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Abstract 

In this paper it is shown that the classical maximum likelihood principle 

can be considered to be a method of asymptotic realization of an 

optimum estimate with respect to a very general information theoretic 

criterion. This observation shows an extension of the principle to pro­

vide answers to many practical problems of statistical model fitting. 

1. Introduction 

The extension of the maximum likelihood principle which we are proposing 

in this paper was first announced by the author in a recent paper [6] in the 

following form: 

Given a set of estimates e of the vector of parameters () of a probability 

distribution with density function f(xl()) we adopt as our final estimate the 

one which will give the maximum of the expected log-likelihood, which is by 

definition 

E log f(XIO) = E f f(xl()) log f(xle) dx, ( 1.1) 

where X is a random variable following the distribution with the density 

function f(x\O) and is independent of e. 
This seems to be a formal extension of the classical maximum likelihood 

principle but a simple reflection shows that this is equivalent to maximizing 

an information theoretic quantity which is given by the definition 
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(f(XIO») f (f(X10») 
E 10gV(XIO) = E f(xIO)logV(xIO) dx. (1.2) 

The integral in the right-hand side of the above equation gives the Kullback­
Leibler's mean information for discrimination between f(xlO) and f(xIO) and 
is known to give a measure of separation or distance between the two distri­
butions [15]. This observation makes it clear that what we are proposing here 
is the adoption of an information theoretic quantity of the discrepancy be­
tween the estimated and the true probability distributions to define the loss 
function of an estimate 0 of O. It is well recognized that the statistical estima­
tion theory should and can be organized within the framework of the theory 
of statistical decision functions [25]. The only difficulty in realizing this is the 
choice of a proper loss function, a point which is discussed in details in a 
paper by Le Cam [17]. 

In the following sections it will be shown that our present choice of the 
information theoretic loss function is a very natural and reasonable one to 
develop a unified asymptotic theory of estimation. We will first discuss the 
definition of the amount of information and make clear the relative merit, in 
relation to the asymptotic estimation theory, of the Kullback-Leibler type 
information within the infinitely many possible alternatives. The discussion 
will reveal that the log-likelihood is essentially a more natural quantity than 
the simple likelihood to be used for the definition of the maximum likelihood 
principle. 

Our extended maximum likelihood principle can most effectively be ap­
plied for the decision of the final estimate of a finite parameter model when 
many alternative maximum likelihood estimates are obtained corresponding 
to the various restrictions of the model. The log-likelihood ratio statistics 
developed for the test of composite hypotheses can most conveniently be used 
for this purpose and it reveals the truly statistical nature of the information 
theoretic quantities which have often been considered to be probabilistic 
rather than statistical [21]. 

With the aid of this log-likelihood ratio statistics our extended maximum 
likelihood principle can provide solutions for various important practical 
problems which have hitherto been treated as problems of statistical hypoth­
esis testing rather than of statistical decision or estimation. Among the possible 
applications there are the decisions of the number of factors in the factor 
analysis, of the significant factors in the analysis of variance, ofthe number of 
independent variables to be included into mUltiple regression and of the 
order of autoregressive and other finite parameter models of stationary time 
series. 

Numerical examples are given to illustrate the difference of our present 
approach from the conventional procedure of successive applications of sta­
tistical tests for the determination of the order of autoregressive models. The 
results will convincingly suggest that our new approach will eventually be 
replacing many of the hitherto developed conventional statistical procedures. 
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2. Information and Discrimination 

It can be shown [9] that for the purpose of discrimination between the two 
probability distributions with density functions h(x) (i = 0, 1) all the neces­
sary information are contained in the likelihood ratio T(x) = 11 (x)/Io(x) in the 
sense that any decision procedure with a prescribed loss of discriminating the 
two distributions based on a realization of a sample point x can, if it is 
realizable at all, equivalently be realized through the use of T(x). If we 
consider that the information supplied by observing a realization of a (set of) 
random variable(s) is essentially summarized in its effect of leading us to the 
discrimination of various hypotheses, it will be reasonable to assume that the 
amount of information obtained by observing a realization x must be a 
function of T(x) = 11 (x)/Io(x). 

