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Can People Behave" '" Randomly? . 

The Role of  Feedback 

Allen Neuringer 
Reed College 

Experimental psychologists generally maintain that people cannot behave randomly. The present ex- 
periment asked students to generate random sequences of two numbers on the keyboard of a computer 
terminal. At first, all subjects' sequences differed significantly from random, thereby replicating the 
findings of the literature. But when given feedback from 5 or 10 statistical descriptors, the subjects 
learned to generate sequences that were indistinguishable, according to these statistics, from computer- 
generated random numbers. Randomlike behavior can therefore be learned. 

When asked to behave randomly, people generally fail (for 

reviews, see Tune, 1964a, 1964b; Wagenaar, 1972). An experi- 

ment, by Bakan (1960) is a good illustration of the methods used 

in tests of "random" behavior. Seventy undergraduates were asked 

"to produce a series of  'heads' and 'tails' such as they might 

expect to occur if an unbiased coin were tossed in an unbiased 

manner for a total of 300 independent tosses." The subjects filled 

in "H" or "T" boxes on a form. Analysis of the frequencies of  

runs and triplets showed that responses differed from those ex- 
pected by chance. 

The failure of human subjects to behave randomly is a robust 

finding. The number of alternative responses have varied from 

2, as in the work of Bakan (1960), through 3, 4, 5, 8, 10, 16, and 

26 (Baddeley, 1966; Chapanis, 1953; Teraoka, 1963; Wagenaar, 

1970a). Methods of responding have varied from calling out dig- 

its, letters of the alphabet, or nonsense syllables, to writing these 

same symbols on paper, pressing pushbuttons, touching metal 

disks with a stylus, or drawing lines on a paper (Baddeley, 1966; 

Lincoln & Alexander, 1955; Slak, Hirsch, & Syrja, 1979; Warren 

& Morin, 1965). Required speed of responding has been varied 

from self-pacing to from 0.25 s to 4 s per response (Baddeley, 

1966; Teraoka, 1963; Warren & Morin, 1965). Age (Ross & Levy, 

1958), mathematical sophistication of subjects (Chapanis, 1953), 

type of instructions (Beach & Swensson, 1967; Hyman & Jenkin, 

1956), psychiatric evaluation of  subjects (Home, Evans, & Orne, 

1982; Weiss, 1964), drug state (Truijens, Trumbo, & Wagenaar, 

1976), and competing attentional demands (Evans, 1978; Evans 

& Graham, 1980) have been systematically varied. And a variety 

of  statistics have been used as tests for randomness, with the 

most common being runs tests, chi-square, analyses of infor- 

mation content, and autocorrelation (Baddeley, 1966; Chapanis, 

1953; Evans, 1978; Kuhl & Schonpflug, 1974; Lincoln & Al- 

exander, 1955; Rath, 1966; Teraoka, 1963; Wagenaar, 1972). But 

no set of parameters reliably engenders random responding, de- 

spite clear instructions to subjects to behave as randomly as pos- 

1 thank Rick Wood, Charles Green, and Gary Schlickeiser for invaluable 
technical assistance and Reed College staff and students for nurturing 
and supporting this research. 

Correspondence concerning this article should be addressed to Allen 
Neuringer, Department of Psychology, Reed College, Portland, Oregon 
97202. 

62 

sible. Most researchers have therefore concluded that people do 

not behave randomly, and some have concluded that random 

behavior is impossible: "Producing a random series of responses 

is a difficult, if not impossible task to human [subjects], even 

when they are explicitly in s t ruc ted . . . "  (Wagenaar, 1971); "hu- 

man [subjects] are incapable of generating a random series of 
selections from a finite number of alternatives . . ." (Tune, 

1964a); "the human being is an extremely poor instrument for 

conduct of a random se lec t ion . . .  Nor is this a quality that can 

be removed by conscious effort or training. Nearly every human 

being has as a part of his psychological makeup a tendency away 

from true randomness in his choice" (Yule & Kendall, 1950). 

These conclusions are consistent with the determinism of much 

of contemporary psychology, from Freudian psychoanalysis to 

Skinnerian behaviorism. Stochastic processes are thought to be 

important (e.g., Estes, 1972), but the probabilistic nature of be- 

havior is generally attributed to variability in environment or 

ignorance of experimenter, not to an inherent attribute of be- 

havior. As knowledge is gained, we are told, precision of predic- 

tion will increase (e.g., Skinner, 1971). 

It is clear that research performed over the last 50 years has 

not demonstrated human randomness. Whether or not people 

can behave randomly is less certain, for two different explanations 

are possible: explanation by trait and explanation by skill. 

An explanation by trait implies that because of  inherent lim- 

itations, people are incapable of random behavior. Such an ex- 

planation depends upon the fact that in a random series, responses 

must occur with approximately equal frequencies over the long 

run. So, too, all combinations of responses (of equal length) must 

be approximately equal. Different researchers posit different traits 

that limit human ability to behave randomly. According to one 

hypothesis, people fail because memory capacity is inadequate 
for retention of these frequencies (Baddeley, 1966; Tune, 1964a). 

Another hypothesis is that attentional processes do not permit 

subjects to ignore completely their previous responses, an inat- 

tention necessary, according to this view, for random behavior 

(e.g., Weiss, 1964). A third hypothesized limitation derives from 

subjects' difficulty in conceptualizing randomness: When pre- 

sented with two series of numbers, subjects sometimes cannot 

discriminate random from nonrandom series (Wagenaar, 1970b; 

but see also Baddeley, 1966; Cook, 1967). The overwhelming 

agreement in the literaturewthat people do not generate random 
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sequences when requested--is taken as support for an expla- 

nation by trait, and most researchers have proceeded to search 

for responsible factors: What is it about human nature that makes 

people behave at least somewhat predictably? 

On the other hand, explanation by skill has not received suf- 

ficient test. A hypothetical example will illustrate its relevance 

to randomness. Imagine an isolated society in which violins had 

never been seen or played, though violin music was often heard 

on the radio. As an experiment, a psychologist requested subjects 

to play a Beethoven violin concerto. Although the experimenter 

first asked the subjects if they knew the particular concerto, and 

all answered that they had heard the piece many times, when 

asked to play the piece, all failed. Imagine, moreover, that the 

research was replicated with parameters variedmfor example, 

speed of playing, number of strings, age, knowledge, and drug 

states of the subjects, and that different measures of performance 

were employed, but failure to play was a robust finding. The 

conclusion, one analogous to the random generation case, was 

that people of the society are unable, perhaps because they lack 

the musical ability, requisite trait, or genetic precursor, to play 

the violin. However, for random performance, as for violin playing 

or any other complex skill, not any experience will suffice. Ex- 

perience with dice, weatherman's estimates, or probability theory 

may no more suffice to teach the skiU--ifi t  is a ski l l --of  random 

behavior than would studying a rule book enable a novice to 

play expert golf, or listening to the radio empower one to play a 

violin concerto. 

