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 L. J. Savage and I. J. Good have each demonstrated that the expected utility
 of free information is never negative for a decision maker who updates her de-
 grees of belief by conditionalization on propositions learned for certain. In this

 paper Good's argument is generalized to show the same result for a decision
 maker who updates her degrees of belief on the basis of uncertain information
 by Richard Jeffrey's probability kinematics. The Savage/Good result is shown
 to be a special case of the more general result.

 L. J. Savage (1954) and I. J. Good (1967) have each shown that if

 degrees of belief are updated by conditionalization, the expected utility

 of information obtained at negligible cost is never negative. In this paper

 I will demonstrate that this result generalizes to a decision theory based

 on Richard Jeffrey's (1965) Probability Kinematics. The Savage/Good

 result will be seem to be a special case of the more general result for

 Probability Kinematics. My strategy will be first to outline Good's ar-

 gument and then restate it, making the necessary changes to generalize

 the result. Although my exposition will in broad outline follow Good,
 there is an important difference in detail.

 Good treats the problem atemporally. He considers a decision maker

 who has a body of evidence and is trying to determine if she should use

 all of her available evidence, or possibly discount some part of the evi-
 dence if that maximizes her expected utility. Good argues that the de-

 cision maker cannot increase her expected utility by ignoring a piece of

 information she already possesses, the atemporal total evidence principle.

 But the problem of assessing the utility of information that a decision
 maker does not now have, but can acquire in the future at negligible cost,

 has an essential temporal facet. Good assimilates the temporal case to the

 atemporal case, and then argues atemporally. I want to make the temporal

 facet of the argument explicit. What follows is therefore not strictly Good's

 argument, but rather an explicitly temporal extension of his argument.
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 318 PAUL R. GRAVES

 With this disclaimer in mind, I will now turn to outlining the argument.

 Good's argument implicity assumes:

 (1) r mutually exclusive and exhaustive hypotheses, K1,..., Kr;

 (2) For each hypothesis Ki, a prior degree of belief P(Ki);
 (3) An exhaustive partition E of the possible experimental' outcomes

 E= [el,. . ,ej];
 (4) For each hypothesis Ki and experimental outcome ek, a condi-

 tional degree of belief, P(Ki/ek);
 (5) None of the ek is such that if it were the actual experimental

 outcome, this would change the conditional probabilities P(Ki/
 ek) for any i, k;

 (6) A choice C among s possible acts or classes of acts Al,..., Al;
 (7) A system of utilities for each possible combination of actions Aj

 and hypotheses Ki, U(Aj & Kj);
 (8) The cost of experimentation is negligible.

 With this set of assumptions, Good's argument proceeds as follows:
 The prior expected utility of an action is the average of its utilities for

 each of the Ki, weighted according to the prior degree of belief in each
 of the Ki:

 U(Aj) = SUMjP(Kj)U(Aj & Ki) (I)

 To maximize expected utility, the decision maker should select the value

 of j which maximizes the value of (I). Thus, the prior expected utility of
 a choice of actions is equal to the expected utility of the action which

 maximizes (I).

 U(C) = MAXj SUMjP(Kj)U(Aj & K,)

 = MAXjSUMkSUMjP(Kj)P(ek/Kj)U(Aj & Ki) (II)

 The posterior expected utility of an act Aj, given the experimental out-
 come ek is:

 U(Aj & ek) =SUMjP(Kj/ek)U(Aj & Kj) (III)

 For any experimental outcome ek, the expected utility of a choice among

 the possible actions will again be maximized by the Aj that maximized
 (III).