Following the above observation, the natural definition of the mean 
amount of information for discrimination per observation when the actual 
distribution is lo(x) will be given by 

f (11 (X») 
lUI' 10; <1» = <1> Vo(x) lo(x) dx, (2.1) 

where <1>(r) is a properly chosen function of rand dx denotes the measure with 
respect to which h(x) are defined. We shall hereafter be concerned with the 
parametric situation where the densities are specified by a set of parameters 
o in the form 

I(x) = l(xIO), (2.2) 

where it is assumed that 0 is an L-dimensional vector, 0 = (01, O2 , ••• , Od, 

where' denotes the transpose. We assume that the true distribution under 

observation is specified by 0 = a = (ai' a2 , ••• , aLl'. We Will denote by 
/(0, a; <1» the quantity defined by (2.1) with 11 (x) = l(xIO) and lo(x) = I(xla) 

and analyze the sensitivity of /(0, a; <1» to the deviation of 0 from a. Assuming 
the regularity conditions of l(xIO) and <1>(r) which assure the following analyt­
ical treatment we get 

(2.3) 

. f( a2!e ) + <1>(1) ao ao dx, 
I '" B=8 

(2.4) 
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. .. f(xIO) d<1>(r) I d2<1>(r)I 
where r, <1>(1), <1>(1) and Ie denote f(xla)' ctr r=I' dr2 r=1 and f(xIO), 

respectively, and the meaning of the other quantities will be clear from the 

context. Taking into account that we are assuming the validity of differentia­

tion under integral sign and that ff(xIO) dx = 1, we have 

(2.5) 

Thus we get 

I(a, a; <1» = <1>(l) (2.6) 

a 
ao,/(O, a; <1»19=0 = 0 (2.7) 

a2 
•• J[(af 9 1)(ale l)J ao ao 1(0, a; <1»19=0 = <1>(1) ao r ai}r fo dx. 

I m /J9 mJ9 9=9 

(2.8) 

These relations show that cI>(l) must be different from zero if 1(0, a; <1» ought 

to be sensitive to the small variations of O. Also it is clear that the relative 

sensitivity of 1(0, a; <1» is high when I:~gl is large. This will be the case when 

<1>(1) = O. The integral on the right-hand side of (2.8) defines the (I, m)th 

element of Fisher's information matrix [16] and the above results show that 

this matrix is playing a central role in determining the behaviour of our mean 

information 1(0, a; <1» for small variations of 0 around a. The possible forms 

of <1>(r) are e.g. log r, (r - Wand r1/2 and we cannot decide uniquely at this 

stage. 

To restrict further the form of <1>(r) we consider the effect of the increase of 

information by N independent observations of X. For this case we have to 

consider the quantity 

(2.9) 

Corresponding to (2.5), (2.6) and (2.7) we have 

IN(a, a; <1» = I(a, 0; <1» (2.10) 

a 
ao, IN(O, 0; <1»111=0 = 0 (2.11) 

a2 a2 

aO,aO
m 

IN(O, 0; <1»111=11 = N OO,OOm 1(0,0; <1»111=0' (2.12) 

These equations show that I N(O, 0; <1» is not responsive to the increase of 



Information Theory and an Extension of the Maximum Likelihood Principle 203 

information and that aO~;Om I N(O, 0; $)19=9 is in a linear relation with N. It can 

be seen that only the quantity defined by 

N 

an l(x;lO) I I N (ar(x'IO) I) 
.=1 = L J • 

aOI fI l(xiI O) 9=9 i=1 aOI 19 8=9 

(2.13) 

i=1 

is concerned with the derivation of this last relation. This shows very clearly 
that taking into account the relation 

al(xlO) I a log l(xlO) 

---ae:-lo = aOI 

(2.14) 

the functions a~1 log l(xIO) are playing the central role in the present defini­

tion of information. This observation suggests the adoption of $(r) = log r 

for the definition of our amount of information and we are very naturally led 
to the use of Kullback-Leibler's definition of information for the purpose of 
our present study. 

