those he needs, and the utilities of the conse-

quencesor,here, the act~state pairs (both to an adequate approximation).

It would be unfair to say of any axiom system that‘the subject is required

to express binary preference over the set of all’ acts, act-event pairs,

or whatever [1, p. 45; see also 2, p. 61]. Still, it is an advantage if an
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axiom system bears somerelation, or even better, provides some gui-
dance to the construction of probability and utility, beyond merely

asserting their existence. This, and the similar idea of requiring only

simple judgments and deducing more complex ones, were very much

in our thinking when Raiffa, Schlaifer and I played this game [5, 6].
The simplest judgments to makerelate to simple but hypothetical acts
such as constant acts (consequences) and two-outcomelotteries. The

whole object is to use these simple judgments to arrive at judgments
of complex, real acts. From this point of view,it is desirable, as well as

elegant, to draw as rich a body of conclusionsfrom aslittle input data

as possible; thusthe difficulties of the elimination game(section C3.4.1.4)

apply to preference relations as well as to the sets of acts, events, etc.

To summarize the discussion so far, it is far from obvious how to

judge the desirability of various features of an axiom system. A lot
depends on what game youare playing, by what rules. Many of Balch

and Fishburn’s comparisonsshould be taken with plenty of salt. Further-
more, as long as everyone is getting the same model, the preceding

desiderata are of rather little importance.

C3.4.1.6. Intuitive acceptability, on the other hand,is vital. If we don’t

feel compelled to accept the axioms, they are pointless. I don’t find

Fishburn’s axiom 2.3 or either version of axiom 2.4 (see also A3.4) [2,3]
easy to accept unless I think in terms of consequences (see below).

Fishburn’s axioms2.6 and 2.7 are superficially quite unacceptable: they
don’t even permit an irrelevant, three-outcome event to be included.
I presume they can be made acceptable by adding hypothetical acts

— just the kind of enrichment his paperis trying to avoid. Balch and
Fishburn [2] embrace considerable enrichment, but their A3.5 is not
directly comprehensible, and even a mathematician mightfindit difficult

to accept or reject their A3.6 on the face of it. Their reference to ‘hand-
some notational savings [2, p. 68] suggests no very nice form of the
latter exists, so perhaps I may be forgiven inadequacies and imprecisions

in the following attempt to state the essence of it: Given any act f and
any disjoint events A, B, C such that, if you chose f|/ you would prefer
A to B and B to C,there exists an act g such that:

(1) the mixing probability which would make youindifferent between
B and a probability mixture of A and C if you were choosing f would
not do so for g; and
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(11) for all disjoint events D and E, the same mixing probability would

make you indifferent between Dw E and a probability mixture of D
and E whether you were choosingf or g.

Thus the acts fand g have(i) different prizes but (ii) the same probabil-
ities (and the same event algebras). A3.6 is not ‘simply ... sidestepping
another possible “knife-edge” anomaly’ but is guaranteeing adequate,
though not complete, independence of acts and events (‘recall the dis-
cussion in footnote 12’ with a vengeance) 2, p. 68]. Since the significant
difference from other systems resides exactly here, I believe, it is un-
fortunate that rigorous statement is so formidable and elucidation so
elusive.

To look at it another way, let U(A) = u(f, A) be the (conditional ex-

pected) utility resulting from a fixed act fas a function of the event A.
Anyreal-valued set function U whatever would be compatible with
Balch and Fishburn’s A3.1—A3.3. Their A3.4 requires only that U(A u B)

lie- between U(A) and U(B)for disjoint A and B. We want U(A) to be the

conditional expectation given A of some function under some pro-
bability measure P = P’. If such a probability exists, the values
P(A | Au B) can be determined from U whenever U(A) #4 U(B) by

U(A U B) = P(A| AU B)U(A) + (1 — P(A] AU B)U(B)

for disjoint A and B [2, p. 64 (3.2)]. A3.5 extends this to U(A) = U(B).
Nothing so far, however, implies that the values thus determined should
behavelike probabilities. More remains than ‘to tie up some loose ends’
[2, p. 65]. A3.1-A3.5 are satisfied, for instance, if there is a [see also 4]
single act f, all non-empty subsets of {0, 1, 2} are events, and preferences
correspond to

Ufit=i7, Ufij}=(?4+j7?//2, U{0,1,2} = 1.2

for i, j = 0, 1, 2. If a probability existed, however, it would have to

satisfy

U{0, 1,2} = PLi}ULit + (1 — PLi})U({O, 1, 2}-{i}) (i = 0, 1,2)

and hence P{0} = 0.52, P{1} = 0.80, P{2} = 0.20. That’s a bit much.
Probably no axiom system can entirely avoid the need for care in

interpreting its primitive terms (acts, events, consequences,etc.) in the
real world. For example, unexceptionable as axiom 2.4 (A3.4) seemsin
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either form [2, 3], it would not apply to Mr. Jetsetter’s choice of two

weekend invitations, one to a beach, the other to visit Mr. Rich, who

will fly his guests to either a skiing area or a golf course but won’t

decide which in advance. Mr. Jetsetter prefers either skiing or golf to
the beach, but can’t carry both skis and golf clubs on the plane he must
take to Mr. Rich’s city, and prefers the beach to the risk of being ill-

equipped. He would rather hear either ‘Mr. Rich will choose skiing’ or
‘Mr. Rich will choose golf than ‘I refuse to tell you what Mr. Rich will

choose’ [cf. 3, p. 31]. To salvage axiom 2.4, he must define three acts:
go to the beach, go to Mr. Rich’s taking skis, go to Mr. Rich’s taking
golf clubs. Acts cannot involve reaction to events.

I have gotten so far off course that it is time to start a new section.

C3.4.2. Consequences, constant acts and Supergenies

Before discussing the elimination of consequences and constant acts
and the conjuring up of Supergenies, let me clear away one point: usual

theories do not really require that a consequence possess no uncertainty,

whatevertheir authors may havesaid. Theresidual uncertainty Fishburn

rightly calls attention to [3, p. 32] is or perfectly well could be allowed.
A consequenceis generally an uncertain prospect faced by the decision
maker when he has chosen a particular act and those uncertainties of
nature which he had includedin his modelof states have been resolved

but others have not. There 1s a trade-off between the complexity of the

probability model and the complexity of the consequences whose

utility must be assessed. The utilities we assess usually could have been
‘derived’ from utilities defined on more refined consequences. What
Savage actually said 1s far more than Fishburn indicates or I can sum-
marize, but a representative quotation [7, p. 84] is: ‘I therefore suggest

that we must expect acts with actually uncertain consequencesto play

the role of sure consequences in typical isolated decision situations.’

C3.4.2.1. Eliminating consequences. How 1s one to think about the utili-

ty of act-state or act-event pairs? Are they really ‘more general’ or

different in a ‘major respect’ [3, p. 26 |? Whensaying ‘the use of a par-

ticular act when a particular state 1s assumedto obtain ts preferred to...’

would it be any different to say ‘result of using’ or ‘prospect resulting

from using’ or ‘consequence of using’ in place of ‘use of? Would there

be any real difference between ‘imagine what might happenif’ [3, p. 27;
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2, p. 61] and ‘imagine the possible consequence if’? I don’t think so.
Balch may or may not think so [1, p. 45 or footnote 7, p. 50].- Indeed,
Balch and Fishburn even go so far as to speak of‘prizes’ belonging to
a set suggestively denoted @ [2, p. 61], though they stop just short of
introducing consequences. While consequences maynotbe a ‘conceptual
imperative’ [2, footnote 6], they are implicitly present, and must be
thought about in the way consequences usually are in applying the
theory, so it might be clearer to get them out in the open. It would
reduce the danger of consequences being misinterpreted as opportunity
losses. (It would have been clearer if Fishburn hadsaid ‘it is better that

Mr. Accused be guilty and we free him than that he be innocent and

we convict him’ [3, p. 28].) It would also require specifying whether
consequences correspond to act-event pairs for possibly rich and
complicated mixed acts and compoundevents, or only for unmixedacts
and atomicevents, i.e. states. It is the latter we wantto assessutility as
a function of.

C3.4.2.2. Constant acts. Because the preference relation must apply
to more than consequences, it 1s technically convenientto identify them
with some other element of the system, and in some systems, with

constant acts, for example, ref. [7], p. 25, and ref. [5], p. 365. (The
constant acts are, of course, no more constant than the consequences,

possessing the same residual uncertainty [cf. 3, p. 26].) This identifi-

cation can be dropped, at some cost in cumbersomeness, if the hypo-
thetical nature of constantacts is disturbing. Butit is surely easy enough
(all too easy) to imagine a hypothetical act certain to lead to a broken
leg tomorrow, or death in an airplane crash, whether or not such an
act is actually available. If anyone really had trouble identifying conse-
quences with constant acts, I would worry about his contaminating his
utility assessments with his probabilities, though it’s his privilege if he
wants to.

C3.4.2.3. Supergenie. Since it had never occurred to me that there was
any real difficulty imagining the hypothetical constant acts and gambles
over consequences which the theories require, Supergenie seems to me
not essentially different or new, but just an anthropomorphization (or
deification) of what everyone should havebeen thinking aboutall along.
Thus I am closer to the view that ‘this little fantasy need not have been
spun’ than to the view that Supergenie is ‘a conceptual imperative for



Comments 89

this kind of mind experiment’, but he is clear and vivid, and if he helps
anyone, I am all for him (quoting out of context [1, footnote 10] and
[2, footnote 6]).

In sum, these differences from usual theories seem to me notational,

descriptive, and expository rather than fundamental. (At least this
mitigates Fishburn’s self-criticism [3, pp. 27—-28].) They may also
facilitate some improvements in weakness (section C3.4.1.4). Balch and
Fishburn do not address this question squarely, however, and it is
certainly too complicated for me to, though what I suspect is the main
improvementis discussed in the next section.

C3.4.3. Utility and probability
It is probably clear already that, as far as utility is concerned, Balch
and Fishburn seem to meto providelittle change from usual theories.
The domain of definition of utility and the problem of assessing it are
not changedin any essential way, and as they indicate, their A3.1—A3.3,
which imply its existence, are essentially classical.

Probability, however, is quite another matter. The joint paper [2]
leads to a probability measure conditional on the act chosen, for each
possible act, without requiring the existence of any joint probabilities
across acts. This is a substantial difference from usual theories, and on

the face of it an advantage. To reach a decision on the basis of expected
utility, one clearly needs a utility whose meaningcrosses acts, but only
act-conditional probabilities. Though this is, of course, evident from the
conclusion of other theories, it is an advantage from the point of view
of ‘constructiveness’ (section C3.4.1.4 above) to reflect it in the axioms.

There are, however, tempering considerations in somesituations.

Assessing probabilities conditional on acts could lead to ‘act-distortion’
effects. (Perhaps Balch and Fishburn would favor these as well as ‘prize-
distortion’ effects [2, p. 60], though if I identified either of these kinds

of effects in myself, I would try to purge them asirrational.) And there
are sometimes other reasons for bringing the ‘Savageset of states-of-
the-world’ on stage instead of letting it ‘rest comfortably behind the
scenes [2, p. 59]. For example, rather than assessing a probability
distribution of sales for each advertising level individually, it may be
both simpler and more robust to assess a probability model of the
relationship between advertising and sales, with some unknownpara-
meters, and a subjective probability distribution for the parameters,
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perhaps based on some data, and to deduce from these a distribution

on sales for each advertising level. This would be even more true in

problems where decision trees are much simpler than direct conside-

ration of all possible strategies, such as the design of a marketing

experiment and subsequent choice of advertising level.

Of course, a conditional theory would permit a states-of-the-world

model as a special case. When Savage was writing, incidentally, the

clarification brought to statistical inference by states-of-world models

was not so old that it would have been easy, or perhaps even safe,

to give it up.

It would indeed be an advantage to have also the ‘direct conceptual

link between objective probabilities... and subjective probabilities’

which Balch and Fishburn claim to provide [2, p. 59], but I cannotfind
it in their axioms. The usual link involves defining new acts with stan-

dard prizes on an event and its complement, but that seemsto be ruled

out if events and probabilities are act-conditional. In fact, probabilities

seem to be derivable only by way of utilities, as indicated in section

C3.4.1.6 above, and even then may require some act-independence,

smuggled in through the definition of the equivalence class [f] and

A3.5 [2, p. 66]. Of course, once the expected utility theorem is proved,
independent scaling experiments can be incorporated immediately and

lotteries involving them rated by expected utility. Presumably this1s just

Balch’s embedding [1, pp. 52-53], although I would have expected the

axiomsto besatisfied automatically.

Incidentally, the definition of [f] appears too inclusive and A3.5

consequently too strong. One should not be required to assess common

probabilities over the widest possible set of acts allowed by the utility

assessments. This could probably be handled outside the axiom system

by redefining the event algebras, or within it by allowing theclasses[ f]

to partition the equivalence classes or by amalgamating events whenall

subsets of their union are equally desirable for a given act.

This is as good a place as any for a few remarks on conditional

probabilities given events of probability zero. Fishburn says [3, p. 28,

30] that they exist and are unique, even when not prescribed by the

unconditional probability measure, and that they are needed for

continuous outcomes. I would say almost the opposite: they need not

exist unless the decision maker wants them to, and he might want

them in the theory for unobservable, continuous parameters but not
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for observable outcomes. A known outcome, information received, is

fundamentally discrete, even in a sequential experiment. Continuous
distributions of observables and conditional probabilities given observed
events of probability zero are merely approximations and should be
handled outside the axiom system. However, a decision maker might
want to assess a continuousdistribution for an unobservable parameter,
such as the parameter of a Bernoulli process or an advertising—sales
relationship, and conditional distributions of observables given this
parameter. He then needs an additional axiom to get his whole un-
conditional probability distribution. Raiffa, Schlaifer and I once treated
this subject along these lines, somewhat unenthusiastically and perhaps
inadequately, because it was impeding our primary purpose [6, es-
pecially chapter 10]. If Fishburn’s theory [3] really implies the existence
and uniquenessofall conditional probabilities given non-empty events
of probability zero, then apparently, since they are not determined by
the unconditional probability distribution, the decision maker will be
forced to make a great many hypothetical, not to say ineffable, judgments
which he might not want to make.

C3.4.4. Summary and apology

The burden of my remarks has been that manyof the criticisms Balch
and Fishburn make of other axiom systems, and the distinctions they
draw, have much less substance than their words suggest, while the
important differences lie elsewhere and are not adequately brought out
or explicated. I have dwelt, perhaps unduly, on the former because I
suspect others have similarly overplayed matters of form, though I am
not prepared to cite chapter and verse. The important differences are
still sufficiently problematical and in need of further work so that
extensive discussion would perhaps be premature.

I want to make clear, however, that my comments have not given a

balanced view of Balch and Fishburn’s papers, or attempted to, but have

concentrated on what seem to me points of weakness or misemphasis,
because they are, unsurprisingly, what I had most to say about. Just as
Balch and Fishburnbasically agree with Savage, while criticizing some
aspects of his work, so I basically agree with them, though they have
not yet succeeded as well as Savage: I agree heartily with their conclu-
sions, and their justifications of them are new in significant respects and
will doubtless be improvedin the future. I am all in favor of any argument
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which will convince anyone not already convinced that maximizing

expected utility is the only behavior worth rational consideration. In as
much as I am already convinced, mysatisfaction with traditional

arguments should be discounted.
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REPLY TO COMMENTS*

M. Balch and P. C. Fishburn

The ‘Bolker—Jeffrey objection’’ arises when a decision makerfinds it

impossible to conceive a fair-spinner lottery ax + (1 — «)y because he

simply does not believe that the lottery-master can guarantee prize

delivery”. In particular, the objection carries full force when the ‘prizes’,

as in our theory, are intrinsically characterized in terms of natural

contingencies over which no mortal maysensibly be expected to exercise

control (for example, no one can guarantee good weather tomorrow on

* References in this reply are to the list given on p. 69.

' We thank Professor Bolker for pointing out that the ‘objection’ (which appears in
ref. [2]) had been jointly formulated with Professor Jeffrey.
Onface, at least, the lottery «x + (1 — a)y is ‘supposed to’ offer prize x with (objective)
probability « and prize y with complementary probability.
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the toss of a coin). One wayto sidestep this objection (and there are

compelling model-theoretic reasons for wanting to do so, as discussed

in our paper) is to provide a conceptual framework, necessarily hypo-

thetical, within which such lotteries make sense. The device that we

structured for this purpose is a ‘druthers’ relation over “Supergenie’

lotteries, but embedding the real world in a (logically consistent) imagi-

nary one is not enough; the reader must agree to enter that world as

well, perhaps after the fashion of a Walter Mitty or an Alice (or, indeed,

of some non-fictional characters with whom we are acquainted). Of

course we accept that some people mayfind this difficult, even impos-

sible*. But so long as we insist on representing preference orders only

over alternatives that are actually available in the real world, then it

would appear that we cannot havea ‘full-property’ theory of subjective

expected utility which is also logically consistent (for a discussion of

how the Savage [12] and Luce-Krantz [10] theories shortfall in this
respect, see the Balch and Balch—Fishburn papers in this volume, and

a further comment on ‘constant acts’, below).

There is another point of some interest. Professor Bolker correctly

notes that weelicit subjective probability numbers of the form PJ,,(A)

(for A ~ B = ©) by simply asking the subject a direct question (but this

involves a Supergenie lottery a(f, A) + (1 — a)(f, B) of the type that

Bolkerstill finds objectionable); he goes on to suggest that we might

find a more palatable Way to cull such numbers from the underlying

preference relation. We have two remarks. First, our ‘direct question’*

— which, note, is well put within a Supergenie framework — provides a

most elementary” conceptual linkage between the subjectivist (‘degree

of belief’) and objectivist (‘statistical’) interpretive traditions in prob-

ability theory; this might be regarded as a plus. Second, the Bolker

suggestion has in fact been carried through for the case of an uncon-

ditional framework by Fishburn [5, see also 6] in a way that makes no
use whatever of Supergenie lotteries. But the remarkable fact is that the

Fishburn utility indicator and subjective probability measures are

precisely those that emerge when his system is ‘Supergeniefied’ (this

> The earlier Fishburn approach [5] mayalleviate this difficulty for some, but note
our remark on ‘mathematical equivalence’ below.

* This idea had already been advanced (somewhatless formally) in ref. [11]; cf. footnote 6
in the Balch—Fishburn paper in this volume.

> Cf. remarks in the introductory section of the Balch paper in this volume.
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extension procedure is canonical and unique; see the final section of
ref. [1], and footnote 11 in particular). Moreover, the Fishburn axiom
system could be generalized to the present conditional framework
without essential difficulty (though it would be even moretechnically
involved than its unconditional prototype). Instead, we chose the
Supergenie route in our (subjective!) application of an Occam’s razor.
The tradeoff was between two systems that are mathematically equivalent
(up to canonical extension/restriction): one might be held to be the more
conceptually palatable, but produces subjective probabilities in some-
what arcane fashion; the other produces the same numbers by means
of a direct mind-experiment but demands, in turn, a more delicate
exposition.

Finally, we agree with Professor Bolker that the typical ‘bare bones’
decision context that one meets in practice is often one for which our
generic Savage equivalence class [f] is a singleton {f}. On the other
hand, it is desirable (from the viewpoint of theory closure, as discussed
at length in our paper) to provide a sort of ‘robustification’ correspond-
ence for [f]. The device we chose (as described in footnote 12) embeds
the original decision context in one which(i) is now sufficiently rich,
and (11) has no (behavioral) effect whatever on its antecedent. But due
to a descriptive oversight on our part, Professor Bolker challenges that
6, , = 6s, where &, is the event algebra for a ‘basic’ act f and &,, is
the event algebra forits ‘free-disposal modification’tof, (see footnote 12).
The point is that these algebras agree by definition: the only difference
between these acts, after all, is that for f, the subject is to dispose of
something‘desirable’ only after the ‘f-natural’ event A has been realized.

In brief reply to the comments of Professors Krantz and Luce, see
the added footnote which now closes the introductory section in ref.
[1].
Weshall reply to just a few of the comments made by Professor

Pratt.

Perhapsthe first thing to say is that some of the formal distinctions
that we have drawnwith other variants of the expected utility paradigm
were motivated, in part, by some difficulties that we experienced in
attempting to interpret their primitives from the viewpoint of The
Subject (whose behavior and cognitive abilities the paradigm purports
to model). The classical Savage notion of a constant act, for one fairly
widely recognized example, simply was not comprehensible to us as a
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well-defined ‘something’ that an actor might ‘do’®, or even imagine
‘doing’, except in decision contexts that appeared to us to be unduly
restrictive. How, for example, to conceive of boarding a given airplane
flight that will result in a safe arrival regardless of whether or not the
airplane crashes’? Of course the subject of this paradigm family is

idealized in the sense that he is assumed to compute faultlessly and
choose consistently (1.e., ‘rationally’), but then — and especially then —
what could it meanto also suppose that he can makesense of a mathe-
matical construction that translates for his decision context as a logical
impossibility? The simple recasting of primitives that we have proposed
avoids this sort of insensibility (by taking its cue from the actual choice
set at hand), and provides an axiomatic formulation of the paradigm
for some more general situations of analytic interest (cf. footnote 1 in
our paper).

In our model, the consequences of action are referred to as suppo-
sitioned circumstancesfor reasons that have to do with the contingency-
only manner in which some of them may cometo berealized, and with
the way in which we haverecast the Savage primitives. Pratt seems to
think that these (‘pure’) consequences are somehow hidden from plain
view, but for every fe F they are just the sub-collection of holistically
interpreted symbols {(f, {s})|se5S,}.

Professor Pratt ‘salvages’ A3.4 by applying it correctly; viz., sepa-
rately, to each well-defined decision alternative in turn. The difficulty
he encounters in what he takes to be a counter-illustration occurs
because his ‘act’ f: {go to Mr. R’s for vacation} cannot be interpreted
as an holistically well-defined alternative for Mr. J. without further
qualification as to the details of its implementation. In particular, if
Mr. J. should go on such a visit, then he cannot do so without either
taking golf clubs, or skis, or neither, or both. Moreover, whatever shall
obtain as the holistic consequence (for Mr. J.) of {going to Mr. R’s}
depends upon which of these qualifying arrival modes is necessarily
chosen by Mr. J. (as well as upon whether Mr. R. then decides to go

golfing or skiing). We maysay it this way: the suppositioned circum-
stances (f, A) for the (unqualified) Pratt fare non-holistically described

° Cf. the preceding comment by Professor Jeffrey, which airs much the samedifficulty.
’ This is logically different from imagining that you board that flight and that it does not

crash, which is the sort of mind-image that the subject of our model is assumed to be
able to form for ex ante consideration.



96 M.Balch and P.C. Fishburn

because an evaluation-relevant aspect of decision has been left un-
described, simply, and the interpretive spirit of the weak ordering
A3.1 is thus violated. In other words, Mr. J.’s subjective ‘picture’ of
(go to Mr. R.’s, Mr. R. chooses to ski), say, and his binary evaluation
of that picture against other such things, depends in general upon the
way in which f is necessarily ‘completed’ for the context at hand. A3.4

applies for each such completion without difficulty, as Pratt observes.

Of course the Pratt f may be regarded as a (non-singleton) set of acts
that are each holistically well-described, and then given the obvious
utility assignment u(f) = ger U(g), but such act-unionscontribute nothing
of behavioral substan¢éé to the EUP. Pratt concludes his illustration

with the curious statement that ‘[Balch—Fishburn] acts cannot involve
reaction to events’. But Mr. R.’s decision can be known to Mr. J. only

after Mr. J. arrives on the scene; this is simply the sequential structure
of Mr. J.’s decision context. Mr. J. is free to react to Mr. R.’s decision
in any one of a variety of ways (‘go back home’, ‘stay, and “make the
best” of an unhappy circumstance’, ...). What Mr. J. cannot do, of

course, is to change the historical fact of his arrival mode.
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CHAPTER 4

VENTURES, BETS AND INITIAL PROSPECTS*

Clifford Hildreth

4.1. Introduction

This paper is concerned with dichotomousdecisions under uncertainty
and with one-dimensional families of choices. In the dichotomouscases,
a decision maker chooses one of two random variables whose values
representalternative levels of wealth for the decision maker. One random
variable, called the initial prospect, indicates how his wealth will be
related to events outside his control if he retains his present assets and
carries out his present plans and commitments. The other gives wealth
as a function of developments in his environment if he chooses to
modify his current position by signing a new contract (which could be
an agreement to cancel an old contract), purchasing or selling some
securities, buying or canceling insurance, expandinghis business, placing
a bet, or some other dealing that can be expected to affect his wealth,
at least under some circumstances. The possible undertaking which
would modify his initial prospect is called a venture.
The model for dichotomous choice is developed in section 4.2. It

differs from some models appearing in the literature in posing a choice
between two uncertain prospects rather than between a fixed level of
wealth and an uncertain prospect. This is seen to be of somesignificance
since an important aspect of any ventureis its statistical relation to the
initial prospect.If one alternativeis a fixed level of wealth, this degenerate
random variable is statistically independent of the venture.

* Earlier versions of this paper were presented at a Department of Economics Seminar
at the University of Minnesota in April 1972, and at the Third NSF-NBER Conference
on Decision Rules and Uncertainty at the University of lowa in May 1972. The author
is indebted to Peter Clark, James C. Hickman, Daniel McFadden and S. Y. Wu for
useful suggestions. Research was conducted under Grant GS-3317 of the National
Science Foundation.
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The relevance of dependence between the initial prospect and the

venture is easy to indicate in a vague fashion. If the venture is such that

it tends to add help if things otherwise go badly and to impose a cost

if things otherwise go well, then it tends to stabilize the decision maker’s

outlook and,if he is a risk averter, such a venture will be more valuable

than one which offers similar probabilities of gain and loss but is in-

dependent of the initial prospect. Alternatively, but still speaking

loosely, a risk averter should prefer, other things equal, a venture that

is negatively correlated with his initial prospect.

In section 4.3, a decomposition of the changein utility due to undertak-

ing the venture is suggested. Components due to expected gain, spread

and dependenceofthe venture are distinguished. Interpretations of and

possible approximations to elements of the decomposition are discussed.

One-dimensional families of ventures are introduced in section 4.4.

Such a family is generated by a venture which can be undertaken in

various amounts or sizes represented by multiples of a basic random

variable. Favorable and optimal choices are related to derivatives of

utility with respect to a variable representing size of the venture. The

first derivative is decomposed in a fashion corresponding to the de-

composition of utility in section 4.3.

Bets are defined and considered in a formal way in section 4.5. The

large number of mutually favorable potential bets between pairs of in-

dividuals is noted. In section 4.6 some conjectured reasons that most

people don’t engage in betting are discussed and some hypothetical

circumstances in which intelligent betting might have merit are sug-

gested. Examples are cited which suggest that analyzing hypothetical

bets may sometimes suggest less expensive insurance arrangements or

more effective pricing policies.

The paperraises issues rather than settling any. The theoretical model

does seem to serve the purpose of permitting a first approximation

analysis of the effect of dependence between the venture and theinitial

prospect, but many questions will require a more elaborate model.

Trying to express the relevant outcomeof the decision processas a real

variable (called wealth) is clearly a gross simplification whose effects

should be explored. For many purposes, explicitly dynamic models

will be needed. As we learn more about the fotm of utility functions,

better approximations to utilities of particular kinds of ventures for

particular kinds of decision makers should be possible.
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4.2. Utility of Gain

Let (Q, ¥, P) be a probability space where an element w of Q repre-
sents a possible sequence of developments in a decision maker’s en-
vironment and P represents the decision maker’s subjective probability.

S, with typical elements, is a set of possible strategies or actions for
the decision maker. A particular strategy and sequence of developments
in his environment determines an outcome x:

x = (a, S).

For given s, X,(@) = €(@, s) is a random mapping to the outcomespace.
In this paper the outcome is wealth measured in money and _X,is there-
fore a randomvariable.
@ is a von Neumann-—Morgenstern utility of wealth and the decision

maker’s problem is to

maximize Eg(X,).
seS

It is assumed throughoutthat

gy’ > 0, ” is continuous,
 
Eg(X,)| < oVseS. (4.1)

Webegin by considering a simplified case in which only twoalternative
choices are feasible. The corresponding random variables are denoted
X and X + Y.

X is called the initial prospect. It determines the distribution of
outcomesthat prevail if the decision makercarries out this current plans
and commitments. is called the new venture and indicates howlevel
of wealth will be affected under each alternative w if a currently available
bet, contract, or other undertaking is accepted. The problem,then, is to
compare Eg(X + Y) with Eg(X).!

' Applications of this formulation are more general than may appearatfirst glance. If
the prospective venture ‘interacts’ with the current prospect so that they are not
additive, one can always define Z as the prospect that will result from taking the new
venture and then set Y = Z — X. For example, if X represents mainly returns from an
existing processing plant and the new ventureis an additional plant whose construction
would interfere in some ways with operation of the existing plant, then possible returns
from existing and prospective plants would not be additive. However, one could
define Z as prospective returns from bothfacilities and then define Y = Z — X as the
new venture for purposes of analysis. In fact, given a dichotomous choice from any
source, one can always label the alternatives X and X + Y and proceed to compare.
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Eg(X + Y) = [p(X + Y)dP = [fox + y)Fxv(dx,dy)
= |F y(dy) fo(x + y)Fx, y=,(dx)

= JF(dx) fo(x + y)Fyjx=.(dy), (4.2)

whereF is the distribution function of the random variable or variables

indicated by subscripts.

In general, the decision depends intimately on @, X, Y, P. Becauseit

is frequently possible to know Y more completely than X it is of interest

to know under what conditions there might exist a reasonably stable

function of gains or losses in wealth such that knowledge (exact or

approximate) of this function and the distribution of the new venture

might be sufficient to determine the choice.

This point of departure differs from some in posing a choice between

two prospects both of which are uncertain. In the real world everyone

constantly faces a variety of contingencies that might affect wealth —

property may be stolen, damagedorinherited; liabilities may be acciden-

tally incurred; currency in one’s billfold may turn out to be counterfeit.

I doubt that certain wealth is ever experienced. If this is true it is more

realistic to think of a new venture as an opportunity to modify an

existing uncertain prospect rather than an opportunity to exchange a

certain prospect for an uncertain one.

Note that if we define

By) = {p(x + y)Fy)y=,(dx)

then

Eg(X + Y) = JB)y(dy).

Unless further conditions are imposed, B changes whenever P, gy, X or

Y changes, so one could not investigate the form of 6 by observing the

response to alternative ventures Y with known distributions.

Defineutility after gain, say W(y), as the expected utility of the decision

maker if he receives an outright gift of y dollars, i.e.

Wy) = Eg(X + y) = Jo(x + y)Fx(dx). (4.3)

Let

Wy) = Wy) — Ee(X) = Wy) — WO) (4.4)

be the utility of gain with (0) = 0.
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Nowconsider the decision on a new venture Y whenY is independent
of the current prospect X:

Eg(X + Y)= ie + y)Fyy(dx, dy) = |F y(dy) fox + y)Fy(dx)

= JW(y)F(dy) = E(Y) (4.5)
Any new venture that is independent of X is favorable if the expecta-
tion of W(Y) is greater than E(X), ice. if Ey(Y) > 0. The function
does not change as Y changesso long as the alternative ventures are
independent of X.

For any y, W(y) is an average of possible valuesof g(x + y). If condi-
tions for differentiating under the integral hold’, the derivatives of J
are similar averages of derivatives of g.

Py) = feM(x + y)F(dx) = Ep™(X + y). (4.6)
Under this assumption, we may note:

(1) If po” has the same sign throughout its domain, then p” has
that sign everywhere.

(2) If gp” has predominantly one sign, the exceptions could be
‘averaged out’ and Wy” could have the predominant sign everywhere.
For example, if @ has the Friedman—Savage form (predominantly con-
cave, a convex region), W mightstill be strictly concave.

Averaging preserves the form of some, but not all, commonly considered
utility functions. For example:

(3) If p(x) = a + bx then Wy) = a + DEX + by; if (x) = ae™ then
Wy) = a(Ee*)e’”. For a < 0, b < 0, the latter is the constant absolute
risk aversion function, and the coefficient of risk aversion —b is not
changed.

* Sufficient conditions for eq. (4.6) to hold for a particular n and y are
(i) p(X + y) is integrable form = 0,1,...,n — 1.
(ii) p(x + y) exists for all x in the range of X(w) and for m = 1,2,...,n.
(111) There exists an integrable function, g(x), such that

x+y +h) — px +p(x y ’ gun Y) < gx)
 

for m = 0, 1,..., — 1 and for all hin an interval about0.
For n = 1, this is a standard theorem.See, for example,ref. [9], p. 67, or ref. [12],

p. 217. Under the stated conditions, the theorem can be applied to successive deriva-
tives.
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(4) If g is a polynomial of degree m and X has m moments, then Wy

is a polynomial of degree m.

(5) If @ is a decreasing risk aversion function g(x) = (x + d) with

0 <c <1, then the form of depends on Fy.

Assuming that sufficient ventures that are indepenent of the initial

prospect X are available, one can use simple lotteries (for example, as

described by Pratt et al. [14]) to determine W. Is there a natural way

to then explore g and Fy? McFadden has indicated the following

possibility.

For any given level of wealth, say z, let the experimenter offer a

guaranteeofz, i.e. if the decision maker realizes X(q) from his current

prospect, the experimenter will supply z — X(w). The experimenter then

offers to exchange the guarantee of z for various outright cash gifts and

determines a gift y such that the decision makeris indifferent between

receiving the gift y or a guarantee of z. This implies that

p(z) = Wy). (4.7)

To determine the distribution function Fy at a selected point x, the

experimenter chooses twolevels of wealth, z; # z,, and guarantees the

decision maker z, if the event (X < x) occurs and guarantees z, in the

event (X > x). He then findsthe gift y that is indifferent to this prospect

of z, or z, for the decision maker. Then

Wy) = Fx(x)- @(z,) + (1 — F(x) - (22) (4.8)

or

HO) — e2) (4.9)
Px) = Oe) — oles)

4.3. A Possible Decomposition

Since the effect on expected utility of undertaking a new venture can be

analyzed more simply if the venture is independent of the current

prospect, it seems reasonable sometimes to analyze the effect of a

dependent venture Y in two steps. First consider a hypothetical venture

that has the same distribution as Y but is independent of X and then
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consider the difference in the effect of Y and the effect of the hypo-
thetical venture.

Accordingly, for any venture Y, let W be a random variable thatis
independent of both X and Y and has the same distribution? as Y.
Now consider

Eg(X + Y)—Ee(X)= [Eg(X + W) — E@(X)]
+ [EQ(X + W) — Ep(X + W)] + [Eg(X + Y) — Eg(X + W)], (4.10)

where W = EW.

Call the difference on the left the ‘utility of the venture’ y. Call the
successive terms in square brackets on the right the ‘utility of expected
gain’ yg, the ‘utility of spread’ ys, and the ‘utility of dependence’ Np:
Note that signs and ratios of these utilities and those that would be
obtained for alternative ventures are invariant with respect to positive
linear transformations of Q.
A ventureis favorable — i.e. undertaking the venture increases expected

utility — if 7 > 0. In the symbols just introduced‘,

NH ="G t+ Ns + Np, (4.11)

with

Ng = Eg(X + W) — Ep(X) = WW) = WY), (4.12)

Ns = Eg(X + W) — EG(X + W) = EW(W) — W(W) = EWY) — WY),
(4.13)

Ny = EQ(X + Y) — Eg(xX + W), (4.14)

This is always possible. If the original universal event Q does not permit the definition
of such a random variable, define Q* = Q x R whereR is the real line. Let P be the
probability measure on R determined by Fy and let P* be the product measure P x P
on 9*. Then define X* by X*(a, r) = X(w), Y* by Y*(w, r) = Y(w) and W by
W(w,r) = r.
Using the notionsof gain, spread and dependence, there can be six somewhatdifferent
decompositions depending on the order in which the components are introduced. One
could, for instance, let y = n¥ + n% + n*® where

n§ = Eg(X + W— Y) — Eg(X),

nn = Eg@(X + Y— Y— Eg(X +W-— Y,
ni = Eg(X + Y)— Eg(X + Y— Y.

For sufficiently small increments of ventures, such differences between these decom-
positions become negligible.
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where, as defined in section 4.2, W(y) = Eg(X + y) — Eg(X), and

Y = W is the common mean of Y and W.

Utility of expected gain is the increment of expected utility that

would accrue to the decision maker if he were given a gift equal to the

mean, or (subjective) actuarial value, of the venture. Since (0) = 0 and

w' > 0, ng agrees with the sign of Y. For a risk averter, p” < 0; hence

Ww” <0 and, by Jensen’s inequality, ns < 0 (see the second equality of

(4.13)). Also, for risk averters, 7p tends to be negative if high values of

X and Y occur together more frequently than if X and Y were in-

dependent; and 7, tends to be positive if high values of X occur with

low values of Y more frequently than if X and Y were independent.

This is admittedly a very loose statement; later, it will be made more

precise for special cases.

For the present, perhaps the statement about 7p can be givena little

plausibility by supposing that X takes either a high value x, or a low

value x, and that Y takes only two values, y, > yj. Since W has the

same marginal distribution as Y, W is also equal to y, or yp. Let p;; be

the probability that X = x, Y = y; for i, j = 1, 2. Let q;; be the prob-

ability that X = x,,W = y,. Then Y; p;; = 2, q,; for j = 1,2 and 2; pi; =

2, 4ij fori = 1,2. Leto = pyy — qi then pio — 912 = Pai — Gar =

and po. — G22 = 0. SO

Np = % 2(Dij — gi) P(X; + yj) = O[p(x, + yy) + P(X2 + Y2)

— P(X, + Y2) — P(X. + y1)]. (4.15)

If @ is concave, the coefficient of 6 is negative since

(x; + yo) = a(xy + yi) + CL — a) (x2 + Yo),

(x5 + y,) = (1 — a(x, + yy) + (x2 + 2), (4.16)

where

X; — X2
X=OO

X; + ¥; — X2— y2

and, by concavity,

P(x, + yr) > ap(x, + yi) + (CL — a)@(x2 + 2);

P(X. + 1) > A — a(x, + yy) + 4P(X2 + 2) (4.17)
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and, adding,

P(X, + V2) + P(X. + y1) > P(x, + yy) + G(x, + ys). (4.18)

Thusif like values of X and Y are more probable than like values of
X and W,6 is positive and 7, negative.

If the venture being considered is an expansionof the decision maker’s
present business, we expect the venture to be positively correlated with
his initial prospect. Thus, if he is a risk averter, we expect that Np < 0.
Since ns < 0 for risk averters this would mean that, to be favorable,
the venture would have to offer substantial expected gain so that
Ng > 0 could overbalance ys, np.

Onthe other hand,for a typical insurance policy, Y < 0 and W(Y) < 0
(provided the decision maker is not materially more optimistic than the
company’s tables would justify) so 7) must be sufficiently large to
compensate for both ns < 0, 7g < 0. Note that, in this case, Y is positive
if a specified loss occurs and negative if it does not occur, so Y is ex-
pected to be negatively correlated with X.

Purchase of securities usually involves positive 4g, and yp could
be either positive or negative depending on how contingencies deter-
mining yield and/or appreciations of the new securities compare
with contingencies determining outcomes under the current pros-
pect. If the favorable contingencies tend to be different we expect
Ny > O.

Weusually think of 7g > 0 for bets on such events as sporting events
or elections. 7g can be positive for both parties if their subjective prob-
abilities of the basic eventdiffer. It will be argued in section 4.6, however,
that intelligent betting might involve ng < 0, np > 0. By the definition
used there, many insurance policies are bets of this type or are combi-
nations of several bets.

For a bet on a random device — cards, dice, etc. — the venture is
independentof the current prospect(unless the prospect already includes
a bet on the sametrial) which implies y» = 0. If the gambler in a casino
knows the odds, ng < 0. His gambling must then be explained by risk
preference, which would make yn; > 0, or by some consideration not
included in the theory sketched in section 4.2. Smith [15] suggests
modifying the utility function of habitual gamblersto include a positive
utility of being in a gambling situation. This is consistent with the views
expressed in a popular news magazine [13]. In this paper, the habitual
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gambler will be neglected and the theoretical framework sketched in

section 4.2 retained.

If one can develop approximate relations between the components

of a decomposition and properties of the utility function and the random

variables, the decomposition mayaid in establishing probable reactions

to alternative ventures under various circumstances. For this to be

realized we need to develop some knowledge of the properties of actual

utility functions.

For example, if wy were a polynomial of degree N, it would follow that

_ N ] _ _

WY) = WP) + Y= YW“) (4.19)

and

_ N 1 _ _

ns = EWY) -— WY) = d, nieY)E(Y — Y)". (4.20)

Thus, to approximate 7, we would have to be able to approximate the

first derivatives of w at Y and the first N moments of Y. If w were cubic

ns = 3W?(Y)Var Y + gWO(YE(Y — Y). (4.21)

If the distribution of Y were approximately symmetric, the last term

would be small and the productof the second derivative and the variance

would approximate 7. By similar reasoning, np could be approximated

for specialcases. Realistically, however, one could safely use a polynomial

approximation to wy or @ only if he could be sure that tail probabilities

were sufficiently small. If the coefficient of the highest order term of a

polynomial representing @ is negative, then g’ < 0 for sufficiently large

wealth; if the coefficient is positive, then g” becomes positive and

arbitrarily large as wealth increases.

4.4. One-Dimensional Families of Ventures

A family g of possible ventures will be said to be one-dimensionalif

there exists a nontrivial (not almost surely equal to 0) venture Y, called

a base, such that Ze g = Z = aY for some real number«. Since only

one-dimensional families are considered in this paper, the designation
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is usually omitted. A family will be called adaptable if « can be any
real number.

A one-dimensional family represents a situation in which the gains or
losses conditioned on various events will be proportional to an amount
that the decision makerelects to stake or invest?. Although adaptable
families are not often encountered in practice (a is usually confined to
a proper subset of R), it turns out that starting with an adaptable family
is an effective way to study a variety of nonadaptable one-dimensional
families.

Consider a family g = (aY),-p, where R is the real line, and let n(a)
represent the utility of the venture «Y,i.e.

n(x) = Eg(X + aY) — Eg(X). (4.22)

Thus (a) > O<aY is a favorable venture.
Weareinterested in finding favorable and optimal ventures andwill

assume that two differentiations under the expectation in eq. (4.22) are
valid. Then

n(a) = EYp(X + «Y), (4.23)

yn (0) = EY@"(X). (4.24)

If 4'(0) > 0 it follows from an elementary theorem (see, for example,
ref. [2], p. 91) that there is a neighborhoodof 0 in which the sign of (a)
agrees with the sign of «. This implies that there is a 6 > 0 such that any
a €(0, 6) corresponds to a favorable venture wY. Similarly if n(0) < 0,
dé > 0 such that ventures with «€(—e, 0) are favorable.
Note that if we ignore the possibility of nonpayment, two people can

always exchange opposite ventures Y, — Y. The party that takes Y will
receive Y(qw) from the other if w is realized and Y(q) is positive, and he
will pay — Y(q@) to the other if Y(w) is negative for the realized w. The
argumentof the preceding paragraphjustifies the following proposition
which is numbered for future reference.

> One must be careful not to assume that every venture which can be undertaken in
various amounts defines a one-dimensional family. Various sized additions to a
factory will not generally yield proportionate returns under all events. A $10 000
insurance policy on a given property is not an exact multiple of a $1000 policy. How-
ever, bets and purchases ofa specific security are usually exact or approximate one-
dimensional families.
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PROPOSITION 4.1. Let (a) and n*(x) represent utilities of the ventures

(xY)<p for two decision makers. If n'(O) and n*'(O) are of opposite signs,

J « such that the exchange of xY, —xY is mutually favorable.

Proor. Suppose 7'(0) > 0, 4*'(0) < 0. By the paragraph cited, 46 > 0

3 «€(0,6) corresponds to favorable ventures for the first party and

46* > 03a€(—6*, 0) corresponds to favorable ventures for the second

party. Choose « €(0, min {6, 5*}) andlet the first party receive xY and

the second party —«Y.

Proposition 4.1 does not require any assumption about risk aversion.

If we return to the problem of a single decision maker and assumethat

~p” < 0 everywhere, then

n'(a) = EY°p"(X + aY) (4.25)

is also everywhere negative. Thus y is strictly concave, 7’ is decreasing,

and optimal and favorable ventures can readily be characterized by

PROPOSITION 4.2. If yp” < 0, then

(i) n(x) = 0 has at most one solution. If a solution & exists then «

uniquely maximizes (a).

(ii) Ifn'(O) > O[resp. < 0] and & exists, Ja* 30 < & < a* [a* <a< O|

and y(a) > O< aE (0, x*)[(a*, 0)].

(iii) If n'(0) > O [resp. < 0] and n(x) = 0 has no solution, then n(x)

is monotonic increasing [decreasing| and n(a) > 0<> «€ (0, ©) [(— 20, 0)].

The proof is not given since an easily constructed diagrammatic argu-

mentis sufficient.

Clearly one could readily investigate nonadaptable families with the

aid of proposition 4.2 by comparing the set of feasible « with & and

with the intervals of favorable ventures.

In most economic reasoning, the underlying relations are not com-

pletely specified and one seeks to conclude something from partial

information. Two questions that naturally arise in connection with

proposition 4.2 are (1) when does & exist? and (2) can partial knowledge

be used to indicate the sign of 7'(0)? The following proposition sub-

stantially answers(1).

PROPOSITION 4.3. Suppose yn" < 0, lim g(x) = 0, Jz 3 EYQ(X + aY) <
x7 ow

00. Then n(x) = 0 has a solution <> P(Y > 0), P(Y < 9)are both positive.
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PRoor. Suppose P(Y < 0). Then the integrand of n'(a) = [Yp'(X + aY)
is nonnegative and n'(a) = 0 with equality only if the integrand is a.s. 0,
le. if Y = 0 a.s. which was excluded at the outset to avoid trivial
ventures.

Now suppose P(Y > 0), P(Y < 0) are both positive. Let I, be the
indicator of A and express

n(a) = lIpv> 0) Yo(X + aY) + [Thy <0) YO(X + «Y)
=A, +B,

Clearly A, is positive and decreasing while B, is negative and decreasing.
It will therefore suffice to show that lim,.,,A, = lim,._.,B, = 0.
This will show that y'(«) is negative for sufficiently large «, positive for
sufficiently small « and, by continuity, zero somewhere in between. Let
{%nj T 00, define Z, = I,y5 9) YO'(X + 4, Y). Then {Z,} | 0.

Let a be such that EYp'(X + aY) is integrable. Then x, > %) => Z,
is integrable and EZ, -—0 by the dominated convergence theorem.
Proving lim,.._ ,,B, = 0 is similar.

Clearly if 4” <0 is required to hold only for sufficiently large and
sufficiently small «, 4'(a) = 0 still has a solution but multiple solutions
are not excluded. Under conditions of proposition 4.3, part (iii) of
proposition 4.2 applies only to sure-thing ventures and is therefore un-
interesting. Note that bounded is sufficient but not necessary for the
condition that lim, .., g(x) = 0.

Turning to determination of the sign of 7'(0) from partial knowledge,
I suspect various approaches will prove useful in different contexts.
One example that may sometimesbe helpful is developed below. Recall
the decomposition of section 4.3 and write

n(x) = ELg(X + aY) — @(X)] = ng(a) + ns(%) + p(w), (4.26)

where

Ng(a%) = Ep(X + «Y) — Eg(X) = Way),
Ns(a) = Ep(X + aW) — Eg(X + aY) = EW(aY) — Way), (4.27)
np(%) = Eg(X + «Y) — Ep(X + aW) = EQ(X + aY) — EW(aY)

and, as before, W is a random variable that is independent of X and
Y and has the samedistribution as Y and W(y) = Eg(X + y) — Eo(X).
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Call n/,(0), 75(0), n>(0) the initial marginal contributions of gain, spread,

and dependence, respectively.

Ng(a) = YW(aY (4.28)

ng(0) = Yw'(0), (4.29)

ns(a) = EYW(aY) — Yy'(aY), (4.30)

ns(0) = w'(O)(Y — Y) = 0. (4.31)

As has often been observed,for sufficiently small ventures, spread is not

important.

Let Y, be the expected value of Y given that X = x. Then

np(a%) = EYp'(X + aY) — EWW(X + aW) (4.32)

np(0) = EYe'(X) — YEg(X)
= [F(dx) f(y — Yyp'QFyix-x(dy)
= \(Y. — Yo'(x)Fx(dx). (4.33)

Combining eqs. (4.33), (4.31) and (4.29),

n'(0) = ng(0) + np(0) = JY.0'(X)Fx(dx). (4.34)

In cases of partial knowledge, Y, may not be known.If, however, Y,

is monotonic, its monotonicity may be knownand, with concavity, this

is sufficient to determine the sign of the initial contribution of depend-

ence. To avoid triviality in Y, we assume P(X 4 X) > 0.

PROPOSITION 4.4. If p” < 0 and Y, is nondecreasing® [resp. nonincreas-

ing| then y,(0) < 0 [= 0]. If Y,, is strictly monotonic, strict inequalities

may be substituted in the conclusions.

Proor. Let Y, be nondecreasing and nota.s. equal to Y. Consider the

disjoint sets A, = {x: Y, > Y}, A, = {x: Y, < Y}. A, lies to the right

of A, and since @’(x) is strictly decreasing 3x 3 g'(x,) < g(x) S G'(x2)

for all x, € A,, Xx, € A, with strict inequality on at least one side.

© Since versions of Y, can differ on sets of measure zero, this could be more accurately

stated: ‘if there is a version of Y, that is nondecreasing and corresponds to a regular

conditional probability’. Since Y, enters only under anintegral, the choice ofa particu-

lar version does not affect the equations.
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Therefore:

(1) fa,(Y, — Y)g'(x)Fy(dx) S< p(x) f,( — Y)F,(dx),

(2) let0)" — Y)p'(x)Fx(dx) < p(x) fa,iF" — Y)Fy(te
3) 9 = LalVY. — Ye)F(dx) +f4(%, — Ye ooF(dx)

(8) facalY, — Y)Fx(dx) = 0.

If Y, is strictly increasing, thestrict inequality must hold in (1) or (2)
and therefore in (3). Adjustments for the nonincreasing cases are obvious.

Thusif sign Y is known, sign y¢(0) is known (4.29) andif, in addition,
Y,. is monotonic of known direction, then sign 4)(0) is known.If these
signs agree, sign 7'(0) is known (4.34). Otherwise approximations of
magnitude are needed. Hopefully, satisfactory approximations can be
developed as we learn more aboututilities, probabilities and the array
of contingencies faced by people whose behavior we hopeto understand.
Of majorinterest in the analysis of any static model are the equations

of comparative statics expressing the response of an individual or
market to changes in circumstances. Equations indicating marginal
responses to changes in wealth and to price of a venture are briefly
noted below. Responsesto changesin beliefs (probabilities) and to other
changes in ventures are important but beyond the scope of this paper.

Write X = X + U, Y= Z — h. A cash gift changes X but not other
data of the decision problem, so adjustment to a change in X will be
called a wealth response. h is a scalar which may be regarded as the
price of the venture Z. Of course, if Z* = Z + k then purchasing Z*
for h + k is the same venture as purchasing Z for h, so an initial Z can
be changed by an additive constant at the convenience of the investigator.

If U and Z are regarded as fixed, then

n(a, X,h) = Ep(X + U + aZ — ah) — Eg(X + U)
= EQ(X + 2¥) — E9(X). (4.35)

Weshall mostly use the latter notation letting the decompositions of
X, Y be understood.

On/oa = EYQ(X + aY) = EZg'(X + aY) — hEp(X + aY),
0°n/da? = EY*p"(X +aY)= —A whereg” <0SA>0,
67n/dadX = EYo"(X + xY),
d°n/dadh = —aEYp"(X + aY) — Ep(X + aY) = —Eo(X + aY)

— a(07n/da0X). (4.36)
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Letting &(X,h) be the solution to dny/da = 0, the wealth and price

responses are
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As with Slutsky equations for other models, it is natural to interpret

the second term of the price response as a wealth effect and the negativity

of the first term seems plausible.

4.5. Bets

For an event A with 0 < PA <1, call the indicator J, of A a unit

claim on A. The venture I, — h, is a purchase of a unit claim on A at

price h,. The venture «(J, — h,) is a purchase of a unit claims (or an

a-claim) on A at price h,.

For A as above, B the complement of A, y > 0; call J, — yl, a unit

bet on A. y will be called the market odds on A and PA/PB the sub-

jective odds. If market odds and subjective odds are equal, expected

gain from the venture is zero. Clearly a unit bet on A 1s the same venture

as the purchase of an a-claim on A with « = 1 + y and price h, =

y/(1 + y) so a discussion of such ventures can be conducted in terms of

either claims or bets. We shall proceed with thelatter.

The utility of the venture «Y where Y is a unit bet on A 1s

n(x) = Eg(X + aY) — Eg(X) = [p(X + a) + Jp(X — ay) — fo(X)
(4.38)

and

n(x) = J,p'(X + a) — yfpp(X — ay)
= (PA)E,9'(X + x) — y(PB)E@'(X — xy), (4.39)
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where, for any non-null event C and any integrable random variable Z,

1
ZE-Z = — |Z.

“PC |

Thus E-Z is the average value of Z on C. Note that wY for « < 0 is
a bet on B.

Propositions 4.1 and 4.2 illustrate how a number of facts about
favorable regions for « and favorable exchangesare related to the sign
of n'(0). For a family of bets,

n(0) = (PAJE,9(X) — y(PB)E,@(X). (4.40)
Thus

PA E,p(X) S(0) 202 —. SS y.
TO) <0 BBEg(x) <?

 (4.41)

E49(X) is the average marginal utility of a gain in A. (PA)E,9(X)is
the initial marginal utility of a unit claim on A. Call E,9'(X)/E,9'(X)
the relative need jn A and PA/PB-E,'(X)/E,9'(X) thecritical odds’.

If X is independent of A, the relative need in A is unity and a risk
averter will prefer a positive (x > 0) bet on A if the subjective odds
PA/PB exceed the market odds y. With dependence, the relative need
in A will tend to exceed unity if X tends to be lower on A. Twoinstances
in which we can give more exact expressions of this tendencyare fur-
nished by Hanoch and Levy’s results on stochastic dominance.

PROPOSITION 4.5. If @” < 0, then

(1) Fy; 4 2 Fy), with strict inequalityfor some x > E,0'(X) > E,o'(X).
(11) @’” > 0 and

J Fyja 2 J Fyip

for all x € R with strict inequality for some x => E,4~'(X) > E,Q'(X).

’ The factors determining critical odds are closely related to the decomposition intro-
duced in preceding sections. For a family of bets on A, n,(0) = (PA — yPB)Eg(X)
and is thus positive if subjective odds are greater than market odds.

Np(0) = (1 + y(PA)PBYE.p(X) — Egp(X))
and is positive if the relative need in A exceeds unity.
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ProorF. (i) follows from theorem 1 of Hanoch and Levy [11, p. 337]

and(ii) from theorem 2 [11, p. 338]. See also Hadar and Russell [10].

For two individuals, proposition 4.1 and eq. (4.41) justify

PROPOSITION 4.6. If the critical odds of two decision makers for bets on

an event A differ, there exist mutually favorable exchanges of bets on A.

Proor. Suppose

PA E,p(X)  P*A EXp*(X*)
PB E,p(X) P*B E%p*(X*)

 

where starred symbols pertain to the second decision maker. Choosey

strictly between the twocritical odds. By (4.41) n’(0) > 0, 7*(0) < 0 so

by proposition 4.1 there exists an interval(0, 6)5 a €(0, 6) => «I, — yl,)

is favorable for the first decision maker and — a(I, — yl) is favorable

for the second.

For bets that are independent of the current prospect, the specialization

of proposition 4.6 has been discussed by Smith [15] and by Aumann[4].

4.6. To Bet or Not to Bet

In the present model two people may be led to exchange bets on A if

one has greater relative need in A and/or believes A is more probable.

Ordinary conversations suggest that different opinions on future events

are common?andit is not hard to think of people who must surely

8 Asa hurried and inexpensive check on divergent opinions I handed a short question-

naire to early arrivals at an economics seminar on April 24, 1972. Responses to the

question:

‘What are your personal probabilities of the following events?

(a) Richard Nixon will be reelected president next November.

(b) Edward Kennedywill be the nominee of the Democratic party.

(c) The Balance of Trade deficit of the United States, for the fiscal 1972, will

exceed five billion dollars.

(d) North Vietnam,the Viet Cong, the Saigon government, and the United States

will agree to a permanentcease-fire before August 1, 1972.

(e) The legislative maintenance appropriation to the University of Minnesota for
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have widely different relative needs in particular events. With the
multitude of possible people-event combinations in any large com-
munity, it would seem atfirst glance that there must be manypotential
mutually favorable bets.

Whyis more betting by the general public (as opposed to habitual
gamblers) not observed? Is there a defect or incompleteness in the
theory? Lack of knowledge? Social or institutional barriers? Trans-
actions costs? Various possibilities have been noted (see, for example,
refs. [4] and [15]) and are briefly discussed below, not with the idea
of suggesting a conclusion but to suggest that this is a worthwhile area
for research. Knowing with confidence what does explain this divergence
between an implication of an admittedly crude theory and common
observation should improve our grasp of decision making under
uncertainty.

4.6.1. Transactions costs

Although it costs no money for two private parties to agree to a bet,

it does take some time and requires some internal calculating. Sub-

stantial negotiations may be required if the basic event is complicated
and it may cost something to observe. Guaranteeing performance by
each party may be a problem and might involve putting up stakes thus
forgoing cash balances.

1973-75 will be less than $150 million (comparable figure for 1971-73 is $162
million).’

were
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4.6.2. Moral considerations
Some people’s training includesclassifying gambling asevil. For others,
the reflection that goods and services as usually conceived are not in-
creased by betting may suggest that prospective gains, at least in the
long run, are illusory. Time spent in arranging bets may therefore be
regarded as socially wasteful. Some mayalso feel that in nearly every
bet one party is better informed and taking advantage ofthe otherparty.
Someone who might not have personal moral objections to betting
maystill feel that others will disapprove, or that winning will be accom-
panied by resentmenton the loser’s part.

4.6.3. ‘Shakyprior distributions

If I consider betting with a well mformedperson,his willingness to offer
what mayatfirst seem very attractive odds maygive me second thoughts.
My subjective probability of the event conditional on his offer may be
much lower than my original subjective probability of the event. I may
usually avoid betting with well informed people on the ground
that the chances that my subjective probability given the offer will
differ from the market oddssufficiently to overcometransaction costs
are small.

If my subjective probability of the betting event is ‘firm’, i.e. largely
independent of occurrence or nonoccurrence of other events about

which I might learn before the decision is to be made, I might proceed
despite the different subjective probability of a betting partner whose
opinions I respect. To be in this position could imply that I feel
I have as good information as anyoneand have analyzed it reasonably
well.

In analogous businesssituations, this consideration would seem to
place a premium on investing in one’s own business or at least in
familiar areas.

Instances of business behavior analogousto revising one’s probability
on learning of an informed person’s willingness to make an opposing
bet might be second thoughts on locating a plant after learning a
respected competitor has rejected the location under consideration or
reconsidering a purchase if the owner seems overanxioustosell.

Daniel McFaddenhascalled my attention to the fact that this is also
similar to Akerlof’s ‘lemon principle [1]. The fact that a car is offered
on a usedcarlot is itself evidence of mechanical difficulty.
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4.6.4. Disutility of losing

It seemspossible that, for many people, losing a bet hasdisutility beyond

whateverassets have to be paid to the winner. This is probably partic-

ularly true if the fact of losing will become known. Perhaps, for some,

there is a counterbalancing direct utility of winning. It would be good

to know somethingof these matters. Smith [15] and Newsweek magazine
[13] both invoked direct utility of being in a gambling situation as a

major explanation of the behavior of habitual gamblers. Perhaps there

is a counterpart to this for habitual nongamblers.

4.6.5. Better future or alternative opportunities

A bet might look favorable in terms of a decision maker’s current

commitments, but be rejected because he visualizes the future possibility

of alternatives (for example, investments, loans, increased savings or a

bet at more favorable odds) that look better. This raises complicated

questions aboutthe precise definition of one’s current prospect. It would

seem that possible future opportunities must be considered as part of

the current prospect as long as the decision makerassigns them sufficient

personal probability that they may influence his current decisions. Thus

contingencies that involve no contracts, negotiations or stated plans

maystill be important parts of the current prospect.

Note that in an exchange economy in which people could costlessly

bet on any event, had complete information, and could avoid inhibiting

disputes over division of increments of expected utility (possibly by

organizing markets), one would expect exchanges to take place until,

for any nontrivial event (everyone agrees 0 < PA < 1), everyone would

have the samecritical odds. Such stability would also be a necessary

condition for a Pareto optimum based on expectedutility.

To reach the stability indicated above it would not be necessary to

exchangebets if the economyoffered sufficient alternative ways for each

individual to transfer wealth among events’. If the alternative ways

were superior in some way one would expect, upon investigation, to

find little or no betting, but few if any potential mutually favorable bets.

Thus, searching for opportunities for mutually favorable bets in an

° Arrow [3, chapter 4] has analyzed a dynamic model of exchange in which elimination

of some markets does not affect the achievable sets for individuals nor the equilibrium

position.
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actual economy may be interpreted as looking for imperfections in
opportunities to change the way in which one’s wealth depends on
environmental contingencies. The following are hypothetical examples
of kinds of situations in which intelligent betting might seem to have
some merit. As noted in earlier discussion,if there is a favorable betting
possibility, it does not necessarily follow that exchanging bets is the
best way to improve the prospects of the persons affected. Other ways
of altering prospects may be suggested by studying the circumstances,
and these may have advantages. Possibilities of this sort are noted in
examples III and IV below.

4.7. Example I: a Specialty Crop

Suppose a hypothetical fruit — call it a plone — is grown in a small
geographic area andis very sensitive to rain during the ten-day harvest
period, a measurable rain almost completely ruining the crop.As harvest
approaches, growers are in a precarious position, having used most of
their liquid assets to plant and cultivate. Plones can be stored at moderate
cost and each year there are warehouses with one-fourth to one-half of
a crop in storage as harvest approaches. When the dates of harvest can
safely be forecast, suppose the growers bet on rain and the warehousemen
bet against rain during the harvest period.If it rains, the growers will
lose their crop but collect their bets. The warehousemenwill pay out
of the increased price of plones in storage. If no rain, the growers will
pay out of the crop and the warehousemenwill recover storage costs
by winning bets.

If growers sought security through the usual crop insurance, someone
would have to verify the preharvest condition of the crop, and the
company and growers would have to negotiate their estimates of any
losses incurred. This would add greatly to the cost. A bet should be
much less expensive. All that would have to be verified would be rain
or no rain at a weather station in the growing region. If the region
were small enough,rain at the weather station should be a goodindicator
of probable damage. A grower wholost his crop even though there
were no rain at the station would lose doubly, crop andbet, butif this
compound eventhassufficiently small probability, covering it may not
be worth the loading added to an insurance premium.
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4.8. Example IT: a Merchant

A merchanthas put most ofhis liquid assets into inventories of seasonal
items. If retail sales in his region hold reasonably well, he is almost
sure he can sell enough to avoid severe financial strain. On the other
hand,if there is a regional slump, there isn’t much he can do. Suppose
he bets that retail sales in his area will be less than 80°% of normal.
This clearly reduces the uncertainty in his prospect.

There may not be a natural second party to take this bet at actuarial
value, but, assuming a regional slumpis his main hazard, he might well
be able to afford to offer sufficiently good market odds that people
who hold conservative securities (and thus have current prospects
largely independent of regional sales) would be induced to risk some
of their funds.

If the merchanttried to insure his ownsales, both an incentive problem
and a problem of verification would immediately arise. The merchant
could make his coverage more precise by placing several bets — one
that regional sales would be 80% or less, one that they would be 70%
or less, etc.

4.9. Example III: a Patient

A handicapped person contemplates an operation which, if successful,
will greatly increase his earning power.If it fails, his physical circum-
stances are about as before. Suppose he bets the operation fails. If he
loses the bet, he pays out of increased earnings. If he wins the bet and
it covers the cost of the operation, he has notlost financially. The doctor
and the hospital might be good prospects to take his bet. Any effect on
their incentives would certainly be in the right direction. The samefinal
prospect could be achieved if the doctor and/or hospital charged more
for successful operations.

4.10. Example IV: Fixed Money Income

Someone onsocial security or other fixed money income mightbet that
the consumerprice index will rise at least x°% in the next ten years.
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Although the bet might be better than doing nothing, a person who can

shift his assets might be able to do better by other devices. If there are

some for whom some combination of bets is the best alternative, the

government might be a good second party, especially if the government

c.aims to be pursuing effective price stabilization.

The first two examples suggest that insurance may sometimes be

obtained more economically by making payment conditional on a

general easily observed event rather than a special event that relates

directly to the personal affairs of the insured. No-fault insurance seems

to substitute a somewhat more general event, occurrence of specified

damage in a vehicular accident, for a still more specific event that also

includes specification of legal liability.

