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Introduction to the Series

Drawing on a personal network, an economist canstill relatively
easily stay well informed in the narrow field in which he works, but
to keep up with the development of economics as a whole is a much
more formidable challenge. Economists are confronted with
difficulties associated with the rapid developmentoftheir discipline.
There is a risk of “‘balkanisation” in economics, which may not be
favorable to its development.

Fundamentals of Pure and Applied Economics has been created to
meet this problem. The discipline of economics has been subdivided
into sections (listed inside). These sections include short books,
each surveying the state of the art in a given area.

Each bookstarts with the basic elements and goes as far as the most
advanced results. Each should be useful to professors needing
material for lectures, to graduate students looking for a global view
of a particular subject, to professional economists wishing to keep
up with the development of their science, and to researchers
seeking convenient information on questions that incidentally ap-
pear in their work.

Each book is thus a presentation of the state of the art in a
particular field rather than a step-by-step analysis of the develop-
ment of the literature. Each is a high-level presentation but
accessible to anyone with a solid background in economics, whether
engaged in business, government, international organizations,
teaching, or researchin relatedfields.

Three aspects of Fundamentals of Pure and Applied Economics
should be emphasized:

—First, the project covers the whole field of economics, not only
theoretical or mathematical economics.

Vii
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—Second,the project is open-ended and the numberof booksis not

predetermined. If new interesting areas appear, they will gen-

erate additional books.

—Last, all the books making up each section will later be grouped

to constitute one or several volumes of an Encyclopedia of

Economics.

The editors of the sections are outstanding economists who have

selected as authors for the series someof the finest specialists in the

world.

J. Lesourne H. Sonnenschein



Interprofile Conditions and
Impossibility

PETER C. FISHBURN

AT&TBell Laboratories, New Jersey, USA.

1. INTRODUCTION

The modern era of social choice theory began with Kenneth
Arrow’s pathbreaking monograph [4] and his celebrated impos-
sibility theorem. The purpose of the present monograph is to
recount contributions to social choice that are based on Arrow’s
approach and succeeding developments. Its emphasis will be on the
interactions among various conditions that relate social choices to
individuals’ values or preferences, and on the possibility/
impossibility results that flow from these interactions. Special
attention will be devoted to interprofile and intraprofile conditions
[54] and their roles in generating impossibility theorems.
Although the nature of our subject requires a degree of mathe-

matical analysis, it should be kept in mindthatits conceptualcoreis
eminently practical, and is discernible without the mathematical
overlay. The basic question it addressesis: If a decision is required
among competing alternatives, and if the decision is to depend on
the values of the individuals in a society in certain specified ways,
are there choice procedures that Satisfy these specified depend-
encies? If the answer is “no” then we have an impossibility
theorem. That is, the specifications relating the decision to the
individuals’ values are collectively incompatible; not all can be
satisfied simultaneously, and we may wish to relax one or more of
them to a point where the relaxed conditions are jointly compatible.
On the other hand, if the answerto the basic question is “‘yes”’,

then we have a possibility theorem. But this is only part of the
picture, for we still need to understand what kinds of choice
procedures obey the conditions that say how the decision is to

1



2 P. C. FISHBURN

depend on the individuals’ values. Once this is understood, we may

discover that all such procedures are unsatisfactory in some

unforeseen way or that even more conditions can be imposed

without forcing the result into the realm of impossibility.

Thus, two questions emerge, an existence question and a charac-

terization question. The existence question asks whether any choice

procedure satisfies the stated conditions. And, when such proce-

dures exist, the characterization question asks for their description.

In many instances, the two are intertwined and inform one another.

For example, one standard proof of Arrow’s impossibility theorem

is really a characterization proof since it shows that every social

choice function that satisfies all but his nondictatorship condition

lies within the class of dictatorial choice procedures.

The role of mathematics in all this is two-fold. First, it allows us

to formulate precisely the structure of the social decision process at

hand and the conditions that the choice procedure is to satisfy.

Second, it facilitates the derivation of answers to the existential

and/or characterization questions. This 1s especially helpful since

these questions often involve combinatorial structures that are

difficult to penetrate otherwise.

The next section of the monograph begins our inquiry into social

choice impossibility by formulating the notion of a social choice

function. Section 3 then examines Arrow’s basic theorem in detail.

Section 4 elaborates on the types of conditions for social choices

used in Arrow’s theorem since later theorems employ similar

conditions. Section 5 considers a series of multiprofile impossibility

theorems that are most closely related to Arrow’s multiprofile

theorem, and Section 6 follows suit for single-profile impossibility

theorems.

In Section 7 we shall recast Arrow’s approach in the language of

utility theory and comment on allied results within this reformula-

tion. Sections 8 and 9 then consider morerigidly specified utility

structures for preference/utility profiles. Thefirst of these sections

looks at cardinal utilities for individuals with no interpersonal

comparability. The second examines various degrees of interper-

sonal comparability of intrapersonal utilities.

Prior to Section 10, it is always assumed that the number of

individuals is finite. This 1s relaxed in Section 10 where we note

what can happen wheninfinite numbers of individuals are allowed.
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The final section comments on possibility/impossibility theorems
for four contexts that do not fall directly into the major theme of
the monograph. These concern the aggregation of equivalence
relations, probability distributions, and decisions under uncertainty,
and the topic of strategic voting.

2. SOCIAL CHOICE AND IMPOSSIBILITY

The central object of our study is a social choice function. This
describes how individuals’ values are combined to select one or
more alternatives from a specified set of feasible alternatives.
Moreover, it does this for every one of a number of possible
situations that might obtain. Each situation consists of two things,
the set of feasible alternatives under consideration and a description
of individuals’ preferences or values on a set of alternatives that

nonempty subset of feasible alternatives that the social choice
function assigns to (choosesfor) a situation will be referred to as the
choice set for that situation.
We illustrate this with two examples. Suppose first that a

professional society conducts a nomination process each year for the
office of president. Each memberis allowed to nominate up to three
people by mail ballot, and each potential nominee who receives at
least 15 percent of these votes is placed on the election ballot. If
fewer than two nominees reach the 15 percent quota, only the two
with the most nominations go on the election ballot. Thus the
election ballot will have from two up to six names, and these names
constitute one feasible subset of alternatives. The other part of a
situtation is the members’ preference over the names on the
election ballot. Since these preferences might take many different
forms, many situations could obtain for that election ballot. If the
names on the election ballot are changed, then a different set of
situations applies. All possibilities that could thus arise constitute
the domain of the social choice function.

This function determines one or more namesfrom the feasible set
as the choice set for each possible situation in its domain. We do
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not necessarily require the choice set to contain only one candidate

for every situation although a final unique choice is needed in any

practical context. In a manner of speaking, the social choice

function simply identifies the “‘best” candidates in a given situation

according to its specifications or the conditions that are used to

define how it makes choices on the basis of members’ preferences.

Weshall not be concerned here with particular ballot instructions

or mechanisms by which individuals’ preferences or values are

elicited, or with voters’ responses to such mechanisms. In other

words, the implementation of social choice functions and the

associated matters of ballot design and strategic voting lie beyond

our present concerns. With the exception of the final section of the

monograph, our sole focus is the specification of choice sets for

different situations when individuals’ preferences are presumedto be

known.

For a second example, suppose each of three interest groupswill

nominate one policy for consideration by a committee orlegisla-

ture, which will then adopt one of the three nominated policies.

Assuming that different interest groups will not nominate the same

policy, the potential feasible sets will be sets of three policies. If

group i will nominate a; or b; (i = 1, 2, 3) and {a,, b,}, {@2, bo}, and

{a3, b3} are mutually disjoint, then there are eight potential feasible

sets. The relevant preferences for the other part of the domain

could be the preferences of the members of the committee or

legislature over the six policies in {a1, Az, a3, b,, bz, bz}. The social

choice function would then assign a nonempty subset of the three

policies in a feasible set to every combination of a feasible set and a

profile of the members’ preferences over the policies.

An arbitrary social choice function will be described in the

following way. First, we assume that there is a nonempty universal

set X of potential decision alternatives and a nonempty set N of

individuals whose preferences or values may be taken into account.

Weshall usually assume that N is finite, but will consider infinite

sets of individuals in Section 10. The set X could befinite, as in the

preceding examples, or infinite, as when it is the nonnegative

orthant of a finite-dimensional Euclidean space.

Second, we suppose that there is a nonempty set & of nonempty

subsets A, B,... of xX, which are interpreted as the potential
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feasible sets that might arise. In the second example above,

A= {ay, a2, a3}, {ay, a2, b3}, {ay, b2, a3}, {a,, bo,|

{b,, a>, a3}, {b,, ad, b3}, {b,, b>, a3}, {b,, b>, 53}

If X is the set of nonnegative m-dimensional real vectors
(X1, X2,...,%X,,) and P1;+-+,Pm, and b are positive real numbers,
then sets in & might be described as subsets of X that satisfy a
linear restriction such as

in

>» DX; = b.
i=1

Different sets in & are obtained by varying the p, (prices) and b
(budget).

Third, we suppose that there is a nonempty set %, each element
of which provides a description of the preferences or values of every
individual in N. In most cases, the set on which each person’s
preferences are defined is either X or a set constructed from X by
well-defined operations. Each element P in will be referred to as
a preference profile. Note that a preference profile, or profile for
Short, describes the preferences of every person in N. When
individuals’ preferences are represented by real valued utility
functions, we shall often refer to a profile as a utility profile. Specific
assumptions about preference relations or utility functions that are
assumed to delineate admissible profiles in P will be introduced as
they are needed.
The domain of a social choice function is a nonempty set Y of

ordered pairs in the Cartesian product of # and Y, i.e., 94M and

DoeAxF.

In most cases, all (A, P) in & xX will be assumed to be in the
domain, and, whenthisis true, we have Y = & x Y. Each member
of D is a situation (A, P) composed of a feasible set A and a
preferenceprofile P.

Finally, a social choice function [4, 54, 56] is a mapping C from a
domain & into the nonempty subsets of X such that, for every
(A, P)eQ,

C(A, P)cA.

Werefer to C(A, P)as the choice set for situation (A, P).
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Under circumstances that will be described later, it is often

convenient to replace C(A, P) by a binary social preference relation

>, or by a social utility function on X. Whenthis is done, it is

understood that, for every two-alternative subset {x,y}A, x>py

means the same thing as C({x, y}, P) = {x}. Whenfeasible sets

with more than two alternatives are involved in &, it is often

assumed that C(A, P)c {x €A:y >px for no y e A}, or C(A, P)=

{xe A:y>px for no y e« A}, when the latter set is nonempty.

However, various other connections between C(A, P) and the

>p-maximal alternatives in A could be postulated.

Succeeding sections will consider various structures for # and 7

along with conditions or restrictions on C. A generalclassification

of different types of conditions on social choice functions will be

presented in Section 4 after we examine the structure of one version

of Arrow’s impossibility theorem in Section 3. Briefly stated, there

are three main classes of conditions, namely structural conditions,

existential conditions, and universal conditions. Structural condi-

tions are concerned with the nature of &,?, and &, and say

nothing directly about C except by way of its domain @. Existential

conditions posit the existence of situations in @ that satisfy certain

conditions in regard to C. Universal conditions apply to all

situations in @. They may use the existential quantifier “there

exists,” but only in a secondary manner, andrestrict the behavior of

C in specified ways. The universal conditions subdivide into two

main classes, which are referred to as intraprofile conditions and

interprofile conditions. These will receive special attention although

the others cannot be ignored since all are vital to the structure of

impossibility.

Impossibility theorems arise when the conditions imposed on C

cannot simultaneously hold for any social choice function. The

interest in such theorems stems from two factors. First, their

conclusions are often surprising or paradoxical, so they excite our

intellectual curiosity and challenge us to understand their structures.

Second, they provide very practical guidelines for the construction

of viable social choice procedures by clarifying the boundary

between the possible and the impossible. The role of possibility

theorems, mentioned in the precedingsection, is especially impor-

tant in this regard.

Proofs of possibility/impossibility theorems follow the usual
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procedures of deductive mathematics. Ths most common form forimpossibility theorems is proof by contradiction: we assume that C
Satisfies all of the imposed conditions and show that this leads to an
absurdity. Alternatively, we may assumethat

C

satisfies all but one
of the conditions and then deduce the conclusion that it must violate
the remaining condition. Proofs of possibility theorems mayinvolve
either a demonstration that there is a social choice function which
satisfies the given conditions—without necessarily specifying the
exact form of such a function, or a constructive definition of a class
of social choice functions that are then shown to Satisfy the
conditions. When the possibility theorem provides an exact charac-
terization of the class of social choice functionsthat satisfy specified
conditions, it is also necessary to show that every C notin this class
violates one or more of the conditions.
Two proofs of Arrow’s impossibility theorem will be given in the

next section to illustrate alternative proof techniques. Proofs of
theorems in later sections will be provided only when they are
relatively short and instructive.

3. ARROW’S THEOREM

Condorcet’s phenomenonofcyclic majorities [34] occurs when the
individuals in N have transitive binary preferences on the alterna-
tives in X that lead to intransitive majority comparisons. The
simplest example of this has N = {1,2, 3} and X = {a, b, c} with
the following preference rankings for the three individuals:

1. abc (1 prefers a to b toc)
2. cab (2 prefers c to a to b)
3. bca (3 prefers b to c to a).

Since two of the three individuals prefer a to b, another two prefer
b to c, and yet another twoprefer b to Cc, Majority preferences are
cyclic:

a>yb (ahas a majority over b)
b>y,c (b has a majority over Cc)
C>ya (c has a majority over a).
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Because the simple-majority relation > is cyclic, i.e., a>yb>m

c>y4, no alternative has a majority over each of the others and

there is no clear way to specify a social choice on the basis of

majority comparisons. We could take C({a, b, c}, P) = {a, 5, c} for

the given profile, but this resolves nothing.

There is an extensive literature on Condorcet’s phenomenon and

on social choice functions that select majority-dominantalternatives

within feasible sets when they exist: see, for example,

[4, 12, 54, 60, 63, 68, 136].

Preliminaries

Arrow’s theorem [4] offers a striking generalization of Condorcet’s

phenomenon.In outline, Arrow’s theorem says that if the majority

relation >, is replaced by general profile-specific social preference

relations >p that depend on individuals’ preferences in certain

appealing ways, and if a sufficient variety of preference profiles

formed from transitive preference orders are included in Y, then

there must be Pe for which >p is not a weak order (defined

below). If stronger conditions are imposed on how >p depends on

individuals’ preferences, then there must be profiles for which >p

has cycles. We shall return to this case in Section 5.

The proofs at the end of the present section show that a key

factor in Arrow’s structure is the way that the >p relations for

different profiles interact with one another. This is brought about by

an interprofile condition that Arrow [4, p. 26] refers to as the

independence ofirrelevant alternatives. Its version used here will be

called binary independence. Later, in Section 6, we shall note how

the interactions facilitated by binary independence can be mimicked

within a single profile, thus giving rise to what is referred to as a

single-profile impossibility theorem.

A few definitions will be helpful in stating Arrow’s theorem. Let

>, denote an asymmetric binary relation on a set T, so that, for alls

and t in T, if s>o¢ then not (t> 5s). We shall say that >, on Tis a

weak order if it is negatively transitive, 1.¢., for all r, s, te 7, not

(r>os) and not (s >ot) imply not (r>ot), or, equivalently,

r>ot>[r>o05 or s >of].

It is easily checked that > is transitive (r>os and s>ot imply

r>t) when >o is a weak order. Moreover, the symmetric comple-
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ment ~ of >o, defined by

S~ot if not (s>9t) and not (t>, S),
is also transitive (r~)s and 5 ~ot imply r~gt) when >, is a weak
order. In this case, [r>os ands ~ot]>r>ot,

[r~os and S>ot]D>r>ot,

as readers can readily verify. The derived relation ~o partitions T
into a numberof classes such that ~o holds between every pair of
elements within each class and, wherever ZT, and T, are different
classes, either t, > ft, forall t, € T, and all t, € J, or else tp >ot, for
all t; € J, and all ie TJ.
For convenience, we write the union of > and ~») as =o, so that

Sot if either s >)t or s~t. When >o iS a weak order as defined
above in the asymmetric sense, =, is transitive and complete (for all
sand tin T, s=ot ort =, s), and such

a

relation is often referred to
in the economics’ literature as a weak order or complete preorder.
In the present monograph, the asymmetric definition applies
throughout. Moreover, given any asymmetric binary relation >,,, its
symmetric complementwill always be denoted by ~,, and the union
of >, and ~, will always be denoted by 2,.

Figure 1 pictures three weak orders on a seven-element set. In
each picture, r>t if r lies above t, and r~ot if r and ¢t are on the
same level. Since ~9 never holds between distinct elements in the
left picture, >, is a total order, or linear order, in that case. The
middle picture shows a weak order with four ~g Classes. The right
picture has only one ~, class, in which case >, is empty, i.e., there
are no r and ¢ for which r>t.

FIGURE1
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by i from 1 to n, a preference profile in # may be written as

P=(>1, >2,-+-5 >n)s

where >; denotes one possible preference relation on X for

individual i. We read x>;y as “I prefers x to y,” and x~;y

(symmetric complement) as “i is indifferent between x and y.”’

Superscripts, as in P’ = (>1, >3,..-5 >,), are used to signify other

The other half of Arrow’s domain,the set & of feasible subsets of

X, is assumed to contain every two-alternative subset {x, y} with

x #y. It may contain other subsets, but that is beside the point. The

connection between the definition of a social choice function C in

the preceding section and the social preference relations mentioned

earlier in the present section is made explicit by the definition

x>py ifx#y and C({x, y}, P) = {x}.

That is, taking C as basic, we define x to be socially preferred to y

underprofile P if x #y and {x} is the choice set from {x, y} when P

obtains. For convenience, we shall use >p in the statement of

Arrow’s theorem in place of C(-, P) on the two-alternative sets in

SA.

