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ABSTRACT OF THE DISSERTATION

Policy mining:

Learning decision policies from fixed sets of data

by

Bianca Zadrozny 

Doctor of Philosophy in Computer Science 

University of California, San Diego, 2003 

Professor Charles P. Elkan, Chair

In this thesis we present a new data mining methodology for extract­

ing decision policies from datasets containing descriptions of interactions with an 

environment. This methodology, which we call policy mining, is valuable for appli­

cations in which experimental interaction is not feasible but for which fixed sets of 

collected data are available. Examples of such applications are direct marketing, 

credit card fraud detection, recommender systems and medical treatment.

Recent advances in classifier learning and the availability of a great variety 

of off-the-shelf learners make it very attractive to use classifier learning as the 

core generalization tool in policy mining. However, in order to successfully apply 

classifier learning methods to policy mining, three important improvements to the 

current classifier learning technology are necessary.

First, standard classifier learners assume that all incorrect predictions are 

equally costly. This thesis presents two general methods for cost-sensitive learning 

that take into account the fact that misclassification costs are different for different 

examples and unknown for some examples. The methods we propose are evaluated 

carefully with experiments using large, difficult and highly cost-sensitive datasets 

from the direct marketing domain.

Second, most existing learning methods produce classifiers that output 

ranking scores along with the class label. These scores, however, are classifier

xii
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dependent and cannot be easily combined with other sources of information for 

decision-making. This thesis presents a fast and effective calibration algorithm for 

transforming ranking scores into accurate class membership probability estimates. 

Experimental results using datasets from a variety of domains shows that the 

method produces probability estimates that are comparable to or better than the 

ones produced by other methods.

Finally, learning algorithms commonly assume that the available data 

consists of randomly drawn examples from the same underlying distribution of 

examples about which the learned model is expected to make predictions. In many 

situations, however, this assumption is violated because we do not have control 

over the data gathering process. This thesis formalizes the sample selection bias 

problem in machine learning and presents methods for learning and evaluation 

under sample selection bias.
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Chapter I

Introduction

I.A The policy mining problem

The ability to store and process large amounts of data in computers has 

increased enormously in the last decade. This has opened up the possibility of 

analyzing very large datasets gathered from a particular domain of interest to 

obtain useful knowledge about that domain, in a process known as data mining. 

Useful knowledge is a very broad concept, and indeed, there are many flavors of 

data mining that aim to extract different types of knowledge from different types 

of data.

In some domains, the data can be organized into a set of examples, each 

represented by a feature vector and a label. One type of useful knowledge that 

may be extracted in this case is a model that predicts the label of an example when 

given the values of the features for that example. There are a variety of methods 

for accomplishing this, collectively known as supervised learning methods [40]. If 

the label is discrete-valued, the model is known as a classifier.

Classifiers are often used for decision-making, that is, for choosing which 

action to perform in a particular state described by the feature values. It is straight­

forward to learn classifiers for this purpose if we have examples of the form (s, a*), 

where s is a state and a* is the optimal action for state s. For example, in charac-

1
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ter recognition, s is the image of a character and a* is the character. The optimal 

action for a system that receives s as input is to output a*. Using this type of data 

we can learn a classifier to predict a* given s.

However, in many real-world applications, the data consists of a set of 

examples of the form (s,a, r), where s is a state, a is an action executed in the 

state and r is a reward associated with the action. The reward is a real number 

that indicates the desirability of action a in state s and it is, in general, stochastic. 

The optimal action is the one that yields the largest expected reward. Since the 

optimal action associated with a state is not written explicitly in the data, we 

cannot learn to predict it directly. Furthermore, the state space is often large (or 

infinite) so we cannot expect to have data describing each possible action in each 

possible state.

An example of such an application is a recommender system used by 

online merchants. In this case, s is the description of a customer (which may 

include, for example, past purchases), a is a recommendation to buy a product 

and r  is the profit on the product if the customer accepted the recommendation or 

0 if he did not accept it. It is clear that the merchant can collect data of the form 

(s ,a ,r ), but not data of the form (s ,a *). In the latter case, it would be necessary 

to recommend each possible product to each customer, which is not feasible. Still, 

we would like to have a model that predicts the optimal recommendation for a 

customer in a given state.

Furthermore, in some cases, we may be interested in choosing not just one 

action but a sequence of actions, such that the to tal expected reward is maximized. 

Accordingly, the data consist of examples of the form ((s0, ao, r 0), (si, a\, /q ) , . . . ,  

(sn,a „ ,rn)). This data indicate that after the execution of action a* in state s*, a 

reward r* was received and a transition to state Sj+i occurred. Because an action 

influences not only the immediate reward, but all subsequent rewards through 

the state transition, we have to take this into consideration when choosing the 

optimal action for a state. Going back to the recommender system example, it
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is often the case that a customer interacts multiple times with the system. Each 

recommendation from the system may influence not only immediate purchases, 

but future purchases also.

Reinforcement learning is a general framework for learning sequential de­

cisions policies through interaction with an environment [78]. However, current 

reinforcement learning algorithms are not data mining algorithms because they 

require direct interaction with the environment or with a simulator of the environ­

ment. That is, given an arbitrary state-action pair {si,ai}, they assume that we 

can obtain the (stochastic) values for the immediate reward r* and the next state 

Sj-f i .

In this thesis, I will present a new data mining methodology for extract­

ing decision policies from datasets containing descriptions of interactions with an 

environment. This methodology, which we call policy mining, is very valuable for 

applications in which experimental interaction with the environment is not feasible 

and no simulator exists, but for which data is available. Examples of such applica­

tions are direct marketing, credit card fraud detection, recommender systems and 

medical treatment.

I.B General approach

Over the last few years there has been a great amount of research effort 

concentrated in improving classifier learning technology. The community has en­

joyed success in improving learning methods considerably, particularly with the 

advent of support vector machines [72] and ensemble learning methods such as 

boosting [33] and bagging [14],

We would like to be able to transfer the state-of-the-art in classifier learn­

ing to the policy mining problem. Therefore, our general approach to solving the 

policy mining problem consists in devising appropriate reductions from policy min­

ing to classifier learning. By taking this direction, we can make use of existing (and
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future) classifier learning technology as the core generalization component in our 

methods. In this way, we avoid having to deal directly with difficulties such as 

preventing overfitting and dealing with very large feature spaces, which have been 

the main subjects of research in classifier learning. Note that we assume the exis­

tence of a classifier learner as a black box, that is, our methods do not depend on 

the details of any particular classifier learning method.

In classifier learning, we are given a training set of examples of the form 

(x ,y ), where a; is a feature vector and y is a class label. These examples are 

assumed (at least, implicitly) to be drawn independently from a fixed distribution 

D  with domain X  x T, where X  is a feature space and y  is a (discrete) class label 

space.

Classifier learning methods aim at learning a predictor h : X  y  that 

minimizes the expected error rate on examples drawn from D , given by

E x, y ~D\ I { h{ x )  7^ y ) ]

where /(•) is the indicator function that has value 1 in case its argument is true 

and 0 otherwise.

The basic idea of reducing policy mining to classifier learning is to use 

classification for action prediction, where the input for classification is a state 

(S  = X )  and the label space is the set of actions (A  =  F ). This seems simple 

enough, but we argue that in order to use classifier learning methods in the policy 

mining setting, we first need to make three important improvements to classifier 

learning:

1. C o st-sen sitiv e  learn ing . Traditional classifier learning algorithms assume 

that all incorrect predictions are equally costly. However, this assumption 

is not true in many application areas such as direct marketing and med­

ical treatment. Furthermore, because the distribution of classes is highly 

skewed in such domains, methods that do not take costs into account fail to 

identify the less frequent, but more costly, cases. In cost-sensitive learning,
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we change this assumption by attempting to minimize example-dependent 

misclassification costs instead of minimizing error rate.

2. C a lib ra tio n  o f classifier scores. Most existing learning methods produce 

classifiers that output scores, which can be used for ranking examples from 

the most likely member of a class to the least likely member of the class. 

These scores, however, are classifier dependent and cannot be easily combined 

with other sources of information, such as domain knowledge, the outputs of 

other classifiers or misclassification costs. The goal in calibrating classifier 

scores is to obtain class membership probability estimates that can be used 

for decision-making.

3. S am ple se lection  b ias correction . Learning algorithms commonly assume 

that the available data consists of randomly drawn examples from the same 

underlying distribution of examples about which the model is expected to 

make predictions. In many applications, however, this assumption is violated 

because we do not have control over the data gathering process. Sample 

selection bias correction methods aim at learning a predictor from a biased 

sample that is as accurate as possible for the true underlying distribution. 

Furthermore, they should allow us to estimate the accuracy for the underlying 

distribution using the available data.

The exact role that these subproblems play in solving the general prob­

lem of extracting decision policies from data will need to be delayed until Chapter 

VII where we define the policy mining setting more formally and present an algo­

rithm for policy mining. Note, however, that these are im portant improvements to 

classifier learning in themselves and can serve as building blocks for solving other 

learning problems.
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I.C Overview of the dissertation

In Chapter II we give an introduction to cost-sensitive learning. We 

present the two existing formulations for introducing misclassification costs into a 

classifier learning problem, namely the cost matrix formulation and the importance 

formulation. We explain the connections between the two and their respective 

advantages and disadvantages. We also give a brief overview of current research 

in cost-sensitive learning and give a detailed description of two public available 

cost-sensitive learning datasets that are used for experiments in the subsequent 

chapters on cost-sensitive learning methods (Chapters III and IV).

In Chapter III we present direct cost-sensitive decision making, a general 

method for cost-sensitive learning that uses the cost matrix formulation and is 

based on expected cost estimation. We compare it to MetaCost, due to Domingos 

[20], which was the first method for transforming any classifier learning method 

into a cost-sensitive learner. Because we allow for example-dependent costs and 

unknown costs for some examples, direct cost-sensitive decision making is more 

general than MetaCost as originally published. Furthermore, our experimental 

results show that it is preferable to MetaCost.

In Chapter IV we present a family of cost-sensitive learning methods 

that uses the importance formulation. These methods are based on a reduction 

from cost-sensitive learning to classifier learning that requires a change in the 

distribution of training examples. In particular, we propose costing, an ensemble 

learning method that uses rejection sampling to produce a cost-sensitive classifier 

using only black box access to a classifier learning method. Costing does not 

require accurate class membership probability estimates from the classifier and 

avoids the estimation of costs, so it is conceptually simpler than the methods for 

cost-sensitive learning by expected cost estimation. Nonetheless, our experimental 

results show that its performance is comparable to direct cost-sensitive decision 

making for a variety of classifier learning methods.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

In Chapter V, we motivate the need for calibrated class membership 

probability estimates and present a new method for obtaining calibrated two-class 

probability estimates that can be applied to any classifier that produces a ranking 

of examples. Besides being fast and very simple to understand and implement, 

our method produces probability estimates that are comparable to or better than 

the ones produced by other methods, such as the one proposed by P la tt [63]. We 

also present the first method for obtaining calibrated probability estimates from 

ranking scores for multiclass problems. We demonstrate that by decomposing 

the multiclass problem into two-class problems, obtaining calibrated probability 

estimates for each problem and correctly combining these probability estimates we 

can obtain calibrated multiclass probability estimates.

In Chapter VI we formally define the sample selection bias problem in 

machine learning terms. We then study the behavior of a number of well-known 

classifier learning methods under sample selection bias. For classifier learning 

methods that are affected by sample selection bias, we present a correction method 

based on estimating the probability that an example is selected into the sample 

and using rejection sampling to modify the distribution of examples. Finally, we 

consider the problem of evaluating a classifier using a selected sample and present 

a method for obtaining an unbiased estimate of the performance of a classifier 

using a biased sample of test examples.

In Chapter VII we give an overview of reinforcement learning and for­

mally define the policy mining problem using the Markov Decision Process (MDP) 

framework that is commonly used in reinforcement learning. We argue that the 

current reinforcement learning methodology is not suitable for solving the policy 

mining problem and present a new formulation th a t we call reinforcement learning 

with traces. This formulation does not require the availability of a simulator for 

the environment and, instead, uses a trace model th a t can be simulated with fixed 

sets of data collected offline. We show that for one-step MDPs, we can reduce 

reinforcement learning with traces to cost-sensitive learning with sample selection
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bias correction. For MDPs with arbitrary number of steps, we present a greedy 

iterative method that learns a cost-sensitive classifier for each step. The policy 

obtained with this method is the approximately best possible local improvement 

over the arbitrary policy used for collecting the data.
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Chapter II

C ost-sensitive learning

In this chapter we define the cost-sensitive learning problem by presenting 

two alternative ways of introducing misclassification costs into the standard clas­

sifier learning problem and showing the connections between them. We then give 

a brief survey of current methods for cost-sensitive learning. Finally, we give an 

overview of the publicly available datasets collected from real-world cost-sensitive 

domains that can be used for running cost-sensitive learning experiments.

II.A Introducing costs into classifier learning

In standard classifier learning, we are given a training set of examples of 

the form (x , y), where £ is a feature vector and y is a class label. These examples are 

assumed (at least, implicitly) to be drawn independently from a fixed distribution 

D  with domain X  x y ,  where X  is a feature space and y  is a (discrete) class label 

space. The goal is to learn a classifier h : X  —»■ y  that minimizes the expected 

error rate on examples drawn from D, given by

Ex>y„D[I(h(x) + y)} (II.A.1)

where /(•) is the indicator function that has value 1 in case its argument is true 

and 0 otherwise.

The traditional formulation assumes that all errors are equally costly.

9
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However, this assumption is not true for many domains for which one would like 

to obtain classifiers. For example:

• In one-to-one marketing, the cost of making an offer to a person who does not 

respond is typically small compared to the cost of not contacting a person 

who would respond.

• In medicine, the cost of prescribing a drug to an allergic patient can be much 

higher than the cost of not prescribing the drug to a nonallergic patient, if 

alternative treatments are available.

•  In image or text retrieval, the cost of not displaying a relevant item may be 

lower or higher than the cost of displaying an irrelevant item.

• For most animals, failing to recognize a predator and hence not fleeing is far 

more costly than fleeing from a non-predator.

In the following sections we will present two alternative approaches for 

introducing costs into the classifier learning problem.

II .A .l The cost matrix formulation

One extension to the standard classifier learning formulation that has 

received considerable attention in the past few years is the cost matrix formulation 

[28, 20, 58].

In this formulation, besides assuming the availability of a  training set, we 

specify a cost matrix C  for the domain in which we would like to learn a classifier. 

If there are k classes, the cost matrix is a k x  k matrix of real values. Each entry 

C(i, j)  gives the cost of predicting class i for an example whose actual class is j .  

Although for many applications the diagonal entries C(i, i) are zero, this does not 

necessarily have to be the case, since predicting one class correctly may be more 

important than predicting another class correctly.

Table II. 1 shows a cost matrix for a 3-class problem. These costs were 

obtained by assuming that a person uses the classifier before leaving to work to
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predicted actual class
class sunny snowy rainy

sunny 0 10 15
snowy 1 1 11
rainy 2 2 2

Table II. 1: Example of cost matrix for a weather classification problem.

predict if the weather will be sunny, rainy or snowy that day, and the following is 

true:

1. The person takes the jacket when the prediction is either rainy or snowy.

2. The person takes the umbrella only when the prediction is rainy.

3. Taking the jacket incurs a cost of 1.

4. Taking the umbrella incurs a cost of 1.

5. Not having a jacket when it is snowy incurs a cost of 10.

6. Not having a jacket when it is rainy incurs a cost of 5.

7. Not having an umbrella when it is rainy incurs a cost of 10.

In this cost matrix, two of the diagonal entries are not zero. This is 

the case because there are fixed costs associated with predicting snowy and rainy 

weather, but not for sunny weather.