James C. Hickman has suggested that pools created by companies to

compensate a firm experiencing a strike (and similar pools among labor

unions) are essentially combinations of bets of the type illustrated, and

that formal reinsurance arrangements’° havesimilar qualities.
Thus the theory does not suggest a new phenomenon,butthe general

theoretical conditions under which favorable exchanges exist suggest

further study to see if there are ways to help people find unexploited
opportunities to advantageously rearrange their prospects.
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COMMENTS

On ‘Ventures, bets and initial prospects’

James C. Hickman

Professor Hildreth’s key idea, like most good ideas, is very appealing
onceit 1s stated. In this paper he has developed the notion that decisions
about embarking on uncertain new ventures may be viewed as involving
a comparison between the expected utility of current uncertain prospects
and the expected utility of these prospects modified by the decision to
enter the new venture. He has used this model, which differs from the
conventional model which usually involves the assumption that the
current prospects are certain, to arrive at an interesting decomposition
of the decision analysis and some fresh insights into the conditions
under which mutually advantageous bets exist. Professor Hildreth is
probably correct in stating that this paper raises more questions than
it settles. Yet one cannot go away from reading this paper without a
feeling that his model is more useful than the conventionalone.
The paper seems to culminate in proposition 4.6. In this proposition

we see a marvelous summarizing criterion for the existence of a mutually
advantageous bet. The criterion captures key aspects of the current
prospects and the probability and utility assessments of the two pro-
tagonists in the bet.
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A general discussion of this paper rather naturally will center on

proposition 4.6, for it seems to indicate that in the real world there exist

a vast numberof potentially mutually advantageous betting situations.

In section 4.6 Professor Hildreth also turns to the fascinating question

as to why the apparently vast opportunities for mutually advantageous

bets are not exploited.

In joining this discussion, I would like to suggest that observations

4.6.1 (transaction costs), 4.6.2 (moral considerations) and 4.6.3 (shaky’

prior distributions) on the reasons for a relative lack of betting are

inexorably intertwined. Transaction costs are often significant because

the cost of the information needed to formulate a coherent probability

distribution is not negligible. The classification of betting as evil has

a pragmatic basis that is also related to the high cost of information.

Moral, political and business leaders, concerned with the efficient

organization of society, long ago perceived the relative high cost of

obtaining the information necessary to formulate coherent probability
distributions. Crudely stated, the time spent buildinga relative frequency

table on the behavior of a ‘wheel of fortune’ at the county fair is time

spent away from weeding the corn.
In our economy weneed to continually strive to identify those areas

where the possibility of mutually advantageous bets is great enough to

justify the creation of an information system. In the world of risk and

insurance this is called the problem of defining an insurable risk. The
operationa! definition is continually changing with the nature of the

economic uncertainty that the society and natural environment create

and the cost of insurancestatistical and rating systems.
In the world of finance we have developed highly organized securities

markets to facilitate the marshalling and allocation of capital and to

make possible mutually advantageous bets. For many of these markets

the federal government, through such agencies as the SEC, attempts to

create a common base of information for the formulation of priors.

In addition, the accounting profession, with its elaborate set of principles,

rules and opinions, has taken as its primary obligation the creation of

‘comparable’ financial data to facilitate the assessment of the personal

probabilities of investors.

The agricultural commodity markets in the United States depend on

the statistical systems of the Department of Agriculture for the flow of

information on which the shifting probability assessments concerning
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supply and demand are made. Comparison with other countries seems

to indicate that an ongoing market, involving mutually advantageous

bets on the prices of agricultural products, is hard to organize without

a flow of relatively cheap andreliable information. The individual grain

speculator could not duplicate the US Crop Reporting Service.

The existence of television rating and credit rating bureaus indicates

that not all information systems needed to makefirm probability assign-

ments are public ventures. The changing nature of economic uncertainty

periodically creates an opportunity for a statistical entrepreneurtofill

a need by creating an information system.

Buried into the criterion of proposition 4.6 is an alpha (scale) para-

meter for each of the participants in the bet. These scale parameters

may be very small. If a bet is mutually advantageous only over very

small scale parameters, the expected gain may not match theinevitable

transaction and information costs.

Let us illustrate this matching difficulty with a real problem. Owners

with property astride the San Andreasfault live with a small probability

of large property losses. Similarly, those who own property near the

coast of the Gulf of Mexico also live with the threat of large property

losses. Recently the probability of losses due to hurricanes in the Gulf

has appeared to be higher than that of earthquake losses in California.

Property owners in the upper Midwest occasionally suffer losses from

floods caused by rapid snow run-off and unseasonably early spring

rains. It would seem that, since these three uncertain and unfortunate

events are reasonably independent, somesort of mutually advantageous

betting arrangement(insurance pool) might be organized. Ideally, such

a pool should not encourage uneconomic ventures such as major con-

struction projects on the sand dunesalong the Gulf Coast. Yet appealing

as the idea is, the matching of the bets is hard to arrange. Large bets

are needed if a real economic service is to be provided. However,

markedly different probabilities of loss are involved and some of the

probabilities are a bit ‘shaky’. The details of negotiating mutually

advantageous bets for such catastrophes on scale to truly stabilize

results would seem to be an enormously important but profoundly

difficult undertaking.
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On somefacets of betting

Daniel McFadden

C4.2.1. Introduction

A standard proposition of the theory of choice under uncertainty is
that two individuals whose personal probabilities of a future event
differ can make a mutually advantageous wager. On the other hand,
empirical observation suggests that widespread betting is absent on
events whereindividuals’ personal probabilities apparently differ widely.
Professor Hildreth’s interesting paper suggests several possible expla-
nations of this inconsistency. Extending this analysis, we look for
answers in the nature of beliefs, the structure of markets for wagers
and the impact of market form on beliefs. In each case, we must ask
whether the postulated phenomenonis likely to be prevalent in reality,
and whetherit is sufficient to imply the observed paucity of wagers.

C4.2.2. The nature ofbeliefs
Professor Hildreth has suggested that when individuals consider wagers
against the background ofthe ‘grand lottery oflife’, they may not view
as independent the events determining the outcomes of the ‘grand’
lottery and the wager. Wefirst ask whetherit is likely that personal
probabilities would tend to display this non-independence; in particular,
more likely than ‘objective’ probabilities determined byrelative fre-
quencies. An examination of human psychology suggests an affirmative
answer. Chancejolts the harmony of consciousbelief; relief from this
dissonance is gained by imposing an order over chaos, weaving fabric
of cause and effect, out of the jumbled coincidences of random events.

It is so mucheasier to assume than to prove; it is so muchless painful to believe than to
doubt; there is such a charm in the repose of prejudice, when no discordant voice jars
upon the harmonyofbeliefs... .

W.E. H. Lecky, A History of Rationalism (1900).

Nothingis so easy as to deceive one’s self; for what we wish, we readily believe.

Demosthenes, Third Olynthiac (348 B.C.).

The mind accepts and emphasizes those coincidences which reaffirm the
perceived order of the universe, ignores and forgets inconsistent data.

126
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L. Festinger (A Theory of Cognitive Dissonance,pp. 162-176) has carried
out a study of subjects given an opportunity to accept a series of wagers
involving a complex random event, and has examined the willingness
of the subjects in the course of play to accept information dissonant
with their beliefs about the random event. He concludes that‘the inter-
action between the amount of dissonance which exists and the expecta-
tion concerning someparticular source of new information in determin-
ing whether or not a person will expose himselfto, or avoid, this source
of information is [clearly consistent with the theory of dissonance
reduction|’. In an experimental test of the von Neumann-Morgenstern
axioms, D. Davidson and P. Suppes (Decision Making, p. 53) report
that ‘Winningor losing several times in a row made subjects sanguine
or pessimistic and tended to produce altered responses to the same
offers’.

Thus, the evidence is persuasive that personal probabilities will tend
to distort the independence properties of ‘objective’ probabilities,
implying correlations between events which are in fact independent. A
simple model of personal probability determination with selective
memory gives

a

final illustration of this point. Suppose two events Ey
and E, yield favorable outcomes to the individual in repetitive play,
and that these events are in fact independent, each occurring with prob-
ability one-half. Suppose the’ individual computes personal probabilities
from observed relative frequencies, remembering coincidences of
favorable or unfavorable outcomes perfectly but forgetting a propor-
tion 6 of the observations when a coincidence does not occur. Then the
probability limit of the individual’s personal probability of the joint
event (E,,E,) as the number of repetitions goes to infinity equals
1/(4 — 26), greater than the objective probability 4. Note in this example
that we not only have non-independence, but also that the personal
correlation between events correspondsto the individual view that luck
occurs in runs, so that favorable results tend to go together. This last
observation has some further implications, which we shall return to
later.

We next ask whether pervasiveness of non-independencein personal
probabilities of eventsis itself sufficient to explain the paucity of wagers.
We employ Professor Hildreth’s notation, and for concreteness assume
further that the underlying Bernoulli utility indicator exhibits constant
risk aversion and that the personal probability for the current prospect
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X and new venture Y is multivariate normal with means (1x, “y) and

covariance matrix

2
Ox PxyOxdy |5

PxyOxGy Oy

Then, the expected utility of the current prospect plus a share s in the

new venture is a monotoneincreasing function of

A(s) = K + (uy — 4 + apyyoxay)s — aays?/2, (C4.1)

where « is the degree of absolute risk aversion, K = wy — «o%/2, and

q is the price of a unit share in the new venture (assumed zero by Pro-

fessor Hildreth).

Even if the new venture is actuarially favorable (uy — q > 0), the

individual believing pyy > 0 mayfindit undesirable to acquire a positive

share; only if

by — &Pxy0xoy — Gg >0 (C4.2)

will a positive share be chosen. This argument would seem to support

Professor Hildreth’s conclusions. Note, however, that two individuals

A and B with the preference structure above and differing personal

probabilities satisfying

A AA pAAA B BB BB
by — a py yOxOy > Hy — & PyyOxOy (C4.3)

can find a price q between these quantities at which it is mutually

advantageousfor B to sell a share of the new venture to A. Thus, we

see that non-independencealoneis not sufficient to rule out widespread

betting.

The psychological argument we madeearlier implied more than non-

independence of personal probabilities, however; it implied an ‘irra-

tional’ belief that the probabilities of events depend on the desirability

of outcomes, with ‘luck’ running in ‘streaks’. One might incorporate

this phenomenon into the example above by postulating that the

parametersof the personal probability distribution (uy, oy, pxy) depend

on the individual’s decision variable, the net share purchase s. If, in

particular, pyy > 0 when s > 0 and pyy < 0 when s < 0, implying the

outcome of the wager is likely to be good when the outcomeof the

current prospect is good, and vice versa, no matter which way the wager

is laid, then individuals with differing personal probabilities may find

no grounds for a mutually advantageous wager. This explanation is of
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course inconsistent with the Savage axioms, and seemsto have the same
behavioral implications as a pure ‘distaste for gambling’, the mirror
image of the phenomenon claimed by V. Smith to be necessary to
explain compulsive gambling. It is worth noting that the effect we have
postulated is ‘rational in the sense that it can result from rational
preference maximization over acts, and in the sense that one cannot
engage the individual in a series of wagers that would result in his
taking a sureloss.

C4.2.3. The structure ofmarketsfor wagers

The paucity of wager markets could result from the presence of high
organizational costs, transactions costs or redundancy.It is plausible
that the costs of searching for potential traders and enforcing contracts,
particularly time costs, are a significant deterrent to the placing of
small wagers. Since risk aversion lowers the desirability of large wagers
where transactionscosts are relatively unimportant, the combination of
effects may be sufficient to explain the lack of markets. A second possible
explanation is that most wager markets are in fact redundant; the
individual can achieve any desired risk position through the operation
of a few well-organized markets such as securities markets. This phe-
nomenon has been noted in papers by K. Arrow and by P. Diamond
on the allocation of risk-bearing showing that generally a system with
N commodities and S states of nature needs only (N — 1)(S — 1)

markets, of which S — | are wager markets, instead of the maximum

possible number of barter markets, NS(NS — 1)/2, including N’S
(S — 1)/2 wager markets. In a study of the existence of equilibrium under
uncertainty, R. Radner points out that wagers can be made only on
information that will be commonto the participants, reducing further
the number of wager markets that can form. We conclude that the
absence of widespread wager markets may be the result of redundancy
or transactions costs rather than individual aversion to betting.

C4.2.4. Market effects on beliefs

Thus far, we have considered only the possibility that beliefs are affected
by actions via a psychological mechanism of selective memory. There
is the additional possibility that the events on which an individual
might wager could be affected by the actions of his opponent; the
problem of moral risk. The presence of such an effect will introduce a
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dependence of the expected payoff of a new venture on the position

held by the oponent. This can have the effect of eliminating the possib-

ility of a mutually advantageous wager; the argumentis the sameas in

the paragraphsfollowing.

Wenext examinetherole of the marketitself in providing information

and influencing beliefs. G. Akerlof has pointed out the lemon principle,

which states that in the presence of uncertainty about the quality of a

commodity unit, the fact that it is offered in a market may be taken as

information on its quality. The usual example of operation of this

principle is in the used car market, where the fact that a vehicle is in

the market suggests that it may be below average quality for vehicles

of the same identifiable type; ie. the seller of the vehicle may have

information, withheld from the potential buyer, that the car is a ‘lemon’.

Applied to a market for wagers, this principle suggests that a potential

buyer of a lottery ticket may suspect that the seller holds inside infor-

mation unavailable to himself which indicates the yield of the ticket will

be low, and takes the fact that the ticket 1s being offered in the market

as evidence supporting this suspicion. Symmetrically, a potential seller

may suspect that an individual soliciting a wager has inside information.

It is clear that the presence of such suspicions will inhibit the trading

of wagers. In terms of eq. (C4.1) expressing the desirability of a net

share s in the new venture, the expected return py will be considered a

function of s, with wy(1) < wy(—1) for the reason above.If, by contrast

to eq. (C4.3),

KYL) — apg yoxay < Hy(—1) — apyyoxoy,
wy) — apx yOxOy < py(—1) — 4 Px yOXOY

then no mutually advantageous wager1s possible.

The same psychological phenomenon as discussed earlier may tend

to reinforce belief in the lemon principle. Actions leadingto losses suggest

bad judgment, generating dissonance, which can be reduced psycholog-

ically by attributing ‘inside information’ or ‘unfair advantage’ to the

Opponent. Further, there is a ‘Gresham’s lawaspect to the lemon

principle; one can show that it will tend to drive out of the market a

disproportionate number of ‘honest’ lottery tickets. Thus, the lemon

principle becomesa ‘self-fulfilling prophecy’. A strong argument can

hence be made that the lemon principle will operate to inhibit many

wager markets.
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C4.2.5. Summary

This discussion has pointed out the following possible explanations for
the paucity of wager markets in the presence of differing personal
probabilities:

(1) The psychology of cognitive processes suggests that individuals
will tendto believe in ‘runs of luck’, with an effect similar to that caused
by a pure ‘distaste for gambling’.

(2) Transactions costs, of consequence for small transactions, com-
bined with the inhibiting effect of risk aversion on large transactions,
may prevent wager markets from forming.

(3) Many wager markets mayfail to form because they are redundant.
(4) Moral risks may inhibit the offering of wagers on some events.
(5) The lemon principle may operate to indicate the presenceofin-

side information to be used to the disadvantage of potential traders,
inhibiting formation of a market.
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CHAPTER 5

STOCHASTIC DOMINANCE IN CHOICE

UNDER UNCERTAINTY

Josef Hadar and William Russell

5.1. Introduction

When a decision maker finds himself in an uncertain environment

whichheis able and willing to view in probabilistic terms, then making

a decision means choosing the preferred probability distribution from

among those that are feasible’. Recently, it has been shown that, when

decision makers follow the rules of expected utility maximization,

equivalence theorems of the following type hold:

For any two uncertain prospects (probability distributions) P and P’,

prospect P stochastically dominates P’ if and only if the expected utility

under P is at least as high as under P’for all individuals (utility functions)

in Some appropriateset.

The exact meaning of ‘stochastic dominance’, and a more precise

formulation of the theorems in question, will be given below. What we

wish to point out in these introductory remarks is the following. When

one is confronted with the problem of determining which of two un-

certain prospects a typical decision maker will choose, one may, by

virtue of the above equivalence theorems, take one of two approaches:

(a} one maytry to determine which of the two prospects yields a higher

expected utility, or (b) one maytry to establish the existence of stochastic

dominance between the two prospects. Of course, if the utility function

 

' In somecases,the setofall feasible distributions may consist of a family ofdistributions
generated by a parameterwhichis underthe control of the decision maker.In that case,
the decision maker’s choice takes the form of setting the parameter equal to that value
which is associated with the preferred distribution.
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of the decision makeris specified only in general terms (such as mono-

tonicity and concavity), the problem may not have a determinate
answer. However,if it does yield an unambiguousresult by one approach,

then it should in principle be possible to prove the same result by means

of the other approach as well. In practice, the choice of approach is

likely to be governed by its tractability in the context of the specific

problem under investigation. But aside from such factors as analytical

facility, it should be pointed out that the stochastic dominance approach
is distinct in that it directly points to certain inherent properties of the
prospects under consideration, and thereby it exposes certain features

of the nature of preferences for uncertain prospects. In somesense, the

stochastic dominance approachtells us whatit is that makes the chosen

prospect preferred over the others.
In this paper we do two things. First, we present some basic theorems

and properties of distributions satisfying stochastic dominance. These

should be useful in many applications of this approach to problems

under uncertainty. Second, we present specific problems of choice under

uncertainty, and show how the stochastic dominance approach may

produce interesting theorems.

5.2. Basic Definitions and Properties

Westart off by defining three types of stochastic dominance: first,
second and third-degree stochastic dominance, denoted respectively by

FSD, SSD and TSD.In whatfollows, R is the common domain of the

functions under consideration; unless stated otherwise, it is assumed to

be unbounded. The distribution functions are denoted by capital
Romanletters.

For notational convenience, we define the following integrals: if F(x)
is a distribution function, then

F(x) = f F(t)dt,
— @

and

F(x) = f F(e)dt.
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DEFINITION 5.1.

(a) G(x) ® F(x) if and only if G(x) < F(x) for all xe R.

(b) G(x) S) F(x) if and only if G(x) < F(x) for all xe R.
~

F

(c) G(x) D F(x) if and only if G(oo) < F(x), and G(x) F(x) for
all xeER.

lA

In the above, the symbol ) means ‘is at least as large in the sense of

FSD as’, the symbol (S) means ‘is at least as large in the sense of SSD
as’, and the symbol (I) means‘isat least as large in the sense of TSD as’.
If any of the above inequalities holds strictly for at least one xe R,

then G 1s larger than F in the sense of the respective degree of dominance.
Whenstrict dominance holds, it is denoted by either (®, G) or (, as
the case maybe.

It may be noted that the three types of dominance represent specifi-

cationsofdecreasing strength; that is, FSD = SSD => TSD.Eachdefines

a partial ordering on the set of all probability distributions such that
the set of distributions that can be ordered by FSD is a subset of the
set that can be ordered by SSD, and thelatter set is a subset of the set
that can be ordered by TSD.

5.2.1. Restrictions on moments

The relative strength of the FSD condition is reflected in certain re-

strictions on the moments of the distributions that are implied by this

condition. It can be shown that if G © F, then all the odd moments

of G are larger than those of F, and if the domain of G andF is the

non-negative half-line, or a subset thereof, then all the moments of G

are larger than those of F. |

In the case of SSD, only the means are restricted, the restriction

being that the mean of the dominating distribution is at least as large

as that of the other distribution’. If the means are equal, then the

dominating distribution has a smaller variance’.

In the case of TSD, a restriction on the means (similar to the re-

striction implied by SSD) 1s incorporated into the definition itself, as

* The implications of FSD and SSD with respect to the moments of the distributions
are immediate corollaries of theorems 5.4 and 5.5 stated below. See corollaries 1 and 2

in ref. [1].

> Theorem in ref. [1].
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indicated by the single-integral inequality. This is necessary, since the

double-integral inequality appearing in the definition implies nothing

about the relative magnitudes of the means*. However, if the means are

equal, then the variance of the dominating distribution cannot exceed

that of the other distribution”.

5.2.2. Dominance by construction

It is often the case that one random variable is related to another

random variable by an exact formula, that is, one variable is obtained

from another by some transformation. Some such transformations can

create situations of stochastic dominance between the respective

distributions. Here we shall give two examples, one for the case of FSD,

the other for SSD.

THEOREM 5.1. Let X denote a random variable with a finite mean, and

let Y = 0(X), where the function @ (not necessarily monotonic) has the

property 0(x) =x for all xER. If F is the distribution function of X,

and G is the distribution function of Y, then G ) F.

Proor. Let x, = sup {x|x = 67 '(y)}. Then G(y) S F(x,). But O(x) 2 x
implies x, S y; hence G(y) S F(y) for all ye R.

It is obvious that if 0(x) > x for some xe R, then G @)F.A special

case of theorem 5.1 is Y=a+ bX,a 20,b 21.

THEOREM 5.2. Let X denote a random variable with a finite mean x, and

le Y= a+ bX, where0 <b <1, anda 2(1 — b)\x. If F is the distri-

bution function of X, and G is the distribution function of Y, then G (S) F.

This result has been proved in theorem 4 in ref. [1].

5.2.3. An invariance property

Suppose that one random variable “dominates(in a sense to be made

precise below) another random variable, and suppose that we construct

two new random variables by multiplying the original variables by a

positive constant, and adding another random variable to them. The

question then is whether the newly constructed random variables will

* Without such a restriction on the meansthe desired theorem may nothold.
> See ref. [6].
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satisfy the same dominance relation as the original ones. The answer

is in the affirmative, as shown in the next theorem for the three types

of dominance.

THEOREM 5.3. Let X! and X? be two random variables with distribution

functions F' and F’, respectively, and let Y' and Y? be two identically

distributed random variables with commondistribution function F. Let H'

be the conditional distribution function of X*, given Y', and H? the

conditional distribution function of X*, given Y*. Finally, let G' and G?

be the distribution functions of the random variables aX! + bY! and

aX? + bY’, respectively, where a>0O and b=0. Then the following

three statements are true:

(a) If H'! © H?, then G! © G?.

(b) If H' S) H?, then G' © G?.

(c) If H! GQ) H2, then G' D G?.

In the above, H! ©) H? means H!(x | y) S H?(x| y) for all xe R and
all ye R, H' S) H? means

{ [Hc] y) — H2¢¢| yy]dr < 0

for all xe R and all ye R, and H' @) H? means

co

| [H'\(e|y) — H(t]de < 0

for all ye R, and

! [H*(t| y) — H?(t| y)]dtds < 0

for all xe R and all ye R. The proofs of parts (a) and (b) are analogous

to the proofs of theorem 5 in ref. [1] except that in the present theorem

we employ conditional distributions. While part (c) has not been proved,

the proof is omitted here since it follows along the same lines as those

of parts (a) and (b).
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5.2.4. Multivariate distributions

The case of multivariate distributions is not nearly as developed as that

of single-variate distributions for the obvious reason that, except for

some rather special cases, the complexity inherent in models with

multivariate distributions makesit quite difficult to obtain neat theo-

rems. In this paper we make a modest beginning by extending the

analysis to situations in which multivariate distributions satisfy the

FSD condition.

The definition of FSD for multivariate distributionsis essentially the

same as that given in definition 5.1 with appropriate changes in the

dimensionality of the functions involved. The joint distribution func-

tions are denoted by H(x) and H(x), where x is an n-dimensional vector

with components x’, x7, ..., x", and R" is the common domain.

DEFINITION 5.1’.

H(x) © A(x) if and only if H(x) < A(x) for all x eR”.

H(x) ® A(x) if and only if H(x) < A(x) forall x € R’,
the strict inequality holding for at least one x € R”.

Clearly, definition 5.1 is a special case of definition 5.1’. An obvious

property of joint distributions satisfying the FSD condition is that all

the respective ‘marginal distributions of dimensions 1 through n — 1

satisfy a similar dominancerelation. Thatis, if H, and H, s = 1, 2,...,

n — 1, are s-dimensional distribution functions of H and H, respect-

ively, each containing as arguments variables having the sameindices,

then H ©) A implies H, © A,.
The FSD condition also has certain implications with respect to the

moments of the joint distribution functions; these will be indicated in

Section 5.3 below.

5.3. Stochastic Dominance and Preference

The application of the stochastic dominance conditions to problems

of choice under uncertainty is made possible by virtue of certain equi-

valence theoremsstated below. Implicit in these theoremsis the assump-

tion that the decision maker’s choice is governed by expected utility

maximization. Each theorem applies to a particular set of utility func-

tions; these sets are defined below.
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DEFINITION 5.2.

(a) U, is the set of all bounded andstrictly increasing functions with
a continuousfirst derivative everywhere in R.

(b) U, is the set of all bounded andstrictly increasing functions with
continuous derivatives of order one and two, the second derivative
being nonpositive everywhere in R.

(c) U; is the set of all bounded andstrictly increasing functions with
continuousderivatives of order one, two andthree, the second derivative
being non-positive, and the third derivative being non-negative every-
where in R.°

Weshall use the symbols (P) and (P) to denote ‘is at least as preferred
as’ and ‘is preferred to’, respectively. In theorems 5.4—5.6 the distribution
functions are one-dimensional.

THEOREM 5.4. G ()F if andonly ifG ®) Ffor all utilityfunctions in U,.

For proofs of this theorem see refs. [1]-[3] and [5]. This theorem
applies essentially to all expected utility maximizers, regardless of their
attitude toward risk. The next theorem is restricted to risk averters.

THEOREM 5.5. G (S) F ifand only ifG (P) Ffor all utilityfunctions in U,.

For proofs see refs. [1] and [2]. The last theorem in this group, which
uses the TSD condition, is motivated by the hypothesis of decreasing
absolute risk aversion. A necessary condition for that hypothesis is that
marginalutility be a convex function; hence utility functions satisfying
this condition are members of U3. However, convexity of marginal
utility is not a sufficient condition for decreasing absolute risk aversion,
so thatif the analysis is confined to only that subset of U3 which exhibits
decreasing absolute risk aversion, it should be possible to use a con-
dition that is weaker than TSD.

THEOREM 5.6. G 1) F ifand only ifG (P) Ffor all utility functions in U3.

For a proofseeref. [6].
It may be pointed out that because of the monotonicity of the utility

function, stochastic dominance between uncertain prospectscarries over
to the distributionsof utility. Let @4(u) denote the distribution function
of the jth individual’s utility when the distribution function of the

© These sets can be enlarged inasmuch as in someofthe proofs of theorems 5.4 and 5.5
the differentiability assumption is not used.
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uncertain prospect X is given by F; and a similar notation for the

distributition G. And let D stand for either FSD, SSD or TSD. Then

G © F implies 64 ©) 6: for all j. Thus, if a set of uncertain prospects

is completely ordered by oneof the stochastic dominancerelations, then

for each individualj the set of distributions ofutility induced by the set of

uncertain prospects is also completely ordered by the same relation.

For problems with multivariate distributions we have, at this time,

only a sufficient condition for preference between uncertain prospects.

Because of the complexity encountered in these problems, it may be

worthwhile to look first at the special case of bivariate distributions.

Weshall consider two joint distribution functions H(x!, x”) and H(x", x7)

with associated marginal distributions F', F?, F’ and F?. The associated

densities will be denoted by the respective lower case letters. The

utility function is denoted by u = ¢(x’, x’), and its partial derivatives

by ¢,, > and ¢, >. As in the one-dimensionalcase, the utility function

is strictly increasing and bounded. A symbolsuchas u,, denotes expected

utility when the joint distribution of the uncertain prospects is given

by H.

THEOREM 5.7. Assume that $1 <0for all x € R*. Then H (F) H implies

H ©) A.

Proor. Since a distribution is preferred only if its expected utility is

higher, we prove the theorem by showing that the difference between

the expected utilities (assumed to be finite) is non-negative. By definition

jin t= [| (x', x2)[A(x!, x2) — h(x!, x2)Jdxtdx?, (5.1)
—-eo —®

where h and h are the densities of H and H,respectively.

Wenowcarry out several integrations by parts. First, integrating the

inner integral in eq. (5.1) with respect to x’ yields

(00, x2) [f2(x2) — F2(x?)] — f by(x', x?) § [h(s, x?) — hfs, x*)]dsdx’.

(5.2)
Integrating the first expression in eq. (5.2) with respect to x” yields

— F boo, x2)[F%2?) — P20Jdx?, (5:3
and integrating the second expression in eq. (5.2) with respect to x” gives
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— f b(x!, 00) [FM(x!) — PYocty]dx!

+ Jf dials", x?) [H(x!, x?) — A(x!, x?)]dx"dx?, (5.4)
so that

tig — ty = — J bi(x!, co) [FMot) — Ploty]dxt — J aloo, x2)[F200)

— F(x?)Jdx? + ff by 2(x', x?) [H(x', x”) — H(x', x?)]dx"dx?. (5.5)

Thefirst two termsin eq. (5.5) are non-negative by the monotonicity of

the utility function, and the dominancerelations between the respective

marginal distributions (which are implied by the FSD assumption

postulated in the theorem). The last term is non-negative by virtue of the

nonpositivity of the cross-partial derivative, and the FSD assumption.

If the utility function is separable, ie. ¢,, = 0 for all x € R’, then the

properties of the joint distributions (except for the marginal distribu-

tions) play no role in determining preference between the two distri-

butions. In that case, the distribution H is preferred because eachofits

marginal distributions dominates the respective marginal distribution

of H. Since the existence of FSD between two marginal distributions

corresponds roughly to a shift in the probability distribution, the first

two terms in eq. (5.5) may besaid to reflect a shift effect. When there

exists FSD between two joint distributions, on the other hand, there

occurs a redistribution of the probability mass not only along the

‘margins’, but possibly over the entire domain. Therefore, the last term

in eq. (5.5) represents the redistribution effect. In the special case in

which the marginal distributions are equal, that is, F! = F’, and

F? = F?, preference for H is due entirely to the redistribution effect.
For the case of identical marginal distributions one can immediately

obtain some implications about the joint moments. Let us call the ex-

pected value of the function o(x', x”) = (x')"{x’)’ an odd moment if

and only if both the integers g and r are odd. Since in that case we have

i. = gr(x')*~ *(x*)'"* 20, it follows from eq. (5.5) that all the odd
momentsofH are at most as large as thoseof H.Ifboth random variables

are non-negative, then all the joint moments of H are at most as large

as those of H.
When ¢(x!, x?) = x'x?, its expected value is the product moment,
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and @,, = 1. From eq.(5.5) we then see that the product moment of H
is less than that of H. But when the marginal distributions (and hence
the means) are identical, the difference between the product moments
is equal to the difference between the covariances, and therefore the
covariance of H is less than that of H.

This last implication helps to explain the preference for H when the
cross-partial derivative is negative. This latter condition means that an
increase in one variable of the utility function decreases the marginal
utility of the other. Then it is desirable that the two variables should
move in opposite directions. For example, suppose that x! increases
while x? decreases. Since this increases the marginal utility of x!, the
increase in utility due to the increase in x’ is larger than it would beif
x* did not decrease. Furthermore, the increase in x! diminishes the
marginal utility of x*; hence the loss in utility due to the decrease in x?
is less than it would beif x’ did not increase. Thus, H is preferred since
the smaller its covariance, the greateris the likelihood that the two varia-
bles will move in opposite directions. By the same argument,it alsofol-
lows that if the cross-partial derivative of the utility function is positive
(still assuming identical marginals), then H is the preferred distribution.
Whenthere are n variables in the utility function, preference depends

on the signs of various cross-partial derivatives up to order n. In order
to state the general equation for the n-variable case, we shall use nota-
tion such as H,for a marginal distribution of H, H,,; for a joint distri-
bution of the variables x' and x’, and so on. Then the generalized version
of eq. (5.5) can be written as

Uy — Uy = — >) f oH{x') — H,(x')]dx'
i=1 —-@

n-1 n oO ow

+ >» JS Sb[Hix) — A,x4, x/)] dxidx!
i=1 j=it+1 -aw -oa@w

n-2 n-1 ee 00

7 y j j {bin lHiabe! x!, x‘)
t=1 jHit+l k=j+1 -w -w -om

— Hy(x', x/, x*)] dxidxidx!

OO

+(=1" ff... fi bia. gfHO0 — A()Jdxtdx?... dx"
Sate Au 5.5’
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of order r is equal to the number of possible combinations of n objects
taken r at a time. We can now generalize theorem 5.7 as follows:

THEOREM 5.8. Suppose that the utility function satisfies, in addition to
monotonicity, the following conditions: Qi; = for alli, j,i Fj, bij, 20
for alli,j, Kw i#j GJARIAK...(- 1)"**$y..., 20. Then H ® A
implies H ®) A.

5.4. Applications

One area in which the stochastic dominance approach has already
producedseveralresults is portfolio choice, andin particular the problem
of optimality of diversification. In the presentation of these results we
restrict ourselves to the set of risk averters (definition 5.2). In that case,
the utility function is not only monotonic and bounded,but also concave,
and therefore its domain is bounded from below. For convenience, the
random variables X' are taken to be non-negative. A portfolio will be
defined by the random variable P(k) = S"_, k'X', where ki > 0,
>i-1k' = 1, and k.denotes the vector of the mixture coefficients ki.
A portfolio is said to be:

completely diversified if and only if ki 4 0,i = 1,2,..., n-:9
partially diversified if and only if k' = 0 for at least one i, and at most
(n — 2)i;
specialized if and only if k' = 1 for somei.

Webegin with the special case of portfolios composed of two uncertain
prospects X' and X*. In that case we write P(k) = kX! 4+ (1 — k)X?,
Where the joint distribution of X' and X? is denoted by H, andits
marginal distributions by F’ and F’. First we showthatif the marginal
distributions are identical, then any diversified portfolio is at least as
preferred as the specialized portfolios for every risk averter. This we
have already proved in theorem

8

inref. [1] for the case of independently
distributed prospects. It turns out that this result generalizes to inter-
dependent prospects without any additional restrictions. In view of
theorem 5.5, the result is proved by showingthat the distribution ofthe
diversified portfolio is at least as large as that of the specialized port-
folios in the sense of SSD.
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THEOREM 5.9. Suppose the distribution function of the two-prospect

portfolio P(k) is given by G(x; k). If F'(x) = F*(x) = F(x) for all x eR,

then G(x; k) S) F(x) for all k satisfying0 <k <1.

Proor. The distribution function of the portfolio is given by

1 t z—-t
-k) = ———

|

H,[- dt 5.6
G(z; k) +) (p2= 7) ’ ( )

where H, = 0H/@(x?). Integrating eq. (5.6) yields

( t x-t

|G(z; k)dz = |H(; — ‘ dt. (5.7)

0 0

 

 

Defining a new variable Y = T/k, we can write

( x —ky x —ky
G(z; k)dz =k

|

HI y, tok dy+k

|

Hy, Tok dy. (5.8)

Changing variables in I, by defining T = (X — kY)/1 — k, we get

 

 

x

L=(1-h |eefe (5.9)

0

Clearly, I, <k{3F(y)dy, and I, <(1 - k)[%F(t)dt (from the definition

of joint and marginal distributions). Therefore

iG(e;kidz < k{F(y)dy + (1 — k)[F(dt = [Flot forall x and k,
0 0 O 0

(5.10)
which wasto be proved.

Further results can be obtained under the stronger assumption that the

joint distribution function H is symmetric; that1s, H(x!, x?) = H(x?, x’)

for all xe R2. Under these conditions, the set of all portfolios can be

completely ordered by the mixture coefficient k as shown in the next

theorem.
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THEOREM 5.10. Let G(x; k) denote the distribution function of the two-
prospect portfolio P(k), and assume that the joint distribution function H
is symmetric in its two arguments. Then for any two k and k’, G(x; k) ©
G(x; k’) if and only if (3 — k? < G& - ky.

PRooF. The proof consists of showing that, for each positive x, the
function G*(x; k) = (8G(z; k)dz is a strictly convex and symmetric func-
tion of k, attaining its unique minimum at k = 3. From eq.(5.7) we have

x

G*(x;k) = fat — :)a (5.11)
0

 

Changing variables in eq. (5.11) with the relation Y — x — T, one sees
immediately that G*(x; k) = G*(x; 1 — k) for all x by the symmetry of
H, so that G*(x;k) is symmetric around k = 3. Strict convexity is
established by evaluating the second derivative of G* with respect to k.
Differentiatiag G* twice, and using suitable changes of variables, one
can show that

z/k

Gik(z; k) = 4 a fa(e' — ce —t?dt>0 (5.12)
0

  

for all z and k, where h is the joint density function.
Thus, we have shown that, under the conditions postulated, all

portfolios can be completely ordered, and the ordering has the property
that the closer k is to 4, the better the portfolio.
The value of the mixture coefficients can also be related to the variance

of the portfolio. In order to derive this relationship, we consider the
general case of n-prospect portfolios, and define a distance function of
the vector k by

n n

D(k) = » (! — i) = >? ~ . (5.13)
i=1 i= 1

where the second equation follows from the fact that the k’ add up to
unity. Now,if the joint distribution functionis symmetric, the variances
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prospects are equal. We denote the common variance by v, and the

common covariancebyc. If the variance of the portfolio with coefficient

vector k is denoted by v(k), then we have

ok) = (0—0) ¥ (kite. (5.14)
i=

Then, given any two portfolios (constructed from some commonset

of n prospects) with coefficient vectors k and k’, the following equivalence

relation holds:

v(k) < v(k’) <> Dk) < D(k’). (5.15)

But for n = 2 we can invoke theorem 5.10 which shows that

D(k) < D(k’) <> G(x; k) GS) G(x; k’). (5.16)

Combining(5.15) and (5.16) we get

w(k)<v(k’) <> G(x; k) GS) G(x; k’). (5.17)

The equivalence relation in eq. (5.17) shows that all two-prospect port-

folios constructed from prospects whose joint distribution function 1s

symmetric can be completely ordered either by the portfolio variance

or by the SSD condition. This case, therefore, represents another in-

stance in which the mean-variance methodyields a correct ordering of

portfolios’. At the same time it should be noted that the result in eq.

(5.17) does in general not hold for n > 2. The reasonforthis is that when

n > 2, the equivalence relation in eq. (5.16) may no longer hold.

Other results presented above also require stronger restrictions if

their validity is to be extendedto situations in which n > 2. For example,

identity of marginal distributions is no longer sufficient to establish

optimality of complete diversification. But that result will hold if all

joint distribution functions of dimension n — 1 are equal. Then it can

be shownthat for any partially diversified portfolio there exists at least

one completely diversified portfolio whose distribution dominates that

of the partially diversified portfolio in the sense of SSD. This result is

the subject of the next theorem.

7 The other knowninstancesare: (1) a quadratic utility function, and(2) portfolios whose

distributions belong to a special class of two-parameter families of distributions.

See ref. [2].
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THEOREM 5.11. Let H denote the joint distribution function of the n
non-negative random variables X', and H~Sthe joint distribution function
of the n — 1 variables X', i = 1, 2, ..., n, i+ s. Consider the (n — 1)
prospect portfolio

n-1

Pik) = Yo RX!

sense of SSD.

Proor. Denote P(k) by the random variable V, and consider
n-—2

We bi RX) + kn lyn
i=1

From the identity of the joint distribution functions of dimension n — 1
it is clear that V and W areidentically distributed. Thenit follows from
theorem 5.9 that the distribution of Z, where Z = qV + (1 — q)W,
0 < q < 1, is at keast as large as that of V in the sense of SSD. But

n-2

Z= Yo WRX! + gk1X"! + (t= gk" 1x"
i=1

is an n-prospectportfolio P(c) where c' = k',i = 1,2,....n — 2,c7 1 =
qk""*, and c" = (1 — q)k"~!, so that the conclusion of the theorem
holds for k’ = c.

The aboveresult shows that equality of joint distributions of dimension
n — 1 1s sufficient for optimality of complete diversification; so long as
for any partially diversified portfolio there exists a completely diversified
portfolio which dominates in the sense of SSD, all risk averters will
prefer a completely diversified portfolio. When the joint distribution
function

H

satisfies the stronger condition of symmetry then, as in the
case of n = 2, equal diversification is the best strategy. And whileit is
in general not true (except when n = 2) that any given portfolio can be
improved by merely changing the mixture coefficients in a way which
reduces the value of the distance function D(k) (as defined in eq. (5.13)),
there exist ways of changing the mixture coefficients which will produce
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superior portfolios. One such methodis the following: every mixture

coefficient is moved one position forward, and the first coefficient is

movedtothelast position. Thus,if the initial portfolio is Y =

)

7-pkix'

the rearranged portfolio is Y’ = S"=1 kit 'X' + kX", where wecall Y"

a rearrangement of Y. Then any mixture of Y and Y’ is superior to the

original portfolio Y as proved below.

THEOREM 5.12. Let P(k) = )"-, k'X' be a portfolio of the n non-negative

random variables X‘ whose joint distribution function is given by H.If

H is symmetric in its arguments, and ki £ 1/n for at least onei, then there

exists a vector of mixture coefficients k’ such that the distribution of

P(k’) is at least as large as that of P(k) in the sense of SSD.

Proor. Let Y = )"_, kiX‘ and let Y’ be a rearrangementof Y. Since Y

and Y’ are identically distributed (by the symmetry of H),it follows

from theorem 5.9 that the distribution of Z, where Z = cY + (1 — c)Y’,

0 <c <1, is-at least as large as that of Y in the sense of SSD. But Z

is the portfolio P(k) = )"~,kiX', where ki = ck’ + (1 — c)kit i = 1,

2,...,n — 1, and k" = ck" + (1 — c)k’. Therefore the conclusion of the

theorem holds for k’ =k.

This method of reshuffling the mixture coefficients can be applied

repeatedly with the result that at each stage there emerges a portfolio

that dominates its predecessor in the sense of SSD.It follows also from

eq. (5.16) that after each reshuffling of the mixture coefficients the

distance function D(k) is reduced. It is clear that no further improve-

ment will be possible when D(k) reaches zero. This will be the case if

and only if k' = 1/n for all i. Hence the following conclusion.

THEOREM 5.13. If the joint distribution function H is symmetric in its

arguments, then complete and equal diversification is optimal.

One commonfeature found in all the above theoremsondiversification

is the equality of the marginal distributions of the uncertain prospects.

Whenthis condition fails to hold, diversification is muchlesslikely to

be optimal. Below we present an example of two-prospect portfolios

in which the prospects need not be identically distributed, but have

equal means. To provethe desired result, we shall makeuse of a theorem

by Samuelson according to which each risk averter will choose a

diversified portfolio so long asall prospects have equal means, and are
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independently distributed®. Then it can be shownthatdiversification is
optimal even if the prospects are not independent, provided the joint
distribution function dominates the productofits marginaldistributions
in the sense of FSD.

THEOREM 5.14. Let H(x', x*) denote the joint distribution function of two
non-negative random variables with marginal distributions F'! and F?.
Assume that the two variables have the same mean. Then H (F) F'!F?
implies that diversification is optimal.

PRoor. Theutility function is defined by $(x', x”) = w[kx! + (1 — k)x?],
so that @,, = k(1 — k)w” < 0 by the assumption of risk aversion. Then
it follows from theorem 5.7 that H (P) F'F?. But from Samuelson’s
theorem we knowthat if the prospects are independent, every risk
averter chooses a diversified portfolio. Consequently, since each risk
averter prefers H to F'F’, he will choose a diversified portfolio when
H prevails’.

5.5. Conclusion

The equivalence between stochastic dominance and preference implies
that problems of choice under uncertainty can be analyzed by either
one of two methods: (i) comparing the expected utilities of the prospects
under consideration,or(ii) testing for the existence of stochastic domi-
nance. The stochastic dominance approach differs from the expected
utility approach in that it focuses directly on the probability distri-
butions whichare, of course, the objects of the decision maker’s choice.
This has the advantage of providing an insight into the nature of the
decision maker’s preferences.

In the present paper, the applications of the stochastic dominance
approach are taken from the area of portfolio selection, but choice
problemsin the context of the theory of the firm and the consumer lend
themselves equally well to this approach. This paper also makes an
initial attempt to extend the analysis of choice under uncertainty to
cases of multivariate utility functions. Such an extensionis essential for

® Corollary II in ref. [4].
° Fora different approachtothis problem see theorem IV in ref. [4].
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problems in which prospects are characterized by a vector of goods or

attributes which may or may not enter into the utility function as a

linear combination. Such situations occur in the theory of the firm,

consumer behavior, welfare economics and others. Because of the

complexity of problems with multivariate distributions, strong results

are more difficult to obtain. At the present time the whole area of

uncertainty with multivariate distributions is still largely unexplored,

and much moreresearch needs to be done to determine the scope of

this theory.
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COMMENTS

On ‘Stochastic dominancein choice under uncertainty*

Koichi Hamada

The Hadar—Russell paper provides a systematic exposition of the sto-

chastic dominance approach, and at the same time generalizes the

* TI owe much to Professor S. Wu for helpful correspondence.
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authors’ previous work [1] to include the case where there are more
than two random variables which may be interdependent.

In order to discuss the significance of their contribution, let us

compare their results about the diversification of portfolio with those

of Samuelson [4]. Samuelson has proved that the symmetry ofdistri-

bution, which includes as a special case the multivariate distribution of

independent random variables with identical marginal distribution,

implies the equal holding of every security as the optimal portfolio mix.

On the other hand, Hadar and Russell generalize the argumentto the

case where the distribution 1s not symmetric but has identical joint

(marginal) distributions if one excludes one variable. Theorem 5.11
shows that a completely diversified portfolio dominates a partially

diversified portfolio.

Therefore, the significance of this generalization depends on the

equality of (n — 1) dimensional joint distribution. Let us take the

example of a multivariate normal distribution. The equality of these

joint distributions implies the equality of all variances and the equality

of all covariances. This means that the distribution is symmetric.

If we do not specify the parametric form of a distribution, we can

generate quite a wide class of distributions illustrated by the following

device for a two-dimensional distribution. Let us take initially a sym-

metric bivariate density function h(x, y). Take small positive numbers

é and 0, and construct a new density function h*(x, y) as follows. Let

axa+éd<b<b+o6<c, andd<d+d<e<e+06</f. Define

h*(x,y)=h(x,y)+6 foraSx<at+o,fxsy</f+o0,

b<xx<b+o6,dSy<d+0,

cSx<ctod,eSy<et+o.

h*(x,y)=h(x,y) —e foraSx<ato,eSy<e+ 0,

b<sx<b+0,fsy<f+0,

cSx<cto,dsSy<d+o.

and

h*(x, y) = h(x, y) otherwise.

' The references here are the sameas those in the Hadar—Russell paper.
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Fig. 5.1. h to At.

(Of course, it is assumed that «¢ is taken small enough to keep h*(x, y)
non-negative.) This methodis illustrated in fig. 5.1. By repeating this
kind of ‘marginal preserving transformation’, we can reach a wide
variety of density functions.

Incidentally, this transformation can be also used to visualize how
to construct an example of two distributions which have identical
marginal distributions but one of which dominates the other in the
sense of first degree dominance. The reader will easily see in fig. 5.2

x2

Fig. 5.2. H to FA.
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whycovariance of H is less than that of H, as argued in the discussion
after theorem 5.7.

Thus, the generalization allows many morecases to be covered by the
stochastic dominance approach. Theoretically, this indicates a signi-
ficant advance. However, from the practical or empirical point of view,
it still will be very hard to find cases where random variables have
identical (n — 1)-dimensionaljoint distributions. The generality realized
by the stochastic dominance approach so far is not without cost.

In this respect, we should not yet dismiss the mean-variance approach
too lightly, even though its lack of generality has led us to the expected
utility approach and the stochastic dominance approach. Since the
authors have already compared the characteristics of the stochastic
dominance approach with those of the expected utility approach,this
might not be the place to defend the remaining value of the mean-
variance approach. However, the recent work of Steve Ross* seems to
enhance the practicality of the mean-variance approach. He has found
that when all optimal portfolios are greatly diversified and when returns
of securities are roughly independently distributed, the mean-variance
approach can be used as an approximation. What is important is that
he has found concrete bounds on theerrors in using the mean-variance
approach.

Finally, we cannot help but doubt the operationality of asking when
it pays to diversify completely. Indeed, it is an interesting intellectual
exercise. However, doesit lead to any operationally testable hypotheses
even under ideal conditions, emphasized by Samuelson, the originator
of the question?

Note that the above critical remark is not directed at the stochastic
dominance approach. It should be taken as an encouragementfor the
authors to remove the remaining obstacles to make the stochastic
dominance approach more operational as well as to makeit applicable
to a wider range of problems.

It is always good to have many ways of looking at the samething.
The lucid exposition of the stochastic dominance approach by Hadar
and Russell convincesus of the capacity of the new microscope with the
name of stochastic dominance approach.

* §. A. Ross. Portfolio and capital market theory with arbitrary preferences and distribu-
tion: the general validity of mean-variance approach in large markets. Working Paper
No. 12-72. Wharton School of Finance and Commerce, University of Pennsylvania.



 

On ‘Stochastic dominance in choice under uncertainty

Gerald L. Nordquist

Hadar and Russell’s paper attempts both a summary and extension of

recent work on stochastic dominance as a method for ordering prefer-

ences amongrisky prospects. Thefirst six theorems restate and in minor

respects modify propositions appearing in Quirk and Saposnik, Hadar

and Russell, Hanoch and Levy, and Whitmore. Theorems 5.7 and 5.8

take a couple of definite albeit limited steps towards generalization of

dominance to include multivariate distributions. The results here give

sufficient conditions for the class of distribution functions ordered by

dominanceof the first degree (FSD). Theorems 5.9—-5.14 develop further

the authors’ application of stochastic dominance to the problem of

portfolio choice. I offer two points on the content of the paper and a

general observation on the value of stochastic dominance as an approach

to the economics of uncertainty.

From the standpoint of uncertainty theory, the most interesting part

of the paper is to be found in the two theorems on multivariate distri-

butions. Although by their own admission the authors do not get very

far in establishing the relationship between stochastic dominance and

preference in the n-variate case, they do provide some generaldirections

and incidentally alert us to some of the obstacles to be encountered.

Wesee immediately that monotonicity of the utility function 1s not

sufficient to insure preference in the case of FSD; now we must take

into account and properlysign all cross-partial derivatives up to ordern.

This is not quite as bad as it seemsatfirst glance because of the re-

versibility of the order of partial differentiation and the fact that inte-

gration by parts yields non-repeating indices of differentiation (_.e.

after a variable is integrated out, it stays out). Even so, the number of

surviving terms is still (2” — n — 1), which obviously grows very fast

with n.

The multivariate case grows even more complex in passing from FSD

to dominance of the second and higher degrees. One serious question

relates to the signs of the marginal distributions in the expansion. (The

reference is to eq. (5.13).) Although it is surely true, as the authors

154
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suggest, that dominance on the joint distributions implies dominance
on the respective marginals of various orders, it is not so obvious that
this must be so in the cases of SSD and TSD.In any event, it is abun-
dantly clear that the price of generalizing this theory is very steep.
The last section of the Hadar—Russell paper is devoted to showing

how stochastic dominance can be applied to the problem of portfolio
choices. In view of the current state of portfolio theory one is tempted
to say that there is less here than meets the eye. The argumentis that
portfolios of various mixtures can be ordered by second-degree stochastic
dominance. Thus, we find that given equal marginal distributions, a
two-prospect portfolio dominates a specialized portfolio (theorem 5.9);
a more equally diversified two-prospect portfolio dominates one that
is less equally diversified assuming a symmetric joint distribution
(theorem 5.10); complete diversification dominates partial diversification
in the case ofn > 2 so long asall the joint distributions of n — 1 variables
are equal (theorem 5.11); and complete and equal diversification
dominates complete and unequal diversification, again assuming a
symmetric joint distribution of the n random variables.
These results, although interesting, are easily seen to be implications

of the main theorem on SSD andcertain well known propositions in
portfolio theory. In particular there are the theorems by Samuelson
which assert the optimality of diversification under similar if not iden-
tical conditions. The pointis that given the class of symmetric, concave
utility functions,if (1) greater diversification is preferred to less, and (2)
a preference ordering implies and is implied by SSD, must it not follow
that greater diversification will dominateless diversification in the sense
of SSD? On the other hand, the Hadar and Russell theorems do provide
some additional insights which should not be overlooked. For one thing
they show once again the limited scope of mean-variance ranking. They
also show that independence need not be invoked to establish the
proposition that complete diversification dominates partial diversifi-
cation.

My final comment is a judgment on the stochastic dominance ap-
proach to the economicsof uncertainty. It is impossible to deny thatit
has produced several propositions and corollaries which help a great
dealto fill in some awkward gaps in our understanding of the expected
utility hypothesis. So far as they go, the main dominance theorems
reveal with considerable precision and generality the tradeoff between
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different attitudes towards risk and required restrictions on the set of

admissible prospects. Rival propositions involving moments, spreads

and other wrinkles on probability densities are shown to be special

cases of stochastic dominance. Of course we must temper our praise

with the knowledge that these theoremsstill give us only partial rankings

of risky prospects. In this connectionit is particularly disappointing to

find that dominance of the third degree does not take us much beyond

SSD: TSDstill requires that the mean of a dominant distribution be

not less than the mean of any that is dominated byit.

The other side of the coin is that stochastic dominanceis notlikely

to generate muchpractical interest largely because ofits limited intuitive

appeal. Imagine if you will the reaction of the typical banker who1s

advised that portfolio A is better than portfolio B in the sense of SSD!

Knowledgeable observers of business practice will tell you that there is

enough trouble with the notions of variance and mean-preserving

spreads.



CHAPTER 6

CONSUMPTION AND PORTFOLIO CHOICES
WITH TRANSACTION COSTS*

Robin Mukherjee and Edward Zabel

6.1. Introduction

The problem ofthe individual’s consumption and portfolio choices over
time has been the focus of recent studies by a numberof authors, for
example, Levhari and Srinivasan [10], Hakansson [6-8], Leland [9],
Yaari [17], Samuelson [16], Merton [11, 12], Hahn [5] and Fama [3].
Apart from Yaari, in one way or another these studies have offered
exposition, simplification of proof or generalization of Phelps’ 1962
paper on consumer behavior [14].
An attempt is made here to extend these results by examining the

impact of transaction costs on optimal consumption and portfolio
decisions. We are able to show that these costs considerably modify
available results and greatly increase the difficulty of analyzing the
consumer choice problem. The major reason is that now not only
wealth but also the composition of wealth becomes important in the
decision makingprocess.
A very brief outline of Phelps’ paper and later generalizations will

help to provide the setting of the present study. Phelps determines the
individual's allocation over timeofan initial wealth and a given income
stream, between periodic consumption and investmentin a single risky
asset, which maximizes the expected utility of lifetime consumption.
One direction of generalization is to extend the numberofportfolio
opportunities available to the individual. Hakansson, for example,
permits investment in an arbitrary number ofrisky assets, some of

* The second author gratefully acknowledges the support of the National Science
Foundation under Grant GS-30513 to the University of Rochester.
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which maybe sold short and also allows borrowing and lending [6, 7].

Samuelson [16] and Merton [11, 12], with Merton using continuous,

rather than discrete, time analysis, have treated a similar problem.

Another direction is to introduce an end-of-lifetime function when

lifetime is uncertain. Yaari [17] and Hakansson [8] have considered

this possibility.

The character of these studies is strongly influenced by two major

assumptions through which the essential simplicity of Phelps’ model is

retained. Oneis that the utility of each period’s consumption is independ-

ent of past and future consumption. Thus, lifetime utility 1s the sum of

periodic utilities, each a function only of a single-period’s consumption

plus, possibly, an additional term giving the utility of a bequest. The

second is that conversion of assets from one form to anotheris costless,

which implies that the composition of wealth is irrelevant in decision

making and, moreover, that in the presence of riskless investment

Opportunities the individual has no incentive to hold cash as an

asset.

Authors who attemptto derive explicit properties of optimal behavior

also tend to assumeparticular one-period utility functions which afford

additional analytic convenience. For example, if the utility function

exhibits constant absolute risk aversion, the optimal mix of risky assets

dependsonly on the one-periodutility function and the joint probability

distribution of returns to risky assets. Consequently, the composition

of risky assets is determined independently of the amount of wealth or

consumption, a property which has been called separation or partial

separation. Additionally, the composition of risky assets is a short-run,

or myopic, problem in that it does not depend on any past or future

events. When relative risk aversion is constant, the optimal mix of

risky and riskless assets is independent of wealth, exhibiting complete

separation, and the composition of assets problem 1s also short-run.

Given limited wealth, however, in both cases the consumption decision

remains as a long-run problem since today’s optimal consumption

dependsonthe distribution of wealth over consumptionin future periods.

For a more complete discussion of these points the readeris referred to

various papers mentioned previously [6, 7, 9, 11, 12, 16].

In the present paper, to keep the exposition reasonably manageable,

and to focus on the role of transaction costs, we introduce a number of

simplifications, including some mentioned above. We assume a constant
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relative risk averse one-period utility function and confine explicit

attention to a two-period horizon. Weonly briefly suggest the form of
the n-period outcomesif the horizon is extended. Since it is now neces-

sary to examine portfolio choices in detail, we limit portfolio oppor-
tunities to two assets. One is a riskless asset used for consumption
transactions, which werefer to as cash, and the other is a risky asset
with a random return. Wealth is taken to be the sum of cash and the
risky asset at the beginning of a period. Income is assumedto be zero,or

included in initial wealth.

In this framework we consider two types of transaction cost. Thefirst
is a proportional cost and the second a fixed, or lump sum, cost for
purchasesor sales of the risky asset. With both costs the optimal port-

folio mix is sensitive to the composition of wealth, andit is also apparent
that, independently of the form of the utility function, portfolio choiceis

now a long-run problem since the frequency and magnitude of trans-
actions, and thus the lifetime average expected transaction cost per

period, depend on the length of the horizon. A distinguishing feature is
that with the first the portfolio mix is independent of wealth, as in the
work of Hakansson and others, while with the second the mix directly

depends on the magnitude of wealth. Other features of the outcomesare
given as the argument develops.

The case of proportional transaction cost has been developed at

length elsewhere by the second author [18] and we only summarize

that paperhereto facilitate comparisons. Consequently, major attention

is given to examining the impactoffixed transaction cost. The plan of the

paperis the following. In section 6.2 we present the model of consumer
choice and outline behavior when transaction cost is proportional. In
sections 6.3 and 6.4 we analyze the portfolio and consumption problems

in the presence of fixed transaction cost. Section 6.5 is a concluding
section.

6.2. A Model of Consumption and Portfolio Choice

The specific model may be described as follows. Given U(c,,c,) as
utility from consumptionin the two periods, then U(c,,c,)=u(c ,) + au(c;)

where u(c) is the one-period utility function and a is the individual’s
utility discount factor. As a particular utility function we choose
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u(c) = c*,0 < 2 < 1, where (1 — 4) is the constant measure ofrelative
risk aversion. The reader may easily extend the analysis to situations
where u(c) = —c’*,4 < 0 and u(c) = Inc, the remaining membersof the

family of utility functions with constant relative risk aversion. Similarly,
it would notbedifficult to consider more general cases such as the HARA
(hyperbolic absolute risk aversion) family of utility functions which,
amongothers, includes the functions with constantrelative risk aversion

[12]. We omit the details here.

The individual wishes to maximize the expectation EU(c,, c,) subject
to non-negativity of consumption, each asset, and wealth. Initial wealth

is w = x + y wherex 1s cash andy gives the initial amount of the risky

asset valued at its current price. Assuming decisions are made at the
beginning of a period, the current transaction cost is b| Y— y| whereb,
whichlies in the interval (0, 1), is the cost of buying orselling one dollar’s
worth of risky asset and is the value ofthe risky asset after the current
transaction. The random value of a dollar’s worth of risky asset at the
end of a period is given by OS a< PAX oo where B has some
continuousdistribution function ®(8) with mean value B > 1, a < 1
and A > 1.

Usingthe definition of wealth to obtain cash as the difference between
wealth and risky asset holding, we may now derive next period’s initial
assets and wealth. Obviously, asset holding becomes BY while cash is

given by [w— y—c—b|Y—y| — (Y—y)] or [w—c— Y—b|Y—y]|] where,
subsequently as well, we omit the subscript on today’s consumption.
Thus, wealth next period is the amount [w — c — Y— b|Y—y| + BY]
or [w—c + (B—1)Y — b|Y—y|]. Since borrowing or lending is not
allowed, we require next period’s cash to be non-negative, which
clearly implies the non-negativity of next period’s wealth.

In the two-period problem the consumer obviously consumesthe cash
valueofhis wealthin thesecond period, [w—c+(f8—1)Y—b|Y—y|—bBY]
or [w —c + (BU —b) — 1)Y — b|Y—y|]. Thus, defining f,(w,y) as the
maximum expected utility over the two periods, the functional equation
representing the problem is given by

A

fra(w, y)=max {c*+a J [w—c+(B(1—b)—1)¥—b|Y—y|]*d@(B)}, (6.1)
c, Y

where c 20, Y 20 and [w —c — Y — b|Y—y]|] 20.

In analyzing eq. (6.1), it is useful to identify (w — c) as the consumer’s
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investment fund, the portion of wealth available for distribution among
cash, risky asset and transaction costs. From the consumption bound,
(w — c) is positive if w and

y

are positive. In fact, (w — c) will be positive
even if y equals zero since an examination of marginalutilities easily
showsthat the optimal consumption plan requires positive consumption
in both periods which implies (w — c) > 0. Now, multiply and divide
the integrandin eq.(6.1) by (w — c)*, let V = Y/(w —c) and v = y/[(w — C),
to obtain

f.(w, y) = max fe¥-aw—o)*[I + (61 — b)— 1)V—b| V— v|]*d®(p)'. (6.2)

With the appropriate modification of constraints, eq. (6.2) is equivalent
to eq. (6.1).

Clearly, for each dollar of the investment fund, V is the share invested
in risky asset, b|V — v| is the transaction cost share and (1 — V — b|V — v])
is the cash share. Thus, taking the investmentfund asgiven, the portfolio
problem consists of the distribution of a dollar, given v as the initial risky
asset share of a dollar of investment funds. While v may exceed one, for
example,if (w — c) = by, the portfolio shares must be non-negative and
sum to one after the portfolio choices. To see that cash share is non-
negative, note that the cash constraint (w — c — Y) =b|Y — y| becomes
(1 — V) 2b|V — v| bythedefinitions of V and v.
The cash share constraint may be sharpened by taking into account

bounds on v and the magnitudeofinitial cash (w — y) relative to current
consumption c. In addition to its non-negativity, v = y/(w — c) has an
upper bound determined by maximum consumption (w — by) which
gives 0 < v S 1/b. Now ifinitial cash is less than consumption (w—y < c
or v > 1), a reduction in the risky asset holding is required and, after
rearrangement, the cash constraint becomes V < (1 — bv)/(1 — b). On
the other hand,if initial cash is sufficient (w — y >c or v S 1),it is
possible to change the risky asset holding in either direction with the
proviso that enough cash remainsto finance consumption. Obviously,if
the amountof the risky asset is not increased, sufficient cash remains
available. An increase, however, is limited by the cash constraint which,
in this event, becomes V S (1 + bv)/(1 + 5). In examiningeq.(6.2), then,
apart from the definitions of V and v, and the non-negativities of V and c,
the relevant constraints are V < (1 — bv)/(1 — b) if 1 < v < 1/b and
VS(1 + bv+ 5b) ifOSv< 1.
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To determine portfolio decisions requires examining properties of the

integral in eq. (6.2) which we now write as

H(V,v) = (tl + (BU — b) — 1)V — bIV — of }*d@(p). (6.3)

The function H(V,v) then gives the expected utility of investing one

dollar when the stock share after a decision is V and theinitial share1s v.

To shorten the exposition we only explicitly consider the situation when

0 <v <1 and confine attention here, mainly, to an intuitive and dia-

grammatic explanation of behavior. As noted, proofs are given else-

where[18]. In this case, V may exceed orfall short of v and the problem

now consists of comparing H(v, v), the expected utility if the stock share

is unchanged, and H(V, v) for V #4 v. Whenever H(V, v) exceeds H(v, v)

for some V, we then wantto find V which maximizes the expectedutility.

In this comparison a number of facts about H(V,v) are useful. An

immediate observation from eq. (6.3) is that H(V,v) < H(V,V) when

V # v, or in other words,if the risky asset shareis already at V, a change

to V from some other initial share v must decrease expected utility.

Also, H(v, v) is concave in v and H(V,v) is concave in for fixed v and

V Av.

Another important observation is that H(V, v) is not differentiable in

V at the value V = v but doeshavea right- and a left-hand derivative.

If we let H;(v,v) and H,(v, v) respectively represent these derivatives,

we then needto recall that an interior optimum at V = v now requires

H}(v,v) <0 and H,(v,v) 20. The reader who wishes to write out

these derivatives explicitly will also easily note that Hy 2 Hy forall

O<v<l.

One final general fact is needed. After a rather lengthy derivation,

it is possible to show that the derivatives Hy (v, v) and Hy(v, v) change

sign once at most as v increases, possibly changing from positive to

negative but not in the reverse direction. This sign pattern prevents

reversals in behavior as v increases. Thatis, if initially Hy is positive,

which means H,, > 0,it is optimal to increase the risky asset holding, but

once H; becomesnegative it remains negative and the optimalrisky asset

share is unchanged or diminished. Similarly, if Hy > 0 while Hy < 0,

the risky asset share is unchanged, but if Hy; becomesnegative it also

remains negative, and thereafter it is optimal to decrease this share.

These properties of H(V, v) may be used to prove the following theorem.
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THEOREM 6.1. [f0 S v < 1, the optimalrisky asset share V*(v) is uniquely
determined with properties V*(v) =v if OS vSv°, V*v)=v if
vo Sv <v%, and V*(v) < v if vo < v <1, where 0 < v® S v®® < 1,

The properties of H(V, v) listed above, and their consequence, theorem
6.1, are independent of particular values of parameters. To obtain
further characteristics of behavior, for example, to specify whether the
intervals for V*(v) are distinct, requires more exact specification of
parameter values. Again, to shorten the exposition we only consider
a special case, a more general treatment being given in the cited paper
[18]. In particular we assume A(1 — b) > (1 + b) and E[f*~ 1(B — 1)] <0
which ensure 0 < v° < v°° <1 and consider properties of V*(v)
outside the interval [v°, v°°]. Now when 0 < v < v®, both H}(v, v) > 0
and H,(v, v) > 0 andit is optimal to increase the risky asset share until
H,(V*(v), v) = 0. Similarly, since H;(v, v) and H,(v, v) are negative if
v°® <v <1, the risky asset share is decreased until H,(V*(v), v) = 0.
Differentiation of these equations with respect to v provides the proper-
ties of V*(v) given in the following theorem.

