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The Impact of Process Noise 
on VLSI Process Improvement 

Roger E. Bohn, Member, IEEE 

Abstract--Process improvement is critical to commercial suc- 
cess in VLSI fabrication, especially during ramp-up. This paper 
investigates one of the factors-process noise-that drives the 
success of process improvement. Split-lot controlled experiments 
are vulnerable to confounding by experimental noise, caused by 
process variability. Fabs with low noise levels have a higher 
potential for learning (and hence improving their production 
processes) than high noise fabs. 

Detailed probe yield data from five semiconductor fabs were 
examined to estimate process noise levels. A bootstrap simulation 
was used to estimate the error rates of identical controlled 
experiments conducted in each fab. Absolute noise levels were 
high for all but the best fabs, leading to lost learning. The mag- 
nitude of lost learning is estimated numerically; it ranges from 
ten percent to above one hundred percent of the theoretically 
possible learning in an experiment. In some cases, experiments 
are little better than coin flipping. Standard statistical methods 
are either expensive or ineffective for dealing with these high 
noise levels. Some alternative nonstatistical countermeasures are 
recommended. 

I. INTRODUCTION 

ROCESS IMPROVEMENT, critical for success in most P VLSI manufacturing, depends on rapid technological 
learning. This is especially true during new product/process 
ramp up, when production volume must be increased rapidly. 
The speed and success of the ramp to high volume is 
determined by the rate at which problems and opportunities 
on the line are detected, diagnosed, and solved. 

Process variability obscures true cause and effect rela- 
tionships in the manufacturing process and makes process 
improvement and learning more difficult. If two fabs make 
the same product but have different process variability, one 
will be able to improve with less effort than the other. They 
will also have learning curves of different slopes 111, [2]. 

This paper analyzes process variability and concludes that 
it significantly affects semiconductor fabrication. It considers 
the impact of process variability on experimental error, and the 
consequences of those errors for process improvement. Exper- 
iments to improve yield can be confounded by experimental 
error, which can arise due to inherent process variability, 
measurement error, sampling error, analytical error, or careless 
mistakes [3]. 

Because of the complexity of processes and the potential 
for unforeseen side effects, most process changes are made 
carefully and systematically. Proposed changes are tested 
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through engineering trials. mpically an engineering trial is 
conducted as a split lot experiment, which compares two 
production methods. A regular production lot is split in half 
just before the step where the change is to be made. Half the 
wafers in the lot are processed in the conventional way, and 
half according to the proposed new recipe. The split halves are 
recombined and processed normally through the rest of the fab. 
At the end, the individual wafers are measured and the average 
measurements for each of the split lots calculated. Differences 
in the averages are due to the different recipes, plus the 
effects of process variability. This split lot procedure blocks 
(neutralizes) most of the between-lot variation, but does not 
block any of the within-lot variation. The within-lot variation 
is a major cause of experimental error and is the subject 
of this paper. Other situations in which process variability 
is a problem include acceptance sampling [4] (higher noise 
leads to larger sample sizes required for a given degree of 
statistical assurance) and statistical process control (real but 
small process disturbances are hidden by everyday high noise, 
leading to wide control limits) [ 5 ] .  

This paper is written for fab engineers, who have to cope 
with the effects of noise, and for researchers who are studying 
the improvement process. It contains three kinds of material, 
as delineated below. 

A methodology for measuring the effects of noise. This 
methodology makes no assumptions about the underlying 
probability distribution of defects; instead it uses live data 
from normal production. 
Exploratory results which quantify the magnitude of the 
problem in five fabs. 
Practical implications and suggestions for fab engineers. 

Section I1 of the paper presents the empirical data used, 
showing the raw variability levels in fab yield for the five 
fabs. Section 111 shows how this variability translates into 
noise in experiments, and therefore into incorrect experimental 
outcomes. Sections IV and V translate these errors into a 
quantitative measure of lost process improvement due to noise. 
The final section of the paper discusses the inadequacy of 
conventional statistics for dealing with this problem, and 
presents some nonstatistical methods. 

A. Prior Work on Yield Variability ana’ Related Topics 

This section reviews literature relating to yield variability in 
semiconductor manufacturing, and touches briefly on literature 
in related fields. Various authors have analyzed the nature of 
yields in VLSI integrated circuit manufacturing. An important 
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observation in that literature is that the number of defective 
dice on a wafer does not follow a Poisson distribution, due 
to spatial clustering of defects. For example, the variance 
of defects may be ten times the mean, in contrast to the 
Poisson, which has the variance equal to the mean number of 
defects [6]. In consequence, standard formulas for probabilistic 
calculations involving yields can be quite erroneous [7]. Albin 
and Friedman propose the use of a Neyman Type-A distri- 
bution. They show that it leads to very different acceptance 
sampling plans [8] and control charts for detecting out-of- 
control processes [4]. 

Wein and various co-authors investigate the issue of yield 
variability and its impact on normal fab operations. A fab 
with constant yield (no matter how low) can be balanced and 
scheduled with a known ratio of machine capacity at different 
process stages. In contrast, varying yields can cause shifting 
bottlenecks and reduce overall fab performance by more than 
the average yield loss. For example, if a fab is making multiple 
chip types that are used as a set and sold in fixed proportion, 
variability in the yields leads to a decrease in the number 
of good sets produced [9]. Sometimes the variability can be 
turned to advantage. If yield is serially or spatially correlated 
and if yields are especially low on part of a wafer, it may not 
even be worth the time to test neighboring wafers or parts of 
wafers [lo], [ l l ] .  