 U(C & ek) -MAX1 SUMjP(K /ek)U(Aj & Ki) (IV)

 'By "experimental outcome" I here mean only the decision maker coming to have a
 degree of belief equal to 1 for one of the ek. She may employ any means that seems
 reasonable to her to achieve this degree of belief. Any such means will count as "exper-
 imentation" for the present purposes.
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 TOTAL EVIDENCE THEOREM FOR PROBABILITY KINEMATICS 319

 Here the essential temporal facet of the problem appears. The argument's

 next step requires the decision maker to determine her prior expectation

 of her posterior degrees of belief for each of the ek. If she is going to

 conditionalize on the experimental outcome, her posterior degree of belief

 in one of the ek must be one. But before the experiment, she has no way

 to determine which of the ek is true, so her prior expectation of her pos-

 terior degree of belief in any of the ek must be represented by some num-

 ber between zero and one. This uncertainty in the outcomes is represented

 by taking the average of the expected utilities for each of the possible

 experimental outcomes weighted according to the prior degrees of belief

 in each of the experimental outcomes. Thus the expected utility of a choice
 of actions after experiments is:

 U(C & E) = SUMkP(ek)MAXjSUMjP(Kl/ek)U(Aj & Ki) (V)

 By Bayes' Law this is equivalent to:

 U (C & E) SUMk P(ek)MAX SUMi P(ek/Kj)P(Kj)/P(ek)

 U(Aj & Kj) (VI)

 which is equivalent to:

 U(C & E) - SUMkMAXjSUMjP(Ki)P(ek/Kj)

 U(Aj & K). (VII)

 Since (VII) differs from (II) only in the order of the SUMk and MAXj
 operators, and since SUMkMAXjf(k,j) is always at least as great as
 MAXjSUMkf(k,j), (Good 1967, p. 320) this suffices to show the ex-
 pected utility of a choice of actions posterior to experimentation is always
 at least as great as the expected utility of the choice of actions prior to
 experimentation, provided that the cost of the experiment is negligible.
 Hence the expected utility of new information is never negative. With a
 few minor changes, Good's argument can be generalized from a decision
 theory based on updating degrees of belief by conditionalization to a de-
 cision theory based on updating degrees of belief by Probability Kine-
 matics.

 The first change that must be made is to generalize the characterization
 of experimental outcomes. Good's argument presupposes that by exper-
 iments we learn for certain which of the ek is true and we conditionalize
 on this information. The generalized theory allows for cases where the
 experimental2 result is not the certainty of one of the ek, but rather a new
 coherent probability distribution which assigns a degree of belief for each

 2Here again "experimentation" is intended in the very weak sense as anything which
 brings about a new coherent system of degrees of belief in the decision maker.
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 320 PAUL R. GRAVES

 element ek of E. I will refer to the generalized product of experiment as

 a 'result', and I will reserve 'outcome' to mean learning from experiments

 in the more restricted sense used in Good's argument. Thus, learning el
 for certain is an experimental outcome. Learning that el and e2 are equally
 likely and no other ek is possible is an experimental result, since it is a

 coherent assignment of degrees of belief to the elements of E. An out-

 come is the special case of a result where the degree of belief for one of

 the ek is 1. I will suppose that the decision maker has a prior system of

 degrees of belief associating some degree of belief PO(ek) with each of

 the ek of E, and the result of experimentation is a new, possibly identical,

 system of degrees of belief for each of the ek of E.

 There are several ways to represent these systems. I will represent a

 system of degrees of belief as the conjunction that exhaustively assigns

 degrees of belief to each of the elements ek of the partition E of the pos-

 sible experimental outcomes. I will use Rm to represent the m-th of the t

 possible experimental results, and Ro to represent the prior system of de-
 grees of belief, the result of not experimenting. R may be thought of

 roughly as a function from classes of experimental observations to sys-

 tems of degrees of belief, where the observations within any class are

 equivalent in the sense that any observation in a class yields the same
 posterior degrees of belief for each of the ek as any other observation in

 that class. Each conjunct of Rm will be a statement of the form Pm(ek) =

 Zkm, where Pm(ek) is the degree of belief assigned to the k-th element of

 E by Rm, and Zkm iS some number between 0 and 1 inclusive. Thus:

 Rm [Pm(el) = Zim & . . .& Pm(en) = Znm] (A)

 Ro = [PO(el) zlo & . . .& PO(en) z zO] (A')