It should be noted here that at least asymptotically any other definition of 
$(r) will be useful if only $(l) is not vanishing. The main point of our present 

observation will rather be the recognition of the essential role being played 

by the functions :0
1 
log I(xl 0) for the definition of the mean information for 

the discrimination of the distributions corresponding to the small deviations 

of 8 from O. 

3. Information and the Maximum Likelihood 
Principle 

Since the purpose of estimating the parameters of l(xlO) is to base our 

decision on l(xI8), where 8 is an estimate of 0, the discussion in the preceding 

section suggests the adoption of the following loss and risk functions: 

W(8, 0) = (- 2) f l(xIO) log G~::~D dx 

R(O, 0) = EW(O, 0), 

(3.1) 

(3.2) 

where the expectation in the right-hand side of (3.2) is taken with respect to 

the distribution of O. As W(O, 0) is equal to 2 times the Kullback-Leibler's 
information for discrimination in favour of l(xIO) for l(xIO) it is known that 

W(8, 0) is a non-negative quantity and is equal to zero if and only if j{xlO) = 

l(xlO) almost everywhere [16]. This property is forming a basis of the proof 
of consistency of the maximum likelihood estimate of 0 [24] and indicates the 
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close relationship between the maximum likelihood principle and the infor­
mation theoretic observations. 

When N independent realizations XI (i = 1, 2, ... , N) of X are available, 

( - 2) times the sample mean of the log-likelihood ratio 

~ flog (f(Xllb») (3.3) 
N 1=1 V(x,IO) 

will be a consistent estimate of W(O, b). Thus it is quite natural to expect that, 

at least for large N, the value of b which will give the maximum of (3.3) will 
nearly minimize W(O, b). Fortunately the maximization of (3.3) can be real­

ized without knowing the true value of a, giving the well-known maximum 
likelihood estimate b. Though it has been said that the maximum likelihood 
principle is not based on any clearly defined optimum consideration [18; 

p. 15] our present observation has made it clear that it is essentially designed 
to keep minimum the estimated loss function which is very naturally defined 

as the mean information for discrimination between the estimated and the 
true distributions. 

4. Extension of the Maximum Likelihood Principle 

The maximum likelihood principle has mainly been utilized in two different 
branches of statistical theories. The first is the estimation theory where the 
method of maximum likelihood has been used extensively and the second is 

the test theory where the log-likelihood ratio statistic is playing a very impor­
tant role. Our present definitions of W(O, b) and R(O, b) suggest that these two 
problems should be combined into a single problem of statistical decision. 

Thus instead of considering a single estimate of a we consider estimates 
corresponding to various possible restrictions of the distribution and instead 
of treating the problem as a mUltiple decision or a test between hypotheses 
we treat it as a problem of general estimation procedure based on the decision 

theoretic consideration. This whole idea can be very simply realized by com­
paring R(O, b), or W(O, b) if possible, for various b's and taking the one with 

the minimum of R(O, b) or W(O, b) as our final choice. As it was discussed in 

the introduction this approach may be viewed as a natural extension of the 
classical maximum likelihood principle. The only problem in applying this 
extended principle in a practical situation is how to get the reliable estimates 
of R(O, b) or W(O, b). As it was noticed in [6] and will be seen shortly, this can 
be done for a very interesting and practically important situation of com­
posite hypotheses through the use of the maximum likelihood estimates and 
the corresponding log-likelihood ratio statistics. 