Arrow’s theorem

THEorREM 1 Suppose C on D= AXP is a social function that

satisfies

Al. N is a nonempty finite set,

A2. X has at least three elements, and A contains every two-

element subset of X,

A3. # is the set of all functions from

N

intotheset of weak orders

on X.

Then C cannotsatisfy all of the following conditions:

A4. For every i in N there exists a pair {x, y} ¢ & and a profile

P € for which x >;y and y p 3x,

AS. For all Pe P, >p is a weak order on X,

Ao. For all x,y €X and all Pe, if x>iy for all ie N then



of the social choice function.
Condition A4 is the one existential condition in the theorem.It

prevents any individual from dictating social preferences. If A4
fails, then there exists an i in N such that, for all x,y eX and all
Pe, x>py wheneveri prefers x to y. We refer to such ani as a

place special restrictions on P as antecedentsto its conclusion. On
the other hand, the Pareto dominance condition A6 (if everyone
prefers x to y, then x is socially preferred to y) is an active
intraprofile condition since its conclusion, x>py, is based on
specific aspects of P, namely x >, y forall i.
The third universal condition, A7, is an interprofile condition

since it considers an interaction between two profiles. We referred
to it earlier as a binary independence condition. This is becauseit is
concerned with social choices from two-element subsets of X and
stipulates that choices from {x, y} under different profiles are to
depend only on the individuals’ preferences between x and y,
independent of their preferences on all other pairs from X. In

that the conclusion of A7 Says only that x>py<x>p-y, note that
it also entails y>pxey>p-x: simply interchange x and y
throughout.
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dictator. A variant of this proof appears in [8]. The second proof

assumesthat all conditions hold except for the finiteness of N in Al

and then uses an induction argument to show that N must be

Despite their differences, both proofs rely on preference profiles

that have the following relations for some i € N and a,b,ce X:

a>,;b>;C,

a>,b and c>j;b for all j #i in N.

According to the Pareto condition A6, a>pb for any such profile.

Hence, if b=pc, then the social preference condition A5 forces

a>pc; and if cz=pa, then A5 forces c>pb. This shows how new

social preferences are generated by the Pareto condition and other

social preferences or indifferences.It is a key step in both proofs.

For the first proof of Theorem 1, assume that all conditions

except A4 hold. For all nonempty subsets J of N and all distinct

x,y € X, write

xly if x >py whenever P has x >; y for

allie J and y>;x for allie N\J,

where in general A\B denotes the set of elements in A that are not

also in B. Also write

xiy if x >py whenever P has x >; y.

The proof has two main steps. The first shows that a{i}b for some

ic N and some a,b € X. Given this i, the second showsthat xiy for

all distinct x,y €¢ X. But then 7 is a dictator, so A4 mustfail.

Step 1. By A6, xNy for all distinct x,y eX. By Al (Nfinite),

there is a smallest J, say J*, such that al*h for some a,b eX. Fix

ic I*. We claim that [* = {i}. If not, consider any profile PePY

(justified by A2 and A3, with x € X\{a, b}) with

x>,a>;,b,

a>,b>,x for all je l*\{i},

b>,x>j,a for allje N\I*.

Then a>pb (by hypothesis and A7), x=pa (else a(l*\ {i})x,

contradicting I* as the smallest such /), and b=px (else x {i}b,
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again contradicting J* as the smallest). But {b2px,x2Zpa,a>pb}
violates A5. Hence [* = {i}.

Step 2. Given a{i}b, take x € X\{a, b} by A2 and use A3 to
construct P with

x>,;a>;b,

x >,a and b>,a for all j #iin N.

Then a>pb (by a{i}b) and x>pa (by A6), so x >pb according to
AS. Since the relations between x and b for J #1 are arbitrary in P,
it follows from A7 that xib. A similar argument shows that aivx.
These are true for all x ¢ {a, b}. Moreover, since x{i}b and a{i}x,
the same arguments can be reapplied (start with x,b instead of a,b,
for example) to get bix and xia, and then bia. Since this showsthat

distinct x,y €.X, write

xt“y if x >py whenever P has y>,x and

x >,y for all je N\ {i}.

Also, for each positive integer m, write

xmy if x >py wheneverany m individuals for P

have y >;x andall others have x >, y.

Again, there are two steps to the proof. Thefirst shows that x1y for
all distinct x,y eX. The second then showsthatif xky for all k <m
and all distinct x,y « X, then x(m+ 1)y for all x #y in X. But then
N must beinfinite, so Al mustfail.

Step 1. Since N#by part of A1, choose any 1€ N. Then A2,
A3, and A4 (no dictator) imply that b=,pa for some a,b eX and
some Pe f that has a>;b. Take x e X\{a, b} by A2, and by A3
construct P’ so that

a>j;x>jb,

a>j;x and b>;x for all j iin N,

and such that, for allie N, a>;b@a>;b and b>,a@b>!a. Then
b2p.-a by A7 (binary independence) and a>p.x by A6, so b>px
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by AS. It follows from A7 that bi*x. A similar demonstration gives

xi*a. With y e X\{x, b} by A2, let P'e P be the same as P' on

{x, b} and have x >;y >; b along with y >} b>} x for all j #i. Since

b>pix, and y>pib by A6, AS implies that y >p:x, and therefore

yi*x by A7. This includes ai*x. By similar proofs, xi*b, bi*a, and

ai*b, so we conclude that xi*y for all distinct x,y € Xx.

Since this is true for all i ¢ N, it follows that x1y for all distinct x

and y in X.

Step 2. Conditions A4 and A6 require N to have at least two

individuals. Let |N| denote the cardinality of N, so |N| = 2. Suppose

IN| >m21 and xky for all 1<k<m and all distinct x,y eX.

Choose ic N and ICN such that i¢/J and |J|=™m,and let P be a

profile in Y for which

y>jx >; 4,

a>,y>,x for allj e/,

x>,a>,y for all jeN\(UU {i}).

Then aly implies a>py, and xma implies x >pa, SOxX>py by AS.

Since this contradicts A6 if |N|=m+1, we conclude that |N|>

m +1. Moreover, since i,x, and y are arbitrary, x(m+ 1)y forall

distinct x and y. Since x1y by step 1, it follows by induction on m

that |N| > m for every positive integer m.

4. CONDITIONS ON SOCIAL CHOICE

The conditions on C in Theorem 1 are examples of the main types

of conditions used in other possibility/impossibility theorems. The

present section summarizes our classification of these types and then

illustrates them further with conditions other than Al—A7. The

initial illustrations weaken Arrow’s conditions one by one to obtain

a list of seven possibility theorems. We then introduce other

conditions that play importantrolesin social choice theory.

Summaryclassification

To avoid confusion that might arise from negations, we assume that

all conditions in the existential and universal categories of our
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classification use only the positive forms of the existential quantifier
“there exists” and the universal quantifier “for all.”’ For example,
the version of the ordering condition A5 that applies to the
classification is “‘for all P € P, >p is a weak order on XY.” This is a
universal condition even though, with the use of negations, it is
tantamountto “it is false that there exists a P € for which >pon
X is not a weak order.”’
The three main types of conditions notedearlier are:
1. Structural conditions that describe restrictions on the domain
of C, including aspects of N (individuals), X (alternatives), 2

(feasible subsets of alternatives), and Y (preference profiles);
2. Existential conditions that prescribe the existence of situations

in & that have specified behaviors under C. Their formal statements
must use the existential quantifier and may use the universal
quantifier (all without prefatory negations);

3. Universal conditions that specify aspects of the behavior of C
throughout & and whose formal statements do not use the
existential quantifier, except perhaps in a secondary manner (see
below). The universal conditions subdivide into two categories
according to the number of profiles involved in their statements
following the prefatory universal quantifiers:
3A. Intraprofile (single-profile) conditions consider one profile at

a time;

3B. Interprofile conditions consider more than one profile at a
time.
The only interprofile condition used thus far is A7, binary

independence.It is a two-profile interprofile condition sinceit Says
that if P and P’ in F relate to each otherin a certain way, then
C(-, P) and C(-, P’) must relate to each other in certain ways.
Interprofile conditions that may require simultaneous consideration
of more than two profiles are sometimesreferred to as multiprofile
conditions.

Intraprofile conditions subdivide further into two categories
according to whether they impose restrictions on Pe FP beyond
those usedin the structural conditions that apply to 9:
3Ap. Passive intraprofile conditions impose no further restric-

tions on P;
3Aa. Active intraprofile conditions impose furtherrestrictions on

P.
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For example, the passive intraprofile condition “for all Pe P, >pis

a weak order on X”applies equally to all feasible profiles regardless

of their structures, whereas the active intraprofile condition “‘forall

x,y eX and all Pe, if, for allie N, x>,y, then x>py” applies

only to profiles that contain dominance pairs (x >; y for all ie N).

As suggested above, there are conditions that we will adopt as

universal conditions even though they use the existential quantifier

in a secondary way. The important aspect of such conditions is that

they apply to all situations in % and do notposit the existence of

situations with special features under C. A case in point is the

following condition, which specifies the existence of a maximal

alternative for every situation on the basis of binary comparisons:

For all (A, P) € &, there exists an x € A such that x € C({x, y}, P)

for ally €A.

We regard this as a passive intraprofile condition, not as an

existential condition.

Possibility theorems

We now consider seven kinds of possibility theorems that arise

when the conditions of Theorem 1 are modified one at a time.

There are three reasons for doing this beyond the mere exercise of

exhibiting possibility theorems. First, it provides other examples for

the preceding classification scheme. Second, it promotes an ap-

preciation of the delicate interactions among the conditions that

lead to Arrow’s result. And third, it identifies points of departure

for a numberof other research topics in social choice theory.

In each of the seven succeeding paragraphs, weshall modify the

condition that introduces the paragraph. All other conditions of

Theorem 1, including 9 = w x FY, are assumedto hold.

Al. Suppose

N

is allowed to be any nonempty set. Then, as first

shown in [51] although it was independently discovered by Julian

Blau about 1960, there are C that satisfy this modification of Al. By

Theorem 1, they require N to be infinite. Section 10 gives more

details.
A2. Change A2 by assuming that X has exactly two alternatives,

say x and y. Then >>»defined by the simple majority relation >, for

each profile satisfies the conditions of Theorem 1 thus modified. An

axiomatic characterization of >,, for the two-alternative case was



INTERPROFILE CONDITIONS AND IMPOSSIBILITY 17

first given in [104]. A different change in A2 produces another
possibility theorem as follows. Suppose X consists of the union of
disjoint sets X,, Xy,...,X,, (m 22), each X; has at least three
alternatives, and A € & if and only if |A| =2 and the twoalterna-
tives in A are in the same X;. Then, by Theorem 1, there will be a
dictator for each X; set, but, when |N| > 2, different individuals can
be dictators for different X;, So A4 canbesatisfied along with the
other conditions. See [58] for additional details.
A3. Restrict P by requiring that all feasible preference profiles

be single-peaked with linear orders (no indifference between
distinct alternatives) for all individuals. Single-peakedness means
that the alternatives in X can be linearly ordered in such a waythat,
for every ieN, the preferences of i increase up to a unique
most-preferred alternative and then decrease thereafter as we move
through the underlying linear order on X. Then, so long as |N| is
odd and greater than or equal to three, >, will be a weak order on
X for every such profile, and hence all conditions of Theorem 1 can
hold under the single-peaked restriction on Y. Single-peaked
profiles were first investigated extensively in [12]. Similar profile
restrictions that guarantee the existence of an alternative that is
beaten by no other alternative under simple-majority comparisons
are discussed in [4, 31,54, 116, 136, 140]. More generally, [55]
shows how combinationsof active intraprofile conditions and profile
restrictions lead to transitivity and similar properties for binary
social choices.
A4. Weaken A4 by assuming only that no ieé AN is an “absolute

dictator” rather than that no ie N is a dictator. We say that i is an
absolute dictator if, for all x,y ¢ X and all Pe F, X>;YD>x>py,
and x~,;y>x~py. Stated as an existential condition in the
assumed format, our weakening of A4 is: For every ie N there
exists a pair {x, y}¢ and a Pe for which either x>, y and
=px, Or X¥~,y and x>py.” With N= {1,2,...,n} and n=2,

all conditions in Theorem 1 thus modified will hold when we define
>p lexicographically as x>py if x>,y or (x~,y,x>.y) or
(xX~1y,X~2y,x>3y) or ... or (x~,y,... »X~n_-1yY,X>,y).
Then individual 1 is a dictator, but no individual is an absolute
dictator. Note also that >, is a weak order on X for each profile.
A5. Suppose wereplace the social ordering condition A5 by the

less-demanding passive intraprofile condition “for all Pe P, >> is
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transitive on X.’’ Then the modified conditions of the theorem hold

when >> is defined either by

x>pyifx>,y for allieN,

or by

x>py ifx2,y for allie N, and x>;y for some i € N,

since >>pis transitive for each type of Pareto ordering. Weexamine

this and related weakenings of A5 in the next section.

A6. Replace the active intraprofile Pareto-dominance condition

A6by the existential condition “forall distinct x,y € X there exists a

Pe such that x>py.” This condition is referred to as citizens’

sovereignty by Arrow [4, p. 28]. To see that it can hold along with

the other conditions of Theorem 1, just define >p by x>py if

y>,x. In a manner of speaking, this makes individual 1 an

“absolute anti-dictator,” but no person is a dictator, so A4 holds. In

the original edition of his book, Arrow usedcitizens’ sovereignty in

concert with a condition involving positive association between

individual and social preferences. These were later replaced by the

single Pareto condition A6 [4, p. 97]. It is this later version that is

stated as Theorem 1.

A7. Assume that X is finite and, for any weak order >, on X,

define the distance d, between x and y by d,(x, y)=0 if x~.y,

d,(x, y)=k>0 if x>,y and there are (k —1)~, classes between x

and y, and d,(x, y)=k<Oify>,.x and d,(y, x)= —k. Replace A7

by anotherinterprofile condition, as follows: “For all distinct x and

y in X, and all P,P’e9,if d;(x, y)=d;(x, y) for all ie N, then

x>py@x>p-y.” Then the modified conditions of Theorem 1 hold

when >> is defined by

x>py if > d(x, y)>0.
i=1

Since d,(x, y) + d,(y, z)=4,(x, z) for any weak order >; and all

x, y,zeEX, it follows readily that >p is a weak order for every

profile. When every >; is a linear order on X, >p as just definedis

referred to as the Borda ordering of X, named after Borda [21].

Borda’s method is but one of a large number of ways to construct a

social preference ordering on the basis of individuals’ preferences.
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An indication of the extensive research on positional scoring rules
can be obtained from [49, 50, 54, 69, 141, 153, 154].

Universal conditions

Since the central topic of our study is the role of profile conditions
in impossibility theorems, we shall say a bit more about universal
conditions at this point. Other structural and existential conditions
will be noted as theyarise in settings considered in ensuing sections.
We consider passive intraprofile conditions first, then comment

on interprofile conditions, and conclude with active intraprofile
conditions. In all cases it is to be understood that the conditions
apply to all situations in the domainof C.

Since passive intraprofile conditions apply to one P at a time and
make no demandson P apart from whatis already implied by Q,it
is convenient to suppress P in C(A, P) and simply write the choice
set for situation (A, P) as C(A). Thus, negative transitivity for >,
with an arbitrary P understood could be written as [ye
C({x, y}), z Ee Cy, z})]>z € C({x, z}), and transitivity for >>,
could be written as [x#y#z#x, C({x, y}) = {x}, C({y, z))=

WII CUx, Z}) = {x}.

Passive intraprofile conditions, which are often referred to as
conditions of consistency orcollective rationality, interrelate choice
sets C(A) for different A €.# under the same preference profile.
Three essentially different types of passive intraprofile conditions
appear in the literature. We refer to these as uniform conditions,
expansion conditions, and contraction conditions. Many of these
have been classified by Sen [138], who notes a number of
interrelationships among them.Seealso [5, 13, 54, 118].

Uniform conditions employ only A € & that have the samesize
or cardinality. Examples for |A| =2 include AS, the condition that
every >p is transitive, and the condition which says that, for any
|A| > 2, there is an x € A such that x € C({x, y}) for all y #x in A.
A generalization of the latter condition for m>2 says that, for any
|A| =m, there is an x € A such that xe C(B) for every subset B of
A that contains exactly m alternatives, including x.

Expansion conditionsrestrict choices from larger sets on the basis
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of choices from their subsets. Four examples are:

1. xEC(A)NC(B)SxeEC(AUB),

2. [x €C({x, y}) for all ye A] xe C(AU {x}),

3. [AcB;x,yeC(A);y €C(B)]>x € C(B),

4. C(AUB)=C[C(A)UC(B)].

Each of these has a straightforward interpretation. For example, 1

says that if x is in the choice sets of both A and B, then it will be in

the choice set of A U B, and 3 says that if x and y are in the choice

set of A, y is in the choice set of B, and A is a proper subset of B,

then x will be in the choice set of B. Condition 4 is Plott’s “path

independence” condition [118].

Contraction conditions restrict choices from smaller sets on the

basis of choices from their supersets. Examples include:

1. [AcB, ANC(B) #9] > C(A)=ANC(B),

2. [xe AcB,xeC(B)|>x€ CA),

3. [xe ACB, C(B) = {x}]>C(A) = {x},
4. There is an x € C(B) such that x € C({x, y}) for every ye B.

Condition 3 is the specialization of condition 1 for unique choices.

Condition 4 is another case of a passive intraprofile condition with

an existential quantifier.

In contrast to the passivity of the preceding conditions with

respect to P, interprofile and active intraprofile conditions base

their conclusions on structures between or within profiles. Some of

these conditions reflect notions of fairness or equity among in-

dividuals or alternatives, while others stress positive correlations

between individuals’ preferences and social choices.

We havealready remarked onthe interprofile condition of binary

independence, A7. Later, we shall use its generalization whichsays

that if A « & and if the restrictions of profiles P and P’ to A are

identical, then C(A, P) = C(A,P’).
The most commoninterprofile conditions besides independence

are monotonicity (positive association), anonymity, and neutrality

conditions. There are several monotonicity conditions, but all are

based on the idea that if x e C(A, P), and if P’ is similar to P except

that the standirez of x is improved in one or more of the >, in going

from P to P’, then x € C(A, P’).