Now, instead of minimizing the error rate given by equation II.A .l, we 

would like to find a classifier h that minimizes the expected cost of the labeling, 

given by

Ex,y~D[C(h(x),y)}. (II.A.2)

Note that if C  is the identity matrix this reduces to equation II.A .l.

Not all cost matrices are logically reasonable. Elkan [28] gives reasonable­

ness conditions for cost matrices and explains how to avoid specifying contradictory 

cost matrices by measuring all costs against a fixed baseline.
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Research on cost-sensitive learning has traditionally been couched in 

terms of costs, as opposed to benefits or rewards. However, in many domains, 

it is easier to talk consistently about benefits than about costs. The reason is that 

all benefits are straightforward cash flows relative to a baseline wealth of $0, while 

some costs are counterfactual opportunity costs [28]. For these domains, we can 

specify a benefit matrix B , where each entry of the matrix describes the benefit (or 

reward) of predicting class i for an example whose actual class is j .  Then, instead 

of minimizing II.A.2, we maximize

E x,y~ D [ B ( h { x ) , y ) \ .

Fixed vs. example-dependent costs

The standard cost matrix formulation assumes that the misclassification 

costs are fixed, i.e., that they only depend on the predicted and actual classes, but 

not on the example itself. However, more often than not, misclassification costs in 

real-world domains are example-dependent. For example, in direct marketing, the 

cost of mislabeling a respondent as a non-respondent depends on the profit that 

the customer would have generated. Similarly, in credit card fraud detection, the 

cost of mislabeling a fraud transaction as a non-fraud transaction depends on the 

amount of the transaction.

Previous research in cost-sensitive learning has primarily been focused on 

the case of fixed costs described by a cost matrix. In this dissertation, however, we 

present learning methods for the more general example-dependent case. We can 

formalize this case by extending the cost matrix formulation.

We extend the cost matrix formulation to the example-dependent case 

by allowing each entry to depend on the particular feature vector x. In this case, 

the costs are given by a function C (i,j ,x ) ,  where i is the predicted class, j  is the 

actual class and x  is the feature vector of the example. Accordingly, we would now
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predicted actual class
class non-fraud fraud

non-fraud 0 t ( x )
fraud a a

Table II.2: Example of cost matrix for a credit card fraud detection problem, where 

a is the (fixed) cost of auditing a credit card transaction and t(a:) is the transaction 

amount for example x.

like to find a classifier h that minimizes the expected cost of the labeling, given by

Ez#~D[C(h(x),y,x)]. (II.A.3)

Table II.2 shows an example-dependent cost matrix for a 2-class credit 

card fraud detection problem. In this domain, the costs are assigned as follows. If 

we predict fraud, the transaction will be audited, which incurs a fixed cost a. On 

the other hand, if we predict non-fraud, the transaction will not be audited. In 

this case, the cost is zero if the transaction is not a fraud, and it is the transaction 

amount t(:r) if the transaction is a fraud.

Known vs. unknown costs

Because the standard cost matrix formulation assumes th a t the misclassi­

fication costs are the same for all examples, it also implicitly assumes that they are 

known in advance for all examples. However, when we allow example-dependent 

costs, it might be the case that the costs are not known for some of the examples. 

In particular, it is very common for costs to be known for the examples in the 

training set but not for new unlabeled examples to which we would like to apply 

the classifier (test examples).

Interestingly, similar problems in terms of the structure of the cost matrix 

may have different properties in terms of whether the costs are known or unknown. 

Table II.3 shows an example-dependent cost matrix for a 2-class donation request 

problem. The costs are assigned as follows. If we predict non-donor, we will not
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predicted actual class
class non-donor donor

non-donor 0 0
donor m m  — d(x)

Table II.3: Example of cost m atrix for a donation request problem, where m  is the 

(fixed) cost of mailing a request and d(x) is the donation amount for example a:.

mail a donation request, so the cost is always zero. If we predict donor we will 

mail a donation request, so there is always a fixed cost of m  for mailing and, in 

the case of a donation, there is a negative cost (or a benefit) corresponding to the 

donation amount d(x).

This cost matrix is similar to the one in table II.2 in the sense that 

there is only one entry for which the cost is example-dependent. However, in the 

credit card fraud detection problem the cost is known for all examples (including 

unlabeled examples) because the transaction amount t(x) is available at the time 

we apply the classifier to decide whether the transaction is fraudulent or not. On 

the other hand, in the donation request problem, the value of the donation amount 

d(x) is unknown for all examples in the test set, and only known for examples in 

the training set that correspond to donors.

II.A .2 The importance formulation

For the two-class case, there is an alternative formulation for cost-sensitive 

learning that we call the importance formulation. Here we assume that each train­

ing example is associated with a real number, the importance of the example, 

corresponding to the difference in cost between classifying the example incorrectly 

and correctly. Because we assume that it is always at least as costly to classify the 

example incorrectly than correctly, importances are always nonnegative numbers 

(see reasonableness conditions [28]).

More formally, we assume that the examples are drawn independently 

from a distribution D  with domain X  x y  x  C where X  and Y  are the same as
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in the standard classifier learning formulation and C C [0, oo] is the importance 

(or extra cost) associated with mislabeling that example. The goal is to learn a 

classifier h : X  y  which minimizes the expected cost of the labeling

EXty,c„D[c I(h (x )^y )}  (II.A.4)

given training data of the form (x , y , c ).

This formulation naturally models example-dependent and noisy costs. 

It is also simpler and easier to manipulate mathematically than the cost matrix 

formulation. Because the cost is part of the example, we do not have to deal with 

a separate mathematical entity. The drawback of the importance formulation is 

that it is only suitable for two-class problems. Formulating a cost-sensitive learning 

problem in a similar way when there are more than two classes is an open problem.

For application domains in which it is easier to talk consistently about 

benefits (or profits) than about costs, we can have the importance be the difference 

in benefit between classifying the example correctly and incorrectly. Again, we 

assume that classifying the example correctly has a larger benefit than classifying 

it incorrectly, so that the importance is positive. Then, maximizing equation II.A.4 

will correspond to maximizing the expected profit.

We note that there is a recent trend in cost-sensitive learning research 

moving from the cost matrix formulation to the importance formulation [36,13, 97].

II.A .3 Relationship between the two formulations

As it turns out, we can represent any two-class (example-dependent) cost 

matrix using the importance formulation. This is true because given the cost 

matrix and an example, only two entries (false positive, true negative) or (false 

negative, true positive) are relevant for that particular example, depending on 

whether the example is negative or positive. In fact, if we let the importance be

c = C{l ,0 ,x )  -  C (0,0,x)
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for negative examples and

c =  C(0, l ,x )  — (7(1, l ,x )

for positive examples (0 stands for negative and 1 stands for positive), we can show 

that minimizing the expected cost in the cost matrix formulation is equivalent to 

minimizing the expected cost in the importance formulation.

T h eo rem  I I .A .l .  Let C be a two-class cost matrix and let (x,y) be examples 

independently drawn from a distribution D with domain X x y ,  where X  is a feature 

space and y  is a (binary) label space. For each example (x, y), let the corresponding 

importance be c — (7(1,0,x) -  (7(0,0, x) if  y =  0 and c =  67(0, l ,x )  -  (7(1, l , x )  if 

y = 1. Then

minhEx>y„D[C(h(x),y,x)] =  minhEx<ŷ D[cI(h(x) ^  y)].

Proof.

Ex,y~D[C(h(x) ,y ,x)]

=  Ex<yr.D[C(h(x), 0, x)I(y  =  0) + C(h(x),  1, x)I(y  = 1)]

=  E x , v ~ d [ ( C ( 0 ,  0, x ) I ( h ( x )  = 0) +  (7(1,0, x ) I ( h ( x )  =  1 ) ) I ( y  = 0)

+  ((7(0,1, x)I(h{x) =  0) +  (7(1,1, x)I(h(x) = 1 ))I(y = 1)]

=  EXtV„D[{C(0,0, x )(l -  I(h(x) ?  0) +  (7(1,0, x)I(h(x)  #  0))I(y  =  0)

+  ((7(0,1 , x ) I ( h ( x )  ?  1) +  C (l, 1, x ) (1 -  I(h(x)  /  1 ))I (y  =  1)]

=  EXty„D[(C(l, 0, x) -  C (0 ,0, x))I(h(x) ±  0)I(y  =  0)

+  ((7(0,1, x) -  (7(1,1, x))I(h(x) + 1 )I(y = 1) +  C (0 ,0, x) +  (7(1,1, x)]

=  Ex>y„D[cI(h(x) ±  0)I(y =  0) + c l (h (x )  ±  1 )I(y = 1)

+  (7(0,0, x) +  (7(1,1, z)]

=  Ex>y„D[cI(h(x) ±  y) +  (7(0,0, rr) +  (7(1, l,x )]

Since the term (7(0,0, x) +  (7(1,1, x) does not influence the minimization with 

respect to h, we have that

min hEx,y~D[C(h(x),y, x)]

=  m m hEx^ D[cI{h(x) ±  y) +  (7(0,0,x) +  (7(1, l,x )]

=  minhEXty„D[cI(h(x) ±  y)]
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which completes the proof. □

Although they are equivalent, the cost matrix formulation and the im­

portance formulation lend themselves naturally to two different general approaches 

for solving the cost-sensitive learning problem, respectively:

• Cost-sensitive learning by expected cost estimation

• Cost-sensitive learning by example weighting

We will explore each of these approaches in Chapters III and IV.

II.B Current approaches to cost-sensitive learning

Research in cost-sensitive learning falls into three categories. The first 

category is concerned with making particular classifier learners cost-sensitive. Be­

low are examples of work in this category for a variety of learning methods:

• Decision trees: Knoll et al. [48] and Bradford et al. [12] present cost-sensitive 

pruning methods for decision trees, while Drummond and Holte [22] investi­

gate the effect of splitting criteria on cost-sensitive learning of decision trees.

•  Boosting: Fan et al. [31] propose AdaCost, a misclassification cost-sensitive 

boosting method.

•  Neural networks: Geibel and Wysotski [36] propose a cost-sensitive percep- 

tron learning rule for non-separable classes.

•  Support vector machines: Fumera and Roli [35] and Brefeld et al. [13] pro­

pose cost-sensitive support vector machine learning algorithms.

The second category uses Bayes risk theory to assign each example to 

its lowest expected cost class [20, 95, 58]. This requires classifiers to output class 

membership probabilities and, in the case where costs are example-dependent and 

unknown for some examples, also requires estimating costs [95]. These methods,
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which we call cost-sensitive learning by expected cost estimation, will be covered in 

detail in Chapter III.

The third category concerns methods that modify the distribution of 

training examples before applying the classifier learning method, so that the clas­

sifier learned from the modified distribution is cost-sensitive. This class of methods, 

which we call cost-sensitive learning by example weighting has only been explored 

for fixed costs in previous research [57]. In Chapter IV we present and evaluate 

such a method for example-dependent costs.

Besides misclassification costs, there may be other types of costs involved 

in classifier learning that we do not consider in this thesis, such as the cost of 

measuring attributes and the cost of labeling new examples. Turney [84] has 

created a taxonomy of the different types of costs involved in machine learning. 

Recently, Bayer-Zubek [7] has proposed a method for cost-sensitive learning that 

takes into consideration both measurement costs and misclassification costs. Note, 

however, that this is not a method for transforming existing classifier learners into 

cost-sensitive learners like the ones presented in this thesis, but a learning method 

specifically designed for this purpose.

II.C Publicly available cost-sensitive datasets

Here we give an overview of the two cost-sensitive datasets that are used 

for experimentation in this dissertation. Unfortunately, these are the only two 

publicly available real-world datasets for which misclassification cost information 

is available on a per example basis. Both datasets are from the direct marketing 

domain. Although there are many other cost-sensitive classifier learning domains, 

such as credit card fraud detection and medical treatment, publicly available cost- 

sensitive datasets are lacking.

Much of the research in cost-sensitive learning has been done using syn­

thetic costs (see for example [20, 31, 36, 13]), which is not very satisfactory given
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that real-world costs can exhibit certain peculiar characteristics that may not 

be captured by synthetic costs. Another option has been the use of proprietary 

datasets, such as a credit card fraud detection dataset [31, 32], which is also not 

satisfactory because it impedes comparison of methods developed by different re­

searchers.

We believe that the creation of a dataset repository such as the UCI 

Machine Learning Archive [10] Archive and the UCI KDD Archive [6] for cost- 

sensitive datasets would be very valuable for the advancement of cost-sensitive 

learning methodology.

II.C .l The K DD-98 dataset

This is a well-studied, large and challenging dataset that was first used 

in the data mining contest associated with the 1998 KDD conference and is now 

becoming popular as a benchmark for the evaluation of cost-sensitive learning 

methods [95, 97, 32]. This dataset and associated documentation are now available 

in the UCI KDD repository [6].

The dataset contains information about persons who have made donations 

in the past to a particular charity. The decision-making task is to choose which 

donors to mail a request for a new donation, in order to maximize the total 

profit obtained in the mailing campaign. This task is completely analogous to 

typical one-to-one marketing tasks for many other organizations, both non-profit 

and for-profit. Mathematically, the task has the same structure as all the two-class 

cost-sensitive learning problems mentioned in the section II.A.

The KDD-98 dataset is divided in a fixed, standard way into a training 

set and a test set. The training set consists of 95412 records for which it is known 

whether or not the person made a donation (a 0/1 response) and how much the 

person donated, if a donation was made. The test set consists of 96367 records 

from the same donation campaign for which similar donation information was not 

published until after the KDD-98 competition. In order to make our experimen­
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tal results directly comparable with those of previous work, we use the standard 

training set/test set division.

Each example in the dataset consists of 481 attributes describing each 

individual’s donation history in the previous 22 campaigns, as well as demographic 

information. Since this dissertation does not address the issue of feature selection, 

our choice of attributes is fixed and based informally on the KDD-99 winning 

submission of Georges and Milley [37]:

• income: household income code (range 1-8)

• f i r s td a te :  date of first gift

•  la s td a te :  date of most recent gift

•  p g if t :  number of gifts/number of promotions received

• RFA_2F: frequency code (range 1-4)

•  RFA_2A: amount of last gift code (range A-G)

• PEPSTRFL: RFA (recency, frequency, amount) star status (X or blank).

•  av g g ift: average dollar amount of gifts to date.

•  l a s t g i f t :  dollar amount of most recent gift.

•  am pergift: average dollar amount in responses to the last 22 promotions.

The attributes p g i f t  and am pergift are not directly present in the 

KDD98 data, but are obtained by dividing ngiftall/num prom  and by averaging 

RAMNT-3 to RAMNT_24, respectively.

Mailing a solicitation to an individual costs the charity $0.68. The overall 

percentage of donors among potential recipients is about 5%. The donation amount 

for persons who respond varies from $1 to $200. Given the low response rate and 

the variation in the value of gifts, it is not easy to achieve a profit that is much 

higher than that obtained by soliciting all potential donors. The profit obtained

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

by soliciting every individual in the test set is $10560, while the profit attained by 

the winner of the KDD-98 competition was $14712.