The problem of statistical model identification is often formulated as the 
problem of the selection of f(xlk8) (k = 0, 1,2, ... , L) based on the observa­
tions of X, where k8 is restricted to the space with kOHl = kOH2 = .. , =kOL = 
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o. k, or some of its equivalents, is often called the order of the model. Its 

decision is usually the most difficult problem in practical statistical model 

identification. The problem has often been treated as a subject of composite 

hypothesis testing and the use of the log-likelihood ratio criterion is well 

established for this purpose [23]. We consider the situation where the results 

Xi (i = 1,2, ... , N) of N independent observations of X have been obtained. 

We denote by tb the maximum likelihood estimate in the space of to, i.e., 

tb is the value of to which gives the maximum of the likelihood function 

nf=t!(XiltO). The observation at the end of the preceding section strongly 
suggests the use of 

2 ~ I (f(Xiltb») 
t(J)L = -- 1.. og A 

N i=1 f(x,ILI1) 
(4.1) 

as an estimate of W(9, 1b). The statistics 

1'1L = N X t(J)L (4.2) 

is the familiar log-likelihood ratio test statistics which will asymptotically be 

distributed as a chi-square variable with the degrees of freedom equal to 

L - k when the true parameter 9 is in the space of to. If we define 

W(9, to) = inf W(9, to), (4.3) 
.8 

then it is expected that 

t(J)L -+ W(9, to) w.p.!. 

Thus when NW(9, to) is significantly larger than L the value of t'1L will be very 

much larger than would be expected from the chi-square approximation. The 

only situation where a precise analysis of the behaviour of 1'1L is necessary 

would be the case where NW(9, t9) is of comparable order of magnitude with 

L. When N is very large compared with L this means that wee, t9) is very 

nearly equal to W(9, 9) = O. We shall hereafter assume that W(9, 9) is suffi­

ciently smooth at 0 = 9 and 

W(9, 0) > 0 for o :;e 9. (4.4) 

Also we assume that W(9, to) has a unique minimum at to = t9 and that 

L9 = 9. Under these assumptions the maximum likelihood estimates band tb 

will be consistent estimates of 9 and k9, respectively, and since we are con­

cerned with the situation where e and te are situated very near to each other, 

we limit our observation only up to the second-order variation of wee, tb). 

Thus hereafter we adopt, in place of W(9, tb), the loss function 

where ql, mH9) is the (I, m)th element of Fisher's information matrix and is 
given by 
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f(
f)f, 1)(f)J. 1) f(f)210gf) 

C(l, m)(O) = f)O,f, f)0",f, f, dx = - f)O,f)O", f, dx. (4.6) 

We shall simply denote by C(l, m) the value of C(l, m)(O) at 0 = 9. We denote 

by 110 lie the norm in the space of 0 defined by 

L L 

11011: = L L O,O",C(I, m). 
is! .. =1 

We have 

w2 (a, tb) = IItb - all:· 

Also we redefine ta by the relation 

IIka - all: = Min litO - all:. 
.1 

(4.7) 

(4.8) 

(4.9) 

Thus ta is the projection of a in the space of to'S with respect to the metrics 

defined by C(l, m) and is given by the relations 

t L 

L C(l, m)tO", = L C(l, m)O", 1= 1,2, ... , k. (4.10) 
",=1 ",=1 

We get from (4.8) and (4.9) 

W2 (a, tb) = IIta - all: + IItb - tall:. (4.11) 

Since the definition of w(a, b) strongly suggests, and is actually motivated by, 

the use of the log-likelihood ratio statistics we will study the possible use of 

this statistics for the estimation of w2 (a, tb). Taking into account the relations 

~ 0 10gf(x,lb) = 0, 
i.J m = 1,2, ... , L, 
1 00", 

L f) log f(x,ltb) = 0, 

i 00", 

(4.12) 

m = 1,2, ... ,k, 

we get the Taylor expansions 

N NIL L 

i~ logf(x,lt9) = I~ logf(x,lb) + '2 ",Z;I'~ N(t9", - b",)<ta, - b,) 

x ~ f 02 log f(x,lb + ,,<ta - b» 
N 1=1 f)O",oO, 

Nit " 
= L log f(x,l.b) + -2 L L N(ta", - .b",)<ta, - .b,) 