There have been no direct tests of explanation by skill, but a 

few findings are suggestive. Chapanis (1953) reported that subjects 

sophisticated in mathematics generated numbers that were more 

nearly random than naive subjects. Ross and Levy (1958) found 

that young subjects behaved more nearly randomly than older 

subjects (indicating, perhaps, that people learn not to behave 

randomly), and that the older subjects (college students) became 

more nearly random after a class discussion concerning the nature 

of random ordering. The finding that people often do not dis- 

criminate random from nonrandom sequences suggests that 

changing the subjective definition of randomness may help people 

to behave randomly. A few operant conditioning studies also 

support an explanation by skill: Dolphins have been rewarded 

for novel jumps and flips (Pryor, Haag, & O'Reilly, 1969); rats 

for responding on two levers in a quasi-random fashion (Bryant 

& Church, 1974); pigeons for generating"least frequent" intervals 

between consecutive responses, the distribution of the birds' in- 

terresponse times eventually approximating a Poisson distribu- 

tion (Blough, 1966); and pigeons for generating highly variable 

left-right patterns of responses (Page & Neuringer, 1985). These 

studies indicate that variability, and sometimes variability that 

meets criteria of "randomness," can be reinforced in animals. 

The present study tested the widely accepted conclusion that 

people are unable to behave randomly by evaluating whether 

feedback would enable subjects to learn to generate random se- 

quences. Students sat at a computer terminal, generated se- 

quences o f " l  s" and "2s," and received statistical feedback after 

each set of  100 responses. This attempt to reinforce human ran- 

domness was a direct test of the skill theory of random perfor- 

mance. 

A brief word must be said about the meaning of"randomness," 

a concept for which, unfortunately, there is no easy definition 

(see, for example, Feller, 1968; Popper, 1968; von Mises, 1957). 

In its simplest sense, randomness implies (a) equal probability 

of alternative events or combinations of events and (b) the in- 

ability of an observer to improve the prediction of  the next event 

from knowledge of any previous set of events. A problem arises, 

however, when one attempts to decide whether a particular finite 

sequence can be described as random or not. Mathematical dis- 

cussions of randomness generally refer to infinite sequences. In 

an infinite random sequence, any particular finite sequence is 

possible. Indeed, every finite sequence is exactly as likely as every 

other sequence of same length. For example, in an infinite se- 

quence of I s and 2s, it is possible to find a sub-sequence that 

consists of  one hundred ls in a row, or, indeed, one million 1 s, 

and the sub-sequence consisting of one million I s is exactly as 

likely as any other particular sub-sequence of one million digits--- 

for example, 1112122112122. . .  (see Lopes, 1982). These con- 

siderations indicate the impossibility of  proving with certainty 

that a particular finite sequence deviates from random-- that  is, 

that the finite sequence was not selected from an infinite random 

series. The second side to this coin is that no matter how many 

statistical evaluations indicate that a finite sequence is random, 

there may exist some other test that shows nonrandomness. There 

is no conclusive test, or set of tests, to prove the randomness of 

a finite sequence: The null hypothesis cannot be proven (see 

Chaitin, 1975, for a related argument). 

Experimental psychologists have dealt with this problem by 

using common statistical methods to evaluate the probability 

that a particular sequence had been selected from a random 

population. For example, if 1,000 samples were independently 

selected from an infinite random sequence of ls and 2s, with 

each sample containing 100 numbers, many more of the 1,000 

samples would contain approximately 25% of each of the four 

pairs, 1-1 (i.e., 1 followed by 1), 1-2, 2-1, and 2-2, than would 

contain all I s and none of the other three pairs. Statistical tests 

of particular attributes of a finite sequence enable statements 

concerning the probability that the sequence was selected from 
a random population. 

In the present research, performance of a human subject was 

called random if it was statistically indistinguishable from that 

of a simulating computer-based random number generator under 

analogous conditions. In most previous research on human ran- 

domness, few statistics, often one or two, were used to show that 

the subjects' responses were not random. The present strategy 

was also to choose a small set of statistical tests that showed that 

subjects initially deviated from random. The question then was 

whether, through training, performances could be modified so 

that the person became statistically indistinguishable from the 

random generator on the chosen tests. Human randomness was 

therefore defined by a variant of the Turing game. If the human's 

performance could not be distinguished from a random generator 

by common statistical analyses, the human was described as be- 

having randomly. 

Exper imen t  l 

Method 

Subjects 

Seven Reed College undergraduate students served--five females (D, 
H, P, R, and S) and two males (Sh, and Y). 
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Table  1 

Representation o f  RNG1 Responses 

Response 
n + l  

Response n 1 2 Sum 

1 3 4 7 
2 3 2 5 

Apparatus  

An Osborne 1 computer, containing an alphanumeric keypad and at- 

tached to a 12-in. (30.5-cm) Zenith Data Systems monitor, was located 

on a desk in a laboratory room. 

Procedure 

Baseline condition. We first sought to establish whether, as in almost 

all previous studies, responses were not random in the absence of feedback. 

Subjects were told to press the "1"  and "2"  keys on the alphanumeric 

keypad as randomly as possible. Pressing any other key produced a brief 

error message. There were no constraints on response speed. A single 

session, lasting approximately 1 hour, provided 60 trials of 100 responses 

each for a total of 6,000 baseline responses. Each 100-response trial was 

terminated with the screen message "TRIAL OVER; Next Trial is ##; Please 

Continue," with the "##"  containing the trial number  and accompanied 

by a double beep. There was no other feedback. Subjects were paid $3.50 
for participating. 

Feedback condition. The conditions were the same as baseline except 

that feedback from five statistical descriptors was given after each trial. 

The subjects were asked to vary their responses so that distributions of 

these five statistics would approximate those calculated from a random 

number generator under analogous simulated conditions. The five statistics 
were as follows. 

1. RNG 1: This descriptor, evaluating the amount  of information in a 

sequence of responses (Evans, 1978; Miller & Frick, 1949; Tulving, 1962), 

was based on the frequencies of pairs of contiguous responses, namely 

1-1 (i.e., 1 followed by 1), 1.2, 2-1, and 2-2. The closer to equal these 

four pairs in a given trial, the closer RNG1 would be to 0.0; the more 

unequal the frequencies of the four pairs, the closer RNGI would be to 

1.0. For example, the frequencies of consecutive pairs in the sequence--  

1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2 - -can  be represented as in Table 1. The 

marginal numbers show the approximate sum of the ls (7) and 2s (5). 

(Note that the marginal frequencies will always be less by one than the 

total of ls and 2s due to the fact that the last response is not followed by 

any other. This is not serious when the total number  of responses is large, 

e.g., 100.) The RNG1 index was computed as follows: RNGI = 

2;C*log(C) - K/ZM*Iog(M - K, where C refers to the frequencies in 

each of  the 4 cells and M refers to the marginal frequencies. Kis a constant 

equal to ~C*log(C) when frequencies in each cell are as equal as possible 

(K = 137.97 in the present case). 

