
Psychological Methods
1997. Vol.2, No. 1,3-19

Copyrighl 1997 by the Am n Psychological Association, Inc.
1082~9S9X/97/$3.00

Optimal Design in Psychological Research

Gary H. McClelland
University of Colorado at Boulder

Psychologists often do not consider the optimality of their research designs. How-

ever, increasing costs of using inefficient designs requires psychologists to adopt

more efficient designs and to use more powerful analysis strategies. Common

designs with many factor levels and equal allocations of observations are often

inefficient for the specific questions most psychologists want to answer. Happen-

stance allocations determined by random sampling are usually even more ineffi-

cient and some common analysis strategies can exacerbate the inefficiency. By

selecting treatment levels and allocating observations optimally, psychologists can

greatly increase the efficiency and statistical power of their research designs. A few

heuristic design principles can produce much more efficient designs than are often

used.

Experimental researchers outside psychology often

carefully consider the efficiency of their research de-

signs. For example, the high costs of conducting

large-scale experiments with industrial processes has

motivated the search for designs that are optimally

efficient. As a consequence, a substantial literature on

optimal design has developed outside psychology. In

contrast, psychologists have not been as constrained

by costs, so their research designs have been based on

tradition and computational ease. Most psychologists

are unaware of the literature on optimal research de-

sign; this topic receives little or no attention in popu-

lar textbooks on methods and statistics in psychology.

Experimental design textbooks offer little if any ad-

vice on how many levels of the independent variables

to use or on how to allocate observations across those

levels to obtain optimal efficiency. When advice is

offered, it is usually based on heuristics derived from

experience rather than statistical principles.

The purpose of this article is to review the basic

concepts of optimal design and to illustrate how a few
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simple changes in research design and analysis strat-

egy can greatly improve the efficiency and statistical

power of psychological research. The intent is to ex-

pand on the very brief treatments of optimality issues

written for social scientists. For example, Kraemer

and Thiemann (1987) and Lipsey (1990) in their dis-

cussions of maximizing power considered optimality

issues but for only one special case. Estes (1991) il-

lustrated the use of expected mean squares for decid-

ing between alternative designs, but he does not pro-

vide guidance on determining optimal designs.

Optimal design has received somewhat more attention

in economics (Aigner & Morris, 1979) and marketing

(Kuhfeld, Tobias, & Garratt, 1994).

The disadvantage to psychologists of using nonop-

tinial designs is either (a) increased subject costs to

compensate for design inefficiencies or (b) reduced

statistical power for detecting the effects of greatest

interest. Both situations are increasingly unacceptable

in psychology. Subject costs should be minimized for

both ethical and practical reasons. Using a nonoptimal

design that requires more animal subjects than does

the optimal design is inconsistent with the ethics of

animal welfare in experimentation. The imposition of

experiment participation requirements on students in

introductory psychology classes is difficult to justify

if subject hours are used inefficiently. Reduced bud-

gets from funding agencies also constrain the number

of subjects to be used. In short, on many fronts there

is increasing pressure on psychological experimenters

to get more bang for the buck. The use of optimal, or

at least more efficient, designs is an important tool for

achieving that goal.
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Inadequate statistical power continues to plague

psychological research (Cohen, 1962, 1988, 1990,

1992; Lipsey, 1990; Sedlmeier & Gigerenzer, 1989).

Journal editors and grant review panels are increas-

ingly concerned about the statistical power of studies

submitted for publication or proposed. By and large,

the only strategy that psychologists have used for im-

proving power is augmenting the number of observa-

tions. However, at least three other less costly strate-

gies are available. One is the use of more

sophisticated research designs (e.g., within- vs. be-

tween-subjects designs and the addition of covari-

ates). The consideration of these design issues is be-

yond the scope of this article and is covered elsewhere

(Judd & McClelland, 1989; Maxwell & Delaney,

1990). Two is the more efficient allocation of obser-

vations in whatever research design is chosen; this is

the focus of this article. Three is the use of specific,

focused, one-degree-of-freedom hypotheses rather

than the usual omnibus tests, which aggregate not

only the effects of interest but also a large number of

effects that are neither hypothesized nor of interest.

As shall be seen, the efficient allocation of observa-

tions to conditions and the use of one-degree-of-

freedom tests can be used in tandem to improve power

without increasing the number of observations.

The most striking difference between traditional

experimental designs and optimal designs is that the

former usually allocate equal numbers of observations

to each level of the independent variable (or vari-

ables), whereas optimal designs frequently allocate

unequal numbers of observations across levels. The

emphasis on equal ns in psychological research ap-

pears to be due to the relative ease of analyzing data

from such designs with desk calculator formulas and

of interpreting parameter estimates. This ease makes

them suitable for textbook examples that are then

emulated. Today, however, the power and ubiquity of

modern computing makes computational ease an ir-

relevant concern for the choice of experimental de-

sign-
One appeal of nonoptimal designs with equal allo-

cations of observations to conditions is that such de-

signs are more robust against violations of statistical

assumptions, particularly the homogeneity of variance

assumption. However, this protection is not strong

and, as shown here, may sometimes have a high cost.

A better strategy may be to use optimal designs while

being vigilant for any violations of the assumption of

equal variances. Any violations detected can either be

remediated by means of transformations (Judd, Mc-

Clelland, & Culhane, 1995) or be protected against by

more robust comparison methods (Wilcox, 1996). In

any case, it is necessary to consider issues of optimal-

ity to determine what price in terms of inefficiency is

being paid for the weak protection against assumption

violations offered by equal allocations of observa-

tions.

Psychologists, even if they know about optimal de-

sign, may also be reluctant to embrace optimal de-

signs because such designs require the specification of

a particular effect or effects to be optimized. That is,

should the design be optimal for detecting main ef-

fects or interactions or both? Should the design be

optimal for detecting linear effects or quadratic effects

or both? Similarly, there is reluctance to use focused,

one-degree-of-freedom tests because such tests re-

quire researchers to specify in some detail what they

are expecting to find. Atkinson (1985) noted that op-

timal design is "distinct from that of classical experi-

mental design in requiring the specification of a

model" (p. 466). The tradition has been, instead, to

use omnibus, multiple-degree -of-freedom tests to de-

termine whether there are any overall effects and then

to follow up with multiple comparison tests to try to

determine the specific nature of those effects. This

article explores the implications for experimental de-

sign of the more modem approach to data analysis

that emphasizes focused one-degree-of-freedom hy-

pothesis tests (Estes, 1991; Harris, 1994; Judd & Mc-

Clelland, 1989; Judd et al., 1995; Keppel & Zedeck,

1991; Lunneborg, 1994; Rosenthal & Rosnow, 1985).

The literature on optimal design is complex and

technical (for readable overviews, see Aigner, 1979;

Atkinson, 1985, 1988; Atkinson & Donev, 1992; and

Mead, 1988). However, without pursuing the techni-

calities of optimal design, psychologists can greatly

improve the efficiency of their research designs sim-

ply by considering the variance of their independent

variables. Maximizing the variance of independent

variables improves efficiency and statistical power.