THEOREM 6.2. If 0 < v <1 and the conditions B(1 — b) > (1 + b) and
E[B*" ‘(8 — 1)] < 0 are satisfied, then

  

dV*(v) bV* b |
dv ~t+bo 145 fOsv<o, (6.4)

dv*(v) —bV* —b
if °° <v<. (6.5)  

dv ~T-b 1-5

The inequalityin eq. (6.4) implies that the cash share varies directly with v
and the inequality in eq. (6.5) that it varies inversely with v. Both
bV*/(1 + bv) and —bV*/(1 — bv) are constant, implying that the
optimal risky asset and cash sharesare linear in v outside the interval
[v°, v°°].

In giving an explanation of theorem 6.2, it is useful to consider the
amount(1 + bv) in eq. (6.4), which we mayinterpret as the ‘real’ value
ofa dollar in investment fund. In other words,in an interval in whichit is
optimal to increase the risky asset share, the gain per dollar of having
initial risky asset on hand equals the unit transaction cost times the
initial risky asset share of an investment dollar. Now, since V*(v) is
linear, the equality in eq. (6.4) then states that the optimal risky asset
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and cash sharesare constant proportions of a real dollar of the invest-

ment fund. A similar interpretation applies in the interval v°° < v < 1.

This proportionality of asset holdings to a real dollar of wealth is

analogous to previous results mentioned earlier. However, in the inter-

val [v°, v°°], while dV*/dv = 1, a real dollar changes in value from

(1 + bv) to (1 — bv) and V*(v) is then not proportional to this variable.

Eq. (6.5) and the appropriate subsequent parts of the theorem also

indicate properties of V*(v) when 1 S v < 1/b.

Figure 6.1 gives an example of the optimal risky asset shares over the

entire inverval 0 < v < 1/b when B(1 — b) > (1 +b) and E[f*~ '(B—1)] <0.

The upperline traces maximum V while the heavyline gives the path of

optimal V. The dotted line illustrates the variation in V*(v) with an

increase in the unit transaction cost b. Omitting the details of the com-

putations, the intuitive explanation is clear. In the intervalO Sv S 1,

whererisky asset holding may movein either direction, a rise in trans-

action costs increases the consumer’sinertia by enlarging the interval in

whichthe risky asset share is unchanged. Whenrisky asset holding must

be decreased,in the interval 1 < v < 1/b, the effect is to cause this share

to decrease even more.

Returning to eq. (6.2) and its constraints, we now need to examine

the terms in brackets on the right-hand side of the equation. After sub-

stituting the optimal share V*(v) we rewrite these terms as

A

G(c,w,y)=c* + a(w—c)* [1 +(BU — b)— 1)V* — b| V* — v|]*d@(p), (6.6)

where G(c, w, y) is the expected utility over the two periods given the

optimalrisky asset share of any investment fund and optimalbehaviorin

the second period. Among other parameters, the marginal expected

utility with respect to consumption will depend on the phaseofthe risky

asset share. The relationship between consumption and these phasesis

seen from fig. 6.1 and the definition of v. For example, if c < w — (y/v°),

then V*(v)> v. Similarly w—(y/v°)<c<w-—(y/v°”) implies V*(v)=0, and

finally V*(v) < v if c > w — (y/v°°). Of course consumption must also

satisfy c < w — by, an original bound now implied by the modified

constraints.

If we examine the partial derivatives of G(c, w, y), we discover that

while V*(v) is not differentiable at c = w — (/v°) or c = w — (y/v°”),

nevertheless, G(c,w,y) is differentiable in c in the entire interval
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Fig. 6.1. Optimal stock share V*(v) when B(1—b) > (1+5) and E[p2~1(B—1)] < 0.

[0, w — by]. Moreover, for boundary values we obtain G,(0, w, y) = 00

andG,(w — by, y, y) = — oo. Thus, for each w andy, optimal consumption

is interior to the constraints O < c S w — by andalso uniquely deter-
mined since G(c, w, y) is a concave function in c. Now, in specifying
circumstances in which optimal consumption lies in one interval or
another, the composition of wealth is obviously important. In fact,

corresponding to v° and v°°, there exest twocritical ratios of y/w, say
g® and q°°, which denote the phases of optimal consumption.

Using this information, and more detailed characteristics of deriva-
tives, the next theorem specifies properties of optimal consumption
c*(w, y) whenit lies in the first interval.

THEOREM 6.3. If y/w<q° then c*(w,y) < w— (y/v°) and has the
properties

 

   

0 * * *

oc® _ oer bee (6.7)
Oy Ow wet by

Similarly,

oY* 0Y* bY*
= b = , (6.8)

oy Ow w+ by

where Y*(w,y) is the optimal amountofthe risky asset.
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From eq.(6.7) it is seen that the marginal propensity to consumeis less

than one since, obviously, c* < w + by. To understand the relationships

in eqs. (6.7) and (6.8) between partial derivatives with respect to y and w,
note that in an interval where it is optimal to increase the risky asset

holding, an increase in y of one dollar is equivalent to an increase in

wealth of b dollars, or, for example, 6c*/éy = b dc*/dw.

In the absence of transaction costs, previous studies [7, 8, 11, 12, 16]

have shown that consumption and asset holdings are proportional to
wealth if relative risk aversion is constant. The analogousresult here is

given in the final theorem of this section.

THEOREM 6.4. When c* < w— (y/v°), the ratios c*/(w + by) and

Y*/(w + by) are constant, which implies that optimal consumption and

asset holdings are both linear and linear homogeneous in wealth and the

initial risky asset.

ProoF. Differentiating c*/(w + by) in turn with respect to w andy, using

eq. (6.7), gives the constancyofthis ratio in both variables. Thus, optimal

consumption equals a constant times (w + by), andit is linear and linear

homogeneousin wealth andtheinitial risky asset. An analogous argu-
ment applies to cash andtherisky asset.

To complete the comparison with earlier results, we may interpret
(w + by) as ‘real’ wealth in an interval in whichthe risky asset holdingis

increased. Consequently, theorems 6.3 and 6.4 show that consumption
and asset holdings are proportional to real wealth in the initial interval.

Since derivations are similar, we sketch characteristics of behavior

in other intervals without further justification. In the final interval, where
V*(v) < v, consumption and asset holdings, again, are linear and linear

homogeneous in wealth and theinitial risky asset and proportional to
real wealth (w — by). In the secondinterval, with V*(v) = v, consumption
and risky asset holdings are linear homogeneous but neither linear in
their argumentsnor proportionalto real wealth. Both decision variables
change directly with wealth and,astheinitial risky asset becomeslarger,
increase at first and then eventually decrease.
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6.3. Fixed Transaction Cost — Portfolio Choice

In this section we modify the model to allow fixed, instead of prepor-

tional, transaction cost. We now let K(-) represent transaction cost for

the purchaseor sale of an asset where K(:) = K if the argument is non-

zero and K(-:) = 0 otherwise. For notational convenience wealsolet

Z = Y —y and II = PY. The constraints are unchanged with the ex-

ception that the cash constraint is replaced by a net cash constraint

which is developed as follows.

As in the preceding model, the optimal consumption policy in the

second period is to consumethe cash value of wealth available in that

period. In defining the cash value of wealth, we assumethat at the end of

the horizon the individual must incurthe fixed cost K to settle his estate

wheneverhis risky asset holding is positive. One implication of this as-

sumptionis that the second period’s net asset value [B Y — K(II)] may be

negative. As we showlater, a consequence of a possible negative netasset

value is that the consumer now has some incentive to reduce the risky

asset level to zero. Naturally, an alternative assumption is to allow the

individual to dispose of the risky asset without transaction cost when-

ever BY < K(II). However, this assumption violates the spirit of the

model, introducing variable rather than fixed transaction cost, and also

creates serious difficulties in analysis. We discuss this alternative as-

sumption in moredetail in the appendix.

Since we wish to assumethat the individual remains solvent, we then

require that the cash after the sale of assets — i.e. the net cash at the end

of the second period — be non-negative. Thus, we assume

[w- Y—c— K(Z)+ BY — K(ID)] 20 for all £,

[w—- Y—c— K(Z)+ aY — K(I])] 20
OF

since a is the lowest possible value of f.’
Again defining f,(w, y) as the maximum expectedutility over the two

periods, we obtain

' For all Y < K/a, this net cash constraint implies that the cash in the beginning of the

second period is non-negative. This becomesclear if we rewrite our cash constraint as

[w— Y—c— K(Z)] =[K(M) — aY] = 0. If, on the other hand, Y > K/a, second

period’s initial cash might become negative. However, a would presumably be very

small, possibly zero, and K large enough so that K/a would be greater than all admis-

sible Y. In any case, hereafter we assumethis to be true.
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f,(w, y)=max {c* +a i [w—c—K(Z)+(B—1)Y—K(M)]*d®(B)} (6.9)

subject toc 20, Y =O andthe net cash constraint

[w— Y—c— K(Z)+ aY — K(I))] 20. (6.10)

To make the problem general enoughto allow the individual the choice
of both increasing and decreasing asset levels, depending on the com-
position of wealth, we also assume w > 2K.Asthe analysis progresses,
the reader may easily deduce the outcomes when w < 2K.

6.3.1. Portfolio choice

Now,given the level of consumption in thefirst period, it is clear that
the portfolio policy depends on the second term of the maximand in
eq. (6.9) which gives the expected utility of consumption in the second
period, and which we now write as

A

H(Y, y,w—c) = | [w—c — K(Z) + (B—1)Y— K(M)]*d@(f). (6.11)
a

Depending oninitial and final assets, eq. (6.11) assumes various forms.
In particular, if the asset level is changed,

if Y#y
H(Y,y,w—c)= | [w—c—2K +(B—lY)}‘d®(f) and Y40,

(6.12)

HO,yw-—c)=[w-c-—K]}* ifY#4y#O0andY=0. (6.13)

If the asset level is unchanged,

A

A(y, y, w —c) = ) [w—c—K+(B— l)y]*d®(p) ify #0, (6.14)

H(0,0,w-—c)=(w-c)*  ify=0. (6.15)

Before examining the expected utility in eq. (6.11), we develop more
explicit limitations on portfolio choice imposed by the given level of
consumption and parameter values. Choice is limited by two circum-
stances: the availability of cash on handto finance current consumption
and the availability of assets to finance changes in the portfolio.
Now suppose y # 0 and considerthe possibility of choosing Y = y.

Then from eq. (6.10), net cash becomes [w — c — K — (1 — a)y] whose
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sign depends on the given c and parametervalues.If it is negative, then,
rearranging,

(w — y) —(K — ay) <<. (6.16)

Thus, given that (K — ay) is needed to guarantee enough cashtosettle
the estate in the second period, the inequality (6.16) states that there is
insufficient cash to finance current consumption and hence the choice
Y = y is not possible; in fact, in this case, we must have Y < y. Again
assuming (6.16) to be true, then for Y < yand Y # 0, net cashis given by
[w —c— 2K — (1 —a)Y] which is non-negative if and only if
(w—c— 2K) 2(1 —a)Y. For Y #0 to be feasible, this latter ine-
quality requires that

(w —c — 2K)>0, (6.17)

since otherwise the net cash constraint is violated. Inequality (6.17) is
thus the condition which guarantees that wealth after consumption is
large enough to finance two transaction charges.

Next, suppose y # 0 and [w — c — K — (1 — a)y] 20,or

(w — y) — (K — ay) 2c. (6.18)

Here, Y = yis obviously feasible. Also, for Y = 0, the net cash constraint

requires (w — K) 2c which is seen to besatisfied since (6.18) implies
(w—c— K) 2(1 — a)y > 0. Moreover, if Y 4 y and Y ¥ 0,the net
cash becomes [w — c — 2K — (1 — a)Y]. By the preceding argument,
feasibility of Y # y and Y # O again requires that inequality (6.17) be
satisfied. Finally, in the situation y = 0, inequality (6.17) is, once more,

the requirement for the feasibility of Y 4 0.
From this discussion it is apparent that portfolio choice possibilities

depend upon the signs of the parameter combinations [(w — y) —
(K — ay) — c] and (w — c — 2K). In terms of Y*, the optimal level of
the risky asset, we may summarize the extent of these restrictions as
follows.

For y £0:

(a) Y¥=0 if(w— y)—(K —ay)<cand(w—c—2K)S0.

(b) Y¥<y if(w— y)—(K —ay)<cand(w—c—2K)>0

(c) Y*=Oor Y*=y

=

if(w—y)—(K —ay) 2c and (w—c—2K)S0. (6.19)

(d) Y*Sy if (w — y)—(K —ay) cand (w—c—2K)>0.<
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For y = 0:

(a) Y* =0 if(w —c — 2K) S 0.

(b) Y*>0

~

if(w—c—2K)>0. (6.20)

While optimal behavioris fully determined in (6.19a) and (6.20a), some

degree of choice remains in all other situations, varying from two

particularassetlevels in (6.19c) to the possibility of increasing, decreasing,

or not changing theassetlevel in (6.19d). The task of the next section 1s to

give a complete description of optimal portfolio behavior, taking into

accounttherestrictions in (6.19) and (6.20) and, of course, the non-nega-

tivity and net cash constraints. As we showthere,it will again be useful

to considerthe allocation of a dollar of appropriate investment funds.

6.3.2. Derivation of the portfolio policy

In this section we present two major categories of outcomes. Thefirst

indicates that, independently of parameter values and the given con-

sumption, the optimal portfolio always assumes the same qualitative

form. Here we obtain results analogous to theorem 6.1, applying when

the transaction cost is proportional. In the second category we derive

moredetailed characteristics of behavior, paralleling the outcomes in

theorem 6.2. However, since we now have to contend with various com-

binations of parameters, as indicated in (6.19) and (6.20), we limit

detailed analysis to one particular case only.

Wenow suppose (6.19d) applies, ic. y 4 0, (Ww — y) — (K — ay) 2c

and (w — c — 2K) > 0. Asnoted,this is a general case in the sense that

the risky asset may be increased, decreased, or unchanged.First, rewrite

the expected utility expressions in eqs. (6.12) and (6.14) as

H(Y,y,w—c)=(w—c- 2K)*( [1 + (B — 1)V}-do(p), (6.21)

(w—c— K) {[1 + (B — Dv]*dO(f), (6.22)
a

H(y, y,wWw — c)

where

V = Y/(w — c — 2K) and v= y/(w—c—K). (6.23)

Obviously the divisions performedin eq. (6.23) are valid given the charac-

terization of the present case.

Now, we may interpret (w — c — 2K) as the net investment fund

divided between risky asset and cash if Y 4 yand Y # O. In other words,
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it is the investment fund (w — c) less the fixed charge incurred now and

the fixed cost due in the next period. Similarly, (w — c — K)is the net

investment fund to be divided between cash and risky asset when
Y = y # 0. Therefore, V represents the share of risky asset and (1 — V)

the cash share in an investment dollar when Y 4 yand Y ¥ 0.A similar

interpretation applies to v; it is the initial and final share in an investment

dollar when Y = y 4 0.

For Y#y, Y0, the net cash constraint is [w—c—2K —(1l—a)Y] 20,

from which it follows that (1 — V + aV) 20, or

0<V<I1/(1 — a). (6.24)

Consequently, V may exceed one and hencethe cash share (1 — V) may

becomenegativereflecting the fact that for each dollar of the net invest-

ment fund there is a guaranteed cash return of aV in the secondperiod.

Similarly, if Y = y # 0, the net cash constraint would be [w—c—K —

(1—a)y] 20, which gives

O<v< il —a). (6.25)

Our task then is to find the optimal share V*(v) over V satisfying (6.24)

and also V = 0, for each satisfying (6.25).
Now examining eqs. (6.21) and (6.22) for given initial values, the

factors (w — c — 2K)* and (w — c — K)* are constant terms and the
integrals involving V and v are the same function, say G(-). For future

reference notice that G(-) is a strictly concave function and that G(0) = 1.

Differentiating G(V),

G(V) =A) {1 + B— IV} "(6 — 1)}d@(), (6.26)

which gives G’(0) = A(B — 1) > 0 and G7[1/(1 — a)] = A[1/(1 — a)]**'

E[(B — a)*~'(B — 1)] whosesign depends only on the distributions of B
and the risk aversion index (1 — 4). If it is non-negative, G(V) attains a
boundary maximum at V = 1/(1 — a), while G’[(1/(1 — a)] < 0 assures
an interior maximum.

With this basic information we are now in a position to prove a

theorem about the form of the optimal portfolio policy. In stating and

proving the theorem weidentify V as the unique V maximizing eq.(6.21)

subject to (6.24), let V° = 0 or V° = V, depending on which ofthe two

risky asset shares provides the larger expected utility, and let
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Y= V-(w —c — 2K) and Y°=V°-(w — c — 2K). Also, we use the
notation (v°, V°, v°°), with 0 < v° < V° < v®® < 1/(1 — a), to specify
the following policy: if v < v° change the risky asset share to V®, if

v? < v S vp” do not change the risky asset level, and if v°° < v again
changethe share to V®.

THEOREM 6.5. Assuming y #0, (w— y)—(K —ay) 2c and (w—c—2K)>0,

the optimal risky asset share V*(v) is uniquely determined with form

(v°, V°, v°°). Analogous results holdfor the optimal cash share [1 — V*(v)].

PROOF. Weprove the theorem by considering all possible cases which
may arise, given the conditions of the theorem. While a simpler proof
may be devised, the method used here has the compensating virtue of
directly specifying the computation of the policy parameters v°, V°
and v°° in all circumstances, information needed later in any event.

First, we note that for a given investment fund (w — c), the graphs of
A(y, y,w — c) and H(Y, y,w — c) are obtained from the graph of G(:).
In fact, the graph of H(y, y,w — c) is just a blown up or scaled down
version of that of G(v) depending on whether (w — c — K)* 21. The
sameis true of H(Y, y, w — c), depending on whether (w — c — 2K)* 21.
However, since (w — c — 2K)* < (w — c — kK),it is clear that the graph
of H(Y,y,w — c) will always lie below that of H(y, y,w — c).

Figure 6.2 now showsthe casein which G’[1/(1 —a)] <0; H(0, y,w—c)<
H(Y, y,w— c) or (Ww—c— K) < (w—c — 2K)G(V); and

H

H (0, y, w—c)

 oe Viv
0 vo V v°° 1/(1—a)

Fig. 6.2. Derivation of V*(v) when G’[1/(1 —a)] < 0, (w—c—K)* < (w—c—2K)*G(V)
and (w—c—2K)*G( V) > (w—c—K)‘G[1/(1 —a)].
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H(Y,y,w —c) > H[w—c — K/(1 — a), w — c — K/(1 — a), w — cl or

(w — c — 2K)’G(V) > (w — c — K)*G[I1/(1 — a)]. As seen in the figure,

Vmaximizes H(Y, y, w — c) and the two points v° and v®° satisfy

(w — ¢ — 2K)'G(V) = (w — c — K)'G(v°) and G(v°) > 0, (6.27)

(w — c — 2K)'G(V) = (w — ¢ — K)*G(v°°) and Gv") < 0. (6.28)

Now, given H(0,y,w — c) < H(Y,y,w —c), the optimal risky asset

share V*(v) has the form (v°, V°, v°°) since when v < v°, expected utility

is increased by changing v to V= V°; when v° <v < v°° expected

utility is maximized by setting V*(v) = v and, finally, when v°° < it is
again optimal to change the risky asset share to V. The case we have

analyzed is one in which 0 < v® < V° < v®® < I/(1 — a).
Consider otherpossibilities. Suppose G’[1/(1 — a)] < 0,(w — c — K)* <

(w—c—2K)G(V) but (w—c—2K)’G(V) < (w—c—K)G[1/(1—a)]. By

appropriately modifyingfig. 6.2 it is easily seen that the form of optimal

behavioris (v°, V°, v°°) with 0 < v° < V° = V< v°° = 1/(1 — a) where
v° againsatisfies eq. (6.27). Next, suppose G’[1/(1 —a)] <0, (w—c—K)*>

(w — c — 2K)*G(V) and (w — c — K) > (w—c — K)G[I1/(1 — a). It

now follows that the optimal policy is (v°, V°, v°°) where v° = V° = 0

and v°° satisfies

(w—c— K) =(w—c — K)*G(v°”), vo £0 (6.29)

or, G(v®°°) = 1, v°°? # 0. The remaining possibilities consist of one more

case in which G’[1/(1 — a)] < 0 and two in which G’[1/(1 — a)] 20,

all yielding optimal policies of the form (v°, V°, v°°). Omitting these

details, the proof of the theorem is now complete. As notedearlier, the

proof not only gives the optimality of the policy (v°, V°, v°°) but also
specifies the computation of the policy parameters.

Ournexttask is to derive the optimal portfolio policy in terms of absolute

quantities rather than amounts per investmentdollar. This translation

is not completely apparent because of the different investment funds

used in defining v and V.

THEOREM 6.6. Given the conditions of theorem 6.5, the optimalrisky asset

amount Y*(y) is uniquely determined with form (y°, Y°, y°°) where Y° =

V°-(w — c — 2K), y® = v°-(w — c — K) and y°® = v°° -(w—c — K).
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Proor. The proofconsists of showing that y°9 < Y° < y°®for thenit is
clear that Y*(y) is described by the policy (y°, Y°, y°°). We provide a
proofonly for the case described in fig. 6.2, omitting similar derivations
for other combinations. This case is one in which y® < Y= Y< y®°.
Obviously Y < y°°; to show that Y> y°, we have

JvcK+(B— yap) = fLw—c—2K+B 1) FHAHB), (630)
which impliesthat

JLw—e—K-+(B—yPd0(p) < [fw-e-K+G—) YFG). (631)
Now since, for v < v°, or y < y®, fig. 6.2 implies

jbv—e—K+(B—DyVd(p) >fw—e—K+(B—IpV4), 6.32)
we must have Y> y°, completing the proof of the theorem?.

It is now reasonably straightforward to show that the policies (v°, V°, v°°)
and (y°, Y°, y°°) are optimalin all other situationslisted in eqs. (6.19)
and (6.20) and to specify values of policy parameters. We leave the veri-
fication of these outcomesto the reader and turn to final exercise in this
section. One implicit result of the previous analysis is that, since the
factors (w — c — 2K) and (w — c — K)enterdirectly in the derivation
of optimal behavior, the optimal portfolio mix is not independent of
initial wealth. In other words, while V depends only on the sign of
G’[1/(1 — a)], the parameters ofthe policies (v°, V°, v°°) and (y°, Y°, y°°)
depend on the investment fund (w — c) and the fixed cost K. Again
considering the case described in fig. 6.2, we briefly examine the sensi-
tivity of policy parameters to changes in M = (w — c) and K.

Clearly, since Y = V-(w —c — 2K), OY/OM > 0 and dY/0K < 0.
Now differentiating eqs. (6.27) and (6.28) with respect to M, using these
equations again, and collecting terms,

év° _ A4K(M —2K)*~'G(V) +0 ev°° _ AK(M —2K)*~ 'G(V)

CM =(M—K)**'!G(v°) -@M~— (M—K)**!G(y°°)
 <Q. (6.33)

* A modification of the proof of theorem 6.6 also yields the intuitive result thatif the
initial risky asset holding is small enough, it is never optimal to decrease its amount.
That is, if y < K, then Y*(y) = y.
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Finally, differentiating with respect to K we also obtain

6v°/06K <0 and 6v°°/6K > 0. (6.34)

These results have an intuitive interpretation, hinging on the relative
cost of changingasset levels. Thatis, the inequalities in (6.33) show that
the larger is wealth net of current consumption, relative to the fixed
cost, the smalleris the interval in which asset holdings remain unchanged.
The reverse behavior is observed in (6.34) when the fixed cost rises
relative to the investment fund. Analogousresults apply in terms of y°
and y°°,

Wealso need to examine events which may lead to large jumps in
policy parameters. An examination of eq. (6.19) shows, for example,
that as M becomessufficiently small, we will shift from case (6.19d) to
cases (6.19c), (6.19b) or (6.19a) with, possibly, large changes in one or
more of the parameters v°, V° and v°°. We consider this possibility in
more detail in the next section.

6.4. Fixed Transaction Cost — the Consumption Policy

To determine the consumption decision we examine the maximandin
eq. (6.9) which, after substituting the optimal asset level, becomes

gw,y,c)h=ce+a i [w—c—K(Z) + (B—1)Y* — K(II)]*d®(p). (6.35)

The expression in eq. (6.35) gives the expected utility over the two periods
if portfolio choice and behavior in the second period are optimal. The
problem is to maximize eq. (6.35) with respect to c satisfying

[w—c— Y* — K(Z) + aY* — K(T])] 20 and c20. (6.36)

In situations in which Y* = 0, wesee from (6.36) that the maximum
value of c is (w — K) if y #0 and wif y = 0.

6.4.1. Nature of the consumption choice problem
Thefirst task here is to examine how variations in c cause changes in
the optimal portfolio policy. Now, suppose y # 0,w — y — (K — ay)>0
and (w — 2K) > 0, whichsatisfy the conditions of theorem 6.5 for smallc,
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and supposealso that the conditionsin fig. 6.2 are met. In this situation,

by the previous analysis, v < v° < v°” for c = 0, and asc increases,

v° decreases to zero but v increases beyond bounds. Hencethere exists

a c° such that, for all c < c®, the optimal portfolio policy is to choose

Y* = ¥ Moreover, as c increases, v°° increases to 1/(1 — a) or the v"®

satisfying eq. (6.29), depending on whether (w — c — K)*is less than or

exceeds (w — c — K)*G[1/(1 — a)]. Consequently, there exists a c°°

such that Y* = Yor Y* = Oforallc 2c’ and Y* = yforce°Sc Sc”.

Wealso note that, in this case, v°° attains its limit and v° equals zero at

c = w— 2K andat the value c°°, Y* = Yor Y* = 0, depending on

whetherv intersects v°° before or after it reaches its maximum amount.

Fig. 6.3 illustrates the identification of c° and c°°.

In fig. 6.3 the points c° and c°° are markedatthe intersectionsof v with

v° and v°°. The cases of eq. (6.19) are also clearly indicated in the dia-

gram. For example, v < 1/(1 — a) and c < w — 2K mean case (6.19d)

prevails and Y° = Y. As c increases, we enter case (6.19c) where

v < 1/(1 — a) but c 2w — 2K, which here implies Y° = since v

exceeds maximum v°°. In this diagram, then, w — 2K is also a critical

Vv

 
| >

0 c? co? w—2K_ w—K °

Fig. 6.3. Derivation of c° and c°° when the conditionsin fig. 6.2 are satisfied

and (w—c—K)* > (w—c—K)*G[1/(1 —a)].
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point at which Y* jumps from to 0. Finally, as c increases further, we
enter the realm of (6.19a) where v > 1/(1 — a) and c > w — 2K and,
again, Y° = 0. Case (6.19b) does not arise since the combination
v > 11 — a)andc < w — 2Kis precludedin this situation. The dotted
lines in fig. 6.3 indicate other possible positions of the v curve for other
values of y, keeping w and K fixed. The reader may easily deduce the
implications of these curves.

Omitting details, it is also possible to identify correspondingcritical
levels of c for all other combinations of parameters. Thus, the admissible
values of c may always be subdividedinto intervals such that the phase
of the optimal portfolio policy is identified.
We now investigate conditions under which optimal consumption

would lie in one or the other intervals. It will be seen that this is a diffi-
cult task, and we have not succeededin obtaining a full characterization
of such conditions. For this purpose, we examine the derivatives of
eq. (6.35) with respect to c for the three alternative choices for Y*. Thus

gw,y,c)=Ac*~ | —ai(w—c—2K)*~'G(V) if Y*= YFy, (6.37)

A

gdwy,c)=Ac*~ ! —ak(w—c—K)*~'! [[1+(B—1v]* 'do@(p) (6.38)
1 if Y* = y £0,

an

gAw,y,c)=Ac*~ | —ad(w—c— K(y))*7! if Y*=0. (6.39)

Now consider again the situation described in fig. 6.3. Here, for
0<cSc°, gw,y, c) is given by eq. (6.37), whereas for c° < c < c°° the
relevant derivativeis eq. (6.38). It is then clear that there is a discontinuity
in g, (w, y,c) at c = c°, but the left and right-hand derivatives g* and g>
exist and are available in eqs. (6.37) and (6.38) respectively. Again, at
c = c°° there is a discontinuity with the left-hand derivative given by
eq. (6.38) and the right-hand derivative by eq. (6.37). A discontinuity in
derivatives arises at one other value of c. As noted,in explaining fig. 6.3,
c = w — 2K 1s a critical point at which Y* jumps from Y to 0. This
jumpleadsto a third discontinuity’.

Thus, even though g..(w,y, c) is negative at all points interior to sub-
intervals, g(w, y,w — K) = —oo, and gw, y,0) = +0, a possibility

> It is possible to show that, at c = c° and c = w — 2K,the right-hand derivative
exceeds the left-hand derivative. However, at c = c°°, the direction of inequality, in
comparing these derivatives, appears to be indeterminate.
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remainsof multiple local maximaof g(w, y, c). In other words, we might

have g, (w, y,c°) < 0 but g7(w, y,c°) > 0, for example. In that case

there would be one local maximuminteriorto thefirst subinterval and at

least one more for c > c®. Consequently, a direct comparison between

the different local maximaof g(w, y, c) is needed to determinethe global

maximum.

In itself, the existence of discontinuities in derivatives is not parti-

cularly troublesome in determining optimal consumption for any given

set of parameters. What is a matter of concern is that the possible need

to examine various local maxima compoundsthedifficulty in identifying

combinations of parameters which lead to optimal consumption lying

in a particular interval. As noted earlier, in the case of proportional

transaction cost, this identification was easily accomplished by deter-

miningcritical ratios of initial risky asset to wealth. Here, however, the

previous discussion indicates clearly that the level of initial risky asset,

as well as its ratio with wealth, is important in determining optimal

consumption. In other words, for example, in the case of proportional

transaction cost, optimal consumptionlies in the initial interval when-

ever y/w < q°, where g° is an easily determined constant. In the case of

fixed transaction cost, however, there would exist a real valued trans-

formation, say, g(y, y/w) and a real number q® such that optimal con-

sumption lies in the initial interval whenever q(y, y/w) < q°. As yet,

partly because of discontinuities in derivatives, we have not succeeded in

specifying properties of the transformation q(y, y/w).

Keeping this unresolved problem in mind, in the next section we

consider further properties of optimal consumption.

6.4.2. Properties of optimal consumption

First, it is easily seen that c*(w, y) is interior to the interval [0,w — K]

since g(w, y,c) > —0 asc > w — K and g{w,y,c) > © asc > 0.

We now examineproperties of c*(w, y) when it lies in one interval or

another. For’ this purpose, define

B= [GVM/1 + (2G).
THEOREM 6.7. If c*(w, y) lies in either of the intervals where the optimal

portfolio policy is to changethe initial asset to Y* = Y, then

c* = B-(w — 2K), (6.40)



Consumption and portfolio choices 179

 

 

Y* = (1 — B)- V-(w — 2K), (6.41)

Oc* c*
= , 40< 3) y LOK ~~! (6.42)

Proor. Underthe condition of the theorem, c*(w, y) must satisfy

gw, ys c*) = Ac**~! ~ aA(w ~~ c* ~ 2K)*~'G( V) = 0.

Hence, solving for c*, we obtain c* = B-(w — 2K). Now since
Yy* = V-(w — c* — 2K), we have Y* = (1 — B): V-(w — 2K). Dif-
ferentiating eq.(6.40), and using eq. (6.40) again, 6c*/6w=c*/(w—2K)>0.
Finally, since Y* = Yimplies c < w — 2K,wefind that c*/(w — 2K) < 1,
or that the marginal propensity to consume wealth is positive but less
than one, which completes the proof.

Equation (6.40) also states that optimal consumption is proportional
to real wealth (w — 2K). In other words, since Y* 4 0 and Y* ¥ y, the
consumerincurs a cost of 2K consisting of a transaction cost payment
now andin the next period; hence the real worth of wealth is (w — 2K)
and optimal consumption is proportional to real wealth. A similar
interpretation applies to investmentin the risky asset and cash.It is also
obvious from eq. (6.40) that 6c*/dy = 0. That is, in intervals where the
optimalportfolio choice is to changetheinitial asset to a non-zerolevel,
optimal consumption does not depend directly on the initial composi-
tion of wealth. However, of course, as we argued previously, these
intervals of consumption do depend on y.

Wenext turn to other intervals of optimal consumption andstate the
correspondingresults there without giving explicit proofs. If c*(w, y) lies
in a final interval implying a changein theriskyassetlevel to zero, it has
properties analogousto thoselisted in theorem 6.7 with real wealth being
(w — K). In the interval of no changein the risky asset level, we obtain
that c*(w, y) varies directly with wealth, the marginal propensity to
consume wealth is again positive and less than one, c*(w, y) varies
directly with theinitial risky asset at first and then inversely as that asset
level increases. Finally, we are able to showthat, in this interval, c*(w, y)
is linear homogeneousin the initial risky asset and re. wealth which,
again, is (w — K).
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6.5. Conclusions

Ourresults clearly indicate that the introduction of transaction costs

changes the character of the individual’s consumption and portfolio

choices over time, modifying available research in the direction of

greater realism. The two types of cost we have studied would appearto

capture the major features of transactions costs. The analysis of pro-

portional transaction cost shows the importance of the composition of

wealth in decision making and suggests that portfolio, as well as con-

sumption, choice is a long-run decision. However, proportional trans-

action cost does not remedy otherlimitations of the Phelps type models

discussed earlier. Specifically, another characteristic of these models is

that the consumer usually invests in a wide range of portfolio oppor-

tunities, often, in all opportunities if selling short and borrowing is

allowed. Similarly, the consumertendsto be indifferent between invest-

ing in individual portfolio opportunities and investing in a suitably

chosen mutual fund consisting of a combination of assets. These same

features would be observedin the presence of a proportional transaction

cost since then the total transaction cost depends only on the volume

of trading and not on the numberof transactions.

Though our analysis has not as yet proceeded far enough,the intro-

duction of fixed transaction cost should help to explain why portfolios

tend to have only a limited number of assets and why consumers may

prefer investing in mutual fundsrather than in individual assets. With a

fixed payment per transaction, it seems clear that, even with the avail-

ability of an arbitrary numberof possible asset choices, the numberof

assets in an optimal portfolio would be sensitive to the magnitude of the

fixed charge. Moreover, the choice between investing in individualassets

and in mutual funds would now seem to hingecritically on comparative

fixed payments. Dependentonthe relative magnitudes of these payments,

there would seem to be some tendencyfor the risk averse consumer to

prefer mutualfunds. In general the form of these possible outcomes seems

to be reasonably consistent with observed individual behavior and

suggests the potential usefulness of examining the force offixed, as well

as proportional, transaction cost in the theory of the consumer.

As a final commentwebriefly discuss the possibility of extending the

analysis to multi-period horizons. In the case of fixed transaction cost, a

critical need is to obtain properties of the transformation q(y, y/w).
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Otherwise,it is not possible to specify sufficient properties of the expecta-
tionf,(w, y) to continue an induction. Moreover, even given properties of
q(y, y/w), earlier papers introducing fixed costs suggest that additional
assumptions about probability distributions would be needed in multi-

period models [1, 2, 4, 13, 15].

In the case of proportional transaction cost, however, it seems clear
that without additional assumptions an inductionto an arbitraryfinite
horizon would be reasonably straightforward, yielding the anticipated
outcome that optimal asset holding as well as consumption is now a
long-run decision. In particular, since the average expected transaction
cost per period should decrease as the horizon lengthens, the character

of results should resemble a pattern giveninfig. 6.1. Recalling the defini-
tions of the dotted and heavy lines, the conjecture is that in a multi-
period setting the heavy line would represent the optimal risky asset
share V*(v) in the first period of an n-period horizon and the dotted line
the share V*_,(v) in the first period of an (n — 1)-period horizon (withn—-1

the proviso that the horizontal intercept of the dotted line should be 1/b,
which is constant in this interpretation). Corresponding results should
apply to optimal consumption andrisky asset holding.
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APPENDIX

An alternative formulation of the fixed transaction cost model

In this appendix we shall describe an alternative formulation of the
fixed transaction cost model and suggest the difficulties arising in its

analysis. The basic description of the problem is the sameasin the text

except that we now allow the consumer to dispose of the risky asset

without transaction cost whenever BY < K. However, westill do not
permit borrowing and lending and hencerequire that cash holding in the

beginning of the second period be non-negative.
If we define L,w, y) as the maximum expected utility over a t-period

horizon, then in the two-period case

A

L,(w, y) = Max fc* + « { L,[w-— Y—c—K(Z); BY|d®(f)

co a (A6.1)

subject to c, Y 20 and [w—c— Y—k(Z)] 20.
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Again, given that the individual will consume the cash value of his

wealth in the second period, we may derive an expression for

Lfiw- Y-—c— K(Z); PY]:

L,[w — Y—¢ — K(Z); BY] =
[w— Y—c—K(Z) + BY-K]* fpY>kK M62

[w— Y—c—kK(Z)]’ ifBY < K. (46.2)

Now using eq. (A6.2) we can write eq. (A6.1) as

K/Y

L,(w,y)= Max {c* +0 { [w— Y—c—K(Z)]*d®(f)
c,Y a

(A6.3)A

+a { [w— Y¥—c—K(Z)+PBY—K(T)]*dO(f)}.
K/Y

With this formulation the problem may be viewed as one with variable

rather than fixed cost of transaction. For, by allowing the individual the

choice of free disposal of assets in the secondperiod,if the market value

of assets becomesless than the cost of transaction K, we are implying

that he incurs a cost in the second period which equals min[K, fY ]. In

other words, at the time of decision making in the current period, the

individual knows only that any choice of the asset at a positive level

would involve a cost of either K or BY in the second period over and

above the current transaction cost, if any, and hence, from his point of

view, it is not a fixed cost. In a two-period model the analysis and the

form of optimal behavior is then dominated by the variable transaction

cost in the second period. However, in a multi-period problem the

importance of the last periods diminishes rapidly as the horizon in-

creases and the fixed cost character of the problem becomes more

important. It is this fact which lends further justification for the pro-

cedure in the text, and leads us to believe that the results obtained there

will provide a closer representation of multi-period behavior than any

outcomes obtained from the model in the appendix.

Returning to the model given in (A6.1) and (A6.2), properties of the

optimal portfolio depend on

K/Y

h(Y,y,w—c) = | [w— Y—c—K(Z)]*d®(f)

A (A6.4)
+ | [w—Y—c—K(Z) + BY—K(I)}-dO(f).

K/Y
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The major problem hereis that the limits of integration depend on the
choice variable Y. An important consequence, which makes analysis
intractable, is that in general the function h(Y, y, w — c) is not concave

in Y. In fact, we obtain after a numberof simplifications,

K/Y

hy(Y,y,w—c) = AA-1) [ D*~*d®(f)

A

+ iA-1) | (E*-7(B—1)?}d0(p) + 2D** KSf(K/Y),
K/Y

where D=[w— Y—c—K(Z)] and E=[w— Y—c—K(Z)+BY—K(I])].

Herethefirst two termsof eq. (A6.5) are negative whereasthe last term is

positive. Hence it is in general not possible to say anything about the
sign of hy y. Consequently, while it is possible to obtain some properties
of behavior rather easily, a full characterization of optimal behavior,

which we have not attempted, promises to be exceedingly cumbersome.

COMMENTS

On consumption and portfolio choices with transaction costs*

Hayne E. Leland

C6.1.1. Introduction

Using the class of utility functions exhibiting constant relative risk

aversion, Mukherjee and Zabel (MZ) have shown that manyresults in

portfolio/consumption theory depend uponthe absence of transactions

costs. While only one counterexample disproves a theory, counter-
examples alone cannot provide a new theory. In this note we develop

some general principles of optimal portfolio selection in the presence of

* This work was supported by National Science Foundation Grant GS-2874-A1 at the
Institute for Mathematical Studies in the Social Sciences at Stanford University. A
preliminary version was delivered at the NSF-NBER Conference on Decision Rules
and Uncertainty, Iowa City, May 1972.
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fixed transaction costs. These principles hold for all risk averse utility

functions, not just for those exhibiting constant relative risk aversion.

Our analysis implies that some,but notall, of MZ’s results hold generally.

Given a single risky asset, we show the existence of an interval such

that if the original risky asset holding belongsto this interval, no port-

folio adjustment will be made. If the original holding lies outside the

interval, it will be optimal to choose a risky holding whichis independent

of the initial holding.

Wealso examine the sensitivity of the ‘no adjustment’ interval to

parametric changes. For example, the size of the interval is an increasing

function of the fixed transaction costs. The interval movesto the right or

left with increasing initial wealth as the index of absolute risk aversion

decreases or increases with initial wealth. When consumption is also

a decision variable, these results can be extended only if a crucial

function is strictly concave.

C6.1.2. Portfolio selection with fixed transaction costs

Following MZ’s notation, let

w = initial wealth,

c = consumption,

y = initial dollar holdings of the risky asset,

Y = dollar holdings ofrisky asset,

K = transactionscost if Y # y (fixed transaction cost only),

fh = random value perdollar invested in the risky asset,

(PB) = (subjective) distribution function of B.

In this section, we assumec is fixed at zero. For simplicity, we further

assumethat there are no restrictions on the choice variable Y, that final

wealth need not be converted to cash, and that the net return to the risk-

less asset is zero.

The investor 1s assumed to

maximize EU[w — Km + (B — 1)Y],

where m = 1 if Y  y, m=O if Y = y. Following normal practice, we

assume U’(:) > 0, U’(-) < 0, and a maximizing Y alwaysexists’.

Sufficient conditions on U for the existence of an optimal portfolio are given in

H. Leland, Onthe existence of optimal policies under uncertainty, Journal ofEconomic
Theory, 4 (February 1972).
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For the class of all risk averse utility functions, we show below that

the optimal policies have a structure similar to that MZ have shownin

their theorem 6.6 for utility functions exhibiting constant relative risk
aversion.

THEOREM C6.1. Given w, c, and K, the optimal portfolio strategy is

characterized by a triple (y°, Y*, y°°), with y°° > Y* > y°, with the opti-

mal strategy given by Y = y if ye[y®, y°°], Y = Y* otherwise.

ProoF. Define

V(y) = EU[w + (6 — I)y],
M = EU[w -K + (f — 1)Y*] = max EUl[w— K+ (6 — IY].

Note that U’(-) < 0 implies V(y) is strictly concave. Let y* maximize

V(y). Because U’(-)>0, V(y*)> M.It follows that the set Z = { y|V(y) 2M}

is convex, compact and nonempty. We mayrepresent Z as an interval

Ly°®, y°°]. Now ye[y®, y°°] implies V(y) = M, so no portfolio change

should be made: Y = y. If y¢[y®, y°°], V(y) < M andit is optimal to
set Y= Y*.

COMMENT. Theorem C6.1 shows that the interval structure of the ‘no
adjustment’ strategy is a general property of optimal portfolio policies
in the presence offixed transactionscosts, if there is a single risky asset.

Multiple risky assets, however, complicate the problem.If a transaction

cost is incurred for each asset whoselevel is changed,there will in general
be a set of vectors Y*; that which is optimal will depend on whatregion
contains the initial portfolio.

C6.1.3. Sensitivity of [y°, y°?] to changes in w or K

MZ showin eqs. (6.42) and (6.43) that the ‘larger is wealth net of current

consumption, the smaller is the interval in which asset holdings remain

unchanged. ... Analogousresults apply in terms of y° and y°°” In fact,
while dv°/dw > 0 implies dy°/éw > 0, dv°°/éw <0 does not imply
dy°°/dw < 0. Below, we show that the behavior of éy°°/éw depends
upon the behavior of the index of absolute risk aversion [—U’(Z)/

U"(Z)] as wealth Z increases. Because the class of utility functions

examined by MZ exhibits decreasing absolute risk aversion, theorem
C6.2 below implies ¢y°°/éw is positive. We therefore conclude that,
although the size of the interval [y°, y°°] diminishes as a proportion of
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wealth for constant relative risk averse utility functions, we have not

proved that the absolute magnitude of the interval [y°, y°°] is a de-
creasing function of wealth.

THEOREM C6.2. dy°/dw and dy°°/dware positive, constant, or negative as

the index of absolute risk aversion, [—U’(Z)/U’(Z)] is a decreasing,

constant, or increasing function of wealth Z, given y° = 0.

Before we can prove theorem C6.2, we require the following:

LEMMA C6.1. Let U be an increasing strictly concave utility function.

Further, let

[ Ula + bxdF(x) = fu(c + dx)dF(x), (C6.1)

where d > b 20 and x, X are the inf and sup of the random variable x.

Then, for any increasing strictly concave function @,

{ @[U(a + bx)]dF(x) > J P[U(c + dx)]dF(x). (C6.2)

PROOF OF LEMMA C6.1. By the strict concavity of @,

(PLUla + bx)] — P[U(c + dx)]}dF(x)

(C6.3)
> (p[U(a + bx)] [Ula + bx) — U(c + dx)]dF(x).

| o
x
Ca
mm
y
|

|X
Co
me

5
|

Integrating the right-handside of eq. (C6.3) by parts and using eq. (C6.1)

gives

— fief [U(a + by)

x x (C6.4)

— U(c + dy)]dF(y)} @’LU(a + bx)]U’[a + bx]bdx 20.

The inequality follows from the fact that the integral in brackets 1s always

non-negative (shown below), whereas $”(:)U’(:)b is always non-positive

since @”(:) < 0, U(:) > 0, and b 2 0. Now eq. (C6.1) and the assumption

that d>b>0 imply there exists a y° such that for y< y°,atby>c+dy
and U(a + by) > U(c + dy), while for y.> y°, the opposite holds. This

single crossing property and eq. (C6.1) together imply the bracketed
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integral is non-negative for all x e[x, x]. Combining eqs. (C6.3) and
(C6.4) gives the desired result eq. (C6.2)?.

The intuitive reasoning for lemma C6.1 is as follows: Ifa gamble a + bx
is indifferent toa gamble c + dx fora given U, then the more risky gamble
c + dx is dispreferred by a person who has a morerisk averse utility
function U* = $(U), @’ > 0,¢” < 0.

PROOF OF THEOREM C6.2 (for decreasing absolute risk aversion). By the
definitions of y°, Y* and y°°, we have

EU[w+(B— 1)y°] = EU[w— K +(B— 1) ¥*]=EU[w+4(B— l)y°°]

or (C6.5)

EU[w®] = EU[w*] = EU[w°°],

where w®, w* and w°® are defined as the arguments of U in thefirst line
of eq. (C6.5). Recalling our earlier definition of y*, we note for K> 0,
y° < (y*, Y*) < y®°°. Differentiating eq. (C6.5) with respect to w, and
noting EU’(w*)(B — 1) = 0, gives

ey? _ {ELU'w*)] — ELU'w)]}
éw E[(B — U(w)) mo

and

 

oy? _ {ELUw')] — ELUw)]}
aw EL — Uw) 60-7)

Because y*is interior to [y°, y°°] and V(y)is strictly concave, V'(y°) > 0
and V’(y°°) < 0. But V’(y°) is the denominatorof eq. (C6.6), and V’(y°°)
of eq. (C6.7). The signs of eqs. (C6.6) and (C6.7) will therefore depend on

E[U’(w®)] vs. E[U’(w*)] vs. E[U(w°°)].
Given y° < Y* <y° and y® 20,it follows that w° =a+ bB, w*=c+dB,

and w°°=e+fB, with f >d>b=0, and a=w—y®, b=y°, etc. Now the
monotonic properties of U(-) and U’(:) imply there exists a transform @
such that — U’(-:) = @[U()]. Furthermore,

o() = —U%)/U() > 9,

* The author thanks Peter Diamond and Steve Ross for suggestions which led to this
proof.
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and

 

__|

“a= dl - /40) <06) 4)
if absolute risk aversion is decreasing.

Therefore — U’(:) is an increasing concave function of U, and using

eq. (C6.5) and lemma C6.1 gives

EU’(w°) > EU’(w*) > EU’(w°?). (C6.8)

Using eq. (C6.8) in eqs. (C6.6) and (C6.7) implies Cy°/ew, éy°°/éw > 0.

Obvious modifications of this approach yield the remainder of theorem

C6.2.

COMMENT. Wehave shown that the behavior of the index of absolute

risk aversion critically affects the position of the interval of initial port-

folio holdings for which no changeis optimal strategy. Not surprisingly,

this interval moves to the right or left with increasing wealth — just as

does the optimal holding Y* of the risky asset if change is required — as

absolute risk aversion decreases or increases with wealth. Ourresults

do nottell us, however, about the behavior of the length of this interval

with respect to increasing wealth.

THEOREM C6.3.

 

Proor. Differentiating eg. (C6.5) with respect to K and recalling

E(B — 1)U(w*) = 0 gives

6y’ — EU(w*)

eK Efe )Uw)] ~
and

cy?? — EU’(w*)

eK ~ EUB- Uw] ~
 

COMMENT. Increasing transactions cost has the expected effect of

increasing the amountofinertia, in that a wider range of initial portfolios

will require no adjustment of asset holdings.

Wenowturn ourattention to the case where consumption andport-

folio decisions are made simultaneously to maximize expected utility ina
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two-period context. The utility function is assumed additive in con-
sumptions in periods | and 2, and all wealth is consumed in the second
period.

C6.1.4. Simultaneous portfolio and consumption decisions
Now assumethat the investor wishes to choose Y and ¢to

maximize U,(c) + «EU,[w-—c— Km+(B—1)Y] (C69)
Y,c

wherem=1if YA y;m=Oif Y= y;0<a< 1;and U, and U,are
increasing and strictly concave. As in the portfolio model without
consumption, we can askif there exist ‘trigger values’ y° and y°° which
define an interval Z, with the property that if ye Z, no portfolio change
is required. It turns out that the introduction of consumption possi-
bilities complicates the analysis. Define

H(y) = max (U,(c) + aEU,[w — c + (B — Iy]}

‘ (C6.10)
= U,[c*(y)] + aEU,[w — c*(y) + (6B — Dy].

That is, c*(y) maximizes expected utility conditional on no portfolio
change.

Nowdefine

M= max {U,(c) + aEU,[w —c— K + (B — 1)Y]!. (C611)

Let c**, Y* provide the maximum to eq. (C6.11).

THEOREM C6.4. Assume H(y) is a strictly concave function of y, for any w.

Then there exists an interval [y°, y°°], dependent on w, such that if
ye[y, y°°], Y=y and c = c*(y). If ye Z, then Y = Y* and c = c**.

Proor. Similar to the proof of theorem C6.1.

COMMENT. In contrast with theorem C6.1, U” <0 does not imply
H"(y) < 0: the assumption that H(y) is concaveis nontrivial. Differen-
tiating eq. (C6.10) twice with respect to y and simplifying gives

H"(y) = a {E(B — 1)°U30) — [E(B — 1)U3()}7/D}, (C6.12)

where D = [U‘(c*) + aEU%(-)] < 0. The first right-hand side term of
eq. (C6.12) is negative, but the second term is positive. In the case of
quadratic utility functions, H’(y) is in fact negative. But quadratic
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functions exhibit certain well known behavioral aberrations, and this

could be another one of them.

In sum, the introduction of consumption seriously complicates optimal
portfolio policies in the presence of transactions costs, unless the key

function eq. (C6.10) is concavein initial portfolio holdingsy.

On consumer consumption and portfolio decisions

with transactions costs

Stephen A. Ross

C6.2.1. Discussion .

Professors Mukherjee and Zabel have given us a closely reasoned study
of the individual consumption-savings choice in the presence of both
uncertainty and transactions costs. The point I find to be of particular
interest 1s the requirementin such problems,with or without transactions
costs, that the feasible set of actions be assumed bounded.Alternatively,

we can assume that preferences are such that actions are bounded by
choice.

To be morespecific, suppose we simplify the problem by ignoring the

first period consumption withdrawal and focus on the maximization of
the expected utility of end of period wealth. Fig. C6.1 illustrates a concave

u
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utility function that has been normalized so that u(0) = 0. Suppose too,

for the sake of the argument, that among his other alternatives the

individual can engage in even moneylotteries of his choice. As Raiffa has

pointed out [2], even if the utility function had a local non-concave

region of the sort illustrated with the dotted curvein fig. C6.1, we could
fill it in or concavify it with a straight line segment by purchasing fair

gambles with the prizes A and B.Thisis a special case of the more general

result that when the individualis faced with a collection of independent

choices (not mutually exclusive) the relevant utility function to be

applied on anysubsetis the envelope of the expectedutility attainable by

choices on the complement.

Now, if the individual seeks to maximize the expected utility of

terminal wealth, then it is immediate from the concavity of u(-) that he

will not take any independent even money gambles; a fair gamble has a

zero expected return andalso entails risk. But is it really so clear?
If the individual could obtain arbitrary fair lotteries there would

be nothing to prevent him from choosing gambles which run the risk of

bankruptcy. If the disutility of bankruptcy and its attendant social

stigma is bounded from below,then asin fig. C6.2 the individual will

chooseto take fair lotteries with arbitrarily high losses. A sequence of the

]
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attainable utilities from a sequence of simple gambles with a fixed
positive return of w and a decreasing probability of increasing loss is
illustrated in fig. C6.2. The problem involves a fundamental non-
concavity and the equilibrium for a ‘lottery taker’ (like a ‘price taker’)

will be undefined as the agent takes arbitrarily large positions.

The assumptionthat utility is everywhere bounded from below,then,
is anything but innocuous. For onething, if bankruptcy is allowed such
utility functions cannot be everywhere concave, and the difficulty
noted abovewill arise. (The problem would be exacerbated in a welfare

state where negative positions were wiped out and the individual was
returned to a minimumliving standard.) One wayoutofthis is to assume
that utility functions become improper at some wealth value A which
need not be zero and may be negative. For x < A, then u(x) = —o
and for x > A, u(x) is well-defined and everywhere concave. By choice
such an agent will bound his positions, but a situation like this is too
good to be true. It seems inevitable that the market will have to impose
some constraints on individual action, perhaps in the form ofcollateral
restrictions.

Consider an agent whostarts with no wealth. Theline aa in fig. C6.2
illustrates a lottery as seen by the agent but aO indicatesthe true lottery
since the agent cannot pay for his loss. In such a situation, honesty on

the part of the agent would preclude him taking such a position. In the
absence of such honesty (and, like apples, one rotten one can ruin a per-
fect market) agents will have to come to the market announcingtheir
wealth positions. Of course, as in the case of a sick man seeking health
insurance,the individual has an incentive to misinform and,in this case,

to overstate his true wealth. This could lead, as Akerlof pointed out [1],
to a dimunition in the size of the market and to loss of efficiency
relative to the perfect information situation. More likely, though, com-
pensating market institutions will arise. The market may attempt to
infer whatthe individual’s wealth is from observable market characteris-
tics. Even this, however, is insufficient; in the first place it is inherently

imperfect and in the second there is nothing to prevent the individual
from making multiple contracts. Since the recording and dissemination
to the market of such contracts would be costly and, perhaps, undesirable
from the individual viewpoint, market response takes different forms.
The legal penalty of fraud proceedings is one such response; we can
argue that by increasing the penalty of negative positions laws against
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fraud concavify the utility function when viewed as a function of wealth

alone.

The arguments presented above, the need to know individual wealth

positions, and the need to prevent multiple contracts, provided the

economic motivation for such laws. In fact much of the common law

hasits root in such simple economic arguments. More generally, though,

it is in the exploration of the development of market and legal institu-

tions that, I believe, the real value of models such as Mukherjee—Zabel’s

lies.
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CHAPTER 7

THE ECONOMICS OF QUEUES: A BRIEF SURVEY

David Levhari and Eytan Sheshinski*

7.1. Introduction

There is a well developedliterature (for example,refs. [9] and [3]) on
the statistical properties of queues with a variety of disciplines. However,
there has been little discussion of the economic aspects of queues.
Queues provide an obvious example of externalities, analogous to
situations with congestion. It seems natural to try to use the quantitative
Statistical results of queueing theory for problems of optimization,
pricing and queueregulation.

Weintend to present here a brief and necessarily selective survey of
the literature in order to bring out what we consider to be the main
economic applications of queueing theory and to present sometentative
results concerning Pareto-optimum pricing systems.
The only discussions in the queueing literature stemming from eco-

nomic considerations, that got considerable attention, concern the
creation of priority classes for waiting line phenomena. However, the
assignmentof priorities was discussed from an administrative point of
view. No attempt was made to decentralize decisions by meansof a
price mechanism. The decisions about the numberofthe priorities and
about the type of disciplines to be followed (preemptive or non-pre-
emptive priorities), are typically decided by a criterion based on some
Statistical properties of the queue, but do not use tools of economic

* Supported in part by National Science Foundation Grant GS-3269. We would like to
thank Michael Rothschild for helpful comments.
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bution of costs per unit of time. It is intuitively clear that different wage

distributions imply different price structures.

7.2. The Naor Model

Naor and others have written a number of papers intended to bring

out the nature of the externalities in waiting line situations (in partic-

ular, refs. [7] and [10)]).
Their model can be described as follows. Customers are arriving at a

service station at a given rate. Every customer arriving at the service

station observes the waiting line ahead of him and decides, in view of

his expected waiting time on the one hand and the benefits derived on

the other hand, whether to queue up or to leave the service station.

Thus, the model is a queueing model that permits balking. The only

cost considered is that of the waiting time, ignoring costs of arriving at

the service station.

The following assumptions are standard ones in simple queueing

situations (M/M/1), and are followed in the Naor model:

(i) a stationary Poisson stream of customers, with a parameter 4,

arrives at a single service station;

(ii) the station renders service in such a way that the service times

are independently, identically and exponentially distributed with a rate

parameter p;

(iii) all customers derive, upon completion of the service, the same

benefit of R dollars;

(iv) the cost to a customer for staying in a queue is C dollars per

unit of time; and

(v) each newly arrived customer is required to choose one of the

following two alternatives: (a) he joins the queue and after waiting

derives the benefits of the service or (b) he refuses to join the queue,

an action which is assured to be costless.

All customers are assumed to berisk neutral, that is, they take only

the expected costs and benefits into account and disregard higher

momentsoftheir distributions.

A newly arrived customerwill observe the queue size i at that instant.

If the observed value falls short of some number n, the new customer

will join the queue. If the observed value is equal to n, then the new
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customer leaves without joining the queue. The observed value i can
never exceed n,. If we define

A/ = p (7.1)

we obtain the following steady state equations

PiP = Pi+1 OSi<n,, (7.2)

and hence for 2 # w [7]

p pl — p)
enynede } . 7.3Te pt.. +p 1 pier ve 7)

The expected value of customers in the system is

»_  P

_

(My + I)p”* 9
q= EW= [pt A# M. (7.4)

The expected numberof customers ¢ diverted from the station in unit
of timeis

TL (7.5)

A — ¢ = Al — P,,) = 1th) (7.6)

The expected numberof customers leaving the service station in a unit
of time equals

1 —
u(L — po) = rr — aoiten (7.7)

These two quantities, the joining and the leaving rates, must be identical
under steady state conditions, and this is easily verified.

n, 1s selected by the customers in the following manner. When the
newly arrived customerfinds i customers in the system (one of them in
service) he expects to incur an expected cost of (i + 1)C/u and this is
weighed against the benefit R. If R — (i+ 1)C/u 2 0 the customer
remains in line. Thus n, is found by

CR——n, = 0, (7.8)
Ll
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and

+ 1X < 0. (7.9)

Thus wefind

n, <— <n,+ 1. (7.10)

Alternatively we may say that

n, == (7.11)

where [ ] denotes the largest integer not exceeding the numberin the

brackets.

It is quite obvious that when a customer deliberates whether to join

or not to join the queue he is just taking his own costs into account

neglecting the effect of his joining the line on the expected costs of the

following customers.

We now assumethat there is a central planner with the aim of maxim-

izing the expected sum of net gains accruing to customer per unit of

time. The strategy that the planner follows is that of determining the

maximum length of the waiting line, or the maximum number of cus-

tomers in the system. Thus, the planner determines a natural number

n,, of the people allowed to remain in the system.

With a given n,, the net gain per unit oftime is given by

P = (A — QR — CE(i) = AR(L — p,,) — Ca

1 — Als 1 (n,+ 1)

~jpn|| (7.12)

The planner chooses n, to maximize eq. (7.12). Again, after some ele-

mentary but lengthy calculation it is shown that n, should satisfy

nl — p)— (= 9") Re (net ML - ~~ A= 0") aay
(1 — p)’ C (1 — p)’

Again some simple manipulation proves that n, < n, where the equality

sign holds only when n, = 1. The cause for the difference between the
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privately and the publicly determined n, andn, is obviously the neglected
externalities in the single customercalculations.
As is quite usual under these conditions, it is possible with proper

taxation to achieve the planner’s optimum by a decentralized mechanism.

In our case the optimaltoll 6, should fulfil the requirement

 

C C(n, + 1 Cn, C
=(n, — n, - ya R—- Oto gcp = —(n, — n,). (7.14)
ll fc ho op

If a toll is taken in this range the individual action will be socially

optimal.

A third mechanism of providing and pricing the service can be
discussed. Assumethat the service station is controlled by a monopoly

with the aim of maximizing revenue perunit of time. Thus the objective

function is to maximize

M=(i-00=i(R - <) (7.15)

wherethe privately determinedn is a function of0, or ¢ is a function of0.
If we follow the calculations similar to the previous onesit is not sur-

prising to find that n,, - the maximum prevailing number of customers

in the system determined by the individuals in correspondencewith 6,,,

the value of 0 that maximizes eq. (7.15) — is going to be smaller than

the socially determined n,. Thus wefind

Nm SN, SN, (0 < 0, S Oy). (7.16)m—

The results in qualitative form are independent of the specifics of the

random processof the waiting line. Thusif service time were distributed

other than exponentially we would still obtain similar results.

The Naor modelbrings out a familiar result in economic models, that

a neglect of externalities creates overcongested situations, while mono-

polization of the service yields underutilization of the services provided.

It is also quite obvious that if an alternate facility with waiting time

independent of customer flow were introduced into the model and

balking were allowed, the optimal toll 6, and the revenue-maximizing

toll @,, would be identical. Permission to balk and a competitive facility

eliminate the ‘monopoly-power’ of the facility.

Following Edelson and Hildenbrand [2], let the toll at the alternate
facility be t and expected waiting time there be y, constant and in-
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dependent of customerflow. An irrevocable decision to join one of the
queues must be made before observing the state of the system.

If the facility charges a toll 6, the equilibrium arrival rate A(6) must
be such that customersare indifferent (ex ante) between patronizing the
two facilities. Equating total costs

Cq
g+——= , 717+ 700) T+ Cy (7.17)

where the expected queue size g is now also a function of 0.

_- 22 (0) 118)
~ u— Ad) 1 — p(0)

If 0 2r then g S/-y, ie. facilities charging a higher toll must offer
shorter expected waiting plus service times. A higher toll reduces
expected waiting time by decreasingthe arrival rate, 1'(0) < 0.

Expected social welfare per unit time equals expected gross benefits
R less expected service costs per unit time. In equilibrium

R=t+Cy. (7.19)

Thus the optimal toll 6, is such that A(@) maximizes

A(O)(t + Cy) — C, (7.20)

given eq. (7.17). A revenue-maximizer, on the other hand, will seek to
maximize /(8)@. Let this toll be 6,. By eq. (7.17)

Cq10)’ (7.21)6,=t+ Cy — 

Therefore the entrepreneur’s objective function is identical to eq. (7.12),
which implies 6, = @..

In Naor’s model, balking makes expected net benefits per customer
greater than @.If arrivals do not join when i = n,, expected queuesize
must be less than n,. Those customers arriving when i < n, obtain
inframarginal benefits which are includedin P,eq.(7.12), but not in M,

eq. (7.15). By making 6 > 8, the monopoly is able to expropriate part
of his customer’s ‘consumer-surplus’. The setting of an alternate facility
and the no-balkingrule, eliminate this possibility.
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7.2.1. A two-part tariff

Several writers (for example refs. [2] and [8]) have recently suggested
a pricing scheme, termed ‘the two-part tariff’, according to which the
firm sells rights to service valid for a given period, with a specific toll
if service is rendered. It can be shown [2] that such a scheme also
ylelds 0, = 6.

Given that a customer demands at most one service during the
validation period, his expected gain (for assumptions, seeref. [8]) is

n—-1n Cii+ 1
AY nf + Cy -60-et (7.22)
i=0 Ll

where / is the probability that an individual arrives for service during
the period, 7; is the probability of a queue ofsize i, 0 is the toll paid if
service is rendered, and n is the queue size at which a customerbalks.

Expected total revenue is

=i n, + CyeT (7.23)

where 2 = NA, N being the numberof potential customers. The server’s
objective is to select queue size which maximizeseq. (7.23).

It is easily seen that eq. (7.23) is identical to Naorsocial welfare func-
tion, eq. (7.12), and hence 0, = 0.

Another immediate extension of the Naor model is to consider a
population of potential customers with varying opportunity costs C.
It cannot be expected that a pricing schema with a limited numberof
parameters, such as the two-parttariff, will in general be Pareto optimal.
Furthermore,there is also no reason to believe that the ranking 6, > 0.
will prevail for the model with heterogeneous population. Sometentative
results for a model with two types of customers confirm this hypoth-
esis [2].

7.3. Optimum Bribing Model

Kleinrock [4] has studied a queueing problem in which each entering
customer is allowed to buy his relative priority by meansof a bribe.
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The size of the optimal bribe for the customer is determined by the

economic opportunity costs, such as the wealth or wage of the customer.

The model consists of a single service facility that services customers

who arrive randomly according to a Poisson process, with a random

service time also distributed exponentially. The customer’s bribe x is a

random variable with cumulative distribution B(x). When a new arrival

to the system offers a bribe x, he is placed in the queue such that cus-

tomers whose bribes x’ => x are in front of him, and all those with

x” <x are behind him (customers with identical bribes are served on

a first-comefirst-served basis).