To state general versions of the so-called symmetry conditions of
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anonymity (over individuals) and neutrality (among alternatives),
we need definitions involving permutations on N and X. A
permutation on a set T is a one-to-one mapping from T onto T.
Given P € and a permutation o on N, let P® be the profile that
assigns the preference relation >,from P to individual i. For
example, if P=(>,, >2, >3) and the relation in position k is for
individual k, and if o(1)=2, o(2)=3, and o(3)=1, then P’=
(>2, >3, >). Hence individual 1 now has the relation originally
held by individual 2, and so forth.
Anonymity. For all permutations o on JN, and. all

(A, P), (A, P°) € B, C(A, P) =C(A,P?).
This is designed to treat individuals equally. Its companion,

neutrality, is designed to treat alternatives equally. Given P « P and
a permutation A on X, let P™be obtained from P by A acting on X
for every i€ N: 1.e., for allie N,

x >, VSA(xX)>M Ay), for all x,y EX.

In addition, for any nonempty subset B of X, let A(B) = {A(x):x €
B}.

Neutrality. For all permutations A on X, and all
(A, P), (A(A), P) € @, C(A(A), P®) = A(C(A, P)).
This says, for example, that if C(A, P) = {x}, and if x and y are

interchanged in every preference relation in P, all else unchanged,
then y will be the unique choice from A(A) after the changes in the
profile.
The Pareto condition A6,andits stronger version which says that

C(x, y}, P) = {x} whenever x =,y for all ic N and x>,y for some
i € N, represent the class of active intraprofile conditions which use
the same A € & throughout.
Other active intraprofile conditions vary A. Here are two

examples:

1. For all x,y eX, and all (A, P)e@, if x,yeA, x>,y forall
ie N, and (A\{y}), P)¢Q&, then C(A\{y}, P) = C(A,P).

2. For all x,y,a,beX, and all Pe, if x>,y@a>;b and
y>;x@b>;,a for allie N, andif ({x, y}, P), ({a, b}, P)e@,
then ae C({a, b}, P) Sx € C({x, y}, P).

The first condition says that a Pareto dominated alternative within
A can be discarded from A without affecting the choice set. The
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second embraces aspects of neutrality and independence within the

same profile. It says that if each >; behaves the same way on the

ordered pair (a, b) as on (x, y), then the binary choices from {a, b}

and {x,y} will be similar. It is this kind of mimicking of binary

independence within a single profile that gives rise to some of the

single-profile impossibility theorems that we shall encounter in

Section 6.

5, MULTIPROFILE IMPOSSIBILITY THEOREMS

Arrow’s theorem is a multiprofile impossibility theorem since it uses

the interprofile condition of binary independence. We now describe

other multiprofile results that were motivated by Arrow’s work and

which use structural assumptions that are similar to his. Other

structural configurations will be consideredin later sections.

No attempt will be madetolist all of the Arrow-type impossibility

theorems. Weshall, however, note their main lines of development.

Slightly different perspectives on these lines are given by Sen [138]

and Kelly [95].
The theorems presented in this section are divided into eight

categories according to their changes in Arrow’s conditions. The

first six categories use A2 and A7 (two-alternative feasible subsets

and binary independence), though moves away from A2 and A7 are

discussed for the sixth category. The final two categories consider

choices from larger feasible sets and significantly modify A7. A

brief outline of the categories follows.

1. Tighten A3 by using fewer profiles.

2. Relax AS to partial orders. Either tighten A4 to no vetoer or

add a strong monotonicity condition plus |N| > 3.

3. Relax A5 in other ways, e.g., to semiorders or interval orders,

and require |X| = 4.
4. Relax A5 to acyclic relations, strengthen A4 to no vetoer,

tighten Al and/or A2 by requiring more individuals and/or

alternatives, and perhaps add a monotonicity condition.

. Replace the Pareto condition A6 by others.

6. Apply independencetolarger sets, or retain A7 and expand &

to include all nonempty subsets of X in conjunction with other

modifications.

a
n
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7. Change A2 by assuming that # need only contain all A for
which |A| =m or for which |A| =m, for some m>3. Modify
A7 and other conditions accordingly.

8. Change A2 drastically by assuming that » can have only one
feasible set. Modify other conditions.

Profiles

Several writers [4, 17,54, 90, 95, 150], including Arrow, note that
certain subsets of the profiles described in A3 suffice for impos-
sibility when no other changes are made in Theorem 1. For
example, the proofs in Section 3 are not affected if # is the set of all
functions from N into the set of linear orders on X. It also suffices to
use linear orders for individuals such that eachtriple of alternatives
in X can have any configuration in a profile. For example, suppose
X = {a, b,c, d} and consists of all profiles that can be formed
from the following six linear orders on X:

abcd cbhad

adcb cdab

bdac dbca.

Then, if {x,y,z} is any three-alternative subset of X, all six of
XyZ, XZ, yXZ, yzZX, zxy, and zyx appear in the preceding orders, so
each assignment of these six to the i € N correspondsto a profile in
P.

Partial orders and vetoers

One of the earliest variations on Arrow’s theme [71, 77, 110, 131,
134] changed only A4 and AS,to:

A4*. For every i in N there exists a pair {x, y}<e & anda PeP
such thatx>,;y and y>px;
A5*. For all P € P,>>pis transitive on X.

An ie whoviolates A4* (x 2py whenever x >; y) will be referred
to as a vetoer; some writers prefer the term ‘“‘weak dictator.”’ For
A5* we presume,by the definition of >, in terms of C, that >> is
asymmetric, and will refer to any asymmetric and transitive binary
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relation >, as a partial order. When >o is a partial order, the

relation =, is sometimes referred to as a “quasi-transitive’’ order

since only >, (and not ~,) is assumedto betransitive.

THEOREM 2A Suppose C on =A X Fis a social choice function

that satisfies Al, A2, A3, A6, and A7. Then it must violate either

A4* or AS*.

Thus, when ASis relaxed to partial orders, some individual must

be a vetoer, or have ‘‘veto power.”” A more definitive result was

noted by Gibbard [71]. Call Jc N an oligarchy if I is not empty,

every i€ J is a vetoer, and J collectively dictates social preferences,

i.e., x >py whenever x>;,y for all ie J. Given Al, A2, A3, A5*,

A6, and A7, Gibbard proved that N includes exactly one oligarchy.

Proofs appear in [54, 77,95]; the last two of these have further

observations on oligarchies.

A proof of Theorem 2A follows readily from the second proofof

Theorem 1. In step 1, where ASis first used, we use A5* instead to

get b>p-x from b>p.a and a>p.x, where b >p-a follows from the

change of A4 to A4*. All other uses of A5 in that proof require

only transitivity for >p, so again we conclude that N must be

infinite.
Mas-Colell and Sonnenschein [102] show that the no-dictator

condition A4 can be used in Theorem 2A instead of A4* if we add

the following interprofile condition of strong monotonicity along

with |N| = 3. |
A8. For allie N, all x,y € X, and all P,P' €, if >;=>; for all

jeN\{i}, either (y>;x,x~;y) or (x~:y,x>;y), and xZpy, then

X>p'y.

THEOREM 2B Suppose C on B= A x P is a social choice function

that satisfies A1 with |N| =3, A2, A3, A6, A7, and A8. Thenit must

violate A4 or A5*.

The reason that at least three individuals are used is that >,

satisfies the other conditions when |N|=2. This is reflected in a

proof of Theorem 2B that modifies step 1 of the second proof of

Theorem 1. If b>a in thefirst few sentences of that proof, then

the rest of the proof carries through with A5* in place of A5. To

avoid b>pa for any i in the presence of A8 and AS’, itis easily

seen that there is an a,¢ A for i=1,2 such that, for all xe X,
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(a, >,x,x>,;a, for all j#1)>a,~px, and (a, >2x, x >, a> for all
J #2)>4,~px. In particular, if a,#a>5, then we have Q,~pa,
when (@,>45, ad) >74), a >a, for all j=3); hence, by A8,
a,>paz when (@,>; 42, a, >4), a, >;a, for all j=3). But this
contradicts the derived property of a, versus x for individual 2. On
the other hand, if a,=a,=a, then the use of x,yeX with
|{a, x, y}]}=3 and (y>,a>;x, x >2a@>,y,x>,a and y>,a forall
] 23) leads to a contradiction.

Specialized social preference relations

It is impossible to categorically weaken A5 without changing some
other condition andstill have impossibility since the full force of A5
is needed when |X|=3. However, if X has more than three
alternatives, then A5 can be weakened without changing other
conditions or adding new conditions. Some of these weakeningsare
partial orders, and lie between partial orders and weak orders in the
hierarchy of ordering relations; other weakenings are not partial
orders, and need not even be acyclic. Some of these will be
mentioned after we look at orders intermediate between partial and
weak orders. The next subsection then takes a closer look at
acyclicity.
Two conditions on an asymmetric binary relation >, on T that

separately imply that >, is transitive but collectively do not imply
that >, is a weak orderare:

(1) for all a,b,x,y ET, [a>ox, b>yy]>[a>oy or b > x];
(2) for all a,b,c,x ET, [a>yb>yc]> [a>ox or x>oc].

Werefer to > as an interval orderif it satisfies (1), a semitransitive
orderif it satisfies (2), and a semiorderif it satisfies both (1) and (2):
see [64] for a general discussion of these relations.

AS(1). For all P € P, >p is an interval order on X.
AS5(2). For all P € P, >p is a semitransitive orderon X.

THEOREM 3 Suppose C on D= AX FP is a social choice function
that satisfies Al, A2 with |X|=4, A3, A6, and AT. Thenit violates
either A4 or AS(1), andit violates either A4 or A5(2).

This was proved independently by Blau [19] and Blair and Pollak
[14]. In fact, they proved much more, as we now note.
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Let us say that an asymmetric relation >) on T is a-transitive if,

wheneverthe x; are in T,

[x1 >0%X%2>0°° ->9Xe41] >%1>0Xa+n

and is (@, B)-transitive if, whenever the x, and y; are in [,

[x1 >0° °° PoXat+1 ~0¥1 70° * ->o Ve41l > %X1 So Yp+1-

Then, if Al, A2, A3, A6, and A7 hold, and if a,B =0, a+ Bp 22,

and |X|=a+6+2, either A4 fails or it is false that every >p is

(a, B)-transitive.

Blau [19] also shows that even weaken conditions can be used for

>,» when X is infinite, and Blair and Pollak [14] prove that an

oligarchy exists when Al, A2, A3, A6, and A7 hold andthere is an

w=2 such that |X|=a+1 and every >p is qa-transitive. When

aw = 2, the latter result reduces to Gibbard’s oligarchy theorem.

The interesting technical aspect of these other results is that,

when a+ $23, a-transitive and (qa, §)-transitive relations need

not be partial orders and may even have >p cycles. However, as we

shall now explain, social choice theory seems somewhat more

concerned with acyclic social preferences.

Acyclicity

An asymmetric binary relation >) on a set T is acyclic if there is no

integer m=3 and ¢; in T such that t)>ot>0°'* >otm>oh. It is

easily seen that > is acyclic if and only if {s € S:s =o ¢ for allte S} is

nonempty for every nonemptyfinite subset S of T. We shall say that

>, is 3-acyclic if it is never true that x >oy, y>o2, and z>,)x for

three elements in T. Relations that are 3-acyclic need not be acyclic

in general.

Acyclic social preference relations >p have attracted wide atten-

tion since they guarantee that every nonemptyfinite AcX has a

>p-maximal alternative, 1.e., an ae€ A such that no beA has

b>pa. Moreover, acyclicity is the weakest property for >p that

offers this guarantee. A social choice function that satisfies Al—A3

and the following condition is often referred to as a “social decision

function” (SDF) [134].

A5**, For all Pe P, >p is acyclic on X.
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proved that Al, A2, A3, A6, and his version of m-ary independ-

ence imply A7. Hence, in each of the preceding theoremsthat use

Al, A2, A3, A6, and A7, we can replace A7 by m-ary independ-

ence for any fixed finite m > 2 that is smaller than |X|.

A different move, made by a numberof people [7, 13, 46, 54, 95,

113, 118, 136, 138], is to retain A7 along with Al and A3 but also to

expand # to contain every nonempty subset of X. This is done to

allow the use of passive intraprofile (consistency, rationality)

conditions of the expansion or contraction types in place of direct

ordering conditions like A5 and A5**. In many cases, the

expansion/contraction conditions imply ordering properties for >p

and may therefore be used in preceding impossibility theorems in

place of uniformity conditions so long as & is suitably expanded.

This may appeal to some people since the expansion-contraction

conditions often have a direct intuitive flavor that is not obvious for

conditions like A5* and A5**.

Two examples will illustrate this: see (54, 95, 138] for additional

discussion. First, Plott’s path independence condition C(A U B)=

C(C(A) U C(B)) implies that each >p is transitive, hence that A5*

holds. Second, the contraction condition Ac BSAN C(B) EC(A)

implies that each >>pis acyclic, hence that A5** holds. Therefore,

with o suitably expanded, A5* can be replaced by path independ-

ence, and A5** can be replaced by the noted contraction condition.

The approach of retaining A7, expanding x, and using other

passive intraprofile conditions in place of the direct ordering

conditions has perhaps received its deepest expression in Bandyop-

adhyay [7]. He retains A7 along with Al with |N| 22 and A3, and

assumes that contains every nonempty subset of X. For reasons

discussed in [7], he considers only expansion conditions for the

passive intraprofile category.

Five expansion conditions figure in Bandyopadhyay’s impos-

sibility theorems. One of these says that, for all nonempty index

sets J and all A; e &:

AS. If |A;| 22 for all j J, then C(U C(A;)) < C(U Aj).
jeJ jeJ

The other four are, for all x,y¢X and all Ae such that



32 P. C. FISHBURN

{x, y} cA:

A5,. If x € C({x, y}) and y € C(A), then x € C(A),
AD53. If C({x, y}) = {x, y} and y€C(A), then x € C(A),
ADS,4. If C({x, y}) = {x} and y € C(A), then x € C(A),
Ads. Ifx #y and C({x, y}) = {x}, then C(A) cA.

As before, we suppress P in C(A, P) throughout. Each conditionapplies to every Pe P. The weakness of AS; is especially note-worthy. It simply says thatif |A|=3 and if x>py for at least onepair {x, y} cA, then something in A (not necessarily y) will not
appear in its choice set C(A).
Bandyopadhyay considers a variety of existential, active in-

traprofile, and interprofile conditions in conjunction with the
preceding passive intraprofile conditions to illustrate the boundary
between possibility and impossibility. Because his results lie at the
edge of recent research inthis area, I shall summarize them here.
His existential conditions are A4 (no dictator), A4* (no vetoer),

and three others:
A4** (no oligarchy). For every nonempty I <N there exist x,y 6 X

and P € P such that either x >i y for allie I and y=px, or x >,y for
some tel and y>px.
A4* (no “strict” dictator). For every iE

N

there exist x,y € X and
Peé# such that either x>,y and Y>pX, or x>;y, x2;y for some
JE N\{i}, and y=px.

A4" (non-weak resoluteness). For all distinct x,yeEX and all
AeA, if {x,y} CA then there exists a PEP such that x~py and
either x >; y or y>;x for someiéN.
Two active intraprofile conditions are used, namely A6 andits

strong companion A6* (x >,y whenever x =;y for all i and x>,y
for some1).

Finally, Bandyopadhyay adopts three interprofile conditions in
addition to A7. The following apply to all x,y,a,b¢X and all
P,P' Ee.

A8&* (monotonicity). If (x>,y>x >i¥,X~;y>xzy) for all
LEN, thenx>py>x>py and xZ=py>x2py.
A8** (strict monotonicity). If the hypotheses of A8* hold and

elther (y2;x,x>/y) or (y>;x,x 2iy) for some ie N, then x=p
YDx>p-y.
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A9 (binary independence-neutrality). If x>;yo@a>;b and y>;

x@b>!a for allie N, thenx>py@a>pb.

Note that each of A8* and A9 implies A7.

The following theorem presents a summary statement of the

possibility/impossibility theorems in [7]. There are seven sub-

theorems, (a) through (g). Each emphasizes the critical nature of

the very weak extension condition A5s.

THEOREM 6 Suppose C on =A XF is a social choice function

with d ={AcX:A #@} thatsatisfies Al, A3, A7, and |\N| = 2. If,

in addition, C satisfies

(a) A5, and A6,then A4 holds @ ASs fails;

(b) A5,, A54, and A6, then A4** holds @A5s fails ;

(c) |N|=4, A5,, A6, and A8**, then A4° holds © A5; fails;

(d) |N| 24, A5,4, A6, and A8**, then A4° holds © A5;fails;

(e) |X|=|N|, A5;, A8* and AQ,then A4* holds & AS5sfails;

(f) |X|=|N|, A54, A8*, and AQ, then A4* holds @ ASsfails;

(g) A53, A4’, and AQ, then A6* holds & AS;fails.

Thus, in each case, whenall other conditions hold, A5,; mustfail,

i.e., there is an A with |A| =>3 and a P € F suchthat x >py for some

x,y € A, and C(A, P)=A. Conversely, if A5; holds along with the

antecedent conditions in any given case, then the condition named

immediately before “<>” must fail. For additional discussion, see

[7] andits references. A related contribution in [48].

Nonbinary theorems

Our move away from A2 and A7 is completed by considering

families of feasible sets that need not contain any subset ofX with

fewer than m alternatives for a specified m =3. To highlight this

change, we prefix our conditions with “B” instead of “A” but

maintain the previous numbering arrangement. Thus, B1 refers to

N, B2 to X and &, B3 to F, B4 to existential conditions, and so

forth.
Webegin with a theorem of Grether and Plott [75], then consider

two theorems of Fishburn [57, 61]. The conditions used by Grether

and Plott comparefairly directly with those in Theorem 1.
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THEOREM 7A Suppose C on Z= A X P is a social choice function
such that, for a fixed m with 3<m < |X|:

Bl. N is a nonempty finite set with |N| = 2,
B2. X is a finite set with at least four elements, and & contains

every subset ofX with at least m elements,
B3. P is the set of all functions from

N

into the set of weak orders
on X.