To demonstrate the importance of the variance of

independent variables for improving efficiency and

statistical power, one begins by considering a two-

variable linear model:

bXt

X and Z may be continuous predictors, or they may be

codes (e.g., dummy, effect, or contrast) for categories

or groups (two coded variables are sufficient to rep-

resent three groups). For considering the effect or sta-

tistical significance of X or the power of that test, the
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coefficient b (or its estimate) and V(b), the variance of

the estimate, play important roles. The test of the null

hypothesis that b = 0 is usually evaluated using either

b2

V(b)
(2)

(3)

where the circumflexes indicate sample estimates and

where N is the total number of observations (in the

sequel, lowercase n represents the number of obser-

vations within a condition or subgroup). With appro-

priate assumptions about the distribution of the errors,

e, F* and t* can be compared with critical values of

the F distribution and Student's t distribution, respec-

tively. The statistical power (i.e., the probability of

rejecting the null hypothesis given that it is false) is

based on the noncentral F distribution:

(4)

(5)

where the noncentrality parameter is defined as

8 = -
V(b)

A 100 (1—ct)% confidence interval for b is given by

(6)

The smaller the estimated variance of the estimate, the

smaller the confidence interval, and hence the more

precise the estimate of the regression coefficient b.

The standardized effect size (the coefficient of partial

determination or the squared partial correlation or the

proportional reduction in error produced by X over

and above Z) is given by,1

PRE -
2 + (N-3)V(b)

(7)

For all these statistical expressions, one is better off

(i.e., larger test statistic, more statistical power,

smaller confidence interval, and larger effect size) as

b (or its estimate) increases and as V(b) (or its esti-

mate) decreases.2 The regression coefficient b is de-

termined, up to a linear transformation, by nature. The

key term in all the previous statistical expressions that

can be affected by design is V(b), which is estimated

by

V(b) =
V(e) V(e) V(e)(VIF)

NV(X) '

(8)

The square root of this variance is frequently reported

by regression programs as the "standard error of the

estimate." V(e) is the estimated variance of the error

term in Equation 1; it is frequently reported in an

analysis of variance (ANOVA) table in regression

programs as the mean squared error or MSE. It is

simply the variance of the differences between the

estimated and predicted values for Y. V(X.Z) is the

variance of X after controlling for Z. If X and Z are

independent, then V(X.Z) = V(X). However, if X and

Z are correlated, then the variance of X is reduced by

(1 - r2), often reported as the "tolerance." The cor-

relation reduces V(X) to V(X.Z), which in turn in-

creases V(b); hence 1/(1 - r2) is sometimes referred to

as the variance inflation factor or VIF.

To understand how research design affects statisti-

cal tests, power, confidence intervals, and effect sizes,

' Test statistics, like F, can be decomposed into a product

of a function of effect size and a function of study size

(Rosenthal, 1987, pp. 106-107). This expression for the

standardized effect size PRE unfortunately suggests that ef-

fect size can be increased by increasing the sample size N.

This is not the case because, as one sees, N is also a com-

ponent of V(b). Because standardized effect sizes such as

squared correlations are biased estimates of the true effect

size, there is a slight effect of the sample size. However, that

bias is negligible for my purposes here.
2 The equations make it clear that if optimal designs in-

crease the variance of X, then they will also increase effect

sizes. One might also ask what the optimal designs are for

measuring an effect size as precisely as possible, that is,

having a small confidence interval around the effect size.

The size of this confidence interval, however, is not directly

related to the variance of X. Rather, as in Cohen and Cohen

(1983, p. I l l ) , the width of the confidence interval for

effect size is determined only by the magnitude of the effect

size estimate itself (larger effect sizes inherently have

smaller confidence intervals as a consequence of Fisher's Z
transformation) and by the number of observations (the

variance of the transformed estimate is a function ofN-p-

2). Except for its effect on the magnitude of the effect size,

varying the allocation of observations across conditions has

no impact on the width of the confidence interval.
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one needs only to consider how design affects the

components of V(b). I refer to all these statistical

properties with the short-hand terms of efficiency or

precision. The precision of the estimate of b increases

as V(h) decreases. Whether one uses classical signifi-

cance tests, confidence intervals, or standardized ef-

fect sizes to make research decisions, more precise

estimates of b improve the quality of those decisions.

Thus, one wants to consider how design can change

the components so as to decrease V(b). Equation 8

identifies three main design strategies available to re-

searchers for improving precision: (a) increasing the

sample size N, (b) decreasing the error variance V(e),

and (c) increasing V(X.Z), the residual variance of X.

All three strategies are useful, but psychologists have

too often relied only on the first strategy of increasing

sample size, which can be costly. Note that there is an

exact trade-off among the three strategies. For ex-

ample, doubling the residual variance of X has exactly

the same effect on precision as doubling the sample

size N, which in turn has exactly the same effect on

precision as halving the error variance. The error vari-

ance can often be substantially reduced by using dif-

ferent research designs such as adding covariates or

using within-subject designs (Judd & McClelland,

1989; Maxwell & Delaney, 1990). While the statisti-

cal power benefits of better research designs are im-

portant and themselves not used often enough, the

remainder of this article focuses on the third strategy

of increasing the residual variance of X. As one shall

see, the residual variance of X can easily be altered by

changing the allocation of observations across levels

of the independent variable. Appropriate allocations

can substantially increase statistical precision.

Consider a quantitative independent variable X with

five different approximately equally spaced levels ar-

bitrarily (without loss of generality) assigned the val-

ues of-1, -1/2,0, 1/2, and 1. Categorical independent

variables are considered later. In the following, inde-

pendent variables in a linear model of the dependent

variable will always be either the numerical values

themselves or values of contrast codes to be applied to

the cell means computed for any particular design.
If one assumes constant N and constant V(e), the

efficiency or relative variance (designated RV) of a

particular design for estimating the parameter b for

variable X is the ratio of the residual variance of X to

its maximum possible variance. The trade-off be-

tween the residual variance of X and N in the denomi-

nator of Equation 8 indicates that the optimal design

with N observations has the same precision as a non-

optimal design with n/RV observations or, equiva-

lently, that a nonoptimal design with N observations

has the same precision as the optimal design with only

(RV n) observations. The confidence interval for the

nonoptimal design is ~*il/RV(X) wider than the confi-

dence interval for the optimal design.

The proportional distribution of observations across

the five levels of X can be represented by (p, q, r, s, t)

with p + q + r + s + t= 1. The goal is to determine

the allocation of observations across the five levels

that maximizes RV for the particular effects of inter-

est. After the optimal allocation is determined, it can

be used as a basis for comparing the relative efficien-

cies of the traditional equal n and other common al-

locations, including happenstance allocations that oc-

cur when researchers sample randomly rather than

control the levels of their independent variables.

Linear Effects

Consider the statistical model

Y.• = a + bX, + e,. (9)

The linear effect represented in this model is of pri-

mary importance in many psychological studies. The

consequences of different allocations of observations

to the levels of X are discussed first. Then the conse-

quences of adopting different analysis strategies for

testing this model are examined.

Designs for Linear Effects

In the Appendix (see also Atkinson & Donev, 1992,

and Mead, 1988) it is demonstrated that the optimal

design for the linear effect, the one that yields the

maximum variance forX, is (1/2, 0,0, 0, 1/2). That is,

a linear effect is detected or estimated most precisely

by testing the difference between the means of the two

most extreme levels of the independent variable,

where one-half of the observations are allocated to

each extreme.

Rather than using this optimal design for estimating

the linear effect, many researchers allocate observa-

tions equally across all five levels of the independent

variable. The equal-w allocation has a relative vari-

ance of only RV(X) — 1/2. That is, the equal-« design

requires l/(l/2) = 2 times as many observations as

the optimal design for comparable precision in esti-

mating the linear effect. A doubling of costs is not

trivial, regardless of whether those costs are measured

in terms of sacrificed lab rats, experimenter time, hu-

man subject time, or test materials. But using the
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equal-n design without doubling the observations

risks Type II errors because of the reduced ability to

detect the linear effect. The confidence interval for b

estimated from the equal-n design is Vl = 1.41 wider

than is the confidence interval for the optimal design.