Many participants in the KDD-98 competition submitted entries that 

were worse than useless, because they achieved profits substantially lower than 

$10560. One likely reason for low success is that the individuals in the KDD-98 

dataset are already filtered to be a reasonable set of prospects. They have been the 

targets of a real donation campaign, selected using standard techniques in direct 

marketing such as recency-frequency-amount (RFA) scoring. The task now for any 

cost-sensitive learning method is to improve upon the already good performance 

of the unknown method that was applied to create the KDD-98 dataset.

We now formulate the problem as a cost-sensitive learning problem using 

both the cost matrix formulation and the importance formulation. Since the goal 

in this domain is to maximize the profit, we use benefits instead of costs in both 

formulations.

T h e  b enefit m a tr ix  fo rm ula tion

If we predict that the example is a non-donor, we will not mail a solici­

tation. Thus, in this case, the benefit is fixed at zero. If we predict the example 

is a donor, we will mail a solicitation, which costs $0.68. If the person is a donor, 

we will also receive a benefit corresponding to the donation amount y(x), which is 

example-dependent. So we have the following benefit matrix B :

actual non-donor actual donor 
predict non-donor 0 0
predict donor —0.68 y(x) — 0.68

T h e  im p o rtan c e  fo rm ula tion

The importance of each example is the difference in benefit between pre­

dicting the class label correctly or predicting it incorrectly.

For negative examples (actual non-donors), the correct prediction will 

lead to zero benefit while the incorrect prediction will lead to a negative benefit (a
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cost) of $0.68 for mailing. Thus, the importance is fixed at 0-(-0.68)= 0.68 for all 

negative examples.

For positive examples (actual donors), the correct prediction will lead 

to a benefit corresponding to the donation amount y(x ) minus $0.68 for mailing, 

while the incorrect prediction will lead to zero benefit. Thus, for positive examples 

(actual donors), the importance is y(x) — 0.68, which varies from $0.32 to $199.32 

for the positive examples in the training set.

I I .C .2 T he D M E F-2 d a ta se t

This dataset can be obtained for research and educational purposes from 

the DMEF dataset library [2] for a nominal fee. Although it is not as well-known 

as the KDD dataset, it has been used in previous research in data mining [55].

The dataset contains customer buying history for 96551 customers of a 

nationally known catalog. The decision-making task is to choose which customers 

should receive a new catalog so as to maximize the total profit on the catalog 

mailing campaign. Information on the cost of mailing a catalog is not available, 

so we fixed it at $2.

The overall percentage of respondents is about 2.5%. The purchase 

amount for customers who respond varies from $3 to $6247. We divided the 

dataset randomly in half to create a training set and a test set. As a baseline 

for comparison, the revenue obtained by mailing a catalog to every individual on 

the training set is $26474 and on the test set is $27584.

Each example consists of more than 150 attributes detailing the history 

of past catalog purchases of the customer, along with a label indicating whether or 

not the customer has responded to the last campaign and, in the case of response, 

the purchase amount in dollars. Again, because we are not considering the prob­

lem of feature selection here, we selected the following 17 features using domain 

knowledge:

• to ta lo rd e rs : number of orders
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• to ta ld o l la r s :  total amount

• to ta lo rd e rs6 : number of orders in the past 6 months

• to ta ld o l la r s 6 :  total dollars in the past 6 months

• to ta lo rd e rs !2 :  number of orders in the past 12 months

• to ta ld o l la r s l2 :  total dollars in the past 12 months

• to ta lo rd e rs2 4 : number of orders in the past 24 months

• to ta ld o lla rs 2 4 : total dollars in the past 24 months

• to ta lo rd e rs3 6 : number of orders in the past 36 months

• to ta ld o lla rs 3 6 : total dollars in the past 36 months

• d ay s la s t: days since last purchase

• d a y s f ir s t :  days since first purchase

• rfm: recency-frequency-monetary score

•  recencylastD : recency of last purchase in division D

• recencyf irstD : recency of first purchase in division D

• to talitem sD : total items in division D

• rfmD: recency-frequency-monetary score in division D

We use the features for division D because this is the division of the 

catalog mailing that we are trying to optimize.

The formulation of this problem as a cost-sensitive learning problem is 

completely analogous to the formulation for the KDD-98 dataset. The benefit 

matrix is as follows (where y(x) is the purchase amount):

actual non-buyer actual buyer 
predict non-buyer 0 0
predict buyer —2 y(x) — 2
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For positive examples (buyers), the importance is y(x) — 2, which varies 

from $1 to $6246 for the examples in the training set. For all negative examples 

(non-buyers), the importance is fixed at $2.
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Chapter III

C ost-sensitive learning by 

expected  cost estim ation

In this chapter, we present and compare two methods for cost-sensitive 

learning that use the cost matrix formulation and are based on expected cost 

estimation. One method is MetaCost, due to Domingos [20], which was the first 

method for transforming any classifier learning method into a cost-sensitive learner. 

The other is direct cost-sensitive decision making, proposed by Zadrozny and Elkan 

[94] as an improvement to MetaCost. Our analysis shows that direct cost-sensitive 

decision making is more general than MetaCost as originally published, and our 

experimental results show that it is preferable to MetaCost.

This chapter is organized as follows. In Section III.A we explain Meta­

Cost and direct cost-sensitive decision-making. Then in Section II.C .l we show 

how to apply these methods to the KDD-98 dataset. Both MetaCost and di­

rect cost-sensitive decision-making require accurate estimates of class membership 

probabilities. In Section III.C we present two techniques that allow accurate prob­

ability estimates to be obtained from a decision tree: smoothing and curtailment. 

We also present binning as a technique for making naive Bayes probability esti­

mates accurate. Previous research has been based on the assumption that mis­

classification costs are the same for all examples and known in advance, but in

25
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general these costs are example-dependent and unknown, in the same way that 

class membership probabilities are example-specific and not known in advance. In 

Section III.D we discuss this issue and the issue of how sample selection bias affects 

cost estimation. Finally, experimental results using the KDD-98 dataset are pre­

sented in Section III.E and in Section III.F we summarize the main contributions 

in this chapter. Related work is discussed as necessary throughout the chapter.

III.A  M etaCost vs. direct cost-sensitive decision-m aking

In the cost matrix formulation each training or test example x  is associ­

ated with a cost C(i ,j ,  x ) of predicting class i for x  when the true class of x  is j .  If 

these costs are known for each x , i and j ,  and the class membership probabilities 

P(j\x)  are known for each x  and j  then it is straightforward to compute an optimal 

policy for decision-making .

The optimal prediction for x, i.e. the optimal decision concerning x  or 

label to assign to x, is the class i that leads to the lowest expected cost

Given x, for each alternative i, the expected cost is a weighted average 

where the weight of C(i , j ,x )  is the conditional probability of the class j  given x. 

The label that leads to the lowest expected cost is known in the literature as the 

Bayes optimal prediction for x  [23].

The central idea behind the MetaCost method is to change the label of 

each training example to be its optimal label according to Equation (III.A .l), and 

then to learn a classifier that predicts these new labels.

Applying MetaCost requires knowledge of the conditional probability 

P{j\x)  for each training example x  and each possible true class j  for x. Almost 

always, these probabilities are not given as part of the training data. Instead, 

the training data must be used to learn a classifier that estimates P(j\x)  for each

(III.A.l)
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M etaC o st (L earner A,  T ra in ing  Set S)

1. L earn  a  m odel for P(j\x)  using lea rn e r A  ap p lied  to  S.

2. R elabe l each exam ple  x  in  S  w ith

i* =  argminj P(j\x)C(i, j ,  x)
3

to  form  th e  set S'.

3. L earn  a  classifier C  using  lea rn e r A  app lied  to  S'.

4. O u tp u t C.

Table III.l: The MetaCost algorithm.

training example x  and each j .  Table III.l gives the pseudo-code for the MetaCost 

algorithm.

However, note that any learned classifier that can provide conditional 

class membership probability estimates for training examples can also provide 

these estimates for test examples. Using these probability estimates we can di­

rectly compute the optimal label for each test example using Equation (III.A.l). 

This process is the method that we call direct cost-sensitive decision-making. The 

pseudo-code for this method is given in table III.2. Experimental results comparing 

MetaCost and direct cost-sensitive decision-making are given in Section III.E.

The basic MetaCost idea can be implemented in many ways. Our imple­

mentation differs from that described by Domingos [20] in two im portant ways. 

First, the original description of MetaCost is based on the assumption th a t costs 

are known in advance and are the same for all examples, i.e. th a t C(z, j , x) =  C(i, j)  

with no dependence on x. Provost and Fawcett [65] have pointed out th a t this as­

sumption is not always true: “For some problems, different errors of the same type 

have different costs.” We generalize MetaCost by relaxing this assumption.

Second, we do not estimate probabilities by using bagging [14]. Instead of
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D irec t cost-sensitive  decision -m ak ing (L earner A,  T ra in in g  Set S )

1. L earn  a  m odel for P( j \x ) using le a rn e r  A  ap p lied  to  S.

2. L et C  be  th e  classifier th a t  o u tp u ts

i* =  argmirij ^  P(J\x)C{i , ;, x) 
j

for an  exam ple  x.

3. O u tp u t C.

Table III.2: The direct cost-sensitive decision-making algorithm.

bagging, we use simpler methods based on single decision trees and naive Bayesian 

classifiers. As pointed out by Margineantu [56], bagging gives voting estimates that 

measure the stability of the base classifier learning method at an example, not the 

actual class conditional probability of the example. (A classifier learning method 

is stable at an example if classifiers learned from different resamples predict the 

same label for the example). For experimental results confirming that bagging is 

not a good way of improving probability estimates obtained from decision trees, 

see Zadrozny and Elkan [95].

In general, bagging does not give probability estimates that are unbiased 

and well-calibrated, whether or not the base learning method is stable. If a learning 

method is unstable and gives classifiers that make 0/1 predictions, then bagging 

tends to be useful because voting estimates are numbers between 0 and 1, which 

are preferable to 0/1 predictions as continuous probability estimates. However, 

in general these scores are not unbiased estimates. If a learning method gives 

classifiers that individually yield unbiased probability estimates, then bagging these 

classifiers is likely to reduce variance beneficially, while maintaining unbiasedness. 

But then the question remains of how to get individual scores that are unbiased 

in the first place. Section 4 below answers this question.
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III.B Applying direct cost-sensitive decision making

The dataset used in the experimental work described in this chapter is a 

well-studied, large and challenging dataset that was first used in the data mining 

contest associated with the 1998 KDD conference that was described in detail in 

chapter II (section II.C .l).

Let the label j  = 0 mean the person x  does not donate, and let j  — I 

mean the person does donate. If the person donates, the donation is of a variable 

amount, say y(x). The cost of mailing a solicitation is $0.68, so we have the 

following benefit matrix B ( i , j , x ):

actual non-donor actual donor 
predict non-donor 0 0
predict donor (mail) —0.68 y(x) — 0.68

The optimal predicted label for example x  is the class i that maximizes

(IH.B.l)
j

where B ( i , j , x )  is the benefit of predicting class i when the true class is j .

Notice that B(  1,1,2;) is example-dependent and unknown for test exam­

ples. We shall argue later that no fixed matrix of costs or benefits can lead to good 

decision-making. There is no constant c such that it would be reasonable to replace 

B(  1, l,a;) by the same value c for all x. All approaches to this task, and to other 

tasks with the same structure, that are based on a fixed cost or benefit matrix will 

have poor performance. Of course, some approaches can take into account the fact 

that y(x) is example-dependent without estimating y(x) explicitly.

The expected benefit of not soliciting a person x, i.e. of deciding i — 0

for x, is

P ( j  =  0 |x)B (0,0 ,2;) +  P ( j  = l \ x )B (0 ,1,2;)

= P ( j  = 0\x)(0) + P ( j  = l \ x m  

= 0
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The expected benefit of soliciting x  is

P ( j  =  Q\x)B(l,0,x) + P( j  = l |x )B (l,l ,r r )

=  P ( j  =  0 |x)(—0.68) +  P ( j  =  1|x)(y(x) -  0.68)

=  (1 -  P ( j  =  l|rr))(—0.68) +  P(j  = 1|x)(y(x) -  0.68)

=  P ( j  = 1|x)y(x) -  0.68.

The optimal policy is to solicit exactly those people for whom the expected benefit 

of mailing is greater than the expected benefit of not mailing: individuals for whom

P ( j  =  l \x)y(x)  — 0.68 > 0.

In other words, the optimal policy is to mail to people for whom the expected 

return P ( j  = 1|x)y(x)  is greater than the cost of mailing a solicitation:

P ( j  = l\x)y(x) > 0.68. (III.B.2)

In order to apply this policy, we need to estimate the conditional probability of 

making a donation P ( j  =  1 |m) and the donation amount y(x) for each example x  

in the training set, in the case of MetaCost. We need to estimate these values for 

both training and test examples in the case of direct cost-sensitive decision-making.

Although we use the KDD-98 dataset for concreteness, the methods de­

scribed here apply to cost-sensitive learning in general. In any cost-sensitive learn­

ing application, in order to use Equation (III.A.l) or (III.B.l) to obtain an optimal 

labeling, we need to estimate conditional class membership probabilities accurately. 

Costs or benefits must also be estimated whenever they are unknown for some ex­

amples.

In general, if a; is a test example then C ( i , j , x ) will be unknown for all 

i and j .  If a; is a training example then C(i , j ,x )  will be known for some i and j  

pairs, but unknown for other pairs. Of course, if costs are not example-dependent, 

that is, if C ( i , j , x ) =  C ( i , j , y ) for all examples x  and y, then costs do not need to
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be estimated for any training or test examples. This special case is the only case 

considered in previous general research on cost-sensitive learning. In the remainder 

of this chapter, we present new methods for estimating costs and probabilities. All 

these methods can be applied without change in a wide variety of domains.

III.C Probability Estimation M ethods

An estimate of the conditional probability of membership in each class is 

required for each training example if MetaCost is used, and for each test example 

if direct cost-sensitive decision-making is used.

This section explains our methods for obtaining calibrated probability 

estimates from decision tree and naive Bayesian classifiers. We first explain the 

deficiencies that cause standard decision tree methods not to give accurate prob­

ability estimates, and we then explain methods to overcome these limitations. A 

final subsection presents a simple method for obtaining calibrated probabilities 

from a naive Bayesian classifier.

I I I .C .1 D eficiencies o f decision tre e  m e th o d s

Throughout this chapter, C4.5 [66] is the representative decision tree 

learning method used, but all our analyses and suggestions apply equally to other 

decision tree methods such as CART [15].

When classifying a test example, C4.5 and other decision tree methods 

assign by default the raw training frequency p = k / n  as the score of any exam­

ple that is assigned to a leaf that contains k  positive training examples and n 

total training examples. These training frequencies are not accurate conditional 

probability estimates for at least two reasons:

1. High bias: Decision tree growing methods try to make leaves homogeneous, 

so observed frequencies are systematically shifted towards zero and one. This 

problem has been noted by Walker [88] and others.
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2. High variance: When the number of training examples associated with a leaf 

is small, observed frequencies are not statistically reliable.