 Even though Rm is a proposition, this is consistent with Jeffrey's claim

 ([1965] 1983, p. 165) that what is learned from experiments need not be

 expressible as a proposition, because Rm represents not what is learned,

 but rather the effect that learning has on our degrees of belief. Again,
 the sort of experimental outcomes Good employs are just those special
 cases of these generalized results where the q-th conjunct is of the form
 Pm(eq) = 1, and the rest of the conjuncts are of the form Pm(ek) = 0-

 The second change that must be made in Good's argument is a gen-

 eralization of (5). Good's argument requires that E is a sufficient partition
 in that each of the ek preserves all of the conditional degrees of belief

 P(Ki/ek). Jeffrey's Probability Kinematics also requires that each of the
 conditional degrees of belief P(Ki/ek) remain unchanged by the experi-
 mental results (Jeffrey 1965, p. 169). Therefore the Rm must be restricted
 to possible experimental results which preserve the conditional degrees

 of belief P(Ki/ek). For all i, k, m:

 P(Ki/ek & Rm) = P(Ki/ek) * (B)

This content downloaded from 
������������152.19.134.135 on Fri, 26 Mar 2021 22:55:40 UTC������������� 

All use subject to https://about.jstor.org/terms



 TOTAL EVIDENCE THEOREM FOR PROBABILITY KINEMATICS 321

 This entails, for all i, k, m:

 P(Ki/ek & Pm(ek) = Zkm) = P(Ki/ek) (B')

 which Brian Skyrms (1980, Appendix 2) has shown to be a sufficient

 condition for updating degrees of belief by Probability Kinematics. Thus

 (B) formalizes the assumption that the decision maker expects to update

 her degrees of belief by Probability Kinematics.

 For each of these possible experimental results Rm, the decision maker

 has a prior degree of belief, PO(Rm). At the very least she thinks all of
 Rm equally probable, or more typically she has various degrees of belief

 for each of the Rm. Since the Rm exhaust the possible experimental results,

 SUMm P(Rm) = 1 (D)

 Miller's Principle, together with (D), yields an important relation between

 the prior degree of belief for any of the ek, and the expectation of the

 posterior degree of belief for that ek. The decision maker has a prior de-

 gree of belief, PO(ek), for each of the ek in E, and for each of the possible

 experimental results Rm, a prior expectation of her posterior degree of
 belief for each of the ek given that Rm, that is Pm(ek). But since the ex-
 perimental results are unknown, and rational action depends on the prob-

 ability of each of the ek, what is needed is the prior expectation of the
 unconditional posterior degree of belief in each of the (ek). Since SUMm

 P(Rm) = 1, these prior expectations of posterior degrees of belief for each
 of the ek must be the weighted average of the degrees of belief in the ek

 for each of the possible experimental results. That is,

 P(ek) = SUM.P(Rm) Pm(ek) (E)

 The problem is to determine the relationship between these prior expec-

 tations of posterior degrees of belief for the ek and the prior degrees of

 belief for the ek. The answer to this problem is given by Miller's Prin-

 ciple:

 P(A/PO(A) = r) = r (M)

 Michael Goldstein (1983) and Bas van Fraassen (1984) have shown that

 a decision maker whose degrees of belief did not satisfy Miller's Principle
 would be incoherent because her prior degree of belief in some ek differs
 from her expectation of her posterior degree of belief. In one sense it is

 reasonable to expect the posterior degree of belief to differ from the initial
 degree of belief. A decision maker's posterior degree of belief that a
 tossed coin comes up heads will be either 1 or 0. But her prior expectation
 of her posterior degree of belief must be based on a mixture of her degrees
 of belief for each of the possible experimental outcomes. If the decision
 maker believed this mixture differed from her prior degree of belief in

 any of the ek, rationality would require her to adjust either her prior de-
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 322 PAUL R. GRAVES

 grees of belief, or her expectations of her future degrees of belief. Thus,

 although each of the ek may have a new probability Pm(ek), the only ex-
 pectations of posterior degrees of belief the decision maker can coherently

 assign to the ek, prior to experiment, are the weighted average of her prior
 partial degrees of belief for each of the possible experimental results. The
 relevant instance of Miller's Principle is:

 P(ek/PO(ek) = Zk O) = Zk o (F)

 This, together with (E) entails that the weighted average of the degrees
 of belief in ek for each of the possible results is equal to the prior degree
 of belief in ek-

 SUMm P(Rm) Pm(ek) = PO(ek) (G)

 If the decision maker believed this average differed from her prior degree
 of belief, Miller's Principle would require her to adjust her prior degrees
 of belief, either of the results P(Rm), or of the PO(ek) .3 Given these changes
 in the background assumptions we can now state the generalized argu-
 ment.