1=-=1 ... =1 '~l 

x ~ f 02 log f(xdtb + "t<ta - "b» 
N 1=1 00",00, ' 

where the parameter values within the functions under the differential sign 

denote the points where the derivatives are taken and 0 ~ (} .. (} ~ 1, a conven-
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tion which we use in the rest of this paper. We consider that, in increasing 

the value of N, Nand k are chosen in such a way that IN(,,6,,, - 6",) 

(m = 1,2, ... , L) are bounded, or rather tending to a set of constants for the 

ease of explanation. Under this circumstance, assuming the tendency towards 

a Gaussian distribution of fi(O - 6) and the consistency of ,,0 and 0 as the 

estimates of ,,9 and 6 we get, from (4.6) and (4.13), an asymptotic equality in 

distribution for the log-likelihood ratio statistic "tTL of (4.2) 

A 2 • 2 
,,'7L = Nllv- ,,611e - NII"O - "Oil •. (4.14) 

By simple manipulation 

2 A 2 • 2 • 
"tTL = NII,,9 - 911e + Nllu - 911e - NII"e - ,,911e - 2N(e - 9, 9 - 6)e, 

(4.15) 

where (,). denotes the inner product defined by C(l, m). Assuming the validity 

of the Taylor expansion up to the second order and taking into account the 

relations (4.12) we get for 1 = 1,2, ... , k 

1 N a 
liT .L ae log l{x;!,(6) 

...;N.=I I 

= ± IN(,,9,,, - "Om)~ f a2 10g/(x;!,,0 + (!t{,,9 - ,(0» (4.16) 
m=1 N ;=1 aO",ao, 

= t fi <t9", - Om) ~ f a2 log I(x;! 0 + U{k6 - 0» . 
",=1 N i=1 aO",ao, 

Let C-1 be the inverse of Fisher's information matrix. Assuming the tendency 

to the Gaussian distribution N (0, C-1) of the distribution of IN(O - 6) 

which can be derived by using the Taylor expansion of the t~e of (4.16) 

at 0 = 9, we can see that for Nand k with bounded .J N("6,,, - 6",) 

(m = 1,2, ... , L) (4.16) yields, under the smoothness assumption of C(l, m)(O) 

at 0 = 9, the approximate equations 

k L 

L IN <t6", - "Om)C(l, m) = L IN <t9", - Om)C(l, m) 1 = 1, 2, ... , k. 
",=1 m=1 

(4.17) 

Taking (4.10) into account we get from (4.17), for 1 = 1,2, ... , k, 

" L L fi<t9", - "0,,,)C(1, m) = L ./N{6", - 0",)C(1, m). (4.1S) 
",=1 ",=1 

This shows· that geometrically ,,0 - ,,9 is (approximately) the projection 

of 0 - 6 into the space of "O's. From this result it can be shown that 

Nile - 911: -NII"e - ,,911: and NII"e - ,,911: are asymptotically indepen­
dently distributed as chi-square variables with the degrees of freedom L - k 
and k, respectively. It can also be shown that the standard deviation of the 

asymptotic distribution of N(O - 0, ,,6 - 6)e is equal to fiU,,6 - 611e. Thus 
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if N like - ell; is of comparable magnitude with L - k or k and these are large 
integers then the contribution of the last term in the right hand side of (4.15) 

remains relatively insignificant. If NlikS - ell; is significantly larger than L 

the contribution of N (9 - e, ke - e)c to k'1L will also relatively be insignifi­
cant. If N Ii ke - ell; is significantly smaller than Land k again the contribu-

tion of N(9 - e, ke - e)c will remain insignificant compared with those of 
other variables of chi-square type. These observations sus;gest that from 
(4.11), though N-1k '1L may not be a good estimate of W2 (S, lJ), 

r(9, k9) = N- 1 (k'1L + 2k - L) (4.19) 

will serve as a useful estimate of EW2 (e, k9), at least for the case where N is 
sufficiently large and Land k are relatively large integers. 