The "linear efficiency "column of Table 1 presents

the relative variances of a variety of other allocations

that might be used to test for the linear effect of X.

Note especially that designs with unequal «s are rea-

sonably efficient as long as all the observations are at

extreme levels. For example, for the 3:1 ratio (3/4, 0,

0, 0, 1/4), RV(X) = .75, so that only 1.33 times as

many observations are needed as for the optimal de-

sign (1/2, 0, 0, 0, 1/2). This is still considerably more

efficient than the equal-n distribution (1/5, 1/5, 1/5,

1/5, 1/5). In fact, unless the ratio of the number of

observations at the two extreme levels exceeds 5.8:1,

any allocation with all observations at the extremes is

at least as efficient as an equal-/* design in detecting a

linear effect.

Some researchers are unable to control the alloca-

tion of observations to the levels of X and must in-

stead use whatever allocation that random sampling

gives them. It is instructive to examine the relative

efficiencies of such happenstance allocations. For ex-

ample, the peaked, normallike distribution (1/15,

3/15, 7/15, 3/15, 1/15) has a relative variance of only

Table 1

Relative Linear and Quadratic Efficiencies for Various

Allocations of Observations Across Five Levels of the

Independent Variable X

Design

Extreme

Center ends

Uniform

Every other

Compromise

Peaked

Skewed

2:1

3:1

5:8:1

15:1

U shaped

Proportional <

allocation

(.5, 0, 0, 0, .5)

(.25, 0, .5, 0, .25)

(.2, .2, .2, .2, .2)

(.33, 0, .33, 0, .33)

(.375, 0, .25, 0, .375)
(.07, .20, .47, .20, .07)

(.20, .47, .20, .07, .07)

(.67, 0, 0, 0, .33)

(.75, 0, 0, 0, .25)

(.85, 0,0, 0,. 15)

(.94, 0, 0, 0, .06)

(.37, .11, .03, .11, .37)

Linear

^fficiency

RV(X)

1.00

.50

.50

.67

.75

.23

.29

(.27)"

.89

.75

.50

.23

.80

Quadratic

efficiency

RV(X2)

0

1.00

.70

.89

.75

.42

.56

(.53)"
0

0

0

0

.47

.23. Thus, to have the same precision for estimating

the linear effect, the researcher obtaining this distri-

bution needs 1/.23 = 4.35 times as many observa-

tions as does the experimenter using the optimal de-

sign. The 15:1 distribution (.9375, 0, 0, 0, .0625)

yields comparable efficiency even though all obser-

vations are at the extremes. Note that the bimodal,

U-shaped distribution of (.37, .11, .03, .11, .37),

which many field researchers would consider unde-

sirable, has a much higher linear efficiency than does

the peaked distribution (.80 vs. .23) because a high

proportion of its observations are at the extremes.

Some regression textbooks inappropriately attribute

reduced efficiency for detecting a linear effect to "re-

striction in the range of X." However, the real prob-

lem is reduced relative variance, which does not nec-

essarily result from a restriction on the range of X. For

example, the allocation (0, 1/2, 0, 1/2,0) has a relative

efficiency of .25, but the peaked allocation (1/15,

3/15, 7/15, 3/15, 1/15) has a smaller relative effi-

ciency of only .23, even though it has a wider range.

It is also important to note that the large differences

in relative efficiencies across designs means that it is

inappropriate to compare most effect size measures

from studies with different designs. If the identical

linear effect is estimated using different designs, the

standardized effect sizes are very different (see also

Cohen & Cohen, 1983, pp. 187 and 211). Combining

Equations 7 and 8 for the special case of the linear

model in Equation 9 yields

(N-2)V(e)

NV(X)

(10)

where b is the parameter for the linear effect. If in-

stead of using the estimated variance of the errors

adjusted for degrees of freedom, one uses V(e) =

SSE//V, then Equation 10 becomes

1

V(e) '

b2V(X)

(U)

1

a The first number is the efficiency when that effect is tested alone;
the second number (in parentheses) is the efficiency after control-
ling for the other effect.

This and most other standardized effect sizes are

maximized by increasing the variance of X. Thus,

even for the same linear effect, those designs with

larger relative variances necessarily yield larger val-

ues of PRE. Note that N does not appear in Equation

11; therefore, in estimating effect size, increasing

sample size does not compensate for an inefficient

design. In contrast, the comparison of unstandardized
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effect sizes, such as the parameter estimate b, does not

depend on having the same relative variances.

Analysis for Linear Effects

An inappropriate analysis strategy can exacerbate

the inefficiency of a nonoptimal research design. For

example, consider the plight of the field researcher

who has obtained a random allocation across the five

levels of X similar to the peaked, normallike distribu-

tion of (1/15, 3/15, 7/15, 3/15, 1/15). Combining

Equations 2 and 8 yields

V(X)Nbz SSR

V(e)
(12)

where SSR is the usual sum of squares reduced and

MSE is the mean squared error. Then for a simple

linear regression, SSR = (7/3o)A*2 = .23/W>2. An al-

ternative analysis strategy is to use a one-way

ANOVA to assess possible differences among the five

means. Assuming that the higher order trend effects

are negligible, this strategy yields a mean squares be-

tween (MSB) equal to the same SSR divided by 4, the

degrees of freedom for the five means. That is, MSB

= (™A)Nb2 = .058A*2. This MSB, smaller than the

SSR for the simple linear regression, is compared with

the same MSE. Obviously, the omnibus, multiple-

degree-of-freedom test in the one-way ANOVA is

more likely to miss detecting the linear effect. Also

note that this random allocation from a happenstance

design and the analysis strategy combine to produce

an efficiency that is only 5.8% of that which would be

obtained with an optimal design. Compensating for

this reduction in efficiency requires (1/.058) = 17

times as many observations. Very few researchers can

afford the cost of that many additional observations.

As was noted earlier, the use of contrast codes is

increasingly advocated as an analysis strategy. How-

ever, it may not always be appropriate for quantitative

variables and the random allocations resulting from

happenstance designs. The SSR for a contrast is given

by (Judd & McClelland, 1989, p. 292),

(13)

Jnt

where k identities the level of X and where the Xt,

which must sum to zero across levels, represents the

codes for the contrast variable. The obtained SSR is

then compared with the MSE. As is shown in the

Appendix, for the case of the linear contrast codes and

the peaked distribution, the SSR = (%t,)Nb2 =

.19/Vfc2, which is slightly less than the SSR =

(7/3o)Ni2 = .23№>2 obtained by the simple linear re-

gression.3 The reduction is due to the redundancy

among contrast-coded predictors; although the codes

themselves are orthogonal, the unequal distribution of

observations across the five levels induces a correla-

tion. Even if the analysis does not explicitly include

the redundant codes, the standard formula for com-

puting the SSR for contrasts compensates for the an-

ticipated redundancy. If the researcher wishes to test

for only the linear effect, then using contrast codes

exacts a penalty for the irrelevant redundancies; thus,

simple linear regression (or, equivalently but more

complicatedly, weighted contrast codes) is a more ap-

propriate analysis strategy.