2. RNG2: This descriptor was identical to RNGI except that instead 

of  contiguous responses, every other response was used to define response 

"pairs"  Thus, in the sequence 1, 1, 2, 1, 1, 1 . . . .  the response pairs 

entered into the RNG2 table were, in order, 1-2, 1-1, 2-1, 1-1 and so 

forth. Because there were only 98 pairs per 100 responses, K equaled 

136.15. 

3. Alternations (ALTS): The third statistic described the number  of 

runs, defined as a sequence of ls followed by a 2, or a sequence of 2s 

followed by a 1. A sequence includes a single instance. Thus, in the fol- 

lowing set of numbers, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, there are a 

total of 7 runs, or ALTS. The maximum possible number  of  ALTS was 

99 (where 1 and 2 alternated throughout a session), and the min imum 
was 0. 

4. CI: This descriptor, analogous to RNG, compared performances 

on Trial n with that on Trial n - 1, so as to test whether a single sequence 

or strategy was being learned. The pairs of numbers entered into the table 

were generated from analogous response positions across two consecutive 

trials. Thus, the first response in Trial n and the first response in Trial 

n - 1 generated the first pair, the second response in Trial n and second 

response in Trial n - 1 constituted Pair 2, and so on. This descriptor 

therefore evaluated the consistency, or randomness, of  responses across 
trials. 

5. C2: This descriptor was identical to C1 except that the pairs of 

responses were generated from a comparison of every other trial. Thus, 

the first pair of responses was derived from the first response in Trial n 

and first response in Trial n - 2, and so on through the 100 responses. 

Feedback table. To provide subjects with feedback relating their per- 

formance to the random generator, a feedback table was constructed in 

the following way. First, using the random generating procedure internal 

to the Osborne computer, 20,000 I s and 2s were generated--2,000 trials 

consisting of 100 numbers each. The data in each trial were analyzed 

according to the above five descriptors, thereby yielding a total of 2,000 

values for each of the descriptors. These 2,000 values per descriptor were 

then ordered (separately for each descriptor) from highest to lowest, and 

20th-percentile boundaries were calculated. Thus, for each descriptor 

there were four boundaries, defining five equal classes. These 20th-per- 

centile boundaries were used to establish the five classes (CL1 through 
CL5) shown across the top of Table 2. 

The subjects were asked to learn to generate sequences of  ls and 2s 

yielding descriptor values that fell approximately equally across the five 

classes associated with each of the five descriptors. By so doing, the subjects 

would be approximating the statistical distributions of the random gen- 

erator. To take RNGI as example, i f a  subject's performance on a given 

trial generated a value for RNGI that was lower than the first boundary 

calculated from the random number  generator, then the figure in the cell 

at the intersection of the CLI (read "Class 1") column and RNG1 row 

would be increased by 1. If the subject's performance generated an RNGI 

value that was between the first and second boundary points, there would 

be an increase of I in the CL2 column. The numbers in the ceils of  the 

table were cumulated across a given session, with each session containing 

60 trials. Finally, so that subjects could know how they had performed 

on the last trial, the increment on the last trial was underlined. For ex- 

ample, i fa  subject's last trial RNG1 score fell in the CLI category, then 

the CLI score was underlined. Table 2 provides an example of the feedback 

seen by a subject after 32 trials. On the last trial, Class 1 was incremented 

in the RNG1 row, Class 4 in the RNG2 row, and so forth. Note that the 

C1 descriptor value could not be calculated on the first trial, and therefore 

the sum of C1 across the five classes was always one less than the three 

descriptors lying above it, and, similarly, C2 contained two fewer entries. 

Table  2 

An Example o f  the Feedback Table Presented to Subjects 

Following Each Trial in Experiment I 

Descriptor CL 1 CL2 CL3 CL4 CL5 

RNG 1 (var) 9 6 6 4 7 
RNG2 (var) 10 3 6 5 8 
ALTS (few) 8 1_. ! 5 3 5 
C1 (low C) 7 6 8 _3 7 
C2 (low C) 8 ~ 6 2 7 

Note. CL = Class. Parenthetical comments indicate Class 1 performance 
(e.g., in the case of ALTS, very few alternations would result in an in- 
crement of CL1). See text for description of each of the five statistical 
descriptors (RNGI,  RNG2, ALTS, CI,  C2). 
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In brief, after each trial, one cell was incremented along each of the five 

rows (statistical descriptors); when a particular cell was incremented, 

that cell was underlined. Subjects attempted to equalize cell values across 
each of the five rows so as to approximate a random generator. 

In the session following the no-feedback baseline condition, feedback 
was provided for only the RNGI descriptor. Once a subject's performance 
generated instances in each of the five classes of RNG 1, the next descriptor, 

or RNG2, was added, and so forth until feedback on all five descriptors 
�9 was provided for the remaining trials. As each descriptor was added, its 

function was briefly described. The feedback table remained in view on 
the monitor, although unchanging, throughout each trial. At the end of 
the trial, as in the baseline condition, the screen blanked out, "TRIAL 

OVER" appeared, followed by the updated table, and "Next Trial is ##. 
Please Continue?' Again, as in baseline, subjects were free to respond at 

any speed and to spend as much time as they chose examining the feedback 
table between trials. Sessions generally terminated after 60 trials. 

All questions were answered truthfully as to how the various descriptors 
were calculated. Furthermore, the experimenter continually suggested 
ways to improve performance. These suggestions were both specific (e.g., 

"The ALTS data show that you are not repeating one or another response 
often enough, but are jumping back and forth too often") and general 

(e.g., "Imagine a spring that is pulled to the left whenever you emit a '  1' 
and to the right whenever you emit a '2.' Over the long run, the spring 

wants to be at rest, but to be random, you must build up intermittent 
tension"). The one exception to this verbal feedback was during the session 
in which the subject's performance was defined as "random?' During 
that session, the experimenter was either absent from the room or sat 
quietly, offering no advice and responding to no questions. 

At the beginning of the feedback procedure, subjects were told that 

they would be paid $2.50 per hour for their participation and that if they 

learned to "be random" they would receive an additional $15.00. All 
money was disbursed at the completion of the experiment. Sessions con- 
tinued until a subject was evaluated as "random" over 60 consecutive 
trials according to all five statistics. 