Spanos [12] analyzes a different source of experimental 
errors in semiconductor fabrication-measurement error. He 
shows that ignoring measurement errors can lead to incorrect 
inferences about process performance. By re-analyzing a data 
set with and without allowance for measurement error, he 
shows that apparently significant process changes may be due 
to measurement error. The present paper, in contrast, analyzes 
the corresponding effect caused by process yield variability. 

There is also a great deal of literature on the causes and 
effects of process variation. The key point in this literature 
is that process variation is inherently bad because it leads to 
out-of-specification conditions, hurting product quality. Thus 
quality improvement is in large part a struggle to reduce 
variability [13, chap. 111. The additional role of variation in 
creating noise in the learning process is recognized but not 
emphasized in this literature. 

The statistics literature considers extensively the issue of 
noise in experiments, but pays little attention to the role of 
process variation in causing that noise. The underlying process 
variation is taken as given; the role of statistics is to quantify 
the resulting noise level and to use statistical tools to reduce 
it [3], [14]. 

This paper differs from previous work on semiconductor 
yield variability in two principle respects. First, it is pri- 
marily empirical, attempting to establish the magnitude of 
this problem in a sample of actual fabs. Perhaps because of 
the highly confidential nature of yield data throughout the 
industry, previous work has been primarily theoretical and has 
not included empirical measures. Second, it emphasizes the 
impact of yield variability on learning, rather than on short- 
run operating, cost, or quality issues. It attempts to estimate 
the amount by which yield variability makes it more difficult 
to learn about and improve causes of yield loss. 

unknown B 13 
lvear FF 8 
prequalify G 6 Same 

product as A 

TABLE I 
SUMMARY OF DATA SOURCES 

11. MAGNITUDE OF PROCESS 
NOISE (EXPLORATORY RESULTS) 

The magnitude of process noise in actual semiconductor 
fabrication was investigated empirically. Five fabs provided 
production yield data on one product apiece. Two of the fabs 
provided data for multiple time periods, allowing us to look 
for trends over time. (Table I). Each was a high volume, multi- 
product MOS fabrication facility. All except G were U.S. fabs 
in a single company; G was a foreign subcontractor. Fabs A 
and G made the same product using the same process. All the 
products were medium to high volume, where high volume 
is thousands of lots and millions of completed chips per year 
(see Table I). This section presents basic descriptions of the 
noise as revealed by the data. The following section estimates 
the effects of the noise. All absolute yield data are disguised 
to avoid revealing proprietary information; only data on noise 
can be fully presented. 

Data were provided by individual engineers in each fab.' 
The data consist of wafer-by-wafer probe yield counts (good 
dice per wafer) for every wafer in each lot. Thus, the data give 
a precise measure of probe yield and line yield. 

Fig. 1 shows several months of standard tracking data 
used in fab A to track yields over time. Each point shows 
probe yield for one wafer, on a linear scale. Each column 
shows production during a single week; two randomly selected 
wafers are shown from each lot. Fig. 1 shows high levels of 
yield variation. Because of the way the data are displayed, 
Fig. 1 mixes between-lot and within-lot variability in a way 
impossible to disentangle from this data.2 

Fig. 2 shows complete dot plots of probe yields of individual 
wafers in fab Cl  (fab C,  one year after the beginning of 
production for that product). All lots completed the production 
process sequentially during the same week, and are for the 
same product in the same fab. Each column represents one lot, 
while each dot represents the yield of one wafer in that lot. The 
yields are arbitrarily scaled to protect confidentiality. Within- 

' Fab engineers were asked to provide data from a medium to high volume 
product. In at least one case (fab A), this biased the data since the engineer 
who selected the data chose from lots with high line yields. Thus, the results 
for this fab will understate the noise levels of experimental lots. In fab F F ,  
a number of anomalous lots, which appeared to be experimental lots, were 
excluded. One lot was excluded for the same reason as fab C. One entire 
period of production (4 lots) was excluded for fab A because of a number of 
anomalies. 

*It would have been better to average the two wafers in each lot; this would 
at least give an indication of lot-to-lot yield variability. A standard control 
chart would be even more useful and require no additional data. 
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Fig 3 Summary of noise by lot and fab 

Fig. 3 summarizes this measure for all five fabs. Each column 
corresponds to one of the fab/time combinations in Table I. For 
the rest of the paper, all yield data will be in natural logarithms 
to better indicate percent change in yields. Each point is the 
standard deviation of the log of probe yields of a single lot, 
which will be referred to as the “within-lot noise level”. Fig. 
3 also shows the simple average of the within-lot noise levels 
in each fab. 

Based on Fig. 3 we can make the following observations: 
Most lots within most f i b s  have high levels of within-lot 

Noise levels vary considerably across fabs and time. 
The noise level varies greatly across lots in each fab. This 
is in addition to high lot-to-lot variation in mean yields. 

These observations are consistent with manufacturing pro- 
cesses that are not under good process control. Whatever the 

variability. 

lot variability in probe yield is the spread of each column. 
Between-lot variability is the difference among the columns. 

The range of shapes shown in Fig. 2 is surprising, consid- 
ering that all lots were produced under what should have been 
identical conditions. The mean yields, as well as the variance 
and skewness of yields, vary from lot to lot, suggesting that 
the underlying production process was not stable. A Bartlett 
test for homogeneity of group variances gave probability less 
than 0.005% that all ten lots from C1 had the same variances. 

The within-lot standard deviation of production probe yields 
will prove to have the largest impact on experimental noise. 

111. MAGNITUDE OF NOISE IN EXPERIMENTS 

This section examines the effects of process noise on 
learning, by simulating experiments (engineering trials) using 
the data described in the previous section. Note that this 
section uses normal production data to simulate the conduct 
of experiments. This method gives a large data set which 
is comparable across fabs. In addition, the method used 
here, called bootstrapping, means that no assumptions are 
needed about the underlying distribution of yields. Even if 
different fabs or different part numbers have different types 
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of distributions (e.g., Neyman Type A versus Poisson), this 
methodology puts them all on a comparable basis. 

