
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Policy mining:

Learning decision policies from fixed sets of data

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Computer Science

by

Bianca Zadrozny

Committee in charge:

Professor Charles P. Elkan, Chair
Professor Serge J. Belongie
Professor Garrison W. Cottrell
Professor Sanjoy Dasgupta
Professor Kenneth Kreutz-Delgado
Professor Padhraic Smyth

2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3099556

Copyright 2003 by

Zadrozny, Bianca

All rights reserved.

UMI
UMI Microform 3099556

Copyright 2003 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Copyright

Bianca Zadrozny, 2003

All rights reserved.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The dissertation of Bianca Zadrozny is approved, and

it is acceptable in quality and form for publication on

microfilm:

Chair

University of California, San Diego

2003

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

Signature P ag e ... iii

Table of C o n te n ts ... iv

List of Figures .. vii

List of Tables .. viii

Acknowledgments... ix

Vita and Publications.. xi

A b s t r a c t ... xii

I In tro d u c tio n .. 1
A. The policy mining p ro b le m .. 1
B. General a p p ro a c h .. 3
C. Overview of the dissertation ... 6

II Cost-sensitive learning ... 9
A. Introducing costs into classifier le a rn in g ... 9

1. The cost matrix formulation ... 10
2. The importance formulation .. 14
3. Relationship between the two fo rm u la tio n s 15

B. Current approaches to cost-sensitive le a rn in g .. 17
C. Publicly available cost-sensitive d a ta se ts .. 18

1. The KDD-98 dataset ... 19
2. The DMEF-2 d a t a s e t ... 22

III Cost-sensitive learning by expected cost estim ation 25
A. MetaCost vs. direct cost-sensitive decision-m aking.............................. 26
B. Applying direct cost-sensitive decision m a k i n g 29
C. Probability Estimation M e th o d s ... 31

1. Deficiencies of decision tree m e th o d s .. 31
2. S m o o th in g 33
3. Curtailment .. 35
4. B inn ing ... 38
5. Averaging probability estimates .. 39

D. Estimating donation am ounts... 40
1. The problem of sample selection b ia s ... 42

E. Experimental R e s u l ts .. 45
F. Conclusions .. 47

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IV Cost-sensitive learning by example w e ig h tin g ... 49
A. A Folk T h e o rem .. 50
B. Transparent Box: Using Weights D ire c tly .. 52

1. General conversion.. 52
2. Naive Bayes and b o o stin g ... 54
3. C 4 .5 .. 55
4. Support Vector M achine.. 55

C. Black Box: Sampling m e th o d s .. 56
1. Resam pling... 56
2. Cost-proportionate rejection s a m p lin g .. 57
3. Sample complexity of cost-proportionate rejection sampling . . . 59
4. C o s tin g ... 61

D. Experimental re su lts .. 63
1. Transparent box r e s u l t s .. 63
2. Black box resu lts ... 64

E. Conclusions ... 69

V Calibrating classifier s c o re s .. 71
A. The need for class membership probability e s tim a te s 72
B. Calibration definition and e x a m p le s ... 73

1. Naive Bayes .. 74
2. Support Vector M ach in es ... 75

C. Mapping scores into probability e s tim a te s ... 76
D. Multiclass probability estimates ... 80
E. Experimental E v a lu a tio n .. 84

1. Two-class p ro b le m s ... 85
2. Multiclass p ro b le m s ... 89

F. Conclusions ... 91

VI Sample selection b i a s .. 93
A. Definition.. 95
B. Learning under sample selection b ia s ... 96

1. Bayesian classifiers.. 97
2. Logistic reg ression .. 99
3. Decision tree l e a r n e r s .. 100
4. Support vector machines ..102
5. Experimental re su lts ..104

C. Correcting sample selection b i a s .. 106
1. Evaluation under sample selection b ia s ...108
2. E x a m p le ...109

D. Conclusions ..I l l

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VII Reinforcement learning with traces ..114
A. Reinforcement le a r n in g ... 115

1. Indirect M ethods... 116
2. Direct M ethods.. 117

B. The policy mining s e tt in g .. 118
C. One-step reinforcement learning with tra c e s ... 119
D. T-step reinforcement learning with t r a c e s ...122
E. Policy evaluation using a fixed d a ta s e t ..124
F. A p p lica tio n s ... 125

1. Medical t re a tm e n t..126
2. Direct m arketing ... 128

G. Experimental evaluation..129
1. Quest Synthetic D ata G e n e ra to r ..129

B ibliography...136

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

III.C .l Raw and smoothed C4.5 scores... 34
III.C.2 Part of the decision tree obtained by curtailment............................. 36
III.C.3 Raw and curtailment C4.5 scores.. 37
III.D .l Actual donation amount vs. estimated probability of donation. . 44

IV.B.l The statistical query model.. 53
IV.D.l KDD-98 costing results... 67
IV.D.2 DMEF-2 costing results.. 68

V.B.l The concept of calibration.. 73
V.B.2 Reliability diagrams for NB.. 74
V.B.3 Reliability diagrams for SVM... 76
V.C.l Mapping SVM scores into probabilities using a sigmoid function. 77
V.C.2 Mapping NB scores into probabilities using a sigmoid function. . 78
V.C.3 The PAV algorithm in action... 80
V.C.4 Using the PAV algorithm.. 81
V.E.l Binning and PAV on the KDD-98 dataset.......................... 86
V.E.2 Binning and PAV on the TIC dataset.................................. 88
V.E.3 Binning and PAV on the Adult d a ta se t 89

VI.B.l Logistic regression is unaffected by sample selection bias.......... 100
VLB.2 A decision tree... 101
VLB.3 SVM for separable data is unaffected by sample selection bias. . . 103
VI.B.4 Error rate using biased and unbiased training sets.............................. 105
VI.C.l Distribution of the uncorrected estimates.. I l l
VI.C.2 Distribution of the corrected e s tim a te s .. 112

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

II. 1 Example of cost matrix for a weather classification problem

.

 11
11.2 Example of cost matrix for a credit card fraud detection problem. . 13
11.3 Example of cost matrix for a donation request problem...................... 14

III. 1 The MetaCost algorithm... 27
111.2 The direct cost-sensitive decision-making algorithm............................ 28
111.3 Direct cost-sensitive decision making experimental results................. 43
111.4 MetaCost experimental results.. 46

IV. 1 The costing algorithm.. 62
IV.2 Transparent box experimental resu lts .. 63
IV.3 Resampling experimental results.. 65
IV.4 Costing experimental results... 67

V.l The coupling algorithm.. 84
V.2 MSE and profit on the KDD-98 dataset... 85
V.3 MSE on the TIC dataset... 87
V.4 MSE and error rate on the Adult dataset................. 89
V.5 MSE and error rate on Pendigits (test set)... 90
V.6 MSE and error rate on 20 Newsgroups.. 91

VII. 1 The one-step RL with traces algorithm.. 122
VII.2 Action generation functions..131
VII.3 Reward generation functions..132
VII.4 Experimental results using Quest..134

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

I would like to thank my advisor Charles Elkan not only for guiding the

research presented in this thesis, but also for being a constant source of encour­

agement throughout my Ph.D. student years.

I give warm thanks to my two other main collaborators: Naoki Abe and

John Langford. The work presented in Chapters IV and VII was done in direct

collaboration with them and would not have been possible without our many e-mail

exchanges.

Thanks also go to the students who were most present in the AI lab at

UCSD while I was there: Sameer Agarwal, Kristin Branson, Greg Hamerly, Dana

Dahlstrom and Eric Wiewiora. They were great colleagues and provided me with

a friendly environment to work in.

I would like to thank my fiance Roberto Oliveira for helping me believe

that I was able to complete this thesis, and for inspiring discussions about the topic

of this thesis and many other scientific topics. He also helped me to transform

informal mathematical ideas into the theorems presented in Chapters VI and VII.

Finally, I would like to thank my mother Gisela, my father Ivo, my brother

Andre and my grandparents, Diva and Horacio, for being a present, loving and

supportive family throughout my life.

The text of Chapter III, in part, is a reprint of the material as it ap­

pears in the Proceedings of the Seventh ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining [95]. The dissertation author was the

primary author, and the co-author listed in this publication directed and super­

vised the research which forms the basis for the chapter.

The text of Chapter IV, in part, is a reprint of the material as it will

appear in the Proceedings of the 2003 IEEE International Conference on Data

Mining [97]. The dissertation author was the primary author, and the co-authors

listed in this publication directed and supervised the research which forms the

basis for the chapter.

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The text of Chapter V, in part, is a reprint of the material as it appears in

the Proceedings of the Eighth ACM SIGKDD International Conference on Knowl­

edge Discovery and Data Mining [96]. The dissertation author was the primary

author, and the co-author listed in this publication directed and supervised the

research which forms the basis for the chapter.

I am grateful to the National Science Foundation and IBM Research for

financially supporting my Ph.D. studies.

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

March 20, 1977

1998

Born, Philadelphia, Pennsylvania

Engineer, Pontificia Universidade Catolica do Rio de
Janeiro, Brazil

M.S., University of California, San Diego

Doctor of Philosophy
University of California, San Diego

2001

2003

PUBLICATIONS

B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive learning by cost-proportionate
example weighting. To appear in Proceedings of the 2003 IEEE International Con­
ference on Data Mining, IEEE Computer Society, 2003.

N. Abe, E. Pednault, H. Wang, B. Zadrozny, W. Fan and C. Apte. Empiri­
cal comparison of various reinforcement learning strategies for sequential targeted
marketing. In Proceedings of the 2002 IEEE International Conference on Data
Mining, pages 3-10, IEEE Computer Society, 2002.

B. Zadrozny and C. Elkan. Transforming classifier scores into accurate multiclass
probability estimates. In Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 694-699, ACM Press,

E. Pednault, N. Abe, B. Zadrozny and others. Sequential cost-sensitive decision­
making with reinforcement learning. In Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 259-
268, ACM Press, 2002.

B. Zadrozny. Reducing multiclass to binary by coupling probability estimates.
In Advances in Neural Information Processing Systems 14, pages 1041-1048. The
MIT Press, 2002.

B. Zadrozny and C. Elkan. Learning and making decisions when costs and proba­
bilities are both unknown. In Proceedings of the Seventh ACM SIGKDD Interna­
tional Conference on Knowledge Discovery and Data Mining, pp. 204-213. ACM
Press, 2001.

B. Zadrozny and C. Elkan. Obtaining calibrated probability estimates from de­
cision trees and naive Bayesian classifiers. In Proceedings of the Eighteenth In­
ternational Conference on Machine Learning, pp. 609-616. Morgan Kaufmann
Publishers, Inc, 2001.

2002 .

XI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT OF THE DISSERTATION

Policy mining:

Learning decision policies from fixed sets of data

by

Bianca Zadrozny

Doctor of Philosophy in Computer Science

University of California, San Diego, 2003

Professor Charles P. Elkan, Chair

In this thesis we present a new data mining methodology for extract­

ing decision policies from datasets containing descriptions of interactions with an

environment. This methodology, which we call policy mining, is valuable for appli­

cations in which experimental interaction is not feasible but for which fixed sets of

collected data are available. Examples of such applications are direct marketing,

credit card fraud detection, recommender systems and medical treatment.

Recent advances in classifier learning and the availability of a great variety

of off-the-shelf learners make it very attractive to use classifier learning as the

core generalization tool in policy mining. However, in order to successfully apply

classifier learning methods to policy mining, three important improvements to the

current classifier learning technology are necessary.

First, standard classifier learners assume that all incorrect predictions are

equally costly. This thesis presents two general methods for cost-sensitive learning

that take into account the fact that misclassification costs are different for different

examples and unknown for some examples. The methods we propose are evaluated

carefully with experiments using large, difficult and highly cost-sensitive datasets

from the direct marketing domain.

Second, most existing learning methods produce classifiers that output

ranking scores along with the class label. These scores, however, are classifier

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dependent and cannot be easily combined with other sources of information for

decision-making. This thesis presents a fast and effective calibration algorithm for

transforming ranking scores into accurate class membership probability estimates.

Experimental results using datasets from a variety of domains shows that the

method produces probability estimates that are comparable to or better than the

ones produced by other methods.

Finally, learning algorithms commonly assume that the available data

consists of randomly drawn examples from the same underlying distribution of

examples about which the learned model is expected to make predictions. In many

situations, however, this assumption is violated because we do not have control

over the data gathering process. This thesis formalizes the sample selection bias

problem in machine learning and presents methods for learning and evaluation

under sample selection bias.

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter I

Introduction

I.A The policy mining problem

The ability to store and process large amounts of data in computers has

increased enormously in the last decade. This has opened up the possibility of

analyzing very large datasets gathered from a particular domain of interest to

obtain useful knowledge about that domain, in a process known as data mining.

Useful knowledge is a very broad concept, and indeed, there are many flavors of

data mining that aim to extract different types of knowledge from different types

of data.

In some domains, the data can be organized into a set of examples, each

represented by a feature vector and a label. One type of useful knowledge that

may be extracted in this case is a model that predicts the label of an example when

given the values of the features for that example. There are a variety of methods

for accomplishing this, collectively known as supervised learning methods [40]. If

the label is discrete-valued, the model is known as a classifier.

Classifiers are often used for decision-making, that is, for choosing which

action to perform in a particular state described by the feature values. It is straight­

forward to learn classifiers for this purpose if we have examples of the form (s, a*),

where s is a state and a* is the optimal action for state s. For example, in charac-

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

ter recognition, s is the image of a character and a* is the character. The optimal

action for a system that receives s as input is to output a*. Using this type of data

we can learn a classifier to predict a* given s.

However, in many real-world applications, the data consists of a set of

examples of the form (s,a, r), where s is a state, a is an action executed in the

state and r is a reward associated with the action. The reward is a real number

that indicates the desirability of action a in state s and it is, in general, stochastic.

The optimal action is the one that yields the largest expected reward. Since the

optimal action associated with a state is not written explicitly in the data, we

cannot learn to predict it directly. Furthermore, the state space is often large (or

infinite) so we cannot expect to have data describing each possible action in each

possible state.

An example of such an application is a recommender system used by

online merchants. In this case, s is the description of a customer (which may

include, for example, past purchases), a is a recommendation to buy a product

and r is the profit on the product if the customer accepted the recommendation or

0 if he did not accept it. It is clear that the merchant can collect data of the form

(s ,a ,r), but not data of the form (s ,a *). In the latter case, it would be necessary

to recommend each possible product to each customer, which is not feasible. Still,

we would like to have a model that predicts the optimal recommendation for a

customer in a given state.

Furthermore, in some cases, we may be interested in choosing not just one

action but a sequence of actions, such that the to tal expected reward is maximized.

Accordingly, the data consist of examples of the form ((s0, ao, r 0), (si, a\, /q) , . . . ,

(sn,a „ ,rn)). This data indicate that after the execution of action a* in state s*, a

reward r* was received and a transition to state Sj+i occurred. Because an action

influences not only the immediate reward, but all subsequent rewards through

the state transition, we have to take this into consideration when choosing the

optimal action for a state. Going back to the recommender system example, it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

is often the case that a customer interacts multiple times with the system. Each

recommendation from the system may influence not only immediate purchases,

but future purchases also.

Reinforcement learning is a general framework for learning sequential de­

cisions policies through interaction with an environment [78]. However, current

reinforcement learning algorithms are not data mining algorithms because they

require direct interaction with the environment or with a simulator of the environ­

ment. That is, given an arbitrary state-action pair {si,ai}, they assume that we

can obtain the (stochastic) values for the immediate reward r* and the next state

Sj-f i .

In this thesis, I will present a new data mining methodology for extract­

ing decision policies from datasets containing descriptions of interactions with an

environment. This methodology, which we call policy mining, is very valuable for

applications in which experimental interaction with the environment is not feasible

and no simulator exists, but for which data is available. Examples of such applica­

tions are direct marketing, credit card fraud detection, recommender systems and

medical treatment.

I.B General approach

Over the last few years there has been a great amount of research effort

concentrated in improving classifier learning technology. The community has en­

joyed success in improving learning methods considerably, particularly with the

advent of support vector machines [72] and ensemble learning methods such as

boosting [33] and bagging [14],

We would like to be able to transfer the state-of-the-art in classifier learn­

ing to the policy mining problem. Therefore, our general approach to solving the

policy mining problem consists in devising appropriate reductions from policy min­

ing to classifier learning. By taking this direction, we can make use of existing (and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

future) classifier learning technology as the core generalization component in our

methods. In this way, we avoid having to deal directly with difficulties such as

preventing overfitting and dealing with very large feature spaces, which have been

the main subjects of research in classifier learning. Note that we assume the exis­

tence of a classifier learner as a black box, that is, our methods do not depend on

the details of any particular classifier learning method.

In classifier learning, we are given a training set of examples of the form

(x ,y), where a; is a feature vector and y is a class label. These examples are

assumed (at least, implicitly) to be drawn independently from a fixed distribution

D with domain X x T, where X is a feature space and y is a (discrete) class label

space.

Classifier learning methods aim at learning a predictor h : X y that

minimizes the expected error rate on examples drawn from D , given by

E x, y ~D\ I { h{ x) 7^ y)]

where /(•) is the indicator function that has value 1 in case its argument is true

and 0 otherwise.

The basic idea of reducing policy mining to classifier learning is to use

classification for action prediction, where the input for classification is a state

(S = X) and the label space is the set of actions (A = F). This seems simple

enough, but we argue that in order to use classifier learning methods in the policy

mining setting, we first need to make three important improvements to classifier

learning:

1. C o st-sen sitiv e learn ing . Traditional classifier learning algorithms assume

that all incorrect predictions are equally costly. However, this assumption

is not true in many application areas such as direct marketing and med­

ical treatment. Furthermore, because the distribution of classes is highly

skewed in such domains, methods that do not take costs into account fail to

identify the less frequent, but more costly, cases. In cost-sensitive learning,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

we change this assumption by attempting to minimize example-dependent

misclassification costs instead of minimizing error rate.

2. C a lib ra tio n o f classifier scores. Most existing learning methods produce

classifiers that output scores, which can be used for ranking examples from

the most likely member of a class to the least likely member of the class.

These scores, however, are classifier dependent and cannot be easily combined

with other sources of information, such as domain knowledge, the outputs of

other classifiers or misclassification costs. The goal in calibrating classifier

scores is to obtain class membership probability estimates that can be used

for decision-making.

3. S am ple se lection b ias correction . Learning algorithms commonly assume

that the available data consists of randomly drawn examples from the same

underlying distribution of examples about which the model is expected to

make predictions. In many applications, however, this assumption is violated

because we do not have control over the data gathering process. Sample

selection bias correction methods aim at learning a predictor from a biased

sample that is as accurate as possible for the true underlying distribution.

Furthermore, they should allow us to estimate the accuracy for the underlying

distribution using the available data.

The exact role that these subproblems play in solving the general prob­

lem of extracting decision policies from data will need to be delayed until Chapter

VII where we define the policy mining setting more formally and present an algo­

rithm for policy mining. Note, however, that these are im portant improvements to

classifier learning in themselves and can serve as building blocks for solving other

learning problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

I.C Overview of the dissertation

In Chapter II we give an introduction to cost-sensitive learning. We

present the two existing formulations for introducing misclassification costs into a

classifier learning problem, namely the cost matrix formulation and the importance

formulation. We explain the connections between the two and their respective

advantages and disadvantages. We also give a brief overview of current research

in cost-sensitive learning and give a detailed description of two public available

cost-sensitive learning datasets that are used for experiments in the subsequent

chapters on cost-sensitive learning methods (Chapters III and IV).

In Chapter III we present direct cost-sensitive decision making, a general

method for cost-sensitive learning that uses the cost matrix formulation and is

based on expected cost estimation. We compare it to MetaCost, due to Domingos

[20], which was the first method for transforming any classifier learning method

into a cost-sensitive learner. Because we allow for example-dependent costs and

unknown costs for some examples, direct cost-sensitive decision making is more

general than MetaCost as originally published. Furthermore, our experimental

results show that it is preferable to MetaCost.

In Chapter IV we present a family of cost-sensitive learning methods

that uses the importance formulation. These methods are based on a reduction

from cost-sensitive learning to classifier learning that requires a change in the

distribution of training examples. In particular, we propose costing, an ensemble

learning method that uses rejection sampling to produce a cost-sensitive classifier

using only black box access to a classifier learning method. Costing does not

require accurate class membership probability estimates from the classifier and

avoids the estimation of costs, so it is conceptually simpler than the methods for

cost-sensitive learning by expected cost estimation. Nonetheless, our experimental

results show that its performance is comparable to direct cost-sensitive decision

making for a variety of classifier learning methods.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

In Chapter V, we motivate the need for calibrated class membership

probability estimates and present a new method for obtaining calibrated two-class

probability estimates that can be applied to any classifier that produces a ranking

of examples. Besides being fast and very simple to understand and implement,

our method produces probability estimates that are comparable to or better than

the ones produced by other methods, such as the one proposed by P la tt [63]. We

also present the first method for obtaining calibrated probability estimates from

ranking scores for multiclass problems. We demonstrate that by decomposing

the multiclass problem into two-class problems, obtaining calibrated probability

estimates for each problem and correctly combining these probability estimates we

can obtain calibrated multiclass probability estimates.

In Chapter VI we formally define the sample selection bias problem in

machine learning terms. We then study the behavior of a number of well-known

classifier learning methods under sample selection bias. For classifier learning

methods that are affected by sample selection bias, we present a correction method

based on estimating the probability that an example is selected into the sample

and using rejection sampling to modify the distribution of examples. Finally, we

consider the problem of evaluating a classifier using a selected sample and present

a method for obtaining an unbiased estimate of the performance of a classifier

using a biased sample of test examples.

In Chapter VII we give an overview of reinforcement learning and for­

mally define the policy mining problem using the Markov Decision Process (MDP)

framework that is commonly used in reinforcement learning. We argue that the

current reinforcement learning methodology is not suitable for solving the policy

mining problem and present a new formulation th a t we call reinforcement learning

with traces. This formulation does not require the availability of a simulator for

the environment and, instead, uses a trace model th a t can be simulated with fixed

sets of data collected offline. We show that for one-step MDPs, we can reduce

reinforcement learning with traces to cost-sensitive learning with sample selection

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

bias correction. For MDPs with arbitrary number of steps, we present a greedy

iterative method that learns a cost-sensitive classifier for each step. The policy

obtained with this method is the approximately best possible local improvement

over the arbitrary policy used for collecting the data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter II

C ost-sensitive learning

In this chapter we define the cost-sensitive learning problem by presenting

two alternative ways of introducing misclassification costs into the standard clas­

sifier learning problem and showing the connections between them. We then give

a brief survey of current methods for cost-sensitive learning. Finally, we give an

overview of the publicly available datasets collected from real-world cost-sensitive

domains that can be used for running cost-sensitive learning experiments.

II.A Introducing costs into classifier learning

In standard classifier learning, we are given a training set of examples of

the form (x , y), where £ is a feature vector and y is a class label. These examples are

assumed (at least, implicitly) to be drawn independently from a fixed distribution

D with domain X x y , where X is a feature space and y is a (discrete) class label

space. The goal is to learn a classifier h : X —»■ y that minimizes the expected

error rate on examples drawn from D, given by

Ex>y„D[I(h(x) + y)} (II.A.1)

where /(•) is the indicator function that has value 1 in case its argument is true

and 0 otherwise.

The traditional formulation assumes that all errors are equally costly.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

However, this assumption is not true for many domains for which one would like

to obtain classifiers. For example:

• In one-to-one marketing, the cost of making an offer to a person who does not

respond is typically small compared to the cost of not contacting a person

who would respond.

• In medicine, the cost of prescribing a drug to an allergic patient can be much

higher than the cost of not prescribing the drug to a nonallergic patient, if

alternative treatments are available.

• In image or text retrieval, the cost of not displaying a relevant item may be

lower or higher than the cost of displaying an irrelevant item.

• For most animals, failing to recognize a predator and hence not fleeing is far

more costly than fleeing from a non-predator.

In the following sections we will present two alternative approaches for

introducing costs into the classifier learning problem.

II .A .l The cost matrix formulation

One extension to the standard classifier learning formulation that has

received considerable attention in the past few years is the cost matrix formulation

[28, 20, 58].

In this formulation, besides assuming the availability of a training set, we

specify a cost matrix C for the domain in which we would like to learn a classifier.

If there are k classes, the cost matrix is a k x k matrix of real values. Each entry

C(i, j) gives the cost of predicting class i for an example whose actual class is j .

Although for many applications the diagonal entries C(i, i) are zero, this does not

necessarily have to be the case, since predicting one class correctly may be more

important than predicting another class correctly.

Table II. 1 shows a cost matrix for a 3-class problem. These costs were

obtained by assuming that a person uses the classifier before leaving to work to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

predicted actual class
class sunny snowy rainy

sunny 0 10 15
snowy 1 1 11
rainy 2 2 2

Table II. 1: Example of cost matrix for a weather classification problem.

predict if the weather will be sunny, rainy or snowy that day, and the following is

true:

1. The person takes the jacket when the prediction is either rainy or snowy.

2. The person takes the umbrella only when the prediction is rainy.

3. Taking the jacket incurs a cost of 1.

4. Taking the umbrella incurs a cost of 1.

5. Not having a jacket when it is snowy incurs a cost of 10.

6. Not having a jacket when it is rainy incurs a cost of 5.

7. Not having an umbrella when it is rainy incurs a cost of 10.

In this cost matrix, two of the diagonal entries are not zero. This is

the case because there are fixed costs associated with predicting snowy and rainy

weather, but not for sunny weather.

Now, instead of minimizing the error rate given by equation II.A .l, we

would like to find a classifier h that minimizes the expected cost of the labeling,

given by

Ex,y~D[C(h(x),y)}. (II.A.2)

Note that if C is the identity matrix this reduces to equation II.A .l.