Pruning methods as surveyed by Esposito et al. [30] can in principle alleviate 

problem (2) by removing leaves that contain too few examples. However, standard 

pruning methods are not suitable for unbalanced datasets, because they are based 

on accuracy maximization. On the KDD-98 dataset C4.5 produces a pruned tree 

that is a single leaf. Since the base rate of positive examples, th a t is the overall 

probability P(j  =  1), is about 5%, this tree has accuracy 95%, but it is useless for 

estimating example-specific conditional probabilities P(j  =  l|a;).

In general, trees pruned with the objective of maximizing accuracy are 

not useful for ranking test examples, or for estimating class membership probabil­

ities. The standard C4.5 pruning method is not alone in being incompatible with 

accurate probability estimation. Quinlan’s recent decision tree learning method, 

C5.0, and CART also do pruning based on accuracy maximization. Both C4.5 and 

C5.0 have rule set generators that are a commonly used alternative to pruning [66]. 

Given a decision tree, these methods produce a set of rules th a t is typically simpler 

and that generalizes better to new examples than the original tree. However, these 

methods are also based on accuracy maximization, so they are also unsuitable for 

probability estimation.

We show how to improve directly the accuracy of decision tree probability 

estimates. Our experiments use C4.5 without pruning and without collapsing to 

obtain raw scores that can be transformed into accurate class membership prob­

abilities. The choice to do no pruning is supported by the results of Bradford et 

al. [12], who find that performing no pruning and variants of pruning adapted 

to loss minimization both lead to similar performance. Not using pruning is also 

suggested by Bauer and Kohavi [4] in their Section 7.3.

The methods we propose transform the leaf scores of a standard decision 

tree. Completely different methods have been suggested, but they have major 

drawbacks. Smyth et al. [73] use kernel density estimators at the leaves of a
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decision tree. However their algorithms are based on C4.5 and CART with pruning, 

so they are unsuitable for highly unbalanced datasets. Their experiments use only 

synthetic, reasonably balanced datasets. Our experiments use an unbalanced real- 

world dataset where the less probable class has a base rate of only about 5%. 

Estimating probabilities using bagging has been suggested by Breiman [14] and 

by Domingos [20], but as explained above in Section III.A, bagging does not give 

unbiased probability estimates in general.

III .C .2 S m oo th ing

One way of improving the probability estimates given by a decision tree is 

to make these estimates smoother, i.e. to adjust them to be less extreme. Provost 

and Domingos [64] suggest using the Laplace correction method. For a two-class 

problem, this method replaces the conditional probability estimate p = |  by

/ k + 1
P = ^ T 2 -

The Laplace correction method adjusts probability estimates to be closer 

to 1/2, which is not reasonable when the two classes are far from equiprobable, as 

is the case in many real-world applications.

In general, one should consider the overall average probability of the 

positive class, that is, the base rate, when smoothing probability estimates.

We replace the probability estimate p = |  by

. k + b • m
P = -----;------ ,n + m

where b is the base rate of the positive class and m  is a parameter th a t controls how 

much scores are shifted towards b. This smoothing method is called m-estimation 

[17]. For example, if a leaf contains four training examples, one of which is positive, 

the raw C4.5 decision tree score of any example assigned to this leaf is 0.25. The 

smoothed score with m  = 200 and b =  0.05 is

1 +  0.05-200 =  n _  =
F 4 +  200 204
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0.3

—  smoothed scores (m=200)
—  raw C4.5 scores

0.25

0.2

O 0.15

0.05

Test examples sorted by raw C4.5 scores x104

Figure III.C .1: Smoothed scores and raw C4.5 scores for test examples sorted by 

raw score. The figure shows how the scores change after smoothing is applied. 

In particular, examples that are assigned a score close to 0 (left-hand side) or 1 

(right-hand side) by C4.5 have their scores significantly shifted towards the base 

rate by smoothing.

As m  increases, observed training set frequencies are shifted more towards 

the base rate.

Previous research has suggested choosing m  by cross-validation. Given a 

base rate b, we suggest using m  such that bm =  10 approximately. This heuristic 

ensures that raw probability estimates that are likely to have high variance, those 

with k < 10, are given low credence. Experiments show that the effect of smoothing 

by ra-estimation is qualitatively similar for a wide range of values of m, so, as is 

highly desirable, the precise value chosen for m  is unimportant.

Figure III.C. 1 shows the smoothed scores with m  =  200 of the KDD-98 

test set examples sorted by their raw C4.5 scores. As expected, smoothing shifts all
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scores towards the base rate of approximately 0.05, which is desirable given that 

C4.5 scores tend to be overestimates or underestimates. While raw C4.5 scores 

range from 0 to 1, smoothed scores range from 0.0224 to 0.1018.

III .C . 3 C u rta ilm e n t

As discussed above, without pruning decision tree learning methods tend 

to overfit training data and to create leaves in which the number of examples is 

too small to induce conditional probability estimates that are statistically reliable 

(which we call small leaves). Smoothing attempts to correct these estimates by 

shifting them towards the overall average probability, i.e. the base rate b. However, 

if the parent of a small leaf contains enough examples to induce a statistically reli­

able probability estimate, then assigning this estimate to a test example associated 

with the leaf may be more accurate then assigning it a combination of the base 

rate and the observed leaf frequency, as done by smoothing. If the parent of a 

small leaf still contains too few examples, we can use the score of the grandparent 

of the leaf, and so on until the root of the tree is reached. At the root, of course, 

the observed frequency is the training set base rate.

We call this method of improving conditional probability estimates cur­

tailment because when classifying an example, we curtail search through the deci­

sion tree as soon as we reach a node tha t has less than v examples, where v is a 

parameter of the method. The score of the parent of this node is then assigned to 

the example in question. As for smoothing, v can be chosen by cross-validation, 

or using a heuristic such as making bv =  10. We choose v =  200 for all our ex­

periments. Informal experiments show that values of v between 100 and 400 give 

similar results, so the exact setting of v is not critical.

Given the KDD-98 training set, curtailment effectively creates the deci­

sion tree shown in part in Figure III.C.2. The distinction between internal nodes 

and leaves is blurred in this tree, because a node may serve as an internal node 

for some examples and as a leaf for others, depending on the attribute values of
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internal node
pgift > 0.178218pgift <= 0.178218

I I leaf

PEPSTRFL PEPSTRFL
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firstdate <= 9508 firstdate > 9508

k=601
n=11637

pgift > 0.097561pgift <= 0.097561

k=574
n=11412k=27

n=225

RFA_2F = 1

r k=121 ^
. n-1906 .

k=268
n=6239

income = 0

k*10
n=128

k*21
n=271

k*8
n=166

Figure III.C.2: Part of the decision tree obtained by curtailment with v =  200. The 

dotted nodes are present in the original C4.5 tree, but are effectively eliminated 

from the curtailment tree because n < v.

the examples. The node in gray is an example of a node that can serve both as an 

internal node and as a leaf, because one of its branches has been eliminated from 

the tree, but not all.

Curtailment is not equivalent to any type of pruning, nor to traditional 

early stopping during the growing of a tree, because those methods eliminate all 

the children of a node simultaneously. In contrast, curtailment may eliminate 

some children and keep others, depending on the number of training examples 

associated with each child. Intuitively, curtailment is preferable to pruning for
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probability estimation because nodes are removed from a decision tree only if they 

are likely to give unreliable probability estimates.

0.3

0.25 -

(0
CD
O 0.15 O <O

0.05

_J r h-----------r

curtailment scores (v=200) 
raw C4.5 scores

Test examples sorted by raw C4.5 scores

Figure III.C.3: Curtailment scores and raw C4.5 scores for test examples. Exam­

ples are sorted by raw C4.5 score. The figure shows that scores change significantly 

after curtailment is applied, in particular for examples that are assigned a score 

close to 0 (left-hand side) or 1 (right-hand side) by C4.5.

Figure III.C.3 shows the curtailment scores with v =  200 of the KDD- 

98 test set examples sorted by their raw C4.5 scores. The jagged lines in the 

chart show that many scores are changed significantly by curtailment. Overall, 

the range of scores is reduced as with smoothing, but not as much. The minimum 

curtailment score is 0.0045 while the maximum is 0.1699.
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III .C .4  B inn ing

Naive Bayesian classifiers are based on the assumption th a t within each 

class, the values of the attributes of examples are independent.

Mathematically, this conditional independence assumption can be stated

as
n

p iA j) =
k= 1

where each Xk is one attribute value of x.

It is well-known that these classifiers tend to give inaccurate probabil­

ity estimates [21]. Given an example x, suppose that a naive Bayesian Classifier 

computes the score n(x). Because attributes tend to be positively correlated, 

these scores are typically too extreme: for most x, either n(x)  is near 0 and 

then n(x) < P ( j  =  l|x) or n(x) is near 1 and then n(x) > P ( j  = l|x ). How­

ever, naive Bayesian classifiers tend to rank examples well: if n(x) < n(y) then 

P(j  =  l|x ) < P(j  =  l|y).

We use a histogram method to obtain calibrated probability estimates 

from a naive Bayesian classifier. We sort the training examples according to their 

scores and divide the sorted set into b subsets of equal size, called bins. For each 

bin we compute lower and upper boundary n(-) scores. Given a test example x, 

we place it in a bin according to its score n(x).  We then estimate the corrected 

probability that x  belongs to class j  as the fraction of training examples in the bin 

that actually belong to j .

The number of different probability estimates th a t binning can yield is 

limited by the number of alternative bins. This number, b = 10 in our experiments, 

must be small in order to reduce the variance of the binned probability estimates, 

by increasing the number of examples whose 0/1 memberships are averaged inside 

each bin. Binning reduces the resolution, i.e. the degree of detail, of conditional 

probability estimates, while improving the accuracy of these estimates by reducing 

both variance and bias compared to uncalibrated estimates.
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Binning is a discrete non-parametric method for calibrating probability 

estimates. In future work, we should consider using continuous methods such as the 

super-smoother or loess to obtain calibrated probability estimates with a greater 

degree of detail. Sobehart et al. [74] use a Gaussian kernel regression method in 

a similar context. Applying parametric methods to calibrate naive Bayes scores 

is not straightforward. For example, Bennett [8] reports that sigmoid functions 

cannot transform naive Bayes scores into well-calibrated probability estimates.

With most learning methods, in order to obtain binned estimates that 

do not overfit the training data, we should partition the training set into two sub­

sets. One subset would be used to learn the classifier that yields uncalibrated 

scores, while the other subset would be used for the binning process. More train­

ing examples would be assigned to the first subset because learning a classifier 

involves setting many more parameters than setting the binned probabilities. For 

naive Bayesian classifiers, however, separate subsets are not necessary because this 

learning method does not overfit the training data much. So we use the entire 

training set both for learning the classifier and for binning.

III.C.5 Averaging probability estimates

If different methods provide noisy probability estimates that are partially 

uncorrelated, it is intuitive that averaging the probability estimates given by these 

methods reduces the noise, thereby improving the probability estimates.

This intuition is formalized by Turner and Ghosh [83]. They show that 

by combining the probability estimates given by different classifiers through aver­

aging we can reduce the variance of the probability estimates. The reduction in 

the variance depends on the degree of correlation of the noise in the probability 

estimates produced by each classifier and on how many classifiers are used.

Assuming that the variance of the probability estimates given by each 

classifier is approximately the same, the variance of the averaging combiner is
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given by
2 1 +  p(N  -  1) 2a  = -------   a

where a2 is the variance of each original classifier, N  is the number of classifiers and 

p is the correlation factor among all classifiers. If the classifiers are independent 

(p =  0), the combined variance is reduced by N. On the other hand, if the 

classifiers are completely correlated (p =  1), the variance is unchanged.

Since the probability estimates obtained from the decision tree and naive 

Bayesian classifiers are partially uncorrelated, averaging them should yield esti­

mates that are more accurate than those given by each individual method. In 

Section III.E we show experimental results that confirm this hypothesis.

III.D E stim ating donation amounts

In general, in cost-sensitive learning we need to estimate example-specific 

misclassification costs, in addition to example-specific class conditional probabili­

ties. We need to estimate misclassification costs for training examples when using 

MetaCost, and for test examples when using direct cost-sensitive decision-making.

If costs and probabilities are both unknown, then estimating costs well can 

be more im portant for making good decisions than estimating probabilities well. 

Cost estimates are more important if the relative variation of costs across different 

examples is greater than the relative variation of probabilities. The dynamic range 

of costs may be greater than the dynamic range of probabilities either because the 

dynamic range of true costs is greater, or because estimating costs accurately is 

easier than estimating probabilities accurately.

In the KDD-98 domain for example, estimating donation probabilities is 

difficult. Our best method for this task, the averaging of smoothing, curtailment, 

and binned naive Bayes, gives conditional probabilities in the narrow range from

0.0172 to 0.1189. Estimating donation amounts is easier because past amounts are 

excellent predictors of future amounts.
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It may appear that for non-donors in the training set we should impute 

a donation amount of zero, since their actual donation amount is zero. But this 

imputation would be analogous to imputing a donation probability of zero for the 

non-donors based on the fact that they have not donated, which is clearly wrong. 

When responding to a solicitation a person has to make two decisions. The first is 

whether to donate or not, while the second is how much to donate. Conceptually, 

these decisions are governed by two different random processes, not necessarily 

sequential or independent of course. For donors in the training set, the outcome of 

the random process that sets the donation amount is known, while for non-donors, 

this outcome is unknown. For individuals in the test set, the outcome of both 

random processes is unknown. Whenever the outcome of one or both processes 

is unknown, the learning task is to estimate its outcome. For non-donors in the 

training set, the task is to estimate the amounts that they would have donated, if 

they had made donations.

It is also wrong to impute any fixed quantity as a donation estimate 

for test examples. Using the same donation estimate for all test examples means 

that the decision whether or not to solicit a person is based exclusively on the 

probability that they will donate. This method is equivalent to using a fixed cost 

matrix for test examples.

In general, whenever misclassification costs are assumed to be fixed, dif­

ferent decisions for different examples can only be based on different conditional 

probability estimates for those examples.

For clarity, the arguments in the previous paragraphs are expressed in lan­

guage that is specific to the donations domain. However, similar arguments apply 

to any scenario where costs or benefits are different for different examples. These 

costs or benefits must be estimated for each example, whenever they are unknown. 

Assuming that unknown costs or benefits are zero or constant is incorrect.

The method we use for estimating donation amounts is least-squares mul­

tiple linear regression (MLR). The donors in the training set th a t have donated
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at most $50 are used as input for the regression, which is based on one original 

attribute and one derived attribute:

• l a s t g i f  t :  dollar amount of most recent gift,

•  am pergift: average gift amount in responses to the last 22 promotions.

Since the topic of this research is not variable selection, we somewhat arbitrarily 

choose these two attributes based on previous work. We use the linear regression 

equation to estimate donation amounts for all examples in both the training and 

test sets.

Donations of more than $50 are very rare in our domain: 46 of 4843 

donations recorded in the training set. We eliminate these examples from the 

regression training set as a heuristic attem pt to reduce the impact of outliers on the 

regression. If included, these examples have the most influence on the regression 

equation, because they have the highest y values and the regression equation is 

chosen to minimize the sum of squared y errors. However, it is less important to 

estimate y  values accurately for these individuals, because the optimal decision is 

always to solicit them, given that predicted donation probabilities are always over 

1.5%. Accurate predicted donation probabilities are never close to  zero because of 

the intrinsic difficulty of predicting whether or not a person will donate. In future 

work, we shall consider using non-linear regression methods th a t are able to cope 

adaptively with outliers.