We will assume that process changes multiply the yield by a 
constant which may be greater or less than 1.0. In other words, 
the underlying model of yields is an additive independent 
model in the log of  yield^.^ The model is therefore 

where 
Ynew 
Yold 
AY 

Probe yield after the process change. 
Original probe yield of the process. 
Change in average probe yield as a result of the 
experimental treatment (positive or negative). Larger 
is better. 

density distribution. 
All quantities are measured in natural logarithms. 
This section first gives a formal model of a split lot 

experiment, and shows how to simulate these experiments 
by bootstrapping. It then introduces the concept of a power 
function, which is a distribution-independent way of describ- 
ing the results of any statistical procedure. Finally, it gives 
empirical results. These show that in some cases the results of 
experiments in these fabs are little better than flipping a coin. 

E Noise in the probe yield. It can have any probability 

A. Methodology 

Learning is modeled as occurring through full-length split 
lot experiments. Each experiment consists of 2N wafers, N of 
which receive the experimental treatment at the critical process 
steps. The 2N wafers are processed as a single lot at all other 
process steps. The outcomes are measured at die probe. The 
standard test statistic for such an experiment is the difference 
in average yield between the two split groups. The larger the 
difference, the larger is the likely improvement from the new 
method. The test statistic is 

which deviates from the true effect of the treatment according 
to 

where 

Ayest 

Axrue 

Y ,  

Estimated yield improvement due to the new 
production method. 
Unknown true effect of the new production 
method. 
Log yield of the ith wafer; the first N wafers 
are the experimental group; the next N are the 
control group. 

3This is a reasonable approximation for all but the largest changes, since 
total noise is the sum of noise in number of steps, while process changes 
affect only one or a few steps. 

N 

Nl 

N2 

€experiment 

23 1 

Initial sample size of each split group in the 
experiment. N 5 12 since lot size in most fabs 
is 25. 
Number of wafers which survive in the exper- 
imental group; N I  5 N .  
Number of wafers which survive in the control 
group; N2 5 N .  
Noise of the experiment, which depends on the 
process noise level and the number of wafers 
in the experiment. 

If yields were distributed normally or according to another 
known distribution, and if line yields were 100% so that 
N = N I  = N2, we could use statistical theory to find the 
distribution of the experimental noise Eexperiment. However, 
using any single distribution to summarize the actual wafer 
by wafer data is risky. The lot-to-lot comparisons suggest 
that the manufacturing process parameters were not stable, 
and different distributions may apply in each fab. Also, the 
impact of missing wafers caused by line yield losses must be 
incorporated. This reduces the effective sample size below the 
nominal sample size N .  

To evaluate the effectiveness of these experiments without 
assuming an underlying distribution function for probe yields, 
bootstrapping techniques were used to simulate what would 
have happened if experiments had been conducted on these 
lots in each fab [15]. Bootstrapping is a Monte Carlo method 
that uses limited amounts of empirical data to construct 
large samples which simulate experiments. The wafer by 
wafer probe yields from a single lot (discussed in Section 
11) were repeatedly sampled with replacement, to construct 
the two groups of N / 2  wafers each, that would result from a 
single experiment. Wafers that did not survive the line yield 
were removed from each subsample. The test statistic, AY,,, 
(difference of the average log yields), was then calculated for 
the case that AY,,,, = 0 (i.e., an experiment on a process 
change that has no effect). This gives the outcome of a single 
simulated experiment. This procedure was repeated 600 times 
for experiments with N = 12, and 2000 times for experiments 
with N = 3 .  Sampling was conducted equally from each lot 
of a particular fabhime period. Symmetry was then used to 
double these sample sizes to 1200 and 4000, respectively. 
These 5200 simulated experiments per fab/period form the 
basis for evaluating the error rates of real experiments in the 
fabs. 

B. Power Functions 
We will start with the simplest possible test criterion. 

If AY,,, > 0, treat the new production method as better; 
otherwise, stay with the old production method. This decision 
rule serves as a starting point for more complex decision rules, 
which will be discussed later. 

From the bootstrap data, we construct the power function 
G(AY) of the hypothetical experiment. G(AY) is the proba- 
bility of choosing the new production method, if the true value 
of the change is AY. The power function gives a complete 
measure of an experiment's information content, and can be 
used to evaluate the experiment according to any criterion, 
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Fig. 4. Power functions for S = 12. 

such as significance regions4. An ideal power function would 
rise vertically through AY = 0, with G(-13) = 0, G(+B) = 
1, where 13 is arbitrarily small. 

Fig. 4 shows the power functions for full lot experiments of 
N = 12 wafers per sample. Each line shows the probability 
(unknown to the experimenter) of accepting the new produc- 
tion method as a function of its true effect on yield AX,,,. 
For any true value of log yield improvement, the height of the 
power function is the probability that the engineer will accept 
the hypothesis that AY,,,, > 0, i.e., that the new method 
is better.’ Probabilities of accepting inferior new methods 
(AX,,, < 0) are given by symmetry. 