Not all cost matrices are logically reasonable. Elkan [28] gives reasonable­

ness conditions for cost matrices and explains how to avoid specifying contradictory

cost matrices by measuring all costs against a fixed baseline.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

Research on cost-sensitive learning has traditionally been couched in

terms of costs, as opposed to benefits or rewards. However, in many domains,

it is easier to talk consistently about benefits than about costs. The reason is that

all benefits are straightforward cash flows relative to a baseline wealth of $0, while

some costs are counterfactual opportunity costs [28]. For these domains, we can

specify a benefit matrix B , where each entry of the matrix describes the benefit (or

reward) of predicting class i for an example whose actual class is j . Then, instead

of minimizing II.A.2, we maximize

E x,y~ D [B (h { x) , y) \ .

Fixed vs. example-dependent costs

The standard cost matrix formulation assumes that the misclassification

costs are fixed, i.e., that they only depend on the predicted and actual classes, but

not on the example itself. However, more often than not, misclassification costs in

real-world domains are example-dependent. For example, in direct marketing, the

cost of mislabeling a respondent as a non-respondent depends on the profit that

the customer would have generated. Similarly, in credit card fraud detection, the

cost of mislabeling a fraud transaction as a non-fraud transaction depends on the

amount of the transaction.

Previous research in cost-sensitive learning has primarily been focused on

the case of fixed costs described by a cost matrix. In this dissertation, however, we

present learning methods for the more general example-dependent case. We can

formalize this case by extending the cost matrix formulation.

We extend the cost matrix formulation to the example-dependent case

by allowing each entry to depend on the particular feature vector x. In this case,

the costs are given by a function C (i,j ,x) , where i is the predicted class, j is the

actual class and x is the feature vector of the example. Accordingly, we would now

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

predicted actual class
class non-fraud fraud

non-fraud 0 t (x)
fraud a a

Table II.2: Example of cost matrix for a credit card fraud detection problem, where

a is the (fixed) cost of auditing a credit card transaction and t(a:) is the transaction

amount for example x.

like to find a classifier h that minimizes the expected cost of the labeling, given by

Ez#~D[C(h(x),y,x)]. (II.A.3)

Table II.2 shows an example-dependent cost matrix for a 2-class credit

card fraud detection problem. In this domain, the costs are assigned as follows. If

we predict fraud, the transaction will be audited, which incurs a fixed cost a. On

the other hand, if we predict non-fraud, the transaction will not be audited. In

this case, the cost is zero if the transaction is not a fraud, and it is the transaction

amount t(:r) if the transaction is a fraud.

Known vs. unknown costs

Because the standard cost matrix formulation assumes th a t the misclassi­

fication costs are the same for all examples, it also implicitly assumes that they are

known in advance for all examples. However, when we allow example-dependent

costs, it might be the case that the costs are not known for some of the examples.

In particular, it is very common for costs to be known for the examples in the

training set but not for new unlabeled examples to which we would like to apply

the classifier (test examples).

Interestingly, similar problems in terms of the structure of the cost matrix

may have different properties in terms of whether the costs are known or unknown.

Table II.3 shows an example-dependent cost matrix for a 2-class donation request

problem. The costs are assigned as follows. If we predict non-donor, we will not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

predicted actual class
class non-donor donor

non-donor 0 0
donor m m — d(x)

Table II.3: Example of cost m atrix for a donation request problem, where m is the

(fixed) cost of mailing a request and d(x) is the donation amount for example a:.

mail a donation request, so the cost is always zero. If we predict donor we will

mail a donation request, so there is always a fixed cost of m for mailing and, in

the case of a donation, there is a negative cost (or a benefit) corresponding to the

donation amount d(x).

This cost matrix is similar to the one in table II.2 in the sense that

there is only one entry for which the cost is example-dependent. However, in the

credit card fraud detection problem the cost is known for all examples (including

unlabeled examples) because the transaction amount t(x) is available at the time

we apply the classifier to decide whether the transaction is fraudulent or not. On

the other hand, in the donation request problem, the value of the donation amount

d(x) is unknown for all examples in the test set, and only known for examples in

the training set that correspond to donors.

II.A .2 The importance formulation

For the two-class case, there is an alternative formulation for cost-sensitive

learning that we call the importance formulation. Here we assume that each train­

ing example is associated with a real number, the importance of the example,

corresponding to the difference in cost between classifying the example incorrectly

and correctly. Because we assume that it is always at least as costly to classify the

example incorrectly than correctly, importances are always nonnegative numbers

(see reasonableness conditions [28]).

More formally, we assume that the examples are drawn independently

from a distribution D with domain X x y x C where X and Y are the same as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

in the standard classifier learning formulation and C C [0, oo] is the importance

(or extra cost) associated with mislabeling that example. The goal is to learn a

classifier h : X y which minimizes the expected cost of the labeling

EXty,c„D[c I(h (x)^y)} (II.A.4)

given training data of the form (x , y , c).

This formulation naturally models example-dependent and noisy costs.

It is also simpler and easier to manipulate mathematically than the cost matrix

formulation. Because the cost is part of the example, we do not have to deal with

a separate mathematical entity. The drawback of the importance formulation is

that it is only suitable for two-class problems. Formulating a cost-sensitive learning

problem in a similar way when there are more than two classes is an open problem.

For application domains in which it is easier to talk consistently about

benefits (or profits) than about costs, we can have the importance be the difference

in benefit between classifying the example correctly and incorrectly. Again, we

assume that classifying the example correctly has a larger benefit than classifying

it incorrectly, so that the importance is positive. Then, maximizing equation II.A.4

will correspond to maximizing the expected profit.

We note that there is a recent trend in cost-sensitive learning research

moving from the cost matrix formulation to the importance formulation [36,13, 97].

II.A .3 Relationship between the two formulations

As it turns out, we can represent any two-class (example-dependent) cost

matrix using the importance formulation. This is true because given the cost

matrix and an example, only two entries (false positive, true negative) or (false

negative, true positive) are relevant for that particular example, depending on

whether the example is negative or positive. In fact, if we let the importance be

c = C{l ,0 ,x) - C (0,0,x)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

for negative examples and

c = C(0, l ,x) — (7(1, l ,x)

for positive examples (0 stands for negative and 1 stands for positive), we can show

that minimizing the expected cost in the cost matrix formulation is equivalent to

minimizing the expected cost in the importance formulation.

T h eo rem I I .A .l . Let C be a two-class cost matrix and let (x,y) be examples

independently drawn from a distribution D with domain X x y , where X is a feature

space and y is a (binary) label space. For each example (x, y), let the corresponding

importance be c — (7(1,0,x) - (7(0,0, x) if y = 0 and c = 67(0, l ,x) - (7(1, l , x) if

y = 1. Then

minhEx>y„D[C(h(x),y,x)] = minhEx<ŷ D[cI(h(x) ^ y)].

Proof.

Ex,y~D[C(h(x) ,y ,x)]

= Ex<yr.D[C(h(x), 0, x)I(y = 0) + C(h(x), 1, x)I(y = 1)]

= E x , v ~ d [(C (0 , 0, x) I (h (x) = 0) + (7(1,0, x) I (h (x) = 1)) I (y = 0)

+ ((7(0,1, x)I(h{x) = 0) + (7(1,1, x)I(h(x) = 1))I(y = 1)]

= EXtV„D[{C(0,0, x)(l - I(h(x) ? 0) + (7(1,0, x)I(h(x) # 0))I(y = 0)

+ ((7(0,1 , x) I (h (x) ? 1) + C (l, 1, x) (1 - I(h(x) / 1))I (y = 1)]

= EXty„D[(C(l, 0, x) - C (0 ,0, x))I(h(x) ± 0)I(y = 0)

+ ((7(0,1, x) - (7(1,1, x))I(h(x) + 1)I(y = 1) + C (0 ,0, x) + (7(1,1, x)]

= Ex>y„D[cI(h(x) ± 0)I(y = 0) + c l (h (x) ± 1)I(y = 1)

+ (7(0,0, x) + (7(1,1, z)]

= Ex>y„D[cI(h(x) ± y) + (7(0,0, rr) + (7(1, l,x)]

Since the term (7(0,0, x) + (7(1,1, x) does not influence the minimization with

respect to h, we have that

min hEx,y~D[C(h(x),y, x)]

= m m hEx^ D[cI{h(x) ± y) + (7(0,0,x) + (7(1, l,x)]

= minhEXty„D[cI(h(x) ± y)]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

which completes the proof. □

Although they are equivalent, the cost matrix formulation and the im­

portance formulation lend themselves naturally to two different general approaches

for solving the cost-sensitive learning problem, respectively:

• Cost-sensitive learning by expected cost estimation

• Cost-sensitive learning by example weighting

We will explore each of these approaches in Chapters III and IV.

II.B Current approaches to cost-sensitive learning

Research in cost-sensitive learning falls into three categories. The first

category is concerned with making particular classifier learners cost-sensitive. Be­

low are examples of work in this category for a variety of learning methods:

• Decision trees: Knoll et al. [48] and Bradford et al. [12] present cost-sensitive

pruning methods for decision trees, while Drummond and Holte [22] investi­

gate the effect of splitting criteria on cost-sensitive learning of decision trees.

• Boosting: Fan et al. [31] propose AdaCost, a misclassification cost-sensitive

boosting method.

• Neural networks: Geibel and Wysotski [36] propose a cost-sensitive percep-

tron learning rule for non-separable classes.

• Support vector machines: Fumera and Roli [35] and Brefeld et al. [13] pro­

pose cost-sensitive support vector machine learning algorithms.

The second category uses Bayes risk theory to assign each example to

its lowest expected cost class [20, 95, 58]. This requires classifiers to output class

membership probabilities and, in the case where costs are example-dependent and

unknown for some examples, also requires estimating costs [95]. These methods,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

which we call cost-sensitive learning by expected cost estimation, will be covered in

detail in Chapter III.

The third category concerns methods that modify the distribution of

training examples before applying the classifier learning method, so that the clas­

sifier learned from the modified distribution is cost-sensitive. This class of methods,

which we call cost-sensitive learning by example weighting has only been explored

for fixed costs in previous research [57]. In Chapter IV we present and evaluate

such a method for example-dependent costs.

Besides misclassification costs, there may be other types of costs involved

in classifier learning that we do not consider in this thesis, such as the cost of

measuring attributes and the cost of labeling new examples. Turney [84] has

created a taxonomy of the different types of costs involved in machine learning.

Recently, Bayer-Zubek [7] has proposed a method for cost-sensitive learning that

takes into consideration both measurement costs and misclassification costs. Note,

however, that this is not a method for transforming existing classifier learners into

cost-sensitive learners like the ones presented in this thesis, but a learning method

specifically designed for this purpose.

II.C Publicly available cost-sensitive datasets

Here we give an overview of the two cost-sensitive datasets that are used

for experimentation in this dissertation. Unfortunately, these are the only two

publicly available real-world datasets for which misclassification cost information

is available on a per example basis. Both datasets are from the direct marketing

domain. Although there are many other cost-sensitive classifier learning domains,

such as credit card fraud detection and medical treatment, publicly available cost-

sensitive datasets are lacking.

Much of the research in cost-sensitive learning has been done using syn­

thetic costs (see for example [20, 31, 36, 13]), which is not very satisfactory given

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

that real-world costs can exhibit certain peculiar characteristics that may not

be captured by synthetic costs. Another option has been the use of proprietary

datasets, such as a credit card fraud detection dataset [31, 32], which is also not

satisfactory because it impedes comparison of methods developed by different re­

searchers.

We believe that the creation of a dataset repository such as the UCI

Machine Learning Archive [10] Archive and the UCI KDD Archive [6] for cost-

sensitive datasets would be very valuable for the advancement of cost-sensitive

learning methodology.

II.C .l The K DD-98 dataset

This is a well-studied, large and challenging dataset that was first used

in the data mining contest associated with the 1998 KDD conference and is now

becoming popular as a benchmark for the evaluation of cost-sensitive learning

methods [95, 97, 32]. This dataset and associated documentation are now available

in the UCI KDD repository [6].

The dataset contains information about persons who have made donations

in the past to a particular charity. The decision-making task is to choose which

donors to mail a request for a new donation, in order to maximize the total

profit obtained in the mailing campaign. This task is completely analogous to

typical one-to-one marketing tasks for many other organizations, both non-profit

and for-profit. Mathematically, the task has the same structure as all the two-class

cost-sensitive learning problems mentioned in the section II.A.

The KDD-98 dataset is divided in a fixed, standard way into a training

set and a test set. The training set consists of 95412 records for which it is known

whether or not the person made a donation (a 0/1 response) and how much the

person donated, if a donation was made. The test set consists of 96367 records

from the same donation campaign for which similar donation information was not

published until after the KDD-98 competition. In order to make our experimen­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

tal results directly comparable with those of previous work, we use the standard

training set/test set division.

Each example in the dataset consists of 481 attributes describing each

individual’s donation history in the previous 22 campaigns, as well as demographic

information. Since this dissertation does not address the issue of feature selection,

our choice of attributes is fixed and based informally on the KDD-99 winning

submission of Georges and Milley [37]:

• income: household income code (range 1-8)

• f i r s td a te : date of first gift

• la s td a te : date of most recent gift

• p g if t : number of gifts/number of promotions received

• RFA_2F: frequency code (range 1-4)

• RFA_2A: amount of last gift code (range A-G)

• PEPSTRFL: RFA (recency, frequency, amount) star status (X or blank).

• av g g ift: average dollar amount of gifts to date.

• l a s t g i f t : dollar amount of most recent gift.

• am pergift: average dollar amount in responses to the last 22 promotions.

The attributes p g i f t and am pergift are not directly present in the

KDD98 data, but are obtained by dividing ngiftall/num prom and by averaging

RAMNT-3 to RAMNT_24, respectively.

Mailing a solicitation to an individual costs the charity $0.68. The overall

percentage of donors among potential recipients is about 5%. The donation amount

for persons who respond varies from $1 to $200. Given the low response rate and

the variation in the value of gifts, it is not easy to achieve a profit that is much

higher than that obtained by soliciting all potential donors. The profit obtained

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

by soliciting every individual in the test set is $10560, while the profit attained by

the winner of the KDD-98 competition was $14712.

Many participants in the KDD-98 competition submitted entries that

were worse than useless, because they achieved profits substantially lower than

$10560. One likely reason for low success is that the individuals in the KDD-98

dataset are already filtered to be a reasonable set of prospects. They have been the

targets of a real donation campaign, selected using standard techniques in direct

marketing such as recency-frequency-amount (RFA) scoring. The task now for any

cost-sensitive learning method is to improve upon the already good performance

of the unknown method that was applied to create the KDD-98 dataset.

We now formulate the problem as a cost-sensitive learning problem using

both the cost matrix formulation and the importance formulation. Since the goal

in this domain is to maximize the profit, we use benefits instead of costs in both

formulations.

T h e b enefit m a tr ix fo rm ula tion

If we predict that the example is a non-donor, we will not mail a solici­

tation. Thus, in this case, the benefit is fixed at zero. If we predict the example

is a donor, we will mail a solicitation, which costs $0.68. If the person is a donor,

we will also receive a benefit corresponding to the donation amount y(x), which is

example-dependent. So we have the following benefit matrix B :

actual non-donor actual donor
predict non-donor 0 0
predict donor —0.68 y(x) — 0.68

T h e im p o rtan c e fo rm ula tion

The importance of each example is the difference in benefit between pre­

dicting the class label correctly or predicting it incorrectly.

For negative examples (actual non-donors), the correct prediction will

lead to zero benefit while the incorrect prediction will lead to a negative benefit (a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

cost) of $0.68 for mailing. Thus, the importance is fixed at 0-(-0.68)= 0.68 for all

negative examples.

For positive examples (actual donors), the correct prediction will lead

to a benefit corresponding to the donation amount y(x) minus $0.68 for mailing,

while the incorrect prediction will lead to zero benefit. Thus, for positive examples

(actual donors), the importance is y(x) — 0.68, which varies from $0.32 to $199.32

for the positive examples in the training set.

I I .C .2 T he D M E F-2 d a ta se t

This dataset can be obtained for research and educational purposes from

the DMEF dataset library [2] for a nominal fee. Although it is not as well-known

as the KDD dataset, it has been used in previous research in data mining [55].

The dataset contains customer buying history for 96551 customers of a

nationally known catalog. The decision-making task is to choose which customers

should receive a new catalog so as to maximize the total profit on the catalog

mailing campaign. Information on the cost of mailing a catalog is not available,

so we fixed it at $2.

The overall percentage of respondents is about 2.5%. The purchase

amount for customers who respond varies from $3 to $6247. We divided the

dataset randomly in half to create a training set and a test set. As a baseline

for comparison, the revenue obtained by mailing a catalog to every individual on

the training set is $26474 and on the test set is $27584.

Each example consists of more than 150 attributes detailing the history

of past catalog purchases of the customer, along with a label indicating whether or

not the customer has responded to the last campaign and, in the case of response,

the purchase amount in dollars. Again, because we are not considering the prob­

lem of feature selection here, we selected the following 17 features using domain

knowledge:

• to ta lo rd e rs : number of orders

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

• to ta ld o l la r s : total amount

• to ta lo rd e rs6 : number of orders in the past 6 months

• to ta ld o l la r s 6 : total dollars in the past 6 months

• to ta lo rd e rs !2 : number of orders in the past 12 months

• to ta ld o l la r s l2 : total dollars in the past 12 months

• to ta lo rd e rs2 4 : number of orders in the past 24 months

• to ta ld o lla rs 2 4 : total dollars in the past 24 months

• to ta lo rd e rs3 6 : number of orders in the past 36 months

• to ta ld o lla rs 3 6 : total dollars in the past 36 months

• d ay s la s t: days since last purchase

• d a y s f ir s t : days since first purchase

• rfm: recency-frequency-monetary score

• recencylastD : recency of last purchase in division D

• recencyf irstD : recency of first purchase in division D

• to talitem sD : total items in division D

• rfmD: recency-frequency-monetary score in division D

We use the features for division D because this is the division of the

catalog mailing that we are trying to optimize.

The formulation of this problem as a cost-sensitive learning problem is

completely analogous to the formulation for the KDD-98 dataset. The benefit

matrix is as follows (where y(x) is the purchase amount):

actual non-buyer actual buyer
predict non-buyer 0 0
predict buyer —2 y(x) — 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For positive examples (buyers), the importance is y(x) — 2, which varies

from $1 to $6246 for the examples in the training set. For all negative examples

(non-buyers), the importance is fixed at $2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter III

C ost-sensitive learning by

expected cost estim ation

In this chapter, we present and compare two methods for cost-sensitive

learning that use the cost matrix formulation and are based on expected cost

estimation. One method is MetaCost, due to Domingos [20], which was the first

method for transforming any classifier learning method into a cost-sensitive learner.

The other is direct cost-sensitive decision making, proposed by Zadrozny and Elkan

[94] as an improvement to MetaCost. Our analysis shows that direct cost-sensitive

decision making is more general than MetaCost as originally published, and our

experimental results show that it is preferable to MetaCost.

This chapter is organized as follows. In Section III.A we explain Meta­

Cost and direct cost-sensitive decision-making. Then in Section II.C .l we show

how to apply these methods to the KDD-98 dataset. Both MetaCost and di­

rect cost-sensitive decision-making require accurate estimates of class membership

probabilities. In Section III.C we present two techniques that allow accurate prob­

ability estimates to be obtained from a decision tree: smoothing and curtailment.

We also present binning as a technique for making naive Bayes probability esti­

mates accurate. Previous research has been based on the assumption that mis­

classification costs are the same for all examples and known in advance, but in

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

general these costs are example-dependent and unknown, in the same way that

class membership probabilities are example-specific and not known in advance. In

Section III.D we discuss this issue and the issue of how sample selection bias affects

cost estimation. Finally, experimental results using the KDD-98 dataset are pre­

sented in Section III.E and in Section III.F we summarize the main contributions

in this chapter. Related work is discussed as necessary throughout the chapter.

III.A M etaCost vs. direct cost-sensitive decision-m aking

In the cost matrix formulation each training or test example x is associ­

ated with a cost C(i ,j , x) of predicting class i for x when the true class of x is j . If

these costs are known for each x , i and j , and the class membership probabilities

P(j\x) are known for each x and j then it is straightforward to compute an optimal

policy for decision-making .

The optimal prediction for x, i.e. the optimal decision concerning x or

label to assign to x, is the class i that leads to the lowest expected cost

Given x, for each alternative i, the expected cost is a weighted average

where the weight of C(i , j ,x) is the conditional probability of the class j given x.

The label that leads to the lowest expected cost is known in the literature as the

Bayes optimal prediction for x [23].

The central idea behind the MetaCost method is to change the label of

each training example to be its optimal label according to Equation (III.A .l), and

then to learn a classifier that predicts these new labels.

Applying MetaCost requires knowledge of the conditional probability

P{j\x) for each training example x and each possible true class j for x. Almost

always, these probabilities are not given as part of the training data. Instead,

the training data must be used to learn a classifier that estimates P(j\x) for each

(III.A.l)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

M etaC o st (L earner A, T ra in ing Set S)

1. L earn a m odel for P(j\x) using lea rn e r A ap p lied to S.

2. R elabe l each exam ple x in S w ith

i* = argminj P(j\x)C(i, j , x)
3

to form th e set S'.

3. L earn a classifier C using lea rn e r A app lied to S'.

4. O u tp u t C.

Table III.l: The MetaCost algorithm.

training example x and each j . Table III.l gives the pseudo-code for the MetaCost

algorithm.

However, note that any learned classifier that can provide conditional

class membership probability estimates for training examples can also provide

these estimates for test examples. Using these probability estimates we can di­

rectly compute the optimal label for each test example using Equation (III.A.l).

This process is the method that we call direct cost-sensitive decision-making. The

pseudo-code for this method is given in table III.2. Experimental results comparing

MetaCost and direct cost-sensitive decision-making are given in Section III.E.

The basic MetaCost idea can be implemented in many ways. Our imple­

mentation differs from that described by Domingos [20] in two im portant ways.

First, the original description of MetaCost is based on the assumption th a t costs

are known in advance and are the same for all examples, i.e. th a t C(z, j , x) = C(i, j)

with no dependence on x. Provost and Fawcett [65] have pointed out th a t this as­

sumption is not always true: “For some problems, different errors of the same type

have different costs.” We generalize MetaCost by relaxing this assumption.

Second, we do not estimate probabilities by using bagging [14]. Instead of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

D irec t cost-sensitive decision -m ak ing (L earner A, T ra in in g Set S)

1. L earn a m odel for P(j \x) using le a rn e r A ap p lied to S.

2. L et C be th e classifier th a t o u tp u ts

i* = argmirij ^ P(J\x)C{i , ;, x)
j

for an exam ple x.

3. O u tp u t C.

Table III.2: The direct cost-sensitive decision-making algorithm.

bagging, we use simpler methods based on single decision trees and naive Bayesian

classifiers. As pointed out by Margineantu [56], bagging gives voting estimates that

measure the stability of the base classifier learning method at an example, not the

actual class conditional probability of the example. (A classifier learning method

is stable at an example if classifiers learned from different resamples predict the

same label for the example). For experimental results confirming that bagging is

not a good way of improving probability estimates obtained from decision trees,

see Zadrozny and Elkan [95].

In general, bagging does not give probability estimates that are unbiased

and well-calibrated, whether or not the base learning method is stable. If a learning

method is unstable and gives classifiers that make 0/1 predictions, then bagging

tends to be useful because voting estimates are numbers between 0 and 1, which

are preferable to 0/1 predictions as continuous probability estimates. However,

in general these scores are not unbiased estimates. If a learning method gives

classifiers that individually yield unbiased probability estimates, then bagging these

classifiers is likely to reduce variance beneficially, while maintaining unbiasedness.

But then the question remains of how to get individual scores that are unbiased

in the first place. Section 4 below answers this question.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

III.B Applying direct cost-sensitive decision making

The dataset used in the experimental work described in this chapter is a

well-studied, large and challenging dataset that was first used in the data mining

contest associated with the 1998 KDD conference that was described in detail in

chapter II (section II.C .l).

Let the label j = 0 mean the person x does not donate, and let j — I

mean the person does donate. If the person donates, the donation is of a variable

amount, say y(x). The cost of mailing a solicitation is $0.68, so we have the

following benefit matrix B (i , j , x):

actual non-donor actual donor
predict non-donor 0 0
predict donor (mail) —0.68 y(x) — 0.68

The optimal predicted label for example x is the class i that maximizes

(IH.B.l)
j

where B (i , j , x) is the benefit of predicting class i when the true class is j .

Notice that B(1,1,2;) is example-dependent and unknown for test exam­

ples. We shall argue later that no fixed matrix of costs or benefits can lead to good

decision-making. There is no constant c such that it would be reasonable to replace

B(1, l,a;) by the same value c for all x. All approaches to this task, and to other

tasks with the same structure, that are based on a fixed cost or benefit matrix will

have poor performance. Of course, some approaches can take into account the fact

that y(x) is example-dependent without estimating y(x) explicitly.

The expected benefit of not soliciting a person x, i.e. of deciding i — 0

for x, is

P (j = 0 |x)B (0,0 ,2;) + P (j = l \ x)B (0 ,1,2;)

= P (j = 0\x)(0) + P (j = l \ x m

= 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

The expected benefit of soliciting x is

P (j = Q\x)B(l,0,x) + P(j = l |x)B (l,l ,r r)

= P (j = 0 |x)(—0.68) + P (j = 1|x)(y(x) - 0.68)

= (1 - P (j = l|rr))(—0.68) + P(j = 1|x)(y(x) - 0.68)

= P (j = 1|x)y(x) - 0.68.

The optimal policy is to solicit exactly those people for whom the expected benefit

of mailing is greater than the expected benefit of not mailing: individuals for whom

P (j = l \x)y(x) — 0.68 > 0.

In other words, the optimal policy is to mail to people for whom the expected

return P (j = 1|x)y(x) is greater than the cost of mailing a solicitation:

P (j = l\x)y(x) > 0.68. (III.B.2)

In order to apply this policy, we need to estimate the conditional probability of

making a donation P (j = 1 |m) and the donation amount y(x) for each example x

in the training set, in the case of MetaCost. We need to estimate these values for

both training and test examples in the case of direct cost-sensitive decision-making.

Although we use the KDD-98 dataset for concreteness, the methods de­

scribed here apply to cost-sensitive learning in general. In any cost-sensitive learn­

ing application, in order to use Equation (III.A.l) or (III.B.l) to obtain an optimal

labeling, we need to estimate conditional class membership probabilities accurately.

