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| 2 apid technological learning is critical to commercial success in VLSI semiconductor man- 
ufacturing. This learning is done through deliberate activities, especially various types of 

experimentation. Such experiments are vulnerable to confounding by process noise, caused by 
process variability. Therefore plants with low noise levels can potentially learn more effectively 
than high noise plants. 

Detailed die yield data from five semiconductor plants were examined to estimate process 
noise levels. A bootstrap simulation was used to estimate the error rates of identical controlled 
experiments conducted in each plant. Absolute noise levels were high for all but the best plants, 
leading to lost learning. For example, the probability of overlooking a three percent yield im- 
provement was above twenty percent in all but one plant. Brute-force statistical methods are 
either expensive or ineffective for dealing with these high noise levels. Depending on the criterion 
used, there was a four- to ten-fold difference among the plants. 
(Yield; Learning by Experimentation; Noise) 

  

1. Introduction 
Rapid technological learning about manufacturing pro- 
cesses is critical for success in many industries, New 

process startups require particularly rapid learning. 

Production volume must be increased rapidly while 
costs are brought down. In fact the speed and success 

of the ramp to high volume is determined by the rate 

at which problems and opportunities on the line are 
detected, diagnosed, and solved. 

This paper presents an empirical examination of the 
magnitude of process variability and its impact on the 
rate of process improvement. Examining the case of the 

semiconductor industry, where issues of rapid learning 
and process improvement are crucial to success, we de- 
velop a simple model of technological learning by con- 

trolled experimentation. In this model, process vari- 
ability creates noise in the experiments, which leads to 
ambiguous or erroneous results. 

It is clear that process variability, by obscuring the 
true cause and effect relationships in the manufacturing 
process, makes process improvement and learning more 

0025-1909 /94/4101/0031$01.25 
Copynght © 1994, The Institute of Management Sciences 

difficult. For example, two plants making the same 
product but with different process variability will have 
different functions relating managerial effort to the rate 
of process improvement, and therefore have learning 
curves of different slopes.’ But despite the importance 
of rapid process improvement in many technology 
driven industries, process variability and its impacts on 
learning’ have received little analytical or empirical 
analysis. For example, the extensive literature on learn- 
ing curves is devoid of discussion about process noise 
as a factor influencing the rate of learning (Dutton et 
al, 1984). 

This lack of discussion implies that process variability 
is not an important factor in process improvement. This 
paper presents a preliminary investigation of this issue 
and concludes that process variability is large enough 

* See Zangwill and Kantor (1993) for a formalization of the concept 
of managerial effort versus slope of the learning curve. A more general 
discussion of learning issues is Jaikumar and Bohn (1992). 
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to have an important impact in the semiconductor in- 

dustry. 

Prior Work on Yield Variability and Related Topics 

This section reviews literature relating to yield variability 

in semiconductor manufacturing, and briefly touches 

on literature on other related fields. Various authors 

have analyzed the nature of yields in VLSI integrated 

circuit manufacturing. An important observation in that 

literature is that the number of defective dice on a wafer 

does not follow a Poisson distribution, due to spatial 

clustering of defects. For example, the variance of de- 

fects may be ten times the mean, in contrast to the Pois- 

son, which has the variance equal to the mean number 

of defects (Stapper 1986). In consequence, standard 

formulas for probabilistic calculations involving yields 

can be quite erroneous (Stapper 1989). Albin and 
Friedman propose the use of a Neyman,Type-A distri- 

bution. They show that it leads to very different accep- 
tance sampling plans (Albin and Friedman 1989) and 
control charts for detecting out-of-control processes 

(Friedman and Albin 1991). 

Wein and various coauthors investigate the issue of 

yield variability and its impact on normal plant oper- 

ations, A plant with constant yield (no matter how low) 

can be balanced and scheduled with a known ratio of 

machine capacity at different process stages. In contrast, 
varying yields can cause shifting bottlenecks and reduce 

overall plant performance by more than the average 

yield loss. For example, if a plant is making multiple 
chip types which are used as a set and sold in fixed 
proportion, variability in the yields leads to a decrease 

in the number of good sets produced (Avram and Wein 
1992). Sometimes the variability can be turned to ad- 

vantage. If yield is serially or spatially correlated and if 
yields are especially low on part of a wafer, it may not 
even be worth the time to test neighboring wafers or 

parts of wafers (Longtin et al. 1992, Ou and Wein 1992). 

Spanos (1989) analyzes a different type of variability 

in semiconductor fabrication-measurement error, He 

shows that ignoring measurement errors can lead to 

incorrect inferences about process performance. In a 
sense, this is analogous to the effects of experimental 

error. 
This paper differs from previous work on semicon- 

ductor yield variability in two principal respects. First, 

32 

it is primarily empirical, attempting to establish the 

magnitude of this problem in a sample of actual plants. 

