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LINEAR MODELS IN DECISION MAKING
1

ROBYN M. DAWES 2 AND BERNARD CORRIGAN

University of Oregon and Oregon Research Institute, Eugene

Linear models are frequently used in situations in which decisions are made
on the basis of multiple codable inputs. These models sometimes are used
normatively (to aid the decision maker), sometimes contrasted with the decision
maker (in the "clinical versus statistical" controversy), sometimes used to
(represent the decision maker ("paramorphically"), and sometimes used to
"bootstrap" the decision maker (by replacing him with his representation).
Linear models have been successfully employed in a variety of contexts. A
review of these contexts indicates that they have common structural char-
acteristics: (a) Each input variable has a conditionally monotone relationship
with the output; (6) there is error of measurement; and (c) deviations
from optimal weighting do not make much practical difference. These char-
acteristics ensure the success of linear models. In fact linear models are so
appropriate in such contexts that random linear models (i.e., models whose
weights are randomly chosen except for sign) may perform quite well. Four
examples involving the prediction of such codable output variables as grade
point average and psychiatric diagnosis are analyzed in detail. In all four,
random linear models yield predictions that are superior to those of human
judges.

To the best of our knowledge, the first use
of linear models in decision making was pro-
posed by Benjamin Franklin (in Bigelow,
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1887) in a letter to his friend, Joseph

Priestly, on September 19, 1772:

I cannot, for want of sufficient premises, advise
you what to determine, but if you please I will tell
you how. . . . My way is to divide half a sheet of
paper by a line into two columns; writing over the
one Pro, and over the other Con. Then, doing three
or four days' consideration, I put down under the
different heads short hints of the different motives,
that at different times occur to me for or against
the measure. When I have thus got them all to-
gether in one view, I endeavor to estimate the re-
spective weights . . . [to] find at length where the
balance lies . . . And, though the weight of reasons
cannot be taken with the precision of algebraic
quantities, yet, when each is thus considered, sepa-
rately and comparatively, and the whole matter lies
before me, I think I can judge better, and am less
liable to make a rash step; and in fact I have found
great advantage for this kind of equation, in what
may be called moral or prudential algebra [p. 522].

By estimating the respective weights of
pro and con arguments and finding "where
the balance lies," Franklin was in effect add-
ing together the positive weights of the pro
arguments with the negative weights of the
con arguments and then deciding pro or con,
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depending on whether the sum was positive
or negative. Franklin's use of the linear model
was normative—that is, the model is meant
to aid the decision maker in reaching a good
decision. Linear models can also be descriptive
—that is, the model is meant to represent the
decision maker's behavior. They are some-
times used to decide whether or not to do
something (as above); they are sometimes
used to rank or rate objects or alternatives.
Types of linear models range from those in
which optimal weights are obtained by least
squares regression procedures to those in
which intuitive weights are obtained (as
above) to those in which unit weights are ap-
plied (i.e., in which variables are made com-
parable in .some manner and then simply
added together). This article reviews the use
of linear models in various decision-making
contexts and proposes reasons that they are
so ubiquitous. The review leads to the con-
clusion that a wide variety of decision-mak-
ing contexts have structural characteristics
that make linear models appropriate. It then
naturally follows that they be used to help
make good decisions and, insofar as a decision
maker is behaving appropriately, they may
be used to describe his decisions. Indeed
linear models are so appropriate in some con-
texts that those with randomly chosen weights
outperform expert judges.

In this article, four examples of linear
models of decision making are discussed in
detail. All involve a comparison of the ac-
curacy of five modes of decision making: in-
tuitive judgment, linear models based on in-
tuitive judgment, linear models with optimal
weights, linear models with randomly chosen
weights, and linear models with unit weights.

Example 1

A pool of approximately 1,200 psychiatric
patients took the Minnesota Multiphasic Per-
sonality Inventory (MMPI) in various hos-
pitals; they were later categorized as "neuro-
tic" or "psychotic" on the basis of more
extensive information. The MMPI results are
in the form of a personality profile of 11
scores, each of which represents the degree to
which the respondent answers questions in a
manner similar to patients suffering from a
well-defined form of psychopathology. Thus

a set of 11 scores is associated with each pa-
tient, and the problem is to predict whether
a later diagnosis will be psychotic (coded 1)
or neurotic (coded zero).