Costs or benefits must also be estimated whenever they are unknown for some ex­

amples.

In general, if a; is a test example then C (i , j , x) will be unknown for all

i and j . If a; is a training example then C(i , j ,x) will be known for some i and j

pairs, but unknown for other pairs. Of course, if costs are not example-dependent,

that is, if C (i , j , x) = C (i , j , y) for all examples x and y, then costs do not need to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

be estimated for any training or test examples. This special case is the only case

considered in previous general research on cost-sensitive learning. In the remainder

of this chapter, we present new methods for estimating costs and probabilities. All

these methods can be applied without change in a wide variety of domains.

III.C Probability Estimation M ethods

An estimate of the conditional probability of membership in each class is

required for each training example if MetaCost is used, and for each test example

if direct cost-sensitive decision-making is used.

This section explains our methods for obtaining calibrated probability

estimates from decision tree and naive Bayesian classifiers. We first explain the

deficiencies that cause standard decision tree methods not to give accurate prob­

ability estimates, and we then explain methods to overcome these limitations. A

final subsection presents a simple method for obtaining calibrated probabilities

from a naive Bayesian classifier.

I I I .C .1 D eficiencies o f decision tre e m e th o d s

Throughout this chapter, C4.5 [66] is the representative decision tree

learning method used, but all our analyses and suggestions apply equally to other

decision tree methods such as CART [15].

When classifying a test example, C4.5 and other decision tree methods

assign by default the raw training frequency p = k / n as the score of any exam­

ple that is assigned to a leaf that contains k positive training examples and n

total training examples. These training frequencies are not accurate conditional

probability estimates for at least two reasons:

1. High bias: Decision tree growing methods try to make leaves homogeneous,

so observed frequencies are systematically shifted towards zero and one. This

problem has been noted by Walker [88] and others.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

2. High variance: When the number of training examples associated with a leaf

is small, observed frequencies are not statistically reliable.

Pruning methods as surveyed by Esposito et al. [30] can in principle alleviate

problem (2) by removing leaves that contain too few examples. However, standard

pruning methods are not suitable for unbalanced datasets, because they are based

on accuracy maximization. On the KDD-98 dataset C4.5 produces a pruned tree

that is a single leaf. Since the base rate of positive examples, th a t is the overall

probability P(j = 1), is about 5%, this tree has accuracy 95%, but it is useless for

estimating example-specific conditional probabilities P(j = l|a;).

In general, trees pruned with the objective of maximizing accuracy are

not useful for ranking test examples, or for estimating class membership probabil­

ities. The standard C4.5 pruning method is not alone in being incompatible with

accurate probability estimation. Quinlan’s recent decision tree learning method,

C5.0, and CART also do pruning based on accuracy maximization. Both C4.5 and

C5.0 have rule set generators that are a commonly used alternative to pruning [66].

Given a decision tree, these methods produce a set of rules th a t is typically simpler

and that generalizes better to new examples than the original tree. However, these

methods are also based on accuracy maximization, so they are also unsuitable for

probability estimation.

We show how to improve directly the accuracy of decision tree probability

estimates. Our experiments use C4.5 without pruning and without collapsing to

obtain raw scores that can be transformed into accurate class membership prob­

abilities. The choice to do no pruning is supported by the results of Bradford et

al. [12], who find that performing no pruning and variants of pruning adapted

to loss minimization both lead to similar performance. Not using pruning is also

suggested by Bauer and Kohavi [4] in their Section 7.3.

The methods we propose transform the leaf scores of a standard decision

tree. Completely different methods have been suggested, but they have major

drawbacks. Smyth et al. [73] use kernel density estimators at the leaves of a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

decision tree. However their algorithms are based on C4.5 and CART with pruning,

so they are unsuitable for highly unbalanced datasets. Their experiments use only

synthetic, reasonably balanced datasets. Our experiments use an unbalanced real-

world dataset where the less probable class has a base rate of only about 5%.

Estimating probabilities using bagging has been suggested by Breiman [14] and

by Domingos [20], but as explained above in Section III.A, bagging does not give

unbiased probability estimates in general.

III .C .2 S m oo th ing

One way of improving the probability estimates given by a decision tree is

to make these estimates smoother, i.e. to adjust them to be less extreme. Provost

and Domingos [64] suggest using the Laplace correction method. For a two-class

problem, this method replaces the conditional probability estimate p = | by

/ k + 1
P = ^ T 2 -

The Laplace correction method adjusts probability estimates to be closer

to 1/2, which is not reasonable when the two classes are far from equiprobable, as

is the case in many real-world applications.

In general, one should consider the overall average probability of the

positive class, that is, the base rate, when smoothing probability estimates.

We replace the probability estimate p = | by

. k + b • m
P = -----;------ ,n + m

where b is the base rate of the positive class and m is a parameter th a t controls how

much scores are shifted towards b. This smoothing method is called m-estimation

[17]. For example, if a leaf contains four training examples, one of which is positive,

the raw C4.5 decision tree score of any example assigned to this leaf is 0.25. The

smoothed score with m = 200 and b = 0.05 is

1 + 0.05-200 = n _ =
F 4 + 200 204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

0.3

— smoothed scores (m=200)
— raw C4.5 scores

0.25

0.2

O 0.15

0.05

Test examples sorted by raw C4.5 scores x104

Figure III.C .1: Smoothed scores and raw C4.5 scores for test examples sorted by

raw score. The figure shows how the scores change after smoothing is applied.

In particular, examples that are assigned a score close to 0 (left-hand side) or 1

(right-hand side) by C4.5 have their scores significantly shifted towards the base

rate by smoothing.

As m increases, observed training set frequencies are shifted more towards

the base rate.

Previous research has suggested choosing m by cross-validation. Given a

base rate b, we suggest using m such that bm = 10 approximately. This heuristic

ensures that raw probability estimates that are likely to have high variance, those

with k < 10, are given low credence. Experiments show that the effect of smoothing

by ra-estimation is qualitatively similar for a wide range of values of m, so, as is

highly desirable, the precise value chosen for m is unimportant.

Figure III.C. 1 shows the smoothed scores with m = 200 of the KDD-98

test set examples sorted by their raw C4.5 scores. As expected, smoothing shifts all

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

scores towards the base rate of approximately 0.05, which is desirable given that

C4.5 scores tend to be overestimates or underestimates. While raw C4.5 scores

range from 0 to 1, smoothed scores range from 0.0224 to 0.1018.

III .C . 3 C u rta ilm e n t

As discussed above, without pruning decision tree learning methods tend

to overfit training data and to create leaves in which the number of examples is

too small to induce conditional probability estimates that are statistically reliable

(which we call small leaves). Smoothing attempts to correct these estimates by

shifting them towards the overall average probability, i.e. the base rate b. However,

if the parent of a small leaf contains enough examples to induce a statistically reli­

able probability estimate, then assigning this estimate to a test example associated

with the leaf may be more accurate then assigning it a combination of the base

rate and the observed leaf frequency, as done by smoothing. If the parent of a

small leaf still contains too few examples, we can use the score of the grandparent

of the leaf, and so on until the root of the tree is reached. At the root, of course,

the observed frequency is the training set base rate.

We call this method of improving conditional probability estimates cur­

tailment because when classifying an example, we curtail search through the deci­

sion tree as soon as we reach a node tha t has less than v examples, where v is a

parameter of the method. The score of the parent of this node is then assigned to

the example in question. As for smoothing, v can be chosen by cross-validation,

or using a heuristic such as making bv = 10. We choose v = 200 for all our ex­

periments. Informal experiments show that values of v between 100 and 400 give

similar results, so the exact setting of v is not critical.

Given the KDD-98 training set, curtailment effectively creates the deci­

sion tree shown in part in Figure III.C.2. The distinction between internal nodes

and leaves is blurred in this tree, because a node may serve as an internal node

for some examples and as a leaf for others, depending on the attribute values of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

internal node
pgift > 0.178218pgift <= 0.178218

I I leaf

PEPSTRFL PEPSTRFL

—s n
r k»616 ^
^ n » 1 1 6 6 7 ^

firstdate <= 9508 firstdate > 9508

k=601
n=11637

pgift > 0.097561pgift <= 0.097561

k=574
n=11412k=27

n=225

RFA_2F = 1

r k=121 ^
. n-1906 .

k=268
n=6239

income = 0

k*10
n=128

k*21
n=271

k*8
n=166

Figure III.C.2: Part of the decision tree obtained by curtailment with v = 200. The

dotted nodes are present in the original C4.5 tree, but are effectively eliminated

from the curtailment tree because n < v.

the examples. The node in gray is an example of a node that can serve both as an

internal node and as a leaf, because one of its branches has been eliminated from

the tree, but not all.

Curtailment is not equivalent to any type of pruning, nor to traditional

early stopping during the growing of a tree, because those methods eliminate all

the children of a node simultaneously. In contrast, curtailment may eliminate

some children and keep others, depending on the number of training examples

associated with each child. Intuitively, curtailment is preferable to pruning for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

probability estimation because nodes are removed from a decision tree only if they

are likely to give unreliable probability estimates.

0.3

0.25 -

(0
CD
O 0.15 O <O

0.05

_J r h-----------r

curtailment scores (v=200)
raw C4.5 scores

Test examples sorted by raw C4.5 scores

Figure III.C.3: Curtailment scores and raw C4.5 scores for test examples. Exam­

ples are sorted by raw C4.5 score. The figure shows that scores change significantly

after curtailment is applied, in particular for examples that are assigned a score

close to 0 (left-hand side) or 1 (right-hand side) by C4.5.

Figure III.C.3 shows the curtailment scores with v = 200 of the KDD-

98 test set examples sorted by their raw C4.5 scores. The jagged lines in the

chart show that many scores are changed significantly by curtailment. Overall,

the range of scores is reduced as with smoothing, but not as much. The minimum

curtailment score is 0.0045 while the maximum is 0.1699.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

III .C .4 B inn ing

Naive Bayesian classifiers are based on the assumption th a t within each

class, the values of the attributes of examples are independent.

Mathematically, this conditional independence assumption can be stated

as
n

p iA j) =
k= 1

where each Xk is one attribute value of x.

It is well-known that these classifiers tend to give inaccurate probabil­

ity estimates [21]. Given an example x, suppose that a naive Bayesian Classifier

computes the score n(x). Because attributes tend to be positively correlated,

these scores are typically too extreme: for most x, either n(x) is near 0 and

then n(x) < P (j = l|x) or n(x) is near 1 and then n(x) > P (j = l|x). How­

ever, naive Bayesian classifiers tend to rank examples well: if n(x) < n(y) then

P(j = l|x) < P(j = l|y).

We use a histogram method to obtain calibrated probability estimates

from a naive Bayesian classifier. We sort the training examples according to their

scores and divide the sorted set into b subsets of equal size, called bins. For each

bin we compute lower and upper boundary n(-) scores. Given a test example x,

we place it in a bin according to its score n(x). We then estimate the corrected

probability that x belongs to class j as the fraction of training examples in the bin

that actually belong to j .

The number of different probability estimates th a t binning can yield is

limited by the number of alternative bins. This number, b = 10 in our experiments,

must be small in order to reduce the variance of the binned probability estimates,

by increasing the number of examples whose 0/1 memberships are averaged inside

each bin. Binning reduces the resolution, i.e. the degree of detail, of conditional

probability estimates, while improving the accuracy of these estimates by reducing

both variance and bias compared to uncalibrated estimates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

Binning is a discrete non-parametric method for calibrating probability

estimates. In future work, we should consider using continuous methods such as the

super-smoother or loess to obtain calibrated probability estimates with a greater

degree of detail. Sobehart et al. [74] use a Gaussian kernel regression method in

a similar context. Applying parametric methods to calibrate naive Bayes scores

is not straightforward. For example, Bennett [8] reports that sigmoid functions

cannot transform naive Bayes scores into well-calibrated probability estimates.

With most learning methods, in order to obtain binned estimates that

do not overfit the training data, we should partition the training set into two sub­

sets. One subset would be used to learn the classifier that yields uncalibrated

scores, while the other subset would be used for the binning process. More train­

ing examples would be assigned to the first subset because learning a classifier

involves setting many more parameters than setting the binned probabilities. For

naive Bayesian classifiers, however, separate subsets are not necessary because this

learning method does not overfit the training data much. So we use the entire

training set both for learning the classifier and for binning.

III.C.5 Averaging probability estimates

If different methods provide noisy probability estimates that are partially

uncorrelated, it is intuitive that averaging the probability estimates given by these

methods reduces the noise, thereby improving the probability estimates.

This intuition is formalized by Turner and Ghosh [83]. They show that

by combining the probability estimates given by different classifiers through aver­

aging we can reduce the variance of the probability estimates. The reduction in

the variance depends on the degree of correlation of the noise in the probability

estimates produced by each classifier and on how many classifiers are used.

Assuming that the variance of the probability estimates given by each

classifier is approximately the same, the variance of the averaging combiner is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

given by
2 1 + p(N - 1) 2a = ------- a

where a2 is the variance of each original classifier, N is the number of classifiers and

p is the correlation factor among all classifiers. If the classifiers are independent

(p = 0), the combined variance is reduced by N. On the other hand, if the

classifiers are completely correlated (p = 1), the variance is unchanged.

Since the probability estimates obtained from the decision tree and naive

Bayesian classifiers are partially uncorrelated, averaging them should yield esti­

mates that are more accurate than those given by each individual method. In

Section III.E we show experimental results that confirm this hypothesis.

III.D E stim ating donation amounts

In general, in cost-sensitive learning we need to estimate example-specific

misclassification costs, in addition to example-specific class conditional probabili­

ties. We need to estimate misclassification costs for training examples when using

MetaCost, and for test examples when using direct cost-sensitive decision-making.

If costs and probabilities are both unknown, then estimating costs well can

be more im portant for making good decisions than estimating probabilities well.

Cost estimates are more important if the relative variation of costs across different

examples is greater than the relative variation of probabilities. The dynamic range

of costs may be greater than the dynamic range of probabilities either because the

dynamic range of true costs is greater, or because estimating costs accurately is

easier than estimating probabilities accurately.

In the KDD-98 domain for example, estimating donation probabilities is

difficult. Our best method for this task, the averaging of smoothing, curtailment,

and binned naive Bayes, gives conditional probabilities in the narrow range from

0.0172 to 0.1189. Estimating donation amounts is easier because past amounts are

excellent predictors of future amounts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

It may appear that for non-donors in the training set we should impute

a donation amount of zero, since their actual donation amount is zero. But this

imputation would be analogous to imputing a donation probability of zero for the

non-donors based on the fact that they have not donated, which is clearly wrong.

When responding to a solicitation a person has to make two decisions. The first is

whether to donate or not, while the second is how much to donate. Conceptually,

these decisions are governed by two different random processes, not necessarily

sequential or independent of course. For donors in the training set, the outcome of

the random process that sets the donation amount is known, while for non-donors,

this outcome is unknown. For individuals in the test set, the outcome of both

random processes is unknown. Whenever the outcome of one or both processes

is unknown, the learning task is to estimate its outcome. For non-donors in the

training set, the task is to estimate the amounts that they would have donated, if

they had made donations.

It is also wrong to impute any fixed quantity as a donation estimate

for test examples. Using the same donation estimate for all test examples means

that the decision whether or not to solicit a person is based exclusively on the

probability that they will donate. This method is equivalent to using a fixed cost

matrix for test examples.

In general, whenever misclassification costs are assumed to be fixed, dif­

ferent decisions for different examples can only be based on different conditional

probability estimates for those examples.

For clarity, the arguments in the previous paragraphs are expressed in lan­

guage that is specific to the donations domain. However, similar arguments apply

to any scenario where costs or benefits are different for different examples. These

costs or benefits must be estimated for each example, whenever they are unknown.

Assuming that unknown costs or benefits are zero or constant is incorrect.

The method we use for estimating donation amounts is least-squares mul­

tiple linear regression (MLR). The donors in the training set th a t have donated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

at most $50 are used as input for the regression, which is based on one original

attribute and one derived attribute:

• l a s t g i f t : dollar amount of most recent gift,

• am pergift: average gift amount in responses to the last 22 promotions.

Since the topic of this research is not variable selection, we somewhat arbitrarily

choose these two attributes based on previous work. We use the linear regression

equation to estimate donation amounts for all examples in both the training and

test sets.

Donations of more than $50 are very rare in our domain: 46 of 4843

donations recorded in the training set. We eliminate these examples from the

regression training set as a heuristic attem pt to reduce the impact of outliers on the

regression. If included, these examples have the most influence on the regression

equation, because they have the highest y values and the regression equation is

chosen to minimize the sum of squared y errors. However, it is less important to

estimate y values accurately for these individuals, because the optimal decision is

always to solicit them, given that predicted donation probabilities are always over

1.5%. Accurate predicted donation probabilities are never close to zero because of

the intrinsic difficulty of predicting whether or not a person will donate. In future

work, we shall consider using non-linear regression methods th a t are able to cope

adaptively with outliers.

Conversely, making accurate predictions is most im portant for individuals

whose expected donation is close to $0.68. These individuals all have estimated

donation amounts under $50, again because all predicted donation probabilities

are over 1.5%.

II1.D.1 The problem of sample selection bias

When estimating donation amounts, a fundamental problem is that any

estimator, for example a regression equation, must be learned based on examples of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

Prob. estimation method
W ithout Heckman W ith Heckman

Training set Test set Training set Test set
Smoothed C4.5 (sm)
C4.5 with curtailment (cur)
Binned naive Bayes (binb)
Average(sm, cur)
Average(sm, cur, binb)

$19256
$16722
$14262
$18591
$18140

$14093
$13670
$14208
$14518
$14877

$18583
$17037
$14994
$18474
$17400

$14321
$14161
$15094
$14879
$15329

Table III.3: Profit attained on the training and test sets using each probability

estimation method.

people who actually donate. But this estimator must then be applied to a different

population, i.e. both donors and non-donors. This problem is known in general

as sample selection bias. It occurs whenever the training examples used to learn

a model are drawn from a different probability distribution than the examples to

which the model is applied.

In the donations domain, the donation amount and the probability of

donation are negatively correlated. People who are more likely to respond to a

solicitation tend to make smaller donations, while people who make larger dona­

tions are less likely to respond. This relationship is illustrated in Figure III.D .l.

Since examples of people who actually donate are the only training examples for

the regression, donation amounts estimated by the regression equation tend to be

too low for test examples that have a low probability of donation.

As we have explained previously [27], the standard method of compen­

sating for sample selection bias in econometrics is a two-step procedure due to

James J. Heckman of the University of Chicago [43]. In October 2000 Heckman

was awarded the Nobel prize in economics for developing and applying this pro­

cedure. Expressed using our notation, Heckman’s procedure is applicable when

each example x belongs to one of two classes, i.e. j (x) = 0 or j (x) = 1, and the

dependent variable to be estimated y{x) is observed for a training example if and

only if j(x) = 1. The first step of the procedure is to learn a probit linear model

to estimate conditional probabilities P (j = l|x). A probit model is a variant of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

60

0)50

40

0 30

0.120.10.02 0.04 0.06
Estimated Probability of Donation

0.08
Donation

Figure III.D .l: Actual donation amount versus estimated probability of donation,

for all donors in the training set. A negative correlation between donation amount

and probability of donation is visible.

logistic regression where the cumulative Gaussian probability density function is

the sigmoid function. The second step of Heckman’s procedure is to estimate y(x)

by linear regression using only the training examples x for which j(x) — 1, but

including for each x a transformation of the estimated value of P (j = l\x). Heck­

man has proved that this procedure yields estimates of y(x) tha t are unbiased for

all x, regardless of whether j{x) = 0 or j(x) = 1, under certain conditions [43].

Our second method for estimating donation amounts is a nonlinear vari­

ant of Heckman’s procedure. Instead of using a linear estimator for P (j = l|x),

we use a decision tree or a naive Bayes classifier to obtain probability estimates, as

described in Section III.C. We then include these probability estimates directly as

an additional attribute when applying a learning method to obtain an estimator

for y(x). This learning method could be a nonlinear method, for example a neural

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

network method, but in order to investigate carefully the usefulness of Heckman’s

idea, we hold everything else constant and just provide the estimated P (j = l|rr)

values as a third attribute of a; to a linear regression that is otherwise the same as

in the first method.

III.E Experim ental Results

In this section, we investigate experimentally how the new probability and

cost estimation methods described above affect the profit attained on the KDD-98

dataset (described in Chapter II, Section II.C). We first report our results, and

then discuss the issue of statistical significance.

For each of the probability estimation methods described in Section III.C,

Table III.3 shows the profit obtained when we use the multiple linear regression

that includes only l a s t g i f t and am pergift as attributes, and when we apply

Heckman’s procedure by including the probability estimates as an additional at­

tribute to the regression. When we use Heckman’s procedure, the profit on the test

set increases for all probability estimation methods, on average by $484. The fact

that the improvement is systematic indicates that Heckman’s procedure succeeds

in correcting sample selection bias.

To implement MetaCost, probability and donation estimates obtained as

described in Sections III.C and III.D are used to relabel the training set according

to Equation III.A .I. We train C4.5, with pruning and collapsing, on the relabeled

training examples and apply the resulting decision tree to the training and test

examples. The profit obtained from mailing the people who are labeled positive

by the decision tree is given in Table III.4.

Comparing the results in Table III.4 with the results in the second half

of Table III.3, we see that MetaCost performs consistently less well than direct

cost-sensitive decision-making. On average, the profit achieved with MetaCost

on the test set is $1751 lower than the profit achieved with direct cost-sensitive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

Probability estimation method Training set Test set
Smoothed C4.5 (sm)
C4.5 with curtailment (cur)
Binned naive Bayes (binb)
Average(sm, cur)
Average(sm, cur, binb)

$17359
$15869
$13608
$17547
$16531

$12835
$11283
$14113
$13284
$13515

Table III.4: Profit attained on the training and test sets using MetaCost with each

probability estimation method. Donation amount estimates are obtained from the

MLR with the Heckman adjustment.

decision-making. The best result with MetaCost is $14113, while the best result

with the direct method is $15329, which is better than the result obtained by the

winner of the KDD-98 contest, $14712.

We conclude that direct cost-sensitive decision-making is preferable to

MetaCost. We attribute the worse performance of MetaCost to the difficulty that

any single model must have in estimating costs and probabilities as accurately

as two separate models. Learning a single classifier from relabeled training data

causes more errors in approximating the ideal decision boundary than learning two

estimators.

It is difficult to make definite statements about the statistical significance

of the experimental results above. There are 4872 donors in the fixed test set.

For these individuals, the average donation is $15.62. On a different test set

drawn randomly from the same probability distribution, one would expect a one

standard deviation fluctuation up or down of \/4872 in the number of donors.

This fluctuation would cause a change of about $15.62 ■ \/4872 = $1090 in total

profit. Therefore, a profit difference of less than $1090 between two methods is

not statistically significant.

Many of the profit differences between methods that we observe are less

than $1090. There are several avenues we could follow to obtain statistically signif­

icant differences between methods. One avenue would be to use cross-validation,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

instead of a single training set and a single test set. However, the training set/test

set split we use is standard. If we did not use it, our results would not be compa­

rable with those of previous work using the same dataset.

Another avenue would be to use multiple datasets for comparing different

methods, as done for example by Domingos [20]. But, despite the unquestioned im­

portance of example-dependent costs in many learning tasks, the KDD-98 dataset

is the only dataset in the UCI repositories for which real-world misclassification

cost information is available. Most previous experimental research on cost-sensitive

learning has used arbitrary cost matrices. We prefer to use real cost data, espe­

cially since we are interested in the situation where costs are different for different

examples.

The purpose of the experiments reported here is not so much to identify

a single best method for cost-sensitive learning and decision-making, but rather

to compare the usefulness of the alternative sub-methods proposed in previous

sections. In all trials, the test set profit achieved using MetaCost is lower and

using Heckman’s procedure is higher. We choose not to quantify the level of this

statistical significance because doing so would require making assumptions tha t are

certainly false, and therefore give misleading conclusions. In particular, because

all trials use the same training and test sets, they are not statistically independent.

Always using the same training and test set removes one source of variance, so even

small differences in performance between data mining methods are in fact likely

to be genuine [55].

III.F Conclusions

The main contributions of this chapter are the following:

1. We explain a general method of cost-sensitive learning th a t performs system­

atically better than MetaCost in our experiments.

2. We provide the first general solution to the fundamental problem of costs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

being different for different examples, and unknown for some of the examples.

3. As part of (2), we identify and solve the problem of sample selection bias,

i.e. the fact that the training set available for learning to estimate costs is

not representative of test examples, or indeed of other training examples. In

Chapter VI we will tackle the problem of sample selection bias in a more

general setting.

All the methods we propose are evaluated carefully with experiments using a large,

difficult and highly cost-sensitive real-world dataset. Previous research has tended

to use small datasets with synthetic cost data.

We have used simple methods for both probability estimation and cost

estimation in this chapter in order to illustrate our general cost-sensitive learning

approach and to provide a baseline for future research. In chapter V we present

improved methods obtaining calibrated probability estimates from classifiers.

Our experiments are designed so that both MetaCost and the alternative

we propose use the same methods for estimating costs and probabilities. Therefore,

we expect our conclusion that direct cost-sensitive decision-making is preferable

to remain valid with other estimation methods. In particular, both MetaCost

and direct cost-sensitive decision-making will be improved by any improvement in

techniques for probability estimation.

Acknow ledgm ents

The text of this chapter, in part, is a reprint of the material as it appears in the

Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining [95]. The dissertation author was the primary author, and the co-author listed

in this publication directed and supervised the research which forms the basis for the chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter IV

C ost-sensitive learning by

exam ple weighting

In this chapter, we present a family of methods for cost-sensitive learning

that uses the importance formulation and is motivated by a folk theorem that we

formalize and prove in section IV.A. This theorem states that altering the origi­

nal distribution of training examples D to another D by weighting each example

proportionately to its relative cost (or importance) makes any error-minimizing

classifier learner accomplish expected cost minimization on the original distribu­

tion. Representing samples drawn from D, however, is more challenging than it

may seem. There are two basic methods for doing this, starting with a set of

examples drawn from D:

• Transparent Box (Section IV.B): Supply the example-dependent costs as

example weights to the classifier learning algorithm.