The average waiting time for a customer with bribe x, W(x), is shown

to have the form (seeref. [4])

W(x) = Wol[1 — p + pBO))’. (7.24)
where W, = 4/2 (? y?dF(y), F(y) the cumulative service time distribution.

Customers are distinguished according to an ‘impatience’ factor «

which stands for the opportunity cost of waiting in line. The cost for

the a-customer, C(a), 1s

C(a) = x, + aW(x,), (7.25)

where x, is the bribe offered by this customer. Kleinrock then solves

the following optimization problem: find the function x, which minim-

izes total expected cost C:

C= J CloydPlo (7.26)

subject to a given size of total bribes

B= |x,4P(, (7.27)

where P(«) is the cumulative distribution of customers by «.

It is then shown that the optimal policy x, is a strictly increasing

function of a, and that various well-knownpriority disciplines may be

viewed as bribing mechanisms.

It is obvious that Kleinrock avoids the main economicissue offinding

a Pareto-optimum system of prices, or bribes. This is reflected in the

weak result concerning the characterization of the bribing policy which

is ‘optimal according to his definition. More fundamentally, since
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bribes are merely transfer payments between customers and owners,

it would perhaps be more appropriate for social decision to minimize

total waiting time

[ W(x,)dPla) (7.28)

subject to a given total cost, eq. (7.26). However, Kleinrock’s model may

be fruitfully used to explore the latter problem.

7.4. Optimization in Queues without Priorities

Wewish to analyze here the problem of choosing optimal values for

certain decision variables of the service mechanism (the mean service

rate, mean arrivalrate, etc.). Previous efforts in optimization of queueing

systems have begged this basic question and instead solved a simpler

problem, confining the feasible policies to a certain simple form. Thus,

as we have seen, Naor [7] solved for the optimal value of the queue

size at which to turn on a single server, assuming that the form of the

policy is to turn on the server when the queue size reaches a certain

figure. Here we are concerned with discovering the form of the optimal

policy. Our approach follows the work of Marchand[6].
Consider a oneservice facility (one-server) problem, with a popula-

tion of n types of customers. Arrival time of each customeris a random

variable with a Poisson distribution, where the meanarrival rate of the

ith customer is 1//,;, 4; > 0 a constant. The queue discipline is of the

first-come first-serve type, with no priorities. Service time is also a

random variable with Poisson distribution, and the mean service time

of the ith customeris 1/u;, u; > 0 a constant. Given these parameters,

the formula for the expected waiting time in the queuew,is well-known:

nA, nA,me (SalEe
The expected delay time, i.e. the waiting time plus the service time,

denoted D,, 1s

 

D; = W, + (1/11). (7.30)
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Delay time per arrival is thus 1,D;. The ith customer’s utility function
is assumed to depend on the benefit derived from the service, on the

delay time, and on an aggregate commodity, whose quantity for the ith
individual is denoted by x;. For simplicity, utility is assumed to be
linear in the delay time. The expected utility of the ith individual, U,,
can thus be written

U; = u(x; 4;) — BAD; (i = 1,2,...,n), (7.31)

where u; 1s a quasi-concave function, with du,;/0A; > 0, and B, > 0 is a
constant. Making expected utility depend only on the expectedarrival
rate /; is of course, a rather strong simplifying assumption.
The optimization problem is to maximize eq. (7.31) subject to an

aggregate constraint on resources. There are a number of possible
decision variables. Here we concentrate on the aggregate commodities
x; the arrival parameters A; and the service rates y;. For the latter it is
assumed that they depend upon a common parameter s, the speed at
which the service facility operates:

Hi = S* Mi (7.32)

where yw; are given constants. An increase in s means a decrease in
service time. Such a change reflects an improvement in the service
facility’s capacity or equipment, which requires inputs of the aggregate
commodity. The resource constraint can thus be written

f(x, s) = 0, (7.33)

where x = )7_, X;.
Maximization of the sum utilities, eq. (7.31), with respect to x,, A;

and s subject to the constraints of eqs. (7.29), (7.30), (7.32) and (7.33)
yields the following first-order conditions:

Mj; VF _ 9

=

G=1,2....n) (7.34)
Ox; Ox

ou, OW, 3
JF D. — —_4 A = j= 1,2,. , Nn), 7.3502, B, J 0A, » B; I (j n) ( )

n ow, 1 of |- 3 oa(Se-s-)— Lao G =1,2,...,n), (7.36)
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where v 2 0 is a Lagrange multiplier. By eq. (7.29),

   

 

  

OW, (w+) G 1,2 ) (7.37)4d , — = 1,2,...,n ,
04; 1 — y Ai "SH; (sj)?

i=1 SH;

and
n i;

CW. W. 4 li
—4— 4) _2~- (7.38)
Os S ni1-y 4

i=1 SH;

Substituting eq. (7.37) into eq. (7.35) and combining with eq. (7.34) yields

du, |é 2 Bin + sh 1 1 1 1U; Uu; _ i=1 j |W | _
fai =ae) — + = A— +B , (7.39)
st]OX; _ s Ai \‘Of Tspy (spy)? su; (sprj)”

i-1 SH; Ox;

where

Xp;A; 0 A
= W, Pid ie and B=—
1 s 4/68 W,

i=1 SH;

The right-hand side of eq. (7.39) is the marginal rate of substitution

between x, and 4, (for a given queue size), which can be given an inter-

pretation of a price. Hence, the optimal price formula for 4 is quadratic

(see fig. 7.1). Since (su,)* is inversely proportional to the expected

price
of XA
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service variance, this condition implies a price formula that depends

linearly on the mean and variance of the service rate. A similar formula

has been suggested by Dreze [1] in the context of peak-load pricing
under uncertainty.

The quadratic formula implies that customers with longer service

rates are penalized more than proportionately. The rate of change in

the price depends on the ratio A/B = W,. The larger the waiting line

W,, the steeper will the price function rise.
The marginal rate of transformation between x and s is obtained

from eqs. (7.38), (7.36) and (7.34):

af af n (aw, 1 [ou,SIF _ _ gy (Ma _ |) [Oui 14
ds|Ox SBal Os 2)Ox; (7-49)

The queue discipline of first-come first-served is of course not optimal.
Since individuals have different costs for delay time, B,, priority should
be given to those with high f and low uw.

The next step should thus be to divide customers into priority groups

and to determinethe price structure for each group. Weshall postpone

discussion of this problem to another occasion.

 

7.5. Queues with Priorities

There is vast literature describing queues disciplines such that some

types of customersreceive priority (for example, ref. [3]). It is surprising
how little attention the regulation of priorities through a price mechan-
ism got.

The cost per unit of time of keeping certain customers queueing may
be particularly high and it may then be reasonable to give them a high

priority. If the cost per unit queueing timeis constant, it will be desirable
to reduce the overall mean queueing time andthis, as expected, can be
achieved by giving high priority to customers expected to have a small
service time.

It is simplest to deal with a priority system in which once a customer

is at the service point he remains there until his service is completed.
Then the next customer is the one of highest priority among those
queueing. This is called non-preemptive priority. A preemptive priority
system is one in which a customer of high priority takes, on arrival,
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immediate precedence over customers of lower priority, the customer
whose service is interrupted returning to the service point only when
there are no higher priority customers remaining in the system. In the
non-preemptive case each customerhas

a

priority class 1,..., k where 1
is the highest priority and k the lowest. Customers of a given class are
served in orderofarrival.
Assume that customers of different classes arrive independently at

random rates 4,,..., 4, and that the unit of time is chosen so that the
total arrival rates 2, +... + A, = 1. Let the service time of different
customers be independently distributed with Fjf, the distribution
function for the j customers. The‘overall’ service time distribution is

F(t) = y LF,(t.
jJ=1

Let us denote

bi = | tdF(t) and c; = J dF(0).
0 O

The moments for F(t) will be respectively

We assumethat b < 1, to assure the existence of a steady state.
The case of exponential service time is particularly simple. If yu; is

the rate of service of the j customers with 1/u; the mean service time,
then

A, dL.
b= x— and c = 22.

Bj Bj

The mean queueingtime ofj-customer W;,1s, on allowing for the chance
(1 — b) of not having to queue,

15C
W, + 7OO (7.41)

( _’y Ab (1-yA
i=1 i= 1

The mean queueing time

W

ofall customersis

k k 1

W= DV AIW,= V2; (7.42)
C
—_

YT G-.\

fp

ah (1 -y Ab) (1 ~ S40)
i=1 i=1
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These equations enable oneto discuss the effects on mean queueing time

of any proposed system of priorities. Suppose that there are k types of

customers and that the cost of keeping a customer of the jth type

queueing for unit time is constant and equal to w, — this can represent

the wagerate of the jth customer. Assuming risk neutrality, the cost of

queueing dependsonly on the mean queueing time and on the meancost:

k | c & AW;
C= dX iwjW, = 5 » Saatop (7.43)

jet jl (1 — y an,)(1 — Yah)

i=1 i=1

Weare interested in choosing priorities (1, 2, ..., k) so as to minimize

C. Thus if we permute 2 and 3 (assuming k = 3) we find a new mean

cost C’. After simple calculation we find

cA[(W, Ws,
cca S(™- =), 7.44

2 (GF 5) ep)
where

A = (1 — 2,b; — Ab)! + (1 — 2yb, — A3b3)* - (L - yb)"

— (1 — Ab, — Agby — A3b3)*.

Nowif x, y, z are positive and different it may be verified that

1 l 1 1
4 —_ — — ————_ < 0. (7.45)

X-y X-—-Z X X-y-Z
 

 

Hence A <0 so that C <C’ if and only if b,/w, < b3/w3; thus if

b,/w, > b3/w3 we can reduce the mean cost by changingpriority classi-

fications. The same holds for any j —1, j. If bj_,/wj-1 > 5,/w; we can

reduce the mean cost by changing the priority classification for the

j — 1 customer and the j customer. Thus for the priority system to be

cost minimizing we need to order the priority according to

meanservice time

cost of queueing per unit of time

— the lower the value, the higher the priority. This should be expected

intuitively. It is not surprising that the priorities are independent of the

arrival rate.



The economics of queues 209

Now if we would like to implement this optimal (minimizing) cost
arrangement through a price mechanism, we should charge prices P,
for each priority class, and we choose P;_,; — P; in the following range:

w(W; — Wi.) = Pj, — P; = w,_,(W/ - W," 1), (7.46)

where W;,’, W;_, are the expected waiting times of priorities j — 1 and j
when we permute priority classes j — 1 and j. The fact that we have
minimized C implies

w(W; — W;_1) < w;—1(W; ~~ W; 1). (7.47)

Otherwise we could reduce the costs by permutation of the j and the
j — 1 priority classes. It is quite obvious that by this method we can

by the planner.
The price of the lowest priority class can be set arbitrarily. Then we

set the rest of the prices to agree with the above rate. A special caseis
when the cost w, is the same forall groups, when the optimum priority
number depends only on the mean service time of a class. A limiting
case of this arises when it is possible to predict the service time on
arrival and the service time has a distribution F(t). We can then have a
continuum of priority classes, the customer selected for service being
the one with the lowest service time. That is, we assume that new repair
jobs are generated by a Poisson law with an average of A jobs per unit
of time. Without loss of generality we may choosethe time unit so that
A = 1. If we denote by J, the arrival rate of jobs of duration t, then in
steady state A,dt = dF(t). The expected waiting time W, of a job of
duration t by analogy with the discrete priority case is

1~-f
? [ ~ [sors|

0

W, (7.48)

where as before

c= | t7dF(t).
0

(We neglect the possibility of saturation — of an infinite length queue.)
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The resulting mean queueing timeis then easily calculated to be

dF(t)epdF)
“ 20 c — | sar)|

If, for example, F(t) = 1 —e~“ corresponding to exponential repair

time (assuming p > 1), then c/2 = 1/u and the expected waiting time

for service of duration t 1s

(7.49)

1
2

W, =

————

et. (7.50)

fete
The mean queueing time is then

oo | eM

n=] uf 2
fort — ed + un

If the queue discipline‘first-comefirst-serviced’ is used, then the mean

queueing time is W = 1/u(u — 1). Wain can be appreciably less than this.

The strategy based on service time is optimal if the service time of

each customer can be predicted accurately on arrival and it is known

that 4 = 1. A simplerpriority system in the continuous case can be as

follows. Suppose again f(t) = ue~*' so that the meanservice time is 1/p.

Suppose that we count all customers whoseservice times are less than

or equal to a/p as 1-priority customers, all other customers being

2-customers. The mean waiting time in this case 1s

1 1
(1 ——+ ce]

Moy
1 1 1{1 - (1 Ly tee 4 Ses)
Ml hou ul

By simple calculus we find that the optimal ¢ has to fulfill w = 1 +

fe #U(— 1)}.
This can be supported by a decentralized simple price function p(t),

for priority 1 service of duration t. Denote by W,, W, the expected

dt. (7.51)

W= (7.52)



The economics ofqueues 211

waiting time in priority classes 1 and 2. Let w denote the common wage
or alternative time cost. We set p(@) = (W, — W,)w. Now any increasing
monotonic price schedule p(t) — the price for 1 priority of a customer
asking a service of duration t — fulfilling this requirementis a price
schedule that will make people choose their priority class according to
the planner’s wish.
As an example, if 1/u = p = 0.75 there will be a 37% reduction in

mean queueing time by introduction of this priority system rather than
‘first-come,first-serviced’. Further gains will be possible if we set more
than twopriority classes. The more variable is the distribution of service
time, the greater will be the advantages of a priority system based on
service time.
We mention just briefly the case of preemptive priority. A customer

of low priority is displaced by a customer with higher priority immedi-
ately on arrival. Assume two types of customers with arrival rates his
A, and with rate of exponential service s,, i>. Again the time scale is
chosen so that 2, + A, = 1. The mean queueing timeofpriorities 1,
2 are

A A
W, = “Ia( — *), (7.53)

by by

h h A A A AW, = (“ + 22)Ia —-—- “) + weft - “) (7.54)
Ly 2 by Ly by by

The corresponding waiting time for the non-preemptive case is

A A Ame GieaMO-8) aBy py by

oeeeeeMy Ho by Hy Py

The mean queueing time for both cases is 1,W, + A,W,. As expected,
1-priority customers queue a shorter time under a preemptivediscipline.
It is quite clear that which of the two systems is more advantageous
depends on the per-time costs of the two cases.
The question of optimalpriority in waiting line situations may assume

a different form in the case where the service is provided by numerous
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competitive firms. The extreme case is one in which the service 1S pro-

vided by a perfectly competitive industry. In that case we may expect

that different firms will specialize in different priority classes. This will

occur through differential prices charged for the same kind of service.

Thus individuals with high alternative time cost will use the services

with short waiting lines but higher prices for the service. It seems that

it is worth while to investigate the implications of a model in which

a given wage distribution generates a certain price structure. Hence,

suppliers of the service will charge different prices, each specializing in

a given group of wage earners.
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COMMENTS

On ‘The economics of queues:a briefsurvey

Warren J. Boe

C7.1.1. Discussion

In any decision problem under uncertainty, a first step to solving the
problem is to associate with each pair consisting of an alternative and
a state of nature a cost. Levhari and Sheshinski have proposed looking
at queueing theory in a way which is essentially that of a decision
problem under uncertainty. Their states of nature are the arrival rates
of customers, and the alternatives are the various priority classes which
maybe specified. The problem thenis to specify the cost to be associated
with a given set of arrival rates and a set of priority classes. The authors’
objective in this paper is to decentralize the decisions of creating
priority classes and assigning individuals to them by meansof a price
mechanism.

Asa basis for their work, the authors suggest the models of Naor[2]
and Kleinrock [1]. This model is a standard Poisson input exponential
service time model in which the customer derives R dollars of benefit
from the service while his cost of waiting for the service is C dollars per
unit time. A customer arriving at the queue mayeither decide to join
the queue and wait for service, or he may decide to leave withoutservice.
If his expected cost of waiting exceeds the benefit he derives from the
service, he will leave; otherwise he will stay. He determines his expected
costs on the basis of the number in the queue already, say Ny.
A central planner who wants to maximize total benefits then also

obtains a maximum queuelength n,. Finally, a monopolist who wants
to maximize revenue per unit of time determines a maximum queue
length n,,. The relationship between these queuelengthsis Nn Sn, S ny.
The authors’ discussion of Kleinrock’s model treats a special case

of that model. Their special case corresponds to the assumptions which
describe Naor’s model. Kleinrock’s model, which is described somewhat
carelessly by the authors, allows customers to determine their own
priority in the system by offering bribes to the queue administrators.

213



214 Warren J. Boe

Levhari and Sheshinski then proceed to develop a queueing modelin

which they apply Naor’s techniques to Kleinrock’s model. That1s, they

determine prices to be associated with different priorities in the queue.

While Kleinrock lets individuals decide how large a price they are

willing to pay to obtain a certain priority class, Levhari and Sheshinski

determine the price to be charged for each priority class by minimizing

the total cost. These prices are determined by a central plannerafter the

manner of Naor. It would be possible to determine otherpriority prices

as well, such as the price for a monopolist’s operation or a purely com-

petitive operation.

Of course, it is necessary to consider the manner in which priority

classes are determined.It is obvious that first-comefirst-served is not

an optimal way to determine priority classes since it does not consider

the individual costs of queueing time. The authors state, without proof

but with an intuitive appeal, that ordering the priority classes on the

basis of the measure

meanservice time

cost of queueing per unit of time

minimizes the total cost for the system.

A few ‘obvious’ results were obfuscated by the authors. The speci-

fication of the price mechanism for controlling queue priorities was not

clearly stated. The authors only presented intuitive speculations about

the nature of price determination by several firms offering the same

services. They have, however, provided a basis for this type of price

determination by the non-priority and priority models developed in

this paper.
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CHAPTER8

ON THE ECONOMIC THEORY OF AGENCY AND
THE PRINCIPLE OF SIMILARITY*

Stephen A. Ross

8.1. Introduction

The term ‘agency’ hasits origins in Roman law and has cometo be the
generic title for a variety of instrumentalities. In the law, a relationship
of agency exists between two (or more) parties when one of these,
designated the agent, acts on behalf of or as representative for the other,
the principal. In a decision-theoretic context it is also necessary to
precisely specify the environmentof agency,i.e. the domain orparticular
class of situations within which the relationship exists, the feasible set
of actions the agent may take and the consequencesof these actions.
It is particularly interesting to examine the agency relationship when
the agent must make choices and then, in some fashion, share their
consequences with the principal in an environment involving un-
certainty.

It is easy to think of a numberofrelationships in economics involving
agency. The employee-employerrelationship is one, and in general any
situation where laborservices are hired gives rise to a meaningful agency
relationship to the extent to which the employee possesses somedecision-
making authority’. Another example can be found in the class of prob-
lems raised by moral hazard.It is illuminating to consider these problems

* This research was supported by grants from the National Science Foundation and
Rodney L. White Center for Financial Research. The author wishes to thank the
participants of the NSF-NBER Conferencefor their helpful comments.
In fact, until machines are made which possessself-will, it might be argued that the
degree of agency is the primary distinction between labor and capital services (surely
not the problems of time, as Marx’s embodiment and Arrow’s learning by doing and
Becker’s concept of human capital have taught us).
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as belonging to the theory of agency, since the agency relationship,

between the insurer and the insured or between the government and the

governed (although here the roles of principal and agent are less easy

to assign), is the common thread running between them. Asa final

example, the problem of the fiduciary or the financial intermediary is

fundamentally a problem in the theory of agency. The investment

counselor, to the extent to which he makesdecisionsforhis client, is his

client’s agent.

Despite the plethora of examples, though, the relationship of agency

has received very little study from economists or decision theorists’.

The intent of this paper, then, is to formalize the relationship of agency

as a problem in decision theory and to propose and examine the im-

plications of one particular type of solution.

§.2. Basic Problem

Wewill begin by assuming that there is a single agent and a single

principal. The agent and the principal will agree to somesort of arrange-

ment in which the agent makes a decision or takes an action and he

and the principal share in the consequences. The complete structure of

the problem facing the agent and the principal can be described by a

payoff function w = w(a, 0) describing the (one-dimensional) conse-

quence or payoff, most generally a wealth variable, resulting when act «

is chosen andstate of the world 6 occursor, in game theoretic parlance,

is ‘chosen by nature’. The action is to be chosen before the random

variable 8 is known to the parties and the problem is one of choice

under uncertainty. To make such decisions, we will let U(-) and G(-)

denote the von Neumann—Morgenstern utility functions of the principal

and the agent respectively and assume that each evaluates his own

position by its expected utility. Both U(-) and G(-) are assumed to be

independentof the state of nature 0, ruling out situations, for example,

where the principal would evaluate wealth differently if he were sick

2 Theclosest work is by Karl Borch [3] and Robert Wilson [8] on the theory of syndi-

cates. After I had written this article, it was pointed out to me that Marvin Berhold [2]

had formulated a similar problem and had consideredthe linear rule L, in somedetail.

Berhold was not, however, concerned with a theoretical justification of L orits rela-

tionship to otherrules.
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(0,) than if he were well (@,), and both U(-) and G(-) are assumed to be
monotone increasing and, unless otherwise specified, risk averse (1.e.
concave).

Having chosen the decision structure, the agency arrangementcan be
described by the fee schedule f defining the payoff or fee that is paid to
the agent for his services. In general, f = f(a, 0), but we will assumethat
the only impact of the action taken upon the fee is through the resulting
payoff and write f = f(w(a, 6), 6). (This would be the caseif, for example,
it were not possible to monitoror observethe actionitself.) The additional

dependence upon the state of the world @ arises from the possibility

that the agent and the principal may differ in the subjective probability
distributions they hold for 6.

Given a fee schedule the agent will now seek

max E {G[f(w(a, 8), @)]', (8.1)
aed 0

whereA is the set of feasible actions and the expectation is taken over
the agent’s subjective distribution for 6. (In what follows, the subjective
distribution will be understood to be that associated with the relevant
party.) Clearly the optimal action chosen by the agent is a function,
among otherthings, of the fee schedule that has been specified, and the

agent obviously has preferences among fee schedules.

Supposefirst that the agent wasaskedto pick the optimal fee schedule
from his point of view subject to the constraint

E {f(w(a, 8), A)! Sc.

The solution to this problem is simply to choose a flat schedule
f(w(a, 0), 8) = c. To see this, observe that (since more is better) the
constraint will be binding and since G(-) is risk averse any other fee but

the constant one will have the same expected return and, by Jensen’s

inequality, a lower expected utility. Of course, from the principal’s point
of view a constant fee might be quite a poor choice since it leaves the
agent indifferent as to which act to choose. Notice too that the solution
will not in general be ex ante Paretoefficient.
The Paretian problem would be to maximize the agent’s expected

utility subject to the constraint that

E {U[w(a, 0) — f(w(a, 0), 0)]} 2c,
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i.e. the principal, who receives the payoff less the fee, w — f, must attain

a minimal level of expected utility. If we assume that the agent and the
principal both share the same subjective probability distribution, then

there is no reason for the fee to be directly functional on the state, and
we can write f = f(w).

By augmenting the act space A, by randomizedstrategies if necessary,

it 1s not difficult to show that the Paretian frontier of optimal pairs

(E {(U[w — f]}, E{GLSI})
0

must be convex (see ref. [6] for a good exposition). Hence we canalso
pick out efficient fee schedules by seeking

max max E {U[w — f] + AG[f|} = max max E {U[w —f] + AGLf]},
f acA 86 aeA f 0

where 1 = 0. But the inner maxima simply requires that

(PE) U'Lw — f] = AGL],

and PE maybe used?to define f(w). Notice that the PE condition de-
fines a function f(w) and not simply a point value. By changing A, the

complete family of Pareto efficient (PE) fee schedules can nowbe traced

out. Furthermore,f(w) is not dependent upon the probabilistic structure
of the problem, 1e. given /, then f(w) is independent of the functional
form of w(a, 0) or of the state of the world 6. This result dependscritically

on the assumption that the principal and the agent share the same

subjective probability distribution over states.

The problem of choosing the optimal fee schedule is considerably
more complex when viewed bythe principal rather than the agent. Since
the act will be chosen by the agent, the principal must choose a fee
schedule that appropriately motivates the agent to act in a fashion that

is best for the principal. Letting a(< f>) denote the action chosen by

> The reader can verify the PE condition more formally by considering a variational
perturbation, of, of the function satisfying PE. Now

E {Uw — f — df) + AGUS + df)} = E {Uw — f) + AG(S)}

+ E (Uw — f) + AGL)°F5

< E(U(w — f) + AG(f)}

for non-trivial variations.
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the agent given the fee schedule < f> (obtained by solving eq. (8.1)),

the principal seeks

max E { ULw(a(<f>), 8) — f(w((<f>), ))]};
<f> 9

subject to a (perhaps market-imposed) constraint on the expected fee

schedule or on the expected utility of the agent*. Since the principalis
also concerned with motivating the agent, i.e. since he must work
through a(<¢f>), unlike the agent’s problem there is no assurance that

the resulting fee schedule will be Pareto efficient. The problem is further
complicated if the principal and the agent differ in their subjective
distributions or, equivalently, if we fix the distribution of 6 for both
and recognize that the principal mayhave a subjective distribution over

payoff structures w(a, 0). In this case the principal will seek

max E  {U[w(a(<f>), 0) — f(w(al<f>), 4)]},
<f> <wla, 0)>0

subject to the above mentioned constraints and where, as before, fmay

be functionally dependent on 6.° |
Suppose, however, that the principal is simply unable to say anything

about the payoff structure w(a,0). In fact, aside from ordinary compara-
tive advantage, one reason for forming an agencyrelationship in risky
situations might be the assumption that the agent is more knowledgeable
than the principal. (Or, alternatively, the principal might be certain of

w(a, @) but ignorant of the agent’s assessment.) In addition, it might be
too costly to communicate information on their relative probability
assessments and, for that matter, the principal might simply find it too

costly to even assess a distribution over payoff structures. Finally, even

if the principal were to solve the problem exactly, the resulting fee
schedule would be dependent on the particular payoff structure w(«, 6).
If the agency relationship were ongoing, then every new problem would

* Without such a constraint the problem will in general be noncompact and lack a
solution. There will be a sequence of fees < f’> converging to zero while a(< f’))
converges to the optimalact the principal would choose if he sought

max E { U[w(a, 6)]}

and did not avail himself of the services of the agent.
> The exact solution to the principal’s problem as it has been posed above is quite

difficult to characterize in general. This characterization and a number ofrelated
market phenomenaarediscussed in a second paper[7].
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require a new fee schedule andthis instability in the fee schedule might
severely strain the assumption that computation costs are negligible®.

Given these considerations the principal might choose an optimal fee

schedule by an alternative criterion. In this paper we will explore the

implications of using a conservative maximin criterion that insures the
principal against suffering an opportunity loss with the ‘worst’ possible
payoff structure. The formalization of this is to choose the optimal fee

schedule <f> to minimize

@ = max {{max E { U[w(a, 0) — f(w(a, 0))]} — E | ULw(a(<f>), 8)

— f(wla(< f>), O55

In words, the term inside the first brackets represents an opportunity

cost; given the fee schedule, it is the difference between the expected

utility of the principal when the optimalact from his viewpointis chosen,

and his expected utility from the agent’s choice of an act. The criterion

® is the maximum of such opportunity costs over all payoff structures

and it is clearly non-negative. The principal seeks a fee schedule to

minimize this maximum (perhaps subject to some outside constraints

of the sort discussed above).

The solution to this problem is actually much simpler than mightat

first appear. Since the agent chooses an act by maximizing the expected

value of his utility function G(-), we need only choose a fee schedule that

makes the agent’s and the principal’s evaluations of payoffs equivalent

to ensure that, given the fee schedule, the agent takes the action the
principal would wish him to. If we set the fee schedule <f(w)> so that

for some constants, a > 0, b

(S) U[w — f(w)] = aG[f(w)] + 5,

then the agentwill always choose the act that maximizes the principal’s

expected utility and ® = 0. The constants a and b can be chosen to

satisfy outside constraints. Intuitively, the fee schedule has been chosen

so that the agent and the principal have equivalent utility assessments
of wealth and will make the same decisions in all risky situations. We
refer to this equivalence as the similarity rule (S).

In the next sections we will examine the implications of using the

© This point has also been made by Wilson [8].
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above similarity rule (S) and/or Pareto efficiency (PE) to define the fee
schedule of the agency relationship.

8.3. Similarity, Efficiency, and Linearity

The fee schedules that are actually observed tend to be of a very simple
form. Wage contracts are typically fixed payments and bonus compen-
sation is roughly proportional to performance. Mutual fund fees, for
example, usually consist of a fixed component, the load, and a variable
componenttaken as a stated percentage (+-1%) of asset value. Formally,
we will say that a fee scheduleis linear (L) if

(L) I(w) = aw + B

for some constants «, f.
Ourfirst task is to study the relationships between S, PE, and L.

Aside from its simplicity, it is not even clear on a priori grounds that
L is of any theoretical interest, but as the following theorem revealsits
role is pivotal.

THEOREM 8.1. Any two ofthe three conditions S, PE and L imply the third.

PROOF. (i) S and PE => L.
This result (first obtained by Wilson [9]) highlights the importance

of L schedules. The proofis straightforward. Differentiating S we obtain

[1 —f']U' = aGff’,

and from the necessary condition for Pareto efficiency

(PE) U' = AG’.

It follows that

A{1 —f'|G= aG*f'

or

a -—1p=(1+4) ‘con
and since / is a constant, integration over w yields L with w = {1 +
a/4\~* and B an arbitrary integration constant.
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(ii) Sand L=> PE.

Differentiating S with respect to wealth and using L we obtain

[1 —a]U’ =aaG,

and defining A = aa/[1 — «] yields PE. (The sufficiency of this for PE

follows from the concavity of U(-) and G(-).)

(iii) PE and L=S.

Substituting L into PE we have

U'((1 — a)w — B) = AG(aw + 8B),

and integrating (over w) we obtain

(1 — a) 1 U(1 — ww — B) = Aa * G(aw + B) + ¢,

where c is a constant of integration. Defining a = A(1 — a)/a > 0 and

b = c(1 — a) yields S. Q.E.D.

In general, though, we should expect S, PE and L to limit rather severely

the class of feasible utility functions. Similarity (S) for example, un-

iquely defines the fee schedule as parametrized by the two constants a

and b. Pareto efficiency, however, also uniquely defines the fee schedule

parametrized by 4. It would be surprising, then, if all pairs ¢U, G)

allowed the simultaneoussatisfaction of S, PE and L.It is clear, though,

that given any agent’s utility function G (or the principal’s utility

function U) we can generate a family of ‘conformable’ principal's

(agent’s) utility functions by simply setting

U((1 — a)w — B) = aG(aw + B) + 5 (8.2)

for arbitrary a > 0, b, «€(0, 1) and B. Conversely, it is easy to see that

a <U,G)pair can satisfy S and PE only if there exists « € (0, 1), B and

a > 0, b such that eq. (8.2) is satisfied. (I am indebted to L. Hurwicz for

this observation.) This leads to the following somewhattrivial repre-

sentation result based on the risk tolerance, /, = —v’/v", of the relevant

utility functions. (The risk tolerance is simply the reciprocal of the

coefficient of absolute risk aversion.)

THEOREM 8.2 [9]. If the pair <U,G) allow a fee schedule satisfying S

and PE (or, by theorem 8.1, any two of S, PE and L), then

f= 2 (8.3)
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where £, and £, are evaluated at [(1 — «)w — B] and [aw + B] respect-
ively.

PRooF. From theorem 8.1 the fee schedule must be linear, hence for
some a (0, 1) and fp:

U((1 — a)w — B) = aG(aw + B) +b,

and by performingthe’ requisite differentiations we obtain eq. (8.3) in a
straightforward manner. Q.E.D.

This characterization, however, is not particularly powerful since there
is no assurance either that the particular PE fee schedule obtainable
from the <U,G) pair is reasonable given market conditions or the
relative bargaining strengths of the parties, or that <U,G) admit any
other PE schedules. In general they will not, and we can makea partic-
ularly strong statement when <U, G) allow a range of alternative fee
schedules satisfying S and PE.

THEOREM 8.3. The pair <U,G) allows a range of PE fee schedules

satisfying S if and only ifU and G are membersofthe linear risk tolerance
class with £), = NG,ie.

— U(x)//U"(x) = cx +d (8.4a)

and

~ G(x)/G'"(x) = cx + e, (8.45)

where c, d and e are constants.

Proor. By a range of PE fee schedules we mean that there is some
non-trivial interval of 2 weights in PE which canbe satisfied with S.
Let 4 be a value in the interior of the interval. Differentiating PE with
respect to A and using theorem 8.1 weget

[— aw — p']U" = G' + Afo’'w + BIG’. (8.5)

Differentiating PE with respect to w yields

[1 —a]U” =1G". (8.6)

The primes on « and f indicate that they are derivatives with respect
to A, and from theorem 8.1 we know that the fee schedules must remain
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linear as 1 is altered. Combiningeas. (8.5) and (8.6) and eliminating U”

we have

Lg = — G/G" =cx + e,

where

 

| 1
x = aw + PB, c= ax'| +i

and

 e=Alap’ - 61) - vt |
x

From theorem 8.2, £,, = £6 =, and £y(x) = cx + d. The converse is

straightforward. Q.E.D.

Notice that even though weonly required 7 to be variable within some

interval, the result is a global one. The class of utility functions satis-

fying eq. (8.4) is well known and is composed only of the functions

U(X) = “(x + 6)” and U(X) = log(X +6) and U(X)= —e o*,

If U(X) is required to be concave, then we must have y < 1 and € 2 0.

The formation of a team, then, in the sense that both the agent and

the principal have preferences which allow S and PE, places severe

restrictions upon their permissible utility functions. In general, though,

given any two utility functions, there will exist some fee schedule

satisfying S and another satisfying PE (on someinterval). In the next

section we will try to characterize some of the qualitative properties of

these fee schedules.

8.4. Property ofFee Schedule Under Similarity

Assumefirst that the fee schedule satisfies S but not necessarily PE.

Withoutloss of generality we will assume that U(-) and G(-) have been

scaled to eliminate the arbitrary constants a and b. The following

lemma characterizes Q, the domain of wealth values that permits S to

be satisfied given U(-) and G(-).
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LemMa. Let Q = {w|(Sf) U (w — f) = G (f)}. Then Q is either an un-

bounded interval closed on the left or Q is null.

PROOF. Closure follows immediately from continuity. Suppose that

XjEQ):

U(Xo — fo) = G(fo).

Let X > X,; we wish to show (Jf)

U(X — f) = G(f). (8.7)

Now

U(X — fo) 2 U(X — fo) = Glfo).

and for f 2fo + (X — Xo) we have

U(X —f) < U(X9 — fo) = G(fo) S G(f).

Hence, by continuity, Bolzano’s theorem implies that if satisfying

eq. (8.7). Q.E.D.

In what follows we will assume that wlies in the interior of Q, and we

will concern ourselves only with concave U(-) and G(-). Differentiating

S implicitly we have
U’

U'+G
 f'(w) = E[0, 1].

The marginal fee is positive, unless the principal’s marginal utility is

zero, but it is less than unity to insure that the principal’s marginal

share is non-negative. This is precisely what we would expect S to imply.

Differentiating again yields

, U” G"

(Uy (G/

Rg Ry

{GW —fu’

(w — f)U' Ry

{G Rg

-£/0=S)_R
fiw—f) Rg

  

 

~

 (8.8)
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where ~ stands for ‘has the samesign as’ and R,, denotesthe coefficient

of relative risk aversion R, = —XV"(X)/V(X).

Thus the fee schedule is concave or convex asthe ratio of the wealth

elasticities of the agent’s to the principal’s sharefalls short of or exceeds

the reciprocal of the ratio of their coefficients of relative risk aversion.

Unfortunately this is not a very illuminating criterion, and what we
would really like is a more direct means of deducing the shape and,

specifically, the concavity or convexity of the fee schedule from the

characteristics of the agent’s and the principal’s utility functions. To do

so, however, we will need some preliminary lemmas on the asymptotic

properties of concave utility functions. These results are somewhat

tangential to the main argument and have been put in the appendix.

In addition, the proofs of theorems 8.4-8.6 are somewhat technical

and have also been deferred to the appendix. We begin with a theorem

applicable when U(-) and G(-:) are unbounded from above. It verifies

the intuition that if U is more risk averse than G, then the fee schedule

must (eventually) be concave to induce the agent to view risky choices

as the principal does. Conversely, if the agent is more risk averse than

the principal, the fee schedule is (eventually) convex to motivate the

agent to accept additional risk.

THEOREM 8.4. Assume that condition S holds. If U and G are unbounded

above, andif

(i) Ry = lim inf Ry > lim sup Rg = Re,
XEQ XEQ

then (Aw)(Vw > w) the fee schedule is concave andif

(ii) Rg = lim inf Rg > lim sup Ry = Ry,
XEQ XQ

then (4w)(Vw > w)the fee schedule is convex.

PROOF. See the appendix.

The next theorem deals with the caseillustrated in fig. 8.1 (see appendix).

If theorem 8.4 was intuitive, theorem 8.5 may appear counterintuitive.

THEOREM 8.5. Assume that condition S holds. If U is bounded above and

lim inf Ry > 0, and if (Aw) G(wo) > sup U(X), then (Aw)(Vw > WwW) the
XEQ
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fee schedule is concave. Conversely if G is bounded above and lim inf

Rg > 0, and if (4wo) U(w,) > sup G(X), then (Aw)(Vw > w) the fee sched-
xXEQ)

ule is convex.

PrRooF. See the appendix.

The need to require lim inf R, > 0 in the proof of theorem 8.5 can be
illustrated by counterexample. From lemma 8.2 (see appendix) the

boundedness of U assures that lim sup R, 2 1, but there is nothing to

prevent R, from cyclically approaching zero as w > oo. In fact, take

any bounded, concave, monotone increasing function U(-) and define

V(-) to be the function formed by the chords joining U(n) and U(n + 1)
where n runs over the integers. V(-) can clearly be smoothed to make

any desired finite degree of differentiability (i.e. high contact) on, say,

[n — e,n + €] where « < 4, but while V(-) is bounded R, = 0 on (n + «,
n+ 1 — £) and, hence, lim inf R, = 0 and f”(w) > 0 onall intervals of

the form (n — ¢,n + 1 — €).

Thefinal theorem concernsthe case where both U and G are bounded
by the same bound. This will clearly exhaust the cases, and reverse our

intuition.

THEOREM 8.6. Assume that condition S holds. If U and G are both bounded

above with

sup U(X) = sup G(X)
XEQ XEQ

and if R,(X) > R* and R,(X) > Ré, then (Aw,.)(Vw > wo) the fee sched-

ule is convex or concave as R* > Ré or R* < Rg.

PRooF. See the appendix.

This result is clearly much weaker than our previous ones but it does

not appear possible to strengthen it much. By the mean value theorem
it can be shown that there exists a non-negative function 6,, such that

(w—f)U' 1—R(w+ 0, — flw + 4,))

fG = Reff(w + 8.)
but if R, and R, do not converge to limit values, theorems such as we
obtained for the unbounded utility cases will not be available. Suppose

that we were to assume that R, > R,. By boundedness we have R, = 1,
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but we will also assume that R,, > 1. It follows that we can bound f”

above in sign by

(wW—f)U' R, 1-R, R, Ru } R,,

f{G Re Re Rg Roe—1 Re
  f’ =

which will be positive for R, or R, sufficiently large even when the

criterion Rg > R, =R, > is satisfied. Unless the bound can be made

tighter or unless we assume R,, and Rgare sufficiently smooth to assure
that (1 — R,)/(1 — Rg) actually ‘tracks’ (w — f)U'/fG,, it seemsdifficult

to get a strongerresult.

It remains to explain our somewhat counterintuitive results for the

case where oneofthe utility functions is bounded above. When U and G

are unbounded, R, > Rg implies that the principal is more risk averse

than the agent and, as intuition might suggest, we set up a concave

fee schedule to ‘riskify’ the agent. Conversely, a convex schedule 1s

required by S when R, > R,. On the other hand, if both U and G have

the same upper bound andthe limit values of R, and Rg exist, we

choose a convex schedule if R, > Rg and a concave one if R, < Rg.

From a strictly mathematical (or geometric) viewpointthe issueis clear.

If both U and G are bounded with the same bound, the one with the

greater risk aversion approaches the bound more rapidly. As a conse-

quence its share must be a concave function of wealth and the other is

convex (f” =0 as d*(w — f)/dw* = —f” 2 0). The argumentis similar

when one utility is bounded below the other. From an economicstand-

point, though, the issue is more murky. In particular, if R, > Rg but the
fee schedule is convex, how can the agent, who 1s less risk averse than

the principal, possibly mirror the principal’s preferences toward risk?

The answer lies in the mathematics of concave transforms. While a

concavefis concavified further by a concave G to G(/), it is not necessarily

true that a concave G(:) is less risk averse than G(f(-)) wherefis concave.

This point has nothing to do with the fact that the fee is subtracted

from terminal wealth to give the principal’s return. In fact, iffis convex,

w — f is concave and the paradox is exacerbated even further.

The case where somethird party pays the agentis simpler and interest-

ing in its own right and since it can produce the same paradoxes we

will study it. Now S is modified to

(S'‘) U(w) = G(f(w)], f'=U/G and f" ~ (wUT/fG’) — (R,/Re),
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as we obtained from S. Some algebra yields

R, = —wf"/f' = R, — (wf/f)Re-

Since G is concave, Rg > 0 and R, > R, for all w, i.e. U is uniformly

more risk averse than f; Notice, though, that even when f is concave,

U(-) is not necessarily more risk averse than G(-), with G evaluated not

at f(w) but at w. For example, if we choose R, > 1 to be constant and

f concave with R, < 1, then R, < Rg. To verify this, let

flw) = wi *s and G(w) = —w'~®e,

Now

U(w) = GLf(w)] = —(w* BIRe = — we RNG”Ro)

and

O>(1—R,)(1 — Rg) > 1 — Rg

implies that

Similarly, an example can be constructed wherefis convex but R, > R,.

To sum up, the concavity off is neither necessary nor sufficient to

insure that U is more concave than G. The case where f is convex 1s

equally equivocal. Our intuition was misguided; R,, uniformly greater

than R, requires only that

R, > Rew) — (wf'/f) Rolf) = [1 — wf)Re

when Rg is constant, and this can besatisfied even if f is convex and

is not necessarily satisfied iff is concave; we require f to be sufficiently

concave.

An alternative approachthat affords an interesting look at the problem

is the following. U is said to be more concave than G if and only if

there exists a concave transform H(-) such that U = G[f(w)] = H[G(w)].’

This condition is equivalent to requiring that R,(w) > R,(w). Differen-

tiating once yields G’(f)f’ = H’G(w), and again,

H"~ G(ASY + GINf" — H'G'(w), (8.9)

which can be positive if G”(w) is sufficiently negative relative to G’(f).

’ This terminology and the equivalence of this definition of greater concavity and the
definition of greater risk aversion are due to Pratt [5].
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In particular, then, the concavity of the fee schedule depends not only

on whether U and G are concave, but also on the magnitude of their

concavity through eq.(8.9).

As a final example suppose f(w) = aw + fp. Now,

 

aw + B

Or

ow

aw + B
 

R,(w) = ( )R z R,(f)

as Pp =0. If Rg is constant, Uscan be moreor less concave than G even

though fis linear. If 6 = 0, however, intuition returns and U and G are

identically concave when Rg is constant. Even when f = 0, though,

if Rg is not constant, then weare still unsure of the relative concavity

of U and G; we only know that

R,(w) = Re(f(w)) = Re(aw) = Re(w).

8.5. Property ofFee Schedule Under Efficiency

It is also of interest to consider the properties of those fee schedules

defined by Pareto efficient (PE) bargains between agent and principal.

Fortunately, by appropriate interpretation of our previous results most

of the work has already been done. Let us assume then that PE defines

the fee schedule and put asideS. If we substitute U’ for U and G’for G,

the PE rule U'(w — f) = AG‘(/) is formally identical to S. Now

U”

‘(w) = ———— € (0, 1
f( ) U" + 2G” ( )

if U and G are strictly concave. As with S, we will suppress the constant

A into the G(-) function since we will not have occasion to varyit in

whatfollows.

If U’’, G’” > 0, then —U’ and —G’ are monotonestrictly concave

functions and the identification is complete. In particular, defining

P,= —-U’”X/U" and P, —-G'X/G’,
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theorems8.4, 8.5 and 8.6 hold with P,, substituted for R, and Pg for Re.
Is U", G’” > 0 likely or even reasonable? Many have argued that the
assumption of a decreasing coefficient of absolute risk aversion, A =
— U"/U’, is quite sensible. In particular, it is a sufficient condition for
the risky asset to be superior in a two asset world with a riskless and
a risky asset. Furthermore, the risk premium for a sufficiently small
gamble will decline with increasing wealth if and only if A declines (see
ref. [51). As is easily shown,if absolute risk aversion is to decline with
wealth, then the utility function must have positive third derivatives.

8.6. Conclusion

The similarity condition (S) is easily generalized to the many-agent-—
many-principal problem, as is the criterion of Pareto efficiency. The
results of this paper pose no additional difficulties in this context, but
with many principals and agents, problems of coordination of informa-
tion arise of the sort studied in the theory of teams, most notably by
Marschak and Radner [4]. In its many-player form, a theory similar
to that of agency was developed as the theory of syndicates by Borch
[3] and Wilson [8]. Borch [3] first proved the PE condition, although
in a somewhatdifferent problem, and Wilson [9] suggested condition
S as a way for a syndicate to motivate its managers and showedthat S
and PE imply L.

In a subsequent paper we develop the theory of agency from the
principal’s exact constrained maximum problem (as posed initially) and
make a start towards embedding agency in a general market context.
The problems raised by the existence of intermediaries, or agents, in
general equilibrium models are quite difficult, butit is not unlikely that
research in this area will aid our understanding of muchofthe institut-
ional structure of modern economies.
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APPENDIX

LEMMA 8.1. Let U(-) be a concave monotone increasing function; then

U(-) is bounded only if

lim wU'(w) = 0
Ww co

and if (3 ¢ > 0) such that

lim w!*® Uw) = 0
wo

then U(:) is bounded.

Proor. Since U’(:) is non-negative, lim sup wU’(w) 20. If lim sup

wU'(w) > 0, then there exists a divergent sequence <w’> and a 6 > 0

such that

w’U'(w’) > 6 > 0 or U'(w’) > d/w’.

Since U’(-) declines monotonically, we can thus bound U’(w) from below

by a simple function h(-) with steps of height 0/w”. Integrating back we

obtain

U(X) — U(X) = J hov)d = y é
vy=1 w

 (w’ — w’*),
0
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where w° = 0 andy, is chosen so that

ws << X < wth,

Since <w"> is a divergent sequence it is possible to pass to a subse-
quence <w’'> such that

(wi —w!)/wi> 1/i,

implying that

U(co) — U(Xo) 2>y ow" —wy ay 2 aw — wie> Smo
yv=1 W i= 1 Ww i=1

and U(-) is unbounded.This establishes the first proposition by contra-
diction.

Now suppose that (4 ¢ > 0) such that

lim w'**U(w) = 0.

 

 

 

 
 

 

Defining

c(w) = w' ** U(w),

we have

c(w)
U (w) — w! +¢€

or

w c(X)
w dX

U(w) — U(wo)

=

f yise dX < { SUP c(X)} | yit

TE TE Wa= { sup eX)! * _w |<! 0.
X>wo é E X>Wo

          

However, since c(w) > 0 as w > 00,» SUP c(X) must befinite for some wo.
> WO

O.E.D.

LEMMA 8.2. Let U(:) be a concave monotone increasing function; then
U(-) is bounded if lim inf R(-) > 1 and, if U(-) is bounded then lim sup
R(-) = 1.

ProorF.If lim inf R(-) > 1, then (Jwo, ¢ > 0)(Vw > Wo), R(w) > 1 + 2e.
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Now

R(w) = —wU"(w)/U(w)

implies that

w R w 1 Is 1+2e

Uo) = cexp (- j Baz) <cexn(—] *ae) =~!) .
wo wo

Hence w!**U'(w) < cwi*?*/w® > 0 and, by lemma8.1, U(-) is bounded.

Assume that (4X,)(VX > X_)R(X) < 1. It follows that

w d

U'(w) = cexp(- { S| _ “0
wo 2 Ww

and by lemma 8.1, U(-) is unbounded. This result is due to Arrow [1],

and is actually somewhat stronger than we require. Of course, it now

follows that lim sup R(-) 2 l.

THEOREM 8.4. Assume that condition S holds. If U and G are unbounded

above, and if

(i) Ry = lim inf Ry > lim sup Rg = Rg,
XEQ XEQ

then (AW)(Vw > W) the fee schedule is concave and if

(ii) Rg = lim inf Rg > lim sup Ry = Ry,
XEQ XEQ

then (4W)(Vw > Ww)the fee schedule is convex.

Proor. If U and G are both unboundedit follows immediately that Q

is an unboundedinterval and that both f and w — f are unbounded.

From

(d/dX)[X U(X)] = XU" + U = [1 — Ry]U’

we have

xX

X U(X) = f [1 — Ry] U'dz + XQU%
Xo

= [U — U9] &y + XV:

and similarly

X G(X) = [G — Go] OG + XoGo.
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It follows from eq. (8.8) that

i" (w—f)U' Ry
I) ~Gr

_ OyLU — Uo] + (Wy — fo)U Ry

96LG — Go] + foGo Rg

_ (Wo — fo)Uo foGo _ Ry

- % * (G-G) 1% "U- mat| Rg
Now, if (1) holds, then, since U(-) is unbounded from above, lemma8.2
implies that

lim sup Rg < lim inf Ry S 1.
XEQ XEQ

Hence (4d >0 and wo)(Vw> wo), R-(w) <1—6, and therefore
(Vw > Wo), O¢ > 0.

Hence, if Rg > 0, then

Oy Ry 1—R R
lim supf”(w) = lim sup z — a < 1 z — x

G G ANG G

 

= (Rg — Ry)([1 — Re]Re)* < 0,

where we have madeuse of Rg < 1. If Rg = 0 then R,/R, diverges and
the result is immediate.

Proposition (ii) may be proved interchanging the role of U and G in
the statement of the proof. Q.E.D.

THEOREM 8.5. Assume that condition S holds. If U is bounded above and
lim inf Ry > 0, and if

(4wo) G(wo) > sup U(X),
XEQ

then (Aw)(Vw > W)thefee schedule is concave. Conversely, ifG is bounded
above and lim inf R, > 0, and if

(Jw) U(wo) > sup G(X),
XEQ

then (Aw)(Vw > Ww) the fee schedule is convex.
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Fig. 8.1.

Proor. Figure 8.1 illustrates the situation where U is bounded and G

rises above U. Since

G(f) = U(w — f) S sup U(X) < «0,
XEQ

it must be the case that f(w) > f < oo. From monotonicity fG’ > fG,

(f) > 0, and from lemma8.1 the boundedness of U(-) implies that

(w — f) Uw — f) > (w — fy Uw — f) > 0.

It follows that

(w — f)U'/fG > 0

and, since lim inf Ry > 0, (de > 0 and wo) such that (Vw > wo)

R
“ul _*_ 49,
Rg Ref)

Hence (Aw, 6 > 0)(Vw > w)

 

" (w—f)U' Ry
fw) ~ Fer — RS 0 <9

The converse proposition is proved in an identical fashion. Q.E.D.
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THEOREM 8.6. Assume that condition S holds. If U and G are both bounded
above with

sup U(X) = sup G(X)
XEQ XEQ

and if

R(X) > R* and R,(X) — Ré,

then (dwo)(Vw > Wo) the fee schedule is convex or concave as R* > R#
or R® < Ré.

PROOF. Bystrict monotonicity both U and attain their suprema only
at 00; hence both f and w — f must be unbounded.(If, for example,
f— f < o, then by monotonicity

G(f) < sup G(X).
XEQ

However,

U(w — f) > U(w — f) > sup U(X) = sup G(X),
XEQ XEQ

violating U(w — f) = G(f) for sufficiently large w.) From lemma 8.1
we have

(w —f)U’'>0 and fG'-0.

Suppose first that R¢ > R*. From lemma 8.2 we must have R* > 1.
Applying PHospital’s rule we have

fim (PU = i,RUS)_ = R, _1- RY
wro fG’ Ww 00 (1 — R,|G’ f wool—Re I1- R*

 
  

From eq.(8.8) it now follows that

—f)U’ R 1— R* R*prwy~ WDE RyLORERT
{G R, 1—Rt R#

The converse result is obtained by applying the above analysis to

Ry {G
D0) ~ Rw Au"

QO.E.D.



 

COMMENTS

On the theory of economic agency

Leonard Mirman

C8.1.1. Discussion

Professor Ross has presented an important discussion of the problem

of agency. Although the name of the economic relationship described

and analyzed is novel, the content extends the work of Wilson [4]. It is

also similar to the problemsstudied by Berhold onlinear profit sharing

incentives[ 1 ]. The importanceofthe work is in laying a soundtheoretical

structure for the study of observed relationships in the real world.

Among the more important areas in which economic relationships can

be described by Ross’s theoretical structure are incentive contracting,

share cropping, profit sharing, insurance, etc. The connecting themeof

these diverse areas of economic institutions is the relationship between

two competing — although, in some sense, cooperating — agents who

must decide how to share the return and ‘risk’ of a random variable

which requires inputs from at least one of the agents in a waythatis

consistent with the risk preferences of both agents.

Moreprecisely the object of the principal is to provide an incentive

for the agent to choose an input, from theset of feasible inputs, so as to

maximize the agent’s expected utility while simultaneously providing

the highest possible expected utility for the principal. His only problem

is to decide on the payoff function which is consistent with his own

utility maximization while giving the agent enough incentive for maxim-

izing his own expected utility and to take the risk the principal would

have him take. The difficulty is that there might be a divergence of

attitudes toward risk between the principal and agent, in which case

the agent might choose an input which maximizes his own expected

utility which is not optimal for the principal. For example, let w(a, 8)

be the payoff function for input a and state of the world 0, the payoff

to the agent being f(w(a, 0)). Suppose there are two possible inputs «,
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f (w)

 
Fig. C8.1.

and «, as in fig. C8.1.Suppose that the principal prefers a, over «, but
the agent prefers «, over a,. It is then important for the principal to
choose the payoff function f(w) which will provide an incentive for the
agent to choose a, over «,. The wrongincentive will lead to a, rather
than «, being chosen.

Choicecriteria used by-Ross to derive decision rules which correspond
to those observed in the world are the principle of similarity and Pareto
optimality. The principle of similarity turns out to be the criterion
~— used previously by Wilson — on which the principal chooses his fee
schedule. The similarity criterion is motivated by its relationship to a
minimax strategy followed by the principal when minimizing the loss
due to the ‘“worst” possible payoff structure’. Pareto optimality is
based on anefficiency criterion and yieldsanefficient allocation for each

to believe that there is a strong relationship between linear payoff
functions, Pareto optimality and similarity. Indeed, this is the content
of theorem 8.1, which shows that any two of the three imply the other.

Unfortunately there are limitations in simultaneously assuming
Pareto optimality and similarity which are discussed in theorem 8.3.
It is shown that restrictions of the type implied by Pareto optimality
and similarity restrict the admissible class of utility functions. It is
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interesting, however, that the class of utility functions allowed are the

Cobb-Douglas and exponential type utility functions. An important

aspect of the Ross model is that the principal does not — as the agent

does — decide on an action. The type of models which readily come to

mind in this situation are those used in the theory of teams [3] and in

the theory of games [2]. The agency relationship is different from each

of these, since like the team and unlike a gamesituation there is an

incentive for both the principal and agent to cooperate, Le. after a

sharing rule is determined both agent and principal have a stake in

having the best decision made. Although unlike a team, the decision

makers do not have the sameinterests. In the spirit of the theory of

games, interests are competitive although, in the choice of a sharing

rule, the principal makes the decision keeping the agent’s reactions in

mind.

Finally, some extensions of the models should consider differences in

information between principal and agent as well as differences in sub-

jective probabilities. The question of how new information affects the

choice of a sharing rule and the final choice of an input would beinter-

esting. In addition, simultaneous decisions on the part of the principal

and agent for consumption or other projects have been assumed away

and should eventually enter the model.
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CHAPTER 9

NOTES ON WELFARE ECONOMICS, INFORMATION
AND UNCERTAINTY

J. A. Mirrlees

9.1. Introduction

These notes, although not entirely tentative, are less systematic than
I would wish. Their purpose is to show how,in a world with imperfect
and unreliable information, the Arrow—Debreu framework! for welfare
economicsis unsatisfactory, and that models akin to those now usedin
the theory of public finance may be more appropriate. I shall not discuss
all the reasons that urge one to extend or avoidthe standard models. In
particular, as Arrow’ and others have pointed out, the production of
information — as in medical care, invention or, presumably, the educa-
tional system — requires special treatment; but I shall not say much
aboutit.
What I am going to consider is the information a government might

have about consumers, or consumers about government. I shall be
thinking of welfare economics as a mode of discussing alternative
governmentpolicies, and also aspart ofthe discussion about alternative
systems of government. Thepolicies a government can adopt, and the
policies it should adopt, depend upon information about consumers,
what they do and what they are. Thus the fundamental theorem of
welfare economics invites governments to distribute to households
quantities of resources that are a function of what the households are
(not what they choose to do), in the hope that the right competitive
equilibrium will establish itself. In the Arrow—Debreu theory, this dis-
tribution of resourcesis carried out in advance of knowingthestate of

' See ref. [1], chapter 4.
> [1], chapters 6 and 8.
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the world, but with complete information aboutthe characteristics of the

households. A great many insurance and futures marketsare required if

the optimumis to be a competitive equilibrium, but I shall not concern

myself directly with that well-known difficulty. I shall ask what should

be done — for reasonsto be explained — (1) if the distribution depends on

the state of nature, and (2) if information about the characteristics of

households is imperfect. I shall also include some remarks on pre-

ferences regarding uncertainty.

9.2. Redistribution and Risk-taking

The Arrow-Debreu formulation of welfare economics accepts each

household’s beliefs — possibly expressible by meansof subjective proba-

bilities — in the same way that it accepts the household’stastes. If a man

believes strongly but wrongly that the end of the world is at hand, he

will be given his wealth now andallowed to spend it all at once. He will

then starve, in circumstanceshe believed would notoccur, but an Arrow—

Debreu welfare function does not care. We should like to be able to

discuss policies for a government that does care about such outcomes

andis, in somerespects, better informed about possible states of nature

than some of the households for which it claims responsibility. Among

these policies would be incomedistributions that are a function of the

state of nature®.

Another reason for studying such distributions is the impossibility

of identifying all states of nature ‘objectively’ — this is the phenomenon

of moral hazard, well recognized in the literature. A farmer cannotper-

fectly insure his crop against adverse circumstances, for the degree of

adversity can, in practice, be assessed perfectly only by looking at the

size of the crop, andthatis affected by actions under the farmer’s control.

If perfect insurance were possible, distribution by government could

(apart from the difficulties just mentioned) without disadvantage be

independentofthe state of nature. Since perfect insuranceis not possible,

the government presumably ought to relate distribution to the actual

outcomeof the harvest, as a proxy for the state of nature.

In this case, we clearly have what has cometo be called a ‘second-best’

3 This distinction between ex ante and ex post optimality is fairly wellknown. See ref. [2].
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problem — that is, a problem that will not have for solution the straight-
forward competitive equilibrium familiar in simpler problems. The
term ‘second-best’ maybe a bit misleadingsince, in such a caseas that of
the risk-taking farmer — or the assistant professor — the first-best is an
even more unattainable theoretical construction than the ‘second-best’.
The first case, of ‘Allais optimality’, seems to have an easy formal

solution, at least in the extreme case where household’s probability
beliefs are irrelevant, and policies are discussed in terms of a welfare
function which has as arguments each household’s utility in each state of
nature (for example, expected welfare, with the government’s proba-
bilities, or yours or mine). As usual one wants to have shadow prices
for each commodity in each state of nature. Producers should maximize
profits (interpreting the shadow prices conditional upon the state of
nature); and households should work out their plans separately for
each state of nature, in the light of these prices and the government’s
plans for distribution of wealth, which are conditional upon thestate of
nature. Formally,if x’ is the vector of h’s consumption in state of nature
s, ut = u"(xt) is h’s utility*, we want to maximize

Wu) = W(uj,u3,...,U{,U3,...) (monotonically increasing)

with the competitive equilibrium conditions satisfied for each assigned
budget bf. Then, aggregate excess demands 2,x" in the variousstates of
nature being feasible together, the production plan (V,,¥2---) (equal to
aggregate excess demandsin the various states of nature) maximizes
=p,‘ ys, and each x maximizes u" subject to p,- x" being nogreater than
b; wherep, is the competitive price vectorfor state s. This is a standard
argument.

The problem associated with ‘Allais optimality’ is that consumers
must not trade insurance: it must be impossible to trade a quantity of a
commodity contingent upona different state. If there were perfect con-
tingent markets between consumersit would notin general be desirable
to allow producers to trade in these same markets: one would want to
see commodity taxes imposed, for example. The Arrow—Debreu equl-
librium would notbe optimal. Weshall come uponthis needto prohibit
markets again.

* Theutility function itself could vary with thestate of natures.
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When the moral-hazard aspect of the economy is brought in, even

this rather unstable competitive result is not optimal. I have no interest-

ing general results as yet, but the following special example seems to

capture the essence of the matter”.

Consider an economyofindependentpeasant farmers, producing corn

on their own farms with their own labor-enterprise-and-attention. The

probability density of corn output y when there has been labor input z 1S

f(y, z). The governmentrelates the farmer’s consumptionx to his output

through a function

= c(y) (9.1)

which represents redistribution of output between farmers. The farmers,

identical to one another, and each interested only in himself, choose z

to maximize expected utility

J u(x, y, 2)f(y, z)dy (9.2)

subject to eq. (9.1). Let us take u to be a concave increasing function of x,

and a decreasing function of y and z. I shall also assume that u tends to

—oo when x tends to zero, so that farmers would give first priority to

avoiding zero consumption. The governmentaccepts eq.(9.2) as its own

welfare function,so thatall the farmers should find its policies appealing.

Everything has to take place under the aggregate production constraint

which, on the assumption of a very large numberof farmers, insensitive

to small variations in consumption and with stochastically independent

production possibilities, can be taken to be

{ f(y, z)dy — J cy)£0,z)dy = 0. (9.3)

There is no harm in assuming everything is suitably differentiable and

that the requisite Lagrange multipliers exist. I use the multiplier r for the

constraint (9.3), and a multiplier s for the constraint

fu,fdy + Juf,dy = 0 (9.4)

which arises from utility maximization by the farmers. Notice that we

have a second-order condition from that maximization,

A =Ju,,fdy + 2Ju,fdy + Juf,dy <0. (9.5)

5 I first came across problemsof this kind in connection with population policy. That

analysis is given in ref. [5].
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Thefirst-order conditions for the government’s maximization are that,
for eachy,

u.f—rf+ suf, + su,, f= 0, (9.6)

from variations of c, and

r\(y — cy)f,dy + sA = 0, (9.7)
from variation of z. Notice that this last condition is simplified by use
of eq. (9.4). It is more illuminating to write eq. (9.6) in the form

(r — su,,)/u, = 1+ s(f/f). (9.8)

Z is to be encouraged,c will be so chosenthat u,, diminishesas y increases.
To showthis, it is convenientfirst to impose the convention that

J of, 2)dy = z (9.9)
for all z, and natural to suppose that

f,/fis an increasing function of y, negative for small y
and positive for large y. (9.10)

I must also assumethat u,, = 0.
It follows from (9.10) that r must be positive, since u, always is, and

the right hand side of eq. (9.8) is sometimes positive. We have to show
that s is positive. Write h(y) = f,/f, with the optimum z. Then eq. (9.8),
which nowreads r/u, = 1 + sh(y), tells us that x is a function of sh(y)
and y, x = g(sh(y), y), where the derivatives of g are

l 2

9, = ~-= and 9, = _Ay (9.11)
r Ux , uxx

Assuming that u is concave, g, > 0. With this notation, we can write
eq. (9.7) in the form

r= —sA+ r| g(sh(y), y)h(y)fdy. (9.12)

Here we haveusedthe fact that | yf,dy = 1, which follows from eq.(9.9)
by differentiation.

Suppose that

uy, <0. (9.13)
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I shall show that this assumption implies that s is positive. If we had

s < 0, g(sh(y), y) would be a nonincreasing function of y, by eqs. (9.10),

(9.11) and (9.13), and, y, being such that h(y,) = 0,

| a(sh(y), y)h(y)fay = J [a(sh(y), y) — 9(0, yh)fdy S 0.

Thefirst step is implied by { hfdy = {f,dy = 0, since Jfdy = 1; and the

second is implied by eq. (9.10). Also, we know from eq.(9.6) that A S 0.

Therefore, under assumption (9.13), the right-hand side of eq. (9.12) is

non-positive if s is non-positive: but that is impossible, since r > 0.

I have proved, then, that when x and y are weakly complementary, in

the sense that (9.13) holds, and x and z are independent, s > 0; and, by

eq. (9.8), u,, is a decreasing functionofy. In the special case u,,, = 0 (which

might hold, for example, because, the farmer does not care about output

itself, and needs no labor to gatherit in) we can further conclude that x

is an increasing function of y.°
The assumptions used to obtain these results are rather strongly

sufficient, but it will be clear from the analysis that the ‘perverse’ case,

where x decreases with y, is not entirely impossible.