Example 2

Ninety first-year graduate students in the
psychology department at the University of
Illinois were evaluated on 10 variables that
are predictive of academic success. These
variables included aptitude test scores, college
grade point average, various peer ratings (e.g.,
extroversion), and various self-ratings (e.g.,
conscientiousness). A first-year graduate grade
point average was computed for all these
students. The problem was to predict this
grade point average from the 10 variables.

Example 3

Graduate students in the psychology de-
partment at the University of Oregon, who
had been there from two to five years (or
who would have been had they not dropped
out), were evaluated on a S-point rating scale
by faculty members who knew them. The prob-
lem was to predict the average faculty rat-
ing from three variables available to the ad-
missions committee at the time these students
applied: scores on the Graduate Record Exam
(GRE), undergraduate grade point average,
and an approximate rating of the quality of
the institution at which the grade point
average was obtained.

Example 4

Experimenters assigned values to ellipses
presented to subjects on the basis of each
figure's size, eccentricity, and grayness; the
formula used was ij + jk + ik, where i, j, and
k refer to values on the three dimensions just
mentioned. Subjects in this experiment were
asked to estimate the value of each ellipse
and were presented with outcome feedback at
the end of each trial. The problem was to
predict the true (i.e., experimenter assigned)
value of each ellipse on the basis of its size,
eccentricity, and grayness.

CLINICAL VERSUS STATISTICAL PREDICTION

One of the first areas to be investigated by
clinical psychologists, as the profession grew
rapidly after World War II, was the degree
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to which human judgment could be used in
the prediction of variables such as patient re-
sponse to treatment, recidivism, or academic
success (Sarbin, 1943). What could such
judgment add to prediction that could be
made on a purely statistical basis by, for
example, developing linear regression equa-
tions? The statistical analysis was thought to
provide a floor to which the judgment of the
experienced clinician could be compared.

The floor turned out to be a ceiling. Meehl
(1954) reviewed approximately 20 studies in
which actuarial methods were pitted against
the judgments of the clinician; in all cases
the actuarial method won the contest or the
two methods tied. Since the publication of
Meehl's book, there has been a plethora of ad-
ditional studies directed toward the question of
whether clinical judgment is inferior to actu-
arial prediction (Sawyer, 1966), and some of
these studies have been quite extensive (Gold-
berg, 1965). But Meehl (1965) was able to
conclude, some 10 years after his book was
published, that there was only a single exam-
ple in the literature showing clinical judgment
to be superior, and this conclusion was imme-
diately disputed by Goldberg (1968a) on the
grounds that even that example did not show
such superiority. We know of no examples
after that (within the standard limitations)
that have purported to show the superiority
of clinical judgment.

The first of these limitations is that com-
parative validity has always been evaluated
by comparing the correlation between the cri-
terion and the judges' predictions with the
cross-validated correlation between the cri-
terion and the predictions of the actuarial
model, usually a regression equation. But no
one has proposed an alternative way of com-
paring predictability, and correlation, because
it is a good index of the degree to which two

variables are rank ordered in a similar fash-

ion, is a reasonable measure for assessing the
prediction of such variables as success in
graduate school or response to therapy.

The second limitation is that both the clini-
cal predictions and those of the actuarial
model are made on the basis of the same cod-

able input. (Naturally, one cannot perform a

linear regression analysis or a Bayesian anal-

ysis on uncoded variables.) Clinical judges
may be superior in contexts in which they
have access to variables that are not clearly
codable or to variables that are codable, but
cannot be assessed without the clinician's pres-
ence—for example, his feeling of liking or dis-
liking a patient or potential graduate student.
In fact there has been one recent investiga-
tion in which football experts predicted point
spread better than did a linear prediction
equation (Pankoff, 1967), but these judges
may well have had access to information other
than that fed into the equation. (This second
limitation was laid down as one of the
"ground rules" for the clinical versus statisti-
cal controversy by Meehl in 1954.)