• Black Box (Section IV.C): Carefully resample using these same weights.

While the transparent box approach cannot be applied with arbitrary

classifier learners, it can be applied to many, including any classifier which only

uses the data to calculate expectations. We show empirically in Section IV.D.l

that this method results in good performance. The black box approach has the

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

advantage that it can be applied to any classifier learner. It turns out, however,

that simple resampling-with-replacement can result in severe overfitting related to

duplicate examples), as is confirmed by our experimental results in Section IV.D.2.

We propose, instead, to employ cost-proportionate rejection sampling to

realize the latter approach, which allows us to independently draw examples ac­

cording to D. (In essence, this method accepts each example in the input sample

with probability proportional to its associated weight.) This method comes with a

theoretical guarantee: In the worst case this sampling method produces a classifier

that achieves at least as good approximate cost minimization as applying the base

classifier learning algorithm on the entire sample. This is a remarkable property

for a subsampling scheme: in general, we expect any technique using only a subset

of the examples to compromise predictive performance.

The runtime savings made possible by this sampling technique enable

us to run the classification algorithm on multiple draws of subsamples and aver­

age over the resulting classifiers. This last method is what we call costing (cost-

proportionate rejection sampling with aggregation). Costing allows us to use an

arbitrary cost-insensitive learning algorithm as a black box in order to accomplish

cost-sensitive learning, achieves excellent predictive performance and can achieve

drastic savings of computational resources, both in terms of time and space.

IV .A A Folk Theorem

In the importance formulation (see Chapter II, section II.A.2) we assume

that examples are drawn independently from a distribution D with domain X x

Y x C where X is the input space to a classifier, Y is a (binary) output space

and C C [0, oo) is the importance (extra cost) associated with mislabeling that

example. The goal is to learn a classifier h : X -+ Y which minimizes the expected

cost,

Ex,%/,c~£>[c-f(h(:r) 7̂ 2/)]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

given training data of the form: (x , y, c), where /(•) is the indicator function that

has value 1 in case its argument is true and 0 otherwise.

A basic folk theorem states that if we have examples drawn from the

distribution:

D (x , y, c) = - —̂ rrrDix, y, c)
*-Jx,y,c~D [CJ

then optimal error rate classifiers for D are optimal cost minimizers for data drawn

from D . We say “folk theorem” here because the result appears to be known by

some and it is straightforward to derive it from results in decision theory, although

we have not found it published.

Theorem IV .A .I. (Translation Theorem) For all distributions, D , there exists a

constant N = E XiytĈ D[c] such that for all classifiers, h:

^ I/)] = T7 E x<y>ĉ D[cI(h(x) ± y)]

Proof.

E x<y,c~D[cI{h(x) ± y)} = ^ D (x, y, c)c I(h (x) ± y)
x,y,c

= N ^ 2 D{x, y, c)I(h(x) ± y)
x,y,c

= N E ^ tk m x) # »)]
a c

where D (x , y, c) = j^ D (x , y, c).

□

Despite its simplicity, the translation theorem is useful to us because the

right-hand side expresses the expectation we want to control (via the choice of h)

and the left-hand side is the probability that h errs under another distribution.

Choosing an h to minimize the rate of errors under D is equivalent to choosing

a h to minimize the expected cost under D. Similarly, e-approximate error rate

minimization under D is equivalent to Ne-approximate expected cost minimization

under D.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

The prescription for coping with cost-sensitive problems is straightfor­

ward: reweight the distribution in your training set according to the importances

so that the training set is effectively drawn from D. Doing this in a correct and

general manner is more challenging than it may seem and is the topic of the rest

of the chapter.

IV .B Transparent Box: Using W eights D irectly

IV .B .l General conversion

Here we examine how importance weights can be used directly. The

approach taken here is a transparent box approach where access to the source code

is required, and not a black box approach (which we develop in the next section).

In particular, we use the weights within the learning algorithm to accomplish cost-

sensitive classification.

The mechanisms for realizing the transparent box approach have been

described elsewhere for a number of weak learners used in boosting, but we will

describe them here for completeness.

The classifier learning algorithm must use the weights so that it effectively

learns from data drawn according to D. This specific requirement is easy to apply

for all learning algorithms which fit the statistical query model [46].

As shown in figure IV.B.l, many learning algorithms can be divided into

two components: a portion which calculates the (approximate) expected value of

some function (or query), say / , and “the rest”— a portion which forms these

queries and uses their output to construct a classifier. For example, neural net­

works (with batch-mode gradient updates), decision trees, and Naive Bayes clas­

sifiers can be constructed in this manner. Support vector machines are not easily

constructible in this way, because the individual classifier is explicitly dependent

upon individual examples (rather than on statistics derived from the sample set).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

Learning
Algorithm

Query
Oracle

Query/ReplyQuery/Reply
Pairs

Figure IV.B.l: A figure showing the statistical query model of learning algorithms.

For any learning algorithm decomposable in this form, there is a generic method

for learning from a reweighted distribution directly.

W ith finite data we cannot precisely calculate

However, with high probability we can approximate this expectation, given a set

of samples drawn independently from the underlying distribution D.

Whenever we have a learning algorithm that can be decomposed as in

figure IV.B.l, there is a simple recipe for using the weights directly. Instead of

simulating the expectation with

bution D , and so the modified expectation is an unbiased Monte Carlo estimate

of the expectation w.r.t. D.

Note that even when a learning algorithm does not have a statistical

query form, it may be possible to incorporate importance weights directly. We

E x^ D[f{x ,y) \ .

we use

This method is equivalent to importance sampling for D using the distri-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

now discuss how to incorporate importance weights into some specific learning

algorithms.

IV.B.2 Naive Bayes and boosting

Naive Bayes learns by calculating empirical probabilities for each output

y using Bayes’ rule and assuming that each feature is independent given the output:

P / i n _ P(Ay)P{y) _ I\jP(xi\y)P(y)
{ Vl) P (x) U i P (X i)

Each probability estimate in the above expression can be thought of as a

function of empirical expectations according to D, and thus it can be formulated

in the statistical query model. For example, p{xi\y) is just the expectation of

/(x i = Xi) Al (y = y)

divided by the expectation of I (y = y).

More specifically, to compute the empirical estimate of P(xi\y) with re­

spect to D, we need to count the number of training examples that have y as

output, and those having Xi as the z-th input dimension among those. When we

compute these empirical estimates with respect to D, we simply have to sum the

weight of each example, instead of counting the examples. (This property is used

in the implementation of boosted Naive Bayes [26].)

To incorporate importance weights into AdaBoost [33], we give the im­

portance weights to the weak learner in the first iteration, thus effectively drawing

examples from D. In the subsequent iterations, we use the standard AdaBoost

rule to update the weights. Therefore, the weights are adjusted according to the

accuracy on D, which corresponds to the expected cost on D.

Note that AdaCost [31], a variant of AdaBoost for cost-sensitive learn­

ing, has also been proposed. AdaCost uses a modified update rule to incorporate

costs and improved performance is observed. In contrast, Proposition IV.A. 1 im­

plies that such a modification is not necessary if we start with examples drawn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

from D. This may seem contradictory, but note that Proposition IV.A. 1 is purely

about error translation and not about learning algorithm design. From the view­

point of the proposition, AdaCost is a learning algorithm with a different bias

than the AdaBoost bias. Just as other boosting algorithms such as LogitBoost

[34] are sometimes superior to AdaBoost, AdaCost may be sometimes superior to

AdaBoost.

IV.B.3 C4.5

C4.5 [66] is a widely used decision tree learner. There is a standard

way of incorporating example weights to C4.5, which in the original algorithm

was intended to handle missing attributes (examples with missing attributes were

divided into fractional examples, each with a smaller weight, during the growth of

the tree). This same facility was later used by Quinlan in the implementation of

boosted C4.5 [67].

IV.B.4 Support Vector Machine

In its basic form, the SVM algorithm [86, 44] learns the parameters a and

b describing a linear decision rule

h(x) = sign(a • x + b),

so that the smallest distance between each training example and the decision

boundary (called the margin) is maximized. It works by solving the following

optimization problem:

minimize: V(a, b, f) = | a • a + C &

subject to: V* : yi[a • X{ + b\ > 1 — £j, & > 0

The constraints require that all examples in the training set are classified correctly

up to some slack If a training example lies on the wrong side of the decision

boundary, the corresponding & is greater than 1. Therefore, 1S an upper

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

bound on the number of training errors. The factor C is a parameter that al­

lows one to trade off training error and model complexity. The algorithm can be

generalized to non-linear decision rules by replacing inner products with a kernel

function [86] in the formulas above.

The SVM algorithm does not have the form of a statistical query algo­

rithm. Despite this drawback, it is possible to incorporate importance weights in a

heuristic way. First, we note that where Cj is the importance of example

i, is an upper bound on the total cost. Therefore, we can modify V(a,b,£) to

V(a, b, £) = ±a • a + C £ " =1 Cj&.

Now C controls the trade off model complexity and total cost.

The SVMLight package [45] allows users to input importance weights Cj

and works with the modified V(a,b,£) as above, although this feature has not yet

been documented.

IV.C Black Box: Sampling m ethods

Now suppose we do not have transparent box access to the learner. In this

case, sampling is the obvious method to use in converting from one distribution of

examples to another to obtain a cost-sensitive learner using the translation theorem

(Proposition IV.A.1). As it turns out, straightforward sampling methods do not

work well in this case, motivating us to propose an alternative method based on

rejection sampling.

IV .C .l Resampling

Resampling-with-replacement is a sampling scheme where each sample

(x , y, c) is drawn according to the distribution

p(x,y,c) = = r - ^ -----
2-*(x,i/,c)es

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

Many samples are drawn to create a resampled dataset S'. This method, at first

pass, appears useful because every sample is effectively drawn from the distribution

D . In fact, very poor performance can result when using this technique, which is

essentially due to overfitting because of the fact that the samples in S' are not

drawn independently from D , as we will elaborate in the section on experimental

results (Section IV.D.)

Resampling-without-replacement is also not a solution to this problem. In

resampling-without-replacement, a sample, (x , y, c) is drawn from the distribution

p {x ,y ,c) = = — ------
2-i(x ,y ,c)eS

and the next sample is drawn from the set S — {x, y, c}. This process is repeated,

drawing from a smaller and smaller set according to the weights of the samples

remaining in the set.

To see how this method fails, note that resampling-without-replacement

m times from a set of size m results in the original set, which (by assumption) is

drawn from the distribution D , and not D as desired.

IV .C.2 Cost-proportionate rejection sampling

There is another sampling scheme called rejection sampling [87] which

allows us to draw samples independently from the distribution D , given samples

drawn independently from D, and thus avoids the duplication problem. In rejection

sampling, samples from D are drawn by first drawing samples from D , and then

keeping the sample with probability proportional to D /D . Here, we have D / D oc c,

so we accept an example with probability c /Z , where Z is some constant chosen

so that

max c < Z,
(;x,y,c)€S

leading to the name cost-proportionate rejection sampling.

In practice, we choose the minimal

Z = max c
(x,y,w)eS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

so as to maximize the size of the resampled set S'. A data-dependent choice of

Z is not formally allowed for rejection sampling. However, the introduced bias

appears small when |Sj > > 1. A precise measurement of “small” is an interesting

theoretical problem.

Rejection sampling results in a set S' which is generally smaller than S.

Furthermore, because inclusion of a sample in S' is independent of other samples,

and the samples in S are drawn independently, we know th a t the samples in S'

are distributed independently according to D.

Using cost-proportionate rejection sampling to create a set S' and then

using a learning algorithm A(S') is guaranteed to produce an approximately cost-

minimizing classifier, as long as the learning algorithm A achieves approximate

minimization of classification error.

T heorem IV .C .l . (Correctness) For all cost-sensitive sample sets S, if cost-

proportionate rejection sampling produces a sample set S ' and A(S') achieves e

classification error:

then h = A(S") approximately minimizes cost:

Ex>y,c~D[cI(h{x) ± y)\ < eN

where N = E Xty tC„ D [c \ .

Proof. Rejection sampling produces a sample set S' drawn independently from D.

By assumption A(S') outputs a classifier h such that

,± y) \ < e

By the translation theorem (Proposition IV.A.1), we know that

Ex,y,c~b[I(h(x) ^ y)] = — Fi,y,c~D[c/(/i(a:) ^ y)]

Thus,

Ex^ D[cI(h(x) t£ y)] < e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

and

E x^ D[cI(h{x) ^ y)] < eN

□

IV .C .3 Sam ple com plex ity o f c o s t-p ro p o rtio n a te re je c tio n sam pling

The accuracy of a learned classifier generally improves monotonically with

the number of samples in the training set. Since cost-proportionate rejection sam­

pling produces a smaller training set (by a factor of about N / Z), worse performance

than observed using the original dataset may result.

This turns out to not be the case, in the agnostic PAC-learning model

[85,42, 47], which formalizes the notion of probably approximately optimal learning

from arbitrary distributions D.

D efin ition IV .C .l . A learning algorithm A is said to be an agnostic PAC-learner

for hypothesis class H , with sample complexity m (l / e , 1/8) if fo r all e > 0 and

6 > 0, m = ra(l/e , 1/5) is the least sample size such that for all distributions D

(over X x Y) , the classification error rate of its output h is at m ost e more than

the best achievable by any member of H with probability at least 1 — 5, whenever

the sample size exceeds m.

By analogy, we can formalize the notion of cost-sensitive agnostic PAC-

learning.

D efin ition IV .C .2 . A learning algorithm A is said to be a cost-sensitive ag­

nostic PAC-learner fo r hypothesis class H , with cost-sensitive sample complexity

ra(l/e , 1/5), if for all e > 0 and 8 > 0, m = m (l/e , 1/5) is the least sample size

such that for all distributions D (over X x Y x C) , the expected cost of its output

h is at most e more than the best achievable by any member of H with probability

at least 1 — 5, whenever the sample size exceeds m .

We will now use this formalization to compare the cost-sensitive PAC-

learning sample complexity of two methods: applying a given base classifier learn­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

ing algorithm to a sample obtained through cost-proportionate rejection sampling,

and applying the same algorithm on the original training set. We show that the

cost-sensitive sample complexity of the latter method is lower-bounded by that of

the former.

T h eo rem IV .C .2 . (Sample Complexity Comparison) Fix an arbitrary base clas­

sifier learning algorithm A, and suppose that m orig(1/e, 1/5) and 1/e, 1/5),

respectively, are cost-sensitive sample complexity of applying A on the original

training set, and that of applying A with cost-proportionate rejection sampling.

Then, the following holds.

m 0rig{ 1/e, 1/6) = ft(m rei(l/e , 1/5)).

Proof. Let m (l/e , 1/5) be the (cost-insensitive) sample complexity of the base clas­

sifier learning algorithm A. (If no such function exists, then neither m OTig(l/e , 1/5)

nor mrej(l/e , 1/5) exists, and the theorem holds vacuously.) Since Z is an upper

bound on the cost of misclassifying an example, we have that the cost-sensitive

sample complexity of using the original training set satisfies

w-orig(l/e, 1/5) = 0(m (Z /c, 1/5))

This is because given a distribution (over X x .Y) that forces e more classification

error than optimal, another distribution (over X x Y x C) can be constructed, that

forces eZ more cost than optimal, by assigning cost Z to all examples on which A

errs.

Now from Theorem IV.C.l and noting that the central limit theorem implies

that cost-proportionate rejection sampling reduces the sample size by a factor

of Q (N/Z), the cost-sensitive sample complexity for cost-proportionate rejection

sampling is:

m„i (1/e, 1 /i) = 8 (^ m (N/e, 1 / i)) . (IV.C.l)

A fundamental theorem from PAC-learning theory [25] states that

m(1/e, 1/5) = ft((l/e) ln(l/5)).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

When

m(l/e,l/<5) = ©((1/c) ln(l/<5)),

Equation (IV.C.l) implies:

mrei(l / £. l / i) = e (— ta (l/«))

= e(|in(i/«))
= © (m0rig (1/e, 1/5))

Finally, note that when m(1/e, 1/5) grows faster than linear in 1/e, we have

mrej(l/e , 1/5) = o(morig(l/e, 1/5)),

which finishes the proof. □

Note th a t the linear dependence of sample size on 1 /e is only achievable by

an ideal learning algorithm, and in practice super-linear dependence is expected,

especially in the presence of noise. Thus, the above theorem implies that cost-

proportionate rejection sampling minimizes cost better than no sampling for worst

case distributions.

This is a remarkable property about any sampling scheme, since one

generally expects that predictive performance is compromised by using a smaller

sample. Cost-proportionate rejection sampling seems to distill the original sample

and obtains a sample of smaller size, which is at least as informative as the original.

IV.C.4 Costing

From the same original training sample, different runs of rejection sam­

pling will produce different training samples. Furthermore, the fact that rejection

sampling produces very small samples means that the computational time required

for learning a classifier is generally much smaller.

We can take advantage of these properties to devise an ensemble learning

algorithm based on repeatedly performing rejection sampling from S to produce

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

C osting (L earn er A , Sam ple Set S, co u n t t)

1. For i = 1 to t do

(a) S' = re jec tio n sam ple from S

(b) Let hi = A(S')

2. O u tp u t h(x) = sign (£ i= i hi(x))

Table IV. 1: The costing algorithm.

multiple sample sets S {,..., S'm, and then learning a classifier for each set. The

output classifier is the average over all learned classifiers. We call this technique

costing. The pseudo-code for costing is shown in table IV. 1.

The goal in averaging is to improve performance. There are several em­

pirical and theoretical pieces of evidence suggesting that averaging can be useful.

On the empirical side, many people have observed good performance from bagging

despite throwing away a 1/e fraction of the samples (and the weakened overfitting

control as noted earlier). On the theoretical side, there has been considerable work

which proves that the “complexity” (ability to overfit) of an average of classifiers

might be smaller than naively expected when a large margin exists. The prepon­

derance of learning algorithms producing averaging classifiers provides significant

evidence that averaging is useful.

Note that despite the extra computational cost of averaging, the overall

computational time of costing is generally much smaller than for a learning al­

gorithm using sample set S (with or without weights). This is the case because

most learning algorithms have running times that are super-linear in the number

of examples.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

KDD-98:
Method W ithout Weights With Weights
Naive Bayes 0.24 12367
Boosted NB -1.36 14489
C4.5 0 118
SVMLight 0 13683

DMEF-2:
Method Without Weights W ith Weights
Naive Bayes 16462 32608
Boosted NB 121 36381
C4.5 0 478
SVMLight 0 36443

Table IV.2: Test set profits on the KDD-98 and DMEF-2 datasets using the trans­

parent box approach.

IV.D Experim ental results

We show empirical results using the two real-world cost-sensitive datasets

described in Chapter II, Section II.C: KDD-98 and DMEF-2.

IV .D .l Transparent box results

Table IV.2 shows results obtained when we apply Naive Bayes, boosted

Naive Bayes (100 iterations) C4.5 and SVMLight to both the KDD-98 and the

DMEF-2 datasets, with and without the importance weights.

W ithout giving the costs as weights, the classifiers label very few of the

examples positive, resulting in small (and even negative) profits. W ith the costs

given as weights to the learners, the results improve significantly for all learners,

except C4.5. Cost-sensitive boosted Naive Bayes gives results comparable to the

results obtained in Chapter III.

We optimized the parameters of the SVM by cross-validation on the train­

ing set. Without weights, no setting of the parameters prevented the algorithm

of labeling all examples as negatives. With weights, the best parameters were a

polynomial kernel with degree 3 and C = 5 x 10~5 for KDD-98 and a linear kernel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

with C — 0.0005 for DMEF-2. However, even with this parameter setting, the

results are not so impressive. This may be a relatively hard problem for margin-

based classifiers because the data is very noisy. Note also that running SVMLight

on this dataset takes about 3 orders of magnitude longer than AdaBoost with 100

iterations on the same machine.

The failure of C4.5 to achieve good profits when given the costs as weights

is probably related to the fact that the standard facility for incorporating weights

provided in the algorithm is heuristic. So far, it has been used only in situations

where the weights are fairly uniform (such as is the case for fractional instances

due to missing da ta). These results indicate that it might not be suitable for situ­

ations with highly non-uniform costs. The fact that it is non-trivial to incorporate

costs directly into existing learning algorithms is the motivation for the black box

approaches that we present here.

IV.D.2 Black box results

Table IV.3 shows the results of applying the same learning algorithms

to the KDD-98 and DMEF-2 data using resampled training sets of different sizes.

For each size, we repeat the experiments 10 times with different resampled sets to

get mean and standard error (in parentheses). The training set profits are on the

original training set from which we draw the resampled sets.

These results here confirm that straightforward application of resampling

to implement the black box approach can result in very poor performance, as we

remarked earlier. The poor performance of resampling is essentially due to overfit­

ting. When there are large differences in the magnitude of importance weights, it

is typical for an example to be picked twice (or more). In table IV.3, we see that

as we increase the resampled training set size and, as a consequence, the number

of duplicate examples in the training set, the more overfitting we see for C4.5. The

training profit becomes larger while the test profit becomes smaller.

Examples which appear multiple times in the training set of a learning

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

1000:

KDD-98 DMEF-2
Training Test Training Test

NB
BNB
C4.5
SVM

11251 (330)
11658 (311)
11124 (255)
10320 (372)

10850 (325)
11276 (383)
9548 (331)
10131 (281)

33298 (495)
33902 (558)

37905 (1467)
28837 (1029)

34264 (419)
30304 (660)
24011 (1931)
30177 (1196)

10000 :

KDD-98 DMEF-2
Training Test Training Test

NB
BNB
C4.5
SVM

12811 (155)
13838 (65)

22083 (271)
11228 (182)

11993 (185)
12886 (212)
7599 (310)
11015 (161)

32742 (793)
34802 (806)
67960 (763)

31263 (1121)

33956 (798)
31342 (772)
9188 (458)

32585 (891)

100000:
KDD-98 DMEF-2

Training Test Training Test
NB

BNB
C4.5
SVM

12531 (242)
14107 (152)
40704 (152)
13565 (129)

12026 (256)
13135 (159)
2259 (107)
12808 (220)

33511 (475)
34505 (822)

72574 (1205)
34309 (719)

34506 (405)
31889 (733)
3149 (519)

33674 (600)

Table IV.3: Profits on the KDD-98 and DMEF-2 datasets using resampling.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

algorithm can defeat complexity control mechanisms built into learning algorithms.

For example, suppose that we have a decision tree algorithm which divides the

training data into a “growing set” (used to construct a tree) and a “pruning set”

(used to prune the tree for complexity control purposes). If the pruning set contains

examples which appear in the growing set, the complexity control mechanism is

defeated.

This observation has implications for the practice of bagging, although the

loss of complexity control is not as severe as observed here. Uniform resampling

from a set of size m, m times produces only about ™ duplicates. Since (with

high probability) not all examples are duplicates, complexity control in bagging

is only weakened and not removed. We note that Fan et al [32] have proposed a

modification to bagging, in which partitioning is used in place of resampling to

address this issue.

Although not as markedly as for C4.5, we see the same phenomenon for

the other learning algorithms. In general, as the size of the resampled size grows,

the larger is the difference between the training set profit and test set profit. And,

even with 100000 examples, we do not obtain the same test set results as giving

the weights directly to Boosted Naive Bayes and SVM.

The fundamental difficulty here is that the samples in S' are not drawn

independently from D. In particular, if D is a density, the probability of observing

the same example twice given independent draws is 0, while the probability using

resampling is greater than 0. Thus resampling-with-replacement fails because the

resampled set S' is not constructed independently.

Figures IV.D.l and IV.D.2 shows the results of costing on the KDD-

98 and DMEF-2 datasets, with the base learners and Z = 200 or Z = 6247,

respectively. We repeated the experiment 10 times for each t and calculated the

mean and standard error of the profit. The results for t — 1, t = 100 and t — 200

are also given in table IV.4.

In the KDD-98 case, each resampled set has only about 600 examples,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

Costing NB: KDD-98 Dataset „ 10« Costing BNB: KDD-98 Dataset

1

t

I
0.

t

Costing C45: KDD-98 Dataset«to*

8o.

t

g
CL

t

Figure IV.D.l: Costing. The graphs shows how the KDD-98 test set profit grows

as the number of resampled sets is increased from 1 to 200.

KDD-98:
1 100 200

NB
BNB
C4.5
SVM

11667 (192)
11377 (263)
9628 (511)
10041 (393)

13111 (102)
14829 (92)

14935 (102)
13075 (41)

13163 (68)
14714 (62)
15016 (61)
13152 (56)

DMEF-2:
1 100 200

NB
BNB
C4.5
SVM

26287 (3444)
24402 (2839)
27089 (3425)
21712 (3487)

37627 (335)
37376 (393)
36992 (374)
33584 (1215)

37629 (139)
37891 (364)
37500 (307)
35290 (849)

Table IV.4: Test set profits on the KDD-98 and DMEF-2 datasets using costing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

Costing NB: DMEF-2 D ataset Costing BNB: D M E F -2 D ataset
4

3.6

3.4

3.2

* 39

2.6

2.4

2.2

2
80 100 120 140 160 2000 20 40 60 160

Costing C4.5: DM EF-2 Dataset

g
a.

t

9a

t

Costing SVM: D M E F -2 D ataset

‘o
0.

t

Figure IV.D.2: Costing. The graphs shows how the DMEF-2 test set profit grows

as the number of resampled sets is increased from 1 to 200.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

because the importance of the examples varies from 0.68 to 199.32 and there are

few “important” examples. About 55% of the examples in each set are positive,

even though on the original dataset the percentage of positives is only 5%.

W ith t = 200, the C4.5 version yields profits around $15000, which is

exceptional performance for this dataset. In particular, these results are bet­

ter than the ones obtained with C4.5 using direct cost-sensitive decision-making

(Chapter III, table III.3), which yielded profits around 14000. The results with

Naive Bayes (profits around 13000), however, are worse than direct cost-sensitive

decision-making which yields profits around 15000.

In the DMEF-2 case, each set has only about 35 examples, because the

importances vary even more widely (from 2 to 6246) and there are even fewer

examples with a large importance than in the KDD-98 case. The percentage of

positive examples in each set is about 50%, even though on the original dataset it

was only 2.5%.