Statistical test for randomness. Kolmogorov-Smirnov (K-S) tests 

(Siegel, 1956) were used to compare a given subject's data across 60 trials 
to the random number generator. (Because we were attempting to test 
whether individual subjects could learn to behave randomly, averaging 
across subjects would have been misleading and inappropriate.) A separate 

K-S test evaluated each of the five descriptors. The random number gen- 
erator was programmed to generate 1,000 new trials, a number large 

enough to approximate the theoretical distributions; for each of these 
1,000 trials the five descriptors were calculated, and these were then em- 

ployed as the comparison data in the K-S tests. If, for a given descriptor, 
the human subject's data could not be statistically distinguished from 
the random generator at the p = .05 level of significance, the data were 

said to be random according to that descriptive statistic. The K-S test 
was chosen because it makes no assumptions about the distribution of 

scores--that is, it is a nonparametric statistic, but it evaluates differences 
in distributions as well as in central tendencies. When there were no 

significant differences between subject and random generator on any of 
the five descriptors, the subject was said to have successfully generated 

numbers randomly and consequently received the additional $15.00 plus 
whatever money accumulated over the sessions. 

Results 

The first question was whether performances differed statis- 

tically from random during baseline, where no feedback was 

provided. Baseline scores on each of  the five descriptive statistics 

were compared by the K-S tests with the analogous scores from 

the computer-based random generator. All subjects differed sig- 

nificantly (p < .05) from the random generator, with two subjects 

differing significantly on all five descriptors, two subjects differing 

on four descriptors, two subjects on three descriptors, and the 

last subject on two descriptors. In terms of  the particular de- 

scriptors involved, all seven subjects differed significantly on both 

RNG1 and RNG2, and four of  the subjects differed significantly 

on each of  the remaining three descriptors. Since " r andom"  im- 

plies that responses do not differ from chance on any of  the 

statistics, the first conclusion is that all subjects were "no t  ran- 

dom"  during baseline. 

Subjects were then given feedback on the five descriptive sta- 

tistics, in the order shown in Table 2. The number  of  trials before 

each subject received feedback on the complete set of  five de- 

scriptive statistics were, in alphabetical order of  name, 131, 81, 

156, 91, 130, 91, and 215, respectively. 

The second main question was whether subjects could learn 

to produce sequences that did not differ significantly, according 

to the five descriptors, from the random generator. During the 

last 60 trials of  the feedback condition, all subjects were statis- 

tically indistinguishable (p > .05) from the random generator 

on all five K-S tests. The number  of  trials since the beginning 

of  feedback before the random criterion was met  was, again in 

alphabetical order o f  names, 216, 261, 171, 166, 483, 186, and 

385 for the seven subjects, respectively. 

Figure 1 shows one example of  performance changes across 

trials. Depicted are all subjects' R N G I  scores divided by the 

average R N G  1 score from the random number generator. A value 

of  1 indicates that the subject's score equaled the random gen- 

erator's score, a value of  2 indicates that the subject's score was 

twice that of  the random generator, and so on. Note that the 

ordinate is logarithmic, so that ratios greater and less than 1 

would be similarly represented. Each point  is a median o f  a 

block of  20 trials, with trials along the abscissa. In all cases, 

RNG1 scores were initially high relative to the average of  the 

random number  generator's R N G  l - - t h a t  is, scores were greater 

than 1.0. Furthermore, there was a tendency during baseline for 

R N G  1 scores to deviate increasingly from the random generator. 

However, with feedback, R N G  1 scores decreased and approached 

equality with the random generator. All subjects behaved in ap- 

proximately the same manner. 

Figure 2 shows values from one subject of  each of  the five 

statistics across all sessions. These data a re  generally represen- 

tative of  all subjects. Again, for each descriptor, medians of  blocks 

of  20 trials are divided by the average random number generator's 

score on the given descriptor. Thus, 1.0 along the ordinate, 

through which the dashed line is drawn, again indicates that the 

subject's performance equaled the average of  the random number 

generator's performance. R N G  1 and RNG2 both started above 

the random number generator and decreased across sessions. 

Similarly, C 1 and C2 began too high. In these four cases, there- 

fore, the subject's responses, both within trials and across trials, 

were considerably more patterned or  repetitive than was the ran- 

dom generator. ALTS, which indicate the number  of  times the 

subject alternated between a series of  ls and a series of  2s, started 

at lower than random, indicating too few alternations, but  over 

trials, ALTS increased systematically. Most previous research in 

this area (see Wagenaar, 1972) showed that naive subjects emit  

too many alternations. The present findings, as well as a few 

others in the literature (e.g., Weiss, 1964) may be due to the type 

of  response required. It was easy to respond very rapidly on a 

single response key. In many of  the previous experiments, the 
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The four students were paid participants in a summer science program 

for minority students, and this experiment was part of their duties. The 

subjects had no previous statistical training. 

Apparatus 

The subjects sat at 4 Digital Decscope terminals in a room containing 

11 such terminals connected to a PDP-1170 computer. The terminals 

had alphanumeric keypads, on which responses were entered. 

Procedure 

The experimenter generally sat in the room, but experimenter inter- 

actions with subjects were confined to procedural questions and to re- 

starting sessions after a breakdown or upon request of the subjects. 

Baseline. The subjects were instructed to "behave as if you were a 

tossed coin" and enter the digits "1" or "0" as randomly as possible. As 

in Experiment 1, each subject then generated 6,000 I s or 0s, divided into 
60 trials of 100 responses each. At the end of each trial, "Trial Over, 

Please Hit Return to Continue" appeared on the screen and, when the 

return key was pressed, there appeared "Please Begin?' No other feedback 

was given except that if any key other than "1" or "0" was pressed, a 

"beep" sounded, and "Please Type 0 or 1" appeared on the screen. Subjects 

were free to respond at any speed. The baseline session took approximately 
1 hour. 

Figure I. RNG1 scores for each subject relative to the random number 

generator's average score. (Each point represents the average of a block 
of 20 trials.) 

response topography may have combined  with a required inter- 

response t ime to increase the l ikelihood of  alternations.  

The  ma in  result was tha t  after less than  an  average of  6 hours  

of  feedback training, seven subjects who had  been statistically 

n o n r a n d o m  now behaved randomly according to the five statis- 

tical compar isons  employed. 

E x p e r i m e n t  2 

Experiment  2 a t tempted to replicate Experiment  1 except with 

10 statistical descriptors, ra ther  than  5, and  with a more  de- 

mand ing  statistical evaluation of  " random."  Also, advice and  

guidance given by the exper imenter  were minimized.  

Method 

Subjects 

Four high-school students, S (a male), F, W, and Y (3 females), spent 

approximately 1 hour per day, 5 days per week, in the present experiment. 