A few authors, rather than investigating
clinical versus statistical prediction, have at-
tempted to synthesize actuarial and clinical
prediction (Pankoff & Roberts, 1968; Sawyer,
1966). Such syntheses themselves may be
classified as either clinical or statistical. In a
clinical synthesis, an expert decision maker is
given the outcome of the statistical predic-
tion and then asked to improve upon it,
whereas in a statistical synthesis the judg-
ment of the expert is treated as an additional
variable in the -actuarial prediction system.
Although such procedures are very appealing
on purely logical grounds, empirical evidence
concerning their success is not very encourag-
ing. Goldberg (1968b) reported a study of
clinical synthesis in which judges were given
"actual values of the optimal formula for
each [MMPI] profile," with the result that
"the accuracy of these judges' diagnoses was
not as high as would have been achieved by
simply using the formula itself [p. 493]."
Einhorn (1972) reported a study of statisti-
cal synthesis in which four medical experts
on hodgkin's disease rated nine character-
istics of biopsies from some 200 patients and
also made an overall rating of the severity

of the disease process. All the patients later
died, and Einhorn was able to relate their

longevity to both the nine characteristics and
the overall judgments. He built and cross-

validated two linear models for each doctor—
one including the overall rating and one ex-

cluding it. For two of his four doctors, the

model that included the overall rating had a
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higher cross-validated correlation than did the
model that excluded it; for two, the cross-
validated correlation was lower.

In the examples discussed in this article,
linear models with optimal coefficients have
a higher cross-validated correlation than do
human judgments.

Example 1

Twenty-nine clinical psychologists were
asked to predict, on the basis of MMPI pro-
files, whether the patients were diagnosed as
neurotic or psychotic; they made their predic-
tions using a forced-normal distribution. The
correlation between their ratings and the cri-
terion ranged from .14 to .39, with a mean of
.28; the cross-validated correlation of the
weighting scheme derived from regression
analysis was,.46 (Goldberg, 1965). Moreover,
the partial correlation between judgments and
criterion, partialling out the predictions of the
optimal linear model, averaged only .05;
hence, the regression weights for such judg-
ments in a linear synthesis (weighting) of
.clinical and actuarial predictions would be
virtually zero (Hays, 1963, p. 575).

Example 2

Eighty University of Illinois students were
asked to predict the grade point averages of
the 90 first-year students who were evaluated
on the 10 variables listed earlier; the cor-
relations between predicted and obtained
grade point average ranged from .07 to .48,
with an average of .33; the cross-validated
correlation resulting from regression analysis
was .57 (Wiggins & Kohen, 1971). The pre-
dictions of 41 graduate students at the Uni-
versity of Oregon had correlations ranging
from .14 to .48, with an average of .37, which
again is less than that obtained from the re-
gression analysis. As in Example 1, the aver-
age partial correlation between clinical judg-
ment and criterion partialling out prediction

of the optimal model was virtually zero (.01).

Example 3

The files of the Oregon students who were
later rated by the faculty were searched to
obtain an average rating from the admissions

committee that evaluated them before they

were selected; this average rating correlated
.19 with the later faculty ratings, whereas the
cross-validated correlation based on regres-
sion analysis was .38 (Dawes; 1971).

Example 4

The average correlation between judges'
estimates and the assigned values in the el-
lipse experiment was .84, whereas the value
predicted from equal weighting (which is
optimal) correlated .97 with the assigned
values (Yntema & Torgerson, 1961).

There are a number of reasons why linear
models perform so well. First, in these con-
texts each variable has a conditionally mono-
tone relationship to the criterion. That is, the
variables can be scaled in such a way that
higher values on each predict higher values
on the criterion, independently of the values
of the remaining variables. As pointed out by
Amos Tversky (personal communication,
1971), this condition is the combination of
two more fundamental measurement condi-
tions: (a) independence (the ordinal relation-
ship between each variable and the criterion
is independent of the values of the remaining
variables) and (b) monotonicity (the ordinal
relationship is one that is monotone). (See
Krantz, 1972; Krantz, Luce, Suppes, &
Tversky, 1971.) And linear models are good
approximations to all multivariate models
that are conditionally monotone in each pre-
dictor variable. Rorer (1971) and Dawes
(1968) have jointly explored this degree of
approximation by computer simulation. Using
correlations between the output of various
models that were nonlinear (but conditionally
monotone) in each variable and the output
of the linear approximations to these models,
Rorer (1971) and Dawes (1968) discovered
a high degree of fit between models and linear
approximations. Even hierarchical models and
models involving multiple cut procedures were
well approximated by linear models (as evalu-
ated by correlation coefficients).