For example, in fah F F ,  if the true value of a process 
change is AY = 0.03 (a 3% improvement in yield), the 
probability of accepting the new method is 63%, and the 
probability of rejecting it (type 2 error) is about 37%. Each 
power function is symmetric and passes through (AY = 0, 
prob. = 50%) because in this model, the engineer uses a 
symmetric test criterion. If the new method were in fact worse, 
with AY,,,, = - 0.03, the probability of rejection would be 
63% and the probability of acceptance (type 1 error) would be 
37%. If the engineer sets a cutoff of AY,,, 2 AYcutoff > 0, 
in an effort to defeat the effect of noise, this would shift each 
curve to the right by AYcutoR.6 

C. 
[Exploratory Results] 

Learning in semiconductor manufacturing proceeds on the 
basis of multiple small improvements, in the neighborhood 

4The procedure for estimating power functions from the bootstrap results 
is straightforward. Since in each simulated experiment the “true” value of the 
process change was the same, any variation in results of the experiments is 
due only to noise. Rank order each of the 1200 outcomes, from smallest to 
largest, and plot the results as in Fig. 4. Scale the vertical axis from 0 to 1, 
and the curve becomes a power function. 

’Sampling error: Since Fig. 3 and associated tables are derived from 
bootstrap analysis with 1200 repetitions, they are subject to sampling errors. 
Since they are order statistics, these errors are largest in the tails. A visual 
assessment of the error is given by the waviness of the lines in Fig. 3; the true 
power functions are smooth. I also re-ran plant C1, 10 times. For G(AY = 
0.10), the runs had mean and s.d. of 0.793 5 0.010. 

6These probabilities are conditional on the experiment being successfully 
completed. There is also a small chance the experiment would have to be 
repeated due to too many wafers being lost in the production process (line 
yield). This is not shown in Fig. 4. 

Effect of Noise on Experimental Outcomes 

TABLE U 
CONSEQUENCES OF WITHIN-LOT NOISE 

Fab n m e  lA1.5 1 A3 I B I C1 1Cl.S I C2 ICZ.5 I C3 1 FF I G 
Avg.in-lotndse I 0.19d 0.094 0.3911 0.3151 0.20$ 0.2611 0.2511 0.194 0.2561 0.100 

of 0.01 5 AY 5 0.03. This is the size of the signal being 
sought by the engineer; this is much smaller than the within- 
lot process noise of 0.10 and above, found in the empirical 
data. We now use the power functions to predict what will 
happen if experiments are run in each fab, on improvements 
of different sizes. Table I1 shows the predictions. 

I )  Practical Implications: We can make the following ob- 
servations: 

The impacts of noise in most fabs were so large as to make 
the chance of overlooking process improvements (type 2 
errors) quite high, except for very large improvements. To 
find a process change that has a 10% effect (AX,,, = 
0.10) is quite rare. But in fah B with a sample size of 
N = 12, even such a large effect would be missed in 
an experiment more than 20% of the time. Only fabs 
A3, G, and C3 have probabilities of error below 10% for 
a change of 0.10. Experiments on process changes with 
AY = 0.05 have error rates ranging from 18% to 40%. 
As this model is formulated, 50% is the highest possible 
error rate, so fabs B and C1 do little better than pure 
chance. None of the fabs does much better than pure 
chance for AY = 0.01. 
The consequences of noise differ considerably across fabs 
and time. Therefore, decision rules and experimental 
designs should be re-examined periodically. In particular, 
engineers should measure noise levels in new products 
and other situations with potentially high noise levels. 
All results are considerably worse for experiments con- 
ducted with samples of N = 3. In fact the noise levels 
are so high that all experiments should be run with N 2 
12. 

Iv .  DECISION RULES AND THE VALUE 
OF EXPERIMENTS (METHODOLOGY) 

After process engineers run a trial that shows a small but 
positive impact AY,,, from a new manufacturing method, they 
must decide whether to change the process permanently or 
leave it alone. The statistical approach to this decision is to 
use a significance test to evaluate the probability that AY,,,, > 
0, and to make the change iff this probability is higher than 
some value such as 90%. This approach is not good in high 
noise environments. As shown in Table 11, because of high 
experimental noise in most fabs, this criterion will lead to 
high levels of AYcutoff and thereby will have a high chance 
of Type 2 errors (rejecting genuine improvements). How much 
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is lost because of such errors? What is the value maximizing 
decision rule for making the choice? What is the resulting 
aggregate rate of process improvement? By how much does 
it hurt to be running trials in a high noise fab instead of a 
low noise fab? 

This section shows how to answer these questions, using 
a simple economic model for measuring the learning from 
an experiment. First it defines several rules for deciding 
whether to make a process change, called decision rules. 
Then it shows how to quantify the effectiveness of each 
experiment under different decision rules. It ends with a brief 
discussion of sequential experimentation. Section V evaluates 
these questions numerically for each fab in the data set. 

A. Decision Rules: When to Change the Process 

Once a trial has been run, the decision whether to make 
the process change should be based on whether the observed 
value of process improvement, AYest , is above or below some 
cutoff value, AYcutoff. (To simplify notation, A will be used 
in place of AY in Sections IV and V.) The statistical approach 
is to choose a cutoff Acutoff ( a )  which solves 

1 - a = Pr[Atrue L o/Aest = Acutoff ( a ) ]  (4) 

where a is the significance level of the test, the allowable 
probability of type I errors (false positives) and where Pr[z/b] 
is read “the probability of 5 ,  given information set b”. The 
experimenter chooses the level of a based on subjective 
judgments of the relative costs of Type I and Type I1 errors. 
The statistical decision rule then follows. 

Rule S: Adopt new method iff. 

Aest 2 Acutoff (a ) .  ( 5 )  

Although it is commonly used, (4) for selecting a cutoff 
value is not the best possible because it does not consider the 
economic value of process improvement directly. In contrast, 
the decision theoretic rule chooses Acutoff to maximize the 
expected value of the experiment. Let K be the net present 
value in dollars of future production of the product if the 
process change is not made. This depends on the chip’s selling 
price, packaging cost, expected market life, and the discount 
rate. Let C be the fixed cost of implementing a process change. 
C should include the value of downtime while the change 
is being implemented, the opportunity cost of worker time 
implementing the change, and costs of any disruption caused 
by the change. From this we can calculate a “breakeven yield 
improvement” such that the cost of the process change exactly 
balances the value of the change. 