It can be seen from formula (9.8) that the government’s optimal

policy c is not generally linear, or even particularly simple. To extend

the argument, one would expect, administrative and political reasons

apart, to recommendquite complicated allocation rules for medicalcare,

police protection, car insurance and educational expenditures. One

curiousfeature ofrule (9.8) is highlighted by its response to the apparently

sensible assumption that agricultural outputis distributed lognormally:

f(y, z) = < exp E (ioe? + 202} aa?) (9.14)

(C is a constant). Eq. (9.14) implies that

Lf = (Ios +]po’)| (G72). (9.15)

Accordingto eq. (9.15), £/ftends to — co when y tends to 0. Butthatis,

by eq.(9.8), inconsistent with any value of s other than 0. Yet s = 0 does

© One might also think that in the optimum one would have c’(y) < 1; or at least that

y — c(y) would changesign only once, from negative to positive, as y increased. I have

not found any nice assumptions that I can prove imply these results; and I suspect

that they cannoteasily be guaranteed.
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not give an optimal policy. This is obvious because (depending on the
utility function) a rule for distributing the available output that leaves
everyone with the same u, may leave no incentive for the farmers to
produce anything! From a technical point of view, for this apparently
well-set problem, no optimum exists.

output is less than a small number 7 receive consumption ¢ (another
small number), while the others receive what they would receive in the
first-best optimum

—

call it c*(y). This will be possible if it is possible at
the same time to induce farmers to adopt thefirst-best optimum level
of z — call it z*. For that we require

f ute, 2*)f(y, 2*\dy + f ulc*(y), ys 2*)f(y, 2*)dy

* | ule,y.2*)f(,2*)dy + J ue*(y), y.2*)f(9, 2dy = 0.

Recollect that u, is independentof x, so that the third and fourth terms
can be written, together, as [% u(y, z*)f(y, z*)dy. Thus we have to
choose ¢ and y so that

"

J {u(c*(y), y, z*) — ule, y, 2*)} f(y, 2*)dy

= | {we*v5 20,24) + uy. 2)F(02*)}¢y.
The right-hand side of this equation is equal to

° | iC") — yh Lely, 2*)dy,

where r* = u,(c*(y), y, 2*), by first-best optimality; and this expression
will normally be negative, since

{(c* — hdy = Jlct — hoyfay <0 iter) <1
by assumption (9.10), and this is ensured by the weak assumption that
u,, S —U,,.xy xx
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Thus, for any 1 > 0, we can choose ¢ so asto get z* chosen. Yet, given

any number M,we can choose n so small that f, < —Mf(y <n), so that

” "

J u(c*(y), ys z*)f(y, z*)dy a J ule, ys z*)f(y, z*)dy <

11

—5g | (MeO), y, 24) — ules ys 2°50, 27)dy =

a} fulc*(y), y, 2°)£0). 2%) + u(y, 2)L(y, 2*)}dy > 0. as M > oo.

In this way, we can approximate asclosely as we wishto the first-best

optimum, by imposing penalties (presumably of great severity) on a

small proportion of the population.

Although these farmers suffer severely, there are so few of them that

their sufferings are outweighed by the encouragementtheir fate, or

rather the prospectofit, gives to farmers taking production decisions.It

seems that models of this kind can in certain cases provide somejustifi-

cation for extreme punishmentof negligibly small groups.

The problem has been presented as one of governmentpolicy, but

with the coincidence between private and government ends postulated,

the solution may instead be interpreted as a prediction of the kind of

insurance system that would arise in the society considered.It is interest-

ing and important to consider further solutions in which the government

adoptscriteria different from those of the farmers ex ante, on utilitarian

or egalitarian grounds; but I do not considerthis further in the present

notes.

9.3. The Characterization of Households

We may think of the standard problem of welfare economics in the

following form. A household oftype h hasutilityfunction u(x, h) in terms

of its trades x with the rest of the economy(i.e. excess demands). Produc-

tion constrains y = 2,x(h) to lie in the production set Y. W(u)is to be

maximized. The ‘fundamental theorem’ asserts that the optimum is a

competitive equilibrium if there is a suitable distribution of budgets

defined by a function b(h). The point I want to emphasize, obvious though
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it is, is that the consumersare then supposed to choose whattrade they
will do rationally in terms of their own self-interest, but are supposed to
reveal the necessary information about themselves, symbolized by the
variable h, without regard to their ownself-interest. The usual notation
obscures this. The following example, which has some correspondence
with reality, may highlight the difficulty’.

Consider an economy with one consumergood, produced with labor.
A household of type n provides labor of quantity ny when it works for
time y. Every household hasutility function u(x, y) in terms of consump-
tion x and labortime y. The welfare functionis completely separable in
terms of individual consumption, so that the utility function can be
chosen to ensure that the welfare function is W = [ u(x(n), y(n))f(n)dn,
f being the density function giving the distribution of ability n. Welfare
iS quasi-concave in individuals’ consumption, since u is concave. The
optimumpolicy allocates consumption andtime as functions of nin such
a way that | x(n)f(n)dn is producible with labour input J ny(n)f(n)dn.
Denote the optimum by x*(n), y*(n).

PROPOSITION. u*(n) = u(x*(n), y*(n)) is a decreasing function of n if
(and only if) time is a strictly normal commodity.

Recollect that to say timeis a strictly normal commodity for the con-
sumer means, by definition, that an increase in non-labor income would,
in a market economy,lead the consumerto reducehis labor supply. Itisa
very plausible assumption.
The proofof the proposition, whichis routine,is given in the appendix.

The point of the proposition is that one would naturally assumethat
individuals have some control over the information they convey to
government abouttheir abilities; it is presumably easier to pretend to
less ability than one has thanit is to pretend to more. In any case there
is no incentive to provide the information that the government must
have if it is to bring the optimum about: on the contrary, there is an
incentive for any individual not to provide the information. The model
has some unrealistic features which serve to overstate the difficulties;
but it is plausible that a government which attempted to realize the
optimum of basic welfare economics would fail because of these dif-
ficulties.

’ It generalizes a special case mentioned inref. [4].
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In order to capture this feature of welfare economics, I propose to

reformulate the basic problem in the form of two-level maximization,

with households maximizing under a government-imposed constraint,

and the government choosing the constraint in order to maximize

welfare. Let us then interpret the vector x not only as trades but, more

generally, as behavior. Thus, if some kinds of work can be observed

directly, as amountof time or energy spent as well as through productive

effects, both aspects could appearin thelist x. Denote by k those aspects

of individuals that are publicly known, independently of behavior (age,

sex, place of birth,...), and by h those aspects which, although they

affect behavior through the consumer’s choices, are not ‘visible’, at

least to government. The individual will choose x so as to maximize

U(x, h, k), but will be constrained,first by his consumption set X(h, k),

and secondly by the constraints imposed by governmentandthe markets

of the economy, A(k).

Proor. x(h, k) maximizes U(x, h, k) subject to x € X(h, k)7 A(A). (9.16)

The production constraint is that

ux(h, k)e Y. (9.17)

(Some of the components of Xx, corresponding to non-trade behavior,

are redundant.) Write u(:) for the function of h and k defined by u(h, k) =

U(x(h, k), h, k). Then the government seeks to maximize W(u(>)), subject

to the constraints (9.16) and (9.17), by choice of A().

The governmentis supposed to know the nature of the population, the

numberof people for each h andk. Specifically, it is most interesting to

suppose h and k continuously distributed with density function f(h, k);

so that the production constraint should be written

[x(h, k)f(h, k)dh dk e Y. (9.17’)

The government’s maximand would depend both upon the utility

outcome u(:) and upon the distribution f(-). For example, it might take

the completely separable form — which is the easiest to handle -—

W = fu(h, k)f (h, k)dh dk.

Two objections to this formulation of welfare economicswill so readily

occur to the reader that I must answer them now.Thefirst is that the

government’s knowledge off(-) is hard to reconcile with its ignorance of
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any particular man’s h. To this I answer that f(-) embodies statistical
information, as opposed to personal information, which could be
collected under the secrecy normal for census and sample. There is no
incentive to hide information that will be used in this non-personal way.
Of course the information obtained by census or sample may be quite
poor — but f(-) represents the government’s beliefs, even if they are
inaccurate. The only correspondence between f(:) and reality that is
required for application of the theory is that, in the outcome, markets
clear: if they did not, the government would have to changeits beliefs.
Finally, I note that it will, in general, be possible to deduce the distribu-
tion of h and k from observation of the distribution excess demands x,
as they actually appear (given the model of consumers expressed by
U(x, h, k)).

The second objection, to which the problem asposedis open,is that
it is too hard to answerusefully. This objection can be answered only by
a complicated analysis, for which this is not the place. A special case
has been analyzedin ref. [4], and in unpublished work ; and I can derive
necessary conditions for optimality in reasonably simple form. The
powerof the theory is illustrated by a result quoted in section 9.3.2.3.
In somecases, this problem may have a simple solution.

9.3.1. Example

Consider the special case to which the above pro_ sition applies.
Denote labor supply by z. Then behavioris (x, y, z) and is constrained by
z S ny. This assumes unproductive work is possible. The government
does not know n.In terms of the model, maximization can be achieved
(subject to the usual convexity assumptions,etc.) by distributing income
according to observed ability z/y in such a way that everyone receives
the sameutility; specifically by assigning the same incometo everyone,
whateverhis z/y. But this assumes that, by some meansorother, indivi-
duals are induced to make z aslarge as possible, for given y, whenit
matters to them not at all. Otherwise, when this inducement is absent,
there is, strictly speaking, no optimum; the government can always do
better by making the utility distribution more equal. With that proviso,
we have an example in which the optimum, though not the first-best
optimum, is a competitive equilibrium.

Generally speaking, with u depending on h, the optimum for the above
problem is not a competitive equilibrium (which would have A described
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by p-x S b(h’,k), where h’ is an estimate of h deduced from x by means

of the consumption set X(-,k), and p are the correct producerprices),

because A can be nonlinear.(I have discussed the above example, with y

invisible, in ref. [4].) One really general result is the desirability of

production efficiency [3]. Under very general assumptions, optimum

production for the above problem lies on the frontier of the production

set; thus decentralization of production decisions may be possible. The

argument in supportof this conclusionis simple: if production were in

the interior of the productionset, a sufficiently small subsidy (an equal

lump-sum payment to everyone) would make everyone better off and,

presumably, change aggregate demands by an amount small enough to

leave them in the production set.

9.3.2. Some points

9.3.2.1. Uncertainty. The modelas it stands allows for misleading infor-

mation, but not for imperfect information. In general, we expect the

government to have imperfect information about consumer behavior

and about the consumercharacteristics labelled k. Supposefirst that all
consumer characteristics are visible, so that the variable h does not

appear in the formulation. The government observes k’. k and k’ have
a joint probability density function f(k, k’). (This expresses the imper-

fect information about k that observation of k’ provides.) The govern-

ment imposes on consumers a budget constraint of the form xe A(k’),

but the individual knows k and therefore maximizes U(x, k) subject

to x € X(k) NA(k’).

The point I want to makeis that this problem hasessentially the same
features as the problem setin eqs. (9.16) and (9.17) above. The optimum

is not (in general) a competitive equilibrium, except on the production

side. The optimum budget constraint will be nonlinear. To see this,
consider what the optimum must be. Optimum production y* is equal to
(ytf(k, k’)dk, where yx is the aggregate production madeavailabletoall
consumers who appearto have characteristic k’. Consider one particular
value of k’. Then, given the optimal allocations to everyone else, A(k’)
must have been chosen so as to solve a problem of the form of eqs.

(9.16) and (9.17) with vé given.

A special case may make the point clearer. Consider the example
discussed before, with the additional assumption that the government,
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unable to observe y, makes inaccurate observations n of n’. The joint
density function forn and n'isf(n, n’). The governmentwants to maximize

fu(x(n, n’), y(n, n'))f(n, n')dn dn’, (9.18)

where the budget constraint may be taken to have the form, for an
(n, n’)-man, x S c(ny, n’). since nyis his supply of labor, and n’is informa-
tion the governmentpossesses about him. Then for each (or, I suppose,
for almost all) n’, the government should choose the optimum income
tax schedule (leading to the constraining consumption function) given
the part of production allocated to those whoarelabelled n’, to maximize
Jufdn. Naturally, in income tax theory, the optimum schedule is related
to the shadowprices of the commodities — in this example to the marginal
productivity of labor — and these must be the sameforall n’. But that does
not ensure that the various budget constraints have a similar form, for
the form of the optimum depends uponthe distribution of skills in the
population, i.e. on f(-,n’) for each n’, and also on the production made
available to the class in question.
Thus imperfect information leads to essentially the same economic

considerations as misinformation. By the same argument, a satisfactory
theory for the problem of eqs. (9.16) and (9.17) could be very easily
extended to the case of imperfect information.

9.3.2.2. Rationing versus the price system. The particular form of the
general welfare economics problem stated above in which the budget
constraint is linear in x (i.e. A is a convex cone) has been studied in
ref. [3] (where the variable k is not considered explicitly). There it is
stated that when optimum commodity taxes prevail — ie. when A is
optimalsubject to beinglinear — it may actually be desirable to introduce
rationing for some commodities, thus replacing the market. Rationing
should be understoodin this context as a constraint imposing maximum
levels of ‘trade’, which are functions only of k, while leaving the rest of
the budget constraint unaffected by the amounts of the rationed com-
modities actually traded. (There may be a problem of ensuring that the
ration quantity allows a consumption plan in the consumption set. For
instance, in the special example we have been discussing,it is not pos-
sible to impose a ration on

z

if all abilities down to zero are represented.)
Manysocial services have the characteristics of rationing.

It is an interesting question how far rationing schemesare desirable.
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The problem is not susceptible to general theorems, but is a question of

what is plausible, given what we know of the real world. Someof the

main reasons for rationing are omitted from the welfare economics

problem we are considering. Within the context of the model, it is easy

to see that universal rationing is generally far from optimal. Universal

rationing means that every consumersupplies the sameandreceives the

same from the market. In the case of a convex aggregate productionset

almost everyone will be better off if he faces a budget constraint set

(1/H)Y, where H is the numberof consumers, and the resulting demands

are feasible. In general, this will not be the optimal A, butit is better, and

usually far better, than the rationing proposal. It seems likely that one

can similarly construct a fairly liberal constraint set that is better than

rationing of a single commodity, but I do not yet see how to doit.

In this context, it should be noted that some kindsof‘rationing’ may

be obtained by social arrangements not accessible to government. Many

aspects of behavior, above all care and efficiency at work, are not

directly visible to governmentbut, to someextent, visible to other indi-

viduals. Social norms may make behavior in these respects more

nearly uniform, and perhapssocially more useful, than it would other-

wise be. Uniform behavior by work groups might be regarded asregretta-

ble in a world with perfect distribution, but may actually be desirable,

though an infringement of individual preferences, in a world of imper-

fect information.

9.3.2.3. Uniform prices versus progression and discrimination. At the

opposite extreme to rationing we mayconsider tax systems with uniform

nondiscriminatory consumerprices. If the optimum had this character,

no undesirable trading among households would take place. In general,

there is no reason why uniform prices should be optimal: it is then

desirable that trading among households be preventedif possible, since

it would change the constraint set actually operating. (Of course it

might change the constraint set differently for different groups, and in

that case it might be desirable.) I suggest two interesting questions:

first, when is a policy of uniform subsidies supplemented by commodity

taxes approximately optimal? Second, when will uniform commodity

taxes be part of the optimal system?

In connection with the second question, the following particular case

may be of interest. (I believe Stiglitz has obtained results of the same
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kind.) Generalize the particular example above to many consumer
goods, assuming that the typical household has utility function

u(v(x), z/h), (9.19)

where x is now a vector of consumer goods. We maytakeit that the
optimal budget constraint, defining A, will have the form B(x) S z.

I can prove that in fact the optimum can be obtained by a budget
constraint of the form

B(p-x) Sz, (9.20)

where p is the vector of producer prices (in terms of which the optimum
aggregate [x(h)f(h)dh maximizes profits within the production set). In
effect this enables the economy to provide the desired levels of v at
minimum cost. The optimum is achieved by havinga tax, generally non-
linear, on labor income, and no taxes on other commodities. Consi-
derable generalization of this result is possible.

9.4. The Consumer’s Information

It may be conjectured that it would usually be desirable in terms of
the problem presentedin the previoussection, that consumersbe as well
informed as possible about their own characteristics, measured by the
variables h. To take the extremecase, if no-one knew anythingto differ-
entiate himself from anyoneelse, we should have the ‘rationing’ solution,
and we haveseen that that can be improved upon. Butthis 1s surely mis-
leading. It seems that many people get satisfaction from beliefs about
their relative intelligence, strength, beauty, charm or quality ofjudgment.
The requirements of the economy apart, it might be a pity if their
information on these subjects were very accurate. Perhaps some of us
are better for a precise knowledge of our failings and abilities, but a
meritocracy in which everyone knew his ability beyond doubt is not,
I think, an attractive prospect.

Therefore, even if it were possible accurately to ascertain each per-
son’s abilities and other characteristics, it would not, I suggest, be
desirable to do so — although it may well be desirable to obtain statistical
information of this type from small samples. If a man believes he receives
a low labor incomebecausehe choosesnot to work very hard, rather than
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because he lacks the required abilities, there is a case for leaving things

that way, rather than attempting to assesshisabilities, and subsidize him

accordingly. This is a reason for welcoming uncertainty and for going

beyond the Arrow—Debreu version of welfare economics under un-

certainty.
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APPENDIX

The proposition on p. 251 is to be proved. In the optimum, we must have,

for shadow prices p,q independentof n,

u, =p uy, = —qn.

Differentiating with respect to n, we obtain

U,.X' + Uy,= V, UyyX' + Uyy = —4,

where primes denote derivatives with respect to n. Therefore

du (uu. — UU,,)q
—=4u,x' + uy = -—~>
dn UyUyy — Uxy

which has the same sign as u,, — (u,/u,)U,y. This last expression is

negative if and only if y is a normal commodity.
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Notes on welfare economics, information and uncertainty

Peter Diamond

Economists have not yet learned to incorporate an interesting theory

of information into general models of resource allocation. I suspect

that the difficulty arises from the basically dynamic nature of the former
andthe essentially static nature of most of the latter. Given this situation,
Professor Mirrlees has followed the standard approach of treating
information (or policy tools) as either costlessly available or totally

unusable. This approach permits progress (to which he has made major

contributions) in the understanding of resource allocation where the
fundamental welfare theorem offirst-best economics is not applicable.

Since the problemsat handareso difficult - mathematically complicated
and not amenable to the intuitions we have developedso far — it seems

good research strategy to proceed on this basis without attempting to
incorporate information modelling into these problems too (and

conversely to examine information in models where resourceallocation
questions are very simple).

Unfortunately, the models used in these notes are mathematically very
complicated. But the difficulty lies with the problems not the author
since the model he hasusedtostart this paper is the simplest possible of

general models — one can’t consider resource allocation without a choice

variable; one can’t have uncertainty without a random variable; and one

can’t have public policy without an observable variable (which can’t
coincide with either of the other two variables if the problem is not to
vanish). Add the assumption that everyoneis identical to the three good

model and we have the simplest possible situation, short of going to
specific functional forms. In this setup, the model focuses on the desira-
bility in general of nonlinear policy tools to deal with the moral hazard
problem — the problem arising from individual maximization given the
alternatives made available by public policy which result in individuals
facing shadowprices whichdiffer from social shadowprices. (This is the
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same problem as the deadweight burden of taxation — if individuals

determined demandbyprices which ignored taxes, the excise tax world

would coincide with the lump sum tax world.)

Moral hazard comes in three forms. Individuals may falsify reports

(report nonexistent accidents or incorrect damage estimates). For my

division of types this represents an attemptto alter distributions but not

a resource using decision. Resource allocation decisions can be distin-

guished as occurring before or after the outcome of the random eventis

known. The most familiar example of the latter arises in medical care
where people presumably purchase excessive services, once sick, since

they bear only a fraction or none of the costs. An example of the former,

which is the focus of Mirrlees’ analysis, would be fire insurance where

insufficient protection is taken ex ante to limit either the probability or

extent of damageoffire. Presumably the natures of the information diffi-

culties in the two casesare different (although possibly notsignificantly
so) in that everyone is making (socially) poor resource allocation

decisions in the second case, but only those who have accidents (are

sick) are doing so in thefirst. If one were to try to improve decisions

within the framework of the information structure, one might try

subsidizing fire extinguishers (or fertilizers) in the first case. Taxing

medical care, however, would defeat the purpose of the insurance with

the second case.

The second conventional insurance problem is adverse selection.

Because of an inability to distinguish among individuals for whom the

cost of service varies, the insurer charges a uniform price — an average

cost price rather than a marginal cost price. When individuals know
more about themselves than the company does, good risks don’t buy

insurance (or buylittle) while bad risks buy (or buy much). (Mirrlees also

mentions the reverse case where individuals know less about their true

accident probabilities than the government or the insurance company.)

In terms of trading commodities of uncertain quality the problem has

been nicely characterized by George Akerlof as a ‘market for lemons’

(Quarterly Journal ofEconomics, 84 (1970), 488-500). Mirrlees approaches

this problem by means of a double index of observed and unobserved
traits. Since he is considering social policy, individuals are not allowedto

opt out, although the inefficiency from average cost pricing remains

present, but less starkly so than in the Akerlofcase. (Again the problem

has an analogue in tax theory in consideration of taxes to correct ex-
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ternalities where the sametax is levied on everyone although different
people give rise to different degrees of externality (for example, fast
versus slow drivers). As with the Akerlof example, this can take the ex-

treme form of making it impossible to have any corrective value in
taxation.)

Since Mirrlees is focusing on a single activity or single decisions he
does not mention the problem whichhasbeencalled ‘externalization by

transfer’ by Guido Calabresi (The Costs of Accidents, Yale (1970)). Here

many activities get lumped together in a single insurance policy for
administrative reasons. Thus the price to the individual does not vary
with his choice of activities. (A similar problem arises with prices that
depend on the choice of activity (like car owning) but not the level of
activity (miles driven). Thus summarizing these three problems the
shadow prices may be wrong for an individual choosing his level of
activity because of the needs of insurance, the grouping of the individual
with others, or of the activity with others.)

The information problem is further complicated by the passage of
time and the presence of many individuals who may have relevant
information. Since the pastis given, taxing it will not alter past behavior.

However, present behavior will be altered when it is anticipated or

feared that future taxation will depend on (then) past behavior. This
relationship does notseriously allow the past to be a base for lump sum
taxation, but the complexities of time and individual rigidities also may
not be well caughtin a static equilibrium model which has instantaneous
responseto tax policy. Mirrlees mentions social arrangements which may
take advantage of different sources of knowledge. An additional example
he does not cite is private law suits serving as a deterrent to externality
generating behavior, which is frequently dubbed a ‘private attorney

general’. This indicates a role for social policy to encourage good social

use of private information.
The problems of welfare economicsin the presence of complexities of

information and uncertainty are great. These arise both in the difficulty
in analyzing individual models and in the absence, so far, of an overall

framework in which to locate different models. Mirrlees’ notes are very

valuable as approachesto dealing with a numberof these problems. The
next instalment is eagerly awaited.



     



CHAPTER 10

PREEXISTING CONTRACTS
AND TEMPORARY GENERAL EQUILIBRIUM*

Jerry Green

10.1. Introduction

The object of this study is to consider a model of general economic
equilibrium over time in which the markets for trading commodities are
open at every date. This type of system is to be contrasted with that of
the Arrow-Debreu model in which an equilibrium is reached at an
initial point in time and the remainder of economic activity consists of
carrying out the equilibrium plans formulated at that date. Two distinct
approacheshave been taken to the problem of modelling systemsof this
type. Thefirst, introduced by Radner [13] and used subsequently by
Hahn [6] and Kurz [10] in studies of transactions costs, is to ask
whether there exists a set of prices on current markets and a sequence
of point forecasts regarding prices on markets in the future such that,
if these beliefs were held by everyone,the resulting course of the economy
would see them fulfilled.
The second approach is that of viewing the economic system as a

sequence of temporary equilibria. This idea goes back at least to Hicks
[7]. It was introduced in a formal general equilibrium model of a
monetary economy without futures markets by Grandmont[5]. Sub-
sequently, Sondermann[4] treated a monetary economy with produc-
tion in this framework and Green [3] studied a non-monetary economy
with futures markets. In the temporary equilibrium approach, expecta-
tions are taken as data of the system, although they may depend on

* In the early stages of this work I benefited greatly from discussions with Jean-Michel
Grandmont and Frank Hahn. A substantial debt is owed to the writings of Grandmont
which provided many useful insights. Financial support under National Science
Foundation Grant GS-31688 to Harvard University is gratefully acknowledged.
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variables currently determined in an equilibrium.It is not required that

individuals agree, though some degree of compatibility of expectations

appears to be necessary to ensure the existence of an equilibrium (see

ref. [3]).
The present paper is a continuation ofref. [3] in the following sense:

if a temporary equilibrium in a previous period resulted in the exchange

of futures contracts, then it is necessary to take into account the fact

that the current period endowmentswill reflect these trades. This is not

a problem if endowments, including preexisting contracts, remain in

the consumption set. However, a sale of futures contracts in a previous

equilibrium in excess of the endowment of that commodity may lead

to the nonexistence of an equilibrium in the present period. In particular,

the possibility of bankruptcy exists. This must be faced squarely if there

is to be any hope that the economy can be modeled as a sequence of

temporary equilibria when futures contracts are permitted.

10.2. Previous Work on Preexisting Contracts

There have been several previous attempts to incorporate preexisting

contracts in a model of general equilibrium. In Arrow and Hahn [1]

a single-period model is considered in which the endowments might

contain negative amounts of some commodities due to debts incurred

by the household in earlier periods’. They prove that there exists a price

system anda setoftransfers (in units of account) among the agents such

that all markets clear.

A second treatment of this topic is in the thesis of Grandmont[4].

Grandmont’s primary interest is in an economy with money and in

which money, or debt measured in units of account, is the only store of

value. His model has two periods. In the first, endowments are non-

negative and trade takes place only on spot markets. Debt, in units of

account, can also be incurred, or claims to future units of account can

be acquired. The price of obtaining one unit of account in the second

period is determined in the equilibrium of the first period in the market

1 Arrow and Hahnactually are more general on this point since they deal with a general

consumption set instead of the non-negative orthant of the commodity space. Sim-

plifying their model in this way will, however, facilitate comparison with what we

shall do later.
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for ‘debts’. If an individual debtor is not solvent in period 2, because
the value of his endowmentis less than the amount of his debt, he is
assigned the consumption of zero and his endowmentis used to pay
the debt to whatever extent this is possible. Naturally, if there is bank-
ruptcy in the economy, the amount of debt repayments will be in-
sufficient to cover the quantity owed. The repayments are madepro-
portionately for all creditors. Thatis, every creditor is refunded the
same proportion of what he is owed. The individuals in the economy
know this rule in period 1, when they consider becoming creditors.
They view loaning units of accountas a risky prospect in the sense that
they have subjective probability assessments over the fraction of debt
that will be refunded.
Grandmontshowsthat there will be an equilibrium in each period:

period 1, when endowments are non-negative and future bankruptcies
are viewed with uncertainty; and period 2, when bankruptcies occur,
debts are settled and economic activity ends.
The first introduction of the potential for bankruptcy in a general

equilibrium model is due to Stigum [16], though his conditions for
existence are not immediately comparable with those of the other
authors.
Our model differs from each of these in several respects. As men-

tioned in the introduction, the primary objective is to be able to view
the economic system as progressing from one temporary equilibrium
to the next. Thus we will be considering a period in which there has
been a past — preexisting contracts may bepresent — and there will be
a future — plans are made viewing the future with subjective uncertainty.
This differs from the Arrow—Hahncase in which there has been a past,
but there will be no markets convening in the future. In the Grandmont
model, period 1 has a future but no past, period 2 a past but no future.
Weshall attempt to synthesize these, so that the period in question
can be viewedasa typical ‘snapshot’ of the economy. |
One consequence of there being a future period is that individuals

view their own potential bankruptcies, as well as those of Others, with
subjective uncertainty. If there is a past, the value of holding debts of
others must be determined. Thus the two sides of the bankruptcy
problem - anticipation and settlement — are simultaneously present in
Our system.

Our model has further differences with the Grandmont system
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because contracts sold include all future commodities as well as those

currently deliverable. Debt in our model will be represented by the

selling of a futures contract for real goods instead of a claim to a future

unit of account. Thus we will not be able to determine a price level as

Grandmontdoes,but ratherrelative prices only will emerge. The system

we propose, however, has manystores of value — every futures contract

could serve as such. Typically, an individual may sell some contracts

and buy others so that he canbeclassified as neither debtor norcreditor.

The net value of his preexisting contracts is determined in the equilib-

rium. This gives rise to the possibility that the bankruptcy of one agent

may cause others to be bankrupt if they are his creditors but in debt

to others. This phenomenon cannot occur in the Grandmont system

since all creditors will be solvent because their endowments are non-

negative, even if no debtors repay any debts.

10.3. Codes of Conduct and Non-Economic Penalties in General Equilib-

rium Models

The Arrow-Debreu model presumesan institutional structure in which

every agent has access to a system of markets that he can use to trade

commodities. Since some of the commodities are not deliverable until

a date beyond that at which trades are made, one typically speaks of

these markets as involving futures contracts. An individual who buys

such a contract believes that it will, in fact, be fulfilled: that is, that when

the appointed date arrives, the exact amount of the agreed upon physical

commodity will comeinto his possession. On the other side of the coin,

therefore, the Arrow-Debreu model presupposes honesty: no one is

allowed to sell a contract without having the required amountof the

good available in his endowment(or production plan).

Thus the Arrow—Debreu model embodies an ethical code of conduct

and a set of beliefs about the performance of the system, as well as an

institutional framework. It should be noted that these are consistent in

the sense that if everyone follows this code of conduct, the belief that

all contracts will be fulfilled is justified. Further, the belief that the

markets will only meet onceis validated by the fact that even if it were

possible to reopen them, no one would want to engage in trade at the

equilibrium prices that would emerge.
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However, certain generalizations of the Arrow—Debreu model may
destroy this self-realization property. Knowledge that markets will
reconvene will cause people to behaveinitially in such a way that they
will desire to trade at future dates as well. In ref. [3] the existence
problem wasstudied for such a system.

The result of an equilibrium in this model is a set of realized con-
sumptions of current goods and an altered endowmentdistribution for
the following period. In the following period endowments will be
modified to reflect futures contracts traded. Thus this model tacitly
assumes the Arrow—Debreu code of conduct andresulting beliefs about
futures contracts. But, unless the endowments remain non-negative,
these beliefs will prove unjustified. There may be no equilibrium
because there are prices at which some individuals have endowments
with negative value and therefore cannot choose any point in their
consumption set (assumed to be the non-negative orthant). That is, the
possibility of bankruptcyexists in this system even though every indiv-
idual makes only those futures contracts that he canfulfill with subjective
probability one. Some people hold subjective beliefs that are ‘wrong
in the sense that the prices next period would have been deemed ‘im-
possible’ ex ante’.
The problem is that the institutional structure of sequential trading

is incompatible (except under overly strong conditions on expectations)
with the presumption that contracts are fulfilled with certainty. Thus a
broader concept of the nature of economic contracts is required if we
are to be able to view the system as generating a sequence of temporary
equilibria in which the environment in each period is a result of past
actions.

Since the possibility of bankruptcy cannot be avoided, a viable
economic system must have rules governing this circumstance. The rule
must be feasible to implement. That is, it must prescribe a feasible
redistribution ofcommodities correspondingto anystate of the economic
system — including those states in which some bankruptcyis occurring.

Further, if one interprets consumptionsets as describing consumption
bundles that are the minimum required for sustenance ofthe individual,
then some non-economic penalties for bankruptcy are required, for

* Strictly speaking, the actual prices are such that a neighborhoodof them lies outside
the convex hull of the support of the subjective distribution previously held.
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otherwise an individual would not care about the extent of his bank-

ruptcy — all bankruptcies would leave him with a consumption on the

lower boundary of his feasible set. Problems concerning the deter-

minateness of individual behavior would arise.

Thus, it seems that a natural consequence of the sequential markets

setting is a need for explicit consideration of social rules of conduct and

a penalty structure which are unnecessary in the Arrow—Debreu system

and are usually thought to be outside the scope of economic analysis.

At this point a crucial choice in model-building arises: in the real

world, the vast majority of contracts are bilateral in that the buyer and

seller know each other’s identity. For the purposes of the Arrow—Debreu

model this was unimportant because, since all contracts are always

fulfilled and transaction costs are absent, the identity of one’s trading

partner is economically irrelevant. If, however, we contemplate con-

structing a system in which these properties may fail, the identity of

one’s trading partner will matter and contracts with different people

must be viewed differently; that is, they may have different prices in an

equilibrium and must be viewed as distinct commodities.

Onepossibility would be to take explicit account of this phenomenon,

making assumptions about the information each agent has regarding

the portfolios of others. In an equilibrium of such a system, the prices

of currently deliverable commodities will not differ amongsellers, but

the prices of futures contracts will.

Proving the existence of an equilibrium — and evenstatingits defini-

tion — in such a system raises several interesting and atypical questions.

Wehopeto treat this in a separate paper.

For the present model, we shall assumethat all trades are made with

an abstract market. The contract obliges its seller to deliver the good,

if he is solvent. A buyer, however, knows that some sellers may be

bankrupt. The contract entitles the buyer to a proportion of its face

value equal to the ratio of actual repayments to the total quantity of

outstanding contracts for this commodity. This actual payoutratio will

vary from commodity to commoditysince the sellers of different futures

contracts are, in general, different.

One wayof interpreting this system is that eVery buyer is assigned,

by the market, contracts of various sellers in proportion to his share

of the total contracts held. If buyers were risk averse and had no

information about the asset positions of any sellers, then this is the
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allocation that they would choose in order to spread the risk evenly
among themselves. Viewing ourallocation rule in this way,it is apparent
that this system (the use of an abstract market) is the polar opposite
of the full information situation in which every buyer knows the complete
asset position of every seller. However, since buyers’ information is
rarely perfect, and often very imperfect, this approach seemsjustified
as a modeling technique by its symmetry and simplicity. It also seems
to be a reasonable institutional rule becauseofits risk spreading prop-
erties under complete ignorance. We now proceedto a formal statement
of the model and assumptions.

10.4. The Model

Wewill be studying the existence of a temporary equilibrium at a date
that will be denoted by 1. There will be a future, denoted by period 2.
Past economic activity enters the model through the date of period 1,
as will be described shortly. There are /, commodities at date 1 and
£, at date 2; we write 2 =/, + £,. Commodities are non-durable.
A typical individual at date 1 is described as follows.

Naturally occurring endowment that accrues to him regardless of the
actions of others and is known with no uncertainty is written

w = (w',w)eR!.

It is further assumed that w' > 0, w* > 0 and the aggregate isstrictly
positive’.

Preexisting contracts that reflect the economicactivities of previous
periods andare subject to default as we shall describe below are written

e =(e!, e*)ER’,

that is, in previous equilibria the individual may have traded contracts
that are now due (e’), or he may have madefuturestransactionsinvolving

periodsstill to come (e’). Notice that no restriction is placed on the

> Weadoptthe following conventions for vector inequalities:

x > yimplies x; => y;for all i;

x > yimplies x; 2 y; for alli, and x; > y,; for somei;

x > yimplies x; > y, for alli.
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sign of e. However, we will later use the fact that the sum of preexisting

contracts over individuals must bezero.

Let us denote that e = e, + e_, where e,, = max (e,,0) and e_, =

min (e,,0). Contracts held are e, and contracts owed are e_. Some of

the contracts held may be in default. The extent of default will be

determined shortly. At present let us write r = (r',r?)€[0,1]' as the

vector of returns ratios on preexisting contracts. This vector will be

determined, along with prices, in the temporary equilibrium. If the

individual is holding preexisting contracts e,, and the returns ratios

are r, he is actually paid

re, = (ryeai,---, le +4).

Prices at date 1, to be determined in equilibrium, are denoted

p = (p', pe A‘, where A‘ = (pe R: |} py = 1}.

If the individual faces prices—returns (p,r), his wealth is given by

p:(w + re, + e_). We shall say that the individualis solvent or bankrupt

at (p, r) according to whether or not this expression is non-negative.

If the individual is bankrupt, the default rule modifies his endowment

in the following way: he is allowed to default an equal proportion of

all the contracts on which he is a debtor. This default proportion at

prices p and returns r is given by

d(p,r) = min {6 20|p-(w + re, + (1 — d)je_) 20}.

This is the bankruptcy law to which we havereferred in the last section.

At each (p, r) the endowment of the individual is given by

o+n(p.r)=o+re, + (1 —dp,r)e_,

(y(p, r) — (q'(p, r), n°(p, r)).

Thus the interpretation of y(p, r) is the vector of preexisting contracts,

after the bankruptcy law has been applied. By definition, the value of

the altered endowmentis non-negative.

Weshall let the numberof individuals in the economy be J and denote

the set of all individuals by S = {1,..., 7}. We denote quantities referring

to a particular individual by a pre-superscript i. In order for the default

rule to be feasible when applied simultaneously to all individuals, we

must have that the amount of contracts actually repaid equals the
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amount of outstanding obligations after the preexisting contracts have

been adjusted. This can be expressed as

—Y (1 = ‘dip, nen =Yess (10.1)
ieS ieS

for all k.

If eq. (10.1) is satisfied, we will say that r is a consistent returns vector

at prices p.

It can easily be observed that condition (10.1) may fail at an arbitrary

(p, r). The principle result of this section will be to show that for each

strictly positive pe A’, there is a unique consistent returns vector.

This result will be useful when we come to proving the existence of

an equilibrium, for in searching for an equilibrium it will suffice to vary

only p, letting + be determined endogenously as the unique returns

vector whose existence 1s asserted above. A second, technical, reason

for being interested in this result is that we will eventually apply a fixed

point theorem to the domain of the aggregate excess demand function.

For this, we will use the fact that the domain can be approximated by

a sequence of compact convexsets. If, in A‘ x [0, 1]/, the set of con-

sistent r at each p had a pathological shape, the application of fixed

point methods would be inappropriate. The uniquenessof the consistent

returns ratio vector avoids this potential difficulty.

In the model we have been discussing, debts are centralized in the

sense that everyone trades with an abstract market. However, it is clear

that this system is equivalent to a bilateral trading system with debts

appropriated in a particular way. Suppose that, on each contract, every

creditor holds the same proportion of the contracts of each debtor.

Thus, the proportion of his debt on contract k that debtor i owes to

creditor i’ is the share of total outstanding contracts on good k thati’’s

contracts represent.

Let p > 0 befixed. Let the debts owed by the various individuals,
when appropriated in this way, be written as a matrix T = [t,,], where
t;; is the value at prices p of the claims of individual i on individualj.

Let ¢,, = 0.

Let W be the vector of values of naturally occurring endowments of

the individuals at these prices. Let t; = )jes tj; T; is the total value of

the claims against individual j.
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Let

Thus, if in the bilateral appropriation of the debt we have chosen,
individuals are defaulting with proportions d = (‘d,..., ‘d), the vector

of wealth post-default is given by W + E(1 — d), where 1 is the vector

each element of which is one. For d to be an equilibrium default prop-

ortions vector for this way of appropriating debt, we must have

W+ E11 — d) 20

O<d<1 (10.2)
(W+ E(1 — d))-d=0

The interpretation of the last equation is that any individual whois

defaulting on some contracts (‘d > 0) must have zero wealth.

It is clear that this appropriation of debt gives rise to a system that

is equivalent to the original one in the following sense: if dis an equi-

librium of the bilateral trade system (i.e. satisfies eq. (10.2)) and prices

are p, then the returns ratiosr = (r,,...,/;,) calculated from the equations

—Y(1- die,
ieS

t=oS k=1,..2
» Crk
ieS

are consistent at p. Conversely, if r is consistent at p, then the default

proportions associated with (p, r), 'd = ‘d(p, r), satisfy (10.2).
Wewill use this equivalence in proving the existence and uniqueness

of a consistent r at each p > 0.

LEMMA 10.1. There exists a consistent r for any p > 0.

Proor. Assumethat, for each k, )jes ‘e_, # 0. If, for some k, this sum
is zero, we will be able to set r, = 1 without loss of generality, since

contract k will be held by no one. From the definition of ‘d(p, r), it is

clear that

p:(‘o + ee)
1 — ‘dp, r) = min] 17

—p-'e_
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Thus define, for re [0,1]' and k = 1,..., 2.

. per>, min} 1, 'e_,

Because ));'e,, = —)‘e_, it is clear that F,(r)e [0,1]. Let F(r) =
(F,(r), ..., F,(r)). The continuity of F is obvious. Hence F has a fixed
point, applying the Browerfixed point theorem. A fixed point of F is a
consistent value of r at prices p, by definition. (Note that the condition
p > 01s used to ensure that

p(@ + r'e,)/—p-'e_ # 0/0,
and hence that F is well-defined.) Q.E.D.

Let r* be a consistent returns vector and let d* = d(p, r*) be a vector
of default proportionssatisfying eq.(10.2). We will show that there exists
no other solution to eq. (10.2). Hence r* will be unique, except if there
is some commodity on which no contracts are outstanding in which
case the rf corresponding to it can be set equal to 1, with no effect on
any real variables.

Our proof of the uniqueness of d* relies on two basic facts. First,
aggregate wealth remains constant since the default rule only redistri-
butes preexisting contracts. Second, any individual i with ‘d > 0 has
zero wealth, by the third relation in eq. (10.2).

LEMMA 10.2. The system 10.2 has a unique solution.

PRoor. Let d* and d’ be solutions such that d* 4 d’. Let Q = {i|id' <
‘d*} #0. Let Q' = {i|‘d’ > ‘d*!. We must have that Q’ ¥ @, since
otherwise ‘d* > 0 for all i, every individual would be bankrupt, and
aggregate wealth would be zero, a contradiction. If any member of Q
is in debt to any memberof Q’, the aggregate wealth of members of Q’
is higher in the d’ situation than in d*. Every memberof Q is bankrupt
in the d* situation, since ‘d* > 0 for every ic Q. Thus no memberof Q
is in debt to any memberofQ’, for if so, the aggregate wealth of members
of Q would beless than zeroin the d’ situation, violating the consistency
of d. Thusall preexisting contracts between members of Q and Q’
involve the formeras creditors and the latter as debtors. Since contracts
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between two members of Q cannot affect the aggregate wealth of Q,

this aggregate must be at least as great as the value of the naturally

occurring endowment of Q. But this contradicts the fact that every

member of Q is bankrupt in the d* situation. Q.E.D.

We denote by r*(p), the unique returns ratio vector associated with

p > 0.It is obvious from definitions that r*(-) is continuous on int Al.

It should be kept in mind that r*(-) also depends on {(‘q, ‘e)} which are

data of the system at date 1.

10.5. Individual Behavior

Consider an individual who is faced with prices pe A‘ and returns

ratios re[0,1]‘. His endowment is modified by the default rule to
w + y(p,r). The individual is to select an action which consists of a

vector for current consumption, x, and a vector of purchases and sales

of futures contracts, b. If b, > 0, we will say that the individual has

purchased a contract for delivery of commodity k at time 2, subject to

the provisions of the bankruptcy—default laws; conversely, for sales,

b, < 0, delivery is promised subject to these rules. Note that the in-

stitutional rules of the economy enter directly into the nature of the

contracts themselves.

Wedenote an action by z = (x, b)e R’. We assume that consumption
sets are the non-negative orthants of the appropriate commodity space;

hence x 2 0. Norestriction is placed on the domainofb.

Wenext determine the consequences of an action. Consequences have

three components: consumption in each of the two periods, and the

extent of bankruptcy, if any, in period 2.

The second period has essentially the same structure as thefirst. At

any prices—returns combination, the individuals’ endowments are

modified according to the same default rules. There will, of course, be

only one consistent returns vector associated with each period 2 price

vector. However, since the returns vector depends on the preexisting

contracts of all individuals, any one individual cannot determine what

it will be if his only information is prices and his own actions. Wewill

use ~ over anyletter to denote the magnitude in date 2 that corresponds

to the one in date 1 represented by this letter.
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An individual having taken the action z = (x, b) has preexisting
contracts at date 2 equal to 9*(p, r) + b = é. If prices are p and returns
are r and

Pp (m* + Fé, + &_)>0,

the individual selects ¥ > 0 such that

Pp XS p(w’ + re, + €).

If the value of his wealth is negative, so that he must default on some
of his debt, he is forced to consume ¥ = 0. The extent of bankruptcy y
associated with this position is defined as

y = d(p, Fp é_

which is the value of the contracts on which heis defaulting. We define
d(:,*) exactly as d(-,°).
Thus the extent of bankruptcy is non-zero only when consumption

Is Zero, and conversely, consumption in the second period can be positive
only if the individual is solvent at that date.

Weassumethat the individuals’ attitudes regarding a consequence
(x, x, y) can be described by a von Neumann—Morgenstern utility
function u. The domain ofu will be all triples (x, ¥, y) satisfying xe R4,
xe R?, ye R_, and y¥ = 0, in accordance with the remarks above.
One should note that the domain of uw is non-convex becauseofthelast
condition. This will lead to a non-convexity in the demand correspond-
ence and henceto the fact that we will only be able to prove the existence
of an approximate equilibrium, following the methods of Starr [15],
with better approximations as the numberof individuals becomeslarge.
With respect to u, we assume:

(u.1) u(x, x, 0) is concave in its first two arguments;
(u.2) u(x, 0, y) is concave in its third argument for each xe R”?:
(u.3) u is strictly monotone in all its arguments throughout the

domain; and

(u.4) uw is bounded aboveby u.

Thus a solvent individual at date 2 will choose te R” to maximize
u(x, x, 0) subject to

rw?pi <p-(o*? + Fe, + é).



276 Jerry Green

Theutility of a bankrupt individualis u(x, 0, d(p, 7)pé _).
For each action (x, 6) at date 1, and every

(p, F)eintA” x [0,1]”

define @(x, b, p, 7) as the value of the second period problem ofan

individual who has taken this action and is faced with this situation.

Note that the function @ depends on the(p, r) faced at time | because

é varies with this through 4.

At time 1, the individual is assumed to maximize his expected utility

subject to the budget constraint that p-z< p'-(w' + y'(p,r)). We
describe his expectations as follows.

For each (p,r)e¢A’ x [0,1]' the expectations of the individual

regarding (p, 7) are given by the measure on A” x [0,1](with its
Borel o-field) denoted wW(p, r). Thus,

yw: At x [0,1]! > Mat. xpo.1yt-

For p* # 0, define

nip) = (p?/Sx pee A”.
Weassumethat w satisfies:

(w.1) w(-,-) 1s continuous in the weak topology;

(W.2) for every p > 0 and re [0,1]!, x(p)€ int co supp, Wp, r) where

supp, is the projection of the support on its first factor space, and int

co is ‘the interior of the convex hull of’;

(W.3) there exists an open set C GA” such that for every pe A’,

C supp, wW(p, r); the set C is assumed to be the same for every indi-

vidual; and

(w.4) for every (p, r)e A‘ x [0, 1]’

(i) Wp, r) ({(B, *) |b, = 0 for somek!) = 0
(ii) W(p, r) ({(B, 7) | #, = 0 for some k}) < 1.

We now discuss each of these conditions on yw. Assumption (W.1)

meansthat small changes in the environmentof any individual will give

rise to small changesin his beliefs. This appears to be a very reasonable

condition; it has been used by all previous writers in this area. Never-

theless, we should remark in passing that it would be violated by an

individual who behavesas a hypothesis-testing classical statistician. For

Bayesians, however, it will follow from some continuity conditions on

their underlying postulates.
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Assumption (w.2) is the condition that no individual believes that

any linear combination of futures contracts is sure to make an arbitrage

profit.

Assumption (w.3) is a compatibility condition on the expectations of

the various individuals. It asserts that there is some open set that 1s

always given a positive, though perhaps very small, weight in everyone’s

beliefs. We will discuss this condition and the necessity for assumingit

when it is used in the next section.

Assumption (.4)(i) is the condition that no prices are ever expected

to be zero. The reason forthis is that, since all goodsarestrictly desired

by the individual himself, and since the expectations concern his beliefs

about future equilibria, he can be sure that no goods will be free in

these equilibria. Assumption (w.4)(i1) asserts that futures contracts are

never expected to be worthless because of default with certainty.

Returning to the individual’s problem at date 1, he solves

max | d(x, b, p, F)dw(A, 7)
(x, 5)

subject to

pox+pbSp'-(w' +n'(p,H)).
Wedefine the individual’s demand correspondence as follows:

E(p, r) = {(x, b)| [ob (x, 5,p, F)dW(p, *) = G(x’, bY p, F)dW(A,7)

for all (x’, b’) satisfying

p'-x'+p?-b Sp’-(o'+ 9'¢,n)}.

The remainder of this section is concerned with various properties of

&(-,°). They are generally similar to standard results used in general

equilibrium theory and we will only indicate methods orcite the work

of others to conserve space.

Lemma10.3. Forall (p,r)eint A’ x [0,1], &(p, r) 4 @.

Proor. Using the boundednessof u from above, the concavity property

(u.2) and the no-sure-thing property (w.2), one may appealto the result

of Leland [11, theorem IIT], on the existence of optimal policies under

uncertainty.

LEMMA 10.4. &(-,-) has a closed graph.
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Proor. Using the methods of Grandmont[5], Sondermann [4] or
Green [3], this can be proven directly. The proof in our case will rely
on the continuity of (-,-), as well as on continuity of expectations
(w.1) and utility, which follows from (w.1) and (u.2).

LemMa 10.5. If <p’) eint A! and p/ > pe bdy A’, then there exists an
individuali such that if ‘2’ €'&(p’, r*(p’)), then || ‘z/

 | > 00.

PROOF. Wewill treat two separate cases:
(I) p* #0, and
(II) p? = 0.

In case (I) standard methodsapply directly, since the good that becomes
free in the limit can be purchased to a greater extent and the extra
expenditure can be financed with sales of a futures contract with a
positive limiting value. The required financing approaches zero in the
limit, and hence continuity of the expected utility index suffices to
contradict the optimality of any bounded sequence of actions for any
individual. Case (II) requires separate treatment, since financing in-
creased purchases of a futures contract may be impossible through
decreased purchases of current commodities as current consumption
may already be zero. We therefore offer a more detailed proof in this
case.

For each j, aggregate wealth is given by p’’ - )’;'w’. Since ¥; 'w' > 0
we have that, for j sufficiently large, there exists ¢ > 0 such that
p-Y,'o' =Te>0.

Thus there must be some individual i and some subsequence(retain
the index /) such that

pi (‘a+ 'y'(p!, r*(p/)) >
for all j, since otherwise aggregate wealth would converge to zero,
contradicting the statement above. Consider this individual to be fixed;

we Shall drop the index i for brevity. Let z/ = (x/, b’) and z! € E(p’, r*(p’))
and assume|| z/ || is bounded. Let a subsequencebeselected converging
to (x, 5).

Since b is bounded, p*/-b/ +0; hence, for j sufficiently large,
p’/-x/ > 6/2. In particular, for some further subsequence (retain the
index j), and some 6 > 0, there exists a current commodity k withp; > 0
such that x/ > 6,forall j.
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Thus, for some « = (a,...,a)¢ R”, a > 0, there exists a sequence

x/ +x and 0S x” < x’ such that

plz! = pl (x, b! + a) = pl (wo! + 4'(p!, r*(p’)))
By continuity of the expected utility index and strict monotonicity of

the utility function we obtain a contradiction; hence || z’|| must be
unbounded. Q.E.D.

10.6. Equilibrium

Let us define the aggregate excess demand, after convexification of the

individual demand correspondences, as

C(p..r) = D'E(p,r) — ()'@", 0}.
ieS ieS

That is, excess demand for current commodities is demand minus

supply; excess demand for futures contracts is the sum of offers to buy

such contracts minus offers to sell them.

Equilibriumis defined asa (p, r) such that 0 € C(p, r) and r is consistent

at p.

The proof of the existence of an equilibrium for this convexified excess

demandfunction will follow essentially standard lines, although at two

points the usual techniques will have to be modified. It is at these

instances that we will use assumptions (u.4) (bounded utility), (w.2)

(concave subjective bankruptcy penalty) and (wW.3) (existence of a

common open set that is always given positive weight).

It can be shown, given the existence of an equilibrium for the con-

vexified demand, that an approximate equilibrium exists for the original

economy. Forthis result, one can employ the methods of Starr [15].
An alternative approach would be to use an atomless measure space

of agents, in which case an exact equilibrium exists which can be viewed

as the limit of approximate equilibria for sequence of large economies

converging to it in a suitably defined way; see Hildenbrand [8] and
Hildenbrand, Schmeidler and Zamir [9].

10.6.1. A sketch of the proofof the existence theorem

Wewill now sketch the proof we shall use for the existence theorem and

point out those instances at which further reasoning, of a non-standard
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variety, is required. Both problems arise through the fact that, when
bankruptcy is allowed, the set of allowable actions is not bounded
below.

First, we observe that, by virtue of the results of section 10.4, it
suffices to consider, for each pe int A‘, only r*(p), the unique consistent
returns vector. Equilibrium could equally well have been defined as a
peint A‘ for which 0e€(p, r*(p)). Thus we let <S/> be an increasing
sequence of compact, convex subsets of int A such that }x o © Bint A‘
To each S/ we apply the fundamental lemma of Debreu [2] which, by
virtue of lemma 10.4, implies the existence ofp’ € S/ and z/e ¢(p/, r*(p’)),
such that p’- z/ = 0 and p- z’ <0 for all pe S’.
One then must show that {2z/! is bounded. This is the first point at

which some new arguments, based on the assumptions mentioned,
must be advanced. In the Arrow-Debreu model, the boundedness of z/
followed directly from p°-z’ <0 for some p°® > 0, p°eS°, and the
boundedness of the actions z from below (consumption sets bounded
below). One then must prove that if p’ > pe bdy A’, then {z/! is not
bounded. Usually this follows directly from lemma 10.5 and boundedness
of the consumption sets from below. But without this, it is possible that
although excess demands for two individuals becomelarge their sum
remains bounded because their speculations on futures transactions
‘cancel each other out’.

Combining these results, one has that (p/, z/) has a subsequence
converging to (p*,z*) with p*eint A‘. Because the excess demand
correspondence has a closed graph, z* €C(p*,r*(p*)), and z* =0
follows from p-z* < 0 for all pe int A‘.
We nowlay the groundwork for the two missing steps in the above

argument with the following lemmas.

LEMMA 10.6. Let C be an open subset of int A’*. There exists C* & C,

C* open and a real number 6 > 0 such that, for any partition, P, of the
indices {1,...,4 } into two non-empty subsets K, and K _, there exists
Vg SC, an open set with the property that

Pé Vou, p* € C*

implies

Py — Dé > 0 forke K_
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and

Pe — Di < —O forkeK,.

Thus, for any partition A=(K,, K_) where +#K,=a, and
#*K _ = a_ are the number of members of K , and K_, we have

,  ) Pe t+ €a_ forkeK,
Pe = Pe — €Q4 forke K_

is in C. (Note that p,¢ A”? by construction.)
Let C* be the ¢/4-ball about p°, and Va the ¢/4-ball about pz. Let

0 = &/2. Vg is clearly open and Vo SC because | p, — py «| < 6/4 and
Px — Pax| < 6/2 imply | p, — pz

|

< B. To show the property stated in
the lemma, choose pe Vz and p*€C*, drop the index Y, considering
the partition to be fixed, and let ke K, be fixed.
By definition of p’ we have

 

  

ES&a_ =p, — py.

Since pe V and p* € C* we have

Pe < De + 8/4,
Pe < Py — 8/4.

Combiningthe last three relations, we have

Pe — Pe < — &/2 = — 6.

Exactly analogous reasoning can be used for ke K_. QO.E.D.

LEMMA 10.7. Let T be open in C; then

Walp. r)(T) = Wp, r)({B, FEA” x [0,1]? |peT})
is bounded away from zero as a function of (p, Vr).

PRoor. Let

(p, FEA? x [0,1]? |peT} =X.

Suppose that w(p,r)(X) is not bounded away from zero. Then there
exists a sequence <(p’, r’)> such that (p/, v)(X) > 0. We can assume,
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without loss of generality, that (p’, r’) > (p, r). By the weak continuity

of w (assumption (w.1)) we have

liminf wip’, r)(X) = Wp, r)(X),

since X is open in A’? x [0, 1]'*. (The equivalence of weak continuity

to this statement may be found in Parthasarathy [12].) Therefore

wW(p, 7)(X) = 0. Then W(p, r)((A” x [0, 1]’2)\X) = 1. But this contradicts

(.3) since, if it holds, we have W(p, r)({p, 7)e A” x [0, 1]? | pe C\T})’

= | which implies supp, w(p, r) S C\T. This contradiction establishes

the lemma. Q.E.D.

The index i of an individual is deleted throughout the following lemma

in which the demand for futures contracts is characterized, to shorten

the notation.

LemMMA 10.8. Let z/ = (x/, b’) and ze E(p/, r*(p’)) for j = 1, 2,.... There

exists a number B such that|| b’|| > B implies

Pp (@ + nlp’, r*(p’)) + 6) 2 0

for all pe C*, where C* is the set whose existence is asserted in lemma

10.6.

PRoor. Suppose not. Then one can extract a subsequence diverging to

+00 in norm such that, for each j, there exists p/e C* and p’-(w +

n(p', r*(p/)) + b/) < 0. If {6%} is bounded above, then p-(@ + 9’ + b’)

< 0 for all pe C* (where we have written 9’ for n(p’, r*(p’))). Since the

utility function diverges to — co as its third argument becomeslarge

and negative (follows from (u.2), (u.3) and (w.4)), and since W(-, JB, 7) |

p € C*}) is bounded awayfrom zero by lemma10.7 andsince u is bound-

ed above (u.4), the expected utility of these actions diverges to — 00.

Since x = ¥ = y = 0 is alwaysattainable with certainty, this violates

z/e &(p’, r*(p’)) for large j. Thus {5} is not bounded above.

Hence, for a subsequence which we can assumeto be the original,

there exists a partition 7? = (K,, K_) of the indices {1,...,/,} such that

bi > «© for some ke K ,

and {bj} is bounded below for all ke K, and

bi> for some ke K-

and {bj' is bounded above for all ke K_.
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Let Vz and 6 > 0 be as asserted in Lemma 10.6. We havethat, for
all p'e Vg and pe C%,

Piotr +bh)<p(wot+y + b)- d|lot+ n+ 8']

The first term on the right is non-positive and the second diverges to
— oo. Hence, using the same properties of utility and expectations
appealed to in the case of {b’} bounded above, the expected utilities
of {z/! must diverge to — co, contradicting z/ € &(p’, r*(p’)). This contra-
diction establishes the lemma. Q.E.D.

LEMMA10.9. Let <p’) € int A‘ and p/ > pe bdy A’:

let z/€C(p’, r*(p’)); then ||z/|| > oo.

PROOF. Let

g= (x!, b’) _ ¥ (ix/, 'b’).

ieS

By lemma 10.5, there exists an individual i such that||(‘x/, ‘b’)|| > oo.
                                                 

the result of the lemma holds.
Thus assume that {'x’} is bounded for all i, hence that ||‘b’|| > 00

for some i. Let S’ = {ie S| ||'b’|| > 00}. By the last lemma,

p('o + 'n(p’, r*(p’)) + ‘b’) 20

for all pe C*, and all ie S’. Since C* is open we havethat

p('o + 'y(p’, r*(p’)) + 'b!) > x0
for pe C*, ie S’, as j becomeslarge. (It is at this point that the openness
of C, and hence C*, becomes crucial). Hence,

B (Lio + Ling’, rp) + Yb)>

for such i, j and p. But Di ‘n(p’, r*(p’)) = 0 because r*(p/) is consistent

at p’ by definition. Since ‘w is constant, the limit above implies y‘bi > 00
for some k. Q.E.D.

THEOREM. There exists an equilibrium for the convexified economy.

Proor. Let D’ be an increasing sequence of compact convex sets in
int A‘ such that int A! ¢ |),D’ Applying the lemma of Debreuto the
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convexified aggregate excess demand ¢(-, r*(-)) restricted to each suc-
cessive D/, we obtain the existence of a sequence <p’, z’> in A' x R‘such
that p’-z’ = 0, z/€ C(p’, r*(p’)) and p-z’ <0 for all pe D* for each j.
Wefirst show that {ih so constructed, 1s bounded.

If || x’ || 00, then ||b/|| > oo, for otherwise p-z/ >0 for some
peéD". Henceit suffices to show that {b/} is bounded. If not, then, by
lemma10.8,

PO'o+b)>0

—

forall pect.

Since C* is open,

Pp (Y'o + b)>

Let p and j be selected such that, for some « > 0, p = (p!, ap) €D" for
some pe C*. Thus p- z/ > co since x/ > 0. But this contradicts p- zi <
0 for j = j. Hence {z/) is bounded.

Extract a convergent subsequence <p’, z/> > (p*, z*)e A! x R? (re-
taining the index j). We have that p* € int A‘, for if not, {z/' would be
unbounded according to lemma 10.9. It follows that z* € C(p*, rp").
since ¢ hasa closed graph.Ifz < Ofor some k and z* < 0, then p*- z* #
0, contradicting p’- z/ = 0 for all j. If z* > 0 for some k, we obtain a
contradiction to p:z* < 0 for all peint A by considering

p=(e,...,1 —(, — L)é, & ..., €)

for ¢ > O sufficiently small, where the element 1 — (f, — lL)e is in the
kth place. Q.E.D.

COROLLARY. There exists an approximate equilibrium for the original
economy.

The methods of Starr [15] can be used to prove this. We omit the
demonstration; see also Arrow and Hahn[1], ch.7.

10.7. Conclusion

In this paper we have explored a typical period in a model of pure
exchange with the features that markets are known to reopen in every
future period, and markets exist for all commodities, current and future,
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at the present date. In this way, time has been incorporated explicitly

into a general equilibrium theory. The model has the property that the

institutional structure of sequential trading is validated by the need and

choice of the agents to trade at each date. Further, the system can be

viewedas generating a sequence of such temporary competitive equilibria

because the results of previous equilibria will give rise to economic

environments satisfying the assumptions needed for existence of an

equilibrium in any given time period.

These assumptions seem to be quite mild. Further investigation

along these lines will have to make stronger qualitative assumption on

the basic data of the system in order to deduce results in comparative

statics or limiting results on the sequence of temporary equilibria. Other

open questions concern the role of firms in models of uncertainty and

the incorporation of expectations generating hypotheses that will be

useful in studying properties of the model. It is hoped that models of

this type will provide a framework for the study of monetary theory.
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COMMENTS

On preexisting contracts and temporary equilibria*

Bernt P. Stigum

C10.1.1. Discussion

In his paper ‘Preexisting contracts and temporary general equilibrium’,
Green studies ‘a model of general economic equilibrium over time in
which the markets for trading commodities are open at every date’
(cf. [3], p. 263). His main objective is to establish (1) codes of conduct,
and (2) sufficient conditions for the existence of a temporary equilibrium
in a model in which there is a real possibility that one or more con-
sumers might go bankrupt.

Green’s paper provides manyinteresting insights into the problems
of modeling the behavior of individuals in a ‘bankruptcy world’. But the
paperalso hasseveral serious defects which should be pointed out. First,
Green’s model is theoretically weak for reasons detailed in sections
C10.1.1.1-C10.1.1.4 below.

C10.1.1.1. Green considers a two-period exchange economy which
operates in a world in which there exists one and only one state of

* Sponsored by the United States Army under Contract No. DA-31-124-ARO-D-462.
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nature. This economy possesses in period 1 markets for current com-

modities and for claims onall (!) future (i.e. period 2) commodities. In

period 2 it possesses markets for period 2 commodities only. Thus the

institutional structure of the Green economydiffers from the Arrow—

Debreu economy[2, ch. 7] only in the fact that markets are allowed to
open in period 2.

In the Green economy, individual consumers in period 1 entertain

expectations about period 2 prices that are multi-valued with respect to

the state of nature. These expectations depend both on the prices of

current goods and on the futures prices of period 2 goods. Moreover

they satisfy certain reasonable postulates (cf. [3], p. 276).

It is true and ought to be obvious to Green’s consumersthat by acting

in accordance with these expectations they will end up with a suboptimal

allocation of resources over time. If they instead all behaved as if the

futures prices of period 2 goods equalled the present value of the true

period 2 prices, then they would achieve a Pareto-optimal allocation of

resources, they would not have to worry about the possibility of bank-

ruptcy in period 2 and they could dispense with markets in period 2

altogether.

I can’t help but believe that consumers in Green’s economy would

eventually decide to behave like ordinary Arrow—Debreu consumers

rather than in the way predicted by Green.

The preceding criticism would notbe a serious one if Green’s objective

were only to model the first-period behavior of an economy in which

consumersin period | could not determine the price at which commo-

dities were to be exchanged in period 2 because,say, of a lack of certain

futures markets. Then Green’s model could have been justified by saying

that the allowance of a complete set of futures markets in period 1

enabled Green to simplify his notation without decreasing the generality

of his results. However, Green is not interested just in the first-period

behaviorof his economy. He1s in fact attempting to model the behavior

of his economyover two periods. For that reason I considerit a serious

criticism.

In this respect note also that if Green were to meet the criticism

detailed at the beginningof the section, 1.e. if he were to throw out one

or more futures markets, he would simultaneously have to make drastic

changesin other facets of his model. For one thing Green would have
to modify his bankruptcy law since he would have no wayofevaluating
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the vector (w + re, + e_) [3, p. 270] and hence of determining d(-)
and x(-) [3, p. 270]. Actually if Green were to modify his bankruptcy
law, it would improve his model. I will now give the reasons whyit
would improve his model.

C10.1.1.2. Green treats the concepts of bankruptcy and negative net
worth as synonymous. Thisis all right in an Arrow—Debreu world(cf.
[2, ch. 7]). It is also all right as long as we discuss consumer behavior
in Arrow and Hahn’s one-period model (cf. [1, ch. 3]). However,it
makes nosense at all when we discuss consumer behaviorin period 1
in Green’s model. There, as in the real world, a consumer should not
have to declare bankruptcy as longasheis able to obtain enough funds
(by borrowing or otherwise) to meet his currently maturing obligations.