Perhaps because of the highly confidential nature of 

yield data throughout the industry, previous work has 

been primarily theoretical and has not included empir- 

ical measures. Second, it emphasizes the impact of yield 

variability on learning, rather than on short run oper- 

ating, cost, or quality issues. It attempts to estimate by 

how much yield variability makes it more difficult to 

_ learn about and improve causes of yield loss. The un- 

derlying statistical issues are similar to those for control 

charts and static performance measures, but the em- 

phasis is on the impact of variability on dynamic per- 

formance. 

There is also a large literature within the quality con- 

trol tradition on the causes and effects of process vari- 

ation. The key point in this literature is that process 
variation is inherently bad because it leads to out of 

specification conditions, hurting product quality. Thus 

quality improvement is in large part a struggle to reduce 

variability (Deming 1986, Ch. 11). The additional role 

of variation in creating noise in the learning process is 

recognized but not emphasized in this literature. 
Related to the quality control literature is the statistics 

literature, which is one of the disciplines underlying 

process improvement. The statistics literature treats the 

issue of noise in experiments quite extensively (using 

different terminology), but pays little attention to the 

role of process variation in causing that noise. The un- 

derlying process variation is taken as given; the role of 

statistics is to quantify the resulting noise level and to 

use statistical tools to reduce it (Box et al. 1978, Hogg 

and Ledolter 1987). 
Finally, there is an economics literature on process 

improvement. Most models of improvement are based 

on the concept of “the experience curve,” which relates 

declining cost to increases in cumulative production 
volume. Consistent evidence across many studies and 

industries shows that the rate of cost improvement {per 

unit of volume) varies across companies and plants 

making the same product using the same technology. 

Dutton and Thomas (1984) survey 200 studies of cost 

reduction curves over time, and comment that “contrary 

to widespread assertion, [the slope of the experience 

curve] depends on firm behavior,” ie., is not determined 

solely by the technology. Nonetheless, there has been 
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little effort to study the micro-foundations of the ex- 
perience curve, Notable exceptions include (Fine 1986, 

Mody 1989, Muth 1986, Kantor and Zangwill 1991). 
None of these models includes the effect of process 
variability. 

2. Process Description 
This section provides background on semiconductor 
manufacturing, emphasizing issues related to yield 
variation. VLSI integrated circuit fabrication is one of 
the most complex of modern manufacturing processes. 
It involves several hundred process steps conducted on 

scores of highly automated computer controlled ma- 
chines. In modern multi-layer fabrication processes 
there are approximately 1,000 control variables and a 
comparable number of environmental variables. They 
interact nonlinearly to determine die yields. Any of these 
variables could potentially be the target of a process 
improvement effort. 

This study considers five plants, each of which makes 
multiple products using several processes. In all five 
plants, the wafers are moved and processed in batches. 
The standard batch size is 25 or 50 wafers. Batches of 
different products are interspersed. A large plant may 
have several thousand batches in process at one time. 
Plant layouts are functional, and a single expensive piece 
of equipment is often used at several points in a process 

and sometimes in different processes. Therefore a ma- 
chine setup is needed before each batch at most ma- 
chines. : : 

A key performance indicator in semiconductor fab- 

rication is yield. Blank wafers are used as the base for 

creating circuits. A single wafer may have ten .to one 
thousand identical circuits, called dice. Line yield is the 
fraction of wafers which go all the way through the 
process without being irreparably damaged by breakage, 
gross processing errors, or other problems. Line yields 
are dependent on good plant-wide operating practices, 

especially in material handling. One hundred percent 
testing is done at the end of fabrication. The percent of 
the original dice which function correctly is defined as 
the die yield, also called probe yield. Die yields depend 
on product design, initial process design, manufacturing 
practice, and cumulative learning /improvement since 

the process started. Overall yield is the product of die 
yield and line yield. 

MANAGEMENT SCIENCE/Vol. 41, No. 1, January 1995 
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The basic economics of fabrication are simple: most 

costs are fixed, while output is proportional to wafer 

starts times the final yield.? Therefore yields are crucial 
to profitability. This is magnified early in the life of new 
products, when the product often sells for a premium 
price, due to limited production volume and better per- 
formance than earlier products. Wafer starts depend 
mainly on production capacity of bottleneck equipment, 

while die yields depend on initial process design and 
manufacturing practice, and cumulative learning /im- 

provement since the process started. Overall die yields 
are multiplicative, since the dice must survive every one 
of a number of serial processes. 

Yield data is highly proprietary, and little hard in- 
formation has been published. “One of the most critical, 
elusive, guarded and controversial aspects ,to analyze 
in the semiconductor process is probe yield’ (McClean 
1985). Freeze et al. (1984) indirectly document a factor 

of 14 improvement in overall yield over two years for 

one product, and a factor of 7 improvement for another. 
These improvements were measured starting from the 

earliest stages of pre-prototype production, whereas the 

plants in this study were starting from a much more 

mature level. Wasserman and Clark (1986) describe a 

case in which overall yields of a new product were close 

to zero for several months. 