Rule B: Adopt new method iff 

Aest 2 Abreakeven Acutoff,B. (7) 

Typical values might be on the order of C = $0.5 million, K = 
$100 million, giving a cutoff of 0.5% yield improvement. 

If the engineer has previous information about how large A 
is likely to be (such as from prior trials, or results in similar 
situations), they can do even better than Rule B. The prior 
knowledge can be included with the experimental results by a 
process known as Bayesian updating [16]. 

Rule W: Adopt new method iff 

where Aprior is the estimated process improvement from 
information before the trial, C& is the variance in the estimate 
of A, and n:rior is the variance in the information from prior 
sources. 

If Abreakeven = Aprior then Rule W reduces to Rule B. If 
the experimental noise level is high, as in some of the fabs 
in this paper, n2st will be large and the prior knowledge will 
receive a heavy weight. A rather counterintuitive result is that 
if Abreakeven < Aprior then Acutoff,W < 0 and the process 
change may be accepted even if data from the experiment 
alone suggest that the process change is negative. 

For typical levels of criterion a such as 5%, Acutoff 
calculated according to Rules W or B will be smaller than 
AcutoR(a) calculated in Rule S, leading to more process 
changes under the optimization criterion than under the tra- 
ditional statistical criterion. In other words, the traditional 
statistical rule is overly conservative. One interpretation of this 
difference is that Abreakeven serves to bias the engineer against 
small changes, which would more likely have been rejected by 
a significance test. The level of a in (5) is chosen based on the 
engineer’s subjective assessment of the cost of false positives 
versus false negatives, which we have instead done using an 
economic model in (6). If the decision Rule W leads to “too 
many” small process changes, that argues that change cost C 
has been underestimated. A second interpretation is that the 
standard statistical approach is to do nothing unless a change 
is “almost sure to be right,” while the optimization approach 
tries to get the best answer “in the aggregate,” over many 
trials, even though some of those trials will give the wrong 
outcome. 

Numerical evaluation of different decision rules (discussed 
later) indicates that Rule W is in fact not optimal given the 
actual distributions of G(A). A better decision rule is Halfway 
between Rule W and Rule B. 

Rule H: Adopt new method iff 

B. Lost Yield Improvement Due to Noise 

Any decision rule will give errors some of the time because 
of experimental noise. We provide a criterion for comparing 
decision rules and different experiments. Let G * ( A )  be the 
probability of deciding to make the change if Atrue = A, 
where the * indicates that some decision rule with Acutoff # 0 
is in use. Then the expected value of an experiment measured 
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in log yield improvement is 
03 

EVreal G 1 / u(A)G*(A)f(A)dA 
K -03 

x [ Prob experiment completed] 

= { 1: AG*(A)f(A)dA - Abreakeven 

33 

x G*(A) f (A)dA}  

x [ Prob experiment completed] (10) 

where f (A)  is the prior probability density function for 
the size of process improvements Atrue. [Prob. experiment 
completed] is 1 - (the chance that too many wafers will be lost 
due to line yields). EVreal is measured in logs; K x EVreal is 
the expected net present value improvement per experiment in 
dollars. To evaluate (10) it is easy to show that 

G*(A) = G(A - Acutoff)  (1 1) 

where the G( ) function was estimated by bootstrapping in 
Section 111. 

We compare this with what would happen in the absence of 
noise. v(A) and f(A) remain the same, but G*(A) is replaced 
by a 0-1 step function at Abreakeven. The resulting expected 
value of a perfect experiment (EVPE) is 

E W E  = { /m Af(A)dA - Abreakeven 
Ahreateven  

x f(A)dA}. (12) 
Abrcakrven 

For each fab we can calculate by how much process 
improvement is slowed down due to noise as a ratio of lost 
learning (LL) 

LL = 1 - {EVreal/EVPE}. (13) 

LL is independent of the economic scale factor K ;  it depends 
mainly on the noise level in the fab, and on f ( A ) .  f ( A )  is 
the relative density of large and small yield changes resulting 
from different process changes. It depends on the maturity 
of the technology and the degree of insight of the engineer 
choosing what trial to run. f ( A )  cannot be observed directly; 
large numbers of real experiments would be needed to estimate 
its true shape. An article about a prototype production facility 
at Hewlett Packard gave the following comments about f ( A ) :  

It is estimated that an experiment designed to improve 
a process will most likely result in a yield improvement 
from -2.5% to 12.5% [percent, not percentage points]. 
It can be further estimated that some small, but positive 
yield improvement (typically 5%)  for each completed 
engineering experiment is the most probable result. [17] 
This suggests that f ( A )  is symmetric with a mean of +0.05 

and a standard deviation of about 0.03. However, as a process 
matures, f ( A )  will move to the left since the most promising 
hypotheses are investigated first. All but two of the data sets in 
this paper are for products one year old or more. Anecdotally, 
process improvements of more than a few percent are rare for 
such processes. 

All 10 fab/periods in Table 1 

Idea quality; 17 A ~ o r  - 
0 -  .02 

v .  BETTER NOISE CONTROL AND ITS 
BENEFITS [EXPLORATORY RESULTS] 

This section compares several approaches to dealing with 
noise. Learning from trials can be improved by a number of 
methods, most of which require engineering effort to learn and 
set up. Therefore, it is useful to get an idea of their impact 
before pursuing them. Specific improvements modeled here 
include: 

being in a lower noise fab, 
decreasing implementation costs C: decreases Abreakeven, 
proposing better initial hypotheses for improvements: 
raises Aprior, 
proposing more radical ideas for improvement (e.g., big- 
ger shifts away from standard set-points): raises cpriorr 

using a better decision rule: Rule H or W instead of Rule 
S, 
increasing the sample size N .  