It is interesting to note that in practical applications it may sometimes 
happen that L is a very large, or conceptually infinite, integer and may not be 
defined clearly. Even under such circumstances we can realize our selection 
procedure of k9's for some limited number of k's, assuming L to be equal to 
the largest value of k. Since we are only concerned with finding out the k9 

which will give the minimum of r(9, k9) we have only to compute either 

(4.20) 

or 

N 

kAL = -2 L log/(xdk9) + 2k. (4.21) 
i=l 

and adopt the k9 which gives the minimum of kVL or kAL (0 :::;; k :::;; L). The 
statistical behaviour of kAL is well understood by taking into consideration 

the successive decomposition of the chi-square variables into mutually inde­
pendent components. In using kAL care should be taken not to lose significant 
digits during the computation. 

5. Applications 

Some of the possible applications will be mentioned here. 

1. Factor Analysis 

In the factor analysis we try to find the best estimate of the variance covari­
ance matrix L from the sample variance covariance matrix using the model 
L = AA' + D, where L is a p x p dimensional matrix, A is a p x m dimension­
al (m < p) matrix and D is a non-negative p x p diagonal matrix. The method 
of the maximum likelihood estimate under the assumption of normality has 
been extensively applied and the use of the log-likelihood ratio criterion is 
quite common. Thus our present procedure can readily be incorporated to 
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help the decision ofm. Some numerical examples are already given in [6] and 

the results are quite promising. 

2. Principal Component Analysis 

By assuming D = c5I(~ ~ 0, J; unit matrix) in the above model, we can get the 

necessary decision procedure for the principal component analysis. 

3. Analysis of Variance 

If in the analysis of variance model we can preassign the order in decompos­

ing the total variance into chi-square components corresponding to some 

factors and interactions then we can easily apply our present procedure to 
decide where to stop the decomposition. 

4. Multiple Regression 

The situation is the same as in the case of the analysis of variance. We can 

make a decision where to stop including the independent variables when the 

order of variables for inclusion is predetermined. It can be shown that under 

the assumption of normality of the residual variable we have only to compare 

the values Sl{k)( 1 + ~). where s2{k) is the sample mean square of the 

residual after fitting the regression coefficients by the method of least squares 

where k is the number of fitted regression coefficients and N the sample size. 

k should be kept small compared with N. It is interesting to note that the use 

of a statistics proposed by Mallows [13] is essentially equivalent to our 

present approach. 

5. Autoregressive Model Fitting in Time Series 

Though the discussion in the present paper has been limited to the realiza­

tions of independent and identically distributed random variables, by follow­

ing the approach of Billingsley [8], we can see that the same line of discussion 
can be extended to cover the case of finite parameter Markov processes. Thus 
in the case of the fitting of one-dimensional autoregressive model Xn = 

L~=l a",Xn- m + en we have, assuming the normality of the process X n , only 

to adopt k which gives the minimum of S2{k)( 1 + ~) or equivalently 

s2{k) (1 + ~) (1 - ~ r1
, where s2{k) is the sample mean square of the resid­

ual after fitting the kth order model by the method of least squares or some 
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of its equivalents. This last quantity for the decision has been first introduced 
by the present author and was considered to be an estimate of the quantity 
called the final prediction error (FPE) [1, 2]. The use of this approach for the 
estimation of power spectra has been discussed and recognized to be very 
useful [3]. For the case of the multi-dimensional process we have to replace 
s2(k) by the sample generalized variance or the determinant of the sample 
variance-covariance matrix of residuals. The procedure has been extensively 
used for the identification of a cement rotary kiln model [4, 5, 19]. 