Conversely, making accurate predictions is most im portant for individuals 

whose expected donation is close to $0.68. These individuals all have estimated 

donation amounts under $50, again because all predicted donation probabilities 

are over 1.5%.

II1.D.1 The problem of sample selection bias

When estimating donation amounts, a fundamental problem is that any 

estimator, for example a regression equation, must be learned based on examples of
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Prob. estimation method
W ithout Heckman W ith Heckman

Training set Test set Training set Test set
Smoothed C4.5 (sm)
C4.5 with curtailment (cur) 
Binned naive Bayes (binb) 
Average(sm, cur) 
Average(sm, cur, binb)

$19256
$16722
$14262
$18591
$18140

$14093
$13670
$14208
$14518
$14877

$18583
$17037
$14994
$18474
$17400

$14321
$14161
$15094
$14879
$15329

Table III.3: Profit attained on the training and test sets using each probability 

estimation method.

people who actually donate. But this estimator must then be applied to a different 

population, i.e. both donors and non-donors. This problem is known in general 

as sample selection bias. It occurs whenever the training examples used to learn 

a model are drawn from a different probability distribution than the examples to 

which the model is applied.

In the donations domain, the donation amount and the probability of 

donation are negatively correlated. People who are more likely to respond to a 

solicitation tend to make smaller donations, while people who make larger dona­

tions are less likely to respond. This relationship is illustrated in Figure III.D .l. 

Since examples of people who actually donate are the only training examples for 

the regression, donation amounts estimated by the regression equation tend to be 

too low for test examples that have a low probability of donation.

As we have explained previously [27], the standard method of compen­

sating for sample selection bias in econometrics is a two-step procedure due to 

James J. Heckman of the University of Chicago [43]. In October 2000 Heckman 

was awarded the Nobel prize in economics for developing and applying this pro­

cedure. Expressed using our notation, Heckman’s procedure is applicable when 

each example x  belongs to one of two classes, i.e. j ( x ) =  0 or j ( x )  = 1, and the 

dependent variable to be estimated y{x) is observed for a training example if and 

only if j(x )  = 1. The first step of the procedure is to learn a probit linear model 

to estimate conditional probabilities P (j  =  l|x ). A probit model is a variant of
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Figure III.D .l: Actual donation amount versus estimated probability of donation, 

for all donors in the training set. A negative correlation between donation amount 

and probability of donation is visible.

logistic regression where the cumulative Gaussian probability density function is 

the sigmoid function. The second step of Heckman’s procedure is to estimate y(x) 

by linear regression using only the training examples x  for which j(x )  — 1, but 

including for each x  a transformation of the estimated value of P ( j  =  l\x). Heck­

man has proved that this procedure yields estimates of y(x) tha t are unbiased for 

all x, regardless of whether j{x)  =  0 or j(x )  =  1, under certain conditions [43].

Our second method for estimating donation amounts is a nonlinear vari­

ant of Heckman’s procedure. Instead of using a linear estimator for P (j  =  l|x ), 

we use a decision tree or a naive Bayes classifier to obtain probability estimates, as 

described in Section III.C. We then include these probability estimates directly as 

an additional attribute when applying a learning method to obtain an estimator 

for y(x). This learning method could be a nonlinear method, for example a neural
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network method, but in order to investigate carefully the usefulness of Heckman’s 

idea, we hold everything else constant and just provide the estimated P (j  =  l|rr) 

values as a third attribute of a; to a linear regression that is otherwise the same as 

in the first method.

III.E Experim ental Results

In this section, we investigate experimentally how the new probability and 

cost estimation methods described above affect the profit attained on the KDD-98 

dataset (described in Chapter II, Section II.C). We first report our results, and 

then discuss the issue of statistical significance.

For each of the probability estimation methods described in Section III.C, 

Table III.3 shows the profit obtained when we use the multiple linear regression 

that includes only l a s t g i f t  and am pergift as attributes, and when we apply 

Heckman’s procedure by including the probability estimates as an additional at­

tribute to the regression. When we use Heckman’s procedure, the profit on the test 

set increases for all probability estimation methods, on average by $484. The fact 

that the improvement is systematic indicates that Heckman’s procedure succeeds 

in correcting sample selection bias.

To implement MetaCost, probability and donation estimates obtained as 

described in Sections III.C and III.D are used to relabel the training set according 

to Equation III.A .I. We train C4.5, with pruning and collapsing, on the relabeled 

training examples and apply the resulting decision tree to the training and test 

examples. The profit obtained from mailing the people who are labeled positive 

by the decision tree is given in Table III.4.

Comparing the results in Table III.4 with the results in the second half 

of Table III.3, we see that MetaCost performs consistently less well than direct 

cost-sensitive decision-making. On average, the profit achieved with MetaCost 

on the test set is $1751 lower than the profit achieved with direct cost-sensitive
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Probability estimation method Training set Test set
Smoothed C4.5 (sm)
C4.5 with curtailment (cur) 
Binned naive Bayes (binb) 
Average(sm, cur) 
Average(sm, cur, binb)

$17359
$15869
$13608
$17547
$16531

$12835
$11283
$14113
$13284
$13515

Table III.4: Profit attained on the training and test sets using MetaCost with each 

probability estimation method. Donation amount estimates are obtained from the 

MLR with the Heckman adjustment.

decision-making. The best result with MetaCost is $14113, while the best result 

with the direct method is $15329, which is better than the result obtained by the 

winner of the KDD-98 contest, $14712.

We conclude that direct cost-sensitive decision-making is preferable to 

MetaCost. We attribute the worse performance of MetaCost to the difficulty that 

any single model must have in estimating costs and probabilities as accurately 

as two separate models. Learning a single classifier from relabeled training data 

causes more errors in approximating the ideal decision boundary than learning two 

estimators.

It is difficult to make definite statements about the statistical significance 

of the experimental results above. There are 4872 donors in the fixed test set. 

For these individuals, the average donation is $15.62. On a different test set 

drawn randomly from the same probability distribution, one would expect a one 

standard deviation fluctuation up or down of \/4872 in the number of donors. 

This fluctuation would cause a change of about $15.62 ■ \/4872 =  $1090 in total 

profit. Therefore, a profit difference of less than $1090 between two methods is 

not statistically significant.

Many of the profit differences between methods that we observe are less 

than $1090. There are several avenues we could follow to obtain statistically signif­

icant differences between methods. One avenue would be to use cross-validation,
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instead of a single training set and a single test set. However, the training set/test 

set split we use is standard. If we did not use it, our results would not be compa­

rable with those of previous work using the same dataset.

Another avenue would be to use multiple datasets for comparing different 

methods, as done for example by Domingos [20]. But, despite the unquestioned im­

portance of example-dependent costs in many learning tasks, the KDD-98 dataset 

is the only dataset in the UCI repositories for which real-world misclassification 

cost information is available. Most previous experimental research on cost-sensitive 

learning has used arbitrary cost matrices. We prefer to use real cost data, espe­

cially since we are interested in the situation where costs are different for different 

examples.

The purpose of the experiments reported here is not so much to identify 

a single best method for cost-sensitive learning and decision-making, but rather 

to compare the usefulness of the alternative sub-methods proposed in previous 

sections. In all trials, the test set profit achieved using MetaCost is lower and 

using Heckman’s procedure is higher. We choose not to quantify the level of this 

statistical significance because doing so would require making assumptions tha t are 

certainly false, and therefore give misleading conclusions. In particular, because 

all trials use the same training and test sets, they are not statistically independent. 

Always using the same training and test set removes one source of variance, so even 

small differences in performance between data mining methods are in fact likely 

to be genuine [55].

III.F Conclusions

The main contributions of this chapter are the following:

1. We explain a general method of cost-sensitive learning th a t performs system­

atically better than MetaCost in our experiments.

2. We provide the first general solution to the fundamental problem of costs
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being different for different examples, and unknown for some of the examples.

3. As part of (2), we identify and solve the problem of sample selection bias,

i.e. the fact that the training set available for learning to estimate costs is 

not representative of test examples, or indeed of other training examples. In 

Chapter VI we will tackle the problem of sample selection bias in a more 

general setting.

All the methods we propose are evaluated carefully with experiments using a large, 

difficult and highly cost-sensitive real-world dataset. Previous research has tended 

to use small datasets with synthetic cost data.

We have used simple methods for both probability estimation and cost 

estimation in this chapter in order to illustrate our general cost-sensitive learning 

approach and to provide a baseline for future research. In chapter V we present 

improved methods obtaining calibrated probability estimates from classifiers.

Our experiments are designed so that both MetaCost and the alternative 

we propose use the same methods for estimating costs and probabilities. Therefore, 

we expect our conclusion that direct cost-sensitive decision-making is preferable 

to remain valid with other estimation methods. In particular, both MetaCost 

and direct cost-sensitive decision-making will be improved by any improvement in 

techniques for probability estimation.
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Chapter IV

C ost-sensitive learning by 

exam ple weighting

In this chapter, we present a family of methods for cost-sensitive learning 

that uses the importance formulation and is motivated by a folk theorem that we 

formalize and prove in section IV.A. This theorem states that altering the origi­

nal distribution of training examples D  to another D  by weighting each example 

proportionately to its relative cost (or importance) makes any error-minimizing 

classifier learner accomplish expected cost minimization on the original distribu­

tion. Representing samples drawn from D, however, is more challenging than it 

may seem. There are two basic methods for doing this, starting with a set of 

examples drawn from D:

• Transparent Box (Section IV.B): Supply the example-dependent costs as 

example weights to the classifier learning algorithm.

• Black Box (Section IV.C): Carefully resample using these same weights.

While the transparent box approach cannot be applied with arbitrary 

classifier learners, it can be applied to many, including any classifier which only 

uses the data to calculate expectations. We show empirically in Section IV.D.l 

that this method results in good performance. The black box approach has the

49
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advantage that it can be applied to any classifier learner. It turns out, however, 

that simple resampling-with-replacement can result in severe overfitting related to 

duplicate examples), as is confirmed by our experimental results in Section IV.D.2.

We propose, instead, to employ cost-proportionate rejection sampling to 

realize the latter approach, which allows us to independently draw examples ac­

cording to D. (In essence, this method accepts each example in the input sample 

with probability proportional to its associated weight.) This method comes with a 

theoretical guarantee: In the worst case this sampling method produces a classifier 

that achieves at least as good approximate cost minimization as applying the base 

classifier learning algorithm on the entire sample. This is a remarkable property 

for a subsampling scheme: in general, we expect any technique using only a subset 

of the examples to compromise predictive performance.

The runtime savings made possible by this sampling technique enable 

us to run the classification algorithm on multiple draws of subsamples and aver­

age over the resulting classifiers. This last method is what we call costing (cost- 

proportionate rejection sampling with aggregation). Costing allows us to use an 

arbitrary cost-insensitive learning algorithm as a black box in order to accomplish 

cost-sensitive learning, achieves excellent predictive performance and can achieve 

drastic savings of computational resources, both in terms of time and space.

IV .A  A Folk Theorem

In the importance formulation (see Chapter II, section II.A.2) we assume 

that examples are drawn independently from a distribution D  with domain X  x 

Y  x  C  where X  is the input space to a classifier, Y  is a (binary) output space 

and C  C [0, oo) is the importance (extra cost) associated with mislabeling that 

example. The goal is to learn a classifier h : X  -+ Y  which minimizes the expected 

cost,

Ex,%/,c~£>[c-f(h(:r) 7̂  2/)]
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given training data of the form: (x , y, c), where /(•) is the indicator function that 

has value 1 in case its argument is true and 0 otherwise.

A basic folk theorem states that if we have examples drawn from the 

distribution:

D (x , y, c) =  -  —̂ rrrDix, y, c)
*-Jx,y,c~D  [CJ

then optimal error rate classifiers for D  are optimal cost minimizers for data drawn 

from D . We say “folk theorem” here because the result appears to be known by 

some and it is straightforward to derive it from results in decision theory, although 

we have not found it published.

Theorem IV .A .I. (Translation Theorem) For all distributions, D , there exists a 

constant N  =  E XiytĈ D[c] such that for all classifiers, h:

^ I/)] = T7 E x<y>ĉ D[cI(h(x) ±  y)]

Proof.

E x<y,c~D[cI{h(x) ±  y)} =  ^  D (x, y, c)c I(h (x) ±  y)
x,y,c

=  N  ^ 2  D{x, y, c)I(h(x) ±  y)
x,y,c

=  N E ^ tk m x )  #  »)]
a c

where D ( x , y, c) =  j^ D (x ,  y, c).

□

Despite its simplicity, the translation theorem is useful to us because the 

right-hand side expresses the expectation we want to control (via the choice of h) 

and the left-hand side is the probability that h errs under another distribution. 

Choosing an h to minimize the rate of errors under D  is equivalent to choosing 

a h to minimize the expected cost under D. Similarly, e-approximate error rate 

minimization under D  is equivalent to Ne-approximate expected cost minimization 

under D.
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The prescription for coping with cost-sensitive problems is straightfor­

ward: reweight the distribution in your training set according to the importances 

so that the training set is effectively drawn from D. Doing this in a correct and 

general manner is more challenging than it may seem and is the topic of the rest 

of the chapter.

IV .B Transparent Box: Using W eights D irectly

IV .B .l General conversion

Here we examine how importance weights can be used directly. The 

approach taken here is a transparent box approach where access to the source code 

is required, and not a black box approach (which we develop in the next section). 

In particular, we use the weights within the learning algorithm to accomplish cost- 

sensitive classification.

The mechanisms for realizing the transparent box approach have been 

described elsewhere for a number of weak learners used in boosting, but we will 

describe them here for completeness.

The classifier learning algorithm must use the weights so that it effectively 

learns from data drawn according to D. This specific requirement is easy to apply 

for all learning algorithms which fit the statistical query model [46].

As shown in figure IV.B.l, many learning algorithms can be divided into 

two components: a portion which calculates the (approximate) expected value of 

some function (or query), say / ,  and “the rest”— a portion which forms these 

queries and uses their output to construct a classifier. For example, neural net­

works (with batch-mode gradient updates), decision trees, and Naive Bayes clas­

sifiers can be constructed in this manner. Support vector machines are not easily 

constructible in this way, because the individual classifier is explicitly dependent 

upon individual examples (rather than on statistics derived from the sample set).
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Learning
Algorithm

Query
Oracle

Query/ReplyQuery/Reply
Pairs

Figure IV.B.l: A figure showing the statistical query model of learning algorithms. 

For any learning algorithm decomposable in this form, there is a generic method 

for learning from a reweighted distribution directly.

W ith finite data we cannot precisely calculate

However, with high probability we can approximate this expectation, given a set 

of samples drawn independently from the underlying distribution D.

Whenever we have a learning algorithm that can be decomposed as in 

figure IV.B.l, there is a simple recipe for using the weights directly. Instead of 

simulating the expectation with

bution D , and so the modified expectation is an unbiased Monte Carlo estimate 

of the expectation w.r.t. D.

Note that even when a learning algorithm does not have a statistical 

query form, it may be possible to incorporate importance weights directly. We

E x^ D[f{x ,y ) \ .

we use

This method is equivalent to importance sampling for D  using the distri-
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now discuss how to incorporate importance weights into some specific learning 

algorithms.