Yield Improvement 
Early in the life of a new process, die yields are usually 
very low due to a number of problems. They improve 
as engineers systematically discover these problems, 

then change the process to reduce or eliminate them. 
Changes are made to methods (such as changing 
maintenance procedures on a piece of equipment; 
changing a fixture) or to the process recipe, (such as 

dose, temperature, and time for a particular step, ma- 
terial supplier or specifications) or occasionally to the 
design mask for a layer. Any change can have ramifi- 

cations for other problems and parts of the process. 
Because of the complexity of the process and the po- 

tential for unforeseen side effects, most process im- 

provements are made carefully and systematically, 

? The back end of VLSI semiconductor manufacturing is encapsulation, 
in which individual dice are turned into chips. The economics of en- 
capsulation are somewhat different, and will not be considered in 

this paper. 
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under the direction of engineers. The basic test or val- 

idation of a proposed change is an “engineering trial.” 

Typically an engineering trial is conducted as split batch 

experiment, which compares two production methods 

by making some wafers according to each method. A 

regular production batch is split in half just before the 

step where the change is to be made. Half the wafers 

in the batch are processed in the conventional way, and 

half according to the proposed new recipe. The split 

halves are recombined and processed normally through 

the rest of the plant. At the end, the individual wafers 

are measured and the average measurements for each 

of the split batches calculated. Differences in the av- 

erages are due to the different recipes they went 

through, plus the effects of noise. Note that this split 

lot procedure provides blocking for most of the between- 

batch noise, but does not block any of the within-batch 

noise. 

A single product often runs at 500 wafer starts per 

week, 25,000 per year, or even higher. Wholesale value 

of a single wafer is in the range of $1,000 to $10,000, 

depending on a variety of factors.* Thus an experiment 

which gives a one percentage point yield improvement 

for one product can be worth approximately 250 wafers 

per year, or $250,000 to $2.5 million. In fact, most yield 

improvements after the first year are in the range of 0.5 

to three percent, not larger.* 
Experiments to improve yield can be confounded by 

experimental noise, which can arise due to inherent 

3 Dehmel and Parker (1987) estimate $10,000 per wafer in the future. 

Zorich (1991, ch 2.2), presents sample calculations for the value of 

yield improvement on different products. 

‘ Personal interviews with factory engineering managers. This is con- 

firmed by the following simple calculation. A factory which runs only 

50 experiments per year must have an average improvement per ex- 

periment of 0.004, if the annual rate of yield improvement is 20 percent 

per year. Experiments with negative estimated improvements will be 

truncated, so if half of all experiments lead to negative or no results, 

the average size of the remaining experiments would be 0.008. 

An article about a prototype production facility at Hewlett Packard 

gave a higher estimate: 

It is estimated that an experiment designed to improve a process 

will most likely result in a yield improvement from —2.5% to 

12.5% (percent, not percentage points). It can be further estimated 

that some small, but positive yield improvement (typically 5%) 

for each completed engineering experiment is the most probable 

result (Brooksby et al. 1981). 
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Table 1 « Summary of Data Sources 
  

  

Name ‘ 

Product for Data Number 

Plant Maturity Set in of: 

code (approx) Tables Batches Comments 

A 1.5 years At.5 5 Same product 

3.5 years A3.5 5 ~ as Plant G 

C 1 year C1 11 

1.5 C1.5 ; 9 

2 C2 10 

2.5 C2.5 10 

3 C3 12 | 

"B Unknown B 43 
F 1 year FF 8 

G Same Product as A 
  

» Pre-qualify G 6 

process variability, measurement error, or experimental 

error (e.g. applying the wrong procedure). This paper 

analyzes process variability and its impact on experi- 

mental noise. Sources of process variability can be clas- 

sified in various ways. Random point defects caused by 

both ambient and machine-generated particles are usu- 

ally a major and highly variable cause of yield loss 

(Zorich 1991, ch. 3). Other sources of batch to batch 

and wafer to wafer variation include operator adjust- 

ments, machine wear, machine maintenance, chemical 

contamination, and outright processing errors. Note that 

while many of these hurt mean yield as well as raise 

the variance of yield, the two effects are not perfectly 

correlated. Therefore a noise reduction strategy is not 

identical to a yield improvement strategy. 

3. The Magnitude of Process Noise 
The magnitude of process noise in actual semiconductor 

fabrication was investigated empirically. Five plants 

provided production yield data on one product each. 

Two of the plants provided data for multiple time pe- 
riods (Table 1). Each was a high volume, multiproduct 

MOS fabrication facility. All except G were U.S. plants 

in a single company; G was a foreign subcontractor. 

  

Since average yields are much lower, noise levels much higher, and 

numbers of experiments much higher in prototype facilities than in 

production facilities, this estimate is consistent with the lower numbers 

used for the production factories in this paper. More empirical analysis 

would be useful. 
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Plants A and G made the same product using the same 
process. All of the products were medium to high vol- 
ume, where high volume is thousands of batches and 
millions of completed chips per year. 