Then C cannotsatisfy all of the following conditions:

B4. For every iéN there exists an AE & and a PEP such that
C(A, P)c {x €A:x2,y for all y € A},

BS. For all Pe P and all A,Be 4, if ACB and AN C(B, P)#
QO, then C(A, P)=ANC(B, P),

Bo. For all xe Ae and all PEF, if x>;y for allie N, then
y €C(A,P),

B7. For all A € & and all P,P’ € 9,iffor all x,yEeAandallieN
(X>)YQX>jy, y>;xQy>!}x), then C(A, P)= C(A, P’).

Condition B4 is a no-dictator condition, B5 is the passive
intraprofile condition often referred to in the context of individual
choice as the “weak axiom of revealed preference,” B6 is an
obvious Pareto condition, and B7 is a traditional independence
axiom [4].

Grether and Plott prove Theorem 7A by showing that its
conditions imply the existence of a social choice function that
satisfies the same conditions after m is replaced by m—1. This
reduction in m can be continued down to m=2, at which point
Theorem 1 establishes impossibility.
For convenience, let #,,={A<¢X:|A|=m)}. Theorem 7A as-

sumes that (#,,U 4,4; U++-)o¢ &. Fishburn [57, 61] restricts
further by assuming only that o,, < for a fixed m with 3<m<
|X|. Because of this, B5 in inappropriate and the following will be
used instead:
B5*(m). For all A,B € x with |A| =|B| =m,andfor all P € P,if

AM C(B, P)#, then C(A, P)N[B\C(B, P)] =;
BS5**(m). For all Bc X with |B|>m, and for all Pe P, some

x € B is in C(A, P) for every A cB for which x € A and |A| =m.
The first of these, which is stronger than the second, says that if

something in the choice set for Be &,, is also in Ae &,,, then no



INTERPROFILE CONDITIONS AND IMPOSSIBILITY 35

“loser” for B will be in A’s choice set. The second requires the

presenceofan alternative in any B with |B| >

m

that is chosen from

every m-element subset of B which contains that alternative. It is a

straightforward extension of the idea behind acyclicity, AS5**.

The following theorem [57] is an m-ary version of Theorem 4A.

Like the earlier theorem, it uses a no-vetoer condition and a strong

monotonicity assumption.

THEOREM 7B Suppose C on DB=AXF is a social choice

function such that, for a fixed m with 3<m <|X|:

Bl’. N is a nonempty finite set with |N| = 3.
B2'. X is finite, |X|=4, and H,, < A,

B3’. F is the set of all functions from N into the set of linear

orders on X.

Then C cannotsatisfy all of B5**(m), B6, B7,

B4*. For every ie N there is an AE A,, anxeA, anda Pe P

such that x >, y for all ye A\{x} and x ¢ C(A,P),

and
B8. For all Ae S,,, allx eA, all P,P'€P, and allie N, if for

all j e N\{i} the restrictions of >; and >; to A are identical,

and if x € C(A, P’) and (x>;y, y>;x) for some y € A\{x}

and >, and >; are the same on A\ {x}, then C(A, P) = {x}.

Condition B8 says that if x is in C(A, P’) and if P on A is exactly

the same as P’ on A except that some individual moves x up one

notch, then x will be the unique choice in C(A, P). This condition,

like A8, is felt by some people to be unduly strong. It is therefore

omitted in the next theorem, which uses the symmetry properties of

anonymity and neutrality that were defined near the end of Section

4.

THEOREM 7C Suppose C on D=AXPF is an anonymous and

neutral social choice function thatsatisfies B1, B2’, B3, B5*(m), and

B7 for a fixed m with 3<m <|X|. Then it violates
B4’. There exists an A € &,, and a P € f such that C(A, P)#A.

This theorem, from [61], is a natural generalization of a similar

binary theorem in Hansson [81]. Both results say that if C is

required to satisfy fairly appealing symmetry conditions along with
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an independence axiom and an apparently innocuous passive
intraprofile condition, then C is completely indecisive, i.e.,
C(A, P)=A,for all A in a substantial part of &.

Single-set theorems

We conclude our discussion of Arrow-type multiprofile theorems
with structures similar to Theorem 1 by remarking on two theorems
of Hansson [80,81] that allow © to contain only one set. For
convenience, we assume that XY « x.

THEOREM 8A

_

Suppose C on DZ = & X P is a social choice function
that satisfies B1 with |N| = 1, B3, B6, and

B2°. |X|=3 and Xe.

Then C cannot satisfy both of the following conditions:

B4**. For every i€N there are x,yeéX and Pe such that
x >;yand yeC(X,P),

B7*. For all nonempty A < X andall P,P’ €F, iffor allx,yeA
and all ieN (x >;y Qx>;y, y>\xSy>x), then either
ANC(X, P)=ANC(X, P') or else one of these two
intersections is empty.

Condition B4** is another form of no-dictator condition, and B7*
is a type of independence condition that restricts C(X, -) over P. If
there are Aé & other than X, B7* has nothing to do with these
other feasible sets. Note that there is no direct passive intraprofile
condition in the theorem apart from the requirement that C(X, P)
be nonempty for every P. However, B7* carries within itself aspects
of such a condition.

This is shown by the proof of the theorem, which demonstrates
that if all the conditions hold, then it is possible to define another
choice function C’ on {Ac X:A #@} x F that satisfies the condi-
tions of Theorem 1. Since we know that the latter conditions are
inconsistent, the conditions of Theorem 8A mustalso be inconsis-
tent. To define C’(A, P) when @cAcX [we take C’(X, P)=
C(X, P)], let P° € P be such that P? is the same as P on A and,for
all x € A and all ye X\A, x>?y for every ie N. Thenlet

C'(A, P) =ANCC(X, P?”) for all such (A, P).
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Condition B6 insures that C’(A, P)#@, so C’ is a social choice

function on the enriched domain. We then use B7* to show that C’

satisfies the passive intraprofile condition [AcB,ANC'(B, P)#

Zl>C'(A, P)=ANC'(B, P), and this in turn implies that every

>p, defined on the basis of C' on pairs of alternatives, is a weak

order. It is then straightforward to show that C’ satisfies Arrow’s

other conditions.

As might be expected from Theorem 8A and its proof sketch,

B7* is a very strong condition. But then so are A5 and A7 taken

together. The message of Theorem 8A is that the essence of A5 and

to the simplest possible structure for +.

Hansson’s other theorem noted here follows the theme of

Theorem 7C. It uses the following modification of the Pareto

condition B6:

B6*. For all x,y¢X and all Pe, if x>,y for all ie N and

y €C(X, P), then x €,C(X, P).

Rather than excluding y from the choice set when it is dominated

by x, this allows a dominated y to be in C(X, P) but, when this

happens, all dominators of y must also be in C(X,P). It is easily

checked that C(X, P)=X for all Pe satisfies the conditions of

Theorem 8A when # = {X} and B6is replaced by B6*. However,

there is no other way to achieve consistency underthis change.

THEOREM 8B Suppose C on D= AX FP is a social choice function

that satisfies B1 with |N|=1, B2°, B3, B4**, BO", and B7*. Thenit

violates

B4". There exists a P € P such that C(X, P)#X.

Complete proofs of Theorems 8A and 8B are also given in [54].

6. SINGLE-PROFILE THEOREMS

In contrast to the single-set theorems that conclude the preceding

section, we now consider impossibility theorems based on single

profiles. The crux of these theorems lies in the structure of the

profile used to demonstrate inconsistency with various intraprofile

conditions. Since interprofile conditions are, by definition, inap-

plicable to the single-profile context unless their intraprofile special-
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izations are nontrivial, single-profile theorems that emulate Arrow’s
multiprofile theorem and its companions must use conditions that
facilitate manipulations within a profile that mimic interprofile
comparisons made possible by independence conditions like A7. As
we Shall see, some structure is neededto do this.

Part of the motivation behind single-profile theorems lies in the
observation that any specific realization of a social choice problem
gives rise to only one preference profile. Consequently, it may be
possible to circumvent the difficulties raised by multiprofile impos-
sibility theorems by using only intraprofile conditions and avoiding
interprofile conditions that apply to different profiles that cannot
possibly obtain simultaneously. The message behind the single-
profile theoremsis that there is no simple escape from impossibility
by this route.

Examples

We shall begin our discussion of single-profile impossibility
theorems with a few examples designedto clarify the perimeter of
these theorems. Later subsections expand on the ideas introduced
in the examples. To add variety, we shall consider Sen’s Paretian-
liberal paradox [135, 136] alongside of Arrow’s theme.
Assume initially that Al, A2, and A6 hold with N = {1, 2} and

X = {a, b,c}. For definiteness, suppose that the two individuals
have the following linear preference orders on X:

l. abe (a>,b>,c)
2. bea (b>2c¢>4).

This specifies a single profile that we shall use instead of condition
A3. Let P denote the profile. Then, by A6, b>pc. Given b>pc,
we note two ways an impossibility might occur.

First, as in Sen’s Paretian-liberal paradox, suppose each in-
dividual is a “dictator” over a single pair of alternatives, and
assume that >> is to be acyclic, as in A5**. Let individual 1 dictate
the social preference on {a,b}, and let individual 2 dictate the
social preference on {a, c}. This might be appropriate if the welfare
of 1 is affected by the choice from {a, b} but the welfare of 2 is not
affected by this choice, and similarly for {a, c} with the roles of 1
and 2 reversed. We then have a>pb and c>pa, which in
conjunction with b>pc violate A5**.
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Second, following Arrow’s theme, suppose we adopt A4, AS, and

the following intraprofile specialization of the  interprofile

independence-neutrality condition A9 used in Theorem 6:

A9*. For all x,y,a,b€X and all Pe, if (x>;y@a>,b,y>;

x@b>,a) for allie N, thenx>py@a>pb.

Condition A9* is identical, under A2, to the final condition in

Section 4. When |P|=1, it is identical to A9, but we list it

separately to emphasize its intraprofile intention.

Given the particular profile of our example, namely P=

(abc, bca), A9* requires a>pbGa>pc and b>pa©c>pa. By

A6, b>pc. Hence, by AS5 (negative transitivity) either b>pa or

a>pc. If b>pa, then A5, A6, and A9* require b >pc>pa,and in

this case individual 2 is a dictator. On the other hand,if a>pc, then

A5, A6, and A9* require a>pb>>pc, and therefore 1 is a dictator.

Consequently >p must violate at least one of A4, A5, A6, and A9*

for the single profile P = (abc, bca).

The simple two-individual profile of our initial example was

chosen to illustrate the inconsistencies in nontrivial ways that show

the interactions involved within a single profile. It should be evident

that the cited conditions could be consistent for other profiles. For

example, if P = (abc, cab), then c>pa>pb (with c>p))is consis-

tent with A5** and the dictatorial powers of 1 and 2 over their two

pairs. And, if we choose a profile P in the Arrow context for which

the simple majority relation >,, is a weak order, then all of A4, AS,

A6 and A9* will hold so long as some >,is not included in >y.

There are also many profiles for which >, is not a weak order

but A4, A5, A6, and A9* are consistent. One example is the

cyclic-majorities profile

1. abc

2. cab
3. bea,

where a>yb>yc>ya. If we take >p to be the linear order

a>pc>>pb,then noindividual is a dictator (or vetoer), and A6 and

A9* holdtrivially.

Hence, when A9*is used along with conditions like A5 and A6,

it is necessary to supply the single profile with structure that

facilitates the use of A9* when AS and A6 by themselves do not

force a dictator or vetoer. Our initial example with two individuals
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specified a minimal structure of this kind. Following a_ brief
discussion of the Paretian-liberal case, we shall describe a more
varied structure for use with A9* that leads to an immediate proof
of impossibility via the first proof of Theorem 1.

Paretian-liberal theorems

Impossibility theorems that stem from Sen’s work [135, 136] that are
based on specialized powers for different individuals are usually
presented in a multiprofile format. However, since their proofs are
essentially single-profile proofs, they are classified here as single-
profile theorems. The proofs use the Pareto condition and condi-
tions for the powers of individuals to construct a profile that violates
a passive intraprofile condition like acyclicity. We could formulate
the special profile’s structure as part of the theorem to yield a
single-profile statement, but since this would virtually include the
proof within the statement of the theorem weshall follow the usual
format.
Three Paretian-liberal theorems will be presented. The first is

Sen’s. The others are due to Gibbard [73], who provided a new way
of formulating the problem. Many other contributions to the topic
are notedin [6, 73, 92, 95, 137, 145] and in references therein. The

central theme of these theorems is the clash between individual
powers and rights and “collective rationality” conditions such as
A5**.

THEOREM 9A Suppose C on B= & X FP is a social choice function
that satisfies A1, A2, A3, and A6. Then C mustviolate either A5**
or

A4’. There exist distinct i,j € N and pairs {x,, y;} and {x;, yj} in A
such that, for all PEP, x;>;y,;=x;>py, and X;>j)\ji>
Xj >p Y;-

The existential condition A4* grants each of two individuals
dictatorial power over a pair of alternatives. The proof of the
theorem uses A4’ and A6to construct a profile that violates A5**.
For example, if {x;, y,} and {x;, y;} are disjoint, then a profile P
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with

YjiXi ri Vi 7ix;

Vi>KYj>eXi>~x; for each ke N\{i,j}

yields x;>py,; (A4), yi>px; (A6), x; >py; (A4), and y;>px; (A)

for a >p cycle.

Gibbard observed that libertarian claims seem more reasonableif

individuals are associated with specific factors in a multidimensional

alternative space. For example, a specific factor might pertain to

aspects of individual 1’s life that have nothing to do with other

individuals’ lives. To make the multidimensional structure explicit

we shall use
A2*. X=X,x X,X--- x X,, for a positive integer m, |X,| = 2 for

t=1,...,m, and & includes every two-alternative subset of X.

The next two theorems are usually presented in terms of a

general choice function C, but nothing essential is lost by focussing

on the two-alternative subsets of X. We shall write xE,y when

xX =(X1,X2,.--5Xm) and y=(, y2,---,¥m) are in X and have

x, =y, for all se {1,..., m}\{t}. Thus xE,y means that x and y

differ at most only in their ¢-th components.

THEOREM 9B Suppose C on B= AX F is a social choice function

that satisfies A1, A2*, and A3. Then C violates either A5** or

A4°. There exist distinct i,j « N and t,, t;€ {1,..., m} such that,

for each k € {i,j} and all x,y € X, if xE,y and x>,y, then

X>py.

The structure added by A2* coupled with the more sweeping

nature of A4° compared to A4* allows the omission of A6 from

Theorem 9B. With (i, j) = (1, 2) for A4° and x’ any fixed elementin
X3X---XxXX,, ifm =3, a profile P with

(X15 Xo, X') >1 (V1, Yo, X') 1 (X15 Ya, X') 1 (i, X2, X’),

(V1, X2, X') >gp (X15 Yo, X') >eis V2, X') Se (X15 X2, x’)

for all ke N\{1} yields (x4, x2, x') >p Qn, X2, X') >p 1, 2, X') >p

(X1, Yo, X') >p(X1, X2, x'), for a >p cycle.
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The preceding proofrelies on the feature that individual 1 prefers
x; to y, whenallelse is fixedat (x,, x'), but prefers y, to x, whenall
else is fixed at (y., x’). The next theorem tightens A4° by granting
dictatorial power only when such conditional preference reversals
are not present. To reflect this we write a>>;b for a,b € X, if and
only if x>;y for all x,y eX such that xE,y, x,=a, and y,=b.
Condition A6 is reinstated here since the other conditions are
consistent withoutit.

THEOREM 9C_ Suppose C on Z= & X FP is a social choice function
that satisfies A1, A2*, A3, and A6. Then

C

violates either A5S** or

A4". There exist distinct i,j € N and t, t;€ {1,..., m)} such that,
for each k € {i,j} and all x,y EX, if XE,Y And X1>>KYu;
then x>py.

The proofis similar to the proof of Theorem 9A.In [73], Gibbard
showsthat a further tightening of the existential libertarian condi-
tion allows consistency with A6 and the other conditions of
Theorem 9C. Additional analyses appear in the references cited
earlier.

An existential profile condition

We now return to Arrow’s theme under the intraprofile
independence-neutrality condition A9*. Although this condition is
not used in Theorem 1, it is essentially implied by conditions in that
theorem. In particular, given Al, A2, A5, and A7, A9*is implied
by the combination of A6 and A3 modified to include only linear
orders for individuals, or by the original A3 and the stronger Pareto
condition A6*.
The other component neededfor a direct single-profile analogue

of Theorem 1 is a structural condition for the profile used in the
theorem. The condition that we adoptis similar to profile conditions
used by Parks [114], Kemp and Ng [96], and Pollak [119]. Its
statement here is essentially that in [119].

A3*. PY consists of a single function P* from N into the set of
weak orders on X suchthat, for every function P’ from

N

into the set
of weak orders on {a,, a>, a3} with the a; distinct, there exist
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X1,X2,X3 €X such that, for allie N and all j,k € {1, 2, 3}, xj>7XO

a; >}; Ag: .

This says that every possible 3-alternative profile of weak orders

can be found within P* by a suitable relabeling of alternatives. To

illustrate A3*, we simplify slightly by considering only profiles with

linear orders. (This substitution can be made in the ensuing

theorem without altering its conclusion.)

When N = {1, 2}, the simplest profile of two linear orders that

satisfies the linear version of A3* is

p*t= (X4X2X3X4X5, XX5X3X1X4).