All of these are under a degree of management and engineer 
control, although some (decision rules) are easier to change 
than others (better hypotheses). 

Based on the methodology in the previous sections, this 
section estimates the expected values of learning and lost 
learning in each fab under different conditions. This is done by 
assuming values for the parameters of Abreakeven and f (A), 
thenapplying the boorstrap-derived power function in Section 
111 the valuation equations of Section IV.7 This section, 
using an economic model, analyzes the following cases, as 
shown in Table 111.’ 

The outcome measures are EVPE, EVreal, and lost learning 
as a percent of EVPE. A full factorial design was used to 
analyze the variables in Table I11 except for sample size; N = 
3 was examined only for a few lower noise fabs. In most 
cases, decision Rule B was almost as good as Rule H, so 
it will not be reported extensively. Table IV reports detailed 
results for FabG ( N  = 3, 12) and Fab C1 ( N  = 12). LL is 
lost learning as a percentage of EVPE (smaller is better), as 
shown in Table IV. 

1) Practical Implications: According to Table IV 
All learning determinants have a substantial impact on 
learning in some situations. Doing everything “well” 
can reduce lost learning to as low as 13% of potential 

’Aside from numerical accuracy issues, using the power functions for this 
is equivalent to bootstrap simulation of the experiments, then measuring each 
experiment directly and averaging to get expected values. 

8We will assume that the distribution of ideas f ( A )  is normal (mean is 
Aprlor. standard deviation is oprior) so that EVPE is fully determined by 
specifying (Aprior -Abredkeven)  and cr,,,,,.. With other assumptions about 
f( A) somewhat different numerical estimates of EVPE would be reached, but 
the lost learning levels would be approximately the same. Note that this is the 
only place in the paper where a specific distribution is assumed. 

implement. cost Abnalreven 
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TABLE IV 
LOST LEARNING k S U L T S  FOR 2 FABS 

h N I i 0  I R e a l a  flamer EVreal and smaller U are better) . "  .~ 

I Fab6.N-12 I FabG.N-3 IFabC1.N-12 

or have a good initial hypothesis Aprior - Abreakeven L 0.02. 
The first two conditions can be fulfilled with sufficient effort, 
but the last condition requires either extended work on noise 
reduction or good luck. 

Fig. 5 .  

4 1 
0 %  , , , , , I I I , I 

+% $ 9 0' o\9 & $ 0 4( 
Fab Name and Maturity 

Lost learning by Fab (N = 12). 

Error bars show 
range across initial 
l(A) scenarios. 
onlyworstcase 
shown lcf  le S. 

learning (run 7, decision Rule H, Fab G , N  = 12). 
Doing it "poorly" can almost wipe out the value of 
experimentation (run 7, decision Rule S, Fab C1 has lost 
learning of 80%). 
Moving from a high noise fab (Cl) to a low noise fab 
(G, N = 12) gives a roughly 30% point reduction in lost 
learning. 
Decreasing the sample size is like moving to a higher 
noise fab and increases the lost learning. 
Using the S (Statistical) decision rule instead of H or B is 
costly, in many cases doubling the lost leaming. Using a 
better rule is an easy change to make (selecting Acutoff 
using economic criteria rather than purely statistical cri- 
teria). 
The f ( A )  initial hypothesis parameters have a substantial 
effect on EVPE and EVreal, and on lost learning. Notice 
that more radical ideas raise the value of possible learning. 
(Compare EVPE in run 7 and run 4, for example.) 

Fig. 5 looks in more detail at the effect of fab noise levels 
on lost learning. Each entry is the mean across the four 
combinations of f ( A )  : {Aprior - Abreakeven = Low, High; 
oprior = Low, High}. There is a 2.5:l ratio between best and 
worst fabs, and their ranking is consistent with the ordering 
of their power functions in Fig. 4 and noise levels in Fig. 3. 
Fig. 5 shows that statistical decision rule S with (Y = 10% is 
completely dominated by Rule H, and it sacrifices more than 
60% of the potential learning in 8 of the 10 fabdtime periods. 
Even Rule H is poor in an absolute sense, with average lost 
learning close to 40% in the same 8 fabs. 

The only way to get lost learning below 30% according to 
this analysis is to use a good decision rule (H or B), use full 
lots (24 wafers), and either be in a low noise fab (A3 or G) 

VI. GENERAL CONCLUSIONS: FAST LEARNING DESPITE NOISE 

Given that process noise levels in most of the fabs were large 
enough to cause high experimental noise and consequent lost 
learning, what can be done? Standard statistical methods alone 
cannot overcome the high noise. An approximate calculation 
indicates that from 40 to 400 lots per experiment would be 
needed to meet standard statistical criteria in each fab.9 In the 
process of visiting a number of fabs I observed four classes of 
countermeasures, used with varying degrees of intensity and 
expertise among different companies, fabs, and engineers: 

statistical methods, such as larger sample size, experi- 
mental design, and better data analysis, 
transforming the problem by changing the outcome vari- 
able; examples of this approach are short-loop experi- 
ments, defect analysis, and creation of special purpose 
test sites, 
transforming the problem by changing the site or nature of 
experimentation; examples of this approach include wafer 
tracking [19] and laboratory investigations in place of 
engineering trials [20], 
reduction of process noise levels in the fab, by methods 
such as SPC, to detect changes [5]. 