The data are very disaggregated. The data consist of 
wafer by wafer die yield counts (good dice per wafer), 
for every wafer in the each batch. Thus the data give a 
precise measure of die yield and line yield. This is the 
most detailed yield data normally recorded in the plant. 

Data were provided by individual engineers in each 
plant. In at least one case (plant A), this biased the data 
since the engineer who selected the data chose from 
batches with high line yields. Thus the results for this 
plant will understate the noise levels of experimental 
batches. In plant FF, a number of anomalous batches, 
which appeared to be experimental batches, were ex- 
cluded. One batch was excluded for the same reason in 
plant C. One entire period of production (4 batches) 
was excluded for plant A because of a number of anom- 
alies. This was by far the highest noise plant / period in 
the data set; including it would therefore have 
strengthened the conclusions further. 

Section 3 presents basic descriptions of the noise as 
revealed by the data. The following section translates 
the noise into meaningful consequences. All absolute 
yield data are disguised; only data on noise can be fully 
presented. 

Figure 1 shows dot plots from plant C1 (plant C, one 
year after the beginning of production for that product). 
All batches completed the production process consec- 
utively during the same week, and are for the same 

  

Figure 1 Die Yieids of individual Wafers from Plant C1 
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product in the same plant. Each column represents one 
batch, while each dot represents the yield of one wafer 
in that batch. The yields are arbitrarily scaled to protect 
confidentiality; 1,000 on the graph does not correspond 
to any particular yield level. Within-batch variability in 
die yield is the spread of each column. Between-batch 
variability is the difference among the columns. 

The range of shapes shown in Figure 1 is surprising, 
considering that all batches were produced under what 
should have been identical conditions. The mean yields, 
as well as the variance and skewness of yields vary 
from batch to batch, suggesting that the underlying 
production process was not stable. A Bartlett test for 
homogeneity of group variances gave probability less 
than 0.005% that all ten batches from C1 had the same 
variances. 

Final die yield is a multiplicative process. A given 
process change is likely to multiply the die yield of each 
surviving wafer by a constant, rather than adding a con- 
stant. If the process change is favorable, the yield mul- 
tiplier will be greater than 1.0. Therefore, it is appro- 
priate to use the natural logarithm of die yield as the 
measure of experimental outcome. For example, a 
change of + 0.05 in log[{die yield] means a 5.1 percent 
improvement in average die yield. The standard devia- 
tion of log{die yield] measures the percent variability 
of the yield. It is approximately equal to the coefficient 
of variation of absolute yields. It will be referred to as 
the “‘within-batch noise level.’ 

Because of the way experiments are designed and 
conducted, the within-batch standard deviation of pro- 
duction die yields will be shown to have the largest 
impact on experimental noise, Figure 2 summarizes this 
measure for all five plants, Each column corresponds 
to one of the plant / time combinations in Table 1. Each 
entry is the standard deviation of log die yields of a 
single batch. The simple average across all batches of 
the within-batch standard deviations is indicated by the 
x mark. 

Based on Figure 2 we can make the following obser- 
vations. , 

OBSERVATION 1. . Most batches within most plants have 
high levels of within-batch variability, relative to the effects 
being learned about. In some batches, the standard de- 
viation of yields is half the mean yield. Considering 
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Figure 2 Summary of Noise by Batch and Plant 
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that the magnitude of process improvement being 

sought is less than 0.05, this will be a significant im- 

pediment to learning. 

OBSERVATION 2. ‘Noise levels vary considerably across 

plants and time. Plants B, C1, and FF have average noise 

levels more than double those in the best plants. The 

only processes with moderate noise levels were a mature 

U.S. plant (A3), and a startup process in an existing 

non-U.S. plant (G). 

OBSERVATION 3. The noise level varies greatly across 
batches in each plant. This is in addition to high batch- 

to-batch variation in mean yields. This suggests that 

statistical tests on experiments should use “unknown 
variance” models, rather than assuming that variances 

are known from past data. — 
' 

OBSERVATION 4. | Line yields (surviving wafers per. 

batch) cannot be shown directly but also varied consider- 

ably among the batches and between plants. Average line 

yields in each plant varied from below 80 percent to 

above 95 percent. 

These observations are consistent with manufacturing 

processes which are.not under good process control. 

Whatever the causes, it is likely these factors will create 

high noise levels in experiments. | 
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4. Effects of Process Noise 
This section examines the effects of process noise on 

learning, by simulating the conduct of experiments using 

the data described in the previous section. Note that we 

are using normal production data to simulate the con- 

duct of experiments. An alternative data collection 

strategy would be to use actual experiments conducted 

at each plant to measure noise levels. The use of normal 

production yield data allows large homogenous data 

sets which are directly comparable across plants. It al- 

lows us to examine a consistent hypothetical experiment 

in each plant and time period. Actual experiments, in 

contrast, are highly idiosyncratic. It would be difficult 

to collect enough similar experiments in a single plant 

to give a reliable estimate of the noise level at a particular 

time. In addition cross-plant comparisons would be 

more suspéct, in part because standard experimental 

procedures may have subtle variations across plants.® 

The underlying model of manufacturing which we 

will assume is an additive independent model in the 

log of yields: 

Yew = Yoa + AY + where (1) 

‘Ynew = die-yield after the process change. 