For learning the SVMs, we used the same kernels as we did in section

IV.B and the default setting for C. In that section, we saw th a t by feeding the

weights directly to the SVM, we obtain a profit of $13683 on the KDD-98 dataset

and of $36443 on the DMEF-2 dataset. Here, we obtain profits around $13100 and

$35000, respectively. However, this did not require parameter optimization and,

even with t = 200, was much faster to train. The reason for the speed-up is that

the time complexity of SVM learning is generally super-linear in the number of

training examples.

IV.E Conclusions

Costing is a technique which produces a cost-sensitive classifier using only

black box access to a classifier learning method. Conceptually, it is much simpler

than the methods for cost-sensitive learning by expected cost estimation presented

in Chapter III, because it does not require accurate class membership probability

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

estimates from the classifier and avoids the estimation of costs.

Furthermore, it is fast, results in good performance for a variety of classi­

fier learners and often achieves drastic savings in computational resources, particu­

larly with respect to space requirements. This last property is especially desirable

in applications of cost-sensitive learning to domains that involve massive amounts

of data, such as fraud detection, targeted marketing, and intrusion detection.

Another desirable property of any reduction is that it applies to the the­

ory as well as to concrete algorithms. Thus, the reduction presented in this chapter

allows us to automatically apply any future results in classifier learning to cost-

sensitive learning. For example, a bound on the future error rate of A(5') implies

a bound on the expected cost with respect to the distribution D. This additional

property of a reduction is especially important because cost-sensitive learning the­

ory is still young and relatively unexplored.

A disadvantage of costing is that, since it uses the importance formula­

tion, it only applies to two-class problems. Thus, a direction for future research is

the design of a similar algorithm for multiclass problems. If there are K classes,

the minimal representation of costs is K — 1 weights for each example, because

we have to account for the importance of misclassifying the example into each of

the incorrect classes. Margineantu [57] presents and evaluates different heuristic

methods for dealing with these weights in the case of fixed costs, such as using

the maximum weight or taking the average. Nonetheless, a general reduction from

example-dependent cost-sensitive learning to cost-insensitive learning is still an

open problem.

A cknow ledgm ents

The text of this chapter, in part, is a reprint of the material as it will appear in

the Proceedings of the 2003 IEEE International Conference on Data Mining [97]. The disserta­

tion author was the primary author, and the co-authors listed in this publication directed and

supervised the research which forms the basis for this chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter V

Calibrating classifier scores

Most existing learning methods produce classifiers that output ranking

scores along with the class label, but they do not output accurate class probability

estimates. In this chapter, we present a new method for obtaining calibrated

two-class probability estimates that can be applied to any classifier that produces

a ranking of examples. Besides being fast and very simple to understand and

implement, our method produces probability estimates that are comparable to or

better than the ones produced by other methods.

Current methods for transforming ranking scores into probability esti­

mates apply only to two-class problems. In this chapter, we present a method for

obtaining accurate multiclass probability estimates from ranking scores: we de­

compose the multiclass problem into a series of binary problems, learn a classifier

for each one of them, calibrate the scores from each classifier, and combine them

to obtain multiclass probabilities.

In Section V.A, we motivate the need for classifiers to output estimates of

class membership probabilities. In Section V.B, we review the notion of calibration

of probability estimates and show that although the scores produced by naive Bayes

and support vector machine (SVM) classifiers tend to rank examples well, they are

not well-calibrated. In Section V.C, we review previous methods for mapping

two-class scores into probability estimates, explain their shortcomings and present

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

our new method. In Section V.D we discuss how to combine calibrated two-class

probability estimates into calibrated multiclass probability estimates. In Section

V.E we present an experimental evaluation of these methods applied to naive Bayes

and SVM scores in a variety of domains. Finally, in Section V.F we summarize the

contributions in this chapter and suggest directions for future work in calibration.

V .A The need for class membership probability estim ates

Most classifier learning methods produce classifiers that output scores

s(x) for an example x, which can be used to rank examples from the most probable

member to the least probable member of a class c. That is, for two examples x

and y, if s(x) < s(y) than P(c\x) < P{c\y).

However, in many applications, a ranking of examples according to class

membership probability is not enough. W hat is needed is an accurate estimate of

the probability that each example is a member of the class of interest.

Class membership probability estimates are im portant when the classi­

fication outputs are not used in isolation but are combined with other sources

of information for decision-making. For example, in Chapter III, we presented

methods for cost-sensitive learning that depended on combining class membership

probability estimates with misclassification costs for accomplishing cost-sensitive

classification.

Another example is the use of classification as a component to a high-

level system that combines classifier results. This is the case, for example, in

handwritten character recognition and in speech recognition, where the outputs

from a classifier that recognizes single characters or phonemes are combined using

a Viterbi search or HMM [11].

Also, active learning based on uncertainty sampling [52] requires class

membership probability estimates. In this framework, the learner asks a teacher

to label a set of examples that is sampled from a pool of unlabeled examples with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

s(x) = 0.0 s(x) = 0.3 s(x) = 0.5 s(x)=1.0

0 - Negative example [l j - Positive example

Figure V.B.l: The concept of calibration.

weights that are inversely proportional to the class membership probabilities.

V .B Calibration definition and exam ples

Assume that we have a classifier tha t for each example x outputs a score

s(x) between 0 and 1. This classifier is said to be well-calibrated if the empirical

class membership probability P(c\s(x) = s) converges to the score value s (x) = s,

as the number of examples classified goes to infinity [59]. Intuitively, if we consider

all the examples to which a classifier assigns a score s(x) = 0.8, then 80% of these

examples should be members of the class in question. Figure V .B .l illustrates this

concept. Calibration is important if we want the scores to be directly interpretable

as the chances of membership in the class.

The calibration of a classifier can be visualized through a reliability di­

agram [18]. In the case where there is a small number of possible score values,

for each score value s, we compute the empirical probability P(c|s(:r) = s): the

number of examples with score s that belong to class c divided by the total number

of examples with score s. We then plot s versus P(c|s(:r) = s). If the classifier

is well-calibrated, all points fall into the x = y line, indicating th a t the scores are

equal to the empirical probability.

However, in practical situations, the number of possible scores is large

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

Adult Dataset The Insurance Company Dataset

2710

£ o.e

3

I

o. i
NB Score NB Score

Figure V.B.2: Reliability diagrams for NB. The numbers indicate how many ex­

amples fall into each bin (test set).

compared to the number of available test examples, so we cannot calculate reliable

empirical probabilities for each possible score value. In this case, we can resort to

discretizing the score space. But because the scores are not uniformly distributed,

we have to carefully choose bin sizes so that there are enough examples to calculate

reliable empirical probability estimates for each bin.

V .B .l Naive Bayes

Naive Bayesian classifiers assign to each test example a score between

0 and 1 that can be interpreted, in principle, as a class membership probability

estimate. However, it is well known that these scores are not well-calibrated [21].

Naive Bayes is based on the assumption that the attributes of examples

are independent given the class of the examples. Because attributes tend to be

correlated in real data, the scores s(x) produced by naive Bayes are typically too

extreme: for most x, either s(x) is near 0 and then s(x) < P(c\x) or s(rr) is near 1

and then s(x) > P(c\x). However, naive Bayesian classifiers tend to rank examples

well: if s(x) < s(y) then P(c|a:) < P(c\y).

In Figure V.B.2 we show reliability diagrams for two well-known datasets:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

Adult and TIC (see Section V.E for information on these datasets), where the

score space has been discretized into bins of size 0.1 and 0.15, respectively. As we

can see in the graphs, although tending to vary monotonically with the empirical

probability, naive Bayes scores are not well-calibrated because many of the points

do not fall into the x = y line.

V.B.2 Support Vector Machines

For each test example x, an SVM classifier outputs a score that is the

distance of x to the hyperplane learned for separating positive examples from

negative examples. The sign of the score indicates if the example is classified as

positive or negative. The magnitude of the score can be taken as a measure of

confidence in the prediction, since examples far from the separating hyperplane

are presumably more likely to be classified correctly.

Although the range of SVM scores is [—a, a] (where a depends on the

problem), we can map the scores into the [0,1] interval by re-scaling them. If f (x)

is the original score, then

s(x) = (f (x) + a)/2a (V.B.l)

is a re-scaled score between 0 and 1, such that if f (x) > 0 then s(x) > 0.5 and

if f (x) < 0 then s(x) < 0.5. However, these scores tend to not be well-calibrated

since the distance from the separating hyperplane is not exactly proportional to

the chances of membership in the class.

In Figure V.B.3 we show reliability diagrams for re-scaled SVM scores

using the Adult and TIC datasets, where the score spaces are discretized into bins

of size 0.08 and 0.15, respectively. We see that SVM scores vary monotonically

with the empirical probability, but are not well-calibrated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

AduH Dataset The Insurance Company Dataset

w 0.2

SVM Score (re-scaled) SVM score (re-scaled)

Figure V.B.3: Reliability diagrams for SVM. The numbers indicate how many

examples fall into each bin (test set).

V.C M apping scores into probability estim ates

Suppose we have a set of examples for which we know the true labels. In

this case we can assume that P{c\x) = 1 for positive examples and P(c\x) = 0 for

negative examples. If we apply the classifier to those examples to obtain scores

s(:r), we can learn a function mapping scores s(x) into probability estimates P(c\x).

If the learning method does not overfit the training data, we can use the same data

to learn this function. Otherwise, we need to break the training data into two sets:

one for learning the classifier and the other for learning the mapping function.

In any case, we need a regularization criterion to avoid learning a map­

ping function that does not generalize well to new data. One possible regulariza­

tion criteria is to impose a particular parametric shape for the function and use

the available data to learn parameters such that the function fits well the data

according to some measure.

The parametric approach proposed by P latt [63] for SVM scores consists

in finding the parameters A and B for a sigmoid function of the form

P (C \X) = j + £ A s (x) + B

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

Adult Dataset
The Insurance Company Dataset

£

1a
.9-£

5 0.7

£0
1t
Ui

3
SVM Score SVM Soore

Figure V.C.l: Mapping SVM scores into probability estimates using a sigmoid

function.

mapping the scores s(x) into probability estimates P(c\x), such th a t the negative

log-likelihood of the data is minimized.

This method is motivated by the fact that the relationship between SVM

scores and the empirical probabilities P(c\x) appears to be sigmoidal for many

datasets. This is the case for the Adult dataset, as can be seen in Figure V.C.l,

where we show the learned sigmoid using the training data and the empirical

probabilities for the test data, for Adult and TIC. P latt has shown empirically

that this method yields probability estimates that are at least as accurate as ones

obtained by training an SVM specifically for producing accurate class membership

probability estimates, while being faster.

The same method can be applied to naive Bayes. This was proposed by

Bennett [8] for the Reuters dataset. In Figure V.C.2 we show the sigmoidal fit

to the naive Bayes scores for the Adult and TIC datasets. The sigmoidal shape

does not appear to fit naive Bayes scores as well as it fits SVM scores, for these

datasets.

If the shape of the mapping function is unknown, we can resort to a

non-parametric method such as binning [94]. In binning, the training examples

are sorted according to their scores and the sorted set is divided into b subsets of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

Adult Dataset The Insurance Company Dataset

0 7 £
22
8aa.
i

8 0.6

?

tw

NB Soore NB Score

Figure V.C.2: Mapping NB scores into probability estimates using a sigmoid func­

tion.

equal size, called bins. For each bin we compute lower and upper boundary s(-)

scores. Given a test example x, we place it in a bin according to its score s(x). We

then estimate the corrected probability that x belongs to class c as the fraction of

training examples in the bin that actually belong to c.

A difficulty of the binning method is that we have to choose the number

of bins by cross-validation. If the dataset is small, or highly unbalanced, cross-

validation is not likely to indicate the optimal number of bins. Also, the size of

the bins is fixed and the position of the boundaries is chosen arbitrarily. If the

boundaries are such that we average together the labels of examples that clearly

should have different probability estimates, the binning method will fail to produce

accurate probability estimates.

We propose here an intermediary approach between sigmoid fitting and

binning: isotonic regression [70]. Isotonic regression is a non-parametric form of

regression in which we assume that the function is chosen from the class of all

isotonic (i.e. non-decreasing) functions.

If we assume that the classifier ranks examples correctly, the mapping

from scores into probabilities is non-decreasing, and we can use isotonic regression

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

to learn this mapping. A commonly used algorithm for computing the isotonic

regression is pair-adjacent violators (PAV) [3]. This algorithm finds the stepwise-

constant isotonic function that best fits the data according to a mean-squared error

criterion.

PAV works as follows. Let {xi}£Li be the training examples, g(xi) be

the value of the function to be learned for each training example Xi, and g* be the

isotonic regression. If g is already isotonic, then we return g* = g. Otherwise, there

must be a subscript i such that g(xt- 1) < g(xi). The examples Xj_i and Xi are called

pair-adjacent violators, because they violate the isotonic assumption. The values

of g(xi-1) and g(xi) are then replaced by their average, so that the examples £j_i

and Xi now comply with the isotonic assumption. If this new set of n — 1 values is

isotonic, then g*(xi-1) = g*(xi) = (<7(xj_i-|-<7(:rj))/2 , and g*(xj) = g(xj) otherwise.

This process is repeated using the new values until an isotonic set of values is

obtained. The computational complexity of this algorithm when implemented

efficiently is 0{n). An efficient implementation of PAV in MATLAB is made

available by Lutz Diimbgen [24].

When we apply this algorithm to the problem of mapping scores into

probability estimates, we first sort the examples according to their scores and let

g(xi) be 0 if X{ is negative, and 1 if Xi is positive. If the scores rank the examples

perfectly, then all negative Xi come before the positive Xj and the values of g are not

changed. The new probability estimate g* is 0 for all negative examples and 1 for

all positive examples. On the other hand, if the scores do not give any information

about the ordering of the examples, g* will be a constant function whose value

is the average of all values of g(xi), which is the base rate of positive examples.

Figure V.C.3 gives an example of the application of PAV.

In the general case, PAV will average out more examples in parts of the

score space where the classifier ranks examples incorrectly, and less examples in

parts of the space where the classifier ranks them correctly. We can view PAV as

a binning algorithm where the position of the boundaries and the size of the bins

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

1. Sort examples by increasing score.
0.0 0.01 0.01 0.02 0.2 0.9 0.9 0.95 0.98 1.0 0 0 0 0 0 0 0 0

2. If two adjacent examples violate isotonicity,
average their label values.

0 0 0 0,0
S 0 BiSE

0JH]0 0 0
100 0
10 0 00.5

Output: 0 0 0

Figure V.C.3: The PAV algorithm in action.

are chosen according to how well the classifier ranks the examples.

PAV returns a set of intervals and an estimate g(i) for each interval i,

such that g* (i + 1) > g*(i). To obtain an estimate for a test example x, we find the

interval i for which s(ar) is between the lowest and highest scores in the interval

and assign g*(i) as the probability estimate for x.

In Figure V.C.4, we show the result of applying PAV to the Adult dataset,

for both naive Bayes and SVM. The line shows the function that was learned on

the training data, while the stars show empirical probabilities for the test data.

V .D M ulticlass probability estim ates

The notion of calibration introduced in Section V.B can be readily applied

to multiclass probability estimates. Suppose we have a multiclass classifier that

output scores s(cj |rr) for each class Cj and each example x. The classifier is well-

calibrated if, for each class Cj, the empirical probability P(ci\s(ci\x) = s) converges

to the score value s(ci\x) = s, as the number of examples classified goes to infinity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

Adult Dataset Mult Dataset

Ia1Ck
.9- a
1
i
a5

1.8
tU)1

UJ

t
NB Score SVM Score

Figure V.C.4: Using the PAV algorithm to map naive Bayes and SVM scores into

probability estimates.

However, the calibration methods discussed in Section V.C were designed

exclusively for two-class problems. Mapping scores into probability estimates works

well in the two-class case because we are mapping between one-dimensional spaces.

In this setting, it is easy to impose sensible restrictions on the shape of the func­

tion being learned, as it is done with the sigmoidal shape or the monotonicity

requirements.

In the general multiclass case, the mapping would have to be from (k — 1)-

dimensional space to another (k — 1)-dimensional space. In this case, it is not clear

which function shape should be imposed to the mapping function. Furthermore,

because of the curse of dimensionality, non-parametric methods are not likely to

yield accurate probabilities when the number of classes grows. For these reasons,

we do not attem pt to directly calibrate multiclass probability estimates. Instead,

we first reduce the multiclass problem into a number of binary classification prob­

lems. Then we learn a classifier for each binary problems, and calibrate the scores

from each classifier. Finally, we combine the binary probability estimates to obtain

multiclass probabilities.

Two well-known approaches for reducing a multiclass problem to a set of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

binary problems are known as one-against-all and all-pairs. In one-against-all, we

train a classifier for each class using as positives the examples th a t belong to that

class, and as negatives all other examples. In all-pairs, we train a classifier for each

possible pair of classes ignoring the examples that do not belong to the classes in

question.

Allwein et al. [1] represent any possible decomposition of a multiclass

problem into binary problems by using a code matrix M G {—1,0, H-l}/c><f, where

k is the number of classes and I is the number of binary problems. If M(c, b) = +1

then the examples belonging to class c are considered to be positive examples

for the binary classification problem b. Similarly, if M(c,b) = —1 the examples

belonging to c are considered to be negative examples for b. Finally, if M(c, b) — 0

the examples belonging to c are not used in training a classifier for b.

For example, in the 3-class case, the one-against-all code matrix is

bi &2 h
Cl + 1 + 1 - 1

C2 - 1 - 1 + 1

C3 - 1 - 1 - 1

and the all-pairs code matrix is

bi 62 63

Cl + 1 + 1 0

C2 - 1 0 + 1

C3 0 - 1 - 1

These code matrices are a generalization of the error-correcting output

coding (ECOC) scheme [19]. The difference is tha t ECOC does not allow zeros in

the code matrix, meaning that all examples are used in each binary classification

problem.

For an arbitrary code matrix M, we have an estimate r ^ x) for each

column b of M, such that

rb(x) = P (\ / c\ V C, x) = y c € l P p } %
cei c e / u j Isc e iu J v I)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

where I and J are the set of classes for which M(-,b) = 1 and M(-,b) = — 1,

respectively. We would like to obtain a set of probabilities P(c\x) for each example

x compatible with the rb(x) and subject to P(c\x) = 1. Because there are k — 1

free parameters and I constraints, and we generally consider matrices for which

I > k — 1, this is an over-constrained problem for which there is no exact solution.

Two approaches have been proposed for finding an approximate solution

for this problem. The first is a least-squares method with non-negativity con­

straints proposed by Kong and Dietterich [49]. They have proposed this method

for the original ECOC matrices, but it can easily be applied to arbitrary matrices.

They test it on binary probability estimates from decision trees classifiers learned

using C4.5, which are known not to be well-calibrated [95, 64]. Using synthetic

data, they show that this method produces better estimates than multiclass C4.5.

The alternative method is called coupling, an iterative algorithm that

finds the best approximate solution minimizing log-loss instead of squared error

proposed by Zadrozny[93]. This method is an extension to the pairwise coupling

method by Hastie and Tibshirani[39], which only applies to all-pairs matrices.

The pseudo-code for coupling is given in table V .l. The algorithm was tested

using boosted naive Bayes [26] as the binary learner, whose scores tend to be even

less calibrated than naive Bayes scores because they are more extreme.

It is an open question which of the two existing m ethods for combin­

ing binary probability estimates yields the most accurate multiclass probability

estimates. A desirable property for such a method is that the better calibrated

the binary estimates are, the better calibrated the multiclass estim ates should be.

In the next section, we compare these methods experimentally on two multiclass

datasets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

1. Start with some guess for the P(c\x) and corresponding rb(x).

2. Repeat until convergence:

(a) For each c

P(c\x)+- P{c\z& + ^ - 1' M m =-' ~ ?[*?]
] C b s.t. M(c,b)~ 1 n bTb{%) + S.t. M{c ,b)-~ 1

(b) Re-normalize the P(c|a;).

(c) Recompute the f t(x).

Table V .l: The coupling algorithm.

V.E Experimental Evaluation

Here we present results of the application of the methods discussed in the

previous sections to a variety of datasets. Since the methods used for learning the

classifiers do not overfit the training data for these datasets, in all experiments we

use the same data for learning both the classifier and the calibration functions.

As the primary metric for assessing the accuracy of probability estimates,

we use the mean squared error (MSE), also known as the Brier score [16]. For one

example x , the squared error (SE) is defined as

SE(x) = £ (T (c|x) - P (c |i))2
c

where P(c|o;) is the probability estimated for example x and class c and T(c\x) is

defined to be 1 if the actual label of x is c and 0 otherwise. We calculate the SE

for each example in the training and test sets to obtain the MSE for each set.

DeGroot and Fienberg [18] show that the MSE can be separated into two

components, one measuring calibration and the other measuring refinement. If

the classifier is well-calibrated the first component is zero. For two classifiers that

are well-calibrated, the one for which the probability estimates P{c\x) are closer

to 0 or 1 is said to be more refined, because it makes predictions that are more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

MSE Profit
Method Training Test Training Test
NB
Sigmoid NB
PAV NB

0.10089
0.09542
0.09522

0.10111
0.09533
0.09528

$10083
$14134
$15685

$9531
$14120
$14447

Table V.2: MSE and profit on the KDD-98 dataset.

confident. If the two classifiers are well-calibrated, the one with the lowest MSE is

more refined, and thus, preferable.

Although MSE can be applied in general, it is more sensible to evaluate

the quality of probability estimates in practical situations using a domain-specific

metric. For example, in direct mailing, we should evaluate how good the probabil­

ity estimates are by the profit obtained when we mail people according to a policy

that uses the estimates. MSE tends to be correlated with profit [94], so when we

do not have domain-specific information to calculate profit we can use MSE to

evaluate our methods.

When the classifier is to be used for classification in a domain where

errors are equally costly, we can evaluate the probability estimates by assigning

each example x to its most likely class c*(x) = argmaxcP(c|:r) and calculating the

error rate. This metric does not assess the calibration of the estimates directly,

but calibration can potentially improve the error rate because the most likely class

can change.

V .E .l Two-class problems

The first dataset we use is the KDD-98 dataset, which is described in

detail in Chapter II, section II.C.

As we have seen in Chapter III, the optimal mailing policy for this domain

is to solicit people for whom the expected return

P(donation|a:)?/(x)

is greater than the cost of mailing a solicitation, where y(x) is the estimated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

KDD-98 Dataset

<s
SQ.

6 to 16 20 26
Number of bins

30 36 40 46 60
Number of bins

Figure V.E.l: Binning and PAV on the KDD-98 dataset. The figure on the left

shows results with Naive Bayes and the figure on the right shows results with SVM.

donation amount. We use fixed values for y(x) obtained using linear regression as

done in Chapter III, section III.D).

We use naive Bayes to estimate P(donation|x) and apply each of the

calibration methods discussed in Section V.C. Table V.2 shows MSE and profits for

the raw naive Bayes scores and the calibrated scores obtained using sigmoid fitting

and PAV. As expected, MSE and profit are significantly improved by calibration.

Although PAV overfits slightly the training data, it performs better than sigmoid

fitting. In figure V .E.l, we compare PAV to binning with bin sizes varying from

5 to 50. Although we did not have to set any parameters for the PAV method, it

performed comparably to the best parameter setting for binning, both for naive

Bayes and for SVM.

The next dataset we use is The Insurance Company Benchmark (TIC),

also known as the COIL 2000 dataset, which is available in the UCI KDD repos­

itory [6]. The decision-making task is analogous to the KDD-98 task: deciding

which customers to offer a caravan insurance policy. This dataset is also divided

in a standard way into a training set (5822 examples) and a test set (4000 exam­

ples). We use the same attributes as used for the winning entry of the COIL 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

Method Training Test
NB
Sigmoid NB
PAV naive Bayes

0.12845
0.10536
0.10315

0.13551
0.10905
0.10818

SVM
Sigmoid SVM
PAV SVM

0.11942
0.11080
0.10974

0.11889
0.11122
0.11200

Table V.3: MSE on the TIC dataset.

challenge [29].

Using the training set, we learn a model for the probability that a cus­

tomer has acquired a caravan insurance policy. Given the cost of mailing an offer

and the benefit of selling a policy (which depends on the customer), we could use

the probability that the customer will buy a policy to choose which customers

to mail an offer. However, since cost/benefit information is not available for this

dataset, we cannot actually make the decisions to report profits. So, we just re­

port the MSE for the different methods. We applied both naive Bayes and a linear

kernel SVM to this dataset (we used the SvmFu package [69] with C = 1).

We show the MSE results for the raw naive Bayes and SVM scores and

each calibration method in Table V.3. In order to obtain an MSE for SVM scores,

we first re-scale them as explained in Section V.B. Again, by using each of the

correction methods we are able to greatly improve the MSE for naive Bayes, but

PAV performs slightly better than sigmoid fitting. The MSE for SVM scores is

also reduced by the calibration methods. However, in this case sigmoid fitting is

best. As shown in figure V.E.2, we also compared PAV to binning with bin sizes

varying from 5 to 50 and found that PAV does slightly worse than binning with

the optimal number of bins.

We also applied each method to the Adult dataset, which is available in

the UCI ML Repository [10]. The prediction task is to determine whether a person

makes over $50K a year, given demographic information about the person. This

dataset is also divided in a standard way into a training set (32561 examples) and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

TIC Dataset TIC Dataset

8nn»d NB
PAV NB

§ 0.112

60
Number of binsNumber of bins

Figure V.E.2: Binning and PAV on the TIC dataset. The figure on the left shows

results with Naive Bayes and the figure on the right shows results with SVM.

a test set (16281 examples). We apply both naive Bayes and SVM to this dataset,

with no feature selection. For learning the SVM classifier, we use the SvmFu

package [69] and, as done by P latt [63], use a linear kernel SVM (C = 0.01) with

discretized features.