IV.B.2 Naive Bayes and boosting

Naive Bayes learns by calculating empirical probabilities for each output 

y using Bayes’ rule and assuming that each feature is independent given the output:

P / i n _ P(Ay)P{y) _ I\jP(xi\y)P(y)
{ Vl )  P (x )  U i P ( X i )

Each probability estimate in the above expression can be thought of as a 

function of empirical expectations according to D,  and thus it can be formulated 

in the statistical query model. For example, p{xi\y) is just the expectation of

/(x i =  Xi) Al (y  =  y)

divided by the expectation of I ( y  =  y).

More specifically, to compute the empirical estimate of P(xi\y)  with re­

spect to D,  we need to count the number of training examples that have y as 

output, and those having Xi as the z-th input dimension among those. When we 

compute these empirical estimates with respect to D,  we simply have to sum the 

weight of each example, instead of counting the examples. (This property is used 

in the implementation of boosted Naive Bayes [26].)

To incorporate importance weights into AdaBoost [33], we give the im­

portance weights to the weak learner in the first iteration, thus effectively drawing 

examples from D.  In the subsequent iterations, we use the standard AdaBoost 

rule to update the weights. Therefore, the weights are adjusted according to the 

accuracy on D,  which corresponds to the expected cost on D.

Note that AdaCost [31], a variant of AdaBoost for cost-sensitive learn­

ing, has also been proposed. AdaCost uses a modified update rule to incorporate 

costs and improved performance is observed. In contrast, Proposition IV.A. 1 im­

plies that such a modification is not necessary if we start with examples drawn
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from D. This may seem contradictory, but note that Proposition IV.A. 1 is purely 

about error translation and not about learning algorithm design. From the view­

point of the proposition, AdaCost is a learning algorithm with a different bias 

than the AdaBoost bias. Just as other boosting algorithms such as LogitBoost 

[34] are sometimes superior to AdaBoost, AdaCost may be sometimes superior to 

AdaBoost.

IV.B.3 C4.5

C4.5 [66] is a widely used decision tree learner. There is a standard 

way of incorporating example weights to C4.5, which in the original algorithm 

was intended to handle missing attributes (examples with missing attributes were 

divided into fractional examples, each with a smaller weight, during the growth of 

the tree). This same facility was later used by Quinlan in the implementation of 

boosted C4.5 [67].

IV.B.4 Support Vector Machine

In its basic form, the SVM algorithm [86, 44] learns the parameters a and 

b describing a linear decision rule

h(x) = sign(a • x  +  b),

so that the smallest distance between each training example and the decision 

boundary (called the margin) is maximized. It works by solving the following 

optimization problem:

minimize: V(a, b, f ) =  | a  • a + C  & 

subject to: V* : yi[a • X{ + b\ > 1 — £j, & > 0

The constraints require that all examples in the training set are classified correctly 

up to some slack If a training example lies on the wrong side of the decision 

boundary, the corresponding & is greater than 1. Therefore, 1S an upper
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bound on the number of training errors. The factor C  is a parameter that al­

lows one to trade off training error and model complexity. The algorithm can be 

generalized to non-linear decision rules by replacing inner products with a kernel 

function [86] in the formulas above.

The SVM algorithm does not have the form of a statistical query algo­

rithm. Despite this drawback, it is possible to incorporate importance weights in a 

heuristic way. First, we note that where Cj is the importance of example

i, is an upper bound on the total cost. Therefore, we can modify V(a,b,£)  to

V(a, b, £) = ±a • a +  C  £ " =1 Cj&.

Now C  controls the trade off model complexity and total cost.

The SVMLight package [45] allows users to input importance weights Cj 

and works with the modified V(a,b,£) as above, although this feature has not yet 

been documented.

IV.C Black Box: Sampling m ethods

Now suppose we do not have transparent box access to the learner. In this 

case, sampling is the obvious method to use in converting from one distribution of 

examples to another to obtain a cost-sensitive learner using the translation theorem 

(Proposition IV.A.1). As it turns out, straightforward sampling methods do not 

work well in this case, motivating us to propose an alternative method based on 

rejection sampling.

IV .C .l Resampling

Resampling-with-replacement is a sampling scheme where each sample 

(x , y, c) is drawn according to the distribution

p(x,y,c) = = r - ^ -----
2-*(x,i/,c)es
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Many samples are drawn to create a resampled dataset S'. This method, at first 

pass, appears useful because every sample is effectively drawn from the distribution 

D . In fact, very poor performance can result when using this technique, which is 

essentially due to overfitting because of the fact that the samples in S' are not 

drawn independently from D , as we will elaborate in the section on experimental 

results (Section IV.D.)

Resampling-without-replacement is also not a solution to this problem. In 

resampling-without-replacement, a sample, (x , y, c) is drawn from the distribution

p {x ,y ,c )  =  = —  ------
2-i(x ,y ,c)eS

and the next sample is drawn from the set S  — {x, y, c}. This process is repeated, 

drawing from a smaller and smaller set according to the weights of the samples 

remaining in the set.

To see how this method fails, note that resampling-without-replacement 

m  times from a set of size m  results in the original set, which (by assumption) is 

drawn from the distribution D , and not D  as desired.

IV .C.2 Cost-proportionate rejection sampling

There is another sampling scheme called rejection sampling [87] which 

allows us to draw samples independently from the distribution D ,  given samples 

drawn independently from D, and thus avoids the duplication problem. In rejection 

sampling, samples from D  are drawn by first drawing samples from D , and then 

keeping the sample with probability proportional to D /D .  Here, we have D / D  oc c, 

so we accept an example with probability c /Z ,  where Z  is some constant chosen 

so that

max c <  Z,
(;x,y,c)€S

leading to the name cost-proportionate rejection sampling.

In practice, we choose the minimal

Z  = max c
(x,y,w)eS
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so as to maximize the size of the resampled set S'. A data-dependent choice of 

Z  is not formally allowed for rejection sampling. However, the introduced bias 

appears small when |Sj > >  1. A precise measurement of “small” is an interesting 

theoretical problem.

Rejection sampling results in a set S' which is generally smaller than S. 

Furthermore, because inclusion of a sample in S' is independent of other samples, 

and the samples in S  are drawn independently, we know th a t the samples in S' 

are distributed independently according to D.

Using cost-proportionate rejection sampling to create a set S' and then 

using a learning algorithm A(S') is guaranteed to produce an approximately cost- 

minimizing classifier, as long as the learning algorithm A  achieves approximate 

minimization of classification error.

T heorem  IV .C .l .  (Correctness) For all cost-sensitive sample sets S, if cost- 

proportionate rejection sampling produces a sample set S ' and A(S') achieves e 

classification error:

then h =  A(S") approximately minimizes cost:

Ex>y,c~D[cI(h{x) ±  y)\ < eN

where N  = E Xty tC„ D [ c \ .

Proof. Rejection sampling produces a sample set S' drawn independently from D. 

By assumption A(S')  outputs a classifier h such that

,± y ) \ < e

By the translation theorem (Proposition IV.A.1), we know that 

Ex,y,c~b[I(h(x) ^  y)] =  — Fi,y,c~D[c/(/i(a:) ^  y)]

Thus,

Ex^ D[cI(h(x) t£ y ) ] < e
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and

E x^ D[cI(h{x)  ^  y )] < eN

□

IV .C .3  Sam ple com plex ity  o f c o s t-p ro p o rtio n a te  re je c tio n  sam pling

The accuracy of a learned classifier generally improves monotonically with 

the number of samples in the training set. Since cost-proportionate rejection sam­

pling produces a smaller training set (by a factor of about N / Z ), worse performance 

than observed using the original dataset may result.

This turns out to not be the case, in the agnostic PAC-learning model 

[85,42, 47], which formalizes the notion of probably approximately optimal learning 

from arbitrary distributions D.

D efin ition  IV .C .l .  A learning algorithm A  is said to be an agnostic PAC-learner 

for hypothesis class H , with sample complexity m ( l / e ,  1/8) if  fo r  all e > 0 and 

6 > 0, m  =  ra(l/e , 1/5) is the least sample size such that for all distributions D  

(over X  x Y ) ,  the classification error rate of its output h is at m ost e more than 

the best achievable by any member of H  with probability at least 1 — 5, whenever 

the sample size exceeds m.

By analogy, we can formalize the notion of cost-sensitive agnostic PAC-

learning.

D efin ition  IV .C .2 . A learning algorithm A is said to be a cost-sensitive ag­

nostic PAC-learner fo r  hypothesis class H ,  with cost-sensitive sample complexity 

ra(l/e , 1/5), if  for  all e > 0 and 8 > 0, m  =  m (l/e , 1/5) is the least sample size 

such that for  all distributions D  (over X  x Y  x C ) ,  the expected cost of its output 

h is at most e more than the best achievable by any member of H  with probability 

at least 1 — 5, whenever the sample size exceeds m .

We will now use this formalization to compare the cost-sensitive PAC- 

learning sample complexity of two methods: applying a given base classifier learn­
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ing algorithm to a sample obtained through cost-proportionate rejection sampling, 

and applying the same algorithm on the original training set. We show that the 

cost-sensitive sample complexity of the latter method is lower-bounded by that of 

the former.

T h eo rem  IV .C .2 . (Sample Complexity Comparison) Fix an arbitrary base clas­

sifier learning algorithm A, and suppose that m orig( 1/e, 1/5) and 1/e, 1/5), 

respectively, are cost-sensitive sample complexity of applying A  on the original 

training set, and that of applying A  with cost-proportionate rejection sampling. 

Then, the following holds.

m 0rig{ 1/e, 1/6) = ft(m rei(l/e , 1/5)).

Proof. Let m (l/e , 1/5) be the (cost-insensitive) sample complexity of the base clas­

sifier learning algorithm A. (If no such function exists, then neither m OTig(l/e ,  1/5) 

nor mrej(l/e , 1/5) exists, and the theorem holds vacuously.) Since Z  is an upper 

bound on the cost of misclassifying an example, we have that the cost-sensitive 

sample complexity of using the original training set satisfies

w-orig(l/e, 1/5) =  0(m (Z /c, 1/5))

This is because given a distribution (over X  x .Y )  that forces e more classification 

error than optimal, another distribution (over X  x Y  x C) can be constructed, that 

forces eZ more cost than optimal, by assigning cost Z  to all examples on which A  

errs.

Now from Theorem IV.C.l and noting that the central limit theorem implies 

that cost-proportionate rejection sampling reduces the sample size by a factor 

of Q (N/Z),  the cost-sensitive sample complexity for cost-proportionate rejection 

sampling is:

m„i (1/e, 1 /i)  =  8  ( ^ m  (N/e, 1 / i ) )  . (IV.C.l)

A fundamental theorem from PAC-learning theory [25] states that

m( 1/e, 1/5) =  ft((l/e ) ln(l/5)).
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When

m(l/e,l/<5) =  ©((1/c) ln(l/<5)),

Equation (IV.C.l) implies:

mrei( l / £. l / i )  =  e (— ta ( l/«))

= e(|in(i/«))
=  © (m0rig (1/e, 1/5))

Finally, note that when m( 1/e, 1/5) grows faster than linear in 1/e, we have

mrej(l/e , 1/5) =  o(morig(l/e, 1/5)), 

which finishes the proof. □

Note th a t the linear dependence of sample size on 1 /e is only achievable by 

an ideal learning algorithm, and in practice super-linear dependence is expected, 

especially in the presence of noise. Thus, the above theorem implies that cost- 

proportionate rejection sampling minimizes cost better than no sampling for worst 

case distributions.

This is a remarkable property about any sampling scheme, since one 

generally expects that predictive performance is compromised by using a smaller 

sample. Cost-proportionate rejection sampling seems to distill the original sample 

and obtains a sample of smaller size, which is at least as informative as the original.

IV.C.4 Costing

From the same original training sample, different runs of rejection sam­

pling will produce different training samples. Furthermore, the fact that rejection 

sampling produces very small samples means that the computational time required 

for learning a classifier is generally much smaller.

We can take advantage of these properties to devise an ensemble learning 

algorithm based on repeatedly performing rejection sampling from S  to produce
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C osting  (L earn er A , Sam ple Set S, co u n t t)

1. For i = 1 to  t do

(a) S' = re jec tio n  sam ple from  S

(b) Let hi = A(S')

2. O u tp u t h(x) = sign (£ i= i hi(x))

Table IV. 1: The costing algorithm.

multiple sample sets S {,..., S'm, and then learning a classifier for each set. The 

output classifier is the average over all learned classifiers. We call this technique 

costing. The pseudo-code for costing is shown in table IV. 1.

The goal in averaging is to improve performance. There are several em­

pirical and theoretical pieces of evidence suggesting that averaging can be useful. 

On the empirical side, many people have observed good performance from bagging 

despite throwing away a 1/e fraction of the samples (and the weakened overfitting 

control as noted earlier). On the theoretical side, there has been considerable work 

which proves that the “complexity” (ability to overfit) of an average of classifiers 

might be smaller than naively expected when a large margin exists. The prepon­

derance of learning algorithms producing averaging classifiers provides significant 

evidence that averaging is useful.

Note that despite the extra computational cost of averaging, the overall 

computational time of costing is generally much smaller than for a learning al­

gorithm using sample set S  (with or without weights). This is the case because 

most learning algorithms have running times that are super-linear in the number 

of examples.
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KDD-98:
Method W ithout Weights With Weights
Naive Bayes 0.24 12367
Boosted NB -1.36 14489
C4.5 0 118
SVMLight 0 13683

DMEF-2:
Method Without Weights W ith Weights
Naive Bayes 16462 32608
Boosted NB 121 36381
C4.5 0 478
SVMLight 0 36443

Table IV.2: Test set profits on the KDD-98 and DMEF-2 datasets using the trans­

parent box approach.

IV.D Experim ental results

We show empirical results using the two real-world cost-sensitive datasets 

described in Chapter II, Section II.C: KDD-98 and DMEF-2.

IV .D .l Transparent box results

Table IV.2 shows results obtained when we apply Naive Bayes, boosted 

Naive Bayes (100 iterations) C4.5 and SVMLight to both the KDD-98 and the 

DMEF-2 datasets, with and without the importance weights.

W ithout giving the costs as weights, the classifiers label very few of the 

examples positive, resulting in small (and even negative) profits. W ith the costs 

given as weights to the learners, the results improve significantly for all learners, 

except C4.5. Cost-sensitive boosted Naive Bayes gives results comparable to the 

results obtained in Chapter III.

We optimized the parameters of the SVM by cross-validation on the train­

ing set. Without weights, no setting of the parameters prevented the algorithm 

of labeling all examples as negatives. With weights, the best parameters were a 

polynomial kernel with degree 3 and C = 5 x 10~5 for KDD-98 and a linear kernel
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with C — 0.0005 for DMEF-2. However, even with this parameter setting, the 

results are not so impressive. This may be a relatively hard problem for margin- 

based classifiers because the data is very noisy. Note also that running SVMLight 

on this dataset takes about 3 orders of magnitude longer than AdaBoost with 100 

iterations on the same machine.

The failure of C4.5 to achieve good profits when given the costs as weights 

is probably related to the fact that the standard facility for incorporating weights 

provided in the algorithm is heuristic. So far, it has been used only in situations 

where the weights are fairly uniform (such as is the case for fractional instances 

due to missing da ta). These results indicate that it might not be suitable for situ­

ations with highly non-uniform costs. The fact that it is non-trivial to incorporate 

costs directly into existing learning algorithms is the motivation for the black box 

approaches that we present here.