Six subprofiles that correspond to the six possible combinations of

two 3-element linear orders up to relabeling are:

(x2X3X4,X2X3X4) like (a,a243, a\a2A3)

(X2%3X5, X2X5X3) (a1a203, 4,432)

(x1X3X4, X3X1X4) (41A2A3, 220,43)

(X1X2X5, X2X5X1) (a1a203, @2430;)

(XX4X5, X5X1X4) (4,a203, €3042)

(x4X3X5, X5X3X1) (414203, 4302Q}).

When N = {1, 2,3}, we need a P* with three linear orders that

contains each of the 36 distinct combinations of three 3-element

linear orders. This appears to require at least nine elements in X.

The original weak-order version of A3* requires considerably more

alternatives for a given |N| than doesits linear-order counterpart.

The first single-profile impossibility theorems like our next

theorem were proved independently by Parks [114] and Kemp and

Ng [96]. The following theorem is similar to those in [114, 119]. See

also [78].

THEOREM 10 Suppose C on = & X F is a social choice function

that satisfies Al, A2, and A3*. Thenit cannotsatisfy all of A4, AS,

A6, and A9*.

The proof is almost identical to the first proof of Theorem 1. The

only change neededis to use A9* in place of A7 and in other places

wherespecialized 3-alternative subprofiles are employed. Condition

A3* guarantees the existence of suitable subprofiles.
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Parks [114] also notes modifications of Theorem 10 that are
closely related to Theorem 5A andto the version of Arrow’s theorem
that uses monotonicity, and Pollak [119] shows that if A6 is
strengthened to A6*, then the conditions of Theorem 10 apart from
A4imply a lexicographic dictatorship scheme (see paragraph A

4

in
Section 4). In addition, Muller [109] presents a generalization of
Theorem 10 that considersrestrictions on P’ in condition A3*.

Correspondencesfor other multiprofile theorems

Additional correspondences between multiprofile and single-profile
impossibility theorems are developed by Roberts [124]. At this
point we note only the part of [124] that fits in with our preceding
discussion.

Roberts shows how A3* and A9* can be used with a single profile
P* to define a binary relation >, for every P « under A3 sothat
each >p satisfies A9 (defined immediately before Theorem 6) and
also satisfies a passive intraprofile condition based on conditionslike
transitivity that use no more than three alternatives in their
characterizations, provided that the parent relation >p+ Satisfies the
same condition. The definition for each >> that accomplishesthis is
as followsforall x,y €X:

x >py if, for all a,b € X, a>p»b whenever

(x>;y a>; b, y>,x@b>*a) for allie N.

As usual, the >; are for P, and the >* for P*.
The following result is a three-part theorem. One part is for AS,

the second applies to A5*, and the third refers to 3-acyclicity (for
>p» and the >p) as defined prior to Theorem 4A. For convenience
we shall denote 3-acyclicity by A5°.

THEOREM 11 Suppose N,X and & satisfy Al and A2, and P* is a
profile that satisfies A3*. Suppose further that C* on of X {P*} is a
social choice function that satisfies A9* along with AS [A5*, AS5°,
respectively]. Then there exists a social choice function C on & Xx P
that satisfies A3 and A9 along with AS [A5*, A5°, respectively |.

Since A9 implies A7, the hypotheses of Theorem 11 for the
single-profile case generate the kinds of structure and conditions
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used in many multiprofile theorems. It is also easily seen that

conditions similar to A4, A4*, A6, and A8 imposed on >p« imply

the corresponding conditions for all >p under A3* and A9*. As a

consequence, Theorem 11 generates single-profile impossibility

theorems that are natural correspondents of Theorems 2A, 2B, 4A

(use A5° instead of general acyclicity), SA, and 5B.

Further single-profile analogues of theorems in the preceding

section can be obtained by strengthening A3* to include more

subprofile configurations. For example, if it is assumed that every

possible 4-alternative profile of weak orders can be found in P*,

then we can obtain the single-profile version of Theorem 3, for

interval orders, semitransitive orders, and semiorders. Andif every

finite-alternative subprofile can be found in P*—which of course

forces X to be infinite—then single-profile versions of multiprofile

theorems based on A5** can be generated.

An analysis of the relationship between the single-profile and

multiprofile approaches that is based on formal logic appears in

[125].

7. ORDINAL UTILITY AND IMPOSSIBILITY

This section is intended as a bridge between the preceding sections

and the two that follow. Its purpose is to recast some of the earlier

formulation in terms of utility functions and to mention other

results within the ordinalist approach of Arrow [4] that are

facilitated by the use ofutilities.

Heretofore, profiles have been characterized as mappings from N

into a set of weak orders or linear orders on X. An alternative used

in much of the social choice literature is to represent individuals’

preferences by real valued utility functions, or by classes of such

functions, and to speak of profiles in terms of these functions.

Given a weak order >, on X, we shall say that u is a utility

function for >o if u is a real valued function on X, and, forall

x,yeXx,

x>oy@u(x)>uQy).

Since this numerical representation of >) implies that >) must be a

weak order, it cannot serve for more flexible types of binary
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relations such as those that allow ~ to be nontransitive. Other
numerical representations for such cases are discussed in [52], but
we shall not go into them heresince the assumption of weak orders
will be maintained for individual preferences.
On the other hand, the existence of a utility function for >, is not

assured by the assumption that >, is a weak order.It is assured if XY
is finite or denumerable, but not otherwise. The simplest example
of a weak order not representable by a real valued function is the
lexicographic order of the Euclidean plane defined by (x,, x2) >)
(Vi, y2)[41>y, or (X41 =y,,x2>y,)], for it can be easily seen
[39,52] that the existence of a utility function for this case would
imply that the set of all rational numbersis uncountable, whichis
false.

Sufficient or necessary and sufficient conditions for a weak order
>o9 on X to have a utility function are presented in
[39, 41, 42, 52, 99]. These references also discuss conditions for >>
on X that ensure the existence of a continuous utility function with

economics is the case in which X is the nonnegative orthant of a
finite-dimensional Euclidean space, i.e., the space of commodity
bundles (x,,...,%,) with x;=0 for all j, with u(x‘,..., xx)
converging to u(x,,...,Xm) for any sequence of bundles
{(xf, ...,.x%):k =1, 2,...} that approaches (x,,..., Xm):
A utility function for >, as defined above is often referred to as

an order-preserving or ordinal utility function since it places no
demands on u other than x >yy @u(x)>u(y). Any other real
valued function u on X whichsatisfies x >) y u(x) > u(y), for all
x,y € X, is also an ordinalutility function for >>. Consequently,it is
sometimes useful to think of >, in termsofthe set of all real valued
functions that represent it in the mannerindicated. Such a set is an
equivalence class in the intuitive sense that all functions in the set
are utility functions for >), and no function not in the set can be a
utility function for >. More formally, suppose F is the set ofall
real valued functions on X, and let F(>,) denote the functions in F
that represent >9. So long as each weak order >o has a utility
function, the weak orders on X partition F into nonempty and
mutually disjoint classes F(>9). This partition defines an equiv-
alence relation (reflexive, symmetric, transitive) on F, with u
equivalent to v if and only if u and v are membersof the sameclass
in the partition.
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If we assume for preceding theorems that the individual weak

orders used in A3, B3, and so forth have utility functions, then a

profile P=(>1, >2,---> >,) can be thought of as an n-tuple of

utility functions (Uy, Uz,.--; u,) where u; 1s a utility function for

>, More precisely, the n-tuple of weak orders (>1, >2,---» >n)

correspondsin the ordinal context to the family

x FOi)= {(u,, U2,...,U,):u,;E F(>,) fori=l1,..., n},

where F(>;) is the class of utility functions for >;.

Conditions used in preceding theorems can be reformulated in

the ordinal utility mode provided werestrict our attention to weak

orders that have utility functions, which as notedis always the case

when X is countable. With F as the set ofall real valued functions

on X, A3 can be replaced by the assumption that P is the set ofall

mappings from N into F. Let U be such a mapping, say U=

(U,, Uz,...,U,) When N=(1,2,...,n}. Then A5 requires two

parts: for all U,U' € P,

A5Sa. >y is a weak order on X,

ASb. If U=(u1,.-., Un) and U'=(uj,..., u,,) are equivalent in

the ordinal sense [for all ie N and all x,yeX, u;(x)> uly)2

uj(x) >uj(y)], then >y = >u-

The latter property makes explicit the sense in which Arrow’s

theorem and related results rely only on the ordering information

contained in the >, and not on any extra-ordering properties of

numerical representations or utility functions. Relaxations of AS

like A5* and A5** are straightforward in this reformulation. A4

would say that for each ie N there are x,ye X and a Ue PY such

that u,(x)>u,(y) and y2yx. A6 becomes: For all Ue Y and all

x,y EX, if u(x) >u,(y) for all i, then x >yy. And A7gets changed

to: For all U,U'e and all x,yeX, if (u(x) >uly)ou;()>

ul(y), u(x) <uly)uj(x) <u;(y)) for allie N, thenx >ypy@x-u

y. Since this obviously implies A5b we can drop A5Sb when this

version of A7 is used. Changes for other conditions are left to the

reader.
Given A5a, it is often assumed that the >y also have utility

functions, which are usually referred to as social utility functions or

social welfare functions. Suppose W,is a social welfare function for
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the utility profile U, so that, for all x,yeX,

Wo(x) > Woy)x >vy.
The dependence of W on

U

is also written as W[u,,...,U,], so
that Wy(x) = W[u,(x),..., u,,(x)].

This type of formulationis often foundin the literature of welfare
economics, where each x € X provides a composite description of
every individual’s consumption bundle. If it is assumed that each
person’s utility depends only on his own bundle, say x’ for
individual i, with x =(x',...,x”"), then W[u,(x),..., u,,(x)] re-
duces to W[u,(x'),..., u,(x”)]. If, in addition, individuals’ tastes
are presumedto be fixed, so that there is only one relevant U (up to
ordinal equivalence), then W specifies one form of the classical
Bergson-Samuelson social welfare function [11, 127, 128, 129]. It is
usually assumed that such a function is continuous and monotoni-
cally increasing in its arguments, among other things. The paper by
Chipman and Moore[32] provides good coverage of the topic.
A large part of the motivation for the single-profile impossibility

theoremsin the preceding section—seethetitles of [109, 114, 119]—
came from the desire to show that a Bergson-Samuelson social
welfare function cannot escape the problem uncovered by Arrow.
Granting the palatability of A3*, the question of how wellthis effort
has succeeded would appearto hinge on the acceptability of A9*. If
impossibility is denied, then A9* must fail, and consequently there
is some sense in which W must go beyondthe ordinal independence
notions of conditions like A9 and A9*.

Social choice impossibility theorems of the Arrow type have been
developed by Inada [87, 88] for the economic commodity-bundles
setting. He adopts the Bergson-Samuelson form Wy(x) =
W[u,(x'), .-., Un(x”)] but allows the uw; to vary in certain ways so
that his theorems are multiprofile results. Restrictions on the U;
follow traditional lines, and his main analyses are carried out on the
basis of marginal-rate-of-substitution functions rather than the Uj
directly. Under suitable independence and regularity conditions,
[87] shows that either there is a dictator or the social welfare
function is imposed, i.e., it does not change as individuals’
preferences change. In [88], a choice function approach is con-
sidered along with the welfare function approach.
Another line of development in the ordinal setting has been
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pursued by Chichilnisky [27,28]. Her work relies heavily on

advanced concepts in analysis and topology, and I can do no more

than sketch its outlines here. The most interesting aspect of this

work is its avoidance of an interprofile independence condition.

Instead of independence, Chichilnisky uses continuity of the func-

tion that maps preference profiles into social preferences. This is

also an interprofile condition; it says intuitively that small changes

in individuals’ preferences or ordinal utilities cause only small

changesin social preferencesorutilities.

Individual and social preferences in [27,28] are essentially

characterized as equivalence classes of continuous ordinal utility

functions on a set X that has nice structural properties. Let

N=({1,...,n} with n =2, let S denote the “space of preferences”

with members p, pi, P2,-..-, and let @ denote the social choice

mapping from S” into S. It is assumed that ¢ is continuous under an

appropriate topology for S. Then [27] shows that @ must violate

either anonymity or unanimity. Anonymity says that $(Doq),

-» Pon) = P(Pis- ++» Pn) for all (i,.--, Pn) €S” and all per-

mutations o on N; unanimity requires $(p,...,p)=p for allpeS.

A related result for individual cardinal utilities appears in [29]. On

the other hand, [28] shows that if @ satisfies the Pareto condition

A6 and a “weak positive association” condition, then it can be

continuously deformedinto a dictatorial map. This meansthat there

is an ie N and a continuous function f from $” x [0, 1] into S such

that, for all (pi,..-,p,)€S", f(y ---> Pn 0D=O(1,..-. »Pn)

and f(p1,--- Pn» 1)=p;. Given the other conditions, this shows

that the Pareto and nondictatorship conditions are topologically

equivalent.

8. CARDINAL UTILITY AND IMPOSSIBILITY

Thus far we have ignored aspects of individual preferences or values

that transcend elementary comparisons between alternatives in X.

For example, within Arrow’s formulation [4], or the ordinal utility

approach,nodistinction is made between

1: i barely prefers x to y, likes both, and passionately dislikes z,

and

2: i likes x, passionately dislikes y and z, and barely prefers y to

z.
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Both cases are recorded as x >; y >; z.
In the present section, we shall consider strength of preference or

preference intensity information of the type suggested by this
example. Utilities based on comparisons between probability dis-
tributions over alternatives—often referred to as lotteries, gambles,
Or prospects—will also be used for representations of individual
(and in one case social) preferences. At the same time, we shall
continue to ignore comparisons between individuals of the sort
which say that i prefers x to y more strongly than j prefers y to x, or
that 7 is better off in social state x than is j in state y. These kinds of
interpersonal comparisonswill be considered in the next section.

Mostof the section is based on so-called cardinalutility functions.
However, before we get into the full cardinal case, we shall examine
one version of utility that lies between ordinal utility and cardinal
utility.

An intermediate case

Let & be the set of all nonempty subsets of a finite setX. To go
beyond >, on_X, we consider a binary preference relation >, on &
with the interpretation that A >, B if the lottery that assigns equal
probability 1/|A| to each ae€A is preferred to the lottery that
assigns equal probability 1/|B| to each b € B. Weshall say that >,
on & has an averaging representation if there exists a real valued
function u on X such that, for all A,B e &,

A >)Be > u(a)— S) u(b).
[Al aceA |B beB

This is a specialized form of expected utility model with utility
function u. When it holds, we refer to u as an averaging utility for
>) on &.

In the present case, two averaging utilities are equivalent if and
only if they induce the same >) on & by way of averaging
representations. Since an order-preserving transformation of u on X
will preserve >, on singleton comparisons but need not do so for
larger subsets of X, equivalence classes for averaging utilities will
generally be smaller than those for ordinal utilities. At the same
time, since a positive linear transformation of u [v = au + B, w and
B real, a >O] is in the same averaging equivalence class as u, but
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such a class may contain other types of transformed functions,

equivalence classes for averaging utilities will generally be larger

than those for cardinalutilities.

The following impossibility theorem [53] applies to this inter-

mediate form ofutility.

THEOREM 12 Suppose C on & X F is a social choice function that

satisfies Al with |N|=3, A2 with X finite, \X|2=4 and H={Ac

X:A#}, and

A3’. & is the set of all functions from N into the set of weak

orders on & that have averaging utilities.

Then C must violate one of the following:

A4*. For every i€N there exist x,yeX anda Pe P for which

{x} >: {y} and C({x, y}, P)=4y},
AS'. For all Pe and all A,Be SX, if ACB then AN

C(B, P)< C(A,P),
Ao’. For all Pe, all x EX, and all Ae A, if A>; {x} for all

ie N, thenx¢ C(AU {x}, P),

A7. For all x,y €X and all P,P'é9, if {x} >i{y}@ {x} >:

{fy}, {y}>ifx} SO} >i{x}) for all ieN, then

C({x, y}, P)=C({x, y}, P'),
A8’'. For all distinct x,y €X, all P,P'€, and all ieN, if

>, =>; for all je N\ {i}, >; is obtained from an averaging

representation for >; by interchanging the values of u;(x)

and uy), {y}>:{x}, and xeC({x,y},P), then

C({x, y}, P’) = {x}.

Here A4* is the usual no-vetoer condition, AS’ is a passive

intraprofile contraction condition mentioned in Sections 4 and 5 (it

implies A5** on single alternatives), A6’ is a Pareto condition, A7

is the usual binary independence condition, and A8’ is a binary

strong monotonicity condition that is weaker than A8 in the

presence of A7. It may be noted that the choice function C is not

presumed to be representable by an averaging representation

through maximum utilities for alternatives, and it need notsatisfy

weak order on X in terms of binary choices for each profile.

The earlier multiprofile theorem that is most easily compared to

Theorem 12 is the Mas-Colell and Sonnenschein [102] result for

acyclic >p, Theorem 4A.
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Cardinal utility

Suppose u is a utility function for a weak order >o on X that
satisfies one or more additional conditions. Let ¢ denote these
other conditions. We then say that u is a cardinal utility function
(with respect to ©)if, for every utility function v for >,

v

satisfies
if and only if there are real numbers aw and B with a>0 such

that, for all x €.X,

u(x) = au(x) + B.

This is often abbreviated by saying that u is unique up to positive
(a >0) linear (v = au + B) transformations.
There are manyroutes to cardinal utility: eight are mentioned in

[59]. The two most familiar in economics are the von Neumann-
Morgenstern expected utility theory [147], in which a binary
preference relation >, on thesetofall lotteries P,q,...on X is to
Satisfy

P>0dSD P(x)u(x) > > g(x)u(x),

and the approach of comparable preference differences or inten-
sities of preference first axiomatized by Frisch [66], Lange [100],
and Alt [2]. The latter route accords most closely with the intuitive
version in economic theory during the second half of the nineteenth
century and with the example given at the beginningofthis section.
Axiom systems for these and otherinterpretations of cardinal utility
appearin [52].
As before, let F denote the set of all real valued functions on X.