Just how unreasonable Green’s bankruptcy law is can best be seen
by considering two simple examples.

EXAMPLE C10.1. Consider a consumerin period one in Green’s economy
with ‘naturally occurring endowment’ w = (w', w*) > 0, and with pre-
existing contracts e = (e', e*). Suppose that he faces the price vector
p = (p', p*) and the return vector r = (r', r?), and that

pi(rie, te!) >0, (C10.1)

p*(r°ez + e2) <0, (C10.2)

Pm + re, +e_)<0. (C10.3)

This consumer has no difficulty meeting his first-period obligations.
Moreover, sincep? is only a point forecast of period 2 prices,it is entirely
possible that there are vectors (x', b) with x! > such that

pix' + p*b= p'(w' + r'e, + e!), (C10.4)

and such that in the mindsof all consumers in the economythe prob-
ability is greater than 0.999 that

plo’? + rb + reek + e2), + (b+ ret + e2)_] 20, (C10.5)
where p and ¢ denote the actual period 2 price and return vectorre-
spectively. Yet according to Green’s bankruptcy law the consumeris
bankrupt at (p,r) and his endowment must be modified to allow for
this fact.
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I think it is unreasonable to declare the consumer in example C10.1
bankrupt. He contracted e with the promise to meet his e! obligations
in period | and his e* obligations in period 2. As an honorable man he
should only have to care about whether there exist vectors x! >Oand b
which satisfy eq. (C10.4), and which satisfy eq. (C10.5) with ‘sufficiently
large’ probability. The signs of the left-hand sides of (C10.1}(C10.3) are
irrelevant.

EXAMPLE C10.2. Consider an economy in which /, =/,=1 and
assumethatin this economythere is a consumerwith naturally occurring
endowment w = (w', w’) = (33, 9) and preexisting contract e = (e!, e?)
= (0, —18). Assume also that this consumer faces the price vector
p = (p', p*) = (4/7, 3/7) and the return vector r = (r', r?) > 0, and that
he orders (x, X, y)-vectors according to the values assumed by the
function

U(x, X, y) = \/(x) + (1/6)% + (1/12)y, (x, ¥) 2O,y <0. (C106)

For this consumer the fraction d which satisfies

(4/7)w' + (3/7)(m? + (1 — de2) = 0 (C10.7)

is given by

d = 1/4. (C10.8)

The fraction d whichsatisfies

jminplo + #(b + (1 — dje2), + (1 — d)(b + (1 — dje2)_] =0
i (C10.9)

is given by

ifb >9/2. (0
d= ‘ne — 2b)/(27 — 2b)] for b < 9/2. (10.10)

 
Moreover, if E{:|p,r}; denotes the conditional expectation of (-) given
(p, r), and if when p andr are as above,

E\(p, ¥)  p.v} = (1, a), (C10.11)

where 0 < a < 1, then it is easy to show that the consumer’s indirect
first-period utility function and its partial derivatives are given by
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F(x, b, p, r) = E((x, 5, p, *)| p, r}

\/(x) — [(9 — 26)/24] for b < 9/2, x 20
J(x) + 1/6)(b — 9/2) for 9/2 < 6S 27/2,x 20 (C10.12)
J(x) + (1/6)(9 + a(b — 27/2)for b > 27/2, x 20

 

(AF/dx)(x, b, p, r) = 1/2,/(x), x =0, (C10.13)

1/12 for b S 9/2, x 20

(OF/0b)(x, b, p,r) = 1/6 for 9/2 < bS 27/2 (C10.14)

a/6 for b > 27/2.

With little algebra it follows easily from eqs. (C10.13) and (C10.14) that

(x, b) = (81/4, — 45/2) (C10.15)

maximizes F(x, b, p, r) subject to the constraint

(4/7)x + (3/7)b = 27/14. (C10.16)

The important point to notice about example C10.2 is that at the

beginning of period 1 the consumer has a second-period debtof 18 units

of e? which (since his net worth is negative) is considered extravagant

and is promptly written down so that it equals 27/2 units of e*. At the

end of period 1 the consumer owes 45/2 + 27/2 = 36 units of e*! More-

over, he knows that he will be bankrupt in period 2 with probability 1.

I think that a code of conduct and a model which allow such a situation

to arise are unreasonable. Note that the model in example C10.2 does

not violate any of Green’s assumptions except the assumption that

U <U [3, p. 275, assumption (u. 4)] which is unimportant for the

example.

The reader might think that I picked an unreasonable pair of prices

(p', p*) in example C10.2, one which could never represent equilibrium

prices in Green’s economy.Thatthis is not so can be seen from example

C10.3 below. But first one more serious criticism of Green’s model.

C10.1.1.3. A temporary equilibrium in Green’s economy is a vector

(p, r,(x', b)',..., (x', By’),

wherep is a strictly positive price vector and r is a return vector, and

where for each i(x', b)', i = 1,..., I, isa vector of period 1 commodities
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and claims on period 2 commodities which consumer i demands at
(p, r) and whichsatisfies the equations

Ler b) = Yio, (C10.17)

In such an equilibrium consumerscan bepartitioned into three groups
N,, Nz, N3 with the following properties. Consumer i is in N, if and
only if he believes that he will be solvent with probability 1 in period 2.
Consumerj is N, if and only if he believes that he will go bankrupt with
probability greater than O but less than 1. Consumerk is in N; if he
believes that he will go bankrupt in period 2 with probability 1. One
or two of these three groups may be empty. What is important to note
is that Green’s assumptions do not preclude the possibility that N3
might contain one or more consumers.

It seems to me unlikely that institutional arrangements in practice
would be such that a consumer would be allowed to buy a vector(x’, d)
if it entailed his going bankrupt with probability 1 in period 2. Thus
Green’s model which permits temporary equilibria that allocate such
‘bankruptcy pairs (x', b! to one or more consumers appears unreason-
able to me.

Here is an example which illustrates what I have in mind.

EXAMPLE C10.3. Consider an economy in which there are two consu-
mers A and B and in which /, = £, = 1. ConsumerAhas ‘naturally
occurring endowment w, = (5, 5), initial holdings of securities e, =
(— 10, 0), and utility function

Una(x, ¥, y) = \/(x) + (1/16,/5)% + (1/16./5)y, (x, ¥) 20, y SO.
(C10.18)

Suppose consumer A believes that, regardless of the value of (p, r),
(p, ¥) = C1, 1) with probability 1. His indirect utility function is then
given by

F(x, b, p, r) = ./(x) + (1/16./5)(5 + b), x 20, —0 <b < &.
(C10.19)

B has ‘naturally occurring endowment’ wz, = (15, 5), initial holdings of
securities eg = (10, 0), and utility function

U(x, % y)=x+ 10/(%)—y?, (x, 2) 20,y <0. (C10.20)
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Suppose, consumerB too believes that, regardless of the valueof(p,r),

(p, #) = (1, 1) with probability 1. Then his indirect utility function is

given by

x + 10,/(5 + b) for b = —5, x 20,
C40.21

x —(5+4+ 5) for b < —5,x 20. ( )
F,(x, 6, p, r) =

It is easy to show that there is one and only one temporary equilibrium

in the economy, namely

(p, 1, Xa, Ba, Xp, bp) = (4/5, 1/5, 5/8, 20, —85, 0, 85),  (C10.22)

with d = 3. In this temporary equilibrium consumer A is allocated

(x,, b,) = (20, —85). Since wk = 5 he will start out period 2 with net

worth equal to —80 and will be bankrupt with probability 1.

Example C10.3 displays an economy which has a unique temporary

equilibrium during period 1. This equilibrium allocates a vector (x', b)

to one consumerwhichentails that he will be bankrupt with probability 1

in period 2. The model describing this economy, therefore seems to me

to be unreasonable. Yet it satisfies all of Green’s assumptions except

U(-) < U,i = A,B.

Note also that, in the temporary equilibrium portrayed in eq. (C10.22),

consumer A borrows(i.e. promises to supply) 85 times the available

supply of the second-period commodity. Yet he believes that r = 1

with probability 1. This too seems unreasonable. If a consumer takes a

position in (x', b) which entails that he will go bankrupt with prob-

ability 1, he should also know that * < 1 with probability 1.

If one wants to avoid temporary equilibria of the sort portrayed in

eq. (C10.22) one must impose lower bounds on b. In example C10.3 a

natural lower bound would be 6 2 —5 for both A and B. In a more

general economy with 2, > 1 such bounds are not as easily derived.

Onepossibility would be to insist that, for each and every consumer

p-(b + 47(p,r) + w’) 20.

Such a bound would certainly make sense in Green’s model since then

Green’s assumption (W.2)(cf. [3, p. 276]) would ensure that each con-

sumer would choose (x', 6) in such a way that he would believe that

he would be solvent in period 2 with positive probability.
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In my own work on temporary equilibria (which preceded Grand-

mont’s and Arrow and Hahn’s work by several years). I have often

insisted that consumers in choosing (x’, b) observe an inequality of the

form b 2 a, where a is an exogeneously determined vector which may

vary from one consumer to another. By choosing a judiciously, one

should be able to avoid a situation in which people in one period can

borrow so muchthat they will go bankrupt the next period with prob-

ability 1.

So much for temporary equilibria and bankruptcy. Next a comment

on Green’s first-period budget constraint.

C10.1.1.4. Green insists that a consumeris bankruptif

p(w + re, + e_) <0. (C10.23)

Here the left-hand side involves both the consumer’s first and second-

period ‘naturally occurring endowments’ w = (w’, w”). It also involves

both his first and second-period holdings of securities e = (e', e”). Yet
the consumer’sfirst-period budget constraint is given by

pix! + p*b< p(w! + n'(p, Vv), (C10.24)

where the right-hand side gives the value ofhis first-period endowment

after the bankruptcy law has been applied.

I think (C10.23) and (C10.24) are incongruous, and I am quite sure

that no one consumer in Green’s economy would accept (C10.24) as his

first-period budget constraint. Certainly, since securities in Green’s

model are traded in an abstract market, consumers cannot distinguish

between e? and b. Therefore p*y7(p, r) should appearon the right-hand
side of (C10.24). Moreover, as long as Green insists that (C10.23)

provides the ultimate test of whether a consumeris bankruptin period1,

p’w* presumably ought to appear on the right-hand side of (C10.24).

Consequently, the ‘right’ budget constraint faced by each consumer in

period 1 is not (C10.24) but instead

p'x' + p*b < p(w + nlp, r)). (C10.25)

If we were to modify Green’s model by substituting (C10.25) for (C10.24),

we would also have to change the consumer’s second-period budget

constraint to

pe < ptb, + b_).
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Moreover, we would have to change the aggregate excess demand

function to

I

c(p, r) — LSP, r) _ ‘w).
.

Other than that the statements and proofs of Green’s results would with

only obvious modifications still hold.

The precedingcriticisms explain my major reasons for thinking Green’s

model is unsound. In addition I have three minor comments con-

cerning Green’s paper:

(1) Consumers in Green’s model are penalized for being bankrupt in

period two, but not for being bankruptin period 1. At least, so it seems

to me since it is perfectly possible to be bankrupt in period 1 and be

solvent in period 2. I do not understand whyit 1s worse to be bankrupt

in period 2 than in period 1.

(2) Green’s discussion of previous work on temporary equilibria 1s

misleading. The idea of a temporary equilibrium wasfirst introduced in

a ‘formal general equilibrium model(cf. [3], p. 263) in my paper on

‘Competitive equilibria under uncertainty [4], which was privately
circulated in 1966, presented at the Winter Meetings of the Econometric

Society in Chicago in 1968 and published in the Quarterly Journal of

Economics in November 1969. Grandmont’s model is a special case of

my model which considers only one state of nature, one security, two

periods, and noinitial endowments of preexisting contracts. Moreover,

sufficient conditions for the existence of a temporary equilibrium in a

bankruptcy world were first given in my paper ‘Resource allocation

under uncertainty [5] which was presented at the Winter Meetings of
the Econometric Society in New York in 1969 and published in the

International Economic Review in October 1972.

(3) Green’s statement aboutthe fulfilment of contracts in an Arrow-

Debreu world (cf. [3], p. 266) seems incorrect to me. Since Debreu does
not make any assumption about how consumersorder commodities in

future periods, Green’s assertion that ‘even if it were possible to reopen’

markets in future periods, ‘no-one would want to engage in trade at the

equilibrium prices that would emerge’ cannotbeverified.

To conclude my discussion of Green’s paper, I will give a simple

example of an economy whichsatisfies Green’s assumptions and yet
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does not possess a temporary equilibrium. The example shows why

Green’s seemingly weak result about the existence of é-equilibria cannot

be improved upon.

EXAMPLE C10.4. Consider an economy in which there are two consu-

mers A and B and in which /, = /, = 1. Assumethat w,, e,, and U,(-)

are as in example C10.3. Moreover, assume that

U,(x, %, y) = x + (1/4) — y?, (x, %) 0,» <0, (C10.26)

and that wg, and e, are as specified in example C10.3. Finally, assume

that both A and B expect that (p, r) = 1 with probability 1 regardless

of the observed value of (p, r). Then A’s indirect utility function 1s given

by eq. (C10.19), and B’s is given by

x + (1/4)(5 + 5) for b => —5,x =0,
C10.27

x —(5 +b) for b< —5,x 20. (
F,(x, 5, p, r) =

Using Green’s bankruptcy law it is easy to see that with r = min (3(1 +

(p?/p')), 1) A’s optimal choice of (x, b) is given by

(320(p?/p')?, —320(p?/p') — 5) for (p?/p") $1,
1 2, _ and

(ar Pa)(P > P=) (320(p2/p1)?, —320(p2/p") — 5("/p?)
for (p2/p') > 1. (C10.28)

Moreover B’s optimal choice of(x, 5) is given by

(0,20(p!/p2) + 5) if (p?/p') < « = 0.249827
((p?/p')?/2 + 10(p?/p') + 20, —5 — (p*/p')/2)

(Xp, b,)(p', p’) = if a S (p*/p') < I, and

((p?/p')*/2 + 5S(p?/p') + 25, —5 — (p*/p*)/2)
if (p2/p') > 1. (C10.29)

From eqs. (C10.28) and (C10.29) it follows that this economy doesnot

have a temporary equilibrium in period 1.

One more look at (C10.28}(C.10.29) will show that A’s choice of

(x, b) is uniquely determined for all pairs (p’, p*). B’s choice of(x, 5)is

uniquely determined for all pairs (p', p) such that (p?/p') # a When
(p?/p') = «, B is indifferent between (x, b) = (0, 85.05) and (x, b) =

(22.53, — 5.12). Thus if we were to convexify A’s and B’s demand cor-

respondences as Green does, we would find that the ‘convexified’
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economypossessed one and only one temporary equilibrium in period 1,

namely

(p, r, Xx, By, Xp, bg) = (1 + a)~*, w/(1 + ow), (1 + &)/2, 19.97, — 84.94,

0.03, 84.94). (C10.30)
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REPLY TO COMMENTS

Jerry Green

The remarks by Professor Stigum can beclassified into three broad
areas: methodological criticisms concerning the structure of a model in
which there are future markets in the present that reopenat a later date,
objections to the definition of bankruptcy, andcriticisms of the budget
constraint. I will take issue with each of these and will try to indicate the

reasonsfor the path I have followed in the paper.

At the top ofp. 287, the discussantstates that ‘... thus the institutional
structure ofthe Green economydiffers from the Arrow—Debreu economy
only in the fact that markets are allowed to be open in period 2’ [my
italics|. This is correct, but the discussant has not perceived that many
of the generalizations of the Arrow—Debreu model whichare currently
being studied lead to the institution of sequential trading. My paper,
while not addressing any of these generalizations directly, has tried to
recast the institutional structure of general equilibrium theory in such
a way that it will be able to handle, in a consistent fashion, some of the
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more complex phenomena which cannot be modeled in the Arrow-—

Debreu framework. Amongthe motivations for adopting the alternative

structure, we can cite the work of Hahn on transactions costs, Radner

on differential information, and the numerous contributions to the

overlapping generations’ literature. If any of these are present in the

Arrow—Debreu system, there may be a mutual incentive for agents to

reopen markets at later dates, as the economy evolves in time. This

reopening will cause them to recast their decision problem at theinitial

date andit is on this re-evaluation of the equilibrium at the initial date

that I have tried to focus.

Professor Stigum’s comments on ex postefficiency and his insistence

that individuals would realize that they would be better off with the

Arrow—Debreu frameworkindicate that he believes my modelto be a

substitute for the Arrow—Debreu model in the same economic environ-

ment. I do not view it in this way; andit ts in fact only the differences

in the economic environment that can justify the difference in the

institutional structure I have chosen. However, rather than introduce

many things at once, I tried to pose a model as close as possible to the

Arrow—Debreu pure-exchange model, but with sequential trading

possible. This would focus on the differences in the institutional frame-

work as distinct from those introduced by additional complexities in
the systems.

The discussant thinks that using a different definition of bankruptcy

would improve the model. The proposal is to say that an individual1s

bankrupt if he cannot meet his currently maturing obligations “by

borrowing or otherwise’. But this will surely lead to inconsistencies,for,
since the market is anonymous, everyone would carry vast amounts of

debt throughouttheir lifetimes, consumingat unrealistically high levels.

The proposed definition might be a good onein the context of a bilateral

trading model wherecredit can be rationed accordingto the individual’s
asset position, as I suggest mn section 10.3 of my paper. This criticism

of the bankruptcy law should really be a criticism of the anonymity

of the market, and one with which I would certainly agree. We are in

need of a good bilateral general equilibrium model, but let us not put

the burden of the inadequacy of a market equilibrium model whereit

does not belong.

One should also note that adopting Professor Stigum’s suggestion in

this regard would force us to declare individuals bankruptif they could
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not meet current obligations regardless of the fact that they might be

able to borrow against their (large) future naturally occurring endow-

ments to regain solvency — and they would be able to honor these

commitments with certainty.

In his example C10.1, the discussant thinks that p? is a ‘forecast’ ofp,

but this is clearly incompatible with ‘... all consumers in the economy

[believing] the probability is greater than 0.999 that

plo?* + Hb + et + e*), + (b+ et + e2)_] 20
If this were the case, speculative forces would have lead to p* being a

disequilibrium. I believe, therefore, that the argument of the example 1s

inconsistent.

I see nothing pathological with example C10.2. The consumerbelieves

that he will certainly be bankruptin period 2 and takes this into account

through the subjective (non-economic) bankruptcy penalty. The con-

cavity of this penalty function insures us that his actions will be de-

terminate at any p, regardless of his expectations (if they fulfil the

assumptions stated in my paper). They are not a priori bounded from

below, as the discussant suggests I assume — and on which hestates

that he has‘often insisted’ (p. 292). It is just such an assumption, grounded

on neither rationality nor institutional restrictions, that I tried so hard

to avoid. Actions in my model are not bounded below on purpose.

Overcoming the technical difficulties created by this desire for a lack of

a priori non-economic bounds, unlike the corresponding conditionsin

the Arrow—Debreu model which are well motivated, was one of the

major goals of the paper.

In discussing his example C10.3, the discussant has lost sight of the

competitive character of the model. If an individual knowsthat he will

certainly be bankrupt, then, it is true that he can infer that *, < 1 for

all commodities in which heis a net debtor. But this gives him no reason

to believe that 7, will be any different for the other commodities andit

is only these that are relevant to him. Thus, the discussant’s comments

in the second paragraphfollowing this example seem to me completely
irrelevant and misleading.

Professor Stigum says that I use a bankruptcy constraint that is

inconsistent with the first-period budget constraint. This view is mis-

taken. There are two markets in period | — the market for period 1

commodities and that for contracts for claims on period 2 goods (with



Reply to comments 299

a bankruptcy clause in the contract). The consumer’s excess demand in

these two markets at date 1 is simply, w! + 4'(p, r) — x’ and b,respect-

ively. Hence the budget constraint, p'x' + p?b < p'(w' + n*(p,r)). The

quantities w? and 97(p, r) have nothing to do with market excess demands

at date 1 and therefore do notenter into the budget equation. They do

play a role in determining the individual’s wealth position and hence

bankruptcy status, which we have argued above should berelated in

the indicated manner in an anonymous market model. Hence they

appear in the bankruptcyrelation.

If we were to follow Professor Stigum’s suggestions at the foot of

p. 293, we would beled to an inconsistency. Consider a consumer who

desires simply to consume his endowmentatall prices and for whom

n(p, r) = 0. If his budget constraints were (i) p'x' + p°bS p:(@ +
n(p, r)) in period 1, and (ii) px < p(#b, + b_) in period 2, he would

have to choose x! = w! and b = w’, according to (i). But then his

contracts held in period 2, b,, would be subject to the market rate

default even though he traded with no-one!

My modeltried to make a distinction between preexisting contracts

with others, which are subject to default, and naturally occurring

endowmentwhichis certain. Adopting Professor Stigum’s modifications

would necessitate destroying this feature of the model, which I believe

to be a desirable one.

I do not include a ‘bankruptcy penalty’ in period 1 because, from the

individual’s point of view, this is a datum and not a choice variable at

the equilibrium prices. I never meant to imply that bankruptcy in

period 1 is better than in period 2 — but only that, if it does not affect

the period 1 excess demand function, we need not considerit explicitly.

I did not want to crowd an already messy set of notations and hence

did not make explicit reference to this utility loss.

Although I realize that alternative concepts of bankruptcy are pos-

sible, I have not been successful in finding any others which are inter-

nally consistent and preserve the economic phenomenathatI tried to

model.



       



CHAPTER11

COMPETITIVE RESOURCE ALLOCATION
OVER TIME UNDER UNCERTAINTY*

Bernt P. Stigum

11.1. Introduction

In this paper we study competitive resource allocation over time in an
exchange economy which operates under uncertainty over infinitely
many periods and whichfaces a tree structure of events with the property
that, at each point in time, one of at most a finite number of events can
occur. Like mostreal life economies, this one possesses in each period
markets for current goods and for currently available securities (i.e. for
contingent claims on future purchasing power) but not for contingent
claims on future commodities. Our object is twofold:

(1) to ascertain whether there exists a family of temporary compe-
titive equilibrium allocations of goods and securities — one allocation
for each possible event — such that, as events occur, the economy can
move along the resulting time path of equilibrium allocations without
having to redistribute purchasing power in any period; and

(2) to determine whether or not the economy can achieve a Pareto-
optimal allocation of resources over time.
The answers to these two queries have practical bearing on public

policy. For example, pursuit of a vigorous anti-trust policy makes good
sense in an economyonly if the scale economies are small and if the

* Theideas of this paper were presentedfirst in ‘Optimalallocation of risk-bearing over
time’, Evanston,in April 1970, and in ‘Competitive resource allocation over time under
uncertainty’, the Second World Congress of the Econometric Society, Cambridge,
England, in September 1970. In writing this version of the paper we have benefited
from discussions with members of the Mathematical Social Science Board Workshop
on Uncertainty at Berkeley in Summer 1971, from helpful comments by members of
the department of economics at the University of Texas, Austin, and mostofall from
constructive criticism of an earlier draft by Professor Michael Balch.
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resulting economy of price-takers could function smoothly over time.

In an economylike ours which possesses in each period only markets

for current goodsandsecurities, one obstacle to such smooth functioning

would be the occurrence of bankruptcies. If consumers borrow and

lend, chances are that in some periods no temporary equilibrium will

exist at which all consumers would be solvent. Therefore, even though

an imperfectly competitive economy need not perform well in this

respecteither, it is important to investigate whether or not a perfectly

competitive economy could overcome the bankruptcy problem. In our

answerto query one above, we explore such a possibility for an economy

of the sort studied in this paper.

Even if a perfectly competitive economy could function smoothly

without governmentintervention, this alone would not justify pursuing

an activist anti-trust policy. In addition it must be shownthat the pattern

of resource allocation which such an economy achieves is in some sense

optimal. It is well known that, for an economy which operates under

uncertainty over denumerably many periods and which possesses a

complete set of markets for current goods and for contingent claims on

future goods, a competitive equilibrium is Pareto-optimal(cf. refs. [4,

p. 102] and [16, p. 226]). The answer to our second query above con-

cerns whether this result also holds for economies in which markets

for contingent claims on future goods are almost non-existent.

Even if the economy can be shown to achieve a Pareto-optimal

allocation of resources, this allocation might be judged undesirable by

a quite reasonable social preference function; for example, because it

allocated most resources to a few consumers. However, theory tells us

that, for economies which operate under uncertainty and possess

complete sets of markets for contingent claims on future commodities,

any inequality in the distribution of resources that might arise at a given

competitive equilibrium could be eliminated by a once-and-for-all

lump-sum tax-subsidy scheme that would move the economy from

the socially undesirable efficient point to a socially optimal one, a

point moreover that could be sustained as a competitive equilibrium.

Thus, for economies with enough contingent claims markets and

only small economies ofscale in production, an active anti-trust policy

combined with an appropriate lump-sum tax-subsidy scheme could

be used to establish the socially optimal allocation of resources in

the economy. In answering our second query we will investigate
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whether such a combination of government policies could be counted
on to be as effective in economies like the one studied in this
paper.

In discussing the practical bearing of our model, we have focused on
antitrust policy. However, we could just as well have talked about the
desirability of free trade(cf. ref. [17]), or of using ‘best’ possible schemes
for sharing the burden of providing the necessary public goods in a
Pareto-optimal allocation of private and public goods(cf. refs. [6] and
[10, pp. 123-140]). The two queries posed at the beginning ofthis paper
thus have an important bearing on manyaspects of public policy ina
free enterprise economy.
Some of the results obtained in this paper are extensions of results

obtained elsewhere.
(1) Sufficient conditions for the existence of temporary equilibria in

a production economyin which each decision makerhasa finite planning
horizon and multi-valued price expectations were established in refs.
[2], [14] and [15]’. Theorem 11.1 below gives sufficient conditions
that a temporary equilibrium exists when consumershave an infinite
planning horizon and univalued price expectations with respect to the
state of nature.

(2) Radner (cf. ref. [12]) has established for an exchange economy
which operates under uncertainty over finitely many periodssufficient
conditions that in the first period a temporary equilibrium exists at
which consumers’ price expectations and plans for future purchases of
goods are mutually consistent in the sense that consumers’ price expecta-
tions agree and are such that, at these prices, the planned supply of
goods equals the planned demandfor goodsat each and every relevant
future event. In the proof of theorem 11.2 we construct a first-period
temporary equilibrium for our economy at which consumers’ price
expectations and plans for future purchases of goods and securities are
mutually consistent.

(3) Arrow has shownin ref. [1] that a perfectly competitive economy
which operates under uncertainty over a single period can achieve an
optimal allocation of risk-bearing by trading in ‘current’ goods and

' The idea of a temporary equilibrium is due to J. R. Hicks. A discussionofits compara-
tive statics properties under conditions of certainty can be foundin ref. [9, chapters
IX-XXII]. A very interesting discussion of the existence of temporary equilibria in a
two-period exchange economyis given in ref. [7].
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securities only. Theorem 11.3 extends Arrow’s result to economies that

operate under uncertainty over infinitely many periods.

Finally, we should point out that many authors (cf. for instance

Borch [3], Diamond [5] and Sandmo [13]) have set out to answer

questions similar to query (2) above for economies which operate under

uncertainty over one or two periods and have markets for ‘current’

goods andsecurities only. These authors found that, if the economy did

not possess ‘enough’ securities markets, it would, in general, not allocate

resources Pareto-optimally. It is, therefore, important that the reader

note that the economy westudy in this paper, like Arrow’s economy,

has ‘enough’ securities markets! When we find that it still might not

allocate resources Pareto-optimally, the reason is that the competitive

resource allocation mechanism in an economysuchasours is essentially

myopic.

11.2. Statement ofResults

In this section we state our results concerning the way a competitive

exchange economy in which there are a finite number of consumers

would allocate resources over time under uncertainty. In the interests of

brevity all proofs are relegated to the appendix.

Webegin by specifying what we mean when weuse the words ‘time’,

‘states of nature’ and ‘current events’. We assume throughout that the

world evolves in discrete epochs or periods te {..., —1, 0, 1, ...) and

that we begin observing our model economyat time t = 0. How the

world evolves can be described in many ways. For the purposesofthis

paper we can couch this description in terms of two concepts,a state

of nature and a current event.

A state of nature is a description of the world that specifies for each

and every period ‘atmospheric conditions, natural disasters, technical

possibilities, ...’ [4, p. 98]. This definition is imprecise butsuffices for

our purpose. The important thing to note about it is that a state of

nature prescribes consumers’ initial endowments of goods(for example,

‘technical possibilities’) in each and every period, but gives no informa-

tion about prices in different periods.

If S denotes the (mutually exclusive and collectively exhaustive) set

of all states of nature, then an event is a subset of S, and a t-current event
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é,, IS a maximal subset of S whose memberstates share a common history
up to and including epoch 1. Alternatively,e,, may be characterized as
a description of the world that specifies for each and every period in
t-++) £— 1, t! ‘atmospheric conditions, natural disasters, technical
possibilities, .. .’.

Weassumethat our model economyat t = 0 has observed the O-cur-
rent event e,,, and thatit faces a tree-structure of events which,like the
tree in fig. 11.1, has the temporal‘successor’ property that only a finite
numberof (¢ + 1)-current events C41); are contained in the t-current
event e,;. The total numberof events that could occurin period t given
that e9, has occurred will be denoted by r,.
Next a word aboutthe institutions. Let q(é1i)) = (41, -- +s Um) (,,) denote

a vector each componentof which represents the quantity of a com-
modity that would be available to consumers in period t if the evente,,
were to occur. Moreover, let V(e,;) be the quantity of a one-period
security issued in period (t — 1) each unit of which will pay one ‘dollar’
(the unit of account) in period t if the event €,, Occurs and nothing
otherwise. Finally, for each pair (t,i), let

N[ti] = e041) S enh (11.1)

Then we assume:

(1) In each period t, if the event e,, occurs, markets will exist for
q(e,;) and for every Vie,.,),) such that je N[ti]. Moreover, each con-
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sumerwill enter into irrevocable contracts with respect to g(e,;) and the

V(eq+1))8 while he simultaneously makes plans for buying andselling

goods and securities in future periods.

Now let us consider consumer behavior. To state our assumptions

concerning it, we need still more notation. Let p(e,;) denote the price

(vector) of g(e,;), let B(e,;) denote the price of V(e,;), and let

(9. V)(ei) = (gles Meas 1): € NC) (11.2)

(p, B)(e.) = (P(er)s Blea + 1): Fe NLti)), (11.3)

gle") = (gle): 8 > b esj S eis (11.4)

(q, Vy(e") = ((g, Vilesj)i 8 > bes S eri), (11.5)

(p, B)(e") = ((p, B)(es): Ss > b esj eri). (11.6)

In reading these definitions observe the notational‘time shift’ difference

between V(e,,) and (-, V)(e,;). V(e,;) denotes a certain quantity of a security

which was sold in period (t — 1) and which matures in period t. The

componentsof (q, V)(e,;) represent the commodities and securities that

can be boughtin period

t

if e,; occurs. The security-components ofthis

vector mature in period (t + 1). Then we assume:

(2) There are r =1 consumers in the economy. Each consumer k

possesses in the first period initial quantities of commodities q'‘(€o1)

and — contingent on the events that occur — is certain to receive initial

endowments q‘(e°') in future periods. Moreover,

g*(eo1), g*(e°") 2 0, (q*(eo1), 92°") FO K = 1,....7 ALD

and

Y@eo:), We?) > 0. (11.8)

2 The expression (g(e,;), Vie+ 13): € N[ti]) is shorthand for the vector whose compo-

nents represent all the commodities and securities that could be bought in period t

if e,, occurred.

3 The expression (g(e,;):5 > te; < e@,) is shorthand for the infinite-dimensional

commodity-vector corresponding to the branch of the tree-structure of events which

Starts at e,;.



Competitive resource allocation 307

Finally, each consumerenters the first period debt-free and (a fortiori)
owns no units of V(eo,).

(3) (a) In every period t, regardless of which event e,; occurs, every
consumer possesses well-defined, univalued expectations as to future
commodity and security prices. These we denote in the following way.
Let (p, B)""(e,;) be the expected price vector, contingent on e,, as
perceived by the individual consumer looking forward from t < s. Then
the consumer’s price expectations at e,; are given by

(p, BYE") = ((p, BYej): 8 > t ej S ei). (11.9)

(b) So long as expectations have always been historically ‘validated’,
looking backward from t, they will continue invariant into the future;
1.e. if the observed prices

(P, B) (esi) — (p, pyre (esi),

for all s S ¢, then for any v < t < wand e,; > e,; > e,,, the (p, By"(e,,)
components of(p, B)“"!(e'’) and (p, B)*""(e") are the same.

In the sequel we will suppress the ‘bracket’ in e[-] and write (p, B)*(:)
for (p, B)!(-). This will simplify our notation and should not cause any
unnecessary confusion.

(4) In each period t if the event e,; occurs, consumer k will order
(q(e,;), g(e'))-vectors according to the values assumed by a function
Ui("'q,), where "g is the vector he actually consumed duringthefirst
t periods*.

The utility functions U;'(-) have certain structural properties and are
(for each k) related in a definite way, which can be described as follows.

Let

C = (4 = (q(eo1), g(e"')): OS g < cw}? (11.10)

* Strictly speaking the "g-vector should contain information about consumption in
periods prior to t = 0. Since this information would not play a part in the discussion
which follows, we can without loss in generality ignore it here and in the remainder
of the paper.

> Throughoutthis paper the symbols 2 and > are used asfollows: if x and y are n-
dimensional vectors, x = y if and only if x; 2 y, for all i = 1,...,n. Similarly x > y if
and only if x; > y; for all i= 1,...,n. Finally, if A is a number, then 0 < x < A if
and only if0 < x; < A for alli = 1,...,n. The samerules hold for infinite-dimensional
vectors as well. Note that the symbol0 is used both to denote zero and a vector whose
componentsall equal zero.
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; and
 

let x, = (X15 ---, Xim)3 let x = (Xo, X1,-..); let || x, || = Y%, |x,
let

X ={x:0<x< oh. (11.11)
Moreover, let X be endowed with the product topology, and let x(-) =

(Xo(-), X1(-),...) denote a function on S to X. Wesay that x(-) is feasible
(or historically consistent) if and only if, for each and every pair(t,i),
(Xo(‘),...,X,(-)) 18 constant on e,,, and if x(s) = O for all s in the com-

plement of eo,. Finally for each geéC,let x,(-) be the feasible function

on S to X whose tth componentvector (x,),(-) takes the value g(e,;) on

e,,, for all t 20 and all i = 1,..,r,. Then we assume:

(5) For each consumer k there exists a bounded, continuous,strictly

concave, increasing function on X, W,(-), and a subjective probability

measure Q,(ds) on subsets of S such that W,(0) = 0 and such that

Q.(€o1) = 1, (11.12)

O,(e,,) > 0, t>0, i=1,....4, (11.13)

Uz '(q) = JsWilxq(s))Q,(ds). (11.14)

Moreover, for each pair (t, i) and actually chosen vector "g*,

Uil'g*, ) = (1/Olewd) | WilXei,g(9)Qe(ds).° (11.15)
Cti

Of the preceding assumptions, assumption (2) is standard (except for

V(eo;) = 0, about which we shall have more to say below), and as-

sumptions(4) and (5) — if not exactly standard — ought to be acceptable

to most economists. Assumption(3) is unrealistic since most consumers
in real life probably entertain price expectations that are multivalued
with respect to the state of nature. Note, therefore, that we makethis

assumption not because it is essential in establishing our results since

the existence of temporary equilibria can be established without it
(cf. ref. [14], p. 551) and since it is not really used in theorems 11.2 and
11.3. We make this assumption to simplify notation and the statement
of results and to thereby facilitate the reader’s task in singling out the
important ideas of the paper.

° Here x,;,, ) () is a function on e,; to X such that

L(X¢i,. ols)genesOn i(s)] = "q* for all s € @,,.
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Besides assumptions(1)5) we also makeseveral implicit assumptions:
(a) each consumer has an infinitely long planning horizon; (b) each
consumer lives forever; and (c) the number of consumers in the econ-
omy is constant over time. The last two assumptions can be made
realistic by interpreting a consumer as a family spending unit that
remains intact over time but whose members mayvary in number from
period to period.

Before stating our results, we must introduce the budget correspond-
ence faced by each consumerin period t, and also state precisely what
we mean by a temporary equilibrium. If consumer k in period (t — 1)
purchased (or sold) V“(e,;) units of V(e,;) and observes the event e,, and
prices (p, B)(e,;), then his t-period budget constraint is

(p, Ble, Vy(e,;)) S P(edq(e,:) + V*(e,i), q(e,;) 290.’ (11.16)

If consumerk in period t plans to buy (orsell) V(e,,) units of V(e,j) in
period (s — 1) 2t, then the budget constraint which he expects to face
if e,; occurs is

(p, B)(es) (4. V)(e;) s P°(e,,)4(es;) + V*(e.)), q(e,;) = 0.° (1 1.17)

Consequently, if we define I(-) by

I'((p, B) (e,;), (p, B)*(e"), geri), q(e"), V(e,:)) =

(gq, Vy (eri). (@, V(e"): (gle), gle") = 0, (p, BY(e.)(9, VY) (eri) S
PCE) + Vlei); (, BY(es) (@, V(esj) S
P°(es;)q(es;) + V(esj), S > t, es < ei}, (11.18)

then I'(-) is the budget correspondence faced by each and every consumer
in the economyin period if e,; obtains.

DEFINITION 11.1. Suppose that e,; has occurred, and that consumerk,
k = 1,..., r, consumed "“g** in the past periods, ‘owns’ V“(e,,) units of
V(e,;), and entertains the price expectations (p, B)°(e"). Then

((p, B)(e,:), (q*, V*) (ei), ss 9 (q*, V*)'(e,i))

is a temporary equilibrium in period t if

(P, B)(e,;) > 9; (11.19)

’ Ifp and q are vectors, then pg denotes the inner productofp and q.
* Here(p, B)*(e,;) and p*(e,;) are short for (p, B)“Ye,) and p“e,,) respectively.
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Y@*e,) — He,)) = 0: (11.20)

y V(eos 1) = 9, je N[ti]; (11.21)

and if there exist feasible plans (g*, V*)“(e"’), k = 1, ..., r, so that for

all k

((q*, V*)*(e,;), (q*, V*)*(e')) E Ti (11.22)

and

Ua", a*(ei), a*(e")) 2 UiC'g**, qe), (e")) (11.23)

for all pairs (g(e,,), g(e")) for which there exists a sequence of investments

Vie,j), 8 > t, e,; © e,; Such that

((g, Vo (eu), @, VYle") eT, (11.24)

where

lr, = T@,B)(e,), (p, Be"), Ven), Te"), Vile). (11.25)

There are several things to note about the preceding definition. First,

we have omitted a superscript k in (p, B)*(e’) to simplify notation. There-

fore, the definition should not be taken to mean that in a temporary

equilibrium consumersnecessarily entertain identical price expectations.
Second, the definition requires that the plans (g*, V*)*(e"), k = 1,

..., r, satisfy eqs. (11.22) and (11.23). However, it does not require that
these plans be mutually consistent in the sense that

r

Y gt, Ve") = (sare 0) (11.26)
k=1

Thus while supply and demand for commodities and securities must be
equalin period (cf. eqs. (11.20)}-(11.21)) for a temporary equilibrium to

occur, consumersare free to plan for the future without any thought as
to whether these plans could actually be carried out (i.e. whether their

plans are mutually consistent). This is the reason why wesaythat the
competitive resource-allocation mechanism in our economyis essentially
myopic”.

? A discussion ofthis kind of myopic behavioris givenin ref. [9, chapter X, pp. 130-140].
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Whether or not a temporary equilibrium exists in any given period

depends on consumer preferences and price expectations, and on

consumers’ initial endowments of goods and securities. Theorem 11.1

gives sufficient conditions on the consumers’ price expectations that a

competitive equilibrium exists in the first period.

THEOREM 11.1. Suppose that assumptions (1)}{5) hold, and for all t = 2,

3,...,andi=1,...,1r,, let

P(e.) = L I] Be.)p*(eu) (11.27)

and s=2,..., t

ple.) = p(ei,), jE NOL]. (11.28)

If

ple®')g*(e®') < wk =1,...,17, (11.29)

and

Ple,;) > 0 forall t = 1,2,...;i=1,...,7, (11.30)

then there exists a temporary equilibrium

((p, B)(€01), (q, V)"(eo1), st (q, V)"(€o1))

in period 0.

In theorem 11.1, as in definition 11.1, we do not require consumersto

share the price expectations (p, B)(e"). We have omitted the super-

script k for simplicity only. Note, however, that we do assume that

V*(e),) = 0 for all k = 1, ..., r. Thus there is no possibility that one

or more consumers might go bankrupt in period 0. Finally, note that

the assumptions (11.29}(11.30) imply that the set of future allocations

whichsatisfy consumer k’s budget constraint is compact.

The importance of the assumption V“(e,,) = 0, k = 1, ..., r can be
seen from the following simple example.

EXAMPLE 11.1. Consider a two-period economy in a world in which

there is one and only onestate of nature. There are two consumers,

A and B,one first-period commodity x, and two second-period com-

modities y and z. Consumer A orders triples (x, y, z) according to the

values assumed by the function

U,(x, y, z) = \/(xy) + 2, (x, y, 2) 20, (11.31)
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and possesses the initial endowments (x,, y, 0). Consumer B orders
triples (x, y, z) according the values assumed bythe function

Us(x, y, z) = \/(x) — ev, (x, y, z) 20, (11.32)

and possesses the initial endowments (xp, 0, z). Both A and B expect
that prices of y and z in period 2 will be as follows:

(py, pz) = CU, 1). (11.33)

Finally, A starts out in period 1 with a debt of X, units of x to B, where
Xr, > Xq.

During period 1 there are markets for x and for a security V each
unit of which will pay one unit of the unit of accountin period 2. During
period 2 there are markets for y and z. To determine how A and B
behave in the first-period market, we define two functions F,(-) and
F,(-) as follows:

F(x, V) = max /(xy) +2
{(y,z)2 O0,y+z<syt+V}

=eyeet V), (11.34)

/(x)/0 + V) forV 2-y,x>4y+ V),

F(x, V) = max /(x) — ev vivz) — /(x) — ety?

{(y,z)2O0,y+z2<Zz7+V}

x 20,V > —z. (11.35)

It is easy to verify that, to maximize their utility over two periods,
A and B must in period 1 choose pairs (x,, Vs) and (xp, Vg) which
respectively maximize F4(-) and F,(-) subject to thefirst-period budget
constraint faced by each consumer.
Can consumers A and arrive at a trading position that can be

sustained as a temporary equilibrium? This depends on the values
assumed by (Xa, y), (xp, Z), and X,. If

Xx =Xp=y=z=2, (11.36)

the following assertions can beeasily verified:

(1) If x, = 2.52, then the vector

(Px, B, Xa, Va, Xp, Ye) = (1, 0.351, 0, — 1.48, 4, 1.48) (11.37)

is a temporary equilibrium in period 1.
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(2) If x, = 2.98, then there is no set of prices (p,, B) at which B would

be willing to lend A enoughso that he could settle his first period debt.
This is true moreover regardless of the value of y, i.e. regardless of A’s

future financial resources.

(3) If x, = 0, and if instead B owes A 10.4 units of x, then at each
and every set of prices (p, B) at which A would be willing to lend B
enough tosettle his current debt, B could not accept A’s offer because

it would mean that he would be unable to pay back the ‘new’ debt

during period 2. For instance, at (p,, B) = (0.3, 1) A would offer 12.4
units of x in exchangefor 3.72 units of V. But —3.72 < —2 so B would
not be able to accept the offer.

From the preceding example it follows that, if the economy in one

period should arrive at a temporary equilibrium at which one consumer

borrows funds from another, the next period it may fail to establish a
temporary equilibrium. The example also shows that whether the
economy in a given period will succeed in establishing an equilibrium
without anyone being bankrupt depends not just on the period’s distri-

bution of initial endowments of commodities and securities and the

future earning powerof the individual debtors, but also on therisk pref-

erences of the individual creditors’®. Finally, as the example indicates,in

our economyasin reallife a consumerwill not be forced into bankruptcy

in a given period just because his net worth is negative. For instance,in

the temporary equilibrium defined by eq. (11.37), consumer A’s first-

period net worth is negative (= —0.52). Yet he is able to borrow enough

to settle his currently maturing debt. And, if we adjust the price of y so

that it equals one unit of the unit of account, then A will most certainly

be able to pay back his newly acquired debt next period.
Theorem 11.1 establishes the existence of a temporary equilibrium in

the first period if consumer price expectationssatisfy conditions (11.29)}-

(11.30). However, it does not imply that the economy will necessarily

function smoothly over time. In theorem 11.2 we will show that, if the

price expectations of consumersare ‘just right’, then (at least in theory)

the economy can function smoothly. But first a definition.

'° In ref. [15, theorem 2] wegive sufficient conditions on consumerandentrepreneurial
preferences that a production economyin a given period would possess a temporary
equilibrium even if the initial distribution of resources were such that some spending
units would be insolvent at somesets of positive prices that might occur.
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DEFINITION 11.2. We say that the family of vectors

[((p. B)(e,i), (q, V)"(e,;), re) (q, V)"(e,i)), 2 0, I — l, v9 r,|

is a feasible tree-structure of temporary equilibria if and only if for all
pairs (t, i),

((p, B)(e,:), (q, V)' (ei), sey (q, V)"(e,)))

is a temporary equilibrium relative to the distribution of purchasing
power

(pPlenq' (ei) + Ve), .--, Pledge) + Vlei), K=1,...,1.

The important thing to notice aboutthis definition is that a tree structure
of competitive equilibria will be feasible only if the economy can move
along each ‘branch’ ofit, from one equilibrium to the next, without
purchasing power being redistributed in any period.

Nowthe theorem.

THEOREM 11.2. If assumptions (1}{5) hold, we can find a set of price

expectations (p, B)*(e°') which, if shared by all consumers, ensures the

existence of a feasible tree-structure of temporary equilibria.

This theorem requires several comments. First note that the validity of
the theorem depends on the assumption

V¥(ey,)=0,k=1,..., 1. (11.38)

This assumption, however, can be weakened considerably. For instance,
suppose that the unit of accountin period | is a fictitious commodity
which does not correspond to any one of the componentsof (g(eo,),
q(e°")). Then eq. (11.38) can be replaced by the assumption: there exists
a triple (t, i, j) such that e,; < e9,, and such that

qi(e;) > Ok =1,..., 7. (11.39)

Next, note that it will be seen that the price expectations constructed
in the proof of theorem 11.2 satisfy the conditions (11.29}{11.30). In
addition they have the following two properties: (1) the plans of con-
sumers for future acquisitions of goods and securities, associated with
each and every temporary equilibrium of the tree structure, are mutually
consistent; and (2) at each event that might occur, consumers’ price
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expectations are ‘validated’ (and their plans are actually carried out).

These two properties are not intrinsic to feasible tree-structures of

temporary equilibria. It 1s perfectly possible to have a feasible tree-

structure of temporary equilibria with the property that consumers’

price expectations agree but consumers’ plansare inconsistent at each

and every event that might occur. Along such a tree structure plans
must be revised in each period, and consumers’ price expectations are
rarely validated.

Finally, note that theorem 11.2 shows that the answer to ourfirst

query is yes. Thus our economycanin theoryat least function smoothly.

Unfortunately such ‘smoothsailing’ is not a characteristic of the economy

that can be taken for granted. Once on a feasible tree structure, the

economy might not be able to stay on it for long. And if it veers off, it

might not be able to moveon to anotherfeasible tree-structure. Certainly,

if it does not, the ‘smooth sailing’ will halt abruptly.

There is a simple reason for the instability of a feasible tree-structure

of competitive equilibria: for it to be stable, each and every temporary

equilibrium on it must be globally stable — an obviously impossible

requirement. Here is an example to help the reader’s intuition. |

EXAMPLE 11.2. Consider a two-period economy in a world with one
and only one state of nature. There are two consumers A and B, one

first-period commodity x and two second-period commodities y and z.

A orderstriples (x, y, z) according to the values assumedby the function

U,(x, y, z) = —(1/3)e7 3 — e7 8 *2V02) (x, yz) SO, (11.40)

and possesses the initial endowments (X,, ya, Za) = (2.14/3, 1.14, 1).

B orderstriples (x, y, z) according to the values assumedbythe function

Up(x, y, 2) = — eT — (1/3)e VY, (x, yz) 20, (1141)

and possessesthe initial endowments(Xx, Vp, Zp) = (3, 1, 0). Both A and
B expect that prices of y and z in the next period will be as follows:

(p}, Pz) = (A, 1). (11.42)

Finally, neither A nor B has any outstanding debtin thefirst period.
During the first period there are markets for x and for a security V,

each unit of which will pay one unit of z the next period. During the
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second period there are markets for y and z. The ‘indirect utility func-
tions’ of A and B during the first period are defined by

F(x, V) = max [—(1/3)e7 3* — e 8 +2V027] =

{(y,z)2O0,y+z5V+2.14}

= —(1/3)e** —e TO4tM, x 20, V = 2.14, (11.43)

and

F3(x, V) = max [— eSt— (1/3)e7 v0777]
{(y.z)>O,y+z<V4+1}

= —e8+_ (1/3)e730*”y >0,V>—-1. (11.44)

To maximize their utility over two periods, A and B must in thefirst
period choose pairs (x4, V,) and (xg, Vg) which respectively maximize
F,(-) and F,(-) subject to the first-period budget constraint faced by
each consumer.

For this economy, the following assertionsare true:

(1) There are three possible temporary equilibria in the first period:

TE, : (Pes By Xas Vas Xp Vg) = (1, 0.169, 1.075, —2.14, 2.64, 2.14), (11.45)

TE,: (p,, B, Xa, Va, Xp, Vg) = CA, 1, 1.963, — 1.25, 1.75, 1.25), (11.46)

and

TE3: (p,, B, Xa, Va, Xp, Va) = (1, 5.944, 2.854, — 0.36, 0.86, 0.36). (11.47)

Of these TE, and TE, are locally stable, while TE, is unstable in the
usual sense of these terms'!,

(2) If TE, obtained during the first period, the next period A and B
would not be able to arrive at a temporary equilibrium where A could
repay his debt to B. Consequently if TE, obtained, A would be forced
to declare bankruptcy during the second period.

(3) If TE, obtained in the first period, then in period 2,

TE: (Py, Pes Yas Zas Yu» Zp) = ((1/2.14), 1, 0.30, 0.14, 1.84, 0.86) (11.48)

would be the one and only one temporary equilibrium relative to the
distribution of purchasing power determined by (y,, z, + Va) = (1.14,

'! A similar example for a one-period exchange economywhich operates under conditions
of certainty with respect to the state of nature has been constructed by L. Hurwicz
(cf. ref. [11], pp. 45-48).
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—0.25) and (yg, 23 + Vg) = (1, 1.25). The pair (TE,, TE%) can be char-
acterized as an unstable feasible tree-structure of temporary equilibria.

(4) If TE, obtained during the first period, then in period 2,

TE$: (Py, Pes Yas Zas Yoo Zp) = ((1/2.14), 1, 1.25, 0.59, 0.89, 0.41) (11.49)
would be the one and only one temporary equilibrium relative to the
distribution of purchasing power determined by (Vas Za + Va) = (1.14,
0.64) and (yg, Z3 + Vg) = (1, 0.36). The pair (TE;, TE3) is a locally
stable feasible tree-structure of temporary equilibria.

To continue our discussion of feasible tree-structures of temporary
equilibria, we must first define what we mean by a Pareto-optimal
allocation of resources over time.

DEFINITION 11.3. Let

Then the set

P= ({(q’,...,g")€ A: Jno ze A such that U0'(z*) > U?'(q")
for all k with U??(z') > U?'(q') for somei} (11.51)

is the set of all Pareto-optimal allocations of commodities over time.

In interpreting this definition, note that U?!(-) describes how the kth
consumerin thefirst period orders bundles of current and future goods.
Hence P, strictly speaking, represents the set of all Pareto-optimal
first-period allocations of current goods and contingent claims on future
goods. But if that is so, then one might ask: suppose that in thefirst
period the economy’s resources(current and future) have been allocated
according to a plan prescribed by a vector in P.Is it still possible that
in some future period consumers mightfind that their preferences have
changed and there exist trades that would benefit some without hurting
others? The answeris no! Specifically, if (g*',..., q*")e P, if the event
é,, occurs, and if the vector (“g*',...,"g*") was consumed in periods
s=0, 1, ..., t—1, then there exists no vector ((g'(e,;), q'(e), ...,
(q'(e,;), q’(e"))) such that

Y(aren. aXe’) - eae] =0, (152
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and such that

Uticig*®, g*(e,,), get) = Uiig**, ge), ge") (11.53)

for all k = 1, ..., r with strict inequality holding for at least one k.

Consequently, the allocations of current and future goods prescribed

by the vectors in P are Pareto-optimal in an ex post sense as well as in

an ex ante sense.

A feasible tree-structure of temporary equilibria need not allocate

resources Pareto-optimally. In example 11.2, for instance, neither (TE2,

TE) nor (TE3, TE%) allocates resources Pareto-optimally, as can be

seen from the following equations:

[(aU4/8x)/(GU4/Ay)] (1.96, 0.30, 0.14) = 0.91 # 3.25
= [(@U,/0x)/(OUp/Ay)](1.75, 1.84, 0.86), (11.54)

[(0U4/Ex)(OU4/Ay)] (2.85, 1.25, 0.59) = 0.23 4 0.16
= [(0U,/ax)/(0Up/2y)] (0.86, 0.89, 0.41). (11.55)

However, we can show that any Pareto-optimal allocation of commo-

dities can be achieved by some feasible tree-structure of competitive

equilibria if the first-period distribution of purchasing poweris adjusted

appropriately. This result is stated below. In reading it, note that we

say that a feasible tree-structure of competitive equilibria is equivalent

to a Pareto-optimal allocation if the allocation of commodities pre-

scribed by the tree-structureis identical to that prescribed by the Pareto-

optimalallocation. |

THEOREM 11.3. Suppose that assumptions (1)-(5) hold. Then to each

Pareto-optimal allocation of commodities corresponds a set of expected

prices (p, B)*(e°!) shared by all consumers, a first-period distribution of

purchasing power, and an equivalent feasible tree-structure of temporary

equilibria.

This theorem shows that K. Arrow’s classic theorem, ‘Any optimal

allocation of risk-bearing can be achieved by perfect competition on the

securities and commodity markets, where securities are payable in

money’[1, theorem 2, p. 94], is valid not only for an exchange economy

which operates under uncertainty over a single period and in which

each consumerfacesa finite numberofpossible events(i.e. Arrow’scase),

but also for the economy studied in this paper. Thus the answer to

query number2 is Yes.
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Unfortunately, theorem 11.3 is only an existence theorem. Thefeasible

tree-structure of competitive equilibria which is equivalent to some

Pareto-optimal allocation (q«*', ..., q*#’) is no morestable than any other

feasible tree-structure; e.g. if the economy ever gets on to a Pareto-

optimal tree-structure, it is unlikely to stay on it for long.

To see why a Pareto-optimal tree-structure of temporary equilibria

maybe as unstable as any other feasible tree-structure of such equilibria,

we will present the following example.

EXAMPLE 11.3. Consider a two-period economy with two consumers

A and B,onefirst-period commodity x, and two second-period commo-

dities y and z. The utility functions and price expectations of A and B

are as defined in (11.40}(11.42), and their initial endowmentsare given by

(Xa, Vas Za) = ((2.14/3), 1.30, 0.84), (11.56)

and

(Xp, Vp Zp) = (3, 0.27, 0.73). (11.57)

Finally, neither A nor B has any outstanding debt in period one.

During period 1 there are markets for x and for a security V each

unit of which will pay one unit of z in period 2. During period 2 there

are markets for y and z. The ‘indirect utility functions’ of A and B

are as defined in (11.43}{11.44). Consequently, since the first-period

endowments of this economy are the sameasthe first-period endow-

ments of the economy in example 11.2, we conclude that the three

temporary equilibria defined in eqs. (11.45}(11.47) are temporary

equilibria in the economy considered here as well. Moreover, there are

no others. Again TE, and TE;are locally stable while TE,is unstable.
If TE, obtained in period 1, then in period 2,

TE+«: (P,, Pz VAs ZA> YB> Zp) — (1, I, Q, 0, 1.57, 1.57) (11.58)

would be the one and only one temporary equilibrium relative to the
distribution of purchasing power determined by (y,, Zz, + Va) = (1.30,

— 1.30) and (yg, Zp + Vg) = (0.27, 2.87). The pair (TE,, TEx) can be

characterized as a locally stable Pareto-optimal tree-structure of

temporary equilibria.

If TE, obtained in period 1, then in period 2,

TEx: (Py. Pzs Vas ZA> Yao Zp) = (A, 1, 0.445, 0.445, 1.125, 1.125) (11.59)
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would be the one and only one temporary equilibrium relative to the dis-
tribution purchasing power determined by(4, Z, + Va) = (1.30, —0.41)
and (yg, Zp + Vg) = (0.27, 1.98). The pair (TE,, TEx*) can be characteriz-
ed as an unstable Pareto-optimal tree-structure oftemporary equilibria.

If TE; obtained in period 1, then in period 2,

TE%*: (Dy, Pz, Yas Za, Vp» Zp) = (1, 1, 0.89, 0.89, 0.68, 0.68) (11.60)

would be the one and only one temporary equilibrium relative to the
distribution of purchasing power determined by (y,, Z, + Va) = (1.30,
0.48) and (yg, Zg + Vg) = (0.27, 1.09). The pair (TEs;, TEx*) can be
characterized as a locally stable Pareto-optimal tree-structure of tem-
porary equilibria.

The Pareto-optimal tree-structure of temporary equilibria constructed
in the proof of theorem 11.3 and the Pareto-optimal tree-structures in
example 11.3 have the following three properties: (1) consumer price
expectations are mutually consistent; (2) consumers’ plans for future
acquisitions of goods and securities, associated with each and every
temporary equilibrium of the tree-structure, are mutually consistent;
and (3) at each event that might occur, consumers’ price expectations
are ‘validated’ and their plans are actually carried out. It is fairly easy
to construct examples of Pareto-optimal tree-structures of temporary
equilibria which satisfy condition (1) but neither (2) nor (3). It is also
possible to construct Pareto-optimal tree-structures of temporary
equilibria which satisfy condition (2) but not (1) and (3). Thus these
conditions are not necessary in orderthat a tree-structure of temporary
equilibria be Pareto-optimal. On the other handit is easy to show that,
if assumptions(1)-(5) hold, andifa tree-structure of temporary equilibria
satisfy conditions (1)}{3), then it must be Pareto-optimal. For brevity
we omit the proof of this assertion here.

If our model economy were moving along oneof the Pareto-optimal
tree-structures of temporary equilibria prescribed in theorem 11.3 and
by some miscalculation of the ‘auctioneer’ veered off it in period t, the
economy would in most cases end up at a temporary equilibrium at
which consumers’ plans for future acquisitions of goods andsecurities
would be inconsistent’*. Since these plans obviously could not be

'2-The economy would in most cases...’ should be taken to mean ‘unless consumers’
utility functions are of a special nature (such as in example 11.3) the economy would
end up....
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carried out in subsequent periods, one might wonderif the consumers
could be persuaded to move back on to the original Pareto-optimal
tree-structure by informing them aboutthe inconsistencyoftheir plans.
The answeris an emphatic no! Reason: it is impossible to move from
one temporary equilibrium to another in the same period without
decreasing the expected utility of somebody, and this somebodywill not
move voluntarily.

The last observation can be stated as a theorem.

THEOREM 11.4. Suppose that assumptions (1){5) hold. Then a temporary

equilibrium ((p, B)(e,;), (g, V)' (ei)... (q, V)"(e,;)) is admissible in the sense
that, given people’s expectations about the future and the fact that e,;
occurred, there exists in period t no other feasible allocation of current
goods and securities at which some person would experience a higher

expected utility and nobody would experience a lower expected utility.

The last theorem and the comments that precededit allow the following
comment on lump-sum tax-subsidy schemes: It is not true — as com-
monly believed — that schemes of lump-sum taxes and subsidies to
redistribute current purchasing power would never interfere with the
efficiency of resource allocation in a competitive economy. In an
exchange economythat operates under uncertainty and that contains
markets for current goods and securities only, such schemes might move
the economy from a tree-structure of competitive equilibria that was
equivalent to a Pareto-optimalallocation to one that was not. Moreover,
there is no guarantee that such an economyafter a redistribution in
purchasing power would end upat feasible tree-structure of competitive
equilibria; and if not, it would be plagued in subsequent periods by
bankruptcies which would force further redistributions of purchasing
power.

11.3. Conclusion

We have shown that there exist feasible tree-structures of competitive
equilibria. So in theory an economysuch asthe onestudied here could
function smoothly. We have also shown that this smooth functioningis
unlikely and that bankruptcies probably will be common.
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In theoretical models the problem of bankruptcies can be dealt with

in various ways. One is to assume that, for each and everypair(t,i),

each unit of V(e,;) represents a contingent claim on purchasing power in

period t which will pay an unknownfraction y(e,;) of a dollar if e,;

obtains and nothing otherwise. The actual value of y(e,,) if e,; occurred

could be taken to be the largest numberin [0,1 ] which would allow the
economyto achieve a temporary equilibrium in period t.

Since each and every consumer in our economy issues the same

securities, it is natural that consumers should share the risk of bank-

ruptcy in the way suggested above. In fact this method corresponds

rather well to the way in which bankruptcyis handled in practice. The

insolvent consumerdeclares bankruptcy, and his creditors decide on an

equitable sharing of his assets. If an individual ‘issued’ only one kind

of security, the share of each creditor would be proportionalto his share

of the consumer’s outstanding debt.

Another wuy of handling bankruptcies is to establish a bank which

at all times stands ready to lend to consumers the amount of purchasing

power needed to keep everyone solvent and at the same timeallow the

economyto arrive at a temporary equilibrium in each andevery period.

In period t if the event e,,; occurs, this solution amounts (1) to changing

condition (11.21) in the definition of a temporary equilibrium to

DYVeteaen) = 5» Je N[tI. (11.21%)
where6, is a negative parameter whose valueis determined by the bank;

and (2) to changing eq. (11.20) correspondingly to allow for the increase

in those commodities which the bank gives in exchangefor securities.

Whether or not the bank always could find an appropriate sequence of

6,;s that would ensure the smooth functioning of the economy depends

on consumers’ preferences and price expectations, and on the bank’s

resources! .
Wehave also shown that an economysuch as the one studied here

could achieve any prescribed Pareto-optimal allocation of resources but

in practice is unlikely to realize one. One important implication of this

finding is that no solid microeconomic foundation presently exists for pur-

'3 Different approaches to the problem of bankruptcy have been suggested by Arrow

and Hahn(cf. their discussion of compensated equilibria in ref. [2, chapter 5, pp. 107—
122), and by Green [8].
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suing either a vigorous antitrust policy or a staunch free-trade policy in an

economy which operates under uncertainty and possesses markets for

current goods and securities only. To justify such policies the notion ofa

Pareto-optimal allocation of resources must be replaced by some other

welfare criterion.

One possible candidate is the concept of an admissible allocation as

defined in the statement of theorem 11.4. According to theorem 11.4,if

assumptions (1)}(5) hold, a temporary equilibrium is admissible. It can

also be shown that an admissible allocation in period t, if the event e,;

occurs, ban be sustained as a temporary equilibrium providedtheinitial

distribution of purchasing power is appropriate. Hence for the economy

studied here, the relationship between temporary equilibria and ad-

missible allocations is the same as the relationship between competitive

equilibria and Pareto-optimal allocations. This sounds, however, better

than it us. The result obtained in theorem 11.4 and its converse are

generally false if assumption(3) is notsatisfied. If consumer price expec-

tations are multivalued and vary over time, a given temporary equilib-

rium need not be admissible since another temporary equilibrium might

exist at which no-one experiences lower expected utility and at least

one person experiences higher expected utility (cf. ref. [14], p. 556 for
further details). Also a given admissible allocation might be a mono-

polistically competitive equilibrium which could not be sustained as a

temporary equilibrium! Thus the concept of an admissible allocation,

while important from a theoretical point of view, cannot provide a

basis for justifying pursuit of an anti-trust or a free-trade policy in a

real-life economy.
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APPENDIX

Proofs of Theorems 11.1—11.4

In this appendix we provide proofs of theorems 11.1-11.4. For brevity’s
sake details of the proofs are spelled out only to the extent deemed

necessary.

Throughoutwelet

C = (q = (q(eo1). g(e*")): 0S q < «}

and assume that the topology in C is induced by the metric

Y2(£2latest + fate.)
J=1

ail

where

m

igle) | = 2d Later) |.
i=1
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Wealso assumethroughoutthat, for each k = 1,..., r, U?'(-) is defined

on all of C. Then assumption(5) implies that the U?'(-) are all continuous,

increasing, strictly concave functions on C.

PROOF OF THEOREM 11.1. For each k = 1,..., r, andj = 1,...,1r,, let

Fjdgeor)s Vie, ;)) = ater) euyen Gave. o) Ui(q(eo1); qe;)s q(e"’)), (Alt.1)

where

Tnp, Vie. ;)) = {(glei)), He") 2 9: (Ble, ;), Ble”) [(gle1,) g(e"”))
_ (q*(e,;), q‘(e))| < Vie, ;)}. (A11.2)

Moreover,let

F.(q, V)(€01)) = +9erMil(201), Vie, ;)), k = 1,...,9r. (A113)

Then F,((q, V)(e9,)) measures the maximum expected utility which the

kth consumer could achieve if he chose (g, V)(é,,) in the first period.