Another inadvisable analysis strategy is to regress Y

on the polynomial terms X, X2, X3, and X4. Often the

goal of this strategy is to estimate the linear effect

while simultaneously testing for deviations from lin-

earity. This strategy also substantially reduces the

unique SSR for X due to an induced redundancy

among the predictors (primarily between X and X3 and

between X2 and X4). For the case of the peaked dis-

tribution, the parameter estimate for the linear effect

is the same, but the unique SSR, reduced by the re-

dundancy (the squared correlation when X is re-

gressed on the other polynomial terms), is only

SSR = V(X.X\X\X4)Nb2

= V(X)(\-Rxx,x,x,)Nb2

(14)

In other words, 1/.054 = 18.6 times as many obser-

vations as the optimal design are necessary to com-

3 These results assume the use of unweighted contrast

codes; that is, the codes are not weighted by the number of

observations at each level. Unweighted contrast codes are

the norm in most psychological studies and textbooks be-

cause they can always be represented as the difference be-

tween group means. But unless the researcher's hypothesis

concerns differences among all group means, a heavy price

is paid. Contrast codes weighted by number of observations

at each level will produce results equivalent to ordinary

regression. In this case, weighted contrast codes or the

equivalent regression analysis is preferred to the usual un-

weighted contrast codes.
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pensate for the combination of a nonoptimal design

and an inadvisable analysis strategy. The problem is

that estimating the linear effect of X by itself is not the

same as estimating the linear effect of X in the context

of a polynomial model. By itself, the parameter for X

estimates the average linear slope across all observa-

tions; in a polynomial model the parameter for X es-

timates the linear slope when X = 0. The two esti-

mates are equal when the distribution is symmetric

about 0 because the average value of X is then 0, but

the questions underlying the estimates are still differ-

ent. It is not surprising that one would have more

confidence in an estimate of the average slope across

all observations than in an estimate of the instanta-

neous slope at a particular point.

A final analysis strategy that unfortunately is used

much too often is to split the observations into two

groups based on the median of X. The result has the

appearance of an optimal design; however, simply

receding observations from the middle levels to the

extreme levels does not of course really make them

extreme. For the peaked distribution, the resulting

SSR equals only (l/9)№>2, about 48% of the SSK from

the simple linear regression for the same data. Fur-

thermore, the MSE is increased by splitting the obser-

vations into two groups. In short, using a median split

for the peaked distribution is equivalent to discarding

at least half of the observations.

For the same reasons, it is not appropriate for re-

searchers to measure X with fewer levels. For ex-

ample, consider two clinical researchers using fre-

quency statements to measure the degree of sadness.

The first researcher uses five response categories:

"always sad," "almost always sad," "sometimes

sad," "almost never sad", and "never sad." The

second researcher uses only two categories: "often

sad" and "rarely sad." Presumably, those responding

"always," "almost always," and about half of those

responding "sometimes" in the first study would se-

lect the "often" category in the second; the remaining

respondents would select "rarely." In effect, the sec-

ond researcher has simply required the respondents to

perform the median split; therefore, the prior argu-

ments against median splits apply in this situation as

well.

Error in the measurement of X can cause the pa-

rameter estimates to be biased, although if the mea-

surement error is small in relation to V(X), the bias is

likely to be inconsequential (Davies & Hutton, 1975;

Seber, 1977). However, procedures that greatly in-

crease measurement error, such as median splits or the

use of only a few response categories, or that decrease

the variance of X can greatly exacerbate the bias in

parameter estimates.

In summary, if only a linear effect is expected, then

the optimal design that allocates one half of the ob-

servations to each extreme level should be used. With

such a design, analysis strategy is not an issue because

a simple linear regression, an independent / test, or a

one-way ANOVA with two levels all yield exactly the

same conclusion. If for whatever reasons a nonopti-

mal design is used, the inefficiency of that design

should not be compounded by using an inappropriate

analysis strategy. The only choice is simple linear

regression.

Designs for Quadratic Effects

Some researchers may object to the extreme design

(1/2, 0, 0, 0, 1/2) because it does not allow the detec-

tion of nonlinear or polynomial effects. An equal-«

design across five levels allows the estimation of

polynomial trends up to the quartic. However, if there

are no theoretical reasons for expecting a quartic ef-

fect, then looking for such an effect increases the risk

of making Type I errors. Even when higher order

effects such as a quartic effect are detected, they are

often difficult to interpret without a firm theoretical

basis for anticipating them. Furthermore, dispersing

scarce resources over many levels increases the like-

lihood of Type II errors for the effects of greatest

interest.

There are, nevertheless, many situations in which

simpler nonlinear effects such as a quadratic effect are

expected. Tests for quadratic effects are appropriate

when the maximum or minimum values of Y are ex-

pected to occur at intermediate values of X or when

values of Y begin to peak or bottom out as the extreme

values of X are approached. The relative efficiency of

a design for detecting or estimating a quadratic effect

is RV(X2), the relative residual variance of X2.

In the Appendix it is demonstrated (see also Atkin-

son & Donev, 1992) that the optimal design for de-

tecting or estimating a quadratic effect is (1/4, 0, 1/2,

0, 1/4). This design can also be justified intuitively. If

the relationship is linear, then the mean of the obser-

vations at the two extreme levels equals the mean of

the observations at the middle level; the test for a

quadratic effect simply compares these two means. As

before, the maximum variance is obtained by allocat-

ing one half of the observations to each mean being

compared. The observations at the extreme levels are
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equally divided; otherwise the test of the quadratic

effect would be partially redundant with the test of the

linear effect. If there is a quadratic effect, the mean of

the observations at the middle level will be smaller

than (U shape) or greater than (inverted U shape) the

mean of the observations at the extreme levels.

The maximum variance of X2 for the optimal de-

sign (1/4, 0, 1/2, 0, 1/4) is 1/4. However, this variance

should not be compared with the maximum variance

of X relevant for the linear effect, because such com-

parisons depend on the location of the origin of the

scale. Psychologists seldom assume that their scales

have more than interval properties, so a change of

origin is always allowed. It is appropriate, however, to

compare the quadratic variances of other designs with

the variance of the optimal design for testing the qua-

dratic effect. Thus, for the allocation (1/4, 0, 1/2, 0,

1/4), RV(X2) = 1.

The Quadratic efficiency column of Table 1 gives

RV(X2) for a variety of designs. The extreme design,

of course, has RV(X2) = 0. The traditional equal-n

design, with RV(X2) = .7, requires 1/.7 = 1.43 times

as many observations as the optimal design to have

the same precision for estimating a quadratic effect.

The every-other design (1/3,0, 1/3, 0, 1/3) fares better

with RV(X2) - .89. Finally, note that the peaked nor-

mallike distribution has a relative quadratic efficiency

of only .42.

Designs for Linear and Quadratic Effects

Unfortunately, the design that is optimal for the

linear effect is not necessarily very good for the qua-

dratic effect, and vice versa. Figure 1 displays the

relative linear and quadratic efficiencies for a number

of possible designs. The linear efficiency for the best

quadratic design is only .5, and the quadratic effi-

ciency for the best linear design is 0. Also note that

the traditional equal-n design has a relative linear ef-

ficiency of .5 and a relative quadratic efficiency of .7.

Greater relative efficiency for quadratic effects than

for linear effects is probably not what most research-

ers intend when they choose the equal-n design.