Functions u,v € F are said to be cardinally equivalentif they are
related by a positive linear transformation, 1.e., if there are
numbers a >0 and £ such that v(x) = au(x) + B for all x eX. We
Shall write this as u ~ v. Similarly, u and v are cardinally equivalent
on a nonempty subset A of X, written u ~, v, if their restrictions to
A arerelated by a positive linear transformation:

u~,v if there are a>0 and B such that,

for all x € A, u(x) = au(x) + B.

Equivalence extendsto profiles of utility functions in the natural
way. Let % denote theset of all functions from N into F. We write
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U(i) =u; for the utility function assigned to ie N by the utility

profile Ue WU. When N=({1,2,..., n}, we may represent U as

(U,,Ur,...,U,), just as P is represented by (>1, >2,.--5 >n).

Primes apply in the usual way, e.g. U' = (ui, u3,..-, U,). With this

notation,

U=, U’ if u;~,u; for allie N.

When A = X, the subscript is dropped, so U= U’'if u;~u; forall

LEN.

Impossibility for social orders

Our first impossibility theorem for individual cardinal utilities is

from Sen [136, Theorem 8.2*] and Roberts [123, Theorem 3]. The

asymmetric social relation on X associated with the utility profile U

will be denoted by > y, similar to >p, with

x>yy ifx #y and C({x, y}, UV) = {x}.

THEOREM 13 Suppose C on MX U is a social choice function that

satisfies

Cl. N is a nonempty finite set,

C2. X has at least three elements, and S contains every two-

element subset of X, |

C3. U is the set of all functions from into the set of real valued

functions on X.

Then C cannotsatisfy all of the following:

C4. For every ié€N there exist x,y¢X and a Ue such that

u;(x) > u(y) and y=pX,
C5a. For all Ue U, >y is a weak order on X,

C5b. For all U,U' € U, if U~U' then >yp=>u,,

C6. For all x,yeX and allUe U, if u(x)>u,(y) for allie N,

thenx>vy,

C7. For all U,U'e€%U, and all {x,y}ex, if U and U’ are

identical on {x, y}, then >y and >y._are identical on {x, y}.

Conditions C1—C4, CSa, and C6are essentially the same as their

counterparts in Theorem 1. Condition C5b allows the social orders

>, and >,to differ even when each u;, is ordinally equivalent to its
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u; counterpart, provided at least one u; is not cardinally equivalent
to u;. But C7 in conjunction with C5b forces >y and >,to be the
same when U and U’are ordinally equivalent, and this puts us back
into Arrow’s context. All that then remains to apply Theorem 1 to
prove Theorem 13 is to show that A7 follows from the conditions of
Theorem 13. In fact, it follows from C5b and C7 [37]. Given that
(x>;yQx>ly, y>,x Sy >}x) for all i, apply positive linear trans-
formations separately to each u; so that u! on {x, y} equals u; on
{x, y}. By C7, the social relations on {x, y} must be the same for U
and the transformed U'; by C5b,the Original U’ and its transformed
version have the samesocial relations on {x, y}, so the conclusion
of A7 follows.
Of the twointerprofile conditions in Theorem 13, CSb and C7,

C5b preserves the cardinal character of the formulation but C7 does
not. If C7 is dropped, consistency obtains. For example, a social
order can be defined for each cardinal equivalence class of profiles
in &% by a sum of the u; under specified normalizationsfor thatclass.
Since the potential normalizations are very diverse, additional
conditions might be imposedto limit their range. To do so would
tend to raise issues of interpersonal comparisons, which we consider
in the next section.

Impossibility for cardinal social utilities

Assuming that weak orders on X haveutility functions, each >, in
the preceding subsection could have been replaced by a social utility
function fy with x >yy @fy(x) >fy(y), for all x,y eX. If we let ~?
denote ordinal equivalence, so that f~°g if, for all x,yeX,
f(x) >f0)@eg(x)>g(y), then C5b and C7 would read as follows
for all U,U' € U andall {x, y} € &:

C5b. If U~U'then fy ~°fy,
C7. If U =5} U',” then fu =fyj} fur

In C7, =, denotes equality on A, and ~% denotes ordinal
equivalence on A.

Condition C5b says that cardinally equivalent profiles map into
ordinally equivalent social utilities. We now consider the case in
which cardinally equivalent profiles map into cardinally equivalent
social utilities. That is, Cb is replaced by U~ U'>fy ~fy.
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The next theorem is from Kalai and Schmeidler [91] and Hylland

[85]. According to [91], it was motivated by Samuelson’s conjecture

[128] to the effect that cardinal utilities do not offer a viable escape

route from Arrow’s impossibility. Condition CSa is implicit in the

assumption of social utility functions, and C5b (cardinal version) is

not listed since it is implied by C2 and C7*: U~U'>(U=,U"

whenever |A| = 3)> (fu ~afu whenever |A| = 3) >fu~fu:.

THEOREM 14 Suppose C on A X U is a social choice function with a

social utility function fy for each Ue U, that satisfies C1, C2 with

|X| 24, C3, and C6. Then oneof the following must be violated:

C4*. For every ié N there isa Ue U with fy # uj.

C7*. For all three-element A<X, and all U,U'«U, if U~, U'

then fu~afu'.

The cardinal no-dictator condition C4* does not prohibit ¢ from

being a dictator in the usual sense since we can have fy not

cardinally equivalent to u; even though fy ~°u;, i.e., even when 11S

an absolute dictator in the ordinal sense. Hence C4* is a very weak

existential condition. Its interprofile companion, C7*, is quite

strong since three-element subsets, as opposed to the usual two-

element subsets, allow the full force of cardinal utility to come into

play.
The proof of Theorem 14is split between [91] and [85] since the

latter shows that a continuity assumption used in the former is not

needed. Like many other proofs, it uses Arrow’s theorem.First, the

conditions other than C4* are shown to imply the existence of an

ordinal dictator via Arrow’s theorem. It is then proved that the

ordinal dictator is in fact a cardinal dictator, thus violating C4”.

Single-profile theorems

Roberts [124, p. 448] notes that single-profile analogues of multi-

profile cardinal utility theorems can be developed in much the same

way that single-profile analogues of multiprofile ordinal utility

theorems were developed in Section 6. For example, A3* would be

replaced by a domain condition which posits the existence of a

utility profile U* whose u; components are unique up to positive

linear transformations such that, for any utility profile U’ on
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{@,, @2, a3} there exist x,,x»,x3¢6X such that U* restricted to
{X1, X2,X3} is cardinally equivalent to U’ under a relabeling of the
a;. Likewise, A9* would be replaced by an independence-neutrality
condition for the cardinal context at hand (e.g., Theorem 13 or
Theorem 14) that is powerful enough to generate extensions to
arbitrary utility profiles, much like Theorem 11 for the ordinal case.

9. INTERPERSONAL COMPARISONS

The comparison of different individuals’ preferences, utilities, or
welfares has an interesting and turbulenthistory in social choice and
welfare economics [4, 10, 33, 65, 84, 89, 105, 111, 115, 120, 121,
139]. Views have ranged from the total impossibility of making
meaningful comparisons to the complete and precise ability to
compareall individuals’ utilities across all social states.
The purpose of the present section is to consider the effects of

different presumptions about the degree of interpersonal com-
parability on social choice possibility and impossibility. Many of our
results will be stated as possibility theorems, i.e., as characteriza-
tions of the forms that social utilities take under specified condi-
tions. In each such case, an impossibility theorem arises when one
or more additional conditions that contradict the characterization
are proposed.
When interpersonal comparisons are considered, the question

arises as to what agency is empowered to make such comparisons.
Common answers refer to various ethical principles and/or to an
extrasituational planner or planning group. Theroles of mediators,
judges, and juries are also relevant in many practical contexts. I
Shall not explore these possibilities, but wish only to note that a
factor exogenous to the usual confines of a social choice function
may lie behind interpersonal comparisons. At the conclusion of the
section, we shall examine one formulation in which every individual
in N is an interpersonal comparer.
In contrast to the preceding sections, we shall begin with the most

rigid form of intrapersonal utility, namely ratio-scale utility, and
then proceed to cardinal utility and thence to ordinalutility.
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Ratio-scale utility

Suppose u is a utility function for a weak order >, on X that

satisfies one or more additional conditions in a set ©, including

positivity: u(x) >

0

for all x eX. We say that u is a ratio-scale utility

function (with respect to ©) if, for every utility function v for >o, U

satisfies € if and only if there is a positive number a suchthat, for

all x € X,

u(x) = au(x).

This is sometimes abbreviated by saying that ratio-scale utilities are

unique up to positive multiplicative transformations or up to

similarity transformations. A generalization of our definition allows

zero as well as positive utilities for alternatives in X, but only the

strictly positive version will be considered here.

Ratio-scale equivalence will be denoted by ~’. Thus, for any two

utility functions u and v from X into the set of positive numbers,

and for any nonempty Ac X,

u~’,vu if, for some a >0, u(x) = au(x) for all x € A.

As usual, the subscript A is omitted when A=X. The name

“ratio-scale” [142] refers to the fact that v ~’u if and onlyif, forall

x,yeEeXx,

vx) _ ux)
v(y) uly)

Ratio-scale measurement has deep roots in the physical sciences

(length, absolute temperature, and so forth), where it is sometimes

referred to as extensive measurement [99]. It has also been used in

psychophysical measurement [142] and in the scaling of utilities

[67].
Ratio-scale utilities can be viewed as specializations of cardinal

utilities in which a zero point is either derived from a natural state

(zero wealth, bankruptcy, death), or chosen by convention, or

arises as an adjunct of the measurement process used to elicit

relative intensities of preference. Any cardinal utility function that

is bounded below can be converted to a ratio-scale utility function

by fixing the infimum of the u(x) values at 0. For certain

mathematical purposes, it is sometimes useful to convert from one
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form to the other by exponentiation (cardinal to ratio) or by taking
logarithms (ratio to cardinal) even though these transformations
change the difference properties of the scales.
Weshall consider two types of utility profile equivalence for

individual ratio-scale utility functions. Let U and U’ be mappings
from N into the set of positive real valued functions on X. Weak
equivalence, denoted by U~’ U’, is defined by

U='U'if, for allie N, u;~" uj.

This conforms to our earlier definitions of equivalence for ordinal
(Section 7) and cardinal (~ ) profiles. It means that for each ie N
there is a positive a; such that uj =aju;. Strong equivalence,
denoted by ~”, requiresall a; to be the same:

U=" U' if, for some a >0, u; = au; for all ie N.

Weak equivalence is involved in DeMeyer and Plott [43]; strong
equivalence, identified as CRS, is used by Roberts [123].
Although the weak equivalence implication U~’ U'> >y = >1,

might appear to preclude all interpersonal comparisons, that is not
the case. For example, the inequality uj(x)/u(y) > uj(z)/u,(w),
which is preserved under ~’, could be interpreted to mean that i
prefers x to y more intensely than j prefers z to w. At the same
time, weak equivalence precludes interpersonal comparisons be-
tween single alternatives, such as i prefers x more strongly than j
prefers y. However, strong equivalence involves such comparisons
since u,(x)/u;(y) does not vary as U ranges over a strong equiv-
alence class.
The following characterization theorem is from [43]. Closely-

related results appearin [1].

THEOREM 15A Suppose C on & xX U is a social choice function,
with a positive social utility function fy for each U € U, that satisfies
C1, C2 with Xfinite, and

C3*. U is the set of all functions from into the set of positive
real valued functions on X.

Suppose further that the following hold:

Co™. For all x,y eX and all UE U,if u(x) =u,(y) for all iE N,

then fu(x) = fuly),
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C7*. For allie N, all x €X, and all U,U' € 4, if uj =u; for all

jeN\{i}, udy)=uj(y) for all yeX\{x}, and u(x)/

uj(x) = y, then there is a number g(y) such that

fux)/fuy) = 8(y)fu®)/foW)]

for all y ¢ X\{x}. Moreover, g is a continuous function on

{y:y >0} andis independent ofi andx.

Then there is a positive real valued function c on U and a number k

(positive, zero, or negative) such that, for all Ue U and allx eX,

fu(x) = c(U)[us(x)}*[u2(x)]* ot [Un (x)]*

when N=({1,..., nh}.

Condition C6~ is a Pareto-equality condition. Condition C7",

which DeMeyer and Plott refer to as equal and continuous

responsiveness, is a partial independence condition that incorpor-

ates notions of continuity, monotonicity, anonymity, and neutrality.

It is a very powerful composite condition, as revealed by the

conclusion of the theorem, which is established in part by a

functional-equation derivation which shows that g(y6) =g(y)g(6)

and hence that g(y) = y“ for somereal k andall y > 0.

It follows directly from the form of fy in the conclusion of

Theorem 15A that, for all U,U’e U, U~"U'Sfy='’fu. Hence the

social utility functions are ratio-scale functions under the weak

equivalence relation between profiles. If k=0, then every fy is

constant; if k >0, then a form of positive responsiveness obtains;

and if k <0, then negative responsiveness applies. Anonymity holds

in all cases, as does a ratio form of neutrality. Moreover, if k >0,

then the usual Pareto conditions hold and, if n>1, there is no

dictator or vetoer.

Roberts’s work [123, p. 433], which is presented for a partial

independence condition in the cardinal utility context, can be

modified for ratio scales to yield [u,(x)][u.(x)]*---[u,(x)]”
instead of [u,(x)]* --- [u,(x)]* in the conclusion of Theorem 15A.

Impossibility obtains for either this nonanonymous generalization or

for the original anonymous form when the usual binary independ-

ence axiom is imposed along with a condition that prevents every fy

from being constant.
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The other characterization theorem we shall present for ratio-
scale utilities is Theorem 6 in [123]. Its format is similar to our
earlier Theorem 13.

THEOREM 15B_ Suppose C on & X U is a social choice function that
satisfies C1 with |N| =3, C2, C3*, C5a, C6, and C7. If, in addition,
it satisfies

C5b”. For all U,U'éU, if U="U' then >y=>y,
C10. For all permutations o on N, and all U,U' € U, ifu; =u

for allie N, then >y=>y,,
Cll. For all U,U'€U and all ICN, if u;=uj for alliel, and

u; and u; are constant for allie N\I, then >y=>y,

o(i)

then there exists a number k such that, for all Ue U andall x,yex,

if k #0, » [u;(x)]* > >» u(y) >x>vy;
ieN ieN

ifk =0, >, log[u;(x)] > >, loglui(y)]>x>vy.
1EeN ieN

In view of C5b” and the summation representations, which are
inapplicable under weak equivalence, Theorem 15B applies to the
case of strong ratio equivalence. The reason that the conclusions are
not =, but go only one way, is that there is nothing in the
theorem’s conditions that forces x~,y whenever ¥. (u,;(x)]*« =
») [u:(y)]*. These sums may of course be taken to be f,, values. A
continuity condition [123, p. 428] will then give fu(x)>fy(y)e
X>vY.

There are four interprofile conditions in the theorem. One is C7
(independence) from Theorem 13. The other three, all of which
have >y=>y for their conclusions, are the newly specified
conditions. Anonymity is stated as C10, and C11 is a separability
condition which says that social preferences shall not depend on
individuals who are totally indifferent over X (u; and u; constant).
The latter condition gives rise to an independence axiom of Debreu
[40] (see also [52, Chapter 5]) that is applied to obtain the additive
representation. The requirement of at least three individuals is
needed a: this point. A stronger assumption [52, p. 65] can be used
when |N| = 2.
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Roberts [123, p. 432] notes interesting things that happen with

the representation of Theorem 15B when k=1, k-—®%, and

k—» —, Since these special cases obtain more generally within the

setting of strong cardinal equivalence, which is examined in the next

subsection, I shall discuss them there.

Strong cardinal equivalence

We shall consider two strong forms of cardinal equivalence for

profiles U that conform to C3. Both go well beyond the weak

cardinal equivalence ~ of the preceding section. The first form

(37, 70, 74, 89, 123, 136] is

U~* U'if, for some w >0 andreal f; for each ie N,

u; = au; + B; for allie N.

As usual, the principle for social comparisons that will be used

under this equivalence relation is U~*U'>>y=>u. Since the

same a>O applies to all individuals, this says that intrapersonal

utility differences are interpersonally comparable. Thus, if U~*U’,

then u,(x)—u,;(y)>uj(z)—uj(w) if and only if uj(x) —uj(y) >

uj(z) — uj(w). However, algebraic values or levels of individual

utilities are not interpersonally comparable since origins of the

utility functions can be set anywhere (different f;) within a profile

equivalenceclass.

The second form [37, 44, 70, 103, 105, 106, 123, 136] is the even

stronger relation defined by

U=U' if, for some aw >0 and real B,

u; = au; + BP for allie N.

The corresponding principle is U=" U'>>y=>u-. This asserts

that algebraic values of individual utilities as well as intrapersonal

utility differences are interpersonally comparable.It is quite close to

the strong ratio equivalence ~”. An ordinal weakening of ~* that

maintains algebraic-value comparability but not difference com-

parability will be considered in the next subsection.

Our first two theorems for strong cardinal equivalence deal with

~°, The following is from [123].
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THEOREM 16A Suppose C on AX U is a social choice function that
satisfies C1, C2, C3, CSa, C6, C7, and

CSb*. For all U,U'e U, if U~*U' then >y=>y..

Then there exist nonnegative w, for alli N at least one of which is
positive such that, for all Ue U and all x,yEeXx,

2 wiuj(x) > d) wu(y)>x>vy.
teN ieN

As with Theorem 15B, Roberts’s conditions here are not strong
enough to imply that x ~,,y whenever the weighted utility sums are
equal. If anonymity, C10, is used, then all w,; are equal and, apart
from the equality situation, we obtain the utilitarian social welfare
function. Theorem 16A does not rule out the possibility of a
dictator since it allows all but one w, to equal 0. As we know from
Theorem 13, if CSb° is replaced by C5b for weak cardinal
comparability, then there must be a dictator.

Several people (37, 103, 106] have noted conditions that imply the
usual utilitarian form. The following is the version in [37].