One reason then that linear models per-
form so well is that they have been investi-
gated in contexts in which true relationships,
whatever they are, tend to be conditionally
monotone. No matter how psychiatric pa-
tients score on other variables, they are more
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likely to be psychotic the higher they score
on the schizophrenia scale, the higher they
score on the paranoia scale, and the lower
they score on the psychasthenia scale. No
matter how graduate students score on other
variables, they are more likely to do better
the higher they score on the GRE, and so on.
Moreover, variables that do not have a condi-
tionally monotone relationship to the criterion
variable tend to have a single peak relation-
ship that is easily converted to a monotone
relationship by changing from raw units to
units of worth or predictability. For example,
the job of custodian may require a certain
amount of intelligence, but high levels of
intelligence may result in poor performance
because of boredom. An intelligence test may
then be rescored in terms of the absolute dis-
tance from 100-—-that is, rescaled to measure
"intellectual mediocrity." (It has, in fact,
recently been suggested that such a variable
may not only be relevant to selection of cus-
todians, but to Supreme Court Justices as
well.)

Second, the relative weights derived from
a linear regression analysis are not affected
by "error" in the criterion variable. Such
error reduces the expected values of all these
weights by the same constant amount and
hence reduces the absolute value of the pre-
dicted criterion variable by that same amount.
This linear transformation on the predicted
value does not affect its correlation with the
true score value. It does, of course, affect the
correlation between predicted value and ob-
served value.

3

3 This conclusion is easily demonstrated alge-
braically when the variables are in standard score
form. For jS = R^v, where j3 is a column vector of
beta weights, R is the matrix of intercorrelations
between predictor variables, and v is the column
vector of "validities"—that is, intercorrelations be-
tween the predictors and the criterion. The intercor-
relations in R are unaffected by the existence or non-
existence of error in the measurement of the criterion
variable. What that error does, however, is to affect
all the correlations in v. Specifically let r'i be the
correlation that would be found between predictor i
and criterion, if the criterion were measured without
any error. Because correlation is equal to the co-
variance -divided by the geometric mean of the vari-
ances, the actual correlation (r«) when the criterion
is measured with error is equal to ar't, where a
equals the square root of the ratio of true score

Third, error in the measurement of the
independent variables tends to make optimal
functions more linear—that is, curves sepa-
rating values on the dependent variable tend
to become flatter. In conjunction with Gold,

4

the present authors demonstrated this effect
by considering the two-dimensional condi-
tionally monotone function that is least well
approximated by a linear function; this func-
tion is a conjunctive step function. When the
variables are measured without error, this
function consists of a rectangular contour
separating high values from low values. As
the independent variables are measured with
an increasing amount of error, this contour
becomes increasingly curved—eventually ap-
proximating a straight line. This curvature
is demonstrated in Figure 1. The same effect
was demonstrated earlier by Lord (1962),
who proved that when a conjunctive step
function (multiple cut) is appropriate under
errorless measurement conditions, a sufficient
amount of error dictates the use of a linear
approximation in its place. (The reader who
does not follow this brief description is re-
ferred to Lord's article.)

To summarize, linear functions are good ap-
proximations to conditionally monotone func-
tions; the relative values of the weights are
not affected by error in the criterion variable,
and conditionally monotone functions tend
to become more linear in the presence of in-
creasing error in the predictor variables. Such
models fit, then, because the contexts in which
they are evaluated tend to be conditionally
monotone contexts in which there is much
error.

This conclusion—that linear models are
often good approximations in many decision-
making situations that psychologists study—
is not original with, this article. In discussing
the evaluation of job applications, Thorndike
(1918) wrote:

The setting up of an equation of prophecy from an
equation of status will usually be very complex,

variance in the criterion to total variance. Hence
v = av', where v' is the vector of vah'dities that
would be obtained were there no error. And it
follows that (3 = a/3', where j3' is the vector of beta
weights that would be obtained were there no error.

4 E. Mark Gold was a contributing mathematician
to the study.
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= 1

—boundary separating
true scores of 1 and 0

• optimal cut boundary
for separating observed scores

linear
approximation

FIGURE 1. Conjunctive true score region, optimal cut boundary,
and linear approximation.

but a rough [linear] approximation, if sound in
principle, will often give excellent results. In so far
as the lines of relation, interrelation, and dependency
are rectilinear, the technique is greatly simplified;
and a rough approximation to Ms is probably often
the case [italics added; p. IS].