Figure 2. Performance by subject Sh as evaluated by each of the 5 de- 

scriptive statistics relative to the average of the random number generator's 

scores. Each point is an average over 20 trials. 
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Feedback #1 (Kolmogorov-Smirnov). There were 20-25 sessions under 

this condition, each session lasting approximately 1 hour. As in baseline, 

subjects generated sets of 100 responses (0s or Is) per trial, at a self-paced 

speed. Unlike baseline, however, feedback in the form of a table of numbers 

appeared on the screen at the end of each trial. Table 3 shows an example 

of the feedback table, with each line representing a different descriptive 

statistic. This feedback was analogous to that in Experiment 1, but there 

were now 10 statistical descriptors. To determine the 20th-percentile 

boundary points, we programmed a random number generator (a standard 

linear congruential generator, as described by Knuth, 1969) to generate 

100,000 responses (0s or Is). Each set of 100 responses constituted one 

trial, and every trial yielded a score for each of the 10 statistical descriptors. 

The resulting 1,000 values were then ordered from highest to lowest to 

create five equal classes for each descriptor (shown in Table 3). At the 

end of each trial, the subject received feedback analogous to that in Ex- 

periment 1. After reviewing the feedback table, the subject pressed the 

return key and another trial was initiated, with "Please Begin" appearing 

on the screen. 

Before the first feedback session, the subjects were told that their task 

was to learn to generate numbers randomly such that the five classes for 

each of the descriptors would contain approximately equal instances. 

Over the course of the first five sessions following baseline, the feedback 

given to the subjects was increased from 1 to 10 descriptors. As each 

descriptor was added, the experimenter briefly described how it was Cal- 

culated and how different performances might affect it. By the 450th 

trial, all subjects were receiving feedback on all 10 descriptors. Thereafter, 

throughout the remainder of the experiment, each trial was followed by 

feedback on all 10 descriptors. At this point, the subjects were told that 

they would receive 2 days off with pay if they attained a level of perfor- 

mance on all 10 descriptors such that a K-S comparison showed them 

to be "random" over two successive sets of 60 trials each. The K-S test 

was the same as in Experiment 1, but the 1,000 comparison "theoretical" 

scores were regenerated. At the end of each session, the experimenter 

briefly pointed out those descriptors for which there were significant 

differences between subject and random number generator. This condition 

continued for the four subjects, in alphabetic order of their initials, for 

927, 909, 1,772, and 1,200 trials, respectively. 

The 10 descriptors, in the order of their appearance in the feedback 

table, were as follows: 

Percent 0 (%0) indicated the percentage of 0s (number of 0s divided 

by total responses) emitted in a trial. Percent 0s could vary from 0% 

to 100%. 

ALTS represented the number of times per session that a 0 was followed 

by a 1, or vice-versa. 

Lines 3 through 6 represented runs. RUNS1 are cases in which a single 

1 is followed by one or more 0s, or a single 0 followed by one or more 

Is. In the following sequence there are five runs of Length 1: 

0010111011010000001. In the same sequence, there are two instances 

of RUNS2, one instance of RUNS3, and one instance of RUNS4-10, 

the latter including runs of length 4 through length 10. The possible range 

of RUNSI was 0 through 99, of RUNS2 was 0 through 49, of RUNS3 

was 0 through 33 and of RUNS4-10 was 0 through 24. 

The next two lines contained RNG 1 and RNG2, these being identical 

to the RNG measures used in Experiment 1. 

The final two lines presented CI and C2, these again being identical 

to C1 and C2 in Experiment 1. 

Feedback #2 (Kolmogorov-Smirnov and t test comparisons). In Ex- 

periment 1 and in the Feedback #1 condition above, CLI and CL5, the 

lowest and highest categories, had no lower and upper bounds, respectively. 

Thus, for example, ifa subject had tended to generate too many runs of 

Length 1, thereby skewing the feedback table toward CL5, the number 

in the CLI category could be increased by omitting all runs of Length 

1. Although such a strategy would not adversely affect the Kolmogorov- 

Smirnov nonparametric comparison, the generated values could lie 

Table 3 

An Example of  the Feedback Table Given to Subjects 

Following Each Trial in Experiment 2 

Descriptive 

statistic CL1 CL2 CL3 CIA CL5 

%0 (low) 11 14 8 12 13 
CHANGE (low) 9 11 10 18 8 
RUN1 (low) 13 13 9 12 12 
RUN2 (low) 10 10 18 8 11 
RUN3 (low) 12 12 12 12 12 
RUN4-10 (low) 15 9 11 8 15 
RNG1 (var) 13 13 6 14 12 
RNG2 (var) 11 11 10 12 13 
C1 (low) 7 12 18 9 11 
C2 (low) 6 17 11 11 10 

Note. CL = Class. Parenthetical comments indicate class 1 performance 
(e.g., in the case of %0, very few zero responses would result in an in- 
crement of CLI). See text for description of each of the 10 statistical 
descriptors. 

outside the range of values produced by the random number generator. 

Analysis of the data showed that although subjects were statistically in- 

distinguishable from the random generator under the K-S tests, they were 

in fact producing values that lay outside the range of the random gen- 

erator's values. Therefore, the number of classes in the feedback table 

was increased from five to seven, with the lowest and highest classes being 

defined as "no low" and "no high," respectively. To accomplish this, two 

additional columns were added to the table, a column to the left of CL1 

labeled "no low" and a column to the right of CL5 labeled "no high?' 

In all other respects, the table was identical to that in Table 3. New 

categories were defined as follows: The 1,000 trials generated by the ran- 

dom number generator were ordered from lowest to highest on each of 

the 10 descriptors separately. Now, however, rather than dividing the 1,000 

numbers into 5 twentieth-percentile classes (200 per class), the lowest 

category was obtained by counting up 20 cases from the lowest value, 

and the highest category was obtained by counting down 20 cases from 

the highest value of the random generator's values. Thus, the lowest cat- 

egory contained the lowest 2% and the highest category the highest 2%. 

The remaining five categories each contained 19.2% of the random gen- 

erator descriptor scores (as opposed to the 20% in Table 3). Subjects were 

asked to equalize their performances across the middle five categories 

but to get few if any instances in the "no low" and "no high" categories. 

(These categories were referred to as no low and high, respectively, because 

pilot work showed that it was difficult for subjects to avoid these categories. 

In fact, 2% of instances were acceptable within each of these extreme 

categories.) As a second major change in procedure, after each set of 60 

trials, the subjects were told whether or not they differed significantly 

from the random generator according to the previously used Kolmogorov- 

Smirnov test, as well as according to a t test, which takes into account 

the absolute values of the outlying data. Although some of the present 

data do not meet the requirements for a t test statistic (e.g., normal 

distribution), it was found through experimental iteration that a t test 

was more demanding than the K-S test (i.e., there were many instances 

in the Feedback # 1 condition in which the K-S test showed no statistical 

difference between subject and random generator but where the t test 

indicated a statistically significant difference). The subject's task was to 

generate ls and 0s over 60 consecutive trials that did not differ from the 

random generator at p = .05 level under both Kolmogorov-Smirnov and 

t test evaluations. Sessions were continued until the subject met the con- 

tingency. 
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Results 

The main  results were that all subjects differed significantly 

from the random generator during baseline, and all then learned 

to behave randomly as assessed by both K-S and t tests. 