THEOREM 16B Suppose C on x X U is a social choice function that
satisfies C1, C2, C3, C5a, C5b*, C7, C10, and

C6". For all x,y €X and all Ue U,if u(x) 2u(y) for allie N
then x=yy; if, in addition, u,(x)>u,(y) for some ié€N,
then x>vyy.

Then, for all Ue U and all x,y € X,

x>yye@> u;(x) > > u;(y).
ieN ieN

Thus, under anonymity, the strengthening of C6 to the strongest
Pareto condition C6* yields a precise representation of >y by
unweighted utility sums.
Our first result under the super-strong cardinal equivalence

relation ~* for utility profiles is also from Roberts [123]. We say
that a real valued function h on Euclidean n-space R” is
homogeneous of degree

1

if, for all real y >0 and all t= (t;,...,t,)
in R", A(yt) =hA(yty,..., yt.) = yh(t). Let N=({1,..., n}.
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THEOREM 117A. Suppose C on AX Uisa social choice function that

satisfies C1, C2, C3, C5a, C6, C7, and

C5b”. For all U,U' € U, if U~* U' then >y =v

Then, with u(x) =[ui(x)+-°: +u,(x)|/n for all x and U, there

exists a homogeneous of degree 1 function h on R” such that, for all

Ue U and all x,y € X,

w(x) + h(uy(x) — W(x), «- Un) — HO)

> u(y) + h(u(y) — uy), «> Un) — HO) PX UY:

This is a very nice result because its representation fy(x) =

u(x) + h(uy(x) — w(x), --- > u,(x) — u(x)) allows interesting spe-

cializations without being too general. It does this with explicit

reference to the average individual utility or mean welfare u and to

individuals’ deviations from the mean. Hence, it encompasses

various social utility or welfare measures based on the mean and a

distributional measure of dispersion or variation. Examples appear

in Roberts [123, p. 431].

Also note that, when h = k min[u;(x) — u(x)], 1e.,

ful) = wr) +k min[u,(x) — we)],

we obtain a utilitarian measure when k =0 and the Rawisian [120]

measure minu,(x) when k = 1. Mixtures of these two obtain when

O<k <1.

To prepare for our other  super-strong theorem, let

(r,(x),..-,1%,(x)) be a rearrangement of the components of

(u,(x),...,U,(x)) im ascending order: r(x) <r(x) S:+ ++ <7,(x).

Wedefine two lexicographic orders based onutility vectors for each

Ue WU asfollows:

x>Sy if (n(x)... - ral2)) #(H()s ~~ m(V)) and 7(x) > 50)
for the smallest j at which r(x) #7,(y);

x>by if (r(x))#(74()) and (x) > 7(y) for the

largest j at which r(x) #7,(y).

Thus x >{,y if the individual with the smallest utility at x is better

off than the individual with the smallest utility at y, or if these two

have equal utilities and the individual with the next smallest utility

at x is better off than the individual with next smallest utility at y,



64 P. C. FISHBURN

and so forth. Similarly, x>4y if the individual with the largestutility at x is better off than the individual with the largest utility aty, or if..., and so forth.
When >, = >¢ for all Ue &, social preferencesare said to obeythe lexicographic maximin rule, or leximin rule. This rule, which3

leximax rule. In most contexts this is a very objectionable principle,
andit is often ruled out by a suitable equity axiom.
The following theorem, from Deschamps and Gevers [44], has

precursors in [37, 79, 136, 143].

THEOREM 17B_ Suppose C on & X U is a social choice function that
satisfies C1, C2, C3 confined to bounded real valued functions, C5a,
C5b”, C6*, C7, C10, and C11. Then either >y=>y for all UE U,
or >y=>b for all UE, or else K(x) >uly)>x>yy for all
xyeXandallUe YU. :

In other words, the conditions of the theorem imply either the
leximin rule, the leximax rule, or a utilitarian rule. In the latter case
the social relation between x and y is left open when ¥ u,(x) =
2, u(y). Related theorems which uniquely characterize the leximin
rule appearin [37, 44].

Ordinal interpersonal comparisons

We now drop the cardinal aspects of ~* to consider ordinal
interpersonal comparisons of individuals’ welfare levels. Strong
ordinal equivalence betweenprofiles is defined by

U=~U'if, for all i,j € N and all x,yEeX,

ui(x) > u(y) u(x) > u(y).
The associated interprofile principle for social choice is

C5b”. For all U,U'e U, U=*®U'D>>y=>y.

Instead of working with C5B°, which we use initially since it fits
into our previous format and interprofile theme, several authors,
beginning with Suppes [144] and including [79, 122, 136, 143], work
with extended weak orders >° on X X N. Others[37, 70, 123] adopt
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the utility profile formulation. The intent of a weak order >° on

X*XN is to provide an interwoven ordering of intraindividual

preferences and interpersonal preference comparisons. Given such

an >, it identifies an equivalenceclass of utility profiles in % under

~°5 by means of the correspondence

u;(x) > u(y) (x, i) >° (y, j), for all (x, i), (y, jyEexX XN.

Conversely, every such equivalence class identifies an extended

weak order >° on X X N in the obvious way. The >° format will be

used later when profiles of extended weak orders are considered.

Our first theorem for strong ordinal equivalence, from

d’Aspremont and Gevers [37], nullifies the utilitarian option in the

conclusion of Theorem 17B by replacing CSb* with C5b® in its

hypotheses. A similar characterization of the leximin rule under

strong ordinal equivalence is [79, Theorem 7.2].

THEOREM 18A Suppose the hypotheses of Theorem 17B hold with

C5b* in place of C5b*. Then either >y=>y for all Ue, or

>y= >y forall Ue U.

The next result is from Roberts [122]. In comparison with

Theorem 18A, it drops C11 (separability) and weakens C6* to the

original Parteo condition C6. As before, let (7,(x),..., m(x)) be a

rearrangement of the components of (u,(x),..., u,(x)) in ascend-

ing order. Assuming that N={1,...,”}, we say that position

de{l,...,n} is dictatorial if, for all x,yeX and all Ue NU,

r(x) >ra(y)>x>vy. It is important to note that this is a dictator-

ship of a position in rankings, not of an individual in N. When

leximin applies, position 1 (worst-off) is dictatorial; when leximax

applies, position n (best-off) is dictatorial.

THEOREM 18B Suppose C on & X U is a social choice function that

satisfies C1, C2, C3, C5a, C5b*, C6, C7, and C10. Then there is a

dictatorial position.

When anonymity, C10, is dropped, a more general array of

possibilities than the positional dictatorships arises, but it is still

fairly limited [122, Theorems 2 and 3]. On the other hand,if C10is

retained and C6 is strengthened to C6*, then there will be a partial

lexicographic hierarchy of dictatorial positions [70, Theorem 5].
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And if, in addition, C11 is added, then we are back to Theorem
18A, where only leximin and leximax are possible.
We now turn to the extended profile case in which every

individual in N has an extended weak order on ¥ XN and these
weak orders are to be used as the basis on which a social weak
order on X is determined. This format has been adopted by Suppes
[144] and Varian [146] in somewhat different settings. In the
following theorem from Roberts [122], profile P is tantamount to
(>1,..., >), and P’ to (>%,..., >°).

THEOREM 19 Suppose C on A X P is a social choice function that
satisfies C1, C2, and

Then C cannotsatisfy all of the following:

C4°. For every ié€N there exist x,y eX and a PEP such that
(x, i) >f(y, i) and y=px,

C5°. For every P € Y, >pis a weak order on X,
C6". For all x,y €X and all Pe, if (x, i) ><(y, i) for allie€N,

then x>py,
C7°. For all x,y € X and all P,P’ € , if >¢ and >*areidentical

on {x, y} XN for each ie N, then >p and >>».are identical
on {x, y}.

Conditions C4° and C6’ are essentially the same as A4 and Aé6,
respectively, C5° maps extended profiles into weak orders on X,
and C7* is a binary independence condition that differs from A7 in
that the individual orders in the extended form consider N as well as
{x, y}.

It may be wondered what happens to Theorem 19 when C3?is
restricted by requiring the sameset of intrapersonal orders within
every extended ordering in an admissible profile [136], i.e., when
everybody’s extended order accurately reproduces the intrapersonal
order of everyone else. The only differences between extended
orders in an admissible extended profile would then be the ways
they interweave the >; on X to reflect their interpersonal judge-
ments. According to Roberts [122, pp. 418-419], this would allow a
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social choice function that satisfies the other conditions of the

theorem but, when C5°, C6°, and C7° hold, the nondictatorial

possibilities would probably not be very appealing. I am not aware

of more definitive results on this matter.

10. INFINITE NUMBERS OF INDIVIDUALS

The second proof of Theorem 1, which was modified for partially

ordered social preferences in Theorems 2A and 2B, showed that N

must be infinite when N #@ and A2 through A7 hold. This suggests

that, when Al is replaced by

Al*. N is a nonempty set,

the conditions of Theorem 1 will be consistent. The present section

shows that this is indeed true. Moreover, we shall see precisely how

consistency obtains for infinite N and will note several related

results.

Since infinite sets of individuals are absurd in practice, it may be

wondered whether anything can be gained beyondsatisfaction of

mathematical curiosity by their consideration. I believe that there

is. In particular, the work discussed here has provided deeper

insights into the general nature of Arrow’s problem that have

helped us to better understand the structure of social choice when N

is finite. A case in point is Brown’s analysis [25, 26] of voting rules

that was guided by questions originally posed for infinite sets of

individuals.

Unless it is noted otherwise, we shall assume throughout this

section that C denotes a social choice function on & X F that satisfies

Alt, A2, and A3. As usual, >p will denote an asymmetric binary

relation on X for each P € Y such that x >py if and only if x #y and

C({x, y}, P) = {x}.

Decisive coalitions

Decisive coalitions will play a central role throughout the section. A

coalition is any subset of N. The term is intended to be descriptive,

not political. We say that coalition Jc N is decisive for x over y if,

for all Pe PY, x >py whenever x >; y, where x >; y meansthat x >; y
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for all ie J. A decisive coalition is a coalition that is decisive for x
over y forall distinct x and y in _X. Condition A6, 1.e.,x >\yyD>x>p
y, says that N is a decisive coalition.

Families of decisive coalitions will often be denoted by ¥, with or
withoutaffixes. The family ofall decisive coalitions for C is denoted
by ¥(C).

Decisive coalitions illustrate one important difference between
the acyclic social preferences condition A5** and its weak order and
partial order counterparts, A5 and A5*. By a proof that is entirely
similar to step 2 in the first proof of Arrow’s theorem (replace {i}
by J), it follows from A6 and A7,and either A5 or A5*, that if J is
decisive for x over y for some twodistinct alternatives in X, then J
is decisive for all pairs and is therefore a decisive coalition.
Consequently, #(C)tells us a great deal about C when AS or A5*
is assumed along with A6 and A7.
The same thing is not true under A5**. Thatis, given A5**, A6,

and A7, I can be decisive for somepairs of alternatives but not for
others. An example of this appears immediately after Theorem 4C.
In that example, every coalition of |N| — 1 individuals is decisive for
the pairs in #,, but only N is decisive for the pairs in ®.

This difference between A5** and {A5, A5*} will be removedif a
neutrality condition like A9 is adopted. Given {A5**, A6, A9},
F(C) will not be empty, and every coalition that is decisive for an x
over ay #x will be in F(C).
According to A3 and the definition of decisive coalition, if

[e F¥(C) and IcJCN, then J € F(C). Hence every superset of a
decisive coalition is also decisive. We shall say that I € F(C) is a
minimal decisive coalition if there is no J € ¥(C) that is a proper
subset of J. WhenN is finite, A(C) equals its minimal elements and
their supersets. When

N

is infinite, #(C) might have no minimal
decisive coalitions. Examples of this follow.

Examples

Throughout this subsection, N = {1, 2, 3,.. .}, the set of positive
integers. Two exampleswill illustrate the theme of the section.

First, let % be the family of all subsets of N that contain all but a
finite numberof individuals in N. Every I € A is countably infinite
with finite complement I°=N\I. Clearly, % has no minimal
member.
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Define the binary part of a social choice function C by using %as

F(C):

x>py if and only if x >7y for some J € A.

Then C satisfies A6 (Pareto) and A7 (binary independence), but A5

fails since some >p are not negatively transitive. In particular, if P

has y>;x>;,z for all odd ie N and x>;z>,y for all even ie N,

then x~py, y~pZ, and x >pZ.

On the other hand, since the intersection of any two sets in A is

also in %, every >p 1s transitive and therefore A5* holds.

Moreover, no individual is a vetoer, so A4* holds. Hence, under

the change from Ai to Al”, all conditions of Theorem 2A hold, so

its impossibility result for partially ordered social preferences

disappears when

N

is allowed to be infinite.

What about Theorem 1 and A5? The underlying reason that AS

fails for #(C) = Ais that there are /¢ N suchthat neither J norits

complement J° are in A. As shown above, this will contradict

negative transitivity for some >p. To satisfy A5, we enrich A% to a

larger family ¥, so that, for all JN, either J or I° (but not both) is

in ¥,. Then new >>relations, based on the enrichedset of decisive

coalitions, are defined by

x>pyif and only if x >,y for some Je F,.

In making the additions to “, we must ensure that the

intersection of any two sets in ¥, is nonempty, for otherwise some

>p will not be asymmetric. But this is not enough to guarantee

negative transitivity, for we also need[NJ € ¥, whenever I, Je AH.

Otherwise, with J, Je A and INJ¢A, so (INnJ) €&, a profile

with

Z >ngX >IY

YOzeIX

X >inFInsZ

along with z >(uygives x >py >pZ—>pX.

It easily checked that every new >p will be a weak order if

Ne&#A, LEA, lc-NIDSJIEA, exactly one of J and I° isin &, for

each IC N, andINJe &, whenever I, Je A. The question remains

as to whether % can be enriched to yield an * with these

properties. If it can, then all conditions of Theorem 1 hold
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to # without violating the other properties, provided its supersetsare also added if they are not already in ¥. A technical axiom,called by various names, including Zorn’s lemma, the axiom ofchoice, and the well-orderingprinciple [52, 93], is then used to showthat the class of enrichments has a maximal member which, by theextension property just noted, must contain either J or I* for everyI< N. Any such maximal memberserves as a suitable ¥,.

whatare knownasfilters (Fy) and ultrafilters (F,). We now define
these terms andwill then see how they illuminate Arrow’s theorem
and otherresults.
A family ¥ of subsets of N is a prefilter if

1. NEY,

3. The intersection of any positive finite number of members of
F is nonempty.

A filter is a prefilter ¥ that satisfies

3’. LN J € ¥ whenever I, Je F.

An ultrafilter is a filter ¥ that satisfies

4. For all ICN, eitherle For’ ec F

By properties 1 and 3, the emptycoalition @ is not a memberof any
prefilter.Moreover, an alternative definition of

a

filter js obviously
given by 1,2,3’, and @¢ F. In a mannerof speaking, an ultrafilter is
a completeor totalfilter.
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The following theorems show how these three types of coalitional

structures tie into the three basic types of passive intraprofile

conditions for social preference considered earlier. After making a

few comments on the theorems, we shall address the matter of

dictators and other specialized power configurations.

THEOREM 20A If C satisfies AS, A6, and A7, then ¥(C) is an

ultrafilter. If ¥ is an ultrafilter on N, then there is a C with ¥(C) =F

that satisfies AS, A6, and A7.

THEOREM 20B [f C satisfies A5*, A6, and A7, then ¥(C) is a filter.

If F¥ is a filter on N, then there is a C with ¥(C) =F that satisfies

A5*, A6, and A7.

THEOREM 20C_ If C satisfies A5**, A6, and A9,and if either |X| is

as large as the number of minimal decisive coalitions in ¥(C) when

N is finite, or if X is infinite when N is infinite, then #(C) is a

prefilter. If ¥ is a prefilter on N,thenthere is a C with ¥(C) = F that

satisfies A5**, A6, and AQ.

Theorem 20A, which was motivated by an example in [51], was

established independently by Kirman and Sondermann [98] and

Hansson [83]. Theorem 20B is from [83], and Theorem 20C 1s

essentially due to Brown [25, 26].

Theorems 20A and 20B delineate the structures of decisive

coalition sets that arise from Theorems 1 and 2A when their

existential conditions (A4, A4*) are ignored and A1 is generalized

to Al*. Similar results can be obtained for other configurations of

conditions in Section 5.

For example, it can be shown that the conditions of Theorem 2B,

including strong monotonicity A8, |N| =3, and A5*, but excluding

A4, imply that 4(C)is an ultrafilter. Border [22] obtains a result

similar to Theorem 5B under A1®* anda restriction of profiles to a

specialized structure. He concludes that either x ~py for all x,y,

and P, or the set ¥(C) of decisive coalitionsis an ultrafilter, or the

set of ‘“antidecisive” coalitions is an ultrafilter. Chichilnisky and

Heal [30] extend the analysis of [27] to the infinite-N context.

A sketch of the proof of Theorem 20C maybeinstructive. For the

first part, let C satisfy A5**, A6, and A9, with WN finite and X as

numerous as the number of minimal decisive coalitions in A(C).

(The proof for infinite X is simpler and will be omitted.) Property 1
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for A(C) follows from A6, and property 2 is immediate from the
definitions. To verify property 3 for a prefilter, suppose to the
contrary that some nonemptyfinite collection of members of F(C)
is empty. Let 1,,..., J,, be the minimal decision coalitions of F(C)
included in the members ofthis collection, with all f, distinct and
MU; =O. Since |X|>m by assumption, let x,,...,x,, be distinct
alternatives in X, take x,>;x,,, for all te J; when j<m-—1, and
take x,,>;x, for all ie J,. Assign a weak order to each individual
that contains the ordered pairs just defined for the coalitions J, that
contain the individual. It is always possible to do this since AG = ©.
Then, since each J, is in ¥(C), we conclude that X1>pXy>p--+>p
Xm —>pX,, which contradicts A5**.