PAEAMOEPHIC LINEAR REPRESENTATION

In 1923, Henry A. Wallace (former Vice-
President under Roosevelt) proposed that one
method of determining "what is on the corn
judge's mind" is to build a linear model of the
judge by regressing his ratings of corn quality
on various characteristics of the corn that he
rates; Wallace's idea of analyzing the expert
decision maker by constructing such a model
apparently did not excite many readers at that
time. Thirty-seven years later, Hoffman
(1960) independently proposed that linear
models could be used to represent expert
judgment, and his proposal received a great

deal of attention. Hoffman termed the linear

model that he used to predict an expert's
judgment a "paramorphic representation" of

such judgment. The term was chosen because
Hoffman did not mean to imply that the
actual psychological process involved in mak-
ing the judgment was that of weighing vari-
ous variables, but rather that this process
could be simulated by such a weighting. There
were many cases in which the simulation
was clearly inappropriate in that it predicted
qualitative aspects of the judgment process
that were not, in fact, discovered; the simula-
tion was regarded as good paramorphic repre-
sentation, however, if the output of the linear
model corresponded to the output of the
judge. Such linear models have been shown
to be quite good paramorphic representations
or, as some authors put it, quite good at
"capturing the policy" of judges (Anderson,

1968; Beach,J967; Christal, 1968; Dudycha
& Naylor, 1966; Goldberg, 1968b; Ham-
mond, Hursch, & Todd, 1964; Hoffman,

Slovic, & Rorer, 1968; Hursch, Hammond, &
Hurseh, 1964; Naylor & Wherry, 1965; Ny-

stedt & Magnusson, 1972; Schenck & Naylor,
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1968; Slovic, 1969; Tucker, 1964; Wherry &
Naylor, 1966; Wiggins & Hoffman, 1968).
See Slovic and Lichtenstein (1971) for a
recent review.

Does the success of such models indicate
that the judges are nothing more than "linear
machines"? The answer to this question
hinges on whether or not the discrepancies
between the actual judgments and those pre-
dicted by the linear model are reliable. If
these discrepancies have no reliability, then
the decision maker is behaving like a linear
machine with an error component. If, on the
other hand, these discrepancies can be shown
to be reliable, then the decision maker is be-
having in a consistently nonlinear way.
Rorer and Slovic (1966) discovered that such
deviations can be reliable, although com-
pletely unrelated to the criterion that the
judge is attempting to predict! The reliability
of the nonlinear component may also be as-
sessed by comparing the correlation between
the predictions of the model and the judge
with the overall reliability of the judge. If
the decision maker is acting like the linear
model with an error component, the cor-
relation between the model and the actual
judgments should be equal to the square root
of the reliability of these judgments. In con-
junction with Winter,

6
 the present author

asked three judges from the admissions com-
mittee at the University of Oregon's psy-
chology department to rerate 90 applicants,
who had previously been rated on a 6-point
scale to assess their suitability for entering
the graduate program. The reliabilities of the
three judges were .62, .69, and .68. Linear
models of these judges' behavior were con-
structed on the basis of three predictor vari-
ables: undergraduate grade point average,
GRE scores, and a rating of the undergradu-
ate institution that the applicant attended.
The judges' correlations with their linear
models were .50, .75, and .79. Although these
correlations did not approach the square root
of the reliabilities, the study was marred in
that the ratings were based on all the infor-
mation in the applicant's folder and the linear
models were not. Perhaps linear models based

B Ben Winter was a contributing mathematician to
the study.

on more variables would lead to the conclu-
sion that these judges behaved like linear
machines.

BOOTSTRAPPING

When there are actual criterion values
against which the predictions of both the
judge and the linear model of the judge can
be compared, the paramorphic linear model
often does a better job than does the judge
himself. That is, the correlation between out-
put of the model and criterion is often higher
than the correlation between the decision
maker's judgment and criterion, even though
the niodel is based on the behavior of the
decision maker. This "intriguing possibility"
was first suggested by Yntema and Torgerson
(1961). It was later demonstrated in a busi-
ness context by Bowman (1963) and was
eventually termed bootstrapping. Bootstrap-
ping has turned out to be a rather pervasive
phenomenon. For example, in the Wiggins
and Kohen (1971) study, the linear model
of every one of their 80 University oj Illinois
judges did a better job than did the judges
themselves in predicting actual grade point
averages. This result has been replicated for
40 of 41 University of Oregon judges making
the same judgments (in a study conducted in
conjunction with Wiggins, Gregory, & Dil-
ler

6
). Goldberg (1970) demonstrated it for

26 of 29 clinical psychology judges, and
Dawes (1971) found it in the evaluation of
graduate applicants at the University of Ore-
gon.