Yo = Original die yield of the process. 

AY = changé in average die yield as a result of the 

experimental treatment (positive or negative). Larger 

is better. 
¢ is ‘the noise in the die yield. 

All quantities, are measured in natural logarithms. 

This assumes that the process change does not affect 

the process noise level.° 

Methodology 

Learning is modeled as occurring through simple split 

batch experiments as described in §2. Each experiment 

consists of 2N wafers, N of which receive the experi- 

mental treatment at the critical process step. The 2N 

wafers are processed as a single batch at all other process 

5 A distortion introduced by use of normal production data may be 

to reduce measured noise levels. Experimental batches require special 
handling at a few steps. This is error prone; one informant estimated 
that up to one-third of special batches were misprocessed. 

6 This is a reasonable approximation for all but the largest changes 

since total noise is the sum of noise in number of steps, while process 

changes affect only one or a few steps. 
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steps. The standard test statistic for such an experiment 

is the difference in average yield between the two split 
groups. The larger the difference, the larger the likely 
process improvement from the new method. The ‘test 
statistic is 

Sy} - (is 2 Yo 
1 j= =1 

AYet = ( (2) 

which deviates from the true effect of the treatment 

according to 

AY est = AY me + €expenment where (3) 

AY... is the estimated effect of the new production 
method. 

AY jue is the unknown true effect of the new produc- 

tion method. 
Y, is the yield of the ith wafer. The first N wafers are 

the experimental group; the next N are the control 

group. 
N is the initial sample size of each split group in 

the experiment. N = 12 since batch size in most plants 
is 25, 

N, is the number of wafers which survive in the ex- 

perimental group; N; < N. 
N, is the number of wafers which survive in the con- 

trol group; No < N. 
€expenment is the noise of the experiment, which depends 

on the process noise level and the number of wafers in 
the experiment. ‘ome 

If die yields were distributed normally or according 
to another known distribution, and if line yields were 
100 percent so that N = N, = N,, we could use statistical 

theory to find the distribution of the experimental noise 
€expenment- Albin and Freedman argue persuasively that 
defects and yields will follow a complex compound dis- 
tribution with clustering behavior. They recommend 
using the Neyman Type 1 distribution for defects, which 

is a compound Poisson distribution that exhibits clus- 
tering. However, the Neyman distribution does not ap- 
pear to fit well the actual empirical data described above. 
Furthermore, using any single distribution to summarize 

the actual wafer-by-wafer data is risky, since the batch- 

to-batch comparisons suggest that the manufacturing 
process parameters were not stable. Finally, the impact 
of missing wafers caused by line yield losses must be 
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incorporated. This reduces the effective sample size be- 
low the nominal sample size N. 

To evaluate the. effectiveness of these experiments 
without assuming an underlying distribution function 

for die yields, standard bootstrapping techniques were 

used to simulate what would have happened if exper- 
iments had been conducted on these batches in each 
plant. (Efron and Gong 1983, Cryer and Miller 1991, 
Chapter 19). The wafer-by-wafer die yields from a sin- 
gle batch, discussed in §3, were repeatedly sampled with 

replacement, to construct the two split batches of N 

wafers each which would result from a single exper- 
iment, Wafers which did not survive the line yield were 
removed from each subsample. The test statistic, AY es, 

(difference of the average log yields), was then calcu- 
lated for the case that AYjuye = 0 (ie. an experiment on 

a process change which has no effect), This gives the 

outcome of a single simulated experiment. This proce- 
dure was repeated 600 times for experiments with N 
= 12, and 2,000 times for experiments with N = 3. 
Sampling was conducted equally from each batch of a 
particular plant / time period. Symmetry was then used 

to double these sample sizes to 1,200 and 4,000 re- 
spectively. These 5,200 simulated experiments per 
plant/period form the basis for evaluating the error 
rates of real experiments in the plants, 
We will start with the simplest possible test criterion. 

If AY ext > 0, treat the new production method as better; 

otherwise, stay with the old production method. This 
decision rule is optimal only if the costs of false positives 

and false negatives are symmetric, which is unrealistic, 
but it has other useful properties. More complex decision 
rules will be discussed later. 

From the bootstrap data, we construct the power 
function G( AY ) of the hypothetical experiment. G( AY) 
= Probability of choosing the new production method, 
if the true value of the change is AY. The power function 
gives a complete measure of an experiment’s informa- 
tion content, and can be used to evaluate the experiment 
according to any criterion, such as significance regions. 
A ideal power function would rise steeply through AY 
= 0, so that for AY < 0 the old method would be chosen 
most of the time,'and conversely for AY > 0. 