K-S tests compared the random number  generator (1,000 

scores) to the subjects' scores during the 60 trials of the baseline 

condition. For three of the four subjects, all 10 statistical de- 

scriptors differed significantly from the random number generator 

at thep  = .05 level. For Subject F, 8 of the 10 descriptors differed 

significantly, with %0 and CI not  significant (see Table 4). Thus, 

all subjects generated numbers that were clearly "not  random." 

This again replicated the robust finding that people do not behave 

randomly upon request. 

After receiving feedback in the Feedback #1 condition, the 

four subjects met the requirement of no statistical difference (K- 

S tests) between subject and random generator on all 10 descrip- 

tors over two successive sets of 60 trials. Subjects F, S, W, and 

Y met these requirements after 926, 848, 1,771, and 1,020 trials, 

respectively. 

However, each of the subjects differed on one or more of the 

10 descriptors when t tests were used to compare subject with 

random generator. A review of the subjects' data indicated that 

a major difference between their behavior and the random gen- 

erator was the many extreme or outlying values in the subjects' 

data. Therefore, the "no low" and "no high" categories were 

added, with the result that performances became statistically 

indistinguishable from the random generator along all 10 de- 

scriptors using both K-S and t test evaluations (see Table 4 for 

exact t and p values). Subjects F, S, W, and Y attained 60 con- 

seeutive trials of random performance (under both K-S and t 

test) after an additional 796, 1,143, 203, and 240 trials, respec- 

tively. Providing feedback regarding outlying values helped sub- 

jects to approximate more precisely the random generator. 

Table 4 

t and p Values for t tests and p Values for Kolmogorov-Smirnov Tests Under Baseline (B) and Final 60 Sessions (R) 

F S W Y 

t test K-S test t test 

Descriptor t p p t p 

K-S test t test K-S test t test K-S test 

p t p p t p p 

%0 
B . lU  .908 .10 1.768 .074 .025 1.563 .114 .001 5.657 .000 .001 
R 1.117 .263 .10 .873 ~13 .10 $50 ~00 .10 .999 .681 .10 

ALT 
B 7.264 .000 .001 8.444 .000 .001 18.829 .000 .001 13.863 .000 .001 
R .758 .545 .10 .268 .785 .10 .556 .585 .10 .222 .819 .10 

RUN I 
B 3.524 .029 .025 1.115 .264 .001 8.484 .000 .001 12.461 .000 .001 
R 1.298 .191 .10 .119 .901 .10 .541 .595 .10 .870 ~12 .10 

RUN2 
B 18.625 .000 .001 9.079 .000 .001 13.056 .000 .001 8.539 .000 .001 
R .399 ~93 .10 .699 .508 .10 1.267 .203 .10 1.646 .096 .10 

RUN3 
B 9.329 .000 .001 8.581 .000 .001 10.226 .000 .001 4.972 .000 .005 
R .685 .501 .10 .408 ~87 .10 .593 .561 .10 ~86 .500 .10 

RUN4 
B 11.245 .000 .001 2.351 .018 .01 1.771 ~73 .001 9.184 .000 .001 
R A51 ~57 .10 .363 .718 .10 .298 .763 .10 A34 .668 .10 

RNGI  
B 8.239 .000 .001 20.232 .000 .001 43.147 .000 .001 13.454 .000 ~01 
R .638 .531 .10 .664 .514 .10 .181 .851 .10 1.894 .055 .10 

RNG2 
B 24.607 .000 .001 18.138 .000 .001 47.014 .000 .001 3.958 .002 .005 
R .634 .534 .10 .578 .576 .10 ~15 .985 .10 .241 .805 .10 

C1 
B 1.428 .150 .10 8.882 .000 .001 30.231 .000 .001 2.829 .005 .025 
R .107 ~12 .10 .587 .565 .10 .604 .553 .10 .420 .678 .10 

C2 
B 2.776 .006 .05 7.604 .000 .001 31.714 .000 .001 1.539 .120 .005 
R .699 .509 .10 .631 .536 .10 1.080 .280 .10 .597 .558 .10 

Note. F, S, W, and Y are the initials of the four subjects. Each test is based on 60 values from a human subject and 1000 values from the random 
number generator. Bold figures indicate no statistical difference between people and random generator. The. t0 value under K-S indicates p > . I0. 
See text for description of each of the 10 statistical descriptors. 
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Figures 3 through 6 show how closely the distributions of the 

subjects' descriptor values approximated the random values. In 

each figure, the left column, marked Base, shows performances 

during the 60 baseline trials, and the right column, marked 

RAND, shows performances during the 60 trials when the subject 

was evaluated as random according to both K-S and t tests under 

the Feedback #2 conditions. Each of the curves is a frequency 

distribution of the descriptive statistic scores, the solid lines (Xs) 

representing a subject's performance and the dotted lines (Os) 

showing the random number generator. Along each abscissa are 

11 categories, generated by dividing the range obtained from the 

random number generator's 1,000 scores by 10 and using the 

resulting interval as category size. The ordinates show the fre- 

quencies of instances in each of the 11 categories. Note that the 

frequencies for the random number generator were obtained from 

1,000 trials, so as to approximate theoretical distributions, and 

then scaled down to equal the 60 instances of the subjects. Note, 

also, that each ordinate was scaled to show maximum detail. 

Figure 3. Frequency distributions of ALT scores for 3 subjects (E S, and Y) in Baseline (Base column) and 
after learning to behave randomly (Rand column). (For comparison, the dotted line shows performance of 
the random number generator.) 



70 ALLEN NEURINGER 

Therefore, for example, the curves for the random generator in 

all 6 boxes of Figure 3 are identical, with only the ordinate scale 

differing. Comparisons between subject's data and random gen- 

erator can easily be made directly on any given graph. Of main 

interest is whether and how the distributions of  the subjects' 

descriptor scores changed with training. 

Figure 3 shows the ALT descriptor for three subjects, F at top, 

S in the middle row, and Y at bottom. The middle row of Figure 

4 shows these same data for subject W. The left-hand columns 

show that the frequency distributions of the ALT descriptor scores 

differed greatly from that of the random generator during base- 

line: The random generator's scores were normally distributed, 

whereas the subjects' distributions clearly were not. The right- 

hand columns show that during the final 60 trials, the subjects' 

distributions closely approximated the normal distribution of 

the random generator. 