Why does bootstrapping work? In 1963,
Bowman wrote:

It seems useful to attempt an explanation of why
decision rules derived from management's own
average behavior might yield better results than the
aggregate behavior itself. Man seems to respond to
selective cues in his environment—particular things
seem to catch his attention at times (the last tele-
phone call). . . . [These random and particularistic
components can be eliminated] through the use of
decision rules incorporating coefficients derived from
management's own recurrent behavior [p. 316].

Working entirely independently on the pre-
diction of neurosis and psychosis from MMPI
profiles, Goldberg (1970) wrote:

6 Nancy Wiggins, Sundra Gregory, and Richard
Diller were contributing psychologists to the study.
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TABLE 1

CORRELATIONS BETWEEN PREDICTIONS AND CRITERION VALUES

Example

Prediction of neurosis versus
psychosis

Illinois students' prediction of
grade point average

Oregon students' prediction of
grade point average

Prediction of later faculty
ratings, at Oregon

Yntema & Torgerson (1961)
experiment

Average
validity
of judge

.28

.33

.37

.19

.84

Average
validity

of judge's
model

.31

.50

.43

.25

.89

Average
validity

of random
model

.30

.51

.51

.39

.84

Validity
of equal

weighting
model

.34

.60

.60

.48

.97

Cross-
validated
validity of
regression
analysis

.46

.57

.57

.38

Validity
of optimal

linear
model

.46

.69

.69

.54

.97

For the clinician is not a machine. While he pos-
sesses his full share of human learning and hypoth-
esis-generating skills, he lacks a machine's reli-
ability. He "has his days": Boredom, fatigue, ill-
ness, situational and interpersonal distractions all
plague him, with the result that his repeated judg-
ments of the exact same stimulus configuration are
not identical. ... If we could remove some of this
human unreliability by eliminating the random error
in his judgments, we should thereby increase the
validity of the resulting predictions. The problem,
then, may be reformulated: Can the clinician's judg-
mental unreliability be separated from his—hopefully,
somewhat valid—judgmental strategy [p. 423]?

Goldberg's answer was yes; the means of
separation was by constructing a linear para-
morphic representation of the judge.

In 1971, Dawes wrote:

A mathematical model, by its very nature, is an
abstraction of the process it models; hence, if the
decision maker's behavior involves following valid
principles but following them poorly, these valid
principles will be abstracted by the model—as long
as the deviations from these principles are not sys-
tematically related to the variables the decision
maker is considering [p. 182].

AN END TO BOOTSTRAPPING: RANDOM
LINEAR MODELS

Belief in the efficacy of bootstrapping was
based on a comparison of the validity of the
linear model of the judge with the validity of
his (or her) judgments themselves. That was
only one of two logically possible comparisons.
The other is between the validity of the
linear model of the judge and the validity of
linear models in general. That is, to demon-
strate that bootstrapping works because the
linear model catches the essence of a judge's

expertise and at the same time eliminates un-
reliability, it is necessary to demonstrate that
the weights obtained from an analysis of the
judge's behavior are superior to those that
might be obtained in other ways—for ex-
ample, obtained randomly. In the four
examples discussed in this article, there is no
evidence of such superiority.

In each example, the authors constructed
random linear models to predict the criterion.
The sign of each predictor variable was deter-
mined on an a priori basis so that it would
have a positive relationship to the criterion.
Then a normal deviate was selected at ran-
dom from a normal distribution with unit
variance, and the absolute value of this de-
viate was used as a weight for the variable.
Ten thousand such models were constructed
for each example. The results are presented
in Table 1 along with the earlier results. On
the average, correlations between the criteria
and the output predicted from the random
models were higher than those obtained from
the judges' models. The present authors also
investigated equal weighting and, of course,
discovered that such weighting was even
better.