If detection of a quadratic effect is crucial for test-

ing a theory and if a linear effect would be problem-

atic to interpret in the presence of a quadratic effect,

then the optimal quadratic design should be chosen. If

researchers want to hedge their bets so that they

would still have reasonable efficiency for estimating a

linear effect should the expected quadratic effect not

be found, a similar symmetrical design with observa-

l . I

0 0.25 0.5 0.75 1

Linear

Figure 1. Linear versus quadratic relative efficiency for

selected allocations of observations across five levels of the

independent variable X.

tions at three levels should be used; however, the

proportion of observations at the middle level should

be reduced. If r is the proportion of observations at the

middle level, then the set of possible combinations of

linear and quadratic relative efficiencies is, as shown

in the Appendix,

1(1 - r), 4r(l - r)]. (15)

Considering confidence intervals for each effect sug-

gests how to choose values for r to hedge one's bets.

Separate Confidence Intervals

Neter, Wasserman, and Kutner (1990, p. 150) rec-

ommended constructing separate confidence intervals

for each effect; in fact, to do otherwise is complicated

with most regression programs. Comparable confi-

dence intervals can be created by selecting a design

with equal relative efficiencies for the linear and qua-

dratic effects. For example, setting r = 1/4 yields the

compromise design (3/8, 0, 1/4, 0, 3/8) shown in

Table 1. The relative linear and quadratic efficiencies

for this design both equal .75. This design is a good

compromise in that it provides reasonable relative ef-

ficiency for a test of the quadratic effect and equally

good relative efficiency for a backup test of the linear

effect. Alternatively, efficiency equal to the respective

optimal designs for each effect can be obtained by

using 1/.75 = 4/3 times as many observations.

Note that equal relative efficiencies for linear and

quadratic effects does not imply equal absolute effi-

ciencies. For the symmetric design with proportion r

observations at the middle level, the ratio of V(X) to
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V(X2) is l/r. The absolute linear and quadratic vari-

ances would be equal only when r = 1, which has the

undesirable effect of making both variances zero.

Thus, the confidence interval for the quadratic effect,

given the scaling assumptions in this section, is nec-

essarily wider than is the confidence interval for the

linear effect, regardless of the design.

Mead (1988) and Atkinson and Donev (1992) also

considered the problem of minimizing the less fre-

quently used confidence ellipsoid, and Stigler (1971)

and Studden (1982) considered how to choose r to

maintain a minimum specified power for detecting,

respectively, a quadratic or higher order polynomial

component.

Example

It is instructive to consider a hypothetical example

from Estes (1991) in terms of the trade-off in opti-

mality between tests of linear and nonlinear effects.

Estes based his example on the Sternberg (1966) para-

digm in which a "subject is presented with a small set

of items, typically randomly selected digits, letters, or

short words, then is presented with a test item and

responds yes or no as quickly as possible, yes indi-

cating that the test item was in the set of items pre-

sented (the memory set) and no indicating that it was

not" (Estes, 1991, p. 3). The dependent variable is

reaction time (RT), measured in milliseconds. In the

example, 25 subjects are allocated equally across five

levels of set size, ranging from 1 to 5 items. The mean

RTs are presented in Table 2.

According to theory, RT should increase linearly

with set size. The MSE (within-set variance) is 617.5

for these data; thus the test statistic for the linear trend

is F(l,20) = 146.26 (PRE = .88), which is clearly

significant (p < .0001). The estimate of the linear

trend is 42.5 ms per item, and the 95% confidence

interval is [35.6, 49.4]. To test the adequacy of the

Table 2
Mean Reaction Times (in Milliseconds) and Alternative

Designs for the Hypothetical Memory Search Experiment

From Estes (1991)

Set size 1 Total n

M 420 500 540 555 605 —

Uniform 5 5 5 5 5 25

Optimal for

quadratic

effect 6 0 12 0 6 24

Compromise 9 0 6 0 9 24

linear model, Estes (1991) tested deviations from lin-

earity as a set, as recommended by many textbooks,

and concluded that

a test of the nonlinear component yields an F of only
2.99, which falls slightly short of the 5% level. Thus,
although the deviations of the data points from [a]
straight line... may look systematic to the eye, we have
no statistical justification for going from the linear to any
more complex function to describe the data. We con-
clude that, within the limits of this study, the theoretical
hypothesis represented by the linear function with an
upward slope is supported over any alternative model,
(p. 80)

However, if detecting nonlinearity is important, then

an optimal design and analysis is required. The sug-

gestion of nonlinearity is strong: (a) the nonlinear

model reduces error by 31 % over the linear model, an

average of 10% reduction in error per extra model

parameter or degree of freedom, and (b) the obtained

F(3,20) = 2.99 has a probability under the null hy-

pothesis of .055, which just misses the conventional,

but arbitrary, .05 cut-off (Cowles & Davis, 1982).

Either a more focused analysis or a more efficient

design easily detects the nonlinearity in these data.

The omnibus test of nonlinearity implicitly aggregates

tests of the quadratic, cubic, and quartic trends. Al-

though one might expect quadratic or possibly cubic

trends, it seems unlikely that there would be quartic

and higher order trends. Including all the nonlinear

trends in a single test allows lower order trends to be

washed out in the omnibus test. With fixed N, adding

even more levels to the design makes nonlinearity

more difficult to detect. In the present case, more

focused tests of orthogonal trends yield, with the con-

ventional .05 criterion, near significance for the qua-

dratic trend, F(\,20) = 4.08, p = .054, PRE = .17,

significance for the cubic trend, F( 1,20) = 4.55, p =

.045, PRE = .19, and no evidence for a quartic trend,

F(l,20) = 0.23, p = .64, PRE = .01. Focused tests

of trend components detect the nonlinearity, but the

omnibus test, because it aggregates a test of the quar-

tic trend with the lower order trends, does not.

Even better than a more focused analysis would be

to use a more efficient and focused design for testing

the quadratic trend, the simplest and most likely non-

linear trend. It is interesting to consider what would

have been the result if the same means and MSE were

obtained in a study with a more efficient design. An N

of 25 observations does not divide evenly into the

three levels of the optimal design (1/4, 0, 1/2, 0, 1/4)

for testing a quadratic effect, so only 24 subjects are
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used, as is shown in Table 2. This design is as linearly

efficient as the original design with equal number of

observations across five levels. The linear trend is still

significant, of course, with F(l,21) = 166.3 (PRE =

.89),/; < .0001. Now, however, the quadratic trend is

also significant with F(l,21) = 7.35 (PRE - .26), p

= .013.

In this context, the traditional test for a quadratic trend

is more appropriately described as a test of determining

whether the mean of the observations at the middle level

equals the expected mean (i.e., the mean of the obser-

vations at the two extreme levels) if the relationship

between set size and RT is linear. A higher order effect

other than the quadratic (most likely, the cubic for these

data given the results of the one-degree-of-freedom

tests) may be responsible for the mean at the middle

level being other than that expected for a linear relation-

ship. It is also possible, but unlikely, that a combination

of higher order effects could yield a mean consistent

with a linear model. Thus, as always, failure to reject a

null hypothesis should not be considered as confirma-

tion. However, in this example, the test reveals that the

mean at the middle level is not consistent with a linear

relationship between set size and RT. So, the nonopti-

mal, equal-n design fails to detect a theoretically impor-

tant deviation from nonlinearity that an optimal design,

assuming the same means and MSE, can detect easily.

Moreover, an optimal design with only 16 (rather than

24) observations also detects a statistically significant

deviation from linearity with F( 1,13) = 4.89,p = .046,

and necessarily yields a more precise estimate and nar-

rower confidence interval.