IV.D.2 Black box results

Table IV.3 shows the results of applying the same learning algorithms 

to the KDD-98 and DMEF-2 data using resampled training sets of different sizes. 

For each size, we repeat the experiments 10 times with different resampled sets to 

get mean and standard error (in parentheses). The training set profits are on the 

original training set from which we draw the resampled sets.

These results here confirm that straightforward application of resampling 

to implement the black box approach can result in very poor performance, as we 

remarked earlier. The poor performance of resampling is essentially due to overfit­

ting. When there are large differences in the magnitude of importance weights, it 

is typical for an example to be picked twice (or more). In table IV.3, we see that 

as we increase the resampled training set size and, as a consequence, the number 

of duplicate examples in the training set, the more overfitting we see for C4.5. The 

training profit becomes larger while the test profit becomes smaller.

Examples which appear multiple times in the training set of a learning
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1000:

KDD-98 DMEF-2
Training Test Training Test

NB
BNB
C4.5
SVM

11251 (330) 
11658 (311) 
11124 (255) 
10320 (372)

10850 (325) 
11276 (383) 
9548 (331) 
10131 (281)

33298 (495) 
33902 (558) 

37905 (1467) 
28837 (1029)

34264 (419) 
30304 (660) 
24011 (1931) 
30177 (1196)

10000 :

KDD-98 DMEF-2
Training Test Training Test

NB
BNB
C4.5
SVM

12811 (155) 
13838 (65) 

22083 (271) 
11228 (182)

11993 (185) 
12886 (212) 
7599 (310) 
11015 (161)

32742 (793) 
34802 (806) 
67960 (763) 

31263 (1121)

33956 (798) 
31342 (772) 
9188 (458) 

32585 (891)

100000:
KDD-98 DMEF-2

Training Test Training Test
NB

BNB
C4.5
SVM

12531 (242) 
14107 (152) 
40704 (152) 
13565 (129)

12026 (256) 
13135 (159) 
2259 (107) 
12808 (220)

33511 (475) 
34505 (822) 

72574 (1205) 
34309 (719)

34506 (405) 
31889 (733) 
3149 (519) 

33674 (600)

Table IV.3: Profits on the KDD-98 and DMEF-2 datasets using resampling.
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algorithm can defeat complexity control mechanisms built into learning algorithms. 

For example, suppose that we have a decision tree algorithm which divides the 

training data into a “growing set” (used to construct a tree) and a “pruning set” 

(used to prune the tree for complexity control purposes). If the pruning set contains 

examples which appear in the growing set, the complexity control mechanism is 

defeated.

This observation has implications for the practice of bagging, although the 

loss of complexity control is not as severe as observed here. Uniform resampling 

from a set of size m, m  times produces only about ™ duplicates. Since (with 

high probability) not all examples are duplicates, complexity control in bagging 

is only weakened and not removed. We note that Fan et al [32] have proposed a 

modification to bagging, in which partitioning is used in place of resampling to 

address this issue.

Although not as markedly as for C4.5, we see the same phenomenon for 

the other learning algorithms. In general, as the size of the resampled size grows, 

the larger is the difference between the training set profit and test set profit. And, 

even with 100000 examples, we do not obtain the same test set results as giving 

the weights directly to Boosted Naive Bayes and SVM.

The fundamental difficulty here is that the samples in S'  are not drawn 

independently from D. In particular, if D  is a density, the probability of observing 

the same example twice given independent draws is 0, while the probability using 

resampling is greater than 0. Thus resampling-with-replacement fails because the 

resampled set S'  is not constructed independently.

Figures IV.D.l and IV.D.2 shows the results of costing on the KDD- 

98 and DMEF-2 datasets, with the base learners and Z  = 200 or Z  =  6247, 

respectively. We repeated the experiment 10 times for each t  and calculated the 

mean and standard error of the profit. The results for t — 1, t =  100 and t — 200 

are also given in table IV.4.

In the KDD-98 case, each resampled set has only about 600 examples,
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Figure IV.D.l: Costing. The graphs shows how the KDD-98 test set profit grows 

as the number of resampled sets is increased from 1 to 200.

KDD-98:
1 100 200

NB
BNB
C4.5
SVM

11667 (192) 
11377 (263) 
9628 (511) 
10041 (393)

13111 (102) 
14829 (92) 

14935 (102) 
13075 (41)

13163 (68) 
14714 (62) 
15016 (61) 
13152 (56)

DMEF-2:
1 100 200

NB
BNB
C4.5
SVM

26287 (3444) 
24402 (2839) 
27089 (3425) 
21712 (3487)

37627 (335) 
37376 (393) 
36992 (374) 
33584 (1215)

37629 (139) 
37891 (364) 
37500 (307) 
35290 (849)

Table IV.4: Test set profits on the KDD-98 and DMEF-2 datasets using costing.
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Figure IV.D.2: Costing. The graphs shows how the DMEF-2 test set profit grows 

as the number of resampled sets is increased from 1 to 200.
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because the importance of the examples varies from 0.68 to 199.32 and there are 

few “important” examples. About 55% of the examples in each set are positive, 

even though on the original dataset the percentage of positives is only 5%.

W ith t  =  200, the C4.5 version yields profits around $15000, which is 

exceptional performance for this dataset. In particular, these results are bet­

ter than the ones obtained with C4.5 using direct cost-sensitive decision-making 

(Chapter III, table III.3), which yielded profits around 14000. The results with 

Naive Bayes (profits around 13000), however, are worse than direct cost-sensitive 

decision-making which yields profits around 15000.

In the DMEF-2 case, each set has only about 35 examples, because the 

importances vary even more widely (from 2 to 6246) and there are even fewer 

examples with a large importance than in the KDD-98 case. The percentage of 

positive examples in each set is about 50%, even though on the original dataset it 

was only 2.5%.

For learning the SVMs, we used the same kernels as we did in section

IV.B and the default setting for C. In that section, we saw th a t by feeding the 

weights directly to the SVM, we obtain a profit of $13683 on the KDD-98 dataset 

and of $36443 on the DMEF-2 dataset. Here, we obtain profits around $13100 and 

$35000, respectively. However, this did not require parameter optimization and, 

even with t =  200, was much faster to train. The reason for the speed-up is that 

the time complexity of SVM learning is generally super-linear in the number of 

training examples.

IV.E Conclusions

Costing is a technique which produces a cost-sensitive classifier using only 

black box access to a classifier learning method. Conceptually, it is much simpler 

than the methods for cost-sensitive learning by expected cost estimation presented 

in Chapter III, because it does not require accurate class membership probability
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estimates from the classifier and avoids the estimation of costs.

Furthermore, it is fast, results in good performance for a variety of classi­

fier learners and often achieves drastic savings in computational resources, particu­

larly with respect to space requirements. This last property is especially desirable 

in applications of cost-sensitive learning to domains that involve massive amounts 

of data, such as fraud detection, targeted marketing, and intrusion detection.

Another desirable property of any reduction is that it applies to the the­

ory as well as to concrete algorithms. Thus, the reduction presented in this chapter 

allows us to automatically apply any future results in classifier learning to cost- 

sensitive learning. For example, a bound on the future error rate of A(5') implies 

a bound on the expected cost with respect to the distribution D. This additional 

property of a reduction is especially important because cost-sensitive learning the­

ory is still young and relatively unexplored.

A disadvantage of costing is that, since it uses the importance formula­

tion, it only applies to two-class problems. Thus, a direction for future research is 

the design of a similar algorithm for multiclass problems. If there are K  classes, 

the minimal representation of costs is K  — 1 weights for each example, because 

we have to account for the importance of misclassifying the example into each of 

the incorrect classes. Margineantu [57] presents and evaluates different heuristic 

methods for dealing with these weights in the case of fixed costs, such as using 

the maximum weight or taking the average. Nonetheless, a general reduction from 

example-dependent cost-sensitive learning to cost-insensitive learning is still an 

open problem.
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Chapter V

Calibrating classifier scores

Most existing learning methods produce classifiers that output ranking 

scores along with the class label, but they do not output accurate class probability 

estimates. In this chapter, we present a new method for obtaining calibrated 

two-class probability estimates that can be applied to any classifier that produces 

a ranking of examples. Besides being fast and very simple to understand and 

implement, our method produces probability estimates that are comparable to or 

better than the ones produced by other methods.

Current methods for transforming ranking scores into probability esti­

mates apply only to two-class problems. In this chapter, we present a method for 

obtaining accurate multiclass probability estimates from ranking scores: we de­

compose the multiclass problem into a series of binary problems, learn a classifier 

for each one of them, calibrate the scores from each classifier, and combine them 

to obtain multiclass probabilities.

In Section V.A, we motivate the need for classifiers to output estimates of 

class membership probabilities. In Section V.B, we review the notion of calibration 

of probability estimates and show that although the scores produced by naive Bayes 

and support vector machine (SVM) classifiers tend to rank examples well, they are 

not well-calibrated. In Section V.C, we review previous methods for mapping 

two-class scores into probability estimates, explain their shortcomings and present

71
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our new method. In Section V.D we discuss how to combine calibrated two-class 

probability estimates into calibrated multiclass probability estimates. In Section 

V.E we present an experimental evaluation of these methods applied to naive Bayes 

and SVM scores in a variety of domains. Finally, in Section V.F we summarize the 

contributions in this chapter and suggest directions for future work in calibration.

V .A  The need for class membership probability estim ates

Most classifier learning methods produce classifiers that output scores 

s(x) for an example x, which can be used to rank examples from the most probable 

member to the least probable member of a class c. That is, for two examples x  

and y, if s(x) < s(y) than P(c\x) < P{c\y).

However, in many applications, a ranking of examples according to class 

membership probability is not enough. W hat is needed is an accurate estimate of 

the probability that each example is a member of the class of interest.

Class membership probability estimates are im portant when the classi­

fication outputs are not used in isolation but are combined with other sources 

of information for decision-making. For example, in Chapter III, we presented 

methods for cost-sensitive learning that depended on combining class membership 

probability estimates with misclassification costs for accomplishing cost-sensitive 

classification.

Another example is the use of classification as a component to a high- 

level system that combines classifier results. This is the case, for example, in 

handwritten character recognition and in speech recognition, where the outputs 

from a classifier that recognizes single characters or phonemes are combined using 

a Viterbi search or HMM [11].

Also, active learning based on uncertainty sampling [52] requires class 

membership probability estimates. In this framework, the learner asks a teacher 

to label a set of examples that is sampled from a pool of unlabeled examples with
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s(x) = 0.0 s(x) = 0.3 s(x) = 0.5 s(x)=1.0

0 - Negative example [ l j - Positive example

Figure V.B.l: The concept of calibration.

weights that are inversely proportional to the class membership probabilities.

V .B Calibration definition and exam ples

Assume that we have a classifier tha t for each example x  outputs a score 

s(x) between 0 and 1. This classifier is said to be well-calibrated if the empirical 

class membership probability P(c\s(x) = s) converges to the score value s (x ) =  s, 

as the number of examples classified goes to infinity [59]. Intuitively, if we consider 

all the examples to which a classifier assigns a score s(x) =  0.8, then 80% of these 

examples should be members of the class in question. Figure V .B .l illustrates this 

concept. Calibration is important if we want the scores to be directly interpretable 

as the chances of membership in the class.

The calibration of a classifier can be visualized through a reliability di­

agram [18]. In the case where there is a small number of possible score values, 

for each score value s, we compute the empirical probability P(c|s(:r) =  s ): the 

number of examples with score s that belong to class c divided by the total number 

of examples with score s. We then plot s versus P(c|s(:r) =  s). If the classifier 

is well-calibrated, all points fall into the x  =  y line, indicating th a t the scores are 

equal to the empirical probability.

However, in practical situations, the number of possible scores is large
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Figure V.B.2: Reliability diagrams for NB. The numbers indicate how many ex­

amples fall into each bin (test set).

compared to the number of available test examples, so we cannot calculate reliable 

empirical probabilities for each possible score value. In this case, we can resort to 

discretizing the score space. But because the scores are not uniformly distributed, 

we have to carefully choose bin sizes so that there are enough examples to calculate 

reliable empirical probability estimates for each bin.

V .B .l Naive Bayes

Naive Bayesian classifiers assign to each test example a score between 

0 and 1 that can be interpreted, in principle, as a class membership probability 

estimate. However, it is well known that these scores are not well-calibrated [21].

Naive Bayes is based on the assumption that the attributes of examples 

are independent given the class of the examples. Because attributes tend to be 

correlated in real data, the scores s(x) produced by naive Bayes are typically too 

extreme: for most x, either s(x ) is near 0 and then s(x) < P(c\x)  or s(rr) is near 1 

and then s(x) > P(c\x). However, naive Bayesian classifiers tend to rank examples 

well: if s(x) < s(y) then P(c|a:) <  P(c\y).

In Figure V.B.2 we show reliability diagrams for two well-known datasets:
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Adult and TIC (see Section V.E for information on these datasets), where the 

score space has been discretized into bins of size 0.1 and 0.15, respectively. As we 

can see in the graphs, although tending to vary monotonically with the empirical 

probability, naive Bayes scores are not well-calibrated because many of the points 

do not fall into the x  =  y line.

V.B.2 Support Vector Machines

For each test example x, an SVM classifier outputs a score that is the 

distance of x  to the hyperplane learned for separating positive examples from 

negative examples. The sign of the score indicates if the example is classified as 

positive or negative. The magnitude of the score can be taken as a measure of 

confidence in the prediction, since examples far from the separating hyperplane 

are presumably more likely to be classified correctly.

Although the range of SVM scores is [—a, a] (where a depends on the 

problem), we can map the scores into the [0,1] interval by re-scaling them. If f (x )  

is the original score, then

s(x) =  (f ( x ) + a)/2a (V.B.l)

is a re-scaled score between 0 and 1, such that if f (x )  > 0 then s(x) > 0.5 and 

if f ( x )  < 0 then s(x) < 0.5. However, these scores tend to not be well-calibrated 

since the distance from the separating hyperplane is not exactly proportional to 

the chances of membership in the class.

In Figure V.B.3 we show reliability diagrams for re-scaled SVM scores 

using the Adult and TIC datasets, where the score spaces are discretized into bins 

of size 0.08 and 0.15, respectively. We see that SVM scores vary monotonically 

with the empirical probability, but are not well-calibrated.
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Figure V.B.3: Reliability diagrams for SVM. The numbers indicate how many 

examples fall into each bin (test set).

V.C M apping scores into probability estim ates

Suppose we have a set of examples for which we know the true labels. In 

this case we can assume that P{c\x) =  1 for positive examples and P(c\x) = 0 for 

negative examples. If we apply the classifier to those examples to obtain scores 

s(:r), we can learn a function mapping scores s(x) into probability estimates P(c\x). 

If the learning method does not overfit the training data, we can use the same data 

to learn this function. Otherwise, we need to break the training data  into two sets: 

one for learning the classifier and the other for learning the mapping function.

In any case, we need a regularization criterion to avoid learning a map­

ping function that does not generalize well to new data. One possible regulariza­

tion criteria is to impose a particular parametric shape for the function and use 

the available data to learn parameters such that the function fits well the data 

according to some measure.

The parametric approach proposed by P latt [63] for SVM scores consists 

in finding the parameters A  and B  for a sigmoid function of the form

P ( C \X )  =  j  +  £ A s (x ) + B
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Figure V.C.l: Mapping SVM scores into probability estimates using a sigmoid 

function.

mapping the scores s(x) into probability estimates P(c\x), such th a t the negative 

log-likelihood of the data is minimized.