 In Jeffrey's Probability Kinematics, the probability of a hypothesis Ki
 on the basis of experimental result Rm is:

 P(Ki/Rm) = SUMkP(Ki/ek)Pm(ek) (H)

 Hence, the initial probability of Ki will be the value obtained from (H)
 for Ro, the result of not experimenting.

 P(Ki) = P(Ki/Ro) = SUMkP(Ki/ekPO(ek) (G)

 Substituting this expression for P(Ki) in (II) yields the prior expected util-
 ity of choice C.

 U(C) = MAX1SUMiSUMkP(Ki/ek)PO(ek)U(Aj & Ki) (VIII)

 By (G), (VIII) is equivalent to:

 U(C) = MAXJSUMiSUMkP(Ki/ek)SUMm

 P(Rm)Pm(ek)U(Aj & Ki)

 = MAX1 SUMmSUMiSUMkP

 (Ki/ek)P(Rm)Pm(ek)U(Aj & Ki) (IX)

 The posterior expected utility of an act Ai given a particular experi-
 mental result Rm is represented by using (H) to generalize (III) from ex-

 3Notice that Miller's principle is required, for the same reasons, to argue from (IV) to
 (V).
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 TOTAL EVIDENCE THEOREM FOR PROBABILITY KINEMATICS 323

 perimental outcomes to experimental results:

 U(Aj & Rm) = SUMiSUMkP(Ki/ek)Pm(ek)U(Aj & Ki) (X)

 The expected utility of a choice C among the possible actions given the

 experimental result Rm will equal the expected utility of the act Aj which
 maximizes (X), that is:

 U (C & Rm) = MAX1 SUMiSUMk

 P(Ki/ek)Pm(ek)U(Aj & Ki) (XI)

 Thus, the expected utility of a choice C among possible actions after

 experimentation is the average of the expected utilities for the actions

 which maximize utility for each of the possible experimental results Rm,
 weighted according to the prior degrees of belief of the Rm,

 U(C & E) = SUMmP(Rm)MAXjSUMiSUMk

 P(Ki/ek)Pm(ek)U(Aj & Kj) (XII)

 But by algebra, this is equivalent to

 U(C & E) = SUMmMAXj SUMiSUMkP(Ki/ek)P(Rm)

 Pm(ek)U(AI & Ki) (XIII)

 Since (XIII) differs from (IX) only in the order of the first two oper-

 ators, and since SUMmMAXjf(m,j) is always at least as great as MAXj
 SUMmf(m,j), the expected utility of a choice C among actions after ex-
 perimentation is always at least as great as the expected utility of the
 choice prior to experimentation for a decision maker who updates her
 degrees of belief by Probability Kinematics, provided that the cost of
 experimentation is negligible. Since the theorem has been proved for de-
 cision makers with arbitrary degrees of belief in the various possible re-

 sults Rm, in particular it has been shown for decision makers who only
 alter their degrees of belief on the basis of experimental results where the
 posterior probability of one of the ek is one. Hence the total evidence
 principle for conditionalizers is a special case of the theorem for Prob-
 ability Kinematics. Q.E.D.4

 4One of the referees has suggested that I should consider the case where there are in-
 finitely many possible experimental results, "i.e. any apportionment of final probability
 over members of the salient partition". The referee correctly points out that with arbitrarily
 many possible results "the general case can be approximated as closely as you please by
 the finite one", and hence the theorem is established for such approximations. If the P(R,,)
 are thought of as discrete probabilities lying within probability intervals, then the general
 case should fall out smoothly as the limit of the SUM over the intervals.
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