It is easy to show that F,(-) is well-defined, continuous, increasing, and

strictly concave on

Ay {0S aleos) < ©} x T]{-Bles)) BleGe).
q‘(e™)) S Vie,j)< co}. (A114)

It is equally easy to showthat ((p, B)(€o1), (q*, V*)"(€01),-- -.(q*, V*)"(@01))

is a temporary equilibrium in the first period if and only if

(P, B)(€o1) > 9; (A11.5)

x(qx, Ve)(Co1) = (Ean 0}; (A11.6)

and for each k, k = 1, ...,r, (qx, V*)(e,,) maximizes the value of F,(-)
subject to the constraints

(Pp, B)(€o1)(4, V)(01) S plo1)9"(201)3, .

OS g€o1); — (ple, ;), ple”) @*(e1;),9“(e") S V(e,),j = 1,.-.5 71.
(A11.7)
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With this characterization of temporary equilibria for the first period
in mind we can establish theorem 11.1 in the following way: letO0 < 6 < 1

and give 6 units of each of the componentsof g(e,,) and of each of the
securities V(e, ,), j = 1, ..., 7), to each consumer. Moreover,let

A, = (ple, js ple‘Iq*(e 1 js q‘(e ‘4)),

and let consumer k’s choice of g(eo,) and V(e,,), j = 1, ..., r,, be re-

stricted to the set

Cr = (9 V)(€o1): 0 S gleo1) S A, — A, s Vie, ;) S Hx,

jHh..wnbk=l,...yr, (A11.8)

where H and HAare finite constants which satisfy the inequalities

H> 2-( SaXeon)) (A11.9)
and

Hx >2- max > (ple; ), ple’) (q*(e1,), ge") + I (A11.10)
k= 1l<jsr,

Then we can use standard methods to show that there exists a vector

((p, B)(€o1), (a*, Vx)" (eo), +5 (q*, V*)"(€o1))

which satisfies the conditions

ri

(p, B)(@o,) > 0 and p(eg,) + » Ble, ;) = 1; (A11.11)

Y' g#(eo,) = y geo) + (6,..., 8): (A11.12)

> VeK(e,,) = r6,j = 1,...,1713 (A11.13)

(q*, Vx)(eoi)E T,((p, B)(eo1), q'(€o1), 0),k =1,...,r, (A11.14)

and

F((q*, V«)"(eo1)) = max F((q, V) (01), (A11.15)
(q.V)(e01)€ Vx((p, B)(e01),¢*(e01),5)
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where

I,((p, B)(€o1); q'(eo1)s 0) = ((q. V)(eo1) € CE: (p, B)(e01) Lg. V)(€o1) —

(q« + 6, 5)(eo1)] S 0}."*

Next we let {6°! be a sequence of numbers such that lim,.,.0° = 0.

For each 6° we compute a vector

((p, BY*(eo1), (9; V°)'(€o1), «+ +5 (9*, V"(€o1))

that satisfies eqs. (A11.11}(A11.15) with 6 replaced by 0°. Let

{ ((p, BY"'(eo1), (q", V*')"(e1)s oe. (q", V")"(o1)) j

be a convergent subsequence and let

((p, B)°(eo1), (q°, V°)'(e94), ren (q°, V°V"(eo,)) = lim ((p, B)*(eo1),
Sj7

(9°, Ve)(eos e+ (Qs VE(C01) (A11.16)

Suppose(p, B)°(e5,) > 0. Then rather standard argumentswill show that

the left-hand side of eq. (A11.16) is a temporary equilibrium in the

economy in which consumers are forced to choose their (q, V)(éo1)

vectors from Cx. Moreover, since (p, B)°(é9,) > 0, the latter constraint

can easily be seen to be non-binding. Therefore the left-hand side of

eq. (A11.16) must be a temporary equilibrium in the original economy

as well.

To show that (p, B)°(e);) > 0 we proceed as follows: suppose that

B°(e,,;) = 0 and observe that at least one of the components of the

limiting price vector must be positive. So suppose B°(e,,) > 0. Then

note that there is at least one consumer, say the kth, for whom

(ple; 2), ple'*))(q*(e1 2), q‘(e'*)) > 0.

This consumer’s demand functions (for (g, V)(e9;)) are continuous at

(p, B)°(eo,). Therefore, since F,(-) is strictly increasing on A,, for suffi-

ciently large s; he will demand more of V(e,,) than is available. This

contradicts the fact that the right-hand side of eq. (A11.16) for this s;

satisfies eqs. (Al1.11}{A11.15). Hence B°(e,,) > 0.

'+ Here

(q* + 6, d)(€o,) = (qi + 6,..., g, + 6,6,..., 6)(€o1),

where(6,..., 6) has r, components.
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Arguments similar to those used for B°(e,,) can be used to showthat
all the components of (p, B)°(e),;) must be positive. Since there is no
need to give further details, the proof of the theorem is complete. Q.E.D.

PROOF OF THEOREM 11.2. To prove theorem 11.2 we begin by observing
that there exists (cf ref. [16, pp. 2-3]) a vector (p*, g*!,..., g*") which
satisfies the following conditions

p* > 0: (A11.17)

(54) =1; (A11.18)
k=1

qe,p*q™ = pg, kk =1,..., 47: (A11.19)

U2 '(q"") = max Ur '(q); (A 11.20)
ge {qe C: pxq < pxq*}

and

y (q** — q‘) = 0. (A11.21)
k=1

Then we use the vector p* to construct a set of expected prices:

B(e,;) = (ip*(e,:) || /||/P*(ee- 1 jes) |

where j,,;, 1s the unique integer for which e,; C—1)jey ANd

t= 1,2,...;i=1,...,7, (A11.22) 

t

Pie.) =| I] Fea)|'Pteht = 1,2,...;i=1,...,7, (A11.23)
s=1

CtiS esj,

Next we define a family of security vectors: for each pair (t, i), t = 1,
2,...;i=1,...,1, let ,(e,;) be the set ofall indices j such thate,jm en
Evidently, @,(-) is well-defined and non-empty for all s >t. Next, for
each £=1t + 1,...,s, and je@,(e,,) let 2; be the unique integer such that
e,; © ey, Then for t = 1,2,...;i=1,...r, let

p‘(e,,;) for s = t, and
SsP'(es;) = [ I] B°(ex,,)pes) fors > t, JE D.(e,;). (A11.24)

L=t+1
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Finally, for each pair (t, i), t = 1, 2,...,i = 1,..., 7,let

VYey=yYV > phedle.) — q*(es)), k = 1,...,7 (ALL.25)
S2>t Je @sl€ti)

To prove theorem 11.2 we now let

(p, B)(eo1) = (p*, BY) (e01), (A11.26)

and

(p, B)(e,;) = (p, Be),

t

= 1,2,...58= 1,...,47, (A11.27)

Then we show that the family of vectors

S((p, B)(e,;), (q*. V*) (ei), ---. (@*, Vi(e,)), t 20,1 = 1,..., 7,3

is a feasible tree-structure of competitive equilibria: let (t, i) be chosen

arbitrarily, let

A® = ([(q'(ei), @ (2°), «5 (qe), V'(e")]_ 2 0:x Lig'(e.), 9(e"))

— (9*(e,;), F*(e"))] = Of, (A11.28)

and let

P" = {[(q'(e,), gi(e)), ---, (9"(e,), 9’(e"))] € A": J no ze A" such that
Ula, z) = Ulg*, (ae), gX(e"))) for all k with strict inequality
holdingfor at least one k}. (A11.29)

Observe that, under the assumption that each consumer k, k = 1,.

r, consumed the vector “g** during periods s = 0, 1, ..., t—1, pi

represents for period t and the event e,; the set ofall Pareto-optimal

allocations of q(e,;) and contingent claims on g(e,,) for all s > t and

Je @.(e,;)-

Next observe that

Leg* (eri), ge"), «5 (Q*(erds (Ee) € PS,

and that, for all

k=1,...,r(q*(e,), g**(e") € TY,

where

Pe = (glen), gle") 2 0: (pe), Pe") [(q(er), ae")
— (Ge), F(e")] S Ve,)}.  (A11.30)
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Note also that, for all k = 1,...,7r

Uig",(eu), Te) = max Uy("g**, qle,,), g(e"’)).. (ALL31)
(q(eri).q(et'))e TH

Finally note — it is easy to show — that fork = 1,..., r

(qx, Vx)"(e,i), (qe, Ve)(e")) TE, (A11.32)

where

ry = I'((p, B) (e,:), (p, B)*(e"’), q'(e,i)s q‘(e"), V«*(e,;)).

From eq. (A11.32) it follows that, if for all k = 1,...,r

((q, V)K(e,;), (q, V)K(e'')) E ly

and

Uige’, He), He") = -
max U"("ge*, qle,:), q(e")), (A11.33)

((q.V(eri).(q,V)(e))eTk

then

Ui'ge, g#"(e,i), ge(e") S Ug", G*(e,), We"), k = 1,..., 7. (AL1.34)

On the other hand,it is easy to show that, for all k = 1,..., r, (@*(e,,),
q‘(e"))e Ty. This fact and eq. (A11.31) imply that equality must hold in
eq. (A11.34) for all k. Consequently, since U;'("g**, -) is strictly concave

(en), TE) = (Qe), ae"), k= 1, ... r. (A11.35)

To conclude the proof of the theorem we now observethat (p, B)(e,,)
satisfies eq. (11.19) and that (g«'(e,;), ..., q*"(e,;)) Satisfies eq. (11.20).
Wealso note that eq. (A11.25) and the fact that [(q**(e,,), q*(e)), ...,
(q"(e.), g"(e"))] € P* imply that

r

y Vous 1)j) = 0, je N[ti]. (A 11.36)

k=1

But if that is true, then eqs. (A11.32), (A11.33) and (A11.35) imply that
((p, B)(e,:), (g*, V)'(e,:), .- 5 (q*, V*)'(e,;)) is in fact a temporary equilibrium
relative to the distribution of purchasing power (p(e,,)q‘(e,;) + Vi'(e,;),
..5 P(e,q'(ei) + V"(e,)). This result and the fact that (t, i) was chosen

arbitrarily establish the validity of the theorem. Q.E.D.
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PROOF OF THEOREM 11.3. Suppose that (g*', ..., g*")¢ P. By theorem

11.6 in ref. [16] there exists a vector p* such that (p*, g*', ..., q*’)

satisfies eqs. (A11.17}{A11.21) with q* replaced by q=* in eqs. (A11.19)

and (A11.20). Consequently,if we define (p, B)(e°') as in eqs. (A11.22}-

(A11.23), p"(ee,;) as in eq. (A11.24), V«*(e,,) as in eq. (A11.25) and (p, B)(eo1)

and (p, B)(e,;) as in eqs. (A11.26}(A11.27), then we can show that the

family of vectors

{(p, B) (ez), (q*, V*)'(ri)s «+ «5 (4, Vey(ex), t 20,5 = 1... re

is a feasible tree-structure of competitive equilibria relative to thefirst-

period distribution of purchasing power

((p, B)(@01)(4*, Vx)! (C91), -- +5 (D, B)(Eo1)(g*, V¥)"(e01))-

Since there is no need to give further details, the proof of theorem 11.3

is complete. Q.E.D.

PROOF OF THEOREM 11.4. If welet

Ax = {((q, V)'(e,i), (Qs We): F = 0, V’ = — BE), Ble")

(q*(e,), ge"), > (a, Ven) — (4%, 9) (E14) = OF, (A11.37)
k=1

then the set of goods-securities allocations that are admissible in period

t if the event e,; occurs is

*P" = (9, V)"(e,:), sy (q, V)"(e,:)) € Ax: J no Ze Ax such that F(z") 2

F,((q, V)*(e,;)) for all k with inequality holding for at least one k}. (A11.38)

From this definition of admissible strategies, it follows that theorem 11.4

can be proved by using standard methods. There is no need to spell

out the details here. So we can consider the validity of theorem 11.4

established. Q.E.D.



COMMENTS

On sequences of temporary equilibrium

John O. Ledyard*

Cl11.1.1. Discussion

The papers by Green and Stigum, appearances notwithstanding, are
complementary. They are also important contributions to the theory of
temporary equilibrium; a theory of market systems in which the markets
for trading commodities may be open each day. This model thus con-
stitutes a generalization of the Arrow—Debreu model. In modeling such
an economy, several issues must be faced immediately. One is the
possibility that, at some date, the equilibrium price in certain markets
may be different from what it was in the past. For example, the price
paid today for delivery of goods in 1980 may be different from the
price paid three days ago for the same delivery contract. Once this
possibility is introduced into the model, it is necessary to introduce
expectations (usually on prices) about the future possitilities for trades
on the (currently) closed markets. Finally, once such expectations are
introduced, speculation becomes not only possible but potentially
profitable. Thus, individuals may contract to deliver commodities at
some future date which they currently do not own(i.e., they sell short),
under the expectation that they can buy up the appropriate amount on
some day prior to the date delivery is to be made. Such behavior can
lead to an inability to deliver if prices are not as expected, thus causing
bankruptcyas a result of past behavior. Bankruptcy in turn may operate
to insure that no temporary equilibrium exists, thus exposing a basic
deficiency in the model.
Green and Stigum approach these problemsin different ways. This

can be moreclearly seen if we initially consider a result of Arrow and
Hahn(1, theorem 7, p. 121). They show that, under acceptable assump-
tions, a compensated temporary equilibrium exists even if bankruptcy

* I would like to thank James Gordanfor helpful conversations andinsights.
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is allowed. In general, this compensated equilibrium will not be a market

equilibrium; however, it is true that there is a redistribution ofinitial

endowments such that the compensated equilibrium will be a market

equilibrium after the redistribution. Although Stigum’s paper does more,

one of his results provides conditions on preferences and expectations

such that the compensated equilibrium is a market equilibrium, without

a redistribution of endowments. Green, on the other hand, accepts that

a redistributionis likely to be necessary and providesa setofinstitutional

rules which will accomplish this.

The contribution of each paper is now evident. From Stigum’s work

it is obvious that the sufficient conditions required to insure that a

sequence of temporary equilibria exists without any consumer becoming

bankrupt (what hecalls‘a feasible tree structure of temporary equilibria),

in economies with only markets for current goods and securities, are so

strong that any possibility that reality is encompassed 1s effectively

eliminated. Thus, Stigum’s paper contains the motivation for Green’s

work. Thatis, if bankruptcy is as likely a possibility as Stigum’s paper

indicates, methodsfor dealing with it must be developed. Green, in his

potentially seminal paper, provides us with one possibility.

Each paperis important; however, each has certain weaknesses.It is

clear that each author ignored these in order to concentrate on what

he considered to be the important issues. Thus my reason for discussing

these points is not to be critical of the authors but to indicate the desir-

ability of certain future work. It seems to me that the description of the

behavior of equilibria in the presence of inactive markets is one of the

main contributions of the theory of temporary equilibrium. Stigum’s

paper requires all commodity futures markets to be inactive: Green’s

requires none to be inactive. Each paper suffers a little from these

extreme positions. Green’s assumption implies that if there 1s no bank-

ruptcy currently and if consumers expect with certainty that today’s

(relative) futures prices will be tomorrows’ current prices, then expec-

tations will be fulfilled and no bankruptcies will occur in the future.

Another problem is that if some futures markets did not exist then the

concept of the present value of wealth (defined at current prices) which

he uses as a standard of bankruptcy is not defined. Personally I do not

think this detracts from his major insights; however, it would be nice

to see what happens in a world without complete futures markets.

Stigum’s assumption (that no commodity futures markets are active)1s
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restrictive in a different sense. In particular it implys thatall debt is paid
off in ‘dollars’ (the unit of account). This immediately makes the price
level (as opposed to relative prices) important. For example, normali-
zation offirst period pricesis legitimate onlyif V“(e,,), the dollar amount
of securities maturing at time 0 held by consumerk, equalszerofor all k.
Otherwise, since commodity endowments are positive, the price level
in period 1 could be set high enough such that all debt can be paid.
(For additional comments on therole of the price level in a ‘monetary’
economy see Arrow and Hahn[1, pp. 347-369].) Thus assumptionII of
Stigum that V(e),) = 0 is crucial and effectively eliminates the possibility
of a past — precisely the phenomena Green introduces in his model.
In Green’s paperall debt is owed in commodities and, therefore, he does
not have to face this problem. Clearly, more research is needed before
the precise relationship between and impact of alternative debt forms
(money, securities, or commodities) is understood.

Perhaps the most troubling aspect of Green’s analysis is that he is
only able to show the existence of an approximate equilibrium. This
results from the fact that, because of the institutional arrangements to
handle bankruptcy, demand correspondences can be non-convex.It is
tempting to ask whetherit is possible to revise the institutional rules for
redistributing endowments in response to bankruptcies in a way which
rescues the convexity of the consumers’ demand correspondences. Since
several of the disagreements between Green and Stigum must be resolved
in such a revision, it is of interest to explore some possibilities.
The main disagreementarises over the definition of bankruptcy. Green

defines a consumer to be bankruptat the prices p if his net present
value of wealth (both endowments and contracts) is negative when
valued at today’s current and future prices. Stigum defines a consumer
to be bankrupt if he is unable to find someone whois willing to re-
finance his currently expiring contractual debts. Let us be a bit more
precise. Let ‘w = (w,, w,4,,...) be the consumer’s current and future
endowments at t. Let '~'e = ('~1e, ...) be the consumer’s current and
future contracted commitments at date t. ('~ 'e,, > 0 means heholds,
at t, contracts for commodity k to be delivered to him at t.) Given ‘w,
‘~'e and prices ‘p, the consumer must choose at t a vector of trades
(current and futures contracts) 'b such that

‘pn: 'b SO, for all t. (C11.1)
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(Note: if some markets are inactive then the appropriate entries in ‘b

must equal zero.) Having signed these contracts the consumer consumes,

at t, x, = w, +' ‘'e, + 'b, and has remaining contracts of 'e where

'e =' le + 'b, for t 2 ¢t. He is constrained to choose (for survival

reasons)

‘x, 20 for all t. (C11.2)

Green’s definition of bankruptcy can be seen by rewriting (C11.1) as

follows:

oe 'x <'p-'wt 'p-t te (C11.3)

where 'x is his planned current and future consumption. A consumer is

then bankrupt if there is no consumption plan whichsatisfies (C11.2)

and (C11.3) simultaneously. This occurs if and only if the net present

value of wealth, 'p-‘w + 'p-'~'e < 0. This view is certainly consistent

with the approach of Debreu [2], where °e = 0 and ‘x, = ‘x,for all
t = 1.(Note: if some markets are inactive, it is not clear what ‘expected’

prices should be used to evaluate ‘'w. For our purposes, however, this

is a Side issue.)

Stigum’s definition of bankruptcy can be seen by rewriting (C11.1)

as follows:

tDi 'X, + (bth <'p,w, + 'p,:' *e, (C11.4)

where 'p = ('p,, ‘p) and 'b = ('b,, ‘b). A consumer is then bankrupt if

there is no consumption vector ‘x, satisfying (C11.2) and a trade ‘b

which can be completed in equilibrium such that (C11.4) holds. This view

is consistent with that of Debreu [3] where 'w < 0 is possible in a

limited way which ensures no bankruptcy of this type. However appeal-

ing this view mightbe as a representation ofreality, I find it less com-

pelling as a concept of bankruptcy in a tatonnement system sinceit is

not independent of the existence of equilibrium. That is, it states an

individual is bankrupt if there is no equilibrium such that he is not

bankrupt. This seemsparticularly circular to me.
Another extreme view would be that a consumeris bankrupt if the

value of currently maturing obligations ‘p,-w, + ‘p,:' ‘e, < 0. Thatis,

he is given no opportunity to refinance his debt.

Wethus haveat least three possible views of bankruptcy from which

to choose (Green’s is an intermediate case). The only reason the choice
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must be madeis that both Green’s and Stigum’s institutional rules force
a consumerto declare bankruptcyif and only if he is bankrupt according
to theircriterion. A possible way out of this dilemmais to allow the
consumer to choose the extent of his default as a decision variable.
That is, we allow default plans just as we allow consumption plans.
This would be more consistent with the idea of an informationally
decentralized market system. Let me try to indicate how this might
work, using Green’s notations and concepts.

Instead of relying on Green’s institutional default rule, d(p, r) =
min {6 = 0| p(w + re, + (1 — d)e_) 2 0, we allow each consumer,i,
to choose d'e€ [0,1] given prices p and returns ratios r. Once each con-
sumer has done so, new returns ratios are computed, as in Green, and
prices are adjusted. Then new demandsanddefault ratios are computed,
etc. The only question is by whatcriterion does a consumerselect a d'?
Clearly if there is no penalty connected with d' > 0, and if preferences
are monotonic then he would always maximize utility by choosing
d' = |. That is, he would always desire to default on all commitments.
On the other hand, if the penalty is severe (as, for example, in Green
where d' > 0 implies ‘x, = 0 for all t), he might never desire to default
unless forced to doso.
The first problem, the consumer always defaults, is inherent in any

model where contracts are notstrictly enforced.It is basically a problem
of public goods (more precisely, bads) and involves an elementofsocial
trust. In this sense contracts are like money in that money won't be
held (contracts won’t be signed) unless there is some faith that it can
be exchanged (that they will be carried out). Rather than sort this
problem out, it is easier to assumethat defaulted contracts carry some
disutility (because of, say, social norms) to the defaulter. In particular
we can let (as in Green) the utility function of a consumerbe u(x,, y,,
X2, Y2,.-.) Where x, is consumptionat t and y, = d,‘p-'~4e_ is the dollar
value of defaulted contracts at datet.
The second problem, that d might always be chosento be 0, is not as

easily solved. It is a problem because each consumer,given the price'p,
can always plan a trade 'b which would refinance all his debt. However,
there may be noprice such that these plans add up (across consumers)
to zero in which case there is no equilibrium. If t is the final decision
period, the problem disappears since the consumer must choose d and
‘b such that x, = 0. It is easily shown that if the present value of wealth
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is negative then d must be chosen to be greater than zero. For decision

periodspriorto the final period, one must introduce enough assumptions

on expectations and utility to insure that the consumerdoes not expect

to be able to refinance all of a large current debt. (Green does this

through his assumptions on u and P.)

An obvious objection to this model is that default does not require

a declaration of bankruptcy (i.e. one need not even partially pay one’s

creditors except through the economy widereturnsratios). This is also

a feature of Stigum’s model in which default is paid for by everyone.

Green on the other hand extracts the ultimate penalty even if the con-

sumer defaults on only ¢% of his contracts. Again a middle road might

help reestablish convexity of Green’s demand correspondence while

forcing the defaulter to bear more of the burden of his actions. One

possibility is to require that some percentage of defaulted contracts be

covered by the consumer’s own assets. Remembering that d is the per-

centage defaulted on, let t(d) be the institutionally predetermined per-

centage of assets required to cover default. Then, a consumer’s budget

constraint would be: px < (1 — d)pe_ + (1 — t(d))(pre, + pw). In order

for a consumerto be able to always attain a non-negative wealth position

we would need t(d) < d. If t(d) is continuous and convex in d then

demand correspondences should be well behaved. That is, under

assumptions similar to Green’s, demands and default ratios should be

upper-semi continuous, convex, non-empty correspondences of prices

and returnsratios. If the formula for computing the returns ratio 1s then

suitably adjusted, one should be able to establish the existence of

temporary equilibrium. This remains to be shown.

I have concentrated on the aspects of each paper dealing with the

question of existence. However, once existence is established, it is inter-

esting to inquire aboutits optimality properties. Stigum’s paper is one

of the few to do this for economies with sequences of temporary equilibria.

His results (embodied in theorems 11.3 and 11.4 and some counter-

examples) deserve emphasizing. Briefly, he shows that, in general,

a particular sequence of temporary equilibria is not Pareto-optimal

ex post.

However, he does provide, without proof, very restrictive conditions

such that ex post Pareto optimality does obtain. He also demonstrates

that there exists a set of expectations and a redistribution offirst-period

purchasing power such that any ex post Pareto-optimal allocation can
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be supported by a sequence of temporary equilibria. That is, optima are
equilibria (given a redistribution of endowments and specific expecta-
tions) but equilibria may not be optima except in fortuitous circum-
stances. Finally, he indicates (in theorem 11.4) that each temporary
equilibrium plan is ex ante Pareto-optimal given the expectations of
consumers. Thus, he has illuminated the complex relationship between
sequences of temporary equilibria, ex ante Pareto-optimal plans, ex post
Pareto-optimal allocations, and price expectations.

In summary, I consider both of these papers to be excellent contri-
butions to our knowledge about the performance of market economies
in which temporal sequences of markets exist. Stigum’s work establishes
that in general, ‘a price mechanism confined mainly to current markets
for current goodsis likely to go astray’. (This is a view attributed to
Keynes by Arrow and Hahn [1, p. 347].) Green’s work initiates the
important task of revising the usual rules of market behavior to allow
sequences of temporary equilibria to proceed in an orderly fashion.
Clearly this work has just begun.
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CHAPTER 12

BALANCED GROWTH UNDER UNCERTAINTY
IN DECOMPOSABLE ECONOMIES

Harry Kesten and Bernt P. Stigum*

12.1. Introduction and Statement of Results

In this paper we study the asymptotic properties of d-dimensional

positive (note we use the term positive to mean non-negative throughout
this paper)’ vector-valued random processes {x, = (X;1,.--5 X;a)}1>0:

which for t = 0, 1, ... satisfy a set of functional equations of the form

EtX41; | Xo; sey x,} = hdX,.1, sees Xtd,)s l < I < d,,

12.1
E{xXi414|Xo.---.X,} = h(x), d, +1 Si<d. (12.1)

Here E{x,41,;|Xo,-.., X,} denotes the conditional expectation of x, +, ;
given the values taken on by xo, ..., x,, and it is assumed that each h,(-)
is a positive, continuous, non-decreasing linearly homogeneousfunction

of its arguments’. We shall show that under certain conditions these
processes will eventually adopt a balanced growth pattern; i.e. for some
A> 1, lim {x,/A'! exists and has a fixed direction with probability 1.

tt? ow

The need to study such processes arises in many different contexts in

economics. Here are two simple examples.

* Partial support from the National Science Foundation for the second author is
gratefully acknowledged.
Throughout this paper we say that a constant cis positive if c 2 0. Moreover, we say
that a vector x = (x(1),..., x(d)) is positive if x 2 0; 1. if x(i) 2 0 for all i = 1,...,d.
Finally, we denote the set of all positive constants by R, and the set of all positive
k-dimensional vectors by (R,)* k = 1, 2,... with (R,)' = Ri;ie Ry, ={c 20) =
[0, 00) and (R,) = {x = (x(1),..., x(k)) 20}.
Throughoutthis paper a positive function on (R, \ is a map from (R,)* into R,. More
generally, a d-vector-valued positive function on (R, )* is a map from (R, )* into (R,)*.

1
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12.1.1. A macro-model ofan economy

Let d = 2. Moreover,let x, , denote an economy’s laborforce in periodf,

t = 0,1,..., and assumethat there exists a constant p suchthat,forall t,

E{X:41.1 | Xo.as +++ X14} = PX. W-pr. 1 (= with probability 1). (12.2)

Finally, let x, 5, t = 0, 1, ...denote the same economy’sstock ofcapital

in period t, and assume that there exists a positive, continuous, non-

decreasing, linearly homogeneous function h(-) such that

E{X,41,2|Xo.---,%,} = A(x,) w. pr. 1. (12.3)

Then x,, t = 0, 1, ... can be seen to describe the behavior over time

of an economyasit is reflected in the behavior of its stock of labor

and capital.

A morespecific interpretation of this modelis obtainedin the following
special case. Replace eq. (12.2) by

Xr41,1 = PX, W. pr. I, (12.4)

and eq. (12.3) by

X141.2 = Wx,) = X,2 + SF(x,) w. pr. 1, (12.5)

where s denotes the consumers average propensity to save and F(-)

denotes the aggregate production function of the economy. Therela-

tions (12.4) and (12.5) represent a discrete analogue of Solow’s classic

model ofeconomic growth 10, pp. 66-67] for an economy which behaves
deterministically, that is, an economy which operates in a world in
whichtheset of all possible states of the world consists of one and only

one point. Eqs. (12.2) and (12.3) can therefore be viewed asa stochastic

analogue of Solow’s model.

Solow’s result, when translated into discrete time, states that eqs.
(12.4) and (12.5) imply for p > 1 that {x,/p'! converges to a fixed vector.
Our theorem 12.1 generalizes this growth result from the deterministic
to a stochastic context.

Anotherspecial case can be obtained as follows. Let A, t = 0, 1,...
denote a sequence of identically and independently distributed random
variables and suppose that the aggregate production functionin period t
can be represented by a continuous function G(x,, A,) which for each A,
is linearly homogeneous, and non-decreasing in x,, Moreover, suppose
that there exists a constant s such that
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X141,2 = X12 + SsG(x,, A,) w. pr. 1. (12.6)

Finally, suppose that the A,’s are independently distributed of the x,’s.
Then the function h(-) in eq. (12.3) can be defined by the equation

h(x,) = X,,2 + SEG(x,, A,), (12.7)

where

EG(x,, A,) = | G(x, y)dF(y) and F(y) = P{A, < y};

1.€. EG(x,, A,) is the expectation of G(x,, A,) with respect to A,.
The model obtained by substituting eq. (12.4) for eq. (12.2) and by

retaining eq. (12.3) with A(-) defined as in eq. (12.7) represents a sim-
plified version of a model of economic growth studied by Mirman
(cf. [8], pp. 1-2, 3).

12.1.2. A dynamic model ofafirm
Consider a closed-end investment company. Let m = (m,,..., mq,)
denote a vector each componentof which represents a security in which
the firm can invest; and let X,, 1 = 1,..., d, denote the t-period price
of m;. Then assumethat the firm invests in equities only and that these
equities either do not pay dividends or pay a fixed percentage of the
current values of the shares. Assumealso that the investment company
does not pay its share holders dividends and thatits manager in each
period is paid a fixed percentage of the company’s net worth. If these
assumptions hold, then under reasonable conditions on the manager’s
risk preferences and price expectations the behavior over time of this
firm as reflected in each period in the manager’s choice of portfolio
can be represented in the following way. Let d = d, + 1, let m, denote
the firm’s portfolio at the beginning of period t, and let

dy

Xtd = » XtiM;
i=1

denote the fund’s net worth at the beginning of period t. Then there
exists a continuous vector-valued function m(-) that is homogeneous of
degree zero and that for each t =

0

satisfies the equation

Ma, = m(x,).° (12.8)

> Weassumehere both that the manager always expects prices to be positive and that
prices in fact are positive with probability 1.
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Suppose now that the x,js, 1 <i < dj, are distributed independently

of the m,s and that there exist positive, continuous,linearly homogeneous

functions h,-), i= 1,..., d,, such that for 1 <i <d,,

EfXi414| Xo. ++ +5 Xi} = (X11; 2+) Xta,) Ww. pr. 1. (12.9)

Then

dy

EX xX, 4 1,d | NOs +++ x,} = E{) Xp+ 1/1, + 1,i | XO s+ +5 x}

— d WdX.15 +++ X1a,)MA(X,) = hx,) w. pr. 1, (12.10)

where h,(-) is a positive, continuous, linearly homogeneousfunction of

its arguments.

From egs. (12.9) and (12.10) it follows that, under certain conditions

on the manager’s risk preferences and price expectations and under

certain conditions on the actual behavior of prices, eq. (12.9), we can

study the growth of a closed-end investment company in terms of a

model such as the one proposed in eq. (12.1).

The preceding examples pertain to economies andfirms that operate

in an uncertain world. For an interesting discussion of how the need to

analyze solutions to deterministic analogues of eq. (12.1) arises in the

study of economies that operate undercertainty, the readeris referred to

Fisher’s fundamental paper on ‘Decomposability, near decomposability

and balanced price change under constant returnsto scale’ [4] (cf. in

particular pp. 67-70). Other examples of deterministic analogues to eq.

(12.1) can be found in H. Nikaido’s discussion of linear and non-linear

income propagation models(cf. ref. [9], pp. 98-100 and pp. 162-163)*.

So much for examples, now on to our results. Note that we always

take d, => 1. If d, = d, the situation reduces to the indecomposable one,

which is treated in ref. [12]. This case could be subsumed under the

present one, but it would make the write-up of several of our results

cumbersome. We therefore have tacitly taken d > d, and the readeris

referred to ref. [12] for details in the case d = dy.

Webegin by stating two definitions and two well-known lemmas.

Throughout, x and ystand for the vectors(x(1),..., x(d)), (yO), ..-, Wa),

4 For a systematic presentation of deterministic models of growth in decomposable

economies the reader is referred to E. Burmeister and A. Rodney Dobell’s book on

Mathematical Theories of Economic Growth [2].
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and H(.) = (H,(.), ..., H(.)) is a map from (R,)4 = {x = (x(1), ...,
x(d)) = 0} into (R,)*. Moreover,for x,y €(R4)4 Mx, y) = (i: x(i) > y(i)}.
If xe(R,)%, we shall use x' for the d,-vector x! = (x(1), ..., x(d,)) and
x* for the d-d,-vector x? = (x(d,; + 1),..., x(d)). The vectorx itself will
often be written as x = (x!, x7).

DEFINITION 12.1. The vector-valued function H(-) is called indecompo-
sable if for any x, ye(R,)*, with x >y > 0° and @ #4 N(x, y) c {1,
...,d} we have

Hx) # Hy) for some i ¢ N(x, y). (12.11)

Moreover, H(-) is called decomposable if and only if it is not indecom-
posable.

Clearly a function A(-), with h,(-) depending only on x(1), ..., x(d,) for
1 Si Sd, < das in eq. (12.1) is decomposable. This is the reason for
the ‘decomposable economies’in thetitle of this paper.

DEFINITION 12.2. Wesay that 4 is an eigenvalue of FX.) if there exists
an xé(R,)*, x # 0 such that

H(x) = dx. (12.12)
A vector x satisfying these conditions for some 2 is called an eigenvector.

For later purposes there are a few things to note about definition 12.2.
First, the zero vector is not an eigenvector of H(-). Second, an elgen-
vector has to be a positive vector since H(-) is only defined on (R.)4.
Lastly, the positivity of H(-) implies that any eigenvalue J is positive
(and a fortiori real).

LEMMA 12.1 (Samuelson and Solow). Let

H?: (R,)" + (Ry
be a positive, continuous, non-decreasing function, which is homogeneous
of degree one and indecomposable. Then there exists a unique eigenvalue
4, with a corresponding eigenvector V’, i.e.

Ve (R,)", V! £0, WV) = 2, (12.13)
V’ is strictly positive and unique up to a positive multiplicative factor.

> If x = (x(1),..., x(k)) and y = (yU),..., Wk), then x = y means that x(i) > y(i) for
alli =1,...,k. Moreover, x > y meansthat x(i) > y(i) for alli = 1,..., k.
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PRooF. This lemmais an immediate consequence of theorems 10.1 and

10.4 in ref. [9, pp. 151 and 156] (see also Samuelson and Solow’s proof,

[11, pp. 415-416]).
If H?(-) = (Hy,41(-), ---» Hd-)) is a map from (R,)* into (R,)4~%,

whichis positive, continuous and non-decreasing and such that the map

x? > H*(0, x) is indecomposable (when viewed as a map from (R,)*~“'

into (R,)4~%), then an analogue of lemma 12.1 showsthat there exists

a unique 4, = 0, V?e(R,)*-“, V* > 0 such that

H?(0, V7) = 1,V’. (12.14)

The following lemma shows that we can also find an eigenvector for

H = (H’, H’): (R,)° > (Ra), (12.15)

ie. H(-) = Hi(-) if 1 SisSd,, H(-) = H?(-) if d, + 1 Si<d. This

lemma was proved by Fisher [4, pp. 79-81] under slightly stronger

monotonicity assumptions on H(.). We shall not, however, give a

proof here since the gain in generality over Fisher's version is very

slight.

Lemma 12.2 (Fisher). Let H':(R,)" > (R4)" and H*: (R,)* > (Ryo

be positive, continuous, non-decreasing and homogeneous of degree one.

Assume that H'(-) and the map x? — H?(0, x*) are indecomposable, that

1,, 4, V1, V satisfy eqs. (12.13) and (12.14) and that A, > A. Finally,

let H be as in eq. (12.15) and assumethatfor any x 2 y with N(x, y) # ©,

[d, + 1, d] not contained in N(x, y), one has

H?(x) > H?(y) for some ie[d, + 1, d], i¢ N(x, y). (12.16)

Then, there exists a unique vector V? = (V7(d, + 1),...,V7(d))e(Rs)"“

such that

V2 4 0 and HV), V2) = A,V?. (12.17)

This V? is strictly positive.

If the conditions of lemma 12.2 hold, we shall write W = (V', V’). By

eqs. (12.13) and (12.17), We(R,) is an eigenvector of H with eigenvalue

di, 1.

HW) = 1,W. (12.18)
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Notice that 2, > 4, 2 0 implies that A, is strictly positive. Moreover,
any W which satisfies We(R,)*", W! 4 0, A(W) = 2W for some J,
also satisfies H'(W) = H'(W') = 2W' so that W' must be strictly
positive multiple of V' and A = /,. Thus, by lemma 12.2, W is the
unique (up to a multiplicative constant) eigenvector of H with W' + 0.
Moreover, W is strictly positive, i.e.

W>0. (12.19)

Weintroduce a last bit of notation in order to formulate our theorems:

d

|x| = > | x(i)| for xe R4,°
i=l

A = {xe(R,)*: |x| = 1}, (12.20)

and if A(-) is the function in eq. (12.1), h,;(x) = (@h{x)/0x)).

THEOREM 12.1 (A, > A,). Assume that eq. (12.1) holds and that the

functions H(-), H’(-), and H?(-) defined by eq. (12.15) and

and

H2(.) =hf-), dy +1 <i<d (12.21)

satisfy the conditions of lemma 12.2. Let W be given by eqs. (12.13),

(12.17) and (12.18). Suppose h;{W) exists and suppose

h{W>Oifilsijsd,;d,<isdl1sj<d. (12.22)

Moreover, suppose that

A, >10<’, <A,’ (12.23)

and that

H'(x') > O and H’(x) > 0 whenever x' 4 0. (12.24)

Finally, assume that there exists a neighborhood U of W = (W/| W)) in

A and constants K and 6 such that 0 < 6 < 1 and such that

© Here R4 = {x = (x(l),..., x(d)): — 0 < x(i) < wo,i= 1,..., d}.
’ 4, > Ois not much ofanextra condition since x? — H(0, x) is already indecomposable.
Thus 2, = 0 can occur only if d = d, + 1 and H(0, x’) = 0.
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Ef| X41 — Axi) |? | x0..--.4,} SKI xt PO-) 1 <i<dy; (12.25)

E{| X41, — W(x) |?) xX0,...,4%,} SK|x,|?"-” for d,+1<i<d;

(12.26)
and

| H(x) — H(y)| < K|x —y| for all x, ye U. (12.27)

Then there exists a random variable g such that

lim {x,/A',} = gW w.pr. 12 (12.28)

Moreover, ~

E{g|xo} > 0 and P{g >0|xo}>0 (12.29)

whenever x6 # 0,| Xo | 2 M(| x6 |/| Xo |)for a suitablefinitefunction M(-):
(0, 1] — (0, 00). If P{(| x; |/| x, |) 2 ¢, x, | 2 M(e) for some s| xo} > 0
for some ¢ > O andall x) with x5 # 0, then eq. (12.29) holdsfor all x} # 0.
On the other hand,

x; = Ofor all t and g = 0 ae. on {xj = 03° (12.30)

 

 

Finally,

E{g| xo} < x (12.31)

if the functions h{-), 1 <i < d,, are concave.

THEOREM 12.2 (A, < A,). Assume that eq. (12.1) holds and let H(-), H’(-)
and H?(-) be given by eqs. (12.15) and (12.21). Assume that H'(-) and H?(-)
are positive, continuous, non-decreasing and homogeneous of degree one.

Moreover, let H*(-) and the map x? > H?(0, x”) be indecomposable. If
Ay, 42, V’ and Vare as in eqs. (12.13) and (12.14), assume that

O< 1, <1,,4,>1; (12.32)

H’(x) > 0 for xe(R,)*, x #0; (12.33)

and

h,{O, V7) = h,{x) at x = (0, V’) (12.34)

exists and is strictly positive ford, + 1S i,j <d.

8 Hereas well asin eq. (12.35) it is understood that g < 00 w.pr.1.
” Here a.e. means ‘almost everywhere’.
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Finally, assume that there exists a neighborhood U of (0, (V7 | Vv? |) in A

and positive constants K and 6 satisfying eqs. (12.25){12.27). Then there

exists a random variable g such that

lim {x,/A5} = g- (0, V*) w.pr. 1. (12.35)
t+ @

Moreover, for some constant M < oo,

E{g|xo} > 0 and P{g >0|xo} >0 (12.36)

whenever |x)| 2 M.Iffor all xo # 0, P{|x,| 2 M for some s > 0| xo}
> 0, then eq. (12.36) holds for all x, # 0.

Finally,

E{g| xo} < oO » (12.37)

if all the h,(-)s are concave. *

At first glance neither the generality of theorems 12.1 and 12.2 nor their

applicability in economics is obvious. So a few remarks concerning the
assumptions made in these theoremsare called for.

12.1.2.1. Remark I. When max (/,, 4,) > 1 and 4, 4 /,, theorems 12.1
and 12.2 provide what are, from one point of view, the best sufficient
conditions obtainable for the validity of eqs. (12.28), (12.29) and (12.35), —

(12.36) respectively. Specifically, there exist processes that satisfy all but
one of these conditions whose asymptotic behavior cannotbe described
by eqs. (12.28), (12.29) or (12.35), (12.36). Here is an example.

Consider Mirman’s model as presented on pp. 336-337 above.

Make assumptions on G(-:) that will ensure that the conditions of lem-
ma 12.2 and conditions (12.22) and (12.27) are satisfied. Assume also

that the distribution of A, is absolutely continuous with respect to
Lebesgue measure and concentrated on a compactinterval, and that the
corresponding density function is continuous and positive on this
interval. Then H(-) satisfies eq. (12.24) and x,,, t = 0, 1, ... satisfies eq.

(12.25). However, x,, tf = 0, 1, ... does not satisfy eq. (12.26), and it
follows trivially from theorem 3.3 in ref. [8, p. III.10] that {x,/A‘}
converges in distribution to a random vector whosedistribution is not
concentrated along a single ray from the origin in (R,)*. Thus, for this
model, eqs. (12.28), (12.29) are false.
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12.1.2.2. Remark 2. On the other hand,there exist processesthat satisfy

some but notall the conditions of theorems 12.1 and 12.2 whose asymp-

totic behavior can be described as in eqs. (12.28), (12.29) or (12.35),

(12.36). Here is an example.

Let {x, = (%;1, X;,2)};9 be a decomposable Galton—Watson process
with first-moment matrix

A, 0

mA,

and assume that J, > 1,4, > 0,4, > 4, and m> 0. Then H(:), H'(-),

and H?(-:) satisfy the conditions of lemma 12.2 and conditions (12.22),

(12.24) and (12.27) as well. Moreover — cf. theorem 2.1 in ref. [7] — eqs.

(12.28), (12.29) are valid if and only if E{x,, log x,,;|Xo,. = 1} < x.
Thus, for such a processeqs. (12.28), (12.29) may hold evenif eqs. (12.25)
and (12.26) are not satisfied.

12.1.2.3. Remark 3. It is not intuitively obvious that any economyever

would satisfy conditions (12.25) and (12.26). So we next describe a simple

economythat does. This hypothetical economy can be thought of as a

free translation of Edward Bellamy’s USA, year 2000.'°

Consider an economy in which there are two primary inputs, labor

x, and capital x,. These factors can be combined to produce output
(= net national product) according to a continuous, strictly quasi-

concave, linearly homogeneous function F(-:) that is increasing on

{x, > 0, x, 20}. We assume (1) that capital and output are both

publicly owned, (2) that workers share equally in national output, each

one’s share being equal to a fraction of labor’s average product'*, and

(3) that the general surplus(i.e. net national product — wageallotments)

is used in toto by government to augment the nation’s capital stock.

Assume in addition that the share of national output credited on the
public books to each worker is so ample that a worker is ‘morelikely

not to spend it all’’?. If a worker does not fully expend his credit, the

balance is turned into general surplus. Under extraordinary circum-

stances a worker might be allowed to spend more than his allotment

but never more than labor’s average product. The excess above the

usual allotment would be taken out of the general surplus.

10 See ref. [1].
'! Cf. ref. [1, p. 151).
'2 Cf. ref. [1, p. 148].
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In more precise terms we are assuming (4) that the fraction of labor’s

average product consumed in each period by the ith worker can be

represented by a random variable c; with range (0,1], and (5) that, if

X,,, and x, 2 denote labor and capital in period ¢, then for all t:

Xen = Xr t Y= COPXX} (12.38)

Wewill also assume (6) that the distribution of c; is independent ofi

and constant over time and that, for each pair(i, j) c; and c,; are dis-

tributed independently of each other and of labor and capital. Finally

we assume(7) that the growth of the labor force can be represented by a

Galton—Watson process with mean 2 > 1 and finite variance o?.
The preceding assumptions allow us to describe the development

over time of our utopian economy in terms of a random process { x, =

(X15 X12) }+>0 With the following properties:

EtXai4 | Xo; sey x,} = AXt1 Ww. pr. 1, (12.39)

and

E{X,41.2|Xo.---5X} = X12 + sF(x,) WwW. pr. 1, (12.40)

where s = E(1 — c,;). Moreover,

EX(X:41.1 —_ 2X11)? | Xo; sees x,} = OX,4 W. pr. 1, (12.41)

and

E{(%:41,2 — X12 — SF(x,))7 | Xo, ..., x,} SK |x,| w. pr. 1 (12.42)

for a suitable finite constant K.

12.1.2.4. Remark 4. Theorems 12.1 and 12.2 can be generalized in

several directions. Here are two ways suggested by theorem 12.3 in

section 12.3 below.

Monotonicity. The only purpose of the condition that H(-) be non-

decreasing is to guarantee the existence of an eigenvector W of H(-) and

an exponential convergenceoftheiterates of { H(x)/| H(x)|} to {W/| W]}.
Wecould use theorem 12.3 to obtain eqs. (12.28) and (12.29) even when

H(-) is not monotonic, as long as there exists a vector V for which eq.

(12.70) holds.

Condition (12.1). The preceding observation also suggests that eqs.
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(12.28) and (12.29) may bevalid even if condition (12.1) is not satisfied.
Specifically, to ensure the validity of eqs. (12.28) and (12.29)it is sufficient
to assume that there exist functions A(-), H’(-) and H’(-) that satisfy
eq. (12.21), the conditions of lemma 12.2 and eqs. (12.22)112.27). To
bring this point home, consider the following extension of the example
presented in section 12.1.2.3. In that example we insisted that the c,’s
be independently distributed and have rangein (0,1 ]. These assumptions
can be relaxed in many ways without stopping the economy from
eventually achieving a balanced growth path. Hereis one possibility.
Let y;, y2,... be identically and independently distributed, non-negative
random variables and assumethat

O0< Ely} =u<1, (12.43)

and

E{(y; — w)?} = ay < &. (12.44)
Assumealso that the y,’s are distributed independently of x,, t = 0,
where x, is as defined in section 12.1.2.3. Finally, assume that in each
period t the distribution of the c,’s, conditional upon the observed value
of x,1, satisfies the following condition:

Xti1

P{(cy,...5 Cx, JEA} = Phi, x,JEA| Y ys S 1}, (12.45)
i=1

for all Borel subsets A of (R4)**'.

When we makethe above modification, but leave the modelof section

12.1.2.3 otherwise unchanged, the relations (12.39) and (12.41) are still
valid. Moreover, with s = (1 — y) it is fairly easy to show that eq.
(12.42) is still valid. However, eq. (12.40) is generally false unless the
range of the y,s belong to (0,1]. Thus {x,1, x,,2)},59 need not satisfy
eq. (12.1). Yet, with the help of theorem 12.3, the same arguments used
to establish theorem 12.1 can be used verbatim to establish the validity
of eqs. (12.28) and (12.29) for this economy.

12.1.2.5. Remark 5. Theorems 12.1 and 12.2 consider only decompos-
able economies for which 4, # /,. The case when 4, = A, is more
difficult. The behavior of x; can still be characterized as in theorem 3
in ref. [12], but the behavior of x? is not so easily determined. To show
how ‘badly behaved’ x7 may be, we present in section 12.2 several
results pertaining to the two-dimensional deterministic analogue of
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eq. (12.1) where A, = 4, > 0. Specifically, in lemma 12.10 we show that,if

lim inf {[A(e,1) — h(0,1)]/e} > 0,
e+0

then {x,,2/4,} grows at least as fast as t. In lemma 12.8 we give an
example in which {x,»/A,} grows faster than any powerof t. In lemma
12.10 we show that, for all 6 > 0,

lim sup {X;,,2/(A; + 6)'} = 0.
t> ©

Finally, in lemma 12.9 we show that if there exist constants K and y
such that 0 < y < 1 and such that A(e,1) — A(0,1) < Ke’ forall0 < ¢ <1,
then

lim sup {x,/t@/Ay} < oo.
t—> @

For brevity’s sake we have omitted the proofs of these results.

12.2. Auxiliary Lemmas

In this section we state and prove several lemmas that we need to
establish theorems 12.1 and 12.2 as stated above. In reading it, note
that A(-) = (h,(-), ..., hg(-)), where each h{-) is as defined in eq. (12.1),
and that A'(-) denotes the tth iterate of A(-). Note also that x = (x(1),
..., X(d))€(R,)* and that we frequently write x = (x', x”), where

x! = (x(1),..., x(d,))e (Ry),

and

x* = (x(d, + 1),..., x(d))e(R,)?.

In this notation

A(x) = (hy(x"), ..., ha (x"), ha, + (x), ..-5 Ng(x)).

Finally note that the numbers 2, and 1, and the vectors V!, V? and W
are assumedto satisfy the equations

h(0, V2) = 2,077(i), d, +1 <i<d: (12.465)
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and

LEMMA12.3. Let h(-) and h'(.) be as defined above and assume that the

h{-)s are positive, continuous, non-decreasing and homogeneous of degree

one. Moreover, assume that there exist a strictly positive constant 4, and

a strictly positive vector W that satisfy eq. (12.46c). Finally, assume also

that h(x) > 0 whenever x' 4 0 and that h,(W) = (Oh(x)/0x,;),-w exists

with h,{W) > 0 for 1 Si, j Sd, and d, + 1SiSd,1Sj <d. Then

for each &,0 < ¢ < (|W|/| W)), there exist finite positive constants K

and « and a positive, continuous, non-decreasing, linearly homogeneous

function (-) on (R,)"! such that 0 < « <1 and such that for all t 2 1

and all x 2 0, x # 0 for which (| x" |/|x|) 2 ¢,

| {A'(x)/A} — yxe’)W| < Kyo" | x]. (12.47)

  

K, depends on ¢, but both y(-) and « can be chosen to be independentof «.

Also y(x') > 0 if |x’ | > 0.

PRooF. Let

a(t, x) = min {hi(x)/1, Wi},
1<i<d

and

B(t, x) = max {hi(x)/A Wi}, (12.48)
1<i<d

where hj(-) denotes the ith componentof h'(-). Since

a(t, x),,W < h(x) S pit, x)A',W,

a(t,x) = { min {h(a(t, x)A,W)/Ayh 'W)} < min {hf{h'(x)Ayo Wi},
1<i<d 1<i<d

and

A(t, x) = max {h(B(t, xa, W/W} > max {h(h'(x)/At Wi}.
1<i<d 1<i<d

(12.49)

From eq. (12.49) it follows that

ai,x)S... Sotx) Sot + ixds... S Pt + 1x) S Pix) Ss

... S P(A, x). (12.50)
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Hence, for each x 2 0 the limits

a(x) = lim a(t, x),
t> ©

and

B(x) = lim P(t, x) (12.51)

exist and a(x) < f(x).

Next, let ¢ > 0 be fixed so that ¢ < (| W’
eq. (12.50)) on the set where x 2 0 and (| x'|/|x|) 2 «,

[(B(t, x) — a(t, x))/o(t, x)] < K(P(t, X) — a(t, X))
<K, max {hy)/A,W(i)} < «0, (12.52)

1<i<d
ly| =1

                    

where x = (x/| x |) and

K,={ min a(1,x)}~* < 0. (12.53)
{x 2 0,|x] = 1,|x"] 2 &}

Note also that for some sufficiently small positive ¢, < 1 and forall
non-zero vectorsy = (y’, y*)such thatO < y <¢,W,and(|y' |/|y|) 2

AW + y) = WW) + h'(Wy + oly) 2 A(W) + sh(W)y, (12.54)

and

h(W — y) = h(W) — h'(Wy + oly) S A(W) — sh'(Wy, (12.55)

where h'(W) = {h,(W)}-.
Finally, note that by virtue of (12.52) there exists an 0 < «, < 1,

depending on only, suchthat for allt 2 Land x = Owith(| x’ |/|x|) 26,

0 <¢,[(P(t, x) — a(t, x))/a(t, x)] Wie; < ¢,.W,i=1,..., d,, (12.56)

where e; = (0,..., 0, ei) = 1, 0,..., 0) is a d-dimensional vector.

Now fix t 2 1 and x = 0 with (|x* |/|x|) = ¢ and note that at least
one of the following assertions must be true:

{hi(x)/A Wlig)} 2 a(t, x) + 3(B(t, x) — a(t, x)) forsome1 Sip Sd,;

(12.57)

fhi(x)/A, W(i)} S Blt, x) — HB(t, x) — aft,x)) forall <i < dy.
(12.58)
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Suppose that (12.57) holds. Then (12.56) and (12.54) imply that

{h(xVAT} 2S (1/A, lat, x)W + (€2/2)(B(t, x) — alt, x))Wlip)e;,)
= a(t, x)W + (€2/42,)(B(t, x) — a(t, x))h'(W)Wio)ei,
> a(t, x)W + (58,/42,)(Blt, x) — a(t, x))W (12.59)

for 6 = min {(h'(W)W(io)e;,);/W(i)} > 0. From (12.59) and
l1Sisd,1Sigo<d,

(12.50) it follows that

P(t + 1,x) — a(t + 1, x) S (P(t, x) — a(t, x))(Q1 — (6€,/4/,)). (12.60)

Suppose next that (12.58) holds. Then (12.55) and (12.56) imply that for

any | Sip Sd,

{ae (xa } S /A, a(B(t, x)W — (€2/2) (Blt, x) — a(t, x))Wlip)e;,.)
S Blt, x)W — (€2/44,)(B(t, x) — a(t, x)h'(W)Wio)e;,
< P(t, x)W — (6€,/44,)(B(t, x) — a(t, x))W. (12.61)

From (12.61) and (12.50) it again follows that (12.60) is valid.

The preceding two paragraphs show that (12.60) holds for all x 2 0

with (| x" |/| x |) = ¢, andfor all t 2 1 as well. Hence — by simple iteration
— we can deduce from (12.60) that for all t 2 1 and all x 20 with

(jx|/|x|) 2s,

(P(t + 1,x) — a(t + 1, x)) S (BU, x) — a(1, x))(1 — (08/44,))
 

 

< K3(1 — (d€2/42,))| x], (12.62)

where

K3;= max {f(1,x) — a(1,x)}.
{x >0,|x]= 1}

From (12.62) and (12.49) it follows that, if we let

V(x) = a(x), (12.63)

then on the set where x 2 0 and (|x'|/|x|) 2¢

Axa} — (x)W| S| WB, x) — a(t, x)
< (K3|W|)(1 — (6¢2/42,))"' |x|, t 2 1. (12.64) 

This shows the existence of the required a, K, and »(-), but with «
depending on ¢ and »(-) possibly depending on x?.

Next we will show that )(-) has all the required properties. Evidently,

y(-) 1s positive, non-decreasing and homogeneous of degree one. So it
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suffices to show that (-) is a function of x’ alone andthatit is continuous.

To do that observefirst that our choice of ¢ above was arbitrary. There-
fore (12.64) implies that for all x = 0 with x! $ 0,

y(x)Wi) = lim {hi(x)/A,}, i= 1, ..., 0. (12.65)

Since hi(-) for i = 1, ..., d, is a function of x' only and since W > 0,

eq. (12.65) in turn implies that, for all x 2 0 with x’ 4 0,

y(x) = p(x’, 0). (12.66)

Also observe that (12.64) implies that on the set B = {x 2 0, =
|x’ | = 1} o(x', 0) = B(x', 0). Hence on B, »(-) is the limit of both an
increasing and a decreasing sequence of continuousfunctions. From this
and from theorem 33 in ref. [5, p. 130] it follows that y(-) is continuous
on B. But if that is so, then the fact that y(-) is homogeneous of degree
one, and eq. (12.66), imply that y(-) is continuous on the set {x 2 0,
|x’ | > 0}. By virtue of the homogeneity of y(-) we can extend y(-)
continuously to all of {x 2 0} by putting (0) = 0.

Finally, observe that y(x) = y(x',0) 2 a(1, (x, 0)) > Oif x! 4 0. Thus
y(-) has all the required properties as was to be shown.
To show that a can be chosen independently of ¢ proceed as follows.

First, observe that by eq. (12.65)

     

yhi(x)) = 4 p(x). (12.67)

Next, let 0 < 6° < (| W' |/| W]) be fixed and for this ¢° let

1, = (1 — (6e3(2°)/44,)). (12.68)

Finally, observe that, if x 20 and (|x' |/|x|) 2¢> 0, then (12.64),
(12.65) and (x) > 0 imply that there exists a smallest integer t,) — de-
pending on ¢ but not on x — such thatfor all t 2 to,

dy

S ai(ee!)/| Aix) f > 00.
i=1

Hence, for all s 2 tg and x 2 0 with (| x’ |/|x|) = «,

{A(xV/A} — yxW | = | (EHRAYAS- 9} — y(AO(xy/2'9)W |
S Koh" | (hl(x)/29) | < [Kgh(8)/(2,244)° (12.69)

where K, = (K3 | W|/«,). This concludes the proof of the lemma. Q.E.D.
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Wealso need the following lemma to establish theorem 12.1 in sec-

tion 12.1.

LEMMA 12.4. If the conditions of lemma 12.3 are satisfied, then for each

&,0<ée<(|W' ), there exist finite positive constants K5(&) and «

such that for all t 2 1 and all x 2 0 with (|x! |/|x|) 2 ¢,

| {A'(x)/| A(x) |} — {W/| W]}| < Ksleat. (12.70)

     

PROOF. Eq. (12.70) is an almost immediate consequence of (12.47), and

the proof of this lemmacan be taken verbatim from the proofof the last

half of lemma 3 in ref. [12]. We therefore consider lemma 12.4 estab-
lished. Q.E.D.

Next we will establish an analogue of lemma 12.3 for the case 4, < 43.

LEMMA12.5. Let hA(-) and h'(-) be as defined above and assume that the

functions h{-) are positive, continuous, non-decreasing and homogeneous

of degree one. Moreover, assume that there exist a pair of positive con-

stants (A,, 4) and a pair of strictly positive vectors (V', V’) that satisfy

eqs. (12.46a), (12.46b) and 1, < 1,. Assumealso that h(x) > 0,i = d, + 1,

., d, whenever x 2 0, x # 0, and that the matrix

H(V?) == hi<0, V’)atisij<a == ((dh(xx)/OX;), = (0,2) di +1<ij<d

exists and is strictly positive. Finally assume that there exist strictly

positive constants K., and y such that, for allQ<«é <1,

hy, +eV', V2) — hy, + (0, V2) < Kee’, i= 1,...,d — dy. (12.71)

Then there exists a positive, continuous, non-decreasing, linearly homo-

geneous function y(-) on (R,)° and twofinite positive constants K, and w

such that 0 <P < 1 and such that for all t 2 1 and all x 2 0,

| {Ai(x)/A5} — r(x), V?)| < K7 P| x]. (12.72)

Moreover, there exists a strictly positive constant n such that y(x) 2 7

for all x 2 = |.

PRoor. Let

     

a(t,x)= min {hi,(x)/A,V7(d, + i}, (12.73)
1<i<d-d,
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and

B(t,x) = max {hi 4(x)/A,V7(d, + i. (12.74)
1<i<d-d,

Then for t 2 1 one has as in (12.50)

a(t, x) = a(t, (0, x*)) 2 a(1, (0, x7)), (12.75)
where 0 denotes a d,-dimensional vector with all components equal
to zero. Moreover, for t = 2,

a(t,x)= min {hi,,(x)/A,V7(d, + i)!
1<i<d-d,

= min {hit (Ax)/A\/a'V7(d, +d}
l1<i<d-d,

= a(t — 1, (A(x)/A,)). (12.76)

Finally, note that there exists a positive constant c such that

CS (hg,+(x)/42) forall! <i <d—d,andallx =0,|x|=1. (12.77)

Thus if we let e = (1,..., 1), a (d — d,)-dimensional vector, then eqs.
(12.75-12.77) imply that for all ¢ 2 2 and all x 20, |x| = 1,

a(t,x) = a(t — 1, (A(x)/1,)) 2 a(1, (0, ce)) > 0. (12.78)

Wealso need to define several constants. First, let H’(:) = (ha, +i(-)
h4(-)) and let 0 < e, < 1 be so small that, for allO <y <¢,V”,

H?(0, V? + y) = H’(0, V?) + SAP?)y. (12.79)

Next, let ¢4,, 0 < ¢, < 1, be so small that for all t > 2 and all x > 0,

jx] = 1,

 

9 * 2 8 9

0S e,[(B(t, x) — a(t, x))/a(t, x)]V7(d, + de; < e,V7,1 <i<d—d,,
(12.80)

where e; = (0, ..., 0, e(d, + i) = 1, 0,..., 0) is a (d — d,)-dimensional
vector.

Finally, let 6 > 0 be so small that

AV), + je, = 5V2>0 forall! <i <d-— d,. (1281)

The existence of ¢3 is obvious (cf. also (12.54) above). The existence of 6
follows from the fact that all the entries of H(V?) are assumed to be
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strictly positive. Finally, the existence of ¢, follows from (12.78) and the

fact that B(t,-) is bounded on A uniformly in t. To establish the latter

fact proceed as follows. As in (12.49) and (12.50) one sees that

B*(t, x!) = max {hi(x')}/{A Vi}
1<i<d,

is non-increasing in t. Hence, if

Ks = max B*(1, x’),

Ix'|=1

then for all t = 1 and all x’ 2 0,

h(x!) < Kg|x'

|

av), 1 SiS dy. (12.82)
 

Hence, for some ip, 1 Sig Sd — dy, a finite constant Ky = [Ke/a(1,

(0, ce))] = [Kg/inf a(t, x)] 2 [Ks/inf A(t, x)], a suitable Kyo < %, and
t>2 t>2

allt 22, xe A,

B(t + 1,x)V7(d, + ip) S C/A2)ha, +i(Ks | x? | (A4/A2)' V', p(t, x)V’)

S (1/A2) Blt, x)ha, + igKo(A1/A2)' V', V?)

< P(t, x)\(1 + Kyo9')V7(d, + io), (12.83)

where = (A,/A,)’ < 1 (recall (12.71) and the fact that V7(d, + ip) > 0).

Thus,

Blt + 1,x) $ B2x) T] (+ Kio) S B22) T] (1 + Kio) < .
=? “ (12.84)

Since both A(1,-) and f(2,-) are bounded on A,(12.84) implies that B(t, x)

is bounded uniformly in t on A.

Next, let x be a given vector such that x 2 0 and |x| = 1. Then

observe that

(Aa, igX45} = alt, x)V2(dy + io) + (Blt, x) — at, x))V7(d, + ig) (12.85)
for some 1 < iy <d — d,. Hence fort 22and1<isd—d,,

Chit (xyAgtt} S (1/Aa)ha, + (O, (15, + 100)/A5), «-- » (hal*)/42))

2 (1/A2)hg, + (0, a(t, x) V? + (B(t,x) — a(t, x))V7(d, + in)eig)

> a(t, x)V7(d, + i) + (6e4/2A,)(B(t, x) — a(t, x))V7(d, + i).

(12.86)

(See (12.79) — (12.81) and compare with (12.59).)



Balanced growth in decomposable economies 359

From (12.86) we conclude that

a(t + 1, x) > a(t, x) + (6e4/2A>)(B(t, x) — a(t,x)). (12.87)
Observe also that (12.83) and (12.84) imply that there exists a finite
constant K,, such that

B(t + 1, x) S P(t,x) + K,,Q' all xe A, (12.88)

But then it follows from (12.87) that for all t => 2 and xe A,

(P(t + 1,x) — a(t + 1,x)) S K,,@' + (P(t, x) — a(t, x))(1 — (584/2A,))
SKyi,(9' + (1 — (684/23))p'~ '} + (B(t — 1, x)

— a(t — 1, x))(L — (684/22,))? S...5 Ky, y P*(1 — (0€4/2/,))'§
s=2

+ (BQ, x) — a(2, 2))(1 = (Beg/229)!"! S Kya (12.89)
where ¥ = 3 + 4max{(l — (6¢4/2A,)), @, (A;/A2)} < 1, and where K,3
is a large constant chosen independently of t and x.
From (12.87), (12.89), (12.82), (12.73), and (12.74), it follows easily

that, if we let

W(x) = lim a(t, x), ¥ =
tt? mw

      (12.90)

then }(-) is well-defined, homogeneous of degree one, non-decreasing,
and satisfies the relations

d—-d,

| {A'(x)/45} — (x0, V?)| = s thieWAb} + DL | la+ A0)/25 }

— Wx)V*(d, +) SKg|x'| [Vi |(Ai/Aa) + |x| (BE, ¥) — oft, &))| V? |
<K,,V for all t 2 1, (12.91)   
where K,; is a large finite constant chosen independently of t and x.
The preceding paragraph establishes the validity of (12.72). To con-

clude the proof of the lemma it remains to show that y(-) is continuous
and strictly positive on A. To do that let x° and ¢ > 0 befixed and
observe that on A, for suitable K,, < ©,

| 7(x) — n°) S| r(x) — aft, x) | + | at, x) — aft, x°)
+ |a(t,x°) — y(x°)| < 2K,4' + | a(t, x) — a(t, x°)|. (12.92)

Hence, if we pick t so large that 2K ,,‘¥' < (¢/2) and a neighborhood of
x° in A, say a(t, x) — a(t, x°)| < ¢/2, then for                   
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all xe U | p(x) — »(x°)| < ¢. So 7(-) is continuous on A. Since (0) = 9,

it follows from the homogeneity of y(-) that »(-) is continuous on (R,)*.