These procedures have been originally derived under the assumption of 
linear process, which is slightly weaker than the assumption of normality, and 
with the intuitive criterion of the expected variance of the final one step 
prediction (FPE). Our present observation shows that these procedures are 
just in accordance with our extended maximum likelihood principle at least 
under the Gaussian assumption. 

6. Numerical Examples 

To illustrate the difference between the conventional test procedure and our 
present procedure, two numerical examples are given using published data. 

The first example is taken from the book by Jenkins and Watts [14]. The 
original data are described as observations of yield from 70 consecutive 
batches of an industrial process [14, p. 142]. Our estimates of FPE are given 
in Table 1 in a relative scale. The results very simply suggest, without the help 
of statistical tables, the adoption of k = 2 for this case. The same conclusion 
has been reached by the authors of the book after a detailed analysis of 
significance of partial autocorrelation coefficients and by relying on a some­
what subjective judgement [14, pp. 199-200]. The fitted model produced an 
estimate of the power spectrum which is very much like their final choice 
obtained by using Blackman-Tukey type window [14, p. 292]. 

The next example is taken from a paper by Whittle on the analysis of a 
seiche record (oscillation of water level in a rock channel) [26; 27, pp. 37-38]. 
For this example Whittle has used the log-likelihood ratio test statistics in 
successively deciding the significance of increasing the order by one and 
adopted k = 4. He reports that the fitting of the power spectrum is very poor. 
Our procedure applied to the reported sample autocorrelation coefficients 
obtained from data with N = 660 produced a result showing that k = 65 
should be adopted within the k's in the range 0 ~ k ~ 66. The estimates of 

Table 1. Autoregressive Model Fitting. 

k 0 2 3 4 5 6 7 

FPEt 1.029 0.899 0.895 0.921 0.946 0.097 0.983 1.012 

( k + 1)( k + Itl! • FPE" = s2(k) 1 + -r;{ 1 --r;{ S2(0) 
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Figure I. Estimates of the seiche spectrum. The smoothed periodgram of x(n 6t) 

(n = 1, 2, ... , N) is defined by 

I ( lSI) 6t . f 1 - T C",,(s) cos(27tfs 6t), 

1 lV-I>I 
where I = max. lag, Cxx(s) = - L x(lsl + n)x(n), 

N 0=1 

1 lV 
where x(n) = x(n 6t) - x and x = - L x(n M). 

N 0=1 

the power spectrum are illustrated in Fig. 1. Our procedure suggests that 

L = 66 is not large enough, yet it produced very sharp line-like spectra at 

various frequencies as was expected from the physical consideration, while 

the fourth order model did not give any indication of them. This example 

dramatically illustrates the impracticality of the conventional successive test 
procedure depending on a subjectively chosen set of levels of significance. 

7. Concluding Remarks 

In spite of the early statement by Wiener [28; p. 76] that entropy, the 

Shannon-Wiener type definition of the amount of information, could replace 
Fisher's definition [11] the use of the information theoretic concepts in the 
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statistical circle has been quite limited [10, 12,20]; The distinction between 
Shannon-Wiener's entropy and Fisher's information was discussed as early 
as in 1950 by Bartlett [7], where the use of the Kullback-Leibler type de­
finition of information was implicit. Since then in the theory of statistics 
Kullback-Leibler's or Fisher's information could not enjoy the prominent 
status of Shannon's entropy in communication theory, which proved its 
essential meaning through the source coding theorem [22, p. 28]. 

The analysis in the present paper shows that the information theoretic 
consideration can provide a foundation of the classical maximum likelihood 
principle and extremely widen its practical applicability. This shows that the 
notion of informations, which is more closely related to the mutual informa­
tion in communication theory than to the entropy, will play the most funda­
mental role in the future developments of statistical theories and techniques. 

By our present principle, the extensions of applications 3) '" 5) of Section 
5 to include the comparisons of every possible kth order models are straight­
forward. The analysis of the overall statistical characteristics of such exten­
sions will be a subject of further study. 
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