If linearity is expected but, as a hedge, a test of

deviation from linearity is desired, the best design for

this example is the compromise design (3/8, 0, 1/4, 0,

3/8), shown in the last row of Table 2. Even with only

1/4 of the subjects allocated to the middle level, non-

linearity is detected with F(l,21) = 5.51, p = .029.

The optimal design for the quadratic test necessar-

ily yields the maximum effect size or PRE. Thus, for

the same means and same MSE, there is no allocation

of 24 observations across these five levels of set size

that yields an effect size greater than PRE — .26.

Knowing the maximum possible effect size may be

useful in judging the substantive and theoretical sig-

nificance of the deviation from linearity. For example,

a failure to find a significant quadratic effect is not as

good a support for the linearity hypothesis as is a

demonstration that the quadratic effect, even with an

optimal design, trivially reduces the proportion of er-

ror in relation to a linear model.

Nonordinal Effects (Categorical Variables)

In many psychology experiments the levels of the

independent variable are simply categories; neither

the ordering nor the spacing of the levels is known.

Estes (1991, p. 42) used as an illustration a categori-

zation experiment with three different types of in-

structions: normal (N) instructions and two types of

enhanced instructions, one emphasizing attention to

relationships (R) and the other emphasizing attention

to similarities (S). Determining the best allocation of

observations to the three instruction conditions re-

quires consideration of how the data are to be ana-

lyzed. As was noted earlier, an increasing number of

contemporary textbooks advocate focused one-

dcgree-of-freedom tests that use contrast codes. The

use of contrast codes requires the researcher to be

specific about the questions to be asked of the data

before the analysis is performed. Theory is usually the

source for the questions to be asked. No theory is at

hand for the present example, but questions that might

be asked about the three types of instructions spring

readily to mind. Once the contrast codes correspond-

ing to the questions are determined, the optimal de-

sign can be selected by identifying the allocation of

observations that maximizes the variance of the

codes.

Suppose the researcher wants to know (a) whether

there is a difference between normal and enhanced

instructions (N vs. R and S) and (b) whether there is

a difference between the two types of enhanced in-

structions (R vs. S). The following set of contrast

codes corresponds to these two questions:

Code N R S

Cl

C2

_2

0

Code Cl compares the mean of the normal instruction

condition to the mean of the means of the two en-

hanced instruction conditions. Code C2, which is or-

thogonal to Cl, compares the means of the two en-

hanced instruction conditions. If the instruction

categories R, N, and S are assigned the values -1,0,

and 1, respectively, then the questions corresponding

to C2 and Cl are analogous to tests of the linear and

quadratic effects, respectively, discussed above. Thus,

while we may not want to refer to Cl as the "qua-

dratic effect," we can nevertheless use the results

outlined previously to select an optimal design for this

experiment.

The researcher must decide the relative importance
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of the questions corresponding to each code. If Cl is

critically important, then the optimal design, in the

order (N, R, S), is (1/2, 1/4, 1/4), but the relative

efficiency for the test of C2 is only .5. At the other

extreme, if C2 is critically important, then the optimal

allocation is (0, 1/2, 1/2), in which case the Cl ques-

tion is not asked. As was the case with tests of linear

and quadratic effects, the allocation to the "middle"

category (N, in this case) can be varied to change the

relative importance of each of the two questions. If

equal relative efficiency for testing the two questions

is desired, then the design (2/8, 3/8, 3/8) is optimal

because it yields relative efficiencies of .75 for both

questions. The traditional equal-n design (1/3, 1/3,

1/3) yields a higher relative efficiency (.89) for ques-

tion Cl than for C2 (.67). This may not be what the

researcher intends.

Theory might suggest other codes. For example, if

it is hypothesized that subjects adopt a similarities

perspective even in the absence of similarity instruc-

tions and that, therefore, only the relationship instruc-

tions should have an effect on performance, then the

appropriate codes are

Code N R S

C3

C4

-1 -1

1.

C3 tests for a difference between the mean of R and

the mean of the means of N and S. C4 asks, as some-

what of an afterthought, whether there is a difference

between the means of N and S. Here, C3 seems to be

the much more important question, so the design (1/4,

1/2, 1/4) may be most appropriate.

Higher Order Polynomial Trends or Effects

The principles discussed above can be used to de-

termine optimal designs for detecting cubic and quar-

tic trends. However, there are few instances in psy-

chology for which a cubic or a quartic trend is

expected on the basis of theory. Therefore optimal

designs for higher order polynomial trends are not

described in detail here. In general, however, the op-

timal allocations to each level are proportional to the

absolute values of the orthogonal polynomial contrast

codes for the appropriate trend when that trend is the

highest order trend possible in the design. For the

cubic trend for four equally spaced levels of X (-1,

-1/3, 1/3, 1), the contrast code is (-1, 3, -3, 1), there-

fore the optimal design for detecting a cubic trend is

(1/8, 3/8, 3/8, 1/8). Similarly, the optimal design for

detecting a quartic trend is (1/16, 4/16, 6/16, 4/16,

1/16) for five equally spaced levels of X. For nonor-

dinal or categorical variables with many levels, the

optimal design for a specific contrast of means can be

determined by allocating an equal number of obser-

vations to each side of the contrast and then dividing

each side's allocations equally between the levels in

that side. For example, the optimal design for com-

paring three means to two other means is (1/6, 1/6,

1/6, 1/4, 1/4).

Note that a model including all polynomial trends

up to a power of 4 is equivalent to allowing any

pattern of means for the five levels of X. If a re-

searcher is really interested in detecting any pattern of

means, then the traditional equal-n design is optimal.

However, if there are not good reasons for expecting

a large number of possible patterns, the equal-/! de-

sign will produce a large number of Type I errors.

Moreover, the inefficiency caused by squandering ob-

servations in a nonoptimal design will produce a large

number of Type II errors for the hypotheses of great-

est interest.

Linear x Linear Interactions

Now assume a second quantitative variable Z,

which has five different equally spaced levels, as-

signed the same numerical values as X. The Linear x

Linear interaction (the interaction of greatest interest

to most researchers) is represented by the XZ product,

if X and Z are also included as terms in the model.

McClelland and Judd (1993) derived a formula for the

relative variance of the residual product, RV(XZ), con-

trolling for X and Z. They also compared the relative

efficiencies of a variety of designs for detecting the

Linear x Linear interaction. The following discussion

is based on those findings.

If X and Z are uncorrelated, then the relative effi-

ciency of a design for detecting the Linear x Linear

interaction is simply the product of the separate rela-

tive linear efficiencies of that design for X and Z.

Thus, the relative efficiency for the Linear x Linear

interaction is at best equal to the lower of the linear

efficiencies of the two variables in the interaction. If

the relative linear efficiencies for both X and Z are less

than 1.0, then the relative efficiency for the Linear x

Linear interaction will be much lower than the relative

linear efficiency for either of the two component vari-

ables.

Maximum residual variance for XZ, and hence

greatest efficiency for the Linear x Linear interaction,
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is obtained from the four-corner design that allocates

1/4 of the observations to each extreme, represented

by the (X, Z) values (-1, -1), (-1, 1), (1, -1), and (1,

1). Note that even if there is no interaction, the four-

comer design still has optimal efficiency for estimat-

ing the linear effects of X and Z.