Figure 4. Frequency distributions for Subject W on three descriptive statistics: percent zero, alternations, 
and runs of length 1. (Left column shows performances under baseline condition and the right column after 
subject had learned to behave randomly. The dotted line shows comparable performance by the random 

number generator.) 
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To conserve space, Figures 4, 5, and 6 represent the distri- 

butions of 9 descriptors for one subject, W. In each case, the 

subject's distributions during baseline (left-hand column) differed 

markedly from the random generator. Note, especially, the RNG 1, 

RNG2, and C1 data shown in Figure 6 (C2 was omitted to con- 

serve space but is essentially the same as C1), where the subject's 

distributions were opposite those of the random number generator 

during baseline. In these cases, the random number generator's 

distributions were exponentially decreasing in form, but the hu- 

man subjects began the experiment with these distributions in- 

creasing in form. By the end of the experiment, the distributions 

of all 10 statistical descriptors closely approximated the distri- 

butions from the random generator (right-hand column). In 

summary, initial distributions of subjects' descriptor scores dif- 

fered both from the random number generator and often from 

one another. By the end of the experiment, the distributions were 

practically identical, both for subject compared with subject and 

for subject compared with random generator. According to the 

Figure 5. Frequency distributions for Subject W on RUNS2, RUNS3, and RUNS4-10 statistics. 
(Dotted line shows random number generator.) 
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10 statistical descriptors employed, all four subjects had learned 

to respond randomly. 

Discussion 

This is the first study to teach random behavior through direct 

statistical feedback (see Einhorn, 1980; Kahneman, Slovic, & 

Tversky, 1982, for related work). The success of the feedback 

procedure argues against a trait theorymthat people are consti- 
tutionally unable to behave randomlymand in favor of an ac- 

quired skills theorymthat randomlike behaviors are learned and 

controlled by environmental feedback, as are other highly skilled 

activities. This conclusion, in turn, is consistent with the dem- 

onstration by Page and Neuringer (1985) that pigeons generate 

highly variable sequences only when rewarded for so doing. Se- 

quence variability was minimal when the pigeons were rewarded 

independently of their variability. (Schwartz, 1980, 1982a, was 

unable to reinforce variability in pigeons but Page & Neuringer, 

1985, showed that this was due to an idiosyncracy in Schwartz's 

Figure 6. Frequency distributions for Subject W on RNGI, RNG2 and C1 statistics. 
(Dotted line shows random generator.) 
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procedure.) Thus, both pigeons and people come to generate 

highly variable response sequences when the environment ex- 

plicitly requires and supports such variability. 

Variability can be viewed as a continuum, with repetition, or 

stereotypy, on one end and random behavior on the other. The 

present results demonstrate that performances can be moved, 

through feedback, toward the random end. But did performances 

attain "true randomness?" One way to confront this question is 

to ask whether feedback engendered responses that were random 

according to a different set of statistics. That is, did the subjects 

learn only to satisfy the requirements of the feedback table or 

did they acquire a more general ability? To begin to answer this 

question, the data from the final 60 trials of Experiment 2 were 

analyzed according to eight additional statistics. The subjects 

had never received feedback from any of these new eight statistics. 

The tests were a binomial test (Siegel, 1956); a one-sample runs 

test (Siegel, 1956); three chi-square tests (Siegel, 1956), with Lag 

1 based on single responses, Lag 2 on consecutive pairs of re- 

sponses, and Lag 3 on response triplets; and three autocorrela- 

tions (Priestley, 1981), with Lag 1 based on consecutive responses, 

Lag 2 on every other response, and Lag 3 on every third response. 

The 60 values from each of these eight new tests were compared 

by t tests to 60 analogous values from computer-generated data. 

Under a p = .05 level of significance, two of the subjects, F 

and Y, were found to be statistically indistinguishable from the 

random generator on all eight of these new tests, whereas the 

other two subjects, S and W, were indistinguishable on six tests 

each. Subject S differed from random under chi-square Lag 2, 

and autocorrelation Lag 3. Subject W differed significantly under 

autocorrelation Lags 2 and 3. Since these eight tests commonly 

show that human subjects do not (or can not) behave randomly 

(see, e.g., Wagenaar, 1972), the finding that two of the present 

subjects were "random" under all eight tests, and the other two 

subjects under six of the eight, adds support to the effectiveness 

of the feedback procedure. 

However, for both a priori and empirical reasons, we cannot 

conclude that subjects learned to behave "truly randomly." First, 

as discussed in the Introduction, no set of statistics will prove 

randomnessmfor there may exist another statistic that shows 

some deviation from randomness. Second, the present research 

utilized a computer-based random number generator as the stan- 

dard for comparison. This generator is not itself "truly random": 

It employs an equation, the output of which depends upon entry 

of a "seed," and if the same seed were entered twice into the 

equation, an identical set of numbers would be generated. The 

terms "quasi random" or "pseudo random" are sometimes used 

to refer to these generators---they pass most criteria for evaluating 

finite random sequencesmterms that could also be applied to 

the present human case. Third, after completion of Experiment 

2, the subjects' data were combined in such a way as to show 

that all subjects failed some tests for randomness as follows. Data 

from the last 60 trials were concatenated to constitute a single 

set of 6,000 numbers--recall that in the analyses described above, 

each descriptor value represented 100 responses--and this set 

was subjected to statistical evaluations similar to those described 

in the last two paragraphs. Since the number of responses was 

now 6,000 rather than the 100 per trial previously analyzed, an 

additional two chi-square tests were possible, for Lags 4 and 5, 

and two additional autocorrelations, again for Lags 4 and 5 were 

also performed. Furthermore, since each of the 12 tests yielded 

only a single value, we could not compare the distribution of the 

subjects' data to a distribution of scores obtained from a random 

number generator. Rather, the binomial and runs tests yielded z 

scores that were directly converted into probability values (Siegel, 

1956). Similarly, the chi-square tests yielded chi-squares that were 

translated into probability values via the chi-square table of crit- 

ical values (Siegel, 1956). Finally, the significance level was de- 

fined for the autocorrelations by the value 2 * V1/N, where N 

equaled the number of responses (Priestley, 1981, p. 340). As in 

the above analyses, for all these tests, i fp  < .05, it was concluded 

that the subject differed significantly from random. 

To summarize the results: The 6,000 concatenated responses 

of each subject over the terminal 60 trials were statistically in- 

distinguishable from random according to the binomial test, runs 

test, chi-square Lags 1 and 2, and autocorrelation Lag 1. Since 

these tests often show that subjects do not behave randomly, the 

results again demonstrate that feedback improved random per- 

formance. However, all subjects failed the chi-square Lags 4 and 

5 and autocorrelation Lags 4 and 5 tests: Under these four tests, 

performances differed significantly from random. Subjects had 

not, of course, received feedback from any of the 12 tests nor 

from any test based on a single set of 6,000 responses. It might 

be argued, therefore, that the test is unfair: It is analogous to 

training a pilot to fly a single-engined propeller-driven airplane 

and then testing him or her on a jumbo jet airliner. Whether 

subjects can learn to be indistinguishable from random under 

these more demanding requirements must be determined in fu- 

ture research. However, Neuringer (1980, 1984) has shown that 

when one subject (the author) emitted 10 responses (the digits 

0 through 9) and received feedback from 30 statistical tests--  

including 4 lags of RNG, chi-square, 4 lags of autocorrelation, 

runs tests, coupon tests, and poker tests based on sets of five 

consecutive responseshthe subject eventually learned to generate 

sequences statistically indistinguishable from the computer ac- 

cording to all 30 statistics. Many of these statistics were described 

by Knuth (1969) for testing computer-based random number 

generators and involve higher-order levels of analysis than was 

possible in the present research (see Wagenaar, 1972). 