Table V.4 shows MSE and error rates for this dataset. The error rate

is calculated by classifying x as positive if P(c|a;) > 0.5, where belonging to c

indicates that x has income greater than $50K. Note that by calibrating the naive

Bayes scores, we reduce the error rate. This happens because 0.5 is not as good a

threshold for the raw scores, as it is for the calibrated scores. However, with SVM

the error rate is slightly increased when we apply the correction methods. This

indicates that although the SVM scores are uncalibrated, the threshold used for

classification is optimal. When the calibration methods are used, the error rate is

increased because the refinement of the classifier is slightly reduced.

Surprisingly, even though the shape of the function mapping SVM scores

to empirical probability estimates has a distinctive sigmoidal shape (Figure V.C.l),

the PAV method performs slightly better than the sigmoid fitting method.

In figure V.E.3, we compare PAV to binning with bin sizes varying from 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

MSE Error Rate
Method Training Test Training Test
NB
Sigmoid NB
PAV NB

0.25112
0.21530
0.20312

0.25198
0.21515
0.20452

0.17100
0.15270
0.14665

0.17321
0.15190
0.14831

SVM
Sigmoid SVM
PAV SVM

0.28719
0.20980
0.20815

0.28684
0.20962
0.20924

0.15190
0.15156
0.15115

0.14968
0.14993
0.15113

Table V.4: MSE and error rate on the Adult dataset.
Adult Dataset

Adult Dataset

Binned NB
N8

g 0.2115

q} 0.207

Number of binsso 100
Number of bins

Figure V.E.3: Binning and PAV on the Adult dataset. The figure on the left shows

results with Naive Bayes and the figure on the right shows results with SVM.

to 100 for both naive Bayes and SVM, and found tha t binning is always worse than

PAV. This indicates that, for this dataset, by using a fixed number of examples per

bin we cannot accurately model the mapping from SVM and naive Bayes scores

into calibrated probability estimates.

V.E.2 Multiclass problems

The first multiclass dataset we consider is Pendigits, available in the UCI

ML Repository [10]. It consists of 7494 training examples and 3498 test examples

of pen-written digits (10 classes). The digits are represented as vectors of 16

attributes which are integers ranging from 0 to 100.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

Method MSE Error Rate
NB Normalization
NB Least-Squares
NB Coupling

0.0326
0.0319
0.0304

0.1672
0.1672
0.1715

PAV NB Normalization
PAV NB Least-Squares
PAV NB Coupling

0.0241
0.0260
0.0260

0.1498
0.1498
0.1512

BNB Normalization
BNB Least-Squares
BNB Coupling

0.0163
0.0164
0.0160

0.0963
0.0958
0.1023

PAV BNB Normalization
PAV BNB Least-Squares
PAV BNB Coupling

0.0150
0.0150
0.0149

0.0946
0.0946
0.0935

Table V.5: MSE and error rate on Pendigits (test set).

For these experiments, we use a one-against-all code matrix. We use both

naive Bayes and boosted naive Bayes as the binary learners, and apply PAV to

calibrate the scores. As we mentioned in Section V.D there are two methods for

combining binary probability estimates into multiclass probability estimates for

arbitrary code matrices: least-squares and coupling. For one-against-all, however,

there is another possible method: normalization. Because in this case each binary

classifier i outputs an estimate of P(ci\x), we can simply normalize these estimates

to make them sum to 1.

Table V.5 shows MSE and error rate when we apply each of the methods

to naive Bayes, PAV naive Bayes, boosted naive Bayes and PAV boosted naive

Bayes. When we calibrate the probability estimates before combining them using

any of the methods, both the MSE and the error rate are lower than when we

use raw scores. However, it is not clear which of the methods for combining the

binary estimates is to be preferred. When the calibrated estimates are used it

makes less difference which method is used. For this reason, we recommend using

simple normalization for one-against-all, which is the simplest method.

The second multiclass dataset we use is 20 Newsgroups, which was col­

lected and originally used by Lang [50]. It contains 19,997 text documents evenly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

Method MSE Error Rate
NB Norm
NB LS
NB Coup

0.01625 (± 0.00049)
0.01720 (± 0.00045)
0.01585 (± 0.00041)

0.15836 (± 0.0067)
0.15530 (± 0.0064)
0.16066 (± 0.0075)

PAV NB Norm
PAV NB LS
PAV NB Coup

0.01220 (± 0.00038)
0.01419 (± 0.00029)
0.01415 (± 0.00029)

0.15305 (± 0.0060)
0.15299 (± 0.0057)
0.15422 (± 0.0060)

Table V.6 : MSE and error rate on 20 Newsgroups.

distributed across 20 classes. Because there is no standard training/test split for

this dataset, we randomly select 80% of documents per class for training and 2 0 %

for testing. We conduct experiments on 10 training/test splits and report mean

and standard deviation.

Previous research [6 8] found that one-against-all performed as well as

other code matrices for this dataset in terms of error rate, so we again restrict our

experiments to one-against-all. We calibrate the naive Bayes scores using PAV,

and apply each of the methods for obtaining multiclass probability estimates to

both the raw naive Bayes scores and the PAV scores. Table V . 6 shows MSE and

error rates for each method. We see that by applying PAV to the binary naive

Bayes scores, we can significantly reduce the MSE and slightly improve the error

rate. The lowest MSE is achieved when we first calibrate the scores using PAV

and then use normalization to obtain multiclass probability estimates.

V.F Conclusions

We have presented simple and general methods for obtaining accurate

class membership probability estimates for two-class and multiclass problems, us­

ing binary classifiers that output ranking scores. We have demonstrated experi­

mentally that our methods work well on a variety of data-mining domains and for

different classifier learning methods.

For two-class problems, we recommend using the PAV algorithm to learn

a mapping from ranking scores to calibrated probability estimates. For multiclass

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

problems, we first separate the problem into a number of binary problems, calibrate

the scores from each binary classifier using PAV and combine them to obtain

multiclass probabilities. We show experimentally that by calibrating the binary

scores we can improve substantially the calibration of the multiclass probabilities

obtained using one-against-all, the simplest way of breaking a multiclass problem

into binary problems.

For many domains, however, using more sophisticated code matrices can

yield better results, at least in terms of error rate [1]. Although we only con­

ducted experiments using one-against-all, our method is applicable to arbitrary

code matrices. More experiments are necessary to determine the best method for

combining the binary probability estimates in the general case. One open question

for future research is how to design an optimal code m atrix for obtaining accurate

class membership probability estimates.

A ckn ow led gm en ts

The text of this chapter, in part, is a reprint of the material as it appears in the

Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining [96]. The dissertation author was the primary author, and the co-author listed in

this publication directed and supervised the research which forms the basis for this chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter VI

Sample selection bias

One of the most common assumptions in the design of learning algorithms

is that the training data consist of examples drawn independently from the same

underlying distribution of examples about which the model is expected to make

predictions. In many real-world applications, however, this assumption is violated

because we do not have complete control over the data gathering process.

For example, suppose we are using a machine learning method to induce a

model that predicts what are the side-effects of a treatment for a given patient. Be­

cause the treatment is not given randomly to individuals in the general population,

the available examples are not a random sample from the population. Similarly,

suppose we are learning a model to predict the presence/absence of an animal

species given the characteristics of a geographical location. Since data gathering

is easier in certain regions than others, we would expect to have more data about

certain regions than others.

In both cases, even though the available examples are not a random

sample from the true underlying distribution of examples, we would like to learn

a predictor from the examples that is as accurate as possible for this distribution.

Furthermore, we would like to be able to estimate its accuracy for the whole

population using the available data.

This problem has received a great deal of attention in econometrics, where

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

it is called sample selection bias. There it appears mostly because data are collected

through surveys. Very often people that respond to a survey are self-selected,

so they do not constitute a random sample of the general population. As we

saw in Chapter III (Section III.D .l), Heckman [43] has developed a procedure for

correcting sample selection bias. The key insight in Heckman’s work is that if we

can estimate the probability that an observation is selected into the sample, we can

use this probability estimate to correct the model. The drawback of his procedure

is that it is only applicable to linear regression models.

Also, in statistics, the related problem of missing data has been considered

[54]. However, those methods are generally concerned with cases in which some of

the features of an example are missing, and not with cases in which whole examples

are missing.

In this chapter, we address the sample selection bias in the context of

learning and evaluating classifiers. In Section VI.A we formally define the sam­

ple selection bias problem in machine learning terms. Then, in Section VI.B we

present a new categorization of learning methods that is useful for characterizing

their behavior under sample selection bias and study how a number of well-known

classifier learning methods are affected by sample selection bias.

In Section VI.C, we present a bias correction method based on estimating

the probability that an example is selected into the sample and using rejection

sampling to obtain unbiased samples of the correct distribution. This method

bears resemblance to the cost-sensitive learning methods by example weighting

presented in Chapter IV and to weighting methods used in statistics for missing

data [54]. It can be used both for learning classifiers and, more importantly, for

evaluating a classifier using a biased sample.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

V I.A Definition

Standard classifier learning algorithms (implicitly or explicitly) assume

that we have examples (x, y), each drawn independently from a distribution D

with domain X x y where X is the feature space and y is a (discrete) label space.

Here, we assume that examples (x , y, s) are drawn independently from a

distribution D with domain X x y x S where X is the feature space, Y is the label

space and S is a binary space. The variable s controls the selection of examples

(1 means the example is selected, 0 means the example is not selected). We only

have access to the examples that have s = 1 , which we call the selected sample.

If the selected sample (ignoring s) is not a random sample of D we say that the

selected sample is biased.

There are four cases worth considering for the dependence of the selection

variable s on the example (x, y) 1:

1. If s is independent of x and independent of y, the selected sample is not

biased, that is, the examples (x, y, s) which have s = 1 constitute a random

sample from D (ignoring s).

2. If s is independent of y given x (that is P(s \x ,y) = P(s\x)), the selected

sample is biased but the biasedness only depends on the feature vector x.

3. If s is independent of x given y (that is P(s\x ,y) = P (s|t/)), the selected

sample is biased but the biasedness depends only on the label y. This cor­

responds to a change in the prior probabilities of the labels. This case has

been studied in the machine learning literature and there are methods for

correcting this type of bias [28, 9].

4. If no independence assumption holds between x, y and s , the selected sample

is biased and we cannot hope to learn a mapping from features to labels using

the selected sample, unless we have access to an additional feature vector

dn the statistics literature on missing data [54], cases (1), (2) and (4) are known as missing completely
at random (MCAR), missing at random (MAR) and not missing at random (NMAR), respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

x s tha t controls the selection (that is, P(s\xs,x ,y) = P(s \xs)) for all the

examples (even for the ones that have s = 0).

In econometrics, the usual assumption is (4) because the goal is to esti­

mate the parameters of a model for y that reflects the true dependence of y on

x. Any feature variable that only affects the selection should not be included in

x (and it is included in x s, instead). In machine learning, this is not a concern,

because we are mostly interested in maximizing accuracy and not in obtaining the

“correct” parameters for a model.

For this reason, we argue that the most important sample selection bias

case in the practice of classifier learning is case (2). In order to make the condition

P(s\x, y) = P(s|a;) true in practice, the input to the classifier x has to include

all the variables that affect the sample selection. For example, in the medical

treatment case, we need to include in x the variables about the patients that

the doctors use to decide who gets the treatment (even if they do not affect the

side-effects of the treatment directly).

Even if this assumption is not true in practice (either because we do not

have access to all the variables that control the selection or because it truly depends

directly on y), assuming case (2) is more realistic than the usual assumption of

case (1). In the rest of this chapter, sample selection bias will refer to case (2).

VI.B Learning under sample selection bias

We can separate existing classifier learners into two categories:

• local: the output of the learner depends only on P(y\x).

• global: the output of the learner depends on both P(x) and P(y\x).

The names “local” and “global” were chosen because P(x) is a global distribution

over the entire input space, while P(y\x) is a local distribution, for each value of

x.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

Local learners are not affected by sample selection bias because

P(y\x ,s = 1) = P(y\x)

while global learners are affected because the bias changes P(x).

Although this categorization is very simple theoretically, it is not straight­

forward to classify existing learning methods into it. Below, we study analytically

and experimentally how sample selection bias affects different types of classifiers

learning methods, including Bayesian classifiers, logistic regression, support vector

machines and decision trees.

V I.B .l Bayesian classifiers

Bayesian classifiers compute posterior probabilities P(y\x) using Bayes’

rule:

where P(x\y), P(y) and P(x) are estimated from the training data. An example

x is classified by choosing the label y that yields the highest posterior probability

P(y\x).

We can easily show that Bayesian classifiers are not affected by sample

selection bias. To see this is true, note that by using the biased sample as training

data, we are estimating P(x\y ,s = 1), P (x |s = 1) and P(y\s = 1) instead of

estimating P(x\y), P(y) and P(x). However, when we substitute these estimates

into the equation above and apply Bayes’ rule again, we see th a t we still obtain

the desired posterior probability P(y\x):

p M i , , a = w = i) _ „ , s _ 1}=
p(*l» = i) p (x \ s = i) - n w . s u p y v m

since we are assuming that y and s are independent given x. Note that even though

the estimates of P(x \y ,s = 1), P(x\s = 1) and P(y\s = 1) are different from the

estimates of P(x\y), P{x) and P{y), the differences cancel out. Therefore, bayesian

learners are local learners.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

In practice, we have a limited amount of training examples available to

estimate P(y\x). Compared to a random sample of the same size, the biased sample

contains more examples in parts of the feature space where P(s = l|x) is high and

less examples where P(s = l|a;) is low. This will lead to estimates of P(y\x) with

lower variance where P(s = l|x) is high and with higher variance where P(s = 1 |rc)

is low. However, as long as P(s = l|x) is greater than zero for all x, as we increase

the sample size, the results on a selected sample will asymptotically approach the

results on a random sample.

Naive Bayes

In practical Bayesian learning, we often make the assumption that the

features are independent given the label y, that is, we assume that

P{x 1, x 2, . . . , x n\y) = P (x l \y)P(x2 \y) . . . P (x n\y).

This is the so-called naive Bayes assumption.

W ith naive Bayes, unfortunately, the estimates of P(y \x) obtained from

the biased sample are incorrect. In this case the desired posterior probability

P(y\x) is estimated as
P(x\y ,s = l)P(y\s = 1)

P(x\s = 1)

= P (x i , x 2, ■.., xn\y, s = l)P (y |s = 1)
P(x\s = 1)

_ P(xi\v, s - l)P (x 2 \y, s = 1) . . . P (x n\y, s = l)P(y\s = 1)
P(x\s = 1)

which is different (even asymptotically) from the estimate of P(y\x) obtained with

naive Bayes without sample selection bias. We cannot simplify this further because

there are no independence relationships between each Xi, y and s. Therefore, naive

Bayes learners are global learners.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

YI.B.2 Logistic regression

In logistic regression, we use maximum likelihood to find the parameter

vector ft of the following model 2.

p (v — — ---
1 + ex p (^ o + P i x i + P 2X2 + • • • + f inx n)

W ith sample selection bias we will instead fit the parameters of

^ ̂ ̂ 1 + exp(/?o + P \ X \ + P 2X2 + • • • + P n x n)

However, because we are assuming that y is independent of s given x we have that

P(y = l|x , s = 1) = P(y = 1|®).

Thus, logistic regression is not affected by sample selection bias, except for the fact

that the number of examples is reduced. Asymptotically, as long as P(s = l|x)

is greater than zero for all x , the results on a selected sample will approach the

results on a random sample. In fact, this is true for any learning method that

models P(y\x) directly. These are all local learners.

Figure VI.B.l illustrates the effect of sample selection bias on logistic

regression for synthetically generated data, where x is one-dimensional. The graph

on the left-hand size shows 1 0 0 0 points where the x value is chosen uniformly

between - 1 0 and 1 0 and the y value is drawn with probabilities calculated using

a logistic function (/30=3 and A =2). The curve is the logistic function obtained

through maximum likelihood using the plotted points. The dashed line is the

separator between the two classes. The graph on the right-hand side shows a

selected sample of the points, where the probability of each point being selected is

proportional to its x value. We also show the logistic function obtained through

maximum-likelihood using the selected points. We can see in the graphs that

although the selected sample contains many less points on the negative side than

the original sample, the estimated curve and the resulting separator are the same.

2We show the two-class version; for the multiclass version see [41]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

-e -6 -2-4 0 0 2 4 e 6 102 4 fi e 10 -e -4

Figure VI.B.l: Logistic regression is unaffected by sample selection bias.

VI.B.3 Decision tree learners

Decision tree learners such as C4.5 [6 6] and CART [15] split the input

space x in a recursive, top-down manner. Figure VI.B.2 shows an example of a

decision tree for a direct marketing problem. Each branch is a test on the value of

one the features. For discrete features, the tree branches into nodes corresponding

to each of the possible feature values. For real-value features, the tree branches

into two nodes corresponding to some threshold on the feature. To predict the class

of a new example, we work down the tree, at each node choosing the appropriate

branch by comparing the example with the values of the variable being tested for

that node [38].

The splitting criteria used by different decision tree learners to grow a

tree vary, but they are all based on calculating the impurity of the nodes after the

split. For example, CART uses the GINI index

GINI(t) = l - £ P (y | *)
y

where p(y\t) is the relative frequency of class y at node t. The GINI index is at its

maximum when the examples are equally distributed among the classes and at its

minimum when all the examples belong to the same class. For each possible split

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

Income

Low Medium High
Don'
Mai! MailM a i l e d i n

l a s t 6 m o n th s ?

No Yes

Mail on'
Mail

Figure VLB.2: A decision tree.

of the data, CART calculates

£ ^G IN I(i)
i= 1

where k is the number of nodes induced by the split.

C4.5 uses information (or entropy) instead of the GINI index, which is

given by

INFO(t) = - ^ P (i , |() lo g P (» |i)
y

where P(y\t) is the relative frequency of class y at node t. Like the GINI index,

INFO is at its maximum when the examples are equally distributed among the

classes and at its minimum when all the examples belong to the same class.

Because the splitting criteria are dependent on P(y\t), where t is a test

on only one of the feature values, and, in general,

P (y \ t , s = 1) ^ P(y\t),

the splits chosen by the learners are sensitive to sample selection bias. Thus,

decision tree learners are global learners.

Even though the choice of each split is affected by sample selection bias,

the final tree may not be. If the tree splits the input space into small enough

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

rectangles, the proportion of examples of class y in each rectangle will be an un­

biased estimate of the probability of class y for that rectangle, even under sample

selection bias. Thus, the majority class will be the correct label for new examples

that fall into it.

V I.B .4 Support vector machines

In its basic form, the support vector machine (SVM) algorithm [8 6 , 44]

learns the parameters a and b describing a linear decision rule

h(x) = sign(a • x + b),

whose sign determines the label of an example, so that the smallest distance be­

tween each training example and the decision boundary (called the margin) is

maximized.

Given a sample of examples (£i,?/j), where yi € {—1,1}, it accomplishes

margin maximization by solving the following optimization problem:

minimize: V (a, b) = • a

subject to: Vi : yi[a • Xi + b] > I

The constraint requires that all examples in the training set are classified correctly.

Thus, sample selection bias will not systematically affect the output of such this

optimization, assuming that the selection probability P(s = l|x) is greater than

zero for all x.

Figure VI.B.3 illustrates the effect of sample selection bias on SVM for

synthetically generated data, where x is one-dimensional. The graph on the left-

hand size shows 500 points for each of two classes, generated from two different

two-dimensional gaussians. The line is the maximal margin separator. The graph

on the right-hand side shows a selected sample from these points where the prob­

ability of each point being selected is proportional to its x value. We also show

maximal marginal separator using the selected points. We can see in the graphs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

Figure VLB.3: SVM for separable data is unaffected by sample selection bias.

that although the selected sample contains many less points on the negative side

than the original sample, the resulting separator is not significantly altered.

In practice, a decision rule that classifies all the examples correctly may

not exist because of overlap of the classes. To allow for the possibility of misclassi-

fied examples, one introduces slack variables & > 0 for each example (xi, yi). This

is called a soft margin support vector machine classifier [72]. The optimization

problem is changed to

minimize: V(a, b, £) = \a • a + C &

subject to: V i: yi[a • Xi + b] > 1 — &, & > 0

If a training example lies on the wrong side of the decision boundary, the corre­

sponding & is greater than 1 . Therefore, an upper bound on the number

of training errors. The factor C is a parameter that allows one to trade off training

error and model complexity. We note that the algorithm can be generalized to

non-linear decision rules by replacing inner products with a kernel function [8 6] in

the formulas above.

Now, while sample selection bias does not affect the original SVM opti­

mization, it does affect the soft margin optimization because it optimizes the sum

of & values. By making regions of the feature space denser than others, sample

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

selection bias changes this sum and, with it, the decision boundary. Soft margin

SVM is a global algorithm because changes in P(x) will change the output.

V I.B .5 E x p e rim en ta l re su lts

To verify the effects of sample selection bias experimentally, we apply

Naive Bayes, logistic regression, C4.5 and SVMLight (soft margin) [45] to the

Adult dataset (see Chapter V, section V.E.l for information on this dataset). We

assume that the original dataset is not biased and artificially simulate biasedness

by generating a value for s for each example, such that s is correlated with one of

the input features. When training, we only use the examples in the training set

for which s = 1. When testing, we use all the examples in the test set, because

we are interested in measuring the performance of the classifiers on the original

distribution of examples.

Figure VI.B.4 shows the results of applying the different learners to the

Adult dataset using unbiased and biased training sets of increasing size. For each

size shown on the x-axis, we generated 50 unbiased samples from the original

Adult training set. We also generated 50 biased samples by assigning s such that

examples with feature age less than 30 are 9 times more likely to have s = 1 than

examples with age more than 30. We trained the learners using each of the 50

samples (in both the biased and unbiased cases) and tested each of the models

on the Adult test set, to obtain the mean and standard error of the error rate, as

shown in the graphs.

In accordance with our analysis, for logistic regression, the difference in

error rate between using biased or unbiased training sets goes down as we increase

the size of the training set. Also, as expected, we see th a t naive Bayes is very

sensitive to sample selection bias. The error rate using the biased sample goes up

as we increase the number of training examples.

On the other hand, surprisingly, C4.5 performs very well under sample

selection bias. This might be explained by the fact that even though the choice of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

Logistic regression Naive

Q>flj
Iiui UJ

^ 'I' f - 1 - i - i - i - i - l ^ i - i - t -i- i - 1

Training se t s izeTraining s e t size

C4.5

XlO*x 104

& Q)S
iui UI

Training se t s izeTraining se t size x 10*

Figure VLB.4: Error rate using biased (dotted) and unbiased (dashed) training

sets. Each point indicates the mean error rate for a given sample size and the

error bars show the standard error of the error rate. These were computed using

50 different training sets for each size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

splits is biased, the class estimates at the leaves are not. More experiments with

different types of selection biases are necessary to understand the effect of sample

selection bias on decision tree learners.

W ith SVM, we see that the error rate using the biased training set de­

creases as the training set sizes increases. However, the difference between the

error rates using biased and unbiased samples does not decrease. This indicates

that, asymptotically, SVM (with soft margin) is affected by sample selection bias.

VI.C Correcting sample selection bias

In the last section, we saw that some classifier learning methods are af­

fected by sample selection bias, while others are not. In this section, we present a

bias correction method that can be applied to any classifier learner, provided that

we have a model for the selection probabilities P(s = 1 |rr). The method works

by correcting the distribution of examples through re-sampling and then apply­

ing the classifier learner to the corrected sample.lt bears resemblance to weighting

methods proposed in the statistics literature for missing data [54] and also to the

cost-sensitive learning by example weighting methods presented in Chapter IV.

Classifier learners try to find h to minimize the expected value of loss

function over the distribution of examples given by

y)] .

The loss function is, in many cases, given by an indicator of error I(h(x) ^ y), but

we make the analysis more general by considering an arbitrary loss function (such

as the one used in cost-sensitive learning).

Under sample selection bias, a classifier learner will minimize instead

E Xty tSr v £) [l (h (x) , y) \ s = l]

because only the examples with s = 1 are available to the learner.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

Assume that we know the selection probabilities P(s = l|a;) and that

they are greater than zero for all x. Let D be a new distribution such that

where P(s — 1) = Y2^x<ytS)^D P(s = l , x) is the overall selection probability.

The following theorem shows that if we change the distribution of exam­

ples from D to D, we will obtain the desired expected value under sample selection

bias.

T h eo rem V I .C .l . (Bias Correction Theorem) For all distributions, D, for all

classifiers, h, for any loss function I — l(h(x),y), if we assume that P(s = 1|x,y) =

P(s = l |x) (that is, s and y are independent given x) then

Ex<ŷ D[l{h{x),y)) = Ex ^ b {l(h{x),y)\s = 1]

Proof.

E x , y , s ~ b [K H x) , y) \ s = 1] = J 2 l { h { x) , y) P b (x , y \ 8 = l)
x,y

= J2 l^ x ŷ p̂b(x ŷ\s = 1)
*,y

x,y 17

- X ' K h (x) v) Pd (s = 1>> Pd {s = l \ x ,y)P D{x,y) 2^mxhy)pD{s = 1\x) Pd{s=: i)
= ^ 2 l(h {x) ,y)PD{x ,y)

x,y

= EX0 „D[l(h(x),y)]

□

The left-hand side {Ex>y~D[l{h(x), y)]) is the expected value tha t we would

like to minimize but cannot directly under sample selection bias. The right-hand

side {E s„fi[l(h(x), y)|s = 1]) can be minimized as long as we can draw examples

from D.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

As we have seen in Chapter IV obtaining a sample from a weighted distri­

bution given a finite set of training examples is not completely straightforward. We

have demonstrated that costing, a method based on rejection sampling, achieves

the best results in practice. For this reason, we recommend using costing for sample

selection bias correction, where instead of using misclassification costs as weights

we use the selection ratio P(s — 1)/P(s = l|x) as a weight for each example.

Up to now, we have assumed that we know the selection probabilities

P(s = l|x). In practice, we would have to estimate these from data. If we have a

sample (x,s) ~ D (note that y is not necessary), we can use it to estimate these

probabilities using a classifier learning method along with the calibration methods

presented in Chapter V. Note that this is a two-class problem, since s takes values

This assumes that we have unlabeled examples drawn from the true un­

derlying distribution and can determine whether they are selected or not. This is

a situation that is likely to occur in practice. For example, in medical treatment,

we only know the outcome of the treatment (y) for patients x tha t were given the

treatment (s = 1). On the other hand, we can come up with examples of the form

(x, s) that are drawn from the population as a whole.