Instead of the four-corner design, some researchers

hedge their bets by using an equal-n design that allo-

cates observations equally across the cells of, say, a 5

x 5 matrix. This design has the advantage of allowing

the detection of any possible interaction, including,

for example, the Cubic x Quartic interaction. Not only

may it be costly to create and to manage 25 combi-

nations of factors, but more important, the relative

efficiency of the equal-n design for detecting the Lin-

ear x Linear interaction is only .25. In other words,

the equal-n design requires four times as many obser-

vations as does the optimal four-corner design to have

equal efficiency in detecting a Linear x Linear inter-

action. Moreover, the relative efficiency of the

equal-n design for detecting a linear effect of X or Z is

only 0.5. Thus, the ability to detect higher order in-

teractions is costly in terms of the ability to detect

those effects that are usually of greatest interest.

A more modest hedge is a design that allocates

observations equally to the nine cells defined by X and

Z values of -1, 0, and 1; this design allows detection

of the Linear x Quadratic, Quadratic x Linear, and

Quadratic x Quadratic interactions as well as the Lin-

ear x Linear interaction. Few psychological theories

predict interactions that are more complicated than

these. However, the relative efficiency of this design

for detecting the Linear x Linear interaction is only

.44. Thus, this design should be chosen only if there is

good reason to expect a Quadratic x Quadratic inter-

action or if a Quadratic x Quadratic interaction could

be interpreted if found.

A useful alternative to the optimal four-corner de-

sign is one that allocates 1/4 of the observations to the

center cell (0, 0) and divides the remaining 3/4 of the

observations equally between the four comer cells

(hence, 3/16 in each corner cell). This design has

equal relative efficiencies (.75) for detecting the linear

effects of X, the linear effects of Z, and the XZ inter-

action. Few psychological theories require a more so-

phisticated design. This design has the additional ad-

vantage of leaving one degree of freedom for a lack-

of-fil test comparing the actual mean of the center cell

with the mean predicted by the Linear x Linear inter-

action and the separate linear effects. A significant

deviation of the predicted and actual means for the

center cell signals the presence of polynomial effects

for X and Z and higher order interactions. If the lack-

of-fit test suggests the presence of such effects, then a

more complete design is appropriate in a follow-up

experiment. Using equal n in this five-point design is

not very deleterious. This alternative design is easily

generalized to more than two variables and has much

to recommend it as a standard design for experimental

research in psychology. Sail and Lehman (1996)

made a similar suggestion for using the above generic,

five-point design.

McClelland and Judd (1993) demonstrated how

deleterious random or happenstance allocations (e.g.,

those resulting from surveys) can be for the detection

of interactions. They provided an example of a bivari-

ate normallike distribution that has a relative effi-

ciency of only .06 for detecting the XZ interaction. A

field study expecting this distribution requires about

17 times as many observations as the optimal design

to have comparable relative efficiency for estimating

the Linear x Linear interaction.

Discussion

Most psychologists use traditional equal-n experi-

mental designs even though those designs are not op-

timal for the questions that they want to ask of their

data. This is not sensible scientifically. Design inef-

ficiencies can always be offset by increasing the num-

ber of observations. However, ethical concerns, finan-

cial costs, and time constraints preclude increasing the

number of observations as a general solution to design

inefficiency. Many studies could use fewer subjects in

optimal designs and still have the same or greater

statistical power as equal-n designs for detecting the

effects of greatest interest. In the past, psychologists

may have avoided designs with unequal ns because of

computational complexities. However, modern com-

puting makes computational issues irrelevant for the

choice of experimental design.

Throughout this article it has been assumed that the

cost of each observation is equal. This may not be the

case. For example, in a biopsychological drug experi-

ment, Level 0 might correspond to a control condi-

tion, Level 1 might correspond to an injection to in-

crease the natural level of the drug in the body, and

Level -1 might correspond to an injection of a block-

ing agent to reduce the effects of the natural level of

the drug. The costs of the drug and the blocking agent

may be very different from each other and consider-

ably larger than the cost of the vehicle injection for
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the control condition. However, the same efficiency

principles can be used to determine an optimal design

for a fixed overall cost. Note that allocation of sub-

jects to conditions affects the maximum possible N for

a fixed overall cost. Because N and residual variance

trade off, the goal is to find the allocation that maxi-

mizes N V(X) for the effects of interest.

Another assumption throughout this article has

been that V(e), the residual variance, remains con-

stant, independent of the design. This is equivalent to

the usual homogeneity of variance assumption. Vio-

lations of this assumption can be more problematic

with unequal-n designs, especially when the group

with the larger variance has the smaller n (Wilcox,

1996, p. 131). If heterogeneity of variance is ex-

pected, then additional considerations for optimal de-

sign apply, such as allocating more observations to

those levels or groups expected to be most variable

(Kish, 1965).

If there are multiple questions of interest, there is

no simple recommendation for an optimal design. The

relative importance of the various questions must be

considered and a design chosen so that those ques-

tions of greatest interest have the greatest relative ef-

ficiencies. Usually, it is possible to identify the effect

of greatest interest and then include one or two addi-

tional effects as a safeguard. In such cases, the opti-

mal design is usually easy to determine. The recom-

mendation to consider the relative importance of the

questions being asked when designing an experiment

is similar to, but may make unnecessary, the recom-

mendations of Rosenthal and Rubin (1984) and Tukey

(1991) to allocate differentially the Type I error rate to

the important comparisons when making multiple

comparisons. However, if for whatever reasons a non-

optimal design is used, their recommendations should

be heeded.

Cox (1958, see especially pp. 137-142) considered

more informally some of the issues addressed in this

article. His results and conclusions are generally con-

sistent with those reported here. For example, Cox

(1958) concluded that "both slope [the linear effect]

and curvature [the quadratic effect] are more precisely

estimated from three equally spaced levels than from

four or more equally spaced levels with the same

extreme points" (p. 141). However, at a time when

experiments were perhaps less costly and computa-

tions were definitely more expensive, Cox was not

convinced that the increase in precision from un-

equal-n designs was worth the increase in computa-

tional complexity. For example, he judged the in-

creased sensitivity of the optimal (1/4, 1/2,1/4) design

to be too small to be worth the trouble. Now that

computational costs are trivial, a different conclusion

might be reached. Cox was also doubtful that re-

searchers would be able to specify their relative in-

terests in the linear and quadratic effects. However, in

testing psychological theories the presence or not of a

quadratic effect is sometimes crucial. A researcher

who wants to be convinced that deviations from lin-

earity are not substantial must use the most powerful

test possible, and that requires either an optimal de-

sign (1/4, 1/2, 1/4) or 12.5% more observations to

compensate for the inefficiency of an equal-n design.

On the other hand, if the researcher is most interested

in estimating the linear effect and wants only a safe-

guard test for the quadratic effect, then the design

(3/8, 1/4, 3/8) is adequate and requires 12.5% fewer

observations than does the equal-n design with the

same linear efficiency. If a 12.5% difference in sub-

ject costs is not problematical, then equal-n designs

might as well be used. However, if a 12.5% increase

in costs is cause for concern, then the most appropri-

ate optimal design ought to be used.

Determining the optimal design for complex ex-

periments involving many questions can be difficult.

The technical literature on optimal design is so for-

bidding that psychologists are as unlikely to consult

that literature as they have been to heed the sound

admonitions to consult power tables and power curves

to assess the statistical power of their designs. How-

ever, psychologists who are comfortable with the

technical literature on power tables and curves would

profit by reading the quite accessible overviews of the

optimal design literature by Atkinson and Donev

(1992) and Mead (1988). Accessing the technical lit-

erature on optimal design is, fortunately, not crucial,

because adhering to the following general principles

can yield a substantially improved design in relation

to traditional designs.