If random behavior is an acquired skill, then two parameters 

will be important: feedback and practice. Subjects never received 

feedback for trials consisting of more than 100 responses, and 

trial size could be varied. There might be a maximum size under 

which a person is demonstrably random, this being influenced 

by fatigue and attention span during the learning process, and 

other variables might delimit the sphere of possible randomness. 

The form of the feedback could also be varied: Rather than feed- 

back from tables of numbers, graphic representations could be 

substituted (Neuringer, 1980), or digital feedback (Page & Neu- 

ringer, 1985). In addition, different frequencies, contingencies, 

and reinforcers need to be examined (see Schwartz, 1982b). 

Similarly, if behaving randomly is a finely tuned, acquired skill, 

then amount and distribution of practice are important variables. 

How proficient a golfer or violinist would less than 35 hours of 

practice make--an  amount approximating that in Experiment 

2? Much more practice may be required to perfect the skill. 

It might be objected that subjects were not behaving randomly 

because their behavior depended upon continual feedback. But 

most learned skills depend upon feedback for continued adequate 
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performance. When feedback is withdrawn, a skill may persist 

for a period, although often at a lowered level of proficiency. To 

explore this possibility for the random skill, after Experiment 1 

was completed, we gave the seven subjects one additional session 

to "wean themselves" from feedback, and then a second session 

in which feedback was absent (i.e., there was a return to baseline 

conditions). The results were that two of the seven subjects con- 

tinued to perform randomly according to the five statistics despite 

the complete absence of feedback over the 60 trials. Although 

the other five subjects were evaluated as differing significantly 

from random on at least one of  the statistics, four of the five 

improved as compared to their original baseline performances. 

The average number of tests on which the subjects differed sig- 

nificantly from chance during original baseline was four; the 

average during this replication was one. Therefore, as with other 

skills, learned random behavior persisted at a lowered level of 

proficiency in the absence of continued feedback. But additional 

tests must be performed. 

Random behavior does not necessarily imply that behavior is 

unpredictable as shown by the following. First, subjects could 

learn to use an equation, analogous to the procedure followed 

by the computer, to generate a "pseudorandom" sequence. Al- 

though this sequence would pass many tests for randomness, an 

observer who knew the equation could predict each response 

exactly. Second, subjects could memorize a long sequence of 

"ideally random" numbers (see, for example, Popper, 1968). If 

a knowledgeable observer learned the same sequence, again ve- 

ridical predictions would be possible. Third, the subjects could 

secretly toss a die, or coin; or, fourth, they could secretly observe 

a geiger counter or other monitor of random radiation in the 

environment. An observer might, at least theoretically, observe 

the outcome of coin, die, or geiger counter immediately before 

the subject's response and again exactly predict the responses. 

Fifth, and finally, subjects might have something analogous to 

an internal geiger counter, or an internal sensor that responds to 

random environmental events such as radiation. Here, the ob- 

server might respond to the same environment and predict the 

probability of the subject's responses at a level greater than 

chance. Each of these possibilities can be tested--for example, 

by attempting to discover the equation, coin, or geiger counter; 

by testing the sequence for repetitions; and by shielding the sub- 

ject from external radiation. If variable behaviors depend on any 

of these strategies, then given sufficient knowledge concerning 

external events, each instance of behavior can be predicted ex- 

actly. 

There is, however, an alternative hypothesis, perhaps more 

parsimonious than any of the above, that would gain indirect 

support if the above five hypotheses are disconfirmed. Subjects 

may have learned to modify the output of an endogenous vari- 

ability generator to meet the requirements of the "randomness" 

contingencies. Since the source of variability would be within 

the person rather than without, an endogenous variability gen- 

erator hypothesis implies that some instances of behavior will 

be unpredictable by an external observer independent of the ob- 

server "s knowledge of the subject's conditioning history and current 

environmental influences. The observer may predict when vari- 

able behaviors will occur and when not. For example, learning 

new operant responses depends upon initial variability, as does 

problem solving and creativity. Therefore, knowing that a person 

is about to be placed in an operant learning situation will enable 

the observer to predict that the subject is likely to behave more 

variably than otherwise. The observer may also predict the re- 

sponses that compose the variable activities--this set being a 

function of genetic makeup and conditioning history. But par- 

ticular instances of variable or random responses will be unpre- 

dictable from knowledge of genes, environment, and conditioning 

history. According to this hypothesis, when a person behaves 

randomly, an ideally knowledgeable scientist will not be able to 

predict the next instance of behavior at a level greater than chance 

(see James, 1884/1956; and Peirce, 1923, for related positions). 

Learning to behave randomly is problematic if it implies that 

through reinforcement of particular responses, a variable se- 

quence is created. If, for example, the subject entered the ex- 

periment only with fixed, stereotyped response sequences, it is 

hard to imagine how anything other than a subset of these fixed 

sequences could be established through feedback or reward. There 

are, however, alternatives. For example, as indicated in the In- 

troduction, the subjects might have entered the experiment with 

a different definition of "random" than that required (see, e.g., 

Cohen, 1981) and learning entailed a redefinition. Or people 

may be born with the ability to behave randomly and, due to 

the particular environment in which they are raised, come to 

have biases and patterned tendencies. According to this view, 

random behaviors were not conditioned in the present experi- 

ment; rather, biases, repetitions, patterns, and so on, were extin- 

guished. Or (a related hypothesis), environmental feedback may 

shape or fine-tune an endogenous variability generator so that 

the behavior approximates a random distribution. This would 

be analogous to modifying, through operant-conditioning con- 

tingencies, human infant crying or shaping the location of a peck 

response in the newly hatched chick. 

The present results support neither trait theories, which 

maintain that inheritance makes random human behavior im- 

possible, nor learning theories, which generally fail to admit 

variability as a conditionable dimension of behavior. The alter- 

native view propounded here is that behavioral randomness is 

based on the modification, through feedback and learning, of an 

endogenous source of variability. The environment may control 

when and where random behaviors will occur (e.g., while serving 

as a subject in this experiment), the types of behaviors which 

compose the random sequencing (e.g., in the present case, ls 

and 0s), and the degree of variability (or how closely the sequence 

approximates a random sequence). But, according to this view, 

when a person chooses to behave variably, individual instances 

of behavior can be predicted by the most knowledgeable of ob- 

servers only little better than chance or, in the random extreme, 

not at all. 
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