This method is motivated by the fact that the relationship between SVM 

scores and the empirical probabilities P(c\x) appears to be sigmoidal for many 

datasets. This is the case for the Adult dataset, as can be seen in Figure V.C.l, 

where we show the learned sigmoid using the training data and the empirical 

probabilities for the test data, for Adult and TIC. P latt has shown empirically 

that this method yields probability estimates that are at least as accurate as ones 

obtained by training an SVM specifically for producing accurate class membership 

probability estimates, while being faster.

The same method can be applied to naive Bayes. This was proposed by 

Bennett [8] for the Reuters dataset. In Figure V.C.2 we show the sigmoidal fit 

to the naive Bayes scores for the Adult and TIC datasets. The sigmoidal shape 

does not appear to fit naive Bayes scores as well as it fits SVM scores, for these 

datasets.

If the shape of the mapping function is unknown, we can resort to a 

non-parametric method such as binning [94]. In binning, the training examples 

are sorted according to their scores and the sorted set is divided into b subsets of
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Figure V.C.2: Mapping NB scores into probability estimates using a sigmoid func­

tion.

equal size, called bins. For each bin we compute lower and upper boundary s(-) 

scores. Given a test example x, we place it in a bin according to its score s(x). We 

then estimate the corrected probability that x  belongs to class c as the fraction of 

training examples in the bin that actually belong to c.

A difficulty of the binning method is that we have to choose the number 

of bins by cross-validation. If the dataset is small, or highly unbalanced, cross- 

validation is not likely to indicate the optimal number of bins. Also, the size of 

the bins is fixed and the position of the boundaries is chosen arbitrarily. If the 

boundaries are such that we average together the labels of examples that clearly 

should have different probability estimates, the binning method will fail to produce 

accurate probability estimates.

We propose here an intermediary approach between sigmoid fitting and 

binning: isotonic regression [70]. Isotonic regression is a non-parametric form of 

regression in which we assume that the function is chosen from the class of all 

isotonic (i.e. non-decreasing) functions.

If we assume that the classifier ranks examples correctly, the mapping 

from scores into probabilities is non-decreasing, and we can use isotonic regression
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to learn this mapping. A commonly used algorithm for computing the isotonic 

regression is pair-adjacent violators (PAV) [3]. This algorithm finds the stepwise- 

constant isotonic function that best fits the data according to a mean-squared error 

criterion.

PAV works as follows. Let {xi}£Li be the training examples, g(xi) be 

the value of the function to be learned for each training example Xi, and g* be the 

isotonic regression. If g is already isotonic, then we return g* =  g. Otherwise, there 

must be a subscript i such that g(xt- 1) < g(xi). The examples Xj_i and Xi are called 

pair-adjacent violators, because they violate the isotonic assumption. The values 

of g(xi-1) and g(xi) are then replaced by their average, so that the examples £j_i 

and Xi now comply with the isotonic assumption. If this new set of n  — 1 values is 

isotonic, then g*(xi-1) =  g*(xi) =  (<7(xj_i-|-<7(:rj))/2 , and g*(xj) =  g(xj) otherwise. 

This process is repeated using the new values until an isotonic set of values is 

obtained. The computational complexity of this algorithm when implemented 

efficiently is 0{n).  An efficient implementation of PAV in MATLAB is made 

available by Lutz Diimbgen [24].

When we apply this algorithm to the problem of mapping scores into 

probability estimates, we first sort the examples according to their scores and let 

g(xi) be 0 if X{ is negative, and 1 if Xi is positive. If the scores rank the examples 

perfectly, then all negative Xi come before the positive Xj and the values of g are not 

changed. The new probability estimate g* is 0 for all negative examples and 1 for 

all positive examples. On the other hand, if the scores do not give any information 

about the ordering of the examples, g* will be a constant function whose value 

is the average of all values of g(xi), which is the base rate of positive examples. 

Figure V.C.3 gives an example of the application of PAV.

In the general case, PAV will average out more examples in parts of the 

score space where the classifier ranks examples incorrectly, and less examples in 

parts of the space where the classifier ranks them correctly. We can view PAV as 

a binning algorithm where the position of the boundaries and the size of the bins
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1. Sort examples by increasing score.
0.0 0.01 0.01 0.02 0.2 0.9 0.9 0.95 0.98 1.0 0 0 0 0 0 0 0 0

2. If two adjacent examples violate isotonicity, 
average their label values.

0 0 0 0,0
S 0 BiSE

0JH]0 0 0 
100 0 
10 0 00.5

Output: 0 0 0

Figure V.C.3: The PAV algorithm in action.

are chosen according to how well the classifier ranks the examples.

PAV returns a set of intervals and an estimate g(i) for each interval i, 

such that g* (i + 1 ) >  g*(i). To obtain an estimate for a test example x, we find the 

interval i for which s(ar) is between the lowest and highest scores in the interval 

and assign g*(i) as the probability estimate for x.

In Figure V.C.4, we show the result of applying PAV to the Adult dataset, 

for both naive Bayes and SVM. The line shows the function that was learned on 

the training data, while the stars show empirical probabilities for the test data.

V .D  M ulticlass probability estim ates

The notion of calibration introduced in Section V.B can be readily applied 

to multiclass probability estimates. Suppose we have a multiclass classifier that 

output scores s(cj |rr) for each class Cj and each example x. The classifier is well- 

calibrated if, for each class Cj, the empirical probability P(ci\s(ci\x) =  s) converges 

to the score value s(ci\x) = s, as the number of examples classified goes to infinity.
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Figure V.C.4: Using the PAV algorithm to map naive Bayes and SVM scores into 

probability estimates.

However, the calibration methods discussed in Section V.C were designed 

exclusively for two-class problems. Mapping scores into probability estimates works 

well in the two-class case because we are mapping between one-dimensional spaces. 

In this setting, it is easy to impose sensible restrictions on the shape of the func­

tion being learned, as it is done with the sigmoidal shape or the monotonicity 

requirements.

In the general multiclass case, the mapping would have to be from (k — 1)- 

dimensional space to another (k — 1)-dimensional space. In this case, it is not clear 

which function shape should be imposed to the mapping function. Furthermore, 

because of the curse of dimensionality, non-parametric methods are not likely to 

yield accurate probabilities when the number of classes grows. For these reasons, 

we do not attem pt to directly calibrate multiclass probability estimates. Instead, 

we first reduce the multiclass problem into a number of binary classification prob­

lems. Then we learn a classifier for each binary problems, and calibrate the scores 

from each classifier. Finally, we combine the binary probability estimates to obtain 

multiclass probabilities.

Two well-known approaches for reducing a multiclass problem to a set of
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binary problems are known as one-against-all and all-pairs. In one-against-all, we 

train a classifier for each class using as positives the examples th a t belong to that 

class, and as negatives all other examples. In all-pairs, we train a classifier for each 

possible pair of classes ignoring the examples that do not belong to the classes in 

question.

Allwein et al. [1] represent any possible decomposition of a multiclass 

problem into binary problems by using a code matrix M  G {—1,0, H-l}/c><f, where 

k  is the number of classes and I is the number of binary problems. If M(c, b) =  +1 

then the examples belonging to class c are considered to be positive examples 

for the binary classification problem b. Similarly, if M(c,b) =  —1 the examples 

belonging to c are considered to be negative examples for b. Finally, if M(c, b) — 0 

the examples belonging to c are not used in training a classifier for b.

For example, in the 3-class case, the one-against-all code matrix is

bi &2 h
Cl + 1 +  1 - 1

C2 - 1 - 1 + 1

C3 - 1 - 1 - 1

and the all-pairs code matrix is

bi 62 63

Cl + 1 + 1 0

C2 - 1 0 + 1

C3 0 - 1 - 1

These code matrices are a generalization of the error-correcting output 

coding (ECOC) scheme [19]. The difference is tha t ECOC does not allow zeros in 

the code matrix, meaning that all examples are used in each binary classification 

problem.

For an arbitrary code matrix M, we have an estimate r ^ x )  for each 

column b of M, such that

rb(x) = P ( \ /  c\ V  C, x) = y c € l P p } %  
cei c e / u j  Isc e iu J  v I )
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where I  and J  are the set of classes for which M(-,b) = 1 and M(-,b)  =  — 1, 

respectively. We would like to obtain a set of probabilities P(c\x)  for each example 

x  compatible with the rb(x) and subject to P(c\x) =  1. Because there are k — 1 

free parameters and I constraints, and we generally consider matrices for which 

I > k — 1, this is an over-constrained problem for which there is no exact solution.

Two approaches have been proposed for finding an approximate solution 

for this problem. The first is a least-squares method with non-negativity con­

straints proposed by Kong and Dietterich [49]. They have proposed this method 

for the original ECOC matrices, but it can easily be applied to arbitrary matrices. 

They test it on binary probability estimates from decision trees classifiers learned 

using C4.5, which are known not to be well-calibrated [95, 64]. Using synthetic 

data, they show that this method produces better estimates than multiclass C4.5.

The alternative method is called coupling, an iterative algorithm that 

finds the best approximate solution minimizing log-loss instead of squared error 

proposed by Zadrozny[93]. This method is an extension to the pairwise coupling 

method by Hastie and Tibshirani[39], which only applies to all-pairs matrices. 

The pseudo-code for coupling is given in table V .l. The algorithm  was tested 

using boosted naive Bayes [26] as the binary learner, whose scores tend to be even 

less calibrated than naive Bayes scores because they are more extreme.

It is an open question which of the two existing m ethods for combin­

ing binary probability estimates yields the most accurate multiclass probability 

estimates. A desirable property for such a method is that the better calibrated 

the binary estimates are, the better calibrated the multiclass estim ates should be. 

In the next section, we compare these methods experimentally on two multiclass 

datasets.
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1. Start with some guess for the P(c\x) and corresponding rb(x).

2. Repeat until convergence:

(a) For each c

P(c\x)+- P{c\z&  + ^  - 1' M m =-'  ~  ?[*?]
] C b  s.t. M(c,b)~ 1 n bTb{%) +  S.t. M{c ,b )-~  1

(b) Re-normalize the P(c|a;).

(c) Recompute the f t(x).

Table V .l: The coupling algorithm.

V.E Experimental Evaluation

Here we present results of the application of the methods discussed in the 

previous sections to a variety of datasets. Since the methods used for learning the 

classifiers do not overfit the training data for these datasets, in all experiments we 

use the same data for learning both the classifier and the calibration functions.

As the primary metric for assessing the accuracy of probability estimates, 

we use the mean squared error (MSE), also known as the Brier score [16]. For one 

example x , the squared error (SE) is defined as

SE(x) =  £ ( T ( c|x) -  P (c |i) )2
c

where P(c|o;) is the probability estimated for example x  and class c and T(c\x) is 

defined to be 1 if the actual label of x  is c and 0 otherwise. We calculate the SE 

for each example in the training and test sets to obtain the MSE for each set.

DeGroot and Fienberg [18] show that the MSE can be separated into two 

components, one measuring calibration and the other measuring refinement. If 

the classifier is well-calibrated the first component is zero. For two classifiers that 

are well-calibrated, the one for which the probability estimates P{c\x) are closer 

to 0 or 1 is said to be more refined, because it makes predictions that are more
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MSE Profit
Method Training Test Training Test
NB
Sigmoid NB 
PAV NB

0.10089
0.09542
0.09522

0.10111
0.09533
0.09528

$10083
$14134
$15685

$9531
$14120
$14447

Table V.2: MSE and profit on the KDD-98 dataset.

confident. If the two classifiers are well-calibrated, the one with the lowest MSE is 

more refined, and thus, preferable.

Although MSE can be applied in general, it is more sensible to evaluate 

the quality of probability estimates in practical situations using a domain-specific 

metric. For example, in direct mailing, we should evaluate how good the probabil­

ity estimates are by the profit obtained when we mail people according to a policy 

that uses the estimates. MSE tends to be correlated with profit [94], so when we 

do not have domain-specific information to calculate profit we can use MSE to 

evaluate our methods.

When the classifier is to be used for classification in a domain where 

errors are equally costly, we can evaluate the probability estimates by assigning 

each example x  to its most likely class c*(x) =  argmaxcP(c|:r) and calculating the 

error rate. This metric does not assess the calibration of the estimates directly, 

but calibration can potentially improve the error rate because the most likely class 

can change.

V .E .l Two-class problems

The first dataset we use is the KDD-98 dataset, which is described in 

detail in Chapter II, section II.C.

As we have seen in Chapter III, the optimal mailing policy for this domain 

is to solicit people for whom the expected return

P(donation|a:)?/(x)

is greater than the cost of mailing a solicitation, where y(x)  is the estimated
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KDD-98 Dataset
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Figure V.E.l: Binning and PAV on the KDD-98 dataset. The figure on the left 

shows results with Naive Bayes and the figure on the right shows results with SVM.

donation amount. We use fixed values for y(x ) obtained using linear regression as 

done in Chapter III, section III.D).

We use naive Bayes to estimate P(donation|x) and apply each of the 

calibration methods discussed in Section V.C. Table V.2 shows MSE and profits for 

the raw naive Bayes scores and the calibrated scores obtained using sigmoid fitting 

and PAV. As expected, MSE and profit are significantly improved by calibration. 

Although PAV overfits slightly the training data, it performs better than sigmoid 

fitting. In figure V .E.l, we compare PAV to binning with bin sizes varying from 

5 to 50. Although we did not have to set any parameters for the PAV method, it 

performed comparably to the best parameter setting for binning, both for naive 

Bayes and for SVM.

The next dataset we use is The Insurance Company Benchmark (TIC), 

also known as the COIL 2000 dataset, which is available in the UCI KDD repos­

itory [6]. The decision-making task is analogous to the KDD-98 task: deciding 

which customers to offer a caravan insurance policy. This dataset is also divided 

in a standard way into a training set (5822 examples) and a test set (4000 exam­

ples). We use the same attributes as used for the winning entry of the COIL 2000
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Method Training Test
NB
Sigmoid NB 
PAV naive Bayes

0.12845
0.10536
0.10315

0.13551
0.10905
0.10818

SVM
Sigmoid SVM 
PAV SVM

0.11942
0.11080
0.10974

0.11889
0.11122
0.11200

Table V.3: MSE on the TIC dataset.

challenge [29].

Using the training set, we learn a model for the probability that a cus­

tomer has acquired a caravan insurance policy. Given the cost of mailing an offer 

and the benefit of selling a policy (which depends on the customer), we could use 

the probability that the customer will buy a policy to choose which customers 

to mail an offer. However, since cost/benefit information is not available for this 

dataset, we cannot actually make the decisions to report profits. So, we just re­

port the MSE for the different methods. We applied both naive Bayes and a linear 

kernel SVM to this dataset (we used the SvmFu package [69] with C  =  1).

We show the MSE results for the raw naive Bayes and SVM scores and 

each calibration method in Table V.3. In order to obtain an MSE for SVM scores, 

we first re-scale them as explained in Section V.B. Again, by using each of the 

correction methods we are able to greatly improve the MSE for naive Bayes, but 

PAV performs slightly better than sigmoid fitting. The MSE for SVM scores is 

also reduced by the calibration methods. However, in this case sigmoid fitting is 

best. As shown in figure V.E.2, we also compared PAV to binning with bin sizes 

varying from