Using the test statistic of Eq. (2), G(z) is given by 
Prob( AYes < Z/ AY true = 0). The impacts of process im- 

provement and process variation are independent ac- 
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Table 2 Consequences of Within-Batch Noise 

Plant name At.5 A3 B C1.0 C15 C2.0 C2.5 C3.0 FF G 

Avg. in-batch noise 0.196 0.094 0.391 0.315 0.209 0.264 0.251 0.196 0.256 0.100 

Probability of Missing Process Improvements: 

N = 12, True AY = .01 45.5% 37.5% 47.0% 47.0% 45.0% 43.5% 43.5% 43.5% 45.5% 40.5% 

N = 12, True AY = .03 36.0% 18.5% 40.5% 40.0% 32.5% 32.5% . 32.0% 28.5% 37.0% 24.5% 

N = 12, True AY = .10 11.5% 2.5% 22.5% 19.5% 11,5% 12.0% 12.5% 9.0% 16.0% 4.0% 

N = 3, True AY = .10 22.5% 6.5% 34.0% 29.0% 20.0% 22.5% 21.0% 17.0% 25.0% 10.5% 

Smallest Effect Which Can Be Found with Error Prob <10%: 

for N = 12 0.109 0.044 0.216 0.188 0.171 0.114 0.117 0.092 0.129 0.057 
  

Note. Lower numbers are better, for all rows. 

cording to Eq. (1). Therefore, we can construct the 
power function for all possible values of AYwue just by 
bootstrapping the case AY,ue = 0, and shifting the G(z) 
function to the right by AYjue. In this way, even though 

the bootstrap only explicitly evaluates experiments 

where AYiue = 0, we can use the power function to 

calculate what would have happened for different 
values. 

5. Results: Effect of Noise on 

Experimental Outcomes 
Recall from §2 that learning in semiconductor manu- 
facturing proceeds on the basis of multiple small im- 
provements, in the neighborhood of .01 = AY < .03. 
This is the size of the signal being sought by the engi- 

neer, which is much smaller than the within-batch 
standard deviations of 0.10 and above, found in the 
empirical data. © 

Table 2 shows some of the effects for each plant. 

Based on information presented in Table 2, we can make 
the following additional observations: 

OBSERVATION 5. The impacts of noise in most plants 

were so large as to make the chance of overlooking process 

improvements (Type 2 errors) quite high, except for very 

large improvements. To find a process change which has 
a ten percent effect (AYiue = 0.10) is quite rare. But in 

plant B, even such a large effect would be missed in an 

experiment more than 20% of the time, even with a 

sample size of N = 12. Only plants A3, G, and C3 have 
probabilities of error below 10% for a change of 0.10. 
Experiments on process changes with AY = 0.03 have 

38 

error rates ranging from 18% to 40%. As this model is 
formulated, 50% is the highest possible error rate, so 

plants B and C1 do little better than pure chance. None 
of the plants does much better than pure chance for AY 

= .01. 

OBSERVATION 5b. All results are considerably worse 

for experiments conducted with samples of N = 3. In fact 

the noise levels are so high that all experiments should 
be run with N = 12. 

OBSERVATION 6. As with the noise levels themselves, 
the consequences of noise differ considerably across plants 

and time. For most measures of learning performance, 
there is roughly a 4:1 ratio between the best plants and 
the worst plants. Plants A3 and G were generally the 
best, while B and C1 were the worst. Correlation anal- 

ysis confirms that the performance measures are closely 

  

    

   

  

     

Figure 3 Power Functions for V = 12 

Values for AY<0 not shown. Power (-AY) = 1-Power(AY) 

i 

0.9 ; 

Prob. of 98 7 
correct . 

outcome g 7 1. ff 3 
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Figure 4 Smatlest Change (A Yield) Detectable with 10% Probability’ 
of Error 

4Yield 
0.4 | west eecennnnnensceneeea tonnes shader seeereeredeeesrapenesnecesescennescceeeayy   

0.35 + 

      

      

  

Aliso 8 C100 C16) GRO Gee cg F G 

Plant and maturity 

related to average within-batch noise levels (standard 
deviation of log die yields). 

The numbers in Table 2 were derived from the power 
functions of our hypothetical experiments, as calculated 
from the bootstrap results. The power function for ex- 
periments at each plant provides complete information 
needed to analyze the tradeoffs among signal size AY nue 
and probability of error. Figure 3 shows the power 
functions for all plants for selected time periods for full 
batch experiments of N = 12 wafers per sample. Each 
line shows the probability of accepting the new pro- 
duction method as a function of its true effect on yield 
AY tue, Which is unknown to the experimenter. For any 
true value AY of log yield improvement, the height of 

the power function is the probability that the engineer 
will accept the hypothesis that AY,,,. > 0, ie. that the 

new method is better.’ Probabilities of accepting inferior 
new methods (AYinue < 0) are given by symmetry. 