Next observe that (12.90) and (12.78) imply that y(-) is strictly positive

on A. This concludes the proof. Q.E.D.

Wewill establish an analogue of lemma 12.4 for the case A; < A).

LemMa 12.6. If the conditions of lemma 12.5 are satisfied, then there

exists a finite constant K,, such that for allt 2 1 and x 20, x 40,

| {h'(x)/| h'(x) |} — {(0, V*)/| Vv? || < K,;, (12.93)

where is as in lemma 12.5.

PrRooF. Observefirst that

| LAC)/| He))|} — {(0, V*)/| V* |}| =
d-dy _ _

x {ixWx) |} S| (a, a/| Ca) |} — (PAUdy + /| P?|}
(12.94)

Then note that by (12.91)

Wx) |V?2|— Ky;S x {n(x)/A5} S y(e)| V7] + Kish (12.95)

and

Wx)V7(d, + i) — Ky3S (hy, 4(%)/A5} S neyMas + i) + Ky,
i=l,...,.d—d,. (12.96)

For some large integer t, the left-hand sides of (12.95) and (12.96) are

positive for all t = to, uniformly in x. Thus for t 2 to, (12.82) and (12.95)

imply that

dy

Y (He)/| HC) |} S [Kr | 2" | A/K ia |x| 24] S Kis(As/2al S Kiel
(12.97)

for suitable constants 0 < Ki.¢, K,7, Kg < 0. For t 2 to, Kig — Kig

can be chosento be independentof x and t. Moreover, for suitably large

constants K,, and Ko, (12.95) and (12.96) imply that

{hi x)/| MCX) |} S (ORV+ D + Ki3P9/7@)| P?|
(1 — (K,3¥'/8)| V? |} S (Wd, + D/P? |) + Kio, (12.98)
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and

(hi, + €2)/| A(X) |} = {ORV+.) — KyP91) | P|
(1+ (K,3P"/y(x) | y? !))} = (V*(d, + i)/| V’!) — Ki.¥". (12.99)

It follows from (12.94), (12.97), (12.98) and (12.99) that (12.93)is satisfied
for all t 2 ty and all x 20, x 40 with K,, = Kig + d(Kyo + K9).
By taking K,, larger if necessary we can satisfy (12.93) for all t = 1.
Q.E.D.

Lemmas 12.3 and 12.5 can be used to characterize the properties of
solutions to non-linear difference equations of the form

X41 = A(x,), (12.100)

where A(-) is as defined in (12.1). Specifically, they give sufficient con-
ditions when 4, # A, that there exists a positive, continuous, non-
decreasing linearly homogeneousfunction (-) and a positive vector V
such that if 2 = max (A,, A,),

lim {x,/A'} = y(x)V. (12.101)
too

These lemmasalso show that the convergence in eq. (12.101) occurs at
an exponential rate.
We will conclude this section by stating several lemmas for the case

A, = A. The proofs are omitted for brevity’s sake.

LEMMA 12.7. Let 1 > 0 and suppose that

Xr+1,1 = AX, (12.102)

Xe41,2 = PXE X27" + AX,». O<a< 1. (12.103)

Then

X11 = A'Xo,1, and, if Xo. #0 (12.104)

lim {x,/t/2°} = [px%0/2]. (12.105)
t~o

LEMMA 12.8. Let 4 > O and supposethat Xo,1 #9,

Xt+1j1 = AX1, (12.106)
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CO

Xt+1,2 = dX pyxikxty + AX; (12.107)

where

and lim a, = 0.
ko

Then (12.104) is valid and if Xo. # 0, then {x,>/4'} grows faster than

any poweroft.

LEMMA 12.9. Let 4 >0 and let h(-) be a non-decreasing, continuous,

linearly homogeneousfunction from (R,)? to R, such that 2 = h(0,1) and

such that h(x) > 0 ifx 4 0. Moreover, let x, = (X1,1, X:,2) and suppose that

X41, = AX1 (12.108)

Xr41,2 = A(x,). (12.109)

Finally, suppose that there exist finite constants K and such that 0 < y

<1 and such that for allO < é S1,

h(e, 1) — h(O0, 1) S Ke’. (12.110)

Then x, = O(t%/A\(t > 00) whenever Xo > 0.

LEMMA 12.10. Let 2 > 0 and let h(-) be a non-decreasing, continuous,

linearly homogeneous function from (R,)? to R, such that 4 = HO,1)

and such that h(x) > 0 if x # 0. Also let x, = (X;,1, %:,2) and suppose that

eqs. (12.108) and (12.109) are satisfied. Then for all 6 > 0,

lim sup {x,>/(A + 6} = 0. (12.111)
toc

Moreover,if there exists a constant 4 such that for allO<éeS1,

{Th(e, 1) — h(O, 1)\/e} =n > O, (12.112)

then

lim inf {x,,/ta'} > 0 whenever x> 9. (12.113)
toa
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12.3. A Basic Convergence Theorem

In this section we prove a basic convergence theorem for sequencesof

positive random vectors. Throughout our discussion the probability
space (Q, F, P) is kept fixed and a vector-valued function on Q is said
to be a random vector if and only if it is measurable with respect to F¥.
Moreover, we consider a given sequence of positive d-dimensional
random vectors x, t = 0, 1, ..., and write P,{E} for the conditional

probability of the event E given the o-field of events generated by x,,
O<s<t. Finally, x without a subscript denotes an ‘ordinary d-di-
mensional vector, A = {x 20:|x|=1}, and X% = (x/|x|) whenever
x #0.

THEOREM 12.3'°. Let T be a continuous transformation from A into A, B

a closed subset of A, p a fixed point of T, and U a neighborhood ofp such

that the following relations hold for some constants K, 0 < A < 1, B, 6,

t > 0, p > 1 and a function R(-):

Tp=p,pEUceB; (12.114)

|\Tx-— Ty|<K|x—y|  forx,yeU; (12.115)

\T*x—p|<KiA* fork 2O and xe B; (12.116)

P.f|x,41 — R(x, TH,| = |x, [1° 9?} <K|x,|-% (12.117)

| {R(x)/|x]} — p| < K{|x — p|® + |x|-8! for x = 0, x #0; (12.118)

and

R(x) 2t\|x|  forx 20. (12.119)

Then there is a positive constant K, < oo such thatfor any integer t, = 0

P,,{lim {x,/p'} =g-p for some g > 0} 2 1 — K,|x,,|~° (12.120)
tt? oa

whenever x,, # 0 and xX,, € B.

'3 This theorem is an extension of theorem 6.1 in ref. [6, pp. 91-92].
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Proor. The proof will be broken down into several steps. We show by

an inductive argument that with high probability

| x,41 — R(x,)TX,| <|x,|'~ ©’? eventually.

This will imply that x,, , is close to Tx, which will allow us to showthat

lim x, = lim T’”"'X,, = p.
t> to

Throughout the proof Co, C,, ... will be suitable finite, positive con-

stants, whereas 0, will always denote some number with |6;| < 1.
Finally, we will use the abbreviation R, = R(x,).

Step I. Let Co = [8K/(p — 1)]'", and

 
V, = {xe A:|x -— p| < KA"},

where k, is chosen so large that

V, < U;z (12.121)

and

[R(x)/|x|] 2 [Be + 1/4] forxeV,, |x| 2 Co. (12.122)

(The existence of such a k, is assured by (12.118)). Also let

V, = {xe A:|x— p|< KA" *?}.

 

Then there exists a neighborhood

V; = {xeA:|x — p| < Ki} c Vy (with k; 2 k, +: 1)

such that

T’xeV,< V, for all j 2 0 whenever xe V3. (12.123)

Proof. Since V, < U c B, we deduce from (12.116) that

TV, < V, for all j 2k, + 1. (12.124)

Nowchoose k, so large that

T'x < Vy for j = 0,1,...,k, if |x —p|< K4%. (12.125)

Such a k; exists by (12.115) and the fact that T’p = p. Clearly, with this
k3, V; satisfies (12.123) since for any x € V; and j 2 0 either (12.124) or

(12.125) applies.
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Step 2. Assume that

T°’ "xX, EV, for ty Ss < ty; (12.126)

|x, | 2C, = [4(o — DJ?+ 2°+ Co, (12.127)

x,EV, for t; Ss < fy, (12.128)

and

|x, — R,-,TX,-;| S| x,_, |!” for t, <s St. (12.129)

Then

Ix, | 2 (ep + 1/2)?" | x,  
(12.130)

and forC, = K + Sand C3; = Y ((p + 1/2)”,
n=0

t2

JE, — TO8E, | Sf[OP DCH(p + Vf2yre
j=nt+l

<C3C,?"| x,, |. (12.131)

Proof. If

}x,-1] 2 Cy, %,-16€V, (12.132)

and

|x, — R,-, TX,-, | S| x,_, [17, (12.133)

then it follows from (12.122) and the definition of C, in (12.127) that

|x, | 2 Ry-1 — | xs [POO2 | x1 | (Be + 1/4) — (p — 1/4]
= [(p + 1)/2] | x,-1 |. (12.134)

Since (12.132) and (12.133) hold by assumption for s = t, + 1, 1t follows

from (12.134) that | x,,.,] 2 [(p + 1)/2]|x,,| 2 C,. But if that is so,
then either t, = t, + 1 and (12.130) is established, or (12.128) and

(12.129) imply that (12.132) and (12.133) hold for s = t, + 2. Evidently

in the latter case (12.134) also holds for s = t,; + 2. By induction we

find that (12.134) holds for all t; < s < t,, which implies

Ix,| 2 [(o + 2/2)" | x, | for ty Ss St. (12.135)

For s = ft, this is just (12.130).

To prove (12.131) proceed as follows. First, let

a, = |%, — To OR,,
 
5, SS Sop.
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Next, observe that (12.129) implies that

io R,_, TX, + 0, | X54 [Pya, Cy <ss C5, (12.136)

for some vector y,-, with |y,_;|= 1. Observe also that (12.136),
(12.122) and (12.135) imply that

x, | — R,_; | < | X5-4 jt (2/2)

<[4/(3p + IIR, a[lo + D/2]OPEx,[2
< R,-y[(p + D/2]78-1] x, |?) < (Ry_ 1/2).

From the last inequality and from (12.136) it follows that

xX; R,-, TX,_, + O,-4 | X5-4 Py

Tx) Ral + Balle + DZOME] x, FO}
= {TX5-1 + [0,-1/Rs-1] | X51 Pye}

x {1 + 2067. [(o + D/2]PPE1| x,[073

(12.137)

for some | 6,_,|, |@{_, | <1. Finally, observe that (12.115) and the
relation x,_,EV, and T’'"x, EV,, t) <s <t,, imply that for
Cy <sx C5,

| T%,-, — Po", | = | TR. — IT ~"%,,) | < Kay.

  

  9

Hence, from (12.137), (12.122) and (12.135), we can deduce that

a, =|x,- TS"x, | S Ko,_, + 3] x,-1|7@[4/39 + 1]
+ 2[(p + 1)/2] 7 (/2s— to) | X,, | (/2)

< CrO54 + | X,, |Tp 4 1)/2] 7 82-day,

From the last inequality and from the fact that «,, = 0 the validity of
(12.131) follows by simple iteration.

Step 3. Let t; 2 to be fixed for the moment and denote by E,, s 2 t,,
the event

E, = {|x,;| 2 [oo + 1/2)" |x,,| 2 Cy, & eV, for all t; <j <s,

and |x, — Rj_, TX;-,| S| x,-,|'~@”for all t, <j Ss}.

Then, for

Cy = Cy + {KAB(L — ACS ICP772),
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and some C; < ©,

P,,{E, holds for all s 2 t, and Xt, + ma3+1) € V3 for all

m20}21-—Cs|x,,|~?

on the set where

| Xt, | = C4, X;, E V3.

Proof. The proof is obtained by an iterative argument. Let k, be as

in step 1 and observe that, if x,,¢V; and |x,,| 2 C4, then E,, occurs.
Next, assume that | x,,| 2 C4, t; St; St, +k; +1 and that E,,
occurs. Then obtain an estimate of the probability that E,,,, will occur

as well in the following way. Notefirst that (12.117) implies that on E,,,

P,3{| X41 - R,, Tx,, | Ss |X, [Pp el} 2 | — K | x, \-°

>1—K|x,,|-[(o + 1/2] -°e-™. (12.138)

Next, note that, if E,, occurs and if in addition

| X,,41 — R,, T%,,| S| x,, [17 %, (12.139)

then the assumptions (12.127}-(12.129) hold with t, replaced by t,; + 1.

Moreover, (12.126) holds for x,, € V3 by (12.123). Thus it follows from

step 2 that (12.130) and (12.131) hold for t, = t3 + 151.

Ixo1} 2 [Co + D/2]°t!-| x,, | (12.140)
and

| Xi 41 _ Totty, | < C3C,3717% | X,, |"

<C3C,8*7 |x, [79 (12.141)

Finally, note that, if %,, ¢ V3, then (cf. step 1) T?*'~" &,EVs; ie.

|TRTI8k, —p| < Kae, (12.142)

From (12.141) and (12.142) it follows that

~ k k 2 — (6/2

< KAP +! 4 6,0,877C,70) < KAM,

Hence, if (12.139) occurs, and X,, € V3, then x,,,,¢V,. This last obser-

vation together with (12.138) and (12.139) imply that on the set where

|x,,| 2 Ca ¥,,€ V3 and E,, occurs, t3 St, +k; + 1

P,,{E,,4, occurs} 2 1 — K|x,, |-[(p + 1/2] °°™.
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By repeating the preceding arguments k, + 1 times wefind that, on the

set where | x,, | = C, and x,€ V,,

k3 |
P,{E;, 44,41 occurs} = Iu — K|x,, |-°[(p + 1)/2]°”}.

jz

Wealso find on E,, 44,41 (cf. (12.141) for t; = k3 + t,) that

| Xi tky+ — p| < | T?* 1%, — p | + €3,0,841¢C,- 62)

S< KIBTT + C3C,871C,8 < KA®,
which implies that X,, +,,41 € V3.
From the last result it follows that we can start over again with tf,

replaced by t; + k3 + Land|x,, | by] x,, 44,41] 2 |, |[(e + 1)/2]°*".
Then we obtain on the set where | x,,| 2 C4, X,,¢V3, and E,, 44,41
occurs

Pith +1 (Ey, +203 +1) occurs} k

= [tl - Kx, |e + D/P78°}.
J=0

A repetition of the argument for t, replaced by t, + m(k3 + 1) and

1, | by |X, +mas+ny | = [lo + D/27™*?|x,|, m 2 1
finally yields: on the set where | x,,| 2 C, and £,, € V3,

P,,{E, holds for all s 2 t, and X,, +mk3+1) € V3 for m 2 O}
oO

2 |] nee — K|x,, |~ T(o + 1)1)/2]~ d(m(ks +1) + J)

m=0 j=

=[] (1 = Kj,Le + p21} 21 Cs,

 

for suitable C; < oo.

Step 4. Any sample path for which

       Xr, 4 m(k3 +1) © V3, | 2 C4, (12.143)

KEV, 8 2h, (12.144)

lx,| > [(o + 1/2)" | x,|, 52 ty (12.145)
 

and

|x, — R,-, T¥,-,| S| x,-,|'°0, s >t, (12.146)
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hold, satisfies

lim {x,/p'} = g-p for some g > 0. (12.147)
t> ©

Proof. Since X,, +nk3+1)€ V3 < Vj, it follows from step 1 that

TX, mikey t1yE Vs, j= O. (12.148)

Also (cf. (12.116)),

| PE, mks 41) — P| S Kai. (12.149)

By virtue of (12.144}(12.146) and (12.148) we may now apply step 2
with ¢, replaced by t, + m(k; + 1) and t, by s=t, + m(k3 + 1).
(12.131), (12.145) and (12.149) yield

|x, — p| S |e, — TOMEaaa|
+ | TSSkye1) — p|

< C3C,517 mks t 0) | Xt, + m(ky +1) |") 4 Kjs71mks + 1)

< C3C,5 8 ms * DT(5 + 1)/2]~ C/A+C72) 4 KJs7 to mlks +1)

 

(12.150)
If we let

m= |: — Ey log (C/A)

ks + 1 (6/2) log[(p + 1)/2] + log (C,/2)
and

= exp (5/2) log[(p + 1)/2]log 4 <1.
(5/2) log[(p + 1)/2] + log (C,/A)

then the last memberof (12.150) is bounded by

C,Ay" (12.151)

for suitable C, < oo. Thus (12.143}{12.146) imply that

|x, — p| <CpAS", s = th, (12.152)

and hence that lim x, = p. Moreover, (12.118), (12.152), (12.143) and

(12.145) imply that for s 2 t,,

| {R,/|x5[} — p| = [{R@)/| x5 |} — 2 |
S K{ChMS~™ + [(p + 1/2]F8-C,
SCA,8°™, (12.153)
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where 1, = max (48, [(o + 1)/2]7*) < 1, and C, = K{C8 + Cz°}. By
substituting (12.153) in (12.146) we obtain

| x. | = R,-; + 4,- | X51 } (9/2)

= |x,-1|{p + 0-1CA519" + O,- [(o + D/2POPSBPC,

and therefore for any s 2 t, > t,

XxX, s—t2—1
; |

oH | L | Ly {1 + (61, + j/P)C74? tyt+j

t2 =

+ (8,4/PL(e + L/2]7P28 FPCLOI}

as well as

lim {| x, |/p'} = (| x, |/p”)I{1 + (6,4 ,;/p)CrAp8
t7>o

+ (r,45/0) [lp + WizeeeCZOM}. (12.14)
From (12.152) and (12.154) the validity of (12.147) follows with

d= (an |/oEL+Joris“

+ (8,,+;/p)[(p + D/2]PMO"BPELOM}

= [lo + 1y/2P-"(Calo*) TT tL — (Caloage”jz

_ (Cx, °'”/p)[(p +4 1)/2]GaoTD

> 0 for sufficiently large t, — t,.

Steps 3 and 4 show that on the set where | x,, | 2 C4 and X,, € V3

P,, {lim {x,/p'} = g- p for some g > 0}
t7?o

> P,, {(12.143}(12.146) hold} => 1 — Cs |x, |7°% (12.155)

Wenowhave to show that we can start with any x,, # 0, x,,¢ B. This
is done in step 5.

Step 5. The relation (12.120) holds whenever x,, # 0 and x,, € B.

Proof. Let

CEI) > 1 + (4/2)7 12h (12.156)
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and assumethat

|x,, | 2 Cg, X,,€ B, (12.157)
as well as

| X41 — R,TX,| S| x, [179, to St Sty + kz, (12.158)

where k, is as in step 1. Then, by (12.119),

Mota | = [Xe [(t — | ai |) 2 | Hu |(@ — Ce) | x,| (7/2).
and by induction on t one has, for tp St < ty + ks,

lx, | = | x,, | (t/2)'-®. (12.159)

Returning to (12.158), we obtain

| X41 | = R, + 6,|x,|'~°/”and for some vector y, with \y,| = 1

R,TX, + 6, | x,|'~°y, ~
1-(6/2) TX,R, + 6,| x, |

= |{ TH, + OL] x. (/R] [|O7y) (1 + 207L| x |/Ri] | x, |} — Tx,|
< 5[| x,/e] < (5/2) (t/2)9-15) 4, <St Sty + ky (12.160)

|Xi41 — T%,| =

 

(cf. our estimates in step 2). Since T is uniformly continuous on the
compact set A, there exists an ¢, > 0 such that

|Tx — Ty| <}KA*(1 — 4) for x, ye A with | x —y| Se.

Consequently, if

I Xioths — T?%,,| <4, (12.161)

and if Cg, is so large that

(5/2)(1/2)PCE< SKIL = A),
then

| Xo thy +t ~~ p| S Xiotks+1 ~ TX,, +k | + | TX, 4k ~ T(Tx,,) |

+ | Te, — p| < KA*( — a) 4+ Kiet = Kye.
Thus, if (12.157) and (12.158) hold with sufficiently large Cz, then

Xigtkst1 & V3, (12.162)
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provided (12.161) holds as well. But we can find an ¢, > 0 such that

| Tx — Ty| S (e,/2) for x, ye A with |x — y| S é>. If now

lEio¢u-1 — T?'%,, | S62, (12.163)

and (5t)(z/2)7 92"#- YC2) < (e,/2), then

+ | TX, +k; - 1 — 1(T?~ 'X,) | Ss G15

i.e. (12.161). Thus (12.162) holds if (12.157), (12.158) and (12.163) hold

with a sufficiently large Cg. After k, such steps we find that (12.162) will

hold as soon as (12.157) and (12.158) hold with a sufficiently large Cg.

However, we can easily estimate the probability of the occurrence of

(12.158) on the set where (12.157) holds. Indeed, if (12.157) holds as

well as

| X44 — R,TX;| < | x; jp!) fort) Sj <t, (12.164)

then (12.159) is still valid, and by (12.117),

P,{(12.164) holds for j = t} 21 -— K|x,|[-° 21 —- K(t/2) “~ ©? | x, |?

Thus, by induction,

to+k3

P,,i (12.158) holds; = I] il - K(t/2) &~" | x, |-°} 2i- Co | Xo |?
t=lo

on the set where (12.157) hold, for suitable C, < oc. Combined with the

above remarks and (12.159) this proves that there exist Cg, Co < &

such that

 PitXtotks+1 E V3, Mig tka +1 | 2 (7/2)*3*? | X10 }} 2 1 ~ Cy | Xt \-°

(12.165)

on the set where (12.157) holds. If Cg is chosen so large thatalso (t/2)°**

Cz = Cy, then (12.165) can be combined with (12.155) with ¢, = to +

k,; + 1 to obtain on the set where (12.157) holds that"*

'4 E,, {X53 F} denotes the integral of X over the set F with respect to the measure P,..

The first inequality in (12.166) is based on the property of conditional expectations

1 ’
P,(Fy OF2} = EF, (P,(Fa}s Fij.t 2 tos

where F,, F, are events with F, ¢ ¥,. Here, F, denotes the o-field of events generated

by x,0 Ss St.
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P,, {lim (x,/p') = gp for some g > 0}
[> ©

> E,,{ Pig+ks+1 lim (x,/p') = gp for some g > 0};
tt? w©

Xiotkstt | = (t/2)9*" | x,, |}

= E,,(1 — Cs | Xigtks+1 |; Kigtkyt1 © V3. Xigtks +1 | 2 (7/2)8* | X19 |}

21- C5(t/2)7") | Xt Pig{ Xto + ka +1 E V3,

= (t/2)8*! | x,, |}

> (1 = Cyle/2)°897fay [°8} (1 = Co | tg |8} 21 = Ki[te

 Xiytkst1 © V3,

 

Xin tks +1 | 

 

(12.166)

for suitable K, < oo. This proves (12.120) whenever X,, € B, x,, | 2 Cg.

But clearly (12.120),remains valid for x,,¢ B and 0 < | x,,| < Cg if we
 

take K,Cg° 2 1. This completes the proof of the theorem. Q.E.D.

12.4. Proofs of Theorems 12.1 and 12.2

In this section we will use the results obtained in sections 12.2 and 12.3

to prove theorems 12.1 and 12.2. As in section 12.3, C, C,, C2,... denote

finite, strictly positive constants. Note that a C; in this section does not

correspond to any C; in section 12.3.

12.4.1. Proof of theorem 12.1

It is quite clear that on the Q-set where lim sup | x,| < oo the random

variable g defined by t> a

gW = lim {x,/A; } (12.167)
t7o

is well defined and equal to zero. Thus to prove the theorem it suffices

to show that g is well-defined on the set where lim sup| x, | = 00. This

we do in twosteps. mr

Step 1. In this step we will establish the following auxiliary result.

Suppose that the conditions of theorem 12.1 are satisfied and let

,(A,/t + 1), t =0,1,....

Then there exists a finite positive constant C such that

P{lim sup [| x7 |/y,] > C} = 0. (12.168)
to

 
y, = max(|x;
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Proof. First note that

lim {y,43/y,} = A, w. pr. 1. (12.169)
{> 0

This follows from the following considerations.It follows from theorem 3
in the appendix ofref. [12](cf. p. A. 1) that w.pr. 1 either | x} | remains
bounded or lim {| x; |/A{} exists and is positive. Thus if we ignore an

too

exceptional null Q-set, then for each sample path w we can find an
integer t*(w) so large that either y, = (t + 1)7'Afor all t => t*(w) or
y, = |x; | for all t > t+(w). But if that is true, then (12.169) is necessarily
valid.

Next let V = (0, V’) and

max {x,,/V(j)}. (12.170)
d,+1<j<d

Yt

Moreover, let ¢ > 0 be so small that

An+4e<4,,and4, —eée> 1. (12.171)

Finally, let C, be a finite positive constantso large that

max {hu,[x*/|x*|])/VG)} SQ. +2) max {x(j)/|x?| Vi}
dj+1<j<d d;+1<j<d

(12.172)

whenever |u| < (1/C,). Such a C, exists by the uniform continuity of
h(x’, x*) on |x’ | <1, |x?| <1 and by the inequalities

h{O,x*)< max [x(i)/V()] -h(0,V7) = 2, max [x(i)/V()]- V()),
d,;+1<si<d d,;+1<i<d

which are valid for d, + 1 <j <d. We now showthatthereexistfinite
positive constants C, and C; such that

P{| x71 | > 2C,Coy,| x0, ---, X» | x2 | < Cry,} S Cay7 2% (12.173)

PUyre1 > (Az + 2e)y, | X0,..-, X» | x2 | > Cry,} S Cay, 2% (12.174)

To establish (12.173) proceed as follows. Let

C, = { max | h?(u, 0) |} (12.175)

fae
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and note that on the set where | x; | < Cy),

| E(x; +1 | Xo, tee x, } | = | h?(x; x;)|)) S Cy, | h?([xi/C1y,], [x?/Cry,))|

 

< C,Cy,. (12.176)

Hence, by (12.26) and Chebychev’s inequality

P{| X744 | > 2C,C3y, | Xo; re) X15 x; | S Ciy;}

< P{| x44 —_— h?(x}, x‘) | = C1Cry; | Xo, wea Xp, x; | S Ciy,} 

_ Kix, [079d - a)
<Cn.y, 7° 12.177

(Ci Cay, yt 12.877)
for some suitable constant C3.

To establish (12.174) note that (12.172) implies that

x; | > Ciyy}

© (fw:1y/VG) > Cr + eye[x2] > Cave

 {@: Yr+1 ~ (A, + QE)»

  

j=d;+1

d Xr
< |) {a:(x,+1,,/VQ@)) > (22h 5)HO

j=di+1 |x? | | xe |

+ EVt5 x; | > Cis 

    
d

c ) 102] Mev — h(x;, x7)| > ey, x7 | > Cyy,3. (12.178)
J=4

Hence, by (12.26), (12.170) and Chebychev’s inequality

Piya. > (A, + 2€)y, | Xo, vey Xs | x7 | > Ciy,}
K(d —Ada< iad

d,;+1<j<d

for some suitable finite constant C3.

So much for (12.173) and (12.174). Next, let

A, = {o:| X74 1 | > 2C,C2y,, x; | <Ciy,},t=0,1,...

and let

 

B, = {@:Y,41 > (Az + 2e)y, |x7 | > Ciyg,t =0,1,...

and observe that

Sy 2? < y(t 4 1)?4(A; 24) < 0. (12.180)

= t=0t=0
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From (12.180), (12.173), (12.174) and from corollary 2, p. 324 in ref. [3]
it follows that w. pr. 1 only finitely many of the events A, and B, occur.
Thus there exists a random integer ty such that for all t > to,

| x7 | SUy,> | Xray | S 2C,C2y,, (12.181)

| x7 | > Cry, > W414 SCAz + 2¢)y,, (12.182)

and

Vor > Ay — 8)y, = (Aa + 3e)y, (recall (12.169). (12.183)

In the remainder of this step we ignore the exceptional Q-set on which
no suchfinite ty exists. Moreover, welet t,(q@) be the first time after and
includingto that | x7 | < C,y,, andlet tq), i > 1, be the first time after
t;-,(w) that | x7 | < C,y,,. The existence and almost sure finiteness of
tw) is an immediate consequence of (12.170) and (12.181). (See also
estimates (12.184) — (12.186).)

 

 

It is now easy to prove (12.168) with C = 2C\(C, + 1)M(1 + | V)),
where

M=(1+— max (1/V(i))).
d,+1<i<d

Indeed, if t;,, = t; + 1, then

_max {xr [/y} = [tie Yuri} S Cr. (12.184)

If on the other hand t;,, > ¢; + 1, then by (12.170) and (12.181)

Peet 1/Vri+13 Ss M{| Xi Yuri} S 2C,C,M, (12.185)

and by (12.182), (12.183) and (12.185) for allt; +1 <t<t,,,

{| X44 Year} S iM+1 | Vl/y413 Ss (A, + 2e)y, | V \/(A2 + 38)y,}

Sin |Vi/yd S--. S fone. |W |ar}
<2C,C,M| VI. (12.186)

Thus, in any case, for all i = 1,

sup {| x7 V/V 5 SC,
ti<tStj+,

and hence

sup {| x7 |/yij3 SC.
t2>,
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Step 2. The preceding step showsthat on the set where lim sup | x/ | < 00,
to

lim {| x7 |/A,} = 0 ae. (and of course also lim sup {| x} |/2,} = 0).
t> t> oa

(12.187)

Hence g as defined in (12.167) is well-defined and equals zero a.e. on
the set where lim,..,, sup | x; | < co. In this step we will show that g is
well-defined and positive a.e. on the set where lim sup | x; | = co.

Let C, = 2C andlet mee

S = {o: lim sup | x; | = oo}. (12.188)

As pointed out above it was shown in theorem 3 in the appendix to
ref. [12] that a.e.on S lim, .,, {x;/4,} = g,V' for some g, > 0. Thus, a.e.
on S {|x; |/4,} is bounded away from zero and y, = | x} | eventually
by step 1. From this it follows that a.e. on S we can find an integer
t**(w) such that for all t 2 t**(@),

 

| x; (a) | 1 ,
a ese)? . (12.189
| xi(@) | + | x?7(@) | 14+ [| x7 |/| x |] 1+ C (

Hence, for D = (1/(1 + C)) > 0,

lim inf {| x; |/|x,|} 2 Dae.onS. (12.190)
t7?o

Next, let A= {x 20: |x|=1} Tx= { h(x)/| A(x) |}, xe A, and
R(x) = |A(x)|. By lemmas 12.1 and 12.2, W=(W/|W)) is strictly
positive. Hence we can finda 0 < ¢ < Dwith|W!| > ¢. Let B= {xe A:
|x'| =e}. Without loss of generality we may assume that the neigh-
borhood U specified in theorem 12.1 is contained in B. It then follows
from lemmas 12.2 and 12.4 that T satisfies (12.114) with p = W =
{W/| W|} and (12.116) with 2 = « Moreover, by (12.24) and bythe fact
that the map x* > H?(0, x) is indecomposable and /, > 0, there exists
at > 0 suchthat

| h(x) | =2t> 0 forall xe ZA. (12.191)

(12.27) together with (12.191) implies that T satisfies (12.115) and that
R(x) satisfies (12.119). In addition, since A(-) is homogeneous of degree
one, (12.118) also follows from (12.27) if we let

p= JAW) | =|2,W] =A, and f = 1.
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Indeed,

{R(x)/|« |} = {| A(x) |/| x |} = | Ae) |
and

| A(x) | — | A(W)|| < | A(&) — W(W)| SK |e — WI.

Finally, (12.117) is an immediate consequence of (12.25), (12.26) and

Chebychev’s inequality. Thus all conditions of theorem 12.3 hold for

T and the family {x,},..
Consequently, for any integer tp 2 0,

P,.{lim { x,/A,} = gW for some g > 0} = 1 — K, | x,,|~° (12.192)

almost everywhere on the set {x,, # 0, X,,¢ B}. Now, let 7 > 0, L, =

(K,/n)°and k = k(y, @) = inf {n:| x,(w)| = L,, X,(@) € B}. By (12.190),
the definition of S and the choice of ¢,

k< oae.onS. (12.193)

Finally, by (12.192) and the fact that

x,¢ Band 1 — K,|x,|-° 21— K,L,° =1-—17 0n {k(y,o) = s},

we have

P{lim {x,/A,} = gW for some g > 0 and k(n, w) < oo}
{>a

{>

— y P{k = sand lim {x,/A,} = gW for some g > QO}
s=0

= ¥ P{k = s}P,{lim {x,/,} = gW for some g > 0|k = 5}
s=0O tc

> (1 — 1) Y,Pik = s} = (1 — )P{K(n, @) < 00}. (12.194)

Thus, for any n > 0 (cf. (12.143)),

P{{x,} eS but not lim {x,//} = gW for any g > 0}
ta °

< P{{x,}eS and k(n, w) = o}
+ P{k(y, w) < oo but not lim {x,/J,} = gW for any g > 0}

t— 0

< nP{k(n,w) < w} <n.
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Thatis, lim,..,, {x,/A,} = gW for some g > 0 ae. on S. Thus(12.28) has
been proved in general. Essentially the same argument shows

Pig> 0} xo} = (1 — n)P{k(n, @) < x | Xo} > 0

as soon as

P{ k(n, @) < 00 |x9} > 0 for some 0 <n < 1.

 
The above proofis applicable for any 0 < ¢ < min (D, W'|). Of course
K, and L, depend on ¢ and also B is defined in terms of ¢. To
bring out this dependence weshall write K,(e), L,{é), and B(e) for the
remainder of the proof of (12.29). Then, for any x with x} 40 we
have

 ),Xo € B(| x6 |/| xo

and

k(z, w) = 0 on {| Xo | 2 Liaja(| X6 /| Xo ) = [2K ,(| Xo /| Xo ye,

1.€.

P{g > 0| xo} 2 3 on {x} 4 0,  Xo| 2 [2K,(| xo |/| xo |)J°}.
Clearly E{g| xo} > Oassoonas P{g > 0| xo} > 0. Hence P{g > 0| x9}
> Oand E{g| x} > 0 whenever xj # 0, xo | sufficiently large. On the
other hand, on x9 = 0, Ey{x}} = H'(0) = 0.So x! = Oandby induction
x; = Oae. on {x = 0}. This completes the proof of (12.29) and (12.30)
as well as the comment between them, with M(y) = [2K,(y)]!”.

Lastly, when H’(-) = (h,(-), ..., hg,(-)) is concave, the following
inequality holds:

E{(x;/A\) | Xo} = E{E{(x;/A4) | Xos.-+5X,-y} | xo}

= (M/A ELHM(xt /A- 4)| x0}
S (1/AHEL(L/S) | x0})
S... S$ (1/1,)(A")'(x5). (12.195)

 

Since by lemma 12.3,

lim sup(1/24) | (H°}'(x0) | = lim (1/24) | (V0) | = yao) | W" | < o,
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we find from Fatou’s lemmathat

E{g| xo} = (1/| W* [)E(lim(|? |/44)| x0}
< (1/| W* |) lim sup Ef(| x|/4)) | xo}

t- ow

= (Xo)| W | < 0,

which proves (12.31). Q.E.D.

12.4.2. Proof of theorem 12.2

Weclosely follow step 2 in the proof of theorem 12.1. Again we take

A= {x 20: |x|=1}, Tx = {A(x)/| A(x) |}, and R(x) = | h(x) |. For p

and B we nowtake the vector(0, (V’/| V* |)) and A respectively. Finally

U is the neighborhoodofp specified in the assumptionsof theorem 12.2.

(12.114) is now satisfied by the definition of V’ (see (12.14)). Essentially,

as in step 2 of the proof of theorem 12.1, (12.115), (12.118) and (12.119)

follow from (12.33) and (12.27) if we now take

p= | (0, (V7 /| V? !))| — Ar, B = 1,

 

(12.117) is a consequenceof (12.25), (12.26) and Chebychev’s inequality

as before. Lastly, (12.116) with 2 = P as in (12.72) is implied by lemma

12.6 since (12.27) implies the validity of (12.71) with K, = (2K + 4,)| V'|

and y = 1. An application of theorem 12.3 now gives for any 7 > 0 an

L,, such that

P,, {lim (x,/A5) = g(0, V7) for some g > 0} = 1 — non theset {|x,,| = L,}.
t> oa

As in step 2 of theorem 12.1 we have

P{lim (x,/45) = g(0, V7) for some g > 0}
tc

= (1 — n)P{|x,| 2 L, for some s},

and

lim {x,/A5} = 2(0, V’) for some g > 0 (12.196)
to

a.e. on the set

S = (){|x,| = L, for some s} = {lim sup|x,| = 00}. (12.197)
n>0O
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Clearly, lim {x,//5} = 0 on the complementof S so that by (12.196) g
{72

can be defined a.e. by

lim {x,/A,} = g°(0, V’).
7 ow

Moreover, g > 0 a.e. on S and g = 0 off S. This proves (12.35) and the

remainder of the theorem with M = L,is proved in the same way as

(12.29) and (12.31). Q.E.D.
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COMMENTS

Balanced growth under uncertainty in decomposable economies

Roy Radner

In this paper with H. Kesten and in a previous paper, ‘Balanced growth
under uncertainty’, Professor Stigum has given us an interesting analysis
of a class of stochastic growth processes in which the distribution of
the state vector is asymptotically concentrated on a ray through the
origin. Roughly speaking, the mathematical expectation of the (vector
valued) process is assumed to be governed by equations like those
studied by Solow and Samuelsonin their paper ‘Balanced growth under
constant returns to scale’. Furthermore, the standard deviation of each
coordinate of the process is assumed to grow more slowly than the
‘length’ of the state vector. The expected value of the process grows
asymptotically like A‘, where A is greater than 1. I may perhaps para-
phrase the argumentheuristically as follows. For those realizations of
the process x(t) that grow more slowly than /', the ‘normalized’ process,
x(t)/A', approaches 0: whereas for those realizations that grow asfast
as 4’ the conditional standard deviation of xt)/A', given the past,
approaches 0, and so the normalized process converges to a particular
ray through the origin (this heuristic argument does not, of course,
do justice to the complexity of the problem).
Without detracting from the interest of the paper, I would like here

to amplify Professor Stigum’s own remarks concerning classes of
stochastic economies that do not satisfy his assumptions (12.25) and
(12.26) aboutthe varianceof the process.First, it may clarify his remark 1
on p. 347 if we considera special case of the example on p. 340 in which
G(x, A) = F(x)A. It is easily verified that if F is homogeneousof degree
one, then the conditional variance of the second coordinate of
given the past, is equal to

2 x, \’ 2s*F (Var A) | x, |?,
| x, |

Xi+ lo

 

thus assumption (12.26) is notsatisfied.

382
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I think that this situation can be expected to be quite common. Thus,
in a von Neumann model in which the input and output coefficients
are random variables, assumptions (12.25) and (12.26) will typically not

be satisfied.
Other concepts of balanced growth are of interest if the distribution

of the state vector is not asymptotically concentrated along a single ray
through the origin. For example, we may say that the process {x,}
exhibits weakly balanced growth, if there exist stationary processes

{A,} and {x,}, with values, respectively, in R and R" such that x, =
x,/A®, where A® = A,A, ...A, A, a random variable that has the
same distribution as all the A,s, is called the steady growth factor.
The following example is due to P. Jeanjean’.

We have n commodities, and n industries, each one producing one

commodity with the production function
n

yj = TB; I Xi»ie
where x;,; is the input of the ith commodity in the jth process, B,; and «;;
are constants with

ai; = 0, » Oi = 1, B; > 0,

and the r;s are non-negative, bounded random variables not necessarily

independent, such that for every j, Er; = 1 andr; 2 ¢, > 0.
When the total stock of good x is available, it is allocated among

the different industries according to a matrix

in such a way that x,; = k,;x;. The matrix K is thus the control variable.
It is useful to reformulate the problem in logarithmic terms. Denote

A = (4;;) = transpose of the matrix («;,),

log yy log r; log B, n,(K)

y= © R= — [p= ( Ln= - 4,

log Vn log r, log B, nAK)

' P. Jeanjean. Optimal growth with stochastic technology in a closed economy. Un-
published dissertation, University of California, Berkeley (1972).
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where

For feasibility, x(t + 1) = y(t).

Denote ¢ = B + n(K). The law of evolution of the system is then
Y(t + 1) =R+¢+ AY(t) which admits the explicit solution

¥e+ 1 =AYO) + YAL+ VAR, £21,
k=1 k=1

where R(t) are the successive values of the random vector R, assumed
independent from each other, and Y(0) is the initial endowment.

Let us assume:

(1) the random variables R, = log r, have second order moment: and
(2) the matrix A is fully regular’.
It follows from the second assumptionthatthere exists a non-negative

matrix A, whose rowsareall identical — denote them by a — such that

It is possible to show that there exists a random vector Q, with EQ = 0,
and a non-random vector Y, such that

t

Y(t) — A + ; \ nt) ae Y+Q.
k=1

Asymptotically, the economy exhibits weakly balanced growth at a
steady rate a(f + R) (the same for each commodity).
The quantity

f(t) = & ro} Rw
{ K=1

> fully regular matrix is a matrix with non-negativecoefficients, each of whose columns
sumsto 1, and for which | is the only eigenvalue of modulus | andis a simple rootof the
characteristic equation.
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may be considered as the average rate of growth. By an ergodic theorem,

f(t)3 p = alt + ER) = Ep(t)
p is the asymptotic long-run rate of growth.

If we call the associated deterministic process the process obtained by
taking the expected output as deterministic output, its asymptotic rate
of growth is af. Hence, the asymptotic long-run rate of growth of the
economyis well defined and not random.It is strictly smaller than the
asymptotic rate of growth of the associated deterministic process.

On the application spectrum for the Kesten—Stigum theory

Michael Balch

This paper by Professors Kesten and Stigum is a continuation of the
analysis begun by the latter author (1972), in which the standard deter-

ministic growth model of neoclassical theory is embeddedin class of

stochastic processes that are Solow—Samuelson ‘in expectation’. Thus,
while the instantaneous evolution of state variables is random, to be

sure, it is assumed that the corresponding vector of mathematical
expectationssatisfies a growth equation of the Solow—Samuelsontype’.
The object of their study is to restrict this class so that the principal
structural inference of the neoclassical model — namely, that the system
evolves along a distinguished ray of balanced growth — carries over in
an appropriate asymptotic way for the more general stochastic setting.
This is neatly achieved by requiring (conditions (12.25), (12.26)) that the
standard deviation of each component ofthe (vector-valued) process be
bounded in terms of current state size: very roughly put, the ‘first
moment’ influence of past realizations must dominate the ‘second
momentinfluence of current uncertainties.

* This provides the structural ‘skeleton’ for the Kesten—Stigum analysis. But see their
remark 4 on relaxing condition (12.1), which provides far greater generality than the
strict ‘equation’ form of (12.1) would suggest (some mightfind it vaguely disturbing that
the evolution of the conditional expectation of a random macro-process can be known
with such precision).
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In the comment preceding this one Professor Radner questions

whether the Kesten—Stigum sub-classis sufficiently robust — as a matter
of what we conceive to be real world essence — to support our continued
confidence in the sharpness of the neoclassical result: otherwise, as
Professor Radner has suggested, we may havetosettle for a ‘fattened’
version of balanced growth that more faithfully characterizes the

stochastic situation. Radner’s concern arises in connection with the

Mirman (1973) model for macrostochastic growth which the present
authors employto indicate the scope and ‘minimally sufficient’ character
of their theory. They note that the Mirman model neither belongs to
their process class nor enjoys the asymptotic behavior that would

otherwise follow. Radnersees this as a typical sort of limitation on the
application spectrum for the Kesten—Stigum theory.

It seems to me, however, that the case for the Kesten—Stigum theory
is stronger than might appear from a simple comparison with the
Mirman model, since, in the latter, microrandomness is assumed to

‘augment’ with macroscale according to an incidence mode that does

not take macrostochastic account of diversifications in the productive

sector. More particularly, the Mirman model does not incorporate
production contingencies of the ‘firm-specific’ type, i.e. of the type that
may be expected to impact separately and in randomly incident fashion
upon the individual productive units of a decentralized economy.
Rather, analysis is based upon the polar assumption that, at any given
epoch,all contingencies have universal incidence and ‘lockstep’ impact
across firms’. In the case of a simple corn economy, for example, the
Mirman mode doesnot allow for real production? contingencies that

* In fairness, it should be noted that this microfoundational characterization is not
explicit in the Mirman construction; rather it follows inferentially from the nature
of the law that is taken to govern macrostochastic evolution. The pointis that random
aggregate product is the summation of random individual products, and the stochastic
nature of the former depends upon the incidence mode that is assumedforthe latter.
It is worth emphasizing that for the family of macrogrowth processes under present
discussion, the formal concern is with modeling randomness that associates to the
production function alone - that is, to those ‘natural’ determinants of real product
that remain beyond the conditionalizing influence of the input decision — rather than
to the (derivative) market conditions that will obtain once aggregate product has been
realized. Thus, while ex post output prices do, of course, jointly contribute to the
determination of microrewards, and while such market realizations do impact uni-
formly across all microunits in a given sector, these market variables do not feature
explicitly in the ‘real’ equations at hand and so do not formally concern us here (though
perhaps should, as Professor Kurz argues in chapter 13).
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do not visit the (locationally separated) farms of that economy in
universal fashion: as, for example, with selectively incident drought
conditions, hailstorms, floods and the like. The effect of the Mirman
modeis that scale-normalized variance for the total process is model-
theoretically divorced from the (growing) scale of economicactivity (in
particular, does not shrink with scale), andit is just here that the Kesten—
Stigum condition (12.26) is failed.
Even so, it is interesting to note that the Mirman model does manage

to sit on the ‘boundaryof the Kesten—Stigum class and, indeed, achieves
class membership when the incidence mode for basic randomnessis
modified in the sense described above. To see this we may consider a
single-good economy* in which capital growth is somehow modeled
to take place on the extensive margin, i.e. through the entry of new
firms rather than by capital augmentation of old ones. This could follow
under an appropriate set of assumptions on the locational and (real)
transactions cost structure of the economyso that — at least for some
relevant interval of capital/labor ratios — an optimal capital size for
individual firms is determinate, finite and, for the purposeof this present
cartoon, independentof capital/labor ratio. Thus, for simplicity, suppose
that at any epoch t the economyconsists of a numberofidentical firms
each of which utilizes the services of a fixed quantum ofcapital — say
normalized at | per firm — so that there are x,5 firms at epoch t. Labor
services are perfectly divisible, and the product of the (unit-quantized)
ith firm is given, say, by A'f(x,,;/x;.), where the random variables A’
represent microrandomnessof the decentralized and firm-specific type
discussed above, and wherethe full employment argumentoffis justified
by the usual assumptions /(0) = 0, f’ > 0 and f” < 0. We may suppose
that the A’ (i = 1, ..., x,, ...) are identically and independently dis-
tributed° and,for further simplicity, that these are distributed independ-
ently of x, Then random macroproductat epoch t + 1 is given by

Xt,2

F(X, X23 {A'\*) = \ A'f(X,,1/%1,2).
i=1

* Like the one described in Kesten-Stigum by(12.3), (12.4) and (12.7), except as modified
in obvious ways below.

> The corresponding assumption for the Mirman modeis that (unit-quantized) micro-
productis given by Af(x,,/x, 2), where the single random variable A has simultaneous
and universal incidence across all firms.
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Expected macroproduct is clearly homogeneous of degree 1 in x,.

Moreover, in view of the independence of the A's, we have

V(F(x,: ‘) | Xo; my X,) — V(AMS7 (Xp, 1/%4,2)%p,2-

Since f(-) is bounded in the ‘relevant’ capital/labor interval posited

above (andsince | x,,| <|x,|) it follows that the Kesten-Stigum con-
dition (12.26) is satisfied (with 6 = 4) and that their theorem 12.1 obtains.



CHAPTER 13

THE KESTEN-STIGUM MODEL AND THE TREATMENT

OF UNCERTAINTY IN EQUILIBRIUM THEORY

Mordecai Kurz*

13.1. Introduction

The treatment of -uncertainty in social theory has always been a

subject for diverse viewpoints and the present time is no exception.

The view of uncertainty adopted in the papers by Kesten-Stigum

and Radner which were presented in this meeting raises some very

sharp questions. I shall devote the first section below to reviewing the

Kesten—Stigum paper and then turn to the broader issues which this

theory raises.

13.2. Review of the Kesten-Stigum Theory

Wenote first that the theory at hand has been developed in two papers.

The first is an earlier paper by Stigum [8] entitled ‘Balanced growth

under uncertainty and the second is the one by Kesten and Stigum

entitled ‘Balanced growth under uncertainty in decomposable eco-

nomies’. These papers represent an extension of the earlier Samuelson—

Solow [7] theory of balanced growth to the case in which the environ-
ment is random.

The model describes the random evolution of the aggregate stock

vector x(t) in the economy, where the random variable x(t) must satisfy

E{ x(t + 1)| x(0), x(1),..., x(t)} = A(x(t)),
 

* In preparing these remarks I benefited from conversations and correspondence with

K. J. Arrow to whom I am indebted.
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where H(x(t)) is a function which incorporates the technology, resources
and rules of intertemporal allocations. It is to be understood thatin the
uncertainty case the economyhasa vector x(t) of stocks which are used
to produce output: part of this output is consumed andpart reinvested.
Thus the relation x(t + 1) = A(x(t)) means that the state of technology
and resources as well as rules of production and consumption decisions
are part of the function A(x(t)). Since in the uncertainty version of this
model the conditional expectation of x(t + 1) is A(x(t)) it is clear that
the only uncertainty allowed here is that which arises in the exogenous
environmental conditions provided they do notinfluence suchstructural
elements whichare part of H(-). In particular, such random processes as
improvements in the state of technolofy, or the increase in the availab-
ility of natural resources, are not allowed. Turning now to the papers
themselves, it may appear that the results under the condition of inde-
composability are different from those under the condition of de-
composability. In fact this is not the case, and results are essentially the
same provided the symbols and the concepts are properly interpreted.
Let us review this issue now and indicate below in what waythe results
are different for the two cases.

(a) First we note that the model of ‘decomposability as proposed
here is not as general as described by the authors and the concept of
‘triangular would probably be more appropriate. This follows from the
fact that A(-) has a ‘two sector structure of the form H = (H', H’)
where H; = H; if 1 <i<d, and H? = H,if d, + 1 <i<d and the
two functions are defined over x = (x', x”) as follows:

H,; = H{x') for 1 <i <d,, x! is d,-dimensional,

H, = H{x', x’) ford, +1<i<d, x? is (d — d,)-dimensional,

Thesector | is an indecomposable sector composed of goods(industries)
| Si <d,andsector2 is an indecomposable sector composed of goods
(industries) d, + 1 <i<d.

(b) The basic theory proved by the authors of the two papersis the
same for both the indecomposable and the decomposable cases. This
theory can be very generally stated as follows: Given certain regularity
conditions on H(-) and the very strong ‘bounded variances’ conditions
on the stochastic process x(t), there exist a positive real number 4 and
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a non-negative, non-zero vector V and a random variable 4 such that

(i) lim x(i) = gV,
to A!

(ii) E{g | x(0)} < o.

This means that asymptotically the uncertainty regarding the growth

rate vanishes while theuncertainty regarding the ‘level’ of the growth

path is present but not essential. Thus we have again the basic con-

clusion similar to those obtained in other cases that for any given

economythe uncertainty regarding the growth path will vanish with the

passage of time. These results extend the Samuelson—Solow results to

the case of uncertainty and represent a nice analytical achievement by

the authors.

(c) The difference between the indecomposable and the decomposable

cases are to be found in the values that A and take. In the indecom-

posable case, 4 and V are simply the eigenvalue and vector of A(-); thus

AH(V) = AV and with the regularity conditions on H we have 4 > 0

and V > 0.

In the indecomposable case welet 1,, 45, V', V? and V’ be defined
as follows:

i) HV) =A,V',
(ii) H°(0, V*) = A,V’,
(iii) H?(V', V2) = 2,V?,

where the existence ofall these scalars and vectors is proved.It 1s clear

that A, and W = (V', V’) are the eigenvalue and vector of A(-); thus

H(W) = 1,W. However, 4, is not necessarily the balanced growth rate

and W is not necessarily the balanced proportions. The results depend

upontherelations between A, and /,. The Kesten—Stigum theoryapplies

only to the cases where max[/,,4,] > 1 and 4, # A3.
Now,if A, > A, then the results of the decomposable case are identic-

ally the same as those of the indecomposable case: 1, is the asymptotic

growth rate and V = W = (V', V’) is the vector of asymptotic propor-

tions.

If 2, < A,, then the interpretation is different: the asymptotic growth

rate of the economy becomes /, and thefirst sector becomes asymptotic-
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ally insignificant. The theory states that the second sector is asymptotic-
ally self-sustaining with the vector of relative stock proportions of
V = (0, V’).

(d) Finally, we note that the conditions in Professor Stigum’s paper
are essentially the same conditions used by Professors Kesten and
Stigum in their paper:

(i) the critical bounded variances conditions and the regularity
conditions on A(-) are essentially the same:

(ii) Professor Stigum’s condition requiring the conditional prob-
ability of x(t + 1) to be smaller (larger) than H(x(t)) in case A is smaller
(larger) than | is replaced in the g¢ecomposable case by the conditions
on the function M andtheinitial condition x(0); the function of all
these conditions in the proofs is the same: and

(ili) the concavity condition on H(-) assumed by Professor Stigum is
slightly altered: for the proof of convergenceit is assumed, in the second
paper, that | M(x) — H(y)| < K|x —y| while for the proof that 0 <
E{g|x(0)} < oo Professors Kesten and Stigum assume concavity as
well.

Leaving additional technical matters aside, I note that the uncertainty
underlying the Kesten-Stigum universe and the one operating in the
Radner[6] modelpresented in this meeting are the same.It is the random
process of the environment which generates the random consequences
of economic decisions. This fact is true in spite of the fact that the
Kesten-Stigum economy is supposed to describe a decentralized econ-
omy while the Radner theory deals with central planning processes.

It may be argued that for the theory of planning the only relevant
uncertainty is the one regarding the environment. This is probably true
for a completely centralized economy whereall decisions, including
investment and consumption decisions for each individual, are madein
the center. Such economiesareoflittle interest, mostly because they do
not exist. If we restrict our attention to decentralized economies with
price guided allocation mechanism, then it is not clear at all that the
important uncertainty arises from the random nature of the environ-
ment.In fact, I suspect that in competitive economies the random nature
of the environment which gives rise to ‘exogenous uncertainty’ is
probably small compared to the all-important endogenous uncertainty
which weshall discuss now.



Kesten—Stigum and uncertainty 393

13.3. Exogenous vs Endogenous Uncertainties

The traditional theory of equilibrium under uncertainty was developed

by Arrow and Debreu. In this theory uncertainty exists with respect to

‘the state of the world’. This is usually viewed as the availability of
resources and the possibilities of production and consumption. In this
theory a set of contingency markets are to be established in which,for

each set of prices for contingency contracts, individuals will buy and

sell future commodities and services contingent upon thestate of the

world. This is a very good description of the insurance world: the con-

sumer pays a price today for a delivery of a new homebythe insurance

company if his house burns down. The traditional Arrow—Debreu
model was criticized by many writers, including Radner [5], who

proposed an extension of the traditional model to allow different

individuals to have different information available to them. Radner’s

analysis leads to the conclusion that, because of such differences in

information, many contingency markets may not function. This is a
generalization of the phenomenon of ‘moral hazard’ (seeref. [ 1 ]). There
are other reasons, such as transaction cost, which may prevent the

achievement of a complete system of contingency markets. However,

all the attempts at modifying the Arrow—Debreu view of uncertainty

are only designed to allow the individual decision maker to cope with

a rather incredible task of specifying his utility of consumption in every

state of the world and establishing his probability distribution overall

states of the world. Note that, if consumer preferences are random,then

the configuration of individual preferences is part of ‘the state of the

world’. This means that each participant must establish his probability

distribution of all participant’s preferences; there must exist markets in

which delivery is contingent upon the actual preferences of each indiv-

idual participant, and these must be revealed after the actual selection

takes place.

Radner’s solution to the above is simply to assumethat individuals

do not and cannot knowcertain things, and thus they form their supply

and demand correspondences under conditions of ignorance. In such

circumstancesit is safe to assume that no contract will be signed between

agents 1 and 2 where delivery will be contingent uponthe utility function

of agent 3. But this obviously means that the utility function of indiv-

idual 3 will remain an endogenous random variable whichgivesrise to
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risk that cannot be insured against. Also, in many instances, the cost of
establishing the precise state of the world, once it has occurred, may be
very high. If the marginal gain from the functioning of this contingency
market is less than the cost of producing the information, the market
will not function.

Thus, all in all, diversity of information, the phenomenon of ‘moral
hazard’, transaction cost, and the cost of establishing ‘the state of
the world’, all contribute to the failure of contingency markets to
function. This in turn gives rise to risks and uncertainties which, in
many cases, the individual agent can neither insure against nor pur-
chase more.

The above are examples of what I would regard as ‘endogenous
uncertainty in the sense that this uncertainty is either created within
the system oris a reflection of the internal functioning of the economy.
These are not the only cases of endogenous uncertainty: we turn now
to discuss other forms of such uncertainty and their consequences.

13.4. Endogenous Uncertainty and its Consequences

Uncertainty is related in an essential way to the sequential nature of
economic activity. For this reason individual decision makers can
discover from their own experience the value of knowledge and infor-
mation. The Radner consumer who is assumed to have a fixed infor-
mation structure will learn two fundamentalfacts: first, that he may
produce or purchase information, and second, that what may be regarded
by all people as inconceivable may indeed happen.
The above suggests that when information may be acquired or

purchased, the amountofindividual uncertainty becomes an endogenous
element. This meansthat in his private decision making the consumer
may elect to go to school or to engage the informational services of
specialists in order to reduce his risk. Firms may select the amountof
technological uncertainty by spending resources on research, and the
risk regarding the availability of resources may depend on the resources
spent on exploration. This endogenous uncertainty is amplified by the
fundamental non-convexity in this economicactivity: on the supply side,
produced information hasthe character of public goods. On the demand
side there is a problem in defining the demand for information when
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one does not know the information one buys (see for example,ref. [1,
chapter 12)).
On the other extreme, the Radner agent who operates under condi-

tions of ignorance may discover that his basic probability space was

‘wrong’ in the sense that certain events which he did not conceive of

did happen: perhaps the most spectacular events are precisely those

which very few people had conceived of. This is inconsistent with the
behavior of Radner’s agent since, according to Radner, the basic prob-

ability space is known to each consumer and he has a well defined

utility which depends upon each set of states of the world. This may

lead an individual to assign subjective probability to all those unknown
events that may happen but whose nature is unknown.If this is so, the

typical individual will have a probability measure of less than | on the

space of all events which he may conceive of. Individual reinforcement

to this view arises from the occurrence of events which ‘nobody con-

ceived of’.

Wefinally arrive at the most fundamental endogenous uncer-
tainty which is associated with any economic activity: the uncertainty
regarding the capacity, managerial skills and qualities of other

agents.

Owners of capital know that most of their capital is managed by

other individuals, and primary among the sources of the return to their

capital are the managerial skills and success of those whousethecapital.

Workers whosell their services to an employer will have a basic un-
certainty regarding the nature, quality and duration of their employment

which will depend upon the abilities of the employer. Further, in the

provision of any humanservice, from the repair of your car to a medical

diagnosis, there is a fundamental uncertainty due to the fundamental

random nature of human decisions. Andfinally, in signing any contract
there is always the uncertainty regarding the desire and ability of agents
to deliver.

The essence of the above examples is that individual capacity for

optimal action entails qualities which are basic random variables. The
random variations in labor and managerial performance is a funda-

mental endogenous uncertainty which is probably the most important

uncertainty in any social system. Note that some of the above uncer-

tainties do give rise to some kind of ‘contingency’ markets: unemploy-

ment insurance and insurance of the functioning of private durable
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goods are examples’. On the other hand there is no insurance against
a fall in price of a commodity caused by excessive capacity in an industry.
Here a lag in market adjustment — commonin almost all industries —
may lead to excessive rate of entry or exit. This is a typical random
variable resulting from the nature of production, the organization of
the markets and the ability of management. It is obvious that the rate
of entry and exit is a very important uninsurable random variable to
any profit maximizing firm.
The fundamental consequence of the existence of endogenous un-

certainty is the same as the consequencesof any source of uncertainty
for which there are no contingency markets functioning. These conse-
quences are simple: individuals must bear their own uncertainty and
they cannot capitalize their future endowments, assets or obligations.
On the other hand, the markets will reopen in the next period and there
are commodities, services or contracts that will be traded during the
next market date and for which prices will be available in the next
market date but for which no futures markets and prices are available
today. The aboveleads to the simple observation that, in spite of the
fact that many futures markets are not functioning today and many
futures prices are not available today, the consumer forms expectations
about prices tomorrow and those expectations become an important
basis for decision making today! It is then clear that from the viewpoint
of the individual consumer functioning in today’s market, prices to-
morrow are random variables. Apart from the consumer’s ability to
forecast prices tomorrow, it is perfectly reasonable for him to make
contracts which are contingent on market prices tomorrow! Thusa bakery
can make contracts for future delivery of bread contingent on the prices
of flour. In this case the bakery can also purchase contracts for the
delivery of wheat at a later date and thus make firm sale of future
bread. However, a travel agent might make a touring contract with his
clients contingent uponthe airline and hotel prices remaining unaltered.
Most contracts which are made contingent upon future market prices
are usually made contingent upon ‘prices not changing’ and then certain
rules for renegotiation in case changes do take place. Thusall contracts
with escalation clauses related to inflation are in fact examples of such
contracts. Also all options, put and call contracts can be interpreted as

See below for further discussion.
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contracts to buy or sell something in the future contingent upon the

market price prevailing at that time. Thus consider my purchasing a

six-month option to buy a certain asset at a fixed price py. This contract

is equivalent to a contract to deliver the sameasset at the future date,

delivery being contingent upon p > po. If p < po then the buyer does

not want the delivery to take place. In general it appears that contracts
for future delivery contingent upon future prices are much more common

than is generally assumed.

13.5. Uncertainty and Expectations: a Search for a New Equilibrium

Concept

One simple fact must be stated at this point: given the fact that the

Arrow—Debreu contingency markets deal with a relatively small

amount of uncertainty, the bulk of social uncertaintyis left to be dealt

with in a different manner. Therearefirst of all those risks which must

be born by the individual consumersince neither contingency markets

nor their social substitutes can function. This leads to a fundamental

endogenous uncertainty. Then there are all the social substitutes for

contingency markets which are markets in which uncertainty is defined

with respect to events, 1.e. set of states. Thus there may not exist insurance
against the detailed configuration of other agents’ conduct, but there

exists insurance against malpractice suits; there may not exist con-

tingency contracts which may specify the possible events that may

happento a firm and its employees, but there exists an insurance against

unemployment. These are examplesofthe diverse methodsoftransferring

risk through markets which are not contingency markets in the Arrow—

Debreu sense; risk 1s defined in these markets in terms of events.

The most important consequence of the failure of contingency

markets to function is the translation of a great deal of this form of

untraded risk into uncertainty about prices which will prevail in future

markets. This is clearly not included tn the notion of uncertainty regard-

ing the ‘state of the world’. However, from the point of view of the

individual agent operating in a world of incomplete markets, this is a

real endogenousrisk and gives rise to markets in whichthis uncertainty

is traded. This trading follows from the fact that the presence of this

uncertainty creates expectations and diversity of expectations, endow-
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ments andtastes create an extensive marketfor tradein this uncertainty.
This is one way of looking at securities markets: in this context an
investing individual who purchases a position in a mutual fund is
purchasing essentially the same service of reducing his risk as the
insurance policy which insures his home.
The extensive market for financial intermediaries contains important

segments in which the risk of future variations in prices is traded.
Moreover, given the difficulties which we have enumerated with regard
to the ‘state of the world’ model of risk it is probably the simplest and
most efficient procedure to allow individuals to trade their expectations
offuture market prices. We are thusled to the inevitable rejection of the
Arrow—Debreu model of equilibrium under uncertainty. A proper
theory of equilibrium under uncertainty will have to be developed in
the context of an economy:

(1) with a sequence of markets;
(2) where individuals are allowed to make contracts contingent upon

prices tomorrow; and

(3) where individual price expectations are formed endogenously and
influence the allocation today.

It is important to note that in principle what is emphasized here is
that we should extend the notion of the ‘state of the world’ to include
future prices. Since Hicks, it has been well understood that a theory of
plans and expectations must be integrated into the theory of general
equilibrium. Recent work in the theory of temporary equilibrium has
incorporated some of the ideas presented here (see for example,refs.
[2] and [3]). In all of these contributions it has been assumedthat
there exists a fixed expectational function which assigns to any vectorp
of today’s prices a probability distribution of tomorrow’s prices. With
this device it is then possible to define equilibrium relative to the fixed
expectation function. This is most unsatisfactory, since there are reasons
why expectations are formed, and someof these reasons were discussed
above: to assume a fixed expectation function does not resolve any
issue at all. Since it is clearly understood that the structure of expecta-
tions today can have dramatic effects on the allocation today, the
assumption of an arbitrary individual expectation function is almost
equivalent to the statement that any allocation may be an equilibrium.
The fundamental issue is the endogenous formation of expectations.
This is an open question.
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