7
 (In two of the four examples, the

7 This result follows from a simple inequality: If
several standardized predictor variables all have a
positive correlation with a criterion variable, the
correlation between the average of the predictor
variables and the criterion will be higher than the
average correlation between predictor and criterion
(see Ghiselli, 1964). Here an equal weighting scheme
gives the same output as does the average of all ran-
dom models—all of which have positive validity.
Hence it has a correlation higher than the average
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TABLE 2

CORRELATIONS BETWEEN PREDICTIONS AND LINEAR MODELS

Example

Prediction of neurosis versus
psychosis

Illinois students' prediction of
grade point average

Oregon students' prediction of
grade point average

Prediction of later faculty
ratings at Oregon

Yntema & Torgerson (1961)
experiment

Average r of
judge with

optimal
linear model

.53"

—

.53*

—

—

Average r of
judge's model
with optimal
linear model

.67

.72

.62

.46

.92

Average r of
random model
with optimal
linear model

.65

.74

.74

.72

.87

r of equal
weighting

model with
optimal linear

model

.74

.87

.87

.89

1.00

r of split
composite

with optimal
linear model

1.00

.83

.83

.70

—

" Empirically derived.

equal weighting scheme had a higher correla-
tion with the criterion than did the cross-
validated optimal weighting scheme. This
anomalous result is explained by the fact that
the ratio of observations of variables was too
low to obtain stable beta weights in the actu-
arial analysis; in practice stepwise regression
would be used and fewer variables weighted).

Essentially the same results were obtained
when the weights were selected from a rec-
tangular distribution. Why? Because linear
models are robust not only in the three ways
described earlier in this article, but they are
robust over deviations from optimal weight-
ing as well. In other words, the bootstrapping
finding may be simply a reaffirmation of the
earlier finding that linear models are superior
to human judgments—the weights derived
from judges' behavior being sufficiently close
to the optimal weights so that the outputs of
the models are highly similar. In other words,
the solution to the problem of obtaining opti-
mal weights is one that—in terms of von Win-
terfeldt and Edwards

8
—has a "flat maxi-

mum." Weights that are near to optimal lead
to almost the same output as do optimal beta
weights. The behavior of the expert judge,
because he (or she) knows at least something
about the direction of the variables, yields

correlation of the random models. Also see Dawes
(1970).

8D. von Winterfeldt and W. Edwards. Costs and
Payoffs in Perceptual Research. Unpublished manu-
script, University of Michigan (Engineering Psy-
chology Laboratory), 1973.

weights near optimal. (But note that in all
cases equal weighting is superior to the models
based on judges' behavior.)

This explanation for the efficacy of the
models is illustrated in Table 2, which pre-
sents the correlation between the models and
the optimal linear model (not cross-vali-
dated).

9
 The table also presents the correla-

tion between judges' predictions and those
from the optimal linear models' predictions.
These correlations also yield partial correla-
tions approaching zero; it follows, as noted
earlier, that a linear synthesis of the optimal
linear model with the judges' estimates would
not improve on the optimal linear model.

As von Winterfeldt and Edwards (see Foot-
note 5) pointed out, the questions of "What
is flat?" and "How flat is flat?" are not well
defined mathematically. Here, however, we
wish to point out that even a linear model
based on a single predictor has a peak that

9 The correlations are uniformly high. These cor-
relations can be derived directly by a comparison of
the validity of the model with the validity of the
optimal linear model. If we were to predict the
criterion from a linear composite of the optimal
linear model and the nonoptimal linear model,
the beta weight given to the nonoptimal model
would be zero because it would be impossible to
improve on the linear prediction from the optimal
model. Hence the partial correlation between non-
optimal model and criterion partialling out the opti-
mal linear model must also be zero (Hays, 1963,
p. 575). The correlation between actual and optimal
may then be computed by setting the numerator of
the formula for the partial correlation coefficient
equal to zero.
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Reduction

in

MSE
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FIGURE 2. Reduction in mean square error (MSE) as a function of the
believed -correlation coefficient.

might generally be regarded as flat. Suppose
that this single predictor variable correlates
.71 with the criterion variable; our best pre-
diction is, therefore, that the standard score
on the criterion variable equals .71 times the
standard score on the predictor variable, and
the mean square error of prediction is given
by 1 - r

z
 = .50.