First, an optimal design allocates observations to

the same number of variable levels as there are pa-

rameters in the model. For a linear model, two levels

should be used to estimate the two parameters, the

intercept and the slope; for a quadratic model, three

levels should be used; and so on. Thinking about an

appropriate model for the data will therefore often

suggest the appropriate number of levels and the cor-

responding optimal design. Psychologists often seem

reluctant to use the relatively small number of levels

that their models actually require. Mead (1988) coun-

tered this concern:
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The argument for dispersing the fixed total resources
among many excess levels to detect any of a large num-
ber of possible discontinuities of the model is faulty
because there will not be adequate precision at any point
to detect a discontinuity, while the dispersal of resources
reduces precision for the major criteria, (p. 533)

Second, if a test of lack of fit against the expected

model is desirable as a safeguard, only a single level

should be added to allow for that test. As Mead (1988,

p. 533) stated, "The extra level provides both for a

conflict of interests between the competing criteria,

and some protection against major failure of the

model."

Third, linear effects and Linear x Linear interac-

tions are of primary interest in many psychological

experiments. If thinking about a model for the data

does not suggest the optimal design, then it is reason-

able to consider an "off-the-shelf" design strategy

that follows from the second recommendation. That

strategy is to test efficiently for linear effects but to

safeguard against nonlinearity. For a study with one

independent variable, then, the recommendation is to

allocate observations in the proportion (3/8, 1/4, 3/8)

across three equally spaced levels with the end levels

being as extreme as is realistic and feasible. For two

independent variables, 3/16 of the observations

should be allocated to each corner cell, with the levels

of these cells being as extreme as is realistic and fea-

sible, and the remaining 1/4 of the observations

should be allocated to the center cell. Generalizations

to more than two independent variables are obvious.

Such designs provide efficient tests for linearity hy-

potheses (including the linearity interactions in de-

signs with multiple variables) while still allowing a

safeguard test against major violations of those hy-

potheses. If the safeguard test indicates a significant

violation of linearity, then a more complex design is

appropriate in a follow-up experiment.

Fourth, if the levels of the independent variable (or

variables) are neither selected nor controlled but dic-

tated by random sampling, then it is crucial not to

compound the inefficiency of this random allocation

of observations by using an inappropriate analysis

strategy. Studies with quantitative independent vari-

ables should be analyzed with multiple regression

with no more polynomial and interaction product

terms than are theoretically reasonable. Studies with

categorical independent variables should be analyzed

with focused one-degree-of-freedom contrasts. Stud-

ies with observations allocated by random sampling

should also estimate the maximum value of PRE that

would be obtained with an optimal design.
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Appendix

RV(X)

Assume that the probability allocation over the five levels

of X (-1, -1/2, 0, 1/2, 1) is given by (p, q, \-p-q-s-t, s, t)

such that p + q + s + I <= 1. The mean is then

-p-q/2 + s/2 + t (Al)

and the variance V(X) is

Pi - 1 - (- P - qll + s/2 + t)]2 + q [ - \ n - ( - p - q!2 +

s/2 + l)f +

(1 -p - q - s - f)[-Q-(-p - q/2 + s/2 + t)f +

s [ (1/2 - (-p - q!2 + s!2 + t)f + t\\ - (-p - q!2 + s/2

+ t)f, (A2)

which when expanded becomes

P ~ p2 + <7/4 - pq - q2/4 + 5/4 +

ps + qs/2 - $2/4 + t + 2 pt + qt - s! - t 2. (A3)

In the symmetric case for which s = q and t ~ p, this

variance reduces to

2 p + q/2. (A4)

Clearly, any allocation of probability to q reduces its effect

by half, whereas any allocation of probability to p increases

its effect by 2. Thus, the maximum variance for a symmetric

allocation is obtained when p = 1/2, which is equivalent to

the distribution (1/2, 0, 0, 0, 1/2). This maximum variance

equals 2(1/2) = 1; hence, V(X) = RV(X) for any probability

allocation.

V(X2)

If the distribution over the levels (-1, -1/2, 0, 1/2, 1) is

(j>, q, 1 -p-q-s-t, s, t), then the levels of X2 are (0, 1/4, 1) with

respective proportions (\-p-q-s-t, q + s, p + /). The mean is

obviously

q + s

~4~"

The variance is then

-p-q-s- t)[

(q + s) [1/4 - (q + s)/4 - p - t}2 +

(A5)

(q + x)/4-p-:f, (A6)

which when expanded becomes

(16p - 16 p2 + q - 8 pq - q2 + s - 8 ps - 2qs

- s2 + 16? - 32 pt - 8 qt - 8« - \6?)tt6. (A7)

For a symmetric distribution (/>, q, 1 - 2p - 2q, q, p), this

reduces to

(}6p-32p2 + q- \bpq- 2q2)K. (A8)

These results can be used to calculate any of the variances

mentioned in the text. The maximum variance over the

squared levels (0, 1/4, 1) obtains, according to the previous

argument for V(X), when one half of the observations are at

each extreme, that is, when 1 - p -1 — p + I, which implies

p + t = 1/2. Unless the probability allocation is symmetric

so that p = t, X and X2 are correlated and the tolerance is

less than 1, which reduces the residual variance. Hence, the

maximum variance occurs when p = t — 1/4, yielding the

design over levels of X of (1/4, 0, 1/2, 0, 1/4) and V(X2) =

1/4. The relative variance of any other allocation is given by

its residual variance multiplied by 4.

SSR for Linear Contrast

According to Judd and McClelland (1989), the sum of
squares reduced or sum of squares regression for a simple

linear model is given by

SSR = (A9)

If the X observations are centered by subtracting the mean
of X, then the intercept a equals the mean of Y. That is,

SSR = - Y-b(X, - M)f = b2 (X, -

- = Nb2V(X). (A 10)

According to Judd and McClelland (1989), the SSR for a

contrast is given by

SSR,. (Al l )

If one uses the linear contrast (-1, -1/2, 0, 1/2, 1) and
assumes that the linear model is correct so that the expected
mean for each cell is given by

Yj = a + bXj, (A12)

then for the peaked distribution (1/15, 3/15, 7/15, 3/15,

1/15), the numerator of the SSR for the linear contrast is

{- 1 [a

= (b+}-b+]-b + h)2

(-^)] + 0[a + 6(0)]

(A 13)

The denominator of the SSR for the linear contrast is



OPTIMAL DESIGN IN PSYCHOLOGICAL RESEARCH 19

s
3Ar+7;V+3Ar" t ' /V

3N

"l?

15 15
13
7 65

= W = 2AT
5

s

The ratio of the numerator and denominator yields

25b2 2N 5

(A14)

(A15)

Linear-Quadratic Trade-Ofi

Assume a symmetric probability allocation [(1 - p)/2, p,
(1 -p)/2] over the levels (-1,0, 1). The mean is zero and the
variance is

(A16)

Over the squared levels (0, 1), the allocation would be (p, I
- p) with a mean of 1 - p. The variance is thus

-(\-p)p. (A17)

The variance relative to the optimal allocation is 4p(l - p).
Therefore,

[1 -p, 4p(] -p)] (A18)

describes the set of relative linear and quadratic efficiencies,
obtainable with p observations in the center cell and the
remaining 1 -p observations divided equally among the ex-
tremes.
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