For example, in plant FF, if the true value of a process 
change is AY = .03 (a 3 percent improvement in die 
yield), the probability of accepting the new method is 
63 percent, and the probability of rejecting it (type 2 

¥ 

” Sampling error: Since Figure 3 and associated tables are derived 
from bootstrap analysis with 1200 repetitions, they are subject to 
sampling errors. Since they are order statistics, these errors are largest 
in the tails. A visual assessment of the error is given by the waviness 
of the lines in Figure 3; the true power functions are smooth. I also 
re-ran plant C1, 10 times. For G (AY = :10), the runs had mean and 

s.d, of .793 + .010. 

MANAGEMENT SCIENCE/Vol. 41, No. 1, January 1995 

error) is about 37 percent. Each power function is sym- 
“metric and passes through (AY = 0, prob. = 50%) be- 
cause we modeled the engineer as using a symmetric 
test criterion. If the new method were in fact worse, 
with AYtue = —.03, the probability of rejection would 
be 63 percent and the probability of acceptance (type 
1 error) would be 37 percent. If the engineer sets a 
cutoff of AY. = AYcutors > 0, in an effort to defeat the 
effect of noise, this would shift each curve to the right 
by AYarow. These probabilities are conditional on the 
experiment being successfully completed. There is also 
a 13 percent chance the experiment would have to be 
repeated due to too many wafers being lost in the 
production process (line yield). This i is not shown in 
Figure 3. 

OBSERVATION 7, Even with the largest possible single- 
batch experiments (N = 12), it is difficult for most plants 
to meet standard statistical criteria for any but the largest 
process changes. Small sample experiments (N = 3) should 
be avoided in all plants. 

Figure 4 shows one of the consequences of the power 
functions: the true process change magnitude such that 
each plant can reliably detect that signal, where “reli- 
ably”’ is defined as less than a 10% chance of error. The 

importance of setting a nominal sample size of N = 12 

instead of N = 3 is clearly visible. Even with N = 12, 
most plants have detection thresholds higher than 0.10, 
and one is higher than 0.20. 

There are large differences in the effects of noise 

among plants. These differences are large enough to 

Figure © Changes over Time for Piants A and C 

Plants A and G, all years, Nei2 

- 100% 

of 

correct 

outcome g 7 4 

  

  

      

0 o1 o2 

True effect, AY = log actual improvement due to new method 
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Table 3 . Number of Batches Required to Overcome Nolse (Approximate) 

B needed to have 90% chance of detecting true process improvement of size 0.01 

Plant Name At5 A3 B C1.0 C15 C2.0 C2.5 C3.0 FF G 

Number of ' 

: Batches 148 4] 630 444 221 392 394 184 365 50 
  

indicate that different plants should use different strat- 

egies and tactics for ameliorating the effects of noise. 
Even within one plant, conditions change over time. 
Figure 5 shows the time trends for plants A and C. 

Although Plant C made great progress between year 1 

and year 1.5, years 2.0 through 3.0 were almost stag- 

nant. These results suggest that the progress of noise 

over time is a complex phenomenon. 

Brute Force Solution to Noise 
The orthodox statistical approach to dealing with high 

noise levels in experimental data is to increase the sam- 

ple size. We have already seen that even full-batch N 

= 12 experiments are not large enough in many situa- 

tions. To go beyond N = 12 requires multi-batch ex- 

periments, which are more expensive, slower (due to 

variability in batch completion times), and more prone 

to errors than single batch experiments. Nonetheless 

they may be economically justified, since the economic 

value of yield improvement is so large.* 
We evaluate the following problem. Suppose an en- 

gineer wants to run an experiment which has a 90% 
chance of detecting a process improvement of AY true 

= 0,01. He or she decides to run a multibatch experiment 
for this purpose. How large should the experiment be? 
We can approximate the answer as follows. Let B be 

the number of batches in the experiment; each batch 

has N = 12. Let AY; be the average of the AY... estimates 
calculated for each batch according to Eq. (2). Then if 

B is large, the Central Limit Theorem implies that AY; 

* The optimal choice of sample size requires an analysis of the incre- 

mental value of additional knowledge (reduced probability of error) 
versus the incremental cost of a larger sample size (lost output in the 

short run due to the experiment). 

* Calculating the test statistic in this way provides blocking for the 

large between-batch noise in the data. An even better test statistic 

would take advantage of the diversity of within-batch noise levels, 

by weighting more heavily those batches with smaller estimated 
within-batch noise levels. : 

40 

is approximately Normal, with variance proportional to 

1/B. Making the appropriate calculations gives the 
(approximate) experiment sizes shown in Table 3. 