V I.C .l Evaluation under sample selection bias

In evaluation, for a given a classifier h, we would like to obtain an estimate

of the loss of the classifier, given by

P'x,y~D[l{h'{x), y)\.

Usually this is done by applying the classifier to a set of test examples

drawn from D and obtaining the empirical loss on the test examples

in {0 , 1 }.

where m is the number of available examples.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

However, under sample selection bias, since we only see the examples for

which s = 1 , we instead obtain an estimate of

which in general is not an unbiased estimate of the loss of the classifier.

As we have seen in Section VI.B, local learning methods are insensitive

to sample selection bias. However, the evaluation step is always affected by sample

selection bias because we are calculating an expected value over the whole input

space (which is always “global”). Therefore, we argue that accounting for sample

selection bias on the evaluation step is more important than accounting for sample

selection bias during learning.

We can use the bias correction theorem (theorem V I.C .l) for evaluating a

classifier if we have estimates of the selection probabilities P(s = l|a;). We simply

have to weigh each example by P(s = 1) /P (s = l|x) when calculating the expected

loss on the biased test sample. Thus, the empirical loss is given by

Again, in practice, we would have to estimate P(s = l |x) and P(s = 1)

from a set of examples.

VI.C.2 Example

To illustrate how the bias correction method works, we constructed an

example using the KDD-98 competition dataset described in Chapter II. This

example is artificial in the sense that we assume we know the selection probabilities

P(s = l|x) and we enforce the selection of examples using these probabilities. By

doing this, we can compare the estimates of the expectation obtained using the

whole sample and using the selected sample (corrected and uncorrected).

E x,y>s~ D [l (h { x) , y) \ s = 1],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

The KDD-98 dataset contains information about persons who have made

donations in the past to a particular charity. For the purpose of this example,

we only need to look at two variables: income and amount. Income is a variable

that takes values in {0 , 1 , 2 , 3 , 4 , 5 , 6 ,7} and indicates the different levels of income

(from lower to higher). Amount is how much the person has donated (in dollars)

in the last donation campaign. We only use examples of people th a t have donated

in the last campaign.

In the notation of the theorem, income is x and amount is I. (We chose to

side-step the classifier h(x) and the label y and assume we have the loss I directly

for each example).

Suppose that s is such that

f 0.3 if a? € {0,1,2,3}
P (S = l \ X = x) = I

y 0.9 if x € {4 ,5 ,6 , 7}

In this case, the overall probability of selection P(s = 1) is 0.6.

The empirical estimate of the expected amount obtained by averaging

the amounts of all the examples is 15.62. Because there is a positive correlation

between income and donation amount, if we select the examples according to the

probabilities above, we will overestimate the expected amount.

To demonstrate this experimentally we can assign s values for each ex­

ample according to the probabilities above and calculate the empirical mean of I

using only the examples that have s = 1. By repeating this for 1000 different ran­

dom draws of s, i.e., 1 0 0 0 different selected samples, we obtain the distribution of

estimated expected values of Y seen in Figure VI.C.l. The vertical dashed line (on

the left side) shows the estimated expected amount using the whole sample. The

graph shows that, by using only the selected examples to estimate the expected

value of I, we consistently overestimate it, as expected.

In contrast, Figure VI.C.2 shows the distribution of estimated expected

values for I, when we use only the selected examples but apply the bias correction

method. The distribution is centered near the value estimated from the whole

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

Uncorrected estim ate of the expected value of I

Figure VI.C.l: Distribution of the u n co rre c ted estimates of expected amount

(I) when different selected samples are used. The vertical dashed line shows the

estimated expected value using the whole sample.

sample (and the mean is 15.62). Therefore, we can conclude that, in fact, the

proposed method succeeds at correcting the bias. We note, however, that the

variance is increased when we use the correction method (from 0.0170 to 0.0434).

In this case, we knew the selection probabilities, so we used them directly.

In a more realistic case, these probabilities would have to be estimated from data.

VI.D Conclusions

In this chapter we have presented a formal definition of the problem of

sample selection bias in classifier learning. By studying the behavior of different

classifier learners under sample selection bias analytically and experimentally, we

separated existing classifier learners into two categories:

• local: the behavior of these learners only depends on P(y\x). Examples:

logistic regression, SVM (without soft margin).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

0.25 -

15 15.2 15.4 15.6 15.8 16 16.2 16.4
Corrected estimate of the expected value of I

Figure VI.C.2: .

Distribution of the co rrec ted estimates of expected amount (/) when different

selected samples are used. The vertical dashed line shows the estimated expected

value using the whole sample.

• global: the behavior of these learners depends on both P (x) and P(y\x).

Examples: naive Bayes, SVM (with soft margin), decision tree learners.

While global learners are affected by sample selection bias, local learners

are not. This is a new categorization that is different than the more usual catego­

rization of learning methods into discriminative and generative learners [61]. As

we have seen in Section VI.B.l, although generative (or Bayesian) methods model

P(x\y), P(y) and P{x), their behavior is generally independent of P(x) (although

this is not true for naive Bayes).

This categorization is also useful for characterizing situations in which

we can learn from both labeled and unlabeled data, an area of research that has

received some attention in recent years (see, for example, [80]). Clearly, global

learners can take advantage of unlabeled data, while local learners cannot.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

For global learners, we showed that we can still learn correctly under

sample selection bias if we have data to estimate the selection probabilities P(s =

l|:r). Also, we showed how to evaluate a classifier using a biased sample and

the estimates of the selection probabilities. The calibration methods presented

in Chapter V can be used for obtaining these estimates using classifier learning

methods.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter VII

Reinforcement learning

w ith traces

In this chapter we give an overview of reinforcement learning and for­

mally define the policy mining problem using the Markov Decision Process (MDP)

framework that is commonly used in reinforcement learning. We argue that the

current reinforcement learning methodology is not suitable for the policy mining

setting and present a new formulation that we call reinforcement learning with

traces. This formulation does not require the availability of a simulator for the

environment and, instead, uses a trace model that can be simulated with fixed

sets of data collected offline. We show that for one-step MDPs, we can reduce

reinforcement learning with traces to cost-sensitive learning with sample selection

bias correction. For MDPs with arbitrary number of steps, we present a greedy it­

erative method that learns a classifier for each step. The policy obtained with this

method is the approximately best possible local improvement over the arbitrary

policy used for collecting the data. We also show how to evaluate a policy using a

fixed set of data by using the sample selection bias correction methods presented

in Chapter VI. Finally we present data mining applications that can benefit from

this methodology and show experimental results using a data generator.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

VILA Reinforcem ent learning

In the reinforcement learning framework [78], an agent interacts with its

environment by executing actions. The environment responds to those actions

by presenting new situations and rewards to the agent. At each time step t , the

environment is in some state s, the agent takes one of several actions a, receives a

finite reward r, and the environment makes a transition to another state s'.

depend on the current state s and action a, we say that the environment satisfies

the Markov property. Many environments satisfy this property and are called

Markov decision processes (MDPs).

In this case, we can completely specify the environment by specifying a

tuple (£, D, A, {P,sa} ,7 , {.Rsa}), where S' is a set of states; D is the initial-state

distribution; A is a set of actions; {Psa} are the transition probabilities, with Psa

giving the next-state distribution when action a is executed in state s; 7 G [0,1]

is a discount factor; and {R sa} are the reward distributions, with R sa giving the

reward distribution when action a is executed in state s.

The environment starts in an initial state so drawn from the initial-state

distribution and the learner repeatedly takes actions until a final sta te sn is reached.

This results in a sequence of states {sf}"=0, actions {at}]L0, and rewards {rt}”_0,

that is called an episode.

When choosing actions, the agent follows a policy that can be represented

by a mapping 7r(s), from states to actions. The value of a policy n is the expected

discounted sum of rewards obtained when 7r is executed, which is given by

where ESô d,tt denotes that the initial state is drawn from the initial-state distri­

bution and that we use policy tt to choose the actions.

The optimal policy 7r* is the policy th a t maximizes V (7r) . Reinforcement

learning (RL) methods attem pt to learn the optimal policy by interaction with the

If the probability distributions of the reward r and the next state s' only

n

_ t—0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

environment or with a simulator of the environment. Current RL methods can be

divided into two categories: indirect and direct methods.

VII.A. 1 Indirect M ethods

Indirect methods first estimate the function Q*(s, a) that gives the ex­

pected value of executing action a in state s under the optimal policy, that is,

SO — S , CLq — CL

_ t= 0 .

where En* denotes the expectation with respect to the optimal policy 7r* which is

used to define the actions taken in all states except the initial s0- The optimal

policy can be obtained from Q(s , o) by choosing the action that maximizes Q(s, a)

at each state, that is,

7r*(s) = argmaxaQ (s, a)

When the set of possible states and actions is finite, it is possible to learn Q(s, a)

using online iterative algorithms such as Q-learning [90] and sarsa [71]. These

methods start with an estimate of Q(s, a) for every s and a and update the estimate

after each action is executed. Provided that every action in every reachable state

is executed infinitely often, they are guaranteed to probabilistically converge to

the optimal value function [91].

However, in most practical applications, the state space is infinite or

prohibitively large. In this case, instead of representing the value function explicitly

as a look-up table, we can represent it as a parameterized function of the state-

action pair. Given examples of the form ((s, a), Q(s, a)) function approximation

methods such as linear regression [82], neural networks [81, 98] or decision trees

[89] are used to create a mapping from state-action pairs to Q-values. The problem

with this approach is that little is known about convergence guarantees and error

bounds for the policy derived from the function approximator.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

VILA.2 Direct M ethods

Direct methods do not estimate an intermediary function from which to

derive the policy. Instead, they search for a good policy in a restricted class of

policies. Given a fixed class of policies II, the goal is to find a policy n € II that is

the best policy in the class. The best possible value achievable in class II is given

by

V * { U) = s u p F (7 r) .
7rgn

Direct methods attem pt to find a policy ft £ II such that V(7t) is as close as

possible to Vr*(II).

Different direct methods vary on the optimization procedure used for

searching the space of policies and on the method used for estimating the value

of a policy. If the action space is continuous and II = {ire\d £ R m} is a smoothly

parameterized family of policies it is possible to use gradient descent methods for

searching the space of policies [5, 79]. Otherwise, optimizations procedures such

as the downhill simplex method [53] and differential evolution [76] can be used.

Note tha t some of these optimization procedures can be implemented using only

comparative information of the form “Is policy tta better than policy 7r^?” [77].

All the existing methods for estimating the value of a policy or for com­

paring the values of two policies assume that we have access to a simulator of the

underlying MDP. Most methods assume access to a stochastic function that takes

as input any state-action pair (s, a) and outputs the next state s' and the reward

r according to the state transition and reward probabilities of the MDP.

Other methods make even stronger assumptions. For example, the Pega­

sus method [60] assumes that we have a function g : S x A x [0, l]d •-> S, such that

for any fixed state-action pair (s, o) and p distributed uniformly in [0, l]d, g(s, a ,p)

gives the distribution of possible transition states when action a is executed in

state s (they assume that the rewards are deterministic). This function is used to

obtain the value of a policy for a scenario (i.e. a given initial state and values of

P) -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

VII.B The policy mining setting

In the most general setting of policy mining, we have a set of exam­

ples each of the form ((so, ao, rQ), (sx, ax, rq),. . . , (sT, at , rr))> where T > 1. Each

example describes a fixed-length episode of interaction with the same unknown

MDP, where the actions are chosen according to an unknown and, in general, non-

deterministic, policy. We assume that each initial state is an i.i.d. sample from

the initial-state distribution. We call these examples “traces” , because they are

traces of the execution of a policy on an MDP. We now want to learn a good policy

for the MDP exclusively from these traces. We also want to be able to evaluate

the policy to convince ourselves that it performs well before deploying it in the

real-world.

One possible solution is to try to learn a simulator of the underlying MDP

using the data and then use direct reinforcement learning methods to learn a policy.

This requires learning models for predicting the transition probabilities and the

reward distribution given a state-action pair. Since for most practical applications

the state space is infinite, we would have to use function approximation methods

to learn the models. The drawback of this approach is that modeling the MDP

may be very difficult and, as a consequence, the policy that we derive from the

simulator is likely to be suboptimal for the true MDP. Furthermore, it could be

difficult to quantify how suboptimal it is.

We could also use indirect methods and learn a Q-value function using the

data. This is the approach taken by Pednault et al. [62], called batch reinforcement

learning. However, as we saw in Section VII.A.l indirect methods with function

approximation are not guaranteed to yield a good policy. Another problem is that

we still need to evaluate the policy learned. The solution used by Pednault et al.

is to learn a simulator of the underlying MDP and then run simulations using the

policy. But, again, the simulator is only a crude approximation of the MDP and

it may behave very differently from the original MDP.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

Here, we present a direct reinforcement learning method that does not

require a simulator and, instead, uses a fixed set of episodes to learn the policy. We

call this method reinforcement learning with traces, because all th a t is provided

to the method are traces of the execution of a policy. In the next section, we show

that in the case of one-step MDPs (T = 1), we can solve reinforcement learning

with traces by reducing it to a cost-sensitive classifier learning problem with sample

selection bias correction.

VII.C One-step reinforcement learning w ith traces

We assume that we have m training examples (x , y, r) drawn from a joint

distribution D with domain X x y x 71 where X is an (arbitrary) state space, y

is a (discrete) action space and 7Z is (nonnegative, real) reward space.

We can view these examples as being generated by repeatedly executing a

stochastic training policy on a one-step MDP and recording traces of the execution

in the form of state-action-reward triples, where the reward of executing action y in

state x is is given by a stochastic function R : X x J 7 —> [0, oo] (th a t is r ~ R (x, y)).

Our goal is to approximate the optimal policy for this MDP, i.e., a func­

tion h : X y that maximizes the expected value of the reward given by

Ex„D[R{x,h{x))] (VII.C.l)

using only the available examples.

Standard classifier learners try to find H to maximize the accuracy

/(* (*) = !,)
(x,y)

but, according to the translation theorem (Proposition IV .A .l), can be made to

maximize

i £ wI(H(x) = y). (VII.C.2)
(x,y,w)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

The following theorem shows that the expectation in (VII.C.l) can be

rewritten in a way that allows us to use a classifier learner tha t maximizes (VII.C.2)

to learn the policy h.

T h eo rem V II .C .l . For all distributions, D, for any deterministic function, h :

X y and for any stochastic function R : X x y -¥ [0,oo], i f we assume that

P(y\x) > 0 Vx, y then

E D[R(x, h(x))] = E d
P {y\x)

I(h (x) = y)

Proof

Ed
P{y\x) I(h(x) = y)

’R {x ,y)
[P(y\x)

'R (x, y)
,P (y\x)

R(x, h(x))

h(x) = y

— E x , y , r ~ D

= Ed

— E d

? P(fi(z) = y\x)
R(x, h(x))

I(h(x) = y)

P(h(x) = y)

mP{h(x) = y\x)
R(x, h(x))

h(x) = y

^ P(h(x) = y\x)

= J ^ R (x ,h (x))P (x)
X

= E d[R(x , h(x)\

P(h{ x) = y)

P(x\h(x) = y)P (h(x) = y)

P(x, h(x) = y)

□

From this theorem, it follows that

- £
m (w > p(via:)

I{h{ x) = y), (VII.C.3)

is an unbiased empirical estimate of the value of policy h. Thus, if we know P(y\x),

that is, the probability that action y is executed in state x by the training policy,

we can use a classifier learner to learn the policy from the examples. Looking back

at (VII.C.2) we see that we simply have to weigh each example (x ,y ,r) by p ^ y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

Note that the theorem holds only if Vx, y P (y\x) > 0, that is, in order to

guarantee convergence to the optimal policy, we require that the training policy

have non-zero probability of executing each action in each state. However, the

reduction degrades gracefully even when this is not the case if we define that

I(h (x) = y)
P (y\x)

when I(H (x) = y) = 0 and P (y \x) — 0. In this case, it is easy to see that the

reduction will converge to the optimal policy for an MDP tha t is identical to the

original one, except that action y is not allowed in state x.

This theorem can be seen as a combination of the translation theorem

for cost-sensitive learning (Chapter IV, Theorem IV.A.l) and the bias correction

theorem (Chapter VI, Theorem VI.C.l). This demonstrates that in policy mining

it is crucial to account both for costs (or, in this case, rewards) and for the sample

selection bias related to the use of a training policy that is not completely random.

In Chapter IV we showed that learning from a weighted distribution of

examples is not straightforward with many classifier learners but that costing, a

method based on rejection sampling, achieves good results in practice. For this

reason, we recommend using costing here, where instead of using misclassification

costs as weights we use the ratio p ^ r f ĵ y as a weight for each example (x ,y , r).

Another option is to use the transparent box methods, with learners that accept

weights directly, such as naive Bayes and SVM.

As is the case for selection probabilities in Chapter VI, in practice we may

not know the probabilities P (y \x) used by the training policy in advance. However,

we can estimate these from the available training data by using a classifier learning

method coupled with the calibration methods presented in Chapter V.

Table VII. 1 shows the pseudo-code for the one-step reinforcement learning

with traces algorithm. Given a training set of the form (x , y , r), we first learn a

model for P(y\x). This can be accomplished by using a classifier learner that

outputs calibrated class membership probability estimates. We then calculate

weights for each example (x , y , r) by dividing r by P(y\x). We can now use a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

One-Step RL w ith traces (Training Set S = (x , y , r))

1. Learn a m odel for P (y \ x) using S.

2. Calculate a weight for each example (x , y , r): w =

3. Learn a classifier h using a cost-sensitive learner on S' = (x , y ,w) .

4. Output h.

Table VII.1: The one-step RL with traces algorithm.

cost-sensitive learning method that takes examples (x, y, w) as input, such as the

ones presented in Chapter III to learn a classifier that is the desired the policy for

the MDP.

VII.D T -step reinforcement learning with traces

Here, we introduce the trace model, which has the following operation:

• trace(7r): returns a trace from the execution of a (non-deterministic) policy

7r on the MDP, that is, a sequence of state-action-reward triples of the form

((so, ao, ri), (si, 0 1 , r2), . . . , (sr-i, rr)),

where So is drawn from P (s 0), each a* is drawn from 7r(o|sj), each s, (for

0 < t < T) is drawn from P (s /|sj_i,aj_i) and = R(si).

This model is weaker than a generative model since we can simulate the

trace operation using a generative model operations but the opposite is not true.

We are going to reduce the problem of finding a good policy in this setting

to T instances of classification, one for each timestep. The T learned classifiers

are denoted ct for t £ { 1 , . . . ,T } and the nonstationary policy they create is

7r(a|s,t) = ct (s).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

The optimization starts with some arbitrary initial policy, cx, . . . ,c t and

new classifiers ct are learned iteratively, starting from t = 1 until t = T and then

going back to t = 1 and so forth.

For each optimization problem, we learn a new classifier c't, and then

compare the two policies c i , . . . , dt, . . . , ct and c i , . . . , ct, . . . , or by using the trace

model. If the new policy has a provably larger expected value, we replace ct 4— c't ,

then move on to the next optimization problem. The process halts after we observe

T non-updates in a row.

The reduction for timestep t works by first calling the operation trace(7r')

m times, where the policy 7r'(a|s,z) is given by Cj(s) for i < t and i > t. At

timestep t, 7r'(a|s, i) is an arbitrary distribution. Each returned trace is made into

an example of the form (s, y, w), where x = st, y = at and w = L ^2j=i+1 rt .

Let
i t

W (s t,at) = - £ R(Si)
i= t+ 1

where sf+1 ~ P (s'\st,a t) and Sj+i ~ P(s'|s;,7r'(sj)) for t < i < T .

Then E [W (x,c t(x))] is the expected value of the reward obtained by

following ct(x) in step t while following 7r' in all the subsequent steps.

Theorem VII.C.l shows that this expected value can be rewritten in a

way that allows us to use a classifier learner that maximizes (VII.C.2) to learn the

t-th step classifier ct that maximizes E [W (x,ct(x))} using the examples (x ,y ,w).

The policy obtained from this reduction is the (approximately) best pos­

sible local improvement over the arbitrary policy used for training. “Local” here

refers to the fact th a t we optimize the classifier ct for each step t in a greedy man­

ner, assuming th a t the policy will remain the same for the other steps. However,

we continually change the policy to improve its overall value. The only guarantee

is that each classifier ct added will increase the overall policy value.

Even though this is a local reduction it is interesting because it is the

first method for reinforcement learning in the policy mining setting, where we

have traces of the execution of a (stochastic) training policy on the MDP. This set

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

of traces can be used to simulate the trace model by rejection sampling to produce

a subset of traces consistent with the policy 7r given to the trace model.

VILE Policy evaluation using a fixed dataset

The most obvious way to estimate the value of a policy given a fixed set of

episodes is to select the episodes whose sequence of actions agrees with the policy.

Then, we can average the cumulative rewards obtained in each of the selected

episodes to obtain an estimate of the value of the policy. This is reasonable if the

number of episodes in the set is large, the length of each episode is short and the

number of possible actions is small, so that we can obtain enough episodes that

agree with the policy.

Nonetheless, even when these conditions are true, selecting the available

episodes in this manner will result in a biased estimate of the policy value. The

initial state of the episodes used to evaluate the policy will not be an i.i.d. sample

of the initial state distribution because the episodes are being selected according

to a criteria that is not necessarily independent of the initial state. For example,

in the direct marketing case, the initial state describes a particular customer. If

we have a policy that is more likely to agree with the data for the “rich customers”

(who presumably tend to donate more), by using this kind of evaluation we may

think it is a very good policy. However, if we apply the policy to the general

population of customers it may not perform as well.

In the policy evaluation case, we can translate the episodes into examples

(x ,y , s), such that x is an initial state, y is the cumulative reward obtained in the

episode and s indicates whether the policy we would like to evaluate agrees with

the actions in the episode. The expected value of y corresponds to the expected

value of the policy, but we can only see the value of y when s = 1.

This is exactly the evaluation under sample selection bias problem pre­

sented in Chapter VI. Therefore, we can use the bias correction theorem to obtain

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

an unbiased estimate of the value of the policy. As stated before, this theorem

assumes that y and s are conditionally independent given x. This assumption is

reasonable when the selection is based solely on x. In the direct marketing case,

the decision about mailing a customer depends only on x (the customer features)

because y (the donation amount) is unknown. Therefore, if there is a dependence

between y and s it disappears when we know x.

VII.F Applications

The methods presented in this chapter are useful for data mining appli­

cations in which the available data consists of records of an agent making decisions

and receiving rewards. There is a surprisingly large number of practical data min­

ing applications tha t can be cast in this framework, including direct marketing,

fraud detection, recommender systems and medical treatment.

In all these cases, we are interested in discovering policies for how to act

in different states of an environment. Depending on the domain, a state of the

environment might describe a customer, a patient or a sequence of telephone calls.

Because there are decision-making agents already in place for these applications

(either humans or software systems), we can record the actions that the agents

take and the rewards received by the agents.

Depending on the goals of the application, the nature of the rewards

will vary. For example, in business applications (such as fraud detection), we are

typically interested in maximizing profit, whereas in medicine one possible goal is

to maximize the life span of the patient

The following subsections describe in more detail two of these applications

for which there are datasets available publicly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

V II.F .l M edical treatment

In medical treatment, we can think of the condition of a patient (which

includes, for example, exam results) as a state. The doctor who prescribes a

treatment is a decision-making agent and the different possible treatments are

different actions. Depending on the treatment goals, we can use one of several

measures to describe the success of a treatment program.

It is important to distinguish medical treatment from medical diagno­

sis. In medical diagnosis, we are interested in diagnosing a disease (for example,

whether a patient has cancer or not). In medical treatment, we are interested in

deciding what treatment to prescribe to a patient (for example, chemotherapy),

based on evidence that the treatm ent is the best choice for the patient in the long

run.

The problem of medical diagnosis can be easily cast as a classifier learning

problem, where each example describes characteristics of a patient (such as exam

results) and the label says whether or not the patient has the disease. In fact, the

application of supervised learning techniques to medical diagnosis is fairly common.

This is evidenced by the large number of medical datasets available in the UCI

Machine Learning repository [10], such as Audiology, Breast Cancer, Dermatology,

Diabetes, Hepatitis and Thyroid Disease.

On the other hand, medical treatment can only be cast as a classifier

learning problem if we assume that the existing agent (i.e., the doctor) always takes

the optimal actions. Then, we can use a classifier learning method to “capture”

these actions and apply them to other patients. However, in general, we do not

expect that the doctors will always take the optimal actions. In fact, the goal is to

use the available data to learn what those actions should be for different patients

based on how they react to the treatments. The policy mining presented in this

chapter is the first that aims at solving this problem directly in a general manner.

A publicly available dataset that can be used for learning medical treat­

ment policies is the Wisconsin Prognostic Breast Cancer Chemotherapy Dataset

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

(WPBCC) [92]. It contains medical information about 253 patients who have gone

through breast cancer surgery (31 features). For each patient, there is a variable

describing if the patient was given chemotherapy or not after surgery (140 of the

patients were given chemotherapy) and the number of days lived after the surgery

(survival time). The goal is to learn a policy based on the feature values for decid­

ing which patients should be given chemotherapy, such that the expected number

of days that each patient lives after the surgery is maximized.

Note th a t this particular medical treatment problem is not sequential be­

cause there is only one decision point: to give chemotherapy or not to a given pa­

tient described by the features. However, it is still challenging because chemother­

apy is not given to a random set of patients. In fact, the average survival time

for patients who were treated with chemotherapy (58.93) is less than the average

survival time for patients who were not treated

The current approach for dealing with this data by Lee, Mangasarian and

Wolberg [51] is to cluster the patients into three groups: Good, Intermediate and

Poor. These groups strongly reflect patient survival times. None of the Good group

patients receive chemotherapy and they have the highest average survival times.