These methods can be very effective, especially if used in 
concert. This section looks briefly at each in turn. 

1) Statistical Methods: Statistical methods of dealing with 
noise take the core definition of the trial as fixed (what 
is measured, how, and where), but use mathematical meth- 
ods to improve the design or analysis. Routine statistical 
methods, such as significance tests, were discussed earlier. 
More advanced statistical methods are often recommended by 
statisticians. 

Multi-lot trials: This brute force approach requires enough 
lots to have enough wafers in the sample to overcome the 
noise. The drawbacks are very high costs, and long delays 
since all the lots have to finish processing before the results 
can be analyzed. A variant on this approach is sequential 
experimentation. In this approach one or a few lots are run 
and analyzed. If the results are clearly good (high AY,,,) the 
method is adopted. If the results are clearly bad, it is rejected. 
If AY,,, is intermediate, another set of lots are run under the 
same conditions, and the results are averaged. This approach 
reduces costs but greatly increases the duration of the trial and 
therefore reduces the rate of learning, compared with multi-lot 
trials. 

Fractional factorial design: Fractional factorial designs 
(such as Taguchi's orthogonal arrays) allow multiple variables 
to be investigated simultaneously, with only a slight increase 
in effective noise level for any of the variables. However they 
do not solve the basic problem of high noise. They also require 
very careful operational control of the experiment, since each 

'Last line of Table 11. The underlying calculations are presented in [18]. 
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lot now requires a number of setups, and any processing error 
can cause misleading results. 

Bayesian decision rules: Bayesian methods compare the 
costs of gathering more information with the costs of making 
different kinds of errors. Rule H, analyzed in the previous sec- 
tion, is an example of a Bayesian method, and it gave greatly 
improved learning per experiment. However lost learning was 
still quite high in most of the scenarios. 

2) Transforming the Problem by Changing the Outcome 
Variable: Each sequential step in wafer fabrication has its 
own random defect mechanisms, and adds its own noise to 
the final yield. This paper has looked at full length controlled 
experiments, in which the dependent (outcome) variable is 
the die yield at wafer probe. Since die yield is the key 
economic driver, such experiments are directly relevant to 
process economic performance. Yet it is often useful to look 
at intermediate yield drivers rather than final yield, in order 
to reduce noise levels.1° 

Causal analysis of defects: Engineers test process changes 
because of an underlying causal model of how defects occur. 
They hypothesize that a specific change will reduce one or a 
few defect mechanisms. If these defect types can be measured 
directly on wafers at the end of the trial, then this removes all 
of the process variability caused by other defect mechanisms. 
This can be as much as a loOx improvement in noise levels. 
However, it leaves the engineer vulnerable to unanticipated 
and unmeasured side effects from the trial, which could reduce 
the overall yield. Causal analysis of defects is also a slower 
and more labor-intensive process than automated probe yield 
testing, limiting the number of trials that can be done in this 
way. 

Short-loop experiments: Because short-loop trials remove 
wafers before completion [22], they cut out the noise from 
downstream steps. In addition, they usually look only at one 
or a few defect mechanisms, thereby picking up the noise 
reduction benefits of causal analysis. 

Test structures: Test structures represent an enhanced ap- 
proach to short-loop trials [23]. 

Within-wafer effects: A referee points out that many process 
changes have differential effects on different parts of the wafer. 
In this situation, weighted sampling of different parts of the 
wafer will help. 

Drawbacks and obstacles to changing variables: The big 
(potential) drawback of changing variables is loss of fidelity. 
Measuring only certain yield drivers may overlook other 
problems which are created or exacerbated by the process 
change being tested. This is especially likely when working 
with new and novel processes. In addition, it is often not 
clear what the causal relationships are between intermediate 
and final variables. The process engineer may not know of a 
reliable way of measuring a particular problem, earlier in the 
process. 

In addition, measuring variables other than probe yield is 
slower. It may be quite labor intensive, reducing the feasible 
sample size, or increasing costs, substantially. 

lo Several published case studies of directed process improvement illustrate 
various of these approaches to noise mitigation [19], [21]; [21] is particularly 
interesting in its use of multiple methods to reduce the effects of noise. 

3)  Transforming the Problem by Changing the Site or Nature 
of Experiments: Normal production fabs have a number of 
demands on them, and they are not optimized for experimen- 
tation. Therefore some companies use pilot lines for much of 
their learning. However, pilot lines are subject to continual 
change, use equipment which is not fully debugged, and run 
a high rate of controlled experiments which are themselves 
disruptive. Hence noise control cannot be taken for granted in 
pilot lines or development fabs. 

Another approach which is becoming cheaper and more 
popular is the use of natural experiments based on detailed 
analysis of data from ongoing production. Wafer tracking 
systems [ 191 increasingly incorporate the hooks for collecting 
such data [19], [24]. Because of the lack of control groups 
in the data (no split lots), the noise level per lot is higher in 
natural experiments than in controlled experiments. However, 
extremely large sample sizes are possible, canceling some of 
the noise. 

Natural experiments are theoretically suspect for learning 
because of a number of statistical problems. For example, if z 
and yield are both caused by an unobserved process condition, 
then no matter how high the correlation between z and yield in 
the data, increasing z will not necessarily improve yield, and 
in fact could hurt it.” Despite this inability to prove causality, 
natural experiments are still an excellent way to develop ideas 
for further testing. 

4 )  Reduction of Process Noise in the Fab: The large dif- 
ference in noise levels between fabs A and G, which made the 
same product, confirms that direct reduction of process noise 
is feasible. Many of the sources of manufacturing variability 
can and should be removed, through methods such as total 
quality maintenance and SPC to spot process excursions 
[5] .  Some fab practices, intended to improve performance, 
actually work to increase noise. An important example is 
the practice of “tweaking” equipment and recipes frequently. 
Deming, among others, has argued strongly against frequent 
process adjustments on the grounds that they hurt average 
performance. 