Now suppose that the correlation between
predictor and criterion is believed to be a
rather than r. In such a case, the prediction
is now that the standard score of the criterion
variable is equal to a times the standard score
of the predictor variable, where a=^=r but
a = r + c. The new mean square error of pre-
diction is equal to 1 — r

2
 + c

2
, which is equal

to only .60 if c is .30 (i.e., if the correlation
of .71 is believed to be 1.01 or .41). So a
rather grievous error in estimating the cor-
relation coefficient results in an increase in
mean square error of prediction of only 20%.
Figure 2 presents reduction in mean square
error as a function of the believed correlation
coefficient when the true correlation coeffi-
cient is .71. The maximum appears rather flat.

UNIT RATING

In the four examples discussed in this
article, unit weighting did extremely well in
predicting the criterion values. Many past
investigators have also found that unit weight-
ing does well in a variety of contexts. It is
accepted as almost axiomatic that items form-

ing a scale should be given unit weighting
rather than be weighted by validities or co-
variances (Berdie & Campbell, 1968; Wang
& Stanley, 1970). Unit weighting has also
been advocated in situations in which popula-
tions change from time to time—as in evalu-
ating officer candidates in New Zealand dur-
ing World War II (Wrigley, personal com-
munication, 1972). And such advocacy has
been supported by empirical studies (Lawshe
& Schucker, 1959; Trattner, 1963; Wesman &
Bennett, 1959), all showing that equal
weighting does as well as optimal weighting
when the weights are applied to a new sample.

Recently, Schmidt (1971) has shown that
equal weighting may be superior to optimal
weighting schemes even when the cross-vali-
dation is performed on samples from the same
(theoretical) population. In his simulation
studies, Schmidt found that in the presence
of suppressor variables the ratio of observa-
tions to predictors should be approximately
15 to 1 before optimally derived weights are
superior to unit weights in cross-validation

and, in the absence of suppressors, this ratio
should be 25 to 1. In a similar study, Marks

10

found that a ratio of approximately 20 to 1
was necessary. (Marks's simulations had the

10 M. R. Marks. Two Kinds of Regression Weights
which are Better than Betas in Cross Samples. Paper
presented at the annual meeting of the American
Psychological Association, New York, September
1966.
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specific property that the partial correlation
between any two predictors partialling out
the criterion variable was zero.)

In short, given the fact that in many con-
texts equal weights yield predictions very
highly correlated with those obtained from
optimal weights, equal weights may be su-
perior. In contrast (Meehl, personal com-
munication, 1972), beta coefficients are ex-
tremely unstable and most extrapolations are
to samples from populations that differ some-
what from those on which the betas are esti-
mated. Meehl (personal communication, 1972)
concluded "in most practical situations an un-
weighted sum of a small number of 'big'
variables will, on the average, be preferable
to regression equations." "

CONCLUSION

Linear models work because the situations
in which they have been investigated are
those in which: (a) The predictor variables
have conditionally monotone relationships to
criteria (or may easily be rescaled to have
such a relationship); (b) there is error in the
dependent variable; (c) there is error in the
independent variables; and (d) deviations
from optimal weighting do not make much
practical difference. These situations abound.
(It is always better to be smarter, more beau-
tiful, closer to age 29, closer to blood pres-
sure 120 over 80, etc.) Thus the situation
demands decision-making behavior approxi-
mately like that of a linear model if the de-
cision making is to be appropriate—in other
words, an analysis of the task faced by the
decision maker (Edwards, 1971; Simon,
1969) leads to the conclusion that linear
models work well. It is, therefore, not sur-
prising that linear models outperform intui-
tive judgment. Nor is it surprising that deci-
sion makers (insofar as they are behaving ap-
propriately) are paramorphically well repre-
sented by linear models. Again, to quote
Thorndike (1918):

There is a prevalent myth that the expert judge of
men succeeds by some mystery of divination. Of
course, this is nonsense. He succeeds because he
makes smaller errors in the facts or in the way he
weights them. Sufficient insight and investigation

"Trites and Sells (1955) also found equal weight-
ing appropriate for estimating factor scores.

should enable us to secure all the advantages of the
impressionistic judgment (except its speed and con-
venience) without any of its defects [p. 76].

The whole trick is to decide what variables to
look at and then to know how to add.
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