All of the Poor group patients receive chemotherapy and they have the lowest

average survival times. About half of the patients in the Intermediate group receive

chemotherapy, but those patients have better survival than the patients which did

not receive it. Based on these results, they suggest that patients in the Good group

should not receive chemotherapy and patients in the Intermediary group should

receive therapy. The authors say that their approach is the first to identify a group

of patients for which it is better to prescribe chemotherapy than not to prescribe

it (the Intermediary group).

Note th a t the clustering results cannot be used on a new patient since it

uses the chemotherapy feature (which is unavailable) and the lymph node status

(which is very risky to obtain). For this reason, they learn a classifier for predicting

Good, Intermediate or Poor for new patients based on available features. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

classifier achieves 82.7% accuracy on a test set.

A drawback of this clustering approach is that it is difficult to replicate

it for other datasets. The clustering procedure “is based on physicians’ knowledge

and experience” and it involves a series of intermediary steps. Another problem is

th a t the decision policy is very coarse-grained: it only separates the patients into

three groups.

VII.F.2 Direct marketing

In direct marketing, an organization can encode the purchasing history

of a customer and any other available data about the customer into a state. Any

communication directed from the organization to the customer (such as a catalog

mailing) is an action that changes the state of the customer and results in a reward

to the organization (which may be positive or negative). Depending on the organi­

zation goals, different measures can be used to assess the success of its marketing

strategy with respect to a customer. A common measure of success is the profit

th a t the customer generates.

Many catalog mailing organizations have customer databases and soft­

ware systems in place for deciding which customers should be mailed a catalog in

a direct marketing campaign. Commonly, these systems are based on classifiers

that try to distinguish customers who respond from customers who do not respond

to a particular kind of catalog. Although these are likely not to be the optimal

decisions with respect to profit in the long run, we can use the data collected in

this manner to learn a mailing policy using policy mining.

A publicly available dataset that can be used for learning direct market­

ing policies is the dataset from the KDD-98 competition, described in Chapter

II. Although the original task associated with this dataset concerns only the last

campaign, it contains a detailed donation history of individuals who donated to

the charity over a period of two years (22 campaigns). The data is divided into a

training set and a test set, each containing 95412 and 96367 individuals, respec­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

tively. For each campaign, we know whether each individual was mailed or not,

whether he or she responded or not and how much was donated. Additionally, if

the individual was mailed, the date of the mailing is available (month and year),

and if the individual has responded, the date of the response is available.

The KDD-98 dataset has been used by Pednault et al. [62] to demonstrate

the applicability of reinforcement learning to direct marketing problems. Based

on the campaign information in the data, they generated a number of temporal

features that are designed to capture the state of that individual a t the time of

each campaign. These include the frequency of gifts, recency of gift and promotion,

number of recent promotions in the last 6 months, etc.

VII.G Experimental evaluation

V II.G .l Quest Synthetic Data Generator

We first present experimental results using a synthetic d a ta generator

that is a modification of the IBM Quest Synthetic Data Generation Code for

classification (Quest) [75]. Quest randomly generates examples for a person data

set in which each person has the nine attributes described below.

• Salary: uniformly distributed between 20000 and 150000.

• Commission: if Salary > 75000, Commission = 0, else uniformly distributed

between 10000 and 75000.

• Age: uniformly chosen from 60 integer values (20 to 80).

• Education: uniformly chosen from 4 integer values.

• CarMake: uniformly chosen from 20 integer values.

• ZipCode: uniformly chosen from 9 integer values.

• HouseValue: uniformly distributed from 50000 k to 150000 k, where 0 < k <

9 and depends on the ZipCode.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

• YearsOwned: uniformly distributed from 1 to 30.

• Loan: uniformly distributed between 0 and 500000.

In the original Quest generation code, there are a series of classification

functions of increasing complexity that used the above attributes to classify people

into different groups. After determining the values of different attributes of an

example and assigning it a group label according to the classification function, the

values for non-categorical attributes are perturbed. If the value of an attribute A

for an example x is v and the range of values of A is a, then the value of A for x

after perturbation becomes v + r * a , where r is a uniform random variable between

-0.5 and +0.5.

We modified Quest to include both action generation functions and a

reward generation functions. These are used in policy mining (instead of the

classification functions) to generate examples of the form (x , y , r), where a: is a

person described by the attributes above, y is an action taken for that person

(such as mailing a particular catalog) and r is the reward received after action y

is taken (such as the amount purchased from the catalog).

The action generation function corresponds to a training policy. Given

an example, it determines what action will be taken for that example. We use

two different action generation functions that were created based on classification

functions already implemented in Quest. These are shown in Table VII.2.

Given an example x and the action y taken for that example, the reward

generation function determines a reward for executing action y w ith person x. We

use two different reward generation functions, which are shown in Table VII.3.

The advantage of using a synthetic data generator is th a t we can evaluate

any policy by generating the rewards for each possible action, which is not possible

with real data. In the real-world, we cannot “reset” customers to the same state

and mail a different catalog as if the customer had not received the first one, but

we can do this with Quest.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

A ctio n F u n c tio n 1 A ctio n F u n c tio n 2

i f (Age < 40) i f (Age < 40)
i f (50000 < S alary < 100000) probA ctionl = 0.2;

probA ctionl = 0.3; e ls e
e lse i f (40 < Age < 60)

probA ctionl = 0.7; probA ctionl = 0.8;
e lse e ls e
i f (40 < Age < 60) probA ctionl = 0.2;

i f (75000 < S alary < 125000)
probA ctionl = 0.1; i f (probA ctionl > randO)

e lse a c tio n = l;
probA ctionl = 0.9; e ls e

e lse action=0;
i f (25000 < S alary < 75000)

probA ctionl = 0.4;
e lse

probA ctionl = 0.6;

i f (probA ctionl > ran d O)
a c tio n = l;

e lse
action=0;

Table VII.2: Action generation functions. The function rand () generates a random

number drawn uniformly from the interval [0,1].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

R ew ard F u n c tio n 1 R ew ard F u n c tio n 2

i f (YearsOwned < 20) i f (Age < 40)
eq u ity = 0; i f (Education € {0,1})

e lse i f (ac tio n = 0)
eq u ity = 0.1*YearsQwned - 2; reward = ran d n (100,20);

e lse
d isposab le = 2*Salary/3 reward = ran d n (80,20);

- Loan/5 e lse
+ 5000*Education i f (ac tio n = 0)
+ eq u ity /5 reward = ran d n (5 0 ,2 0);
- 10000; e lse

reward = randn(120 ,20);
i f (d isp o sab le > 0) e lse

i f (a c tio n = 0) i f (40 < Age < 60)
reward = randn(250,20); i f (Education € { 1 ,2 ,3 })

e lse i f (ac tio n = 0)
reward = randn(200,20); reward = ran d n (100,20);

e lse e lse
i f (a c tio n = 0) reward = ran d n (150,20);

reward = randn(80,20); e lse
e lse i f (ac tio n = 0)

reward = randn(150,20); reward = randn(120 ,20);
e lse

reward = ran d n (140,20);
e lse

i f (Education E {2,3,4})
i f (ac tio n = 0)

reward = ran d n (90,20);
e lse

reward = ran d n (70,20);
e lse

i f (ac tio n = 0)
reward = ran d n (50,20);

e lse
reward = ran d n (70,20);

Table VII.3: Reward generation functions. The function randn(/x, cr) generates a

random number drawn from a Gaussian with mean fi and standard deviation a.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

We applied the One-Step RL with traces algorithm VII. 1 to three training

sets of 50000 examples generated using three settings of the action and reward func­

tions (Actionl-Rewardl, Actionl-Reward2 and Action2-Reward2). For obtaining

the estimates of P(y\x) we use naive Bayes followed by the PAV calibration algo­

rithm (see Chapter V). For learning the policy, we use three methods:

• weighted Naive Bayes,

• costing with Naive Bayes as base learner,

• costing with C4.5 as base learner.

For evaluating the policies, we use the simulator to generate three test

sets of 50000 examples. We evaluate the policies using three methods:

• T rue: use the generator to obtain reward values for the two actions for each

test example and average the rewards for the actions chosen by the policy

(unbiased but unrealistic in a data mining setting).

• B iased: select only the test examples that agree with the policy and average

the rewards for those examples.

• C o rrec te d : select only the test examples that agree with the policy and

use the bias correction method proposed in Section VII.E to calculate the

expected reward of the policy (unbiased and realistic).

The probabilities P(y\x) necessary for the bias correction method are

obtained by applying the model learned on the training set to the test examples.

Table VII.4 summarizes the results obtained. For comparison purposes,

it also includes the true expected value of the training policy, the best possible

policy and the worst possible policy.

In all cases, the one-step RL with traces algorithm improves upon the

training policy. Furthermore, by comparing the two settings with the same reward

function and different training policies, we see that the training policy does not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Action Function 1 - Reward Function 1
Evaluation Method

Policy True Biased Corrected
worst possible 146.94 - -

best possible 206.31 - -

training policy 178.06 - -

weighted NB 192.74 180.74 191.86
costing NB 192.30 180.80 191.80
costing C.45 190.94 180.23 190.78

Action Function 1 - Reward Function 2
Evaluation Method

Policy True Biased Corrected
worst possible 73.87 - -

best possible 116.01 - -

training policy 102.99 - -

weighted NB 107.21 115.65 107.85
costing NB 107.06 115.53 107.76
costing C.45 112.45 120.30 112.56

Action Function 2 - Reward Function 2
Evaluation Method

Policy True Biased Corrected
worst possible 73.87 - -

best possible 116.01 - -

training policy 96.12 - -
weighted NB 107.08 112.20 108.50
costing NB 107.09 112.34 108.56
costing C.45 112.67 116.41 112.52

Table VII.4: Experimental results using Quest.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

a great influence on the final result. The different learning algorithms (weighted

NB, costing NB and costing C4.5) in general led to policies that are equally good,

except that costing C4.5 resulted in a better policy for the settings with Reward2.

Whereas using only the selected examples to evaluate the policy yields in­

correct estimates of the value of the policy, the evaluation using the bias correction

method yields results that are very close to the true (and unrealistic) evaluation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary:
A unifying approach for margin classifiers. Journal of Machine Learning
Research, 1:113-141, 2000.

[2] S. Anifantis. The DMEF data set library. The Direct Marketing Association,
New York, NY, 2002. h ttp ://w w w .the-dm a.org /dm ef/dm efdse t.h tm l.

[3] M. Ayer, H. Brunk, G. Ewing, W. Reid, and E. Silverman. An empirical
distribution function for sampling with incomplete information. Annals of
Mathematical Statistics, 26(4):641-647, 1955.

[4] E. Bauer and R. Kohavi. An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants. Machine Learning, 36:105-139,
1999.

[5] J. Baxter and P. Bartlett. Direct gradient-based reinforcement learning.
Technical report, Australian National University, Research School of Infor­
mation Sciences and Engineering, 1999.

[6] S. D. Bay. UCI KDD archive. Department of Information and Computer
Sciences, University of California, Irvine, 2000. h t t p : / /k d d . i c s .u c i .e d u / .

[7] V. Bayer-Zubek. Learning Cost-Sensitive Diagnostic Policies from Data.
PhD thesis, Department of Computer Science, Oregon State University, Cor­
vallis, 2003.

[8] P. N. Bennett. Assessing the calibration of naive Bayes’ posterior estimates.
Technical Report CMU-CS-00-155, School of Computer Science, Carnegie
Mellon University, 2000.

[9] C. Bishop. Neural Networks for Pattern Recognition, chapter 2. Clarendon
Press, Oxford, UK, 1995.

[10] C. L. Blake and C. J. Merz. UCI repository of machine learning databases.
Department of Information and Computer Sciences, University of California,
Irvine, 1998. h ttp ://w w w .ics .u c i.ed u /~ m learn /M L R ep o sito ry .h tm l.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.the-dma.org/dmef/dmefdset.html
http://kdd.ics.uci.edu/
http://www.ics.uci.edu/~mlearn/MLRepository.html

137

[11] H. Bourland and N. Morgan. A continuous speech recognition system embed­
ding mlp into hmm. In Advances in Neural Information Processing Systems
2, pages 186-193, 1990.

[12] J. Bradford, C. Kunz, R. Kohavi, C. Brunk, and C. Brodley. Pruning decision
trees with misclassification costs. In Proceedings of the European Conference
on Machine Learning, pages 131-136, 1998.

[13] U. Brefeld, P. Geibel, and F. Wysotzki. Support vector machines with exam­
ple dependent costs. In Proceedings of the Fourteenth European Conference
on Machine Learning, 2003.

[14] L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.

[15] L. Breiman, J. H. Friedman, R. A. Olsen, and C. J. Stone. Classification
and Regression Trees. Wadsworth International Group, 1984.

[16] G. W. Brier. Verification of forecasts expressed in terms of probability.
Monthly Weather Review, 78:1-3, 1950.

[17] J. Cussens. Bayes and pseudo-Bayes estimates of conditional probabilities
and their reliability. In Proceedings o f the European Conference on Machine
Learning, pages 136-152. Springer Verlag, 1993.

[18] M. H. DeGroot and S. E. Fienberg. The comparison and evaluation of fore­
casters. Statistician, 32(l):12-22, 1982.

[19] T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via
error-correcting output codes. Journal of Artificial Intelligence Research,
2:263-286, 1995.

[20] P. Domingos. MetaCost: A general method for making classifiers cost sen­
sitive. In Proceedings of the Fifth International Conference on Knowledge
Discovery and Data Mining, pages 155-164. ACM Press, 1999.

[21] P. Domingos and M. Pazzani. Beyond independence: Conditions for the op­
timality of the simple Bayesian classifier. In Proceedings of the Thirteenth In­
ternational Conference on Machine Learning, pages 105-112. Morgan Kauf-
mann Publishers, Inc., 1996.

[22] C. Drummond and R. C. Holte. Exploiting the cost (in)sensitivity of deci­
sion tree splitting criteria. In Proceedings of the Seventeenth International
Conference on Machine Learning, pages 239-246, 2000.

[23] R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley and
Sons, 2001.

[24] L. Diimbgen. Statistical software (MATLAB), 2000. Available at h t t p : / /
www. m ath. m u-luebeck. de/w orkers/duem bgen/sof tw a re /so f tw a re . html.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

[25] A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower
bound on the number of examples needed for learning. Information and
Computation, 82(3):247-261, 1989.

[26] C. Elkan. Boosting and naive bayesian learning. Technical Report CS97-557,
University of California, San Diego, 1997.

[27] C. Elkan. Cost-sensitive learning and decision-making when costs are un­
known. In Workshop Notes, Workshop on Cost-Sensitive Learning at the
Seventeenth International Conference on Machine Learning, 2000.

[28] C. Elkan. The foundations of cost-sensitive learning. In Proceedings of the
Seventeenth International Joint Conference on Artificial Intelligence, pages
973-978, Aug. 2001.

[29] C. Elkan. Magical thinking in data mining: Lessons from coil challenge
2000. In Proceedings of the Seventh International Conference on Knowledge
Discovery and Data Mining, pages 426-431. ACM Press, 2001.

[30] F. Esposito, D. Malerba, and G. Semeraro. A comparative analysis of meth­
ods for pruning decision trees. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(5):476—491, May 1997.

[31] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan. AdaCost: Misclassifica-
tion cost-sensitive boosting. In Proceedings of the Sixteenth International
Conference on Machine Learning, pages 97-105, 1999.

[32] W. Fan, H. Wang, P. Yu, and S. J. Stolfo. A framework for scalable cost-
sensitive learning based on combining probabilities and benefits. In Proceed­
ings of the Second SIAM International Conference on Data Mining, pages
97-105, 2002.

[33] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System
Sciences, 55(1):119-139, 1997.

[34] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a
statistical view of boosting. Technical report, Stanford University, 1998.

[35] G. Fumera and F. Roli. Cost-sensitive learning in support vector machines.
In VIII Convegno Associazione Italiana per L Tntelligenza Artificiale, 2002.

[36] P. Geibel and F. Wysotzki. Perceptron based learning with example depen­
dent and noisy costs. In Proceedings of the Twentieth International Confer­
ence on Machine Learning, 2003.

[37] J. Georges and A. H. Milley. KDD’99 competition: Knowledge discovery
contest report. Available at h ttp ://w w w -cse .u csd .ed u /u se rs /e lk an /k d re
s u lts .h tm l, 1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www-cse.ucsd.edu/users/elkan/kdre

139

[38] D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining, chapter
10.5. MIT Press, 2001.

[39] T. Hastie and R. Tibshirani. Classification by pairwise coupling. In Advances
in Neural Information Processing Systems, volume 10. MIT Press, 1998.

[40] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn­
ing, chapter 2. Springer, 2001.

[41] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn­
ing, chapter 4.4. Springer, 2001.

[42] D. Haussler. Decision theoretic generalizations of the pac model for neural net
and other learning applications. Information and Computation, 100(1):78-
150, 1992.

[43] J. Heckman. Sample selection bias as a specification error. Econometrica,
47:153-161, 1979.

[44] T. Joachims. Estimating the generalization performance of a SVM effi­
ciently. In Proceedings of the Seventeenth International Conference on Ma­
chine Learning, pages 431-438, 2000.

[45] T. Joachims. Making large-scale SVM learning practical. In B. Scholkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support
Vector Learning. MIT Press, 2000.

[46] M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal
of the ACM, 45(6):983-1006, 1998.

[47] M. Kearns, R. Schapire, and L. Sellie. Toward efficient agnostic learning.
Machine Learning, 17:115-141, 1998.

[48] U. Knoll, G. Nakhaeizadeh, and B. Tausend. Cost-sensitive pruning of de­
cision trees. In Proceedings of the Eight European Conference on Machine
Learning, pages 383-386, 1994.

[49] E. G. Kong and T. G. Dietterich. Probability estimation using error-
correcting output coding. In Int. Conf: Artificial Intelligence and Soft
Computing, 1997.

[50] K. Lang. Newsweeder: Learning to filter netnews. In Proceedings of the
Twelfth International Conference on Machine Learning, pages 331-339,1995.

[51] Y.-J. Lee, O. L. Mangasarian, and W. H. Wolberg. Survival-time classifica­
tion of breast cancer patients. Technical Report 01-03, D ata Mining Institute,
University of Wisconsin, Madison, 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

[52] D. Lewis and W. Gale. A sequential algorithm for training text classifiers.
In Proceedings of the 17th Annual International Conference on Research and
Development in Information Retrieval, pages 3-12, 1994.

[53] A. Likas and I. Lagaris. Training reinforcement neurocontrollers using the
polytope algorithm. Neural Processing Letters, 9(2):119—127, 1999.

[54] R. Little and D. Rubin. Statistical Analysis with Missing Data. Wiley, 2nd
edition, 2002.

[55] E. C. Malthouse. Assessing the performance of direct marketing scoring
models. Journal of Interactive Marketing, 15(l):49-62, 2001.

[56] D. Margineantu. On class probability estimates and cost-sensitive evaluation
of classifiers. In Workshop Notes, Workshop on Cost-Sensitive Learning,
International Conference on Machine Learning, June 2000.

[57] D. Margineantu. Methods for Cost-Sensitive Learning. PhD thesis, Depart­
ment of Computer Science, Oregon State University, Corvallis, 2001.

[58] D. Margineantu. Class probability estimation and cost-sensitive classification
decisions. In Proceedings of the Thirteenth European Conference on Machine
Learning, pages 270-281, 2002.

[59] A. Murphy and R. Winkler. Reliability of subjective probability forecasts of
precipitation and temperature. Applied Statistics, 26(l):41-47, 1977.

[60] A. Y. Ng and M. Jordan. PEGASUS:A policy search method for large MDPs
and POMDPs. In Proceedings of the Sixteenth Conference on Uncertainty in
Artificial Intelligence, pages 406-415, 2000.

[61] A. Y. Ng and M. Jordan. On discriminative vs. generative classifiers: A
comparison of logistic regression and naive bayes. In Neural Information
Processing Systems 14, 2002.

[62] E. Pednault, N. Abe, B. Zadrozny, H. Wang, W. Fan, and C. Apte. Sequential
cost-sensitive decision making with reinforcement learning. In Proceedings
of the Eighth International Conference on Knowledge Discovery and Data
Mining, pages 204-213, 2002.

[63] J. Platt. Probabilistic outputs for support vector machines and comparison
to regularized likelihood methods. In Advances in Large Margin Classifiers.
MIT Press, 1999.

[64] F. Provost and P. Domingos. Well-trained PETs: Improving probability
estimation trees. CDER Working Paper #00-04-IS, Stern School of Business,
New York University, NY, NY 10012, 2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

[65] F. Provost and T. Fawcett. Robust classification for imprecise environments.
Machine Learning, 42:203-231, 2001.

[66] J. Quinlan. C4-5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann, 1993.

[67] J. R. Quinlan. Boosting, bagging, and c4.5. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pages 725-730, 1996.

[68] J. Rennie and R. Rifkin. Improving multiclass text classification with the
support vector machine. Technical Report AIM-2001-026.2001, MIT, 2001.

[69] R. Rifkin. SvmFu 3, 2001. Available at h t t p : / / f iv e -p e rc e n t-n a tio n .m it.
edu/SvmFu.

[70] T. Robertson, F. Wright, and R. Dykstra. Order Restricted Statistical Infer­
ence, chapter 1. John Wiley & Sons, 1988.

[71] G. Rummery and M. Niranjan. On-line q-learning using connectionist sys­
tems. Technical Report CU ED /F-IN FEN G /TR 166, Cambridge University
Engineering Departement, 1994.

[72] B. Scholkopf and A. Smola. Learning with Kernels: Support Vector Ma­
chines, Regularization, Optimization, and Beyond. MIT Press, 2002.

[73] P. Smyth, A. Gray, and U. Fayyad. Retrofitting decision tree classifiers using
kernel density estimation. In Proceedings of the Twelfth International Con­
ference on Machine Learning, pages 506-514. Morgan Kaufmann Publishers,
Inc., 1995.

[74] J. R. Sobehart, R. M. Stein, V. Mikityanskaya, and L. Li. Moody’s public
firm risk model: A hybrid approach to modeling short term default risk.
Technical report, Moody’s Investors Service, Global Credit Research, 2000.
Available at h t t p : //www. moodysqra. com/ research /c rm /5 3 8 5 3 . asp.

[75] R. Srikant. IBM Quest Synthetic D ata Generation Code, 1999. Available at
http://www.almaden.ibm.com/software/quest/Resources/datasets/syndata.html.

[76] R. Storn and K. Price. Differential evolution - a simple and effective adaptive
scheme for global optimization over continuous spaces. Technical Report TR-
95-012, International Computer Science Institute, Berkeley, CA, 1995.

[77] M. Strens and A. Moore. Direct policy search using paired statistical tests.
In Proceedings of the 18th International Conference on Machine Learning,
pages 545-552, 2001.

[78] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.almaden.ibm.com/software/quest/Resources/datasets/syndata.html

142

[79] R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient meth­
ods for reinforcement learning with function approximation. In Advances in
Neural Information Processing Systems 12, pages 1057-1063, 2000.

[80] M. Szummer and T. Jaakkola. Information regularization with partially
labeled data. In Neural Information Processing Systems 15, 2003.

[81] G. Tesauro. Temporal difference learning of backgammon strategy. In Pro­
ceedings of the Ninth International Workshop on Machine Learning, pages
451-457, 1992.

[82] J. Tsitsiklis and B. Van Roy. Feature-based methods for large scale dynamic
programming. Machine Learning, 22:59-94, 1996.

[83] K. Turner and J. Ghosh. Theoretical foundations of linear and order statistics
combiners for neural pattern classifiers. Technical Report TR-95-02-98, The
Computer and Vision Research Center, The University of Texas at Austin,
1995.

[84] P. Turney. Types of cost in inductive concept learning. In Workshop on Cost-
Sensitive Learning at the Seventeenth International Conference on Machine
Learning, 2000.

[85] L. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, 1984.

[86] V. Vapnik. Statistical Learning Theory. Wiley, Chichester, UK, 1998.

[87] J. von Neumann. Various techniques used in connection with random digits.
Applied Mathematics Series, 12:36-38, 1951.

[88] M. G. Walker. Probability Estimation for Classification Trees and DNA
Sequence Analysis. PhD thesis, Knowledge Systems Laboratory, Stanford
University, 1992.

[89] X. Wang and T. G. Dietterich. Efficient value function approximation using
regression trees. In J. Boyan, W. Buntine, and A. Jagota, editors, Statistical
Machine Learning for Large Scale Optimization, Neural Computing Surveys,
pages 51-54. 2000.

[90] C. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge Uni­
versity, 1989.

[91] C. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279-282, 1992.

[92] W. Wolberg, Y. Lee, and O. Mangasarian. Winsconsin Prognostic Breast
Cancer Chemotherapy Database. Computer Sciences Department, University
of Wisconsin, Madison, 1999.
[ftp: //ftp. cs. wise. edu/math-prog/cpo-dataset/machine-learn/cancer/WPBCC/l.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

[93] B. Zadrozny. Reducing multiclass to binary by coupling probability esti­
mates. In Advances in Neural Information Processing Systems 14, pages
1041-1048, 2002.

[94] B. Zadrozny and C. Elkan. Learning and making decisions when costs and
probabilities are both unknown. In Proceedings of the Seventh International
Conference on Knowledge Discovery and Data Mining, pages 204-213. ACM
Press, 2001.

[95] B. Zadrozny and C. Elkan. Obtaining calibrated probability estimates from
decision trees and naive bayesian classifiers. In Proceedings of the Eigh­
teenth International Conference on Machine Learning, pages 609-616. Mor­
gan Kaufmann Publishers, Inc., 2001.

[96] B. Zadrozny and C. Elkan. Transforming classifier scores into accurate multi­
class probability estimates. In Proceedings of the Eighth International Con­
ference on Knowledge Discovery and Data Mining, pages 694-699. ACM
Press, 2002.

[97] B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive learning by cost-
proportionate example weighting. In Proceedings of the 2003 IEEE Inter­
national Conference on Data Mining, 2003. To appear.

[98] W. Zhang and T. G. Dietterich. Value function approximations and job-
shop scheduling. In J. A. Boyan, A. W. Moore, and R. S. Sutton, editors,
Proceedings of the Workshop on Value Function Approximation. Carnegie-
Mellon University, School of Computer Science, 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