The concept of robust design (of both products and 
promises) offers considerable promise for reducing yield 
variability as well as increasing mean yield [25]. In a similar 
way, more conservative chip design rules, while they may 
reduce maximum die yield, can reduce process noise and 
therefore increase the potential rate of learning.12 

VII. CONCLUSION 

Using data from a sample of fabs and products, this pa- 
per has estimated the magnitude of improvements possible 
by using different statistical and nonstatistical methods of 

“Box et al. [3] refer to natural experiments as the use of “happenstance 
data,” and show numerous potential problems with their value. 

‘*Among the issues not dealt with in this paper are the root causes of the 
high noise levels, and the reasons why noise is not addressed more directly 
and solved by fab management. Noise in final probe yields is due at a micro 
level to specific machine/process variability at specific process steps. But the 
large differences in noise among fabs using similar equipment and processes 
suggests deeper levels of causality. Phenomena of this complexity cannot be 
captured by studying experimentation in isolation from other aspects of fab 
operation. 
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noise mitigation. Standard statistical methods, especially by 
themselves, are ineffective, or costly and slow. Non-statistical, 
Bayesian and combined methods are much more effective. 
Taken together, they can reduce lost learning from as high 
as 80% to below 20% of potential learning. 

The payoff to dealing better with noise in experimentation 
is faster performance improvement, or “accelerated learning 
curve progress.” It is one class of methods for increasing the 
amount learned from each learning activity or cycle [22]. Some 
of the changes recommended here can be implemented easily 
and individually, while others require fab-wide efforts. 

Although the specific results in different fabs will vary, the 
same principles should work, and the same methods should 
be usable. The empirical data in this paper covers only four 
products and five fabs. Within this small data set, there is 
considerable variation in noise levels across products, fabs, 
and product maturity. This variation is itself one of the results 
of the paper, and suggests that noise is a serious problem. A 
larger and more comprehensive sample of companies, fabs, 
products, and time series will be needed to see whether the 
high and variable noise levels are a general feature of VLSI 
fabrication’ 3. 

APPENDIX 
DERIVATION OF DECISION RULES 

This appendix derives several rules for deciding whether to 
implement a process change on a permanent basis, based on 
both economic and statistical issues. The Statistical decision 
rule derived in Section IV is 

Rule S Adopt new method iff Aest 2 Acutoff(a).  ( 5 )  

The power functions in Fig. 4 allow construction of such tests 
by locating the value of A which solves 

In contrast, the decision theoretic rule chooses Aclltoff to 
maximize the expected value of the experiment. To derive this 
rule, let .(A) be the net present value in dollars of a yield 
change of size A. Let n(t)  be the marginal value to the fab of 
an additional die at time t .  If the market is competitive, 

the linear model 

.(A) = A x K - C 

K = s,’ e-Ttn(t)Q(t) d t  (A2) 

where T is the time horizon, r is the relevant discount rate, 
C is the fixed cost of implementing a process change, and K 
is the value of future production. Solving (AI) for Abreakeven 
such that Il(Abreakeven) = 0 gives 

The objective function is to maximize the expected net 
present value of all process changes. This is done by making 
the change iff: 

E[v(A)/available information] 2 0. (A4) 

Then, decision rule (A2) becomes make the process change if 
the expected value of A is greater than Abreakeven. 

Adopt new method iff 

E( A/experimental results) 2 Abreakeven. (A5) 

An obvious value for E(Alexperimenta1 results) is AE,, 
defined in (2). This leads to decision Rule B (for breakeven): 
Rule B: Adopt new method iff 

Aest  2 Abreakeven = Acutoff,B. (7) 

If the experimenter has previous information about how 
large A is likely to be, they can do better. Let f (A)  be 
the prior probability density function for the size of the 
process improvement Atrue. Then E( A/experimental results) 
is a weighted average of Aest and the pre-experiment value of 
A, Aprior f(A)dA. The weight depends on the relative 
uncertainties of f(A) and the experimental results. If both 
f (A)  and G(A) are normal, this has a closed form solution.16 
Let f (A)  be normal (mean is Apriorr standard deviation 
is oprior), and assume for now that the distribution G(A) 
of experimental results is normal (mean is Aest, standard 
deviation gest).  Then by a process known as Bayesian updating 
[I61 

* (‘46) 
n(t)  = (Wholesale selling price) 

E(A/all experimental data) = *‘lor 

- (Marginal packaging cost).15 l/g:rior + 1/02st 

Let Q ( t )  be the base case quantity of chips produced at t ,  
with no process change. Then an adequate model for .(A) is 

I3Interested readers are encouraged to contact the author, who is willing to 
analyze data they collect, or provide his software so they can conduct their 
own analyses. 

l4(Ai) is a more sophisticated version of the standard t-test for equality of 
means, which assumes that E is distributed according to a normal distribution 

I5In (15). if the market is not fully competitive, marginal revenue should 
be substituted for selling price. The distinction between price and marginal 
revenue is discussed in any microeconomics textbook. 

~141. 

Substituting (A4) into (A3) and solving for the level of Aest, 
which will produce equality gives the decision Rule W (for 
Weighted). 

Rule W: Adopt new method iff 

Aest  2 Abreakeven + - d s t  X 
oi r ior  

[Abreakeven - Aprior] Acutof,W (8) 

I6The shape of f ( A )  is determined by expert judgement (engineering 
estimate). If no prior information is available, this is equivalent to assuming 
that f( A) has infinite variance in the following equations. 
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