OBSERVATION 8. Increasing the sample size to over- 
come noise is expensive in all plants. For example, if the 
product runs at 500 wafer starts per week (20 batches), 

in plant A1.5 seven consécutive weeks of production 

would have to be devoted to the experiment, or fourteen 

percent of a year’s production. This is slow and expen- 
sive, especially if the experimental treatment has a 
significant chance of reducing yields or production 
capacity. 

OBSERVATION 9. There is an order of magnitude dif- 

ference across plants in the sample sizes needed to achieve 

the same level of statistical certainty, if no other counter- 

measures are taken. 

Once again, these observations point to the value of 

noise reduction and other approaches to mitigating 

noise’s impacts on learning. 

6. Conclusions 
The empirical analysis of this study shows that process 

variability, leading to noise in experiments, is high 
enough to have a major influence on how efficiently 

engineers in semiconductor plants can learn by con- 

trolled experiments. In most of the plant / product /ma- 
turity combinations studied, the noise levels were so 
high that full length controlled experiments, using an 
entire production batch, would have error rates above 

ten percent, even for very large process improvements. 

A conservative estimate is that most of the plants studied 
therefore lose more than one quarter of the potential 

information content of such experiments. 
There were large differences among the plants, which 

indicates that different plants should manage experi- 

mentation differently. Comparison of two plants making 
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the same product, and the anecdotal evidence about the 
origins of noise in the process and in experiments, sug- 

gests strongly that overall reductions in process noise 
levels are possible. However, even in the best plants of 
the sample, the noise levels are high enough to cause 
a significant number of errors. 

The textbook antidote to noise in experimentation is 

the use of statistical tools. Yet low and erratic use of 
statistical methods by engineers was observed in visits 

to plants in several companies. This can be partly ex- 

plained by the finding that noise levels were so high 
that standard statistical tools (such as increased sample 
sizes ) would be insufficient or expensive. Non-statistical 

methods are therefore desirable in conjunction with 
statistical tools. These include using short-loop experi- 
ments, natural experiments (e.g. wafer tracking data 
(Scher 1991)), and changing to experiments which 
measure causal factors as the dependent variable instead 
of measuring yield directly. Such methods require ad- 

ditional knowledge compared with split-batch experi- 
ments, so they are not always possible. 

Appropriate statistical methods including factorial 
designs, sequential experimentation, and Bayesian in- 

ference, would still be useful for capturing as much in- 
formation as possible per unit of effort. Their low use 
may therefore also be due to ignorance. More recent 
visits to the same plants show growing awareness of 

standard statistical tools, and some awareness that 
learning is a process which can itself be managed. Hiatt 
and Urquhart (1987) describe a directed learning project 

in Motorola which used multiple statistical and non- 

statistical methods, and paid careful attention to noise 
levels. 

Among the issues not dealt with in this paper are the 

root causes of the high noise levels, and the reasons 

why noise is not addressed more directly and solved by 
plant management. Noise in final die yields is in prin- 
ciple due to specific machine / process variability at 
specific process steps. But the large differences in noise 
among plants using similar equipment and processes 

suggest deeper levels of causality. Phenomena of this 
complexity cannot be captured by studying experimen- 
tation in isolation from other aspects of plant operation. 

In both plants for which time series data are available, 
the noise levels fall over time, as would be expected if 
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some of the learning is about factors which themselves 
cause noise. Therefore the management of noise-related 

issues in experimentation should change over time. The 

noise level is most critical early in the ramp up, making 
learning more difficult. Yet this is when the most 
knowledge needs to be learned. This suggests a time 

dependent model, in which early process improvement 
should emphasize noise reduction more than yield en- 
hancement, when fhe two are in conflict. As the noise 

level falls, it becomes easier to discover new improve- 
ments.’ On the other hand, the best improvements will 

tend to be discovered first, so that the AY s will also fall 
over time. The signal-to-noise ratio (AY /noise level) 

would thus initially improve, but ultimately stabilize or 
worsen as smaller and smaller effects remain to be dis- 
covered,”! 

* The decline over time in plant C’s noise level was not monotonic. 
As Table 3 shows, it fell by one third from year 1.0 to 1.5. But it 
worsened from year 1.5 to year 2.0, and was stagnant through year 
2.5, In year 3.0 it improved to about its level at year 1.5. Interestingly, 
the actual die yields themselves were improving throughout the two 
year period, although slowly. This suggests that more effort was being 
put into improving average yield than into improving yield variability, 

The specific die yield numbers cannot be reported due to confiden- 
tiality. 

" Valuable comments on versions of this paper were provided by 
Christopher Auschnitt, John Bishop, James Cook, Richard Dehmel, 
M. Thérése Flaherty, R. Jaikumar, Uday Karmarkar, Andy Urquhart, 
Larry Wein, Roy Welsch, two referees, and seminar participants at 
Harvard and Boston Universities. Michael Watkins assisted with data 

analysis. I remain solely responsible for the paper’s omissions and 
any remaining errors. Author's Internet address: Rbohn@UCSD.edu. 
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