For the second part of Theorem 20C, let ¥ be a prefilter on N.
Define the >p by x>py if and only if x>,y for some Je ¥. Then
#(C) = ¥ follows immediately, as do A6 and AQ. By property 3, if
some >> has a cycle, then some i must be in every decisive coalition
used to generate the cycle, so some >; will be cyclic, contrary to
A3.

Special power structures

A prefilter (filter, ultrafilter) ¥ is free if the intersection ofall
fe is empty, and is fixed or principal if N¢I1#@. For the
examples given earlier with N = {1,2,3,...}, H# is a free filter,
and every maximal extension ¥% of % is a free ultrafilter. The
relevance of these concepts to social choice is Suggested by the
following elementaryfacts.

Fact 1. Every free prefilter, filter, and ultrafilter must contain an
infinite numberofsets.

Fact 2. Every fixed ultrafilter consists of a singleton {i} and its
supersets.

Fact 3. Every finite filter consists of a coalition J and

_

its
supersets.

Fact 4. Every finite prefilter consists of a family of supersets of
Ne.

Wenote also that the conclusion of Fact 3 need not hold for a fixed
filter when N is infinite. For example, let ¥ with N = {1, 2, 3,.. .}
be the subfamily of % whosesets contain 1. Then F is

a

fixedfilter
with NgJ= {1}, but {1} and manysets that contain 1 are not in ¥.
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Given a social choice function C, let

Ic= 1) 1.
le F(C)

We refer to I; as the power core of C. Assuming that #(C) is at

least a prefilter, Fact 1 says that C can have an empty powercore

only if N is infinite. Aspects of nonempty power cores will be

considered in the ensuing paragraphs. Webegin with ultrafilters and

then commentonfilters and prefilters.

Suppose first that #(C) is an ultrafilter: see Theorem 20A.If

¥(C) is fixed then, by Fact 2, the power core consists of a single

individual, who is a dictator. By Fact 1, this must be the case when

N is finite (Arrow’s theorem). Hence the only way to avoid a

dictator under {A5, A6, A7} is for N to be infinite with A(C)free,

in which case Jc is empty. Suppose that the power core is empty.

Then there is a basic imbalance of power in N even thoughthere is

no dictator. The reason is that anonymity must fail. In the present

context, we say that C is anonymous if >p = >p. wheneverthereis

a one-to-one mapping o from N ontoitself such that >; = >,,for

all ie N. To see why anonymity cannot hold when A(C)is a free

ultrafilter [83], we note that there must be an J € A(C) such that /

and I° have the same cardinality. Therefore, there is a o with

o(1) =I° and o(°)=I. Let P be a profile with x >,;y and y >x.

Since [Te A(C), x>py. Moreover, with P’ as defined through

0, y>;X, SO y>p-x, and this contradicts anonymity. Consequently,

Arrow’s dictator reappears under {A5, A6, A7} andinfinite N when

C is anonymous.

Further remarks on power imbalancesin free ultrafilters appear

in the next subsection.

Suppose now that ¥(C)is a filter: see Theorem 20B. If A(C)is

fixed, then every individual in the power core is a vetoer. For

suppose to the contrary that x >;y and y>px for some i € J, and

some x,y, and P. Let P’ be like P on {x, y} and have x >;z along

with x>,z and y>,z for all j#i. Then y>p.x by A7, x>p-z by

A6, and therefore x >p.z by AS”. Since the relation in P’ between

y and z for i is arbitrary, N\{i} is decisive for y over z and is

therefore in A(C). But this contradicts i € I¢.

It follows that if F(C)is a fixed filter then J: is an oligarchy if and

only if it is in #(C). By Fact 3, this must be true if N is finite. When
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Ic ¢ F(C) for infinite N, and all individuals in I, prefer x to y, some
individuals not in the power core must prefer x to y to obtain
X>py.

When A(C) is a free filter with N infinite, no individual is a
vetoer. Moreover, C can be anonymous. An example is %.
However, when C is anonymous, every decisive coalition must have
the same cardinality as N, so only “large” sets can be decisive and
the complement of every decisive set must have cardinality less than
|N|. Hence anonymous

C

that satisfy {A5*, A6, A7} are quite
similar to the Pareto rule for finite N which says that x >y if and
only if x>,,y.

Finally, suppose that ¥(C) is a prefilter: see Theorem 20C. We
consider only the case in which

N

is finite and the fixed prefilter
(Facts 1 and 4) does not contain the powercore, i.e., is not

a

filter.
In this case Brown [26] refers to the powercore as the collegium.
Because I, ¢ A(C), the powercore is not a decisive coalition and
the collegium is not an oligarchy. An example with N=
{1, 2,3, 4,5} is #A(C) equal to {1,2,3}, {1,2,4}, {1,2,5} and
their supersets. The collegium is {1,2}. If the >p are defined from
#(C)as in the final paragraph of the preceding subsection, then x is
socially preferred to y if and only if the two individuals in the
collegium andat least one otherprefer x toy.
Anonymity cannot hold when

N

is finite and ¥(C)is a prefilter
that is not a filter. For if anonymity holds when ¥(C)is a prefilter,
then every i must be in the power core, so I. = N and ¥(C) = {N}.

Powerin free ultrafilters

Further analyses of the distribution of power over N when ¥(C)is a
free ultrafilter have been made by Kirman and Sondermann[98],
Schmitz [132], and Armstrong [3]. Since much of this work is quite
technical, I shall only identify some of its major themes.
Both Schmitz [132] and Armstrong [3] generalize Theorem 20A,

but in different ways involving A3. Schmitz shows that the theorem
remains valid when is any set of weak-orderprofiles such that any
subprofile of linear orders on three alternatives can be found in
some P « Y. Armstrong considers a Boolean algebra N of subsets of
N, so NEW, TENDSI EN, and LJeND>IUJEN. He then
takes Y asthe set of all W’-measurable weak-order profiles, where P
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is N-measurable if, for all x,y € X, {i:x >; y} is in WY. Theorem 20A

remains valid when ultrafilters are defined in an appropriate way

with respect to the coalitional algebra W.

Analyses of power distributions are carried out in [3, 98, 132]

under additional structure for N that goes well beyond Al”. At

minimum, it is assumed that there is a finitely-additive measure

space (N, WV, 7), where W is a Boolean algebra of subsets of N and

n is a nonnegative measure on WN into [0, ©], i-e., n(1) 0 forall

TEN, n(N)>0, and nTUJ) =n) + nV) [with ot n=e+o=

0] for all disjoint J and J in W. This is the structure used in [3].

Schmitz [132] and Kirman and Sondermann [98] assumealso that WV

is a o-algebra (the union of a countable collection of sets in WV is in

N) and that n is countably additive (nd;ULU---)=n(h)+

n(b) +... when the J; are mutually disjoint coalitions in \’), and

[98] assumes further that n(N)< and that the measure space is

atomless. This means that there is no n-atom, i.e., no Ie N such

that 7(/) >0 and n(J) =0 for every J cJ in W.

Weinterpret n(/) as a measure of the a priori weight, numero-

sity, or importance of coalition J. It can be used to characterize the

powers of decisive coalitions in #(C). Examples of egalitarian

measures are the counting measure n(J/) = |J| for N = {1, 2, 3,...},

and uniform (Lebesgue) measure on N = (0, 1]. The first of these

has n-atoms and n(N) =; the second is atomless with n(N) = 1.

Weshall say that C behaves dictatorially within this formulationif

for every € >0 there is a nonempty [e YM A(C) such that either

n()<e or I is an n-atom with n(J)2e. The corresponding

A4-type condition is

A4t. C does not behave dictatorially.

Thus ‘A4* is violated if there are measurable decisive coalitions with

arbitrarily small weights, or if there are n-atoms with positive

weights that are decisive coalitions.

The following result [132], which generalizes and extends Propo-

sition 5 in [98], implies that some C basedon free ultrafilters behave

dictatorially, while others do not.

THEOREM 21 Suppose C on & X P is a social choice function that

satisfies A1*, A2, and A3 with (N,N, 17) a countably-additive
measure space and N a o-algebra of subsets of N.
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(A) If n(N) <, then A4t, AS, A6, and A7 cannotall hold:
(B) If n(N) =~ and if [Ie N and n(Ij)<©@ for all i; in some

countable partition of N, then A4*, A5, A6 and A7 are consistent.
Conclusion (A)is illustrated by Lebesgue measure 7 on (0, 1]. If

AS, A6, and A7 hold, then either F(C)is a fixed ultrafilter with a
standard dictator i with n({i}) =0, or else ¥(C) is a free ultrafilter
that contains decisive coalitions in W of arbitrarily small measure. In
the latter case there is a technical construct referred to as an
“invisible dictator’ which, under a certain transformation of the
problem, behaves muchlike a standard dictator.

Conclusion (B) is illustrated by the counting measure n on
N= {1, 2,3,...}, with W the set of all subsets of N. In this case,
every free ultrafilter ¥, that includes % satisfies A4*. See also the
example in [51]. The invisible dictator concept also applies here.
Whatit showsis that there is vastly more imbalance in powerthan
that suggested earlier by the failure of anonymity: see [3, 98, 132]
for details.

Generalizations of Theorem 21 appear in [3]. The three-part
Summary on p. 73 of [3] is especially useful.

11. RELATED THEOREMS

We conclude by noting results that were motivated by Arrow’s
theorem but are not directly in the mainstream of social choice
functions as considered in this monograph. Four aggregation
contexts will be considered. They concern equivalence relations,
probability distributions, decisions under uncertainty, and strategic
voting.

Equivalence relations

An equivalence relation ~, on X is a reflexive (x ~> x), symmetric
(x~oy >y ~ox) and transitive binary relation on X. We consider
the aggregation of equivalence relations ~,,...,~, on X into a
consensus equivalence relation ~ on X. Each =, could refer to a
strong similarity relation on X for a particular criterion used to
judge similarity. Then ~ says which items in X are similar on the
basis of ~, through =,,.
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Although there need be no underlying notions of asymmetric

orderings behind the equivalence relations, the ensuing theorem

will be stated in the choice function mode to show clearly the

connections to Theorem 1. Profiles of equivalence relationswill be

denoted by E and E’, with corresponding individual equivalence

relations ~, and ~;. In terms of C, we define ageregate equivalence

ie by

x~,yifx=y, orifx #y and C({x, y}, E) = {x, y}.

The theorem is a slight specialization of the first part of Theorem 5

in [126].

THEOREM 22 Suppose C is a social choice function on A X @ that

satisfies

E1. N is a nonempty finite set,

E2. X is a finite set with at least three elements, and x contains

every two-element subset of X,

E3. & is the set of all functions from

N

into theset of equivalence

relations on X,

ES. For all Ee €, ~, is an equivalence relation on X,

E6. For all x,y ¢X and all Ee@, if x~,y for all ie N then

x~,y, and if not (x ~;y) for allie N then not (x~ry),

E7. For all x,y¢X and all E,E'€@ if x=;yo@x~iy for all

ie N, thenx~~y@QXx $s’).

Then there is a nonempty ICN such that, for all x,yeN and all

Ee @,
x=py@(x=,y foralliel).

Thus, under suitable passive (E5) and active (E6) intraprofile

conditions, plus an interprofile independence condition E7, aggreg-

ate equivalence is governed by a sort of oligarchy J in N. If 7 €J,

then ~, is ignored in the aggregation. If i ¢ J then x #- y whenever

x #,y. If an existential conditionlike the following is imposed, then

we get an impossibility theorem:

E4. For every ie there isan Ee@ and x,y € X such that x #y

and X ~rfy.

Since it is easy to imagine settings in which global equivalence

should perhaps hold if and only if equivalence holds for every
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“5 N, the impact of such an impossibility theoremmay be minimal.

Probability distributions

Let S denote a finite set of three or more mutually disjoint andexhaustive events, or states, and for each ic N let p; be a probabilitydistribution on S, so that p(s) =0 for alls € S, and ¥., pis) =1. We
consider the aggregation of p; through p,, as characterized by a
profile p =(p,,...,p,), into a consensual probability distribution
f, on S.

There is a sizable literature on this type of aggregation, repre-
sented in small part by [23, 24, 35, 101, 107, 108, 148, 151, 152].
Since probability measurement can be viewed as a normalized form
of ratio-scale measurement, our discussion of ratio scales in Section
9 can berecast in the probability context.

In the following theorem, ¥ will be used to denote profiles of
probability distributions, such as p with associated individual
distributions p;, and q with associated individual distributions g,.
The aggregate distribution based on profile p is denoted by f,. The
theorem is an application of Theorem 2 in [126]

THEOREM 23 Suppose f maps P into real valued functions on S such
that

Pl. N is a nonempty finiteset,
P2. S is finite with |S| > 3,
P3. P is the set of all functions from N into the set of probability

distributions on S,
P5. For all p € P,f, is a probability distribution on S,
P6. For all pe P and alls €S, if p;(s) =p;(s) for all i,j e N, then

f(s) = pils),
P7. For all p,q é P and alls €S, ifp(s) = qi(s) for allie N, then

fol) =f,(s),
P7’. f is continuous in p, i.e., if p(1), p(2),... in P converge to

DpéEF, then fra): fo» +++» converge to h-

Then there exist nonnegative numbers w, that sum to 1 over N such
that, for allp é€ P and allseS,

f(s) = > wipi(s).
ieN
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Condition P6 is a Pareto equality condition or unanimity condi-

tion within each state, and P7 is an independence condition which

says that the consensus probability for state s shall depend only on

the individuals’ probabilities for that state. The final condition is a

typical continuity axiom.

The conclusion of the theorem identifies f as a member of the

class of weighted additive aggregators. If an obvious anonymity

condition is added, we get w, = 1/|N| for each i. So long as |N| > 2,

this clearly satisfies the existential condition which says that for

every ié€ N there is a p € F such that f, # pi.

Additional conditions are neededin the context of a theorem like

Theorem 23 if an impossibility theorem is to be obtained. An

example of such a condition [35] is that there exist three states

rs,t€S such that f()=[f+£OIILZ~)+£M] whenever

pir) = [pAr) + ps)\[pACr) + p(t)] for all ie N. This is a special

instance of the independence condition which says that, for all

A,BCS, f,ANB)=f,(A)f,(B) whenever p,(A MB) = p,(A)pi(B)
for all ic N. When |N| =2,it is inconsistent with the conclusion of

Theorem 23 and the assumption that w,>0 for at least two

individuals.

Decision under uncertainty

Hylland and Zeckhauser [86] combine probability aggregation with

utility aggregation to obtain an impossibility theorem in the setting

of group decision making under uncertainty. As in the preceding

subsection, they consider the set Y of probability profiles. In

addition, they work with a set % of utility profiles. Each Ue U

assigns a utility function u; on X x S to each ie N, where X is a

finite set of courses of action. A combined profile is then a pair

(p, U)e PX U. It assigns a probability distribution p; on S and a

utility function u; on X X S to each individualin N.

They assumethat the p, for p are combinedto yield a consensus

probability distribution f, on S. Independently, the u; for U are to

be merged into a consensusutility function gy on X x S. Then, for

every (p, U)e PXU, the choice set C(X, (p, U)) is to be a

nonempty subset of courses of action x « X that maximize expected

social utility Ys f,(s)gu(x,s) and are not Pareto dominated in

individual expectedutilities.

Two more conditions are imposed on f. Oneis the weakening of
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P6 which says that i, =P. if p;= p; for all i,j €e N. The otheris theno-dictator condition mentioned above (f, # p; for some p). Hyllandand Zeckhauser then provethat these conditions on group decisionmaking are inconsistent when each of N, S, and X is a finite set with

demandsplaced on probability aggregation, which are minimal. Thepowerto obtain their inconsistency conclusion stems from the extrastructure provided by % and the assumption that probabilities and
utilities are aggregated independently of each other.

Strategic voting

Although strategic voting lies outside the main concerns of this
monograph, I find it impossible not to acknowledge the seminal
contributions of Gibbard [72] and Satterthwaite [130] to social
choice impossibility. I will therefore conclude with a version of their
basic theorem.

that, when C(X, P)={y} and C(X, P')={x}, x>;y. Then C is
said to be nonmanipulable or strategyproof if there is no i and no
P é# such that i manipulates C at P. In other words, there is no
situation (X, P) at which some individual can obtain a preferred
outcome by “voting” a weak order >} that differs from his true or
sincere weak order>,.

Their answer is given by our final theorem. For convenience,let
X= UgC(X, P), the effective range of C. Also let {x} 2, {y}
mean the same thing as x =; y. Because the theorem uses of = {X},
we designate its conditions in the mannerused at the end of Section
5. See in particular Theorems 8A and 8B, where

_Y

is the only set
assumedto be in &.

THEOREM 24 Suppose C on {X} X P is a social choice function that
satisfies B1 and B3, and has |C(X, P)|=1 for every Pe with
|X*| =3. Then the following cannot both hold:

B4°. For every ié€ N there exists a Pe P andx,y €X™* such that
x>;,y and C(X, P) = {y},
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B7°. For all P,P'€F and allieéN, if >;= >; for all je N\ {i},
then C(X, P) =; C(X, P’).

The effective range X* is required to contain at least three

alternatives, and the nondictatorship condition B4° applies to the

possible outcomes in X*. The passive intraprofile condition of the

theorem is the unique-choice requirement |C(X, P)|=1. The only

vestige of an active intraprofile condition is |X*|>3, but this may

be more properly viewed as an existential condition, along with

B4?’.
The theorem’s interprofile condition is the nonmanipulability

condition B7°. Although this is unlike interprofile conditions

discussed earlier, it may be compared to monotonicity conditions

that vary one >; at a time.

The thrust of Theorem 24, that either there is a dictator or C is

manipulable, is blunted somewhat by the requirement of unique

choices. Relaxation of this requirement was considered by Kelly

[94] and has subsequently been addressed by manyothers.

There is by now a large literature on strategic voting and the

allied topics of incentive compatibility and implementation. A few

references that discuss these matters and provide access to this

literature are (36, 62, 76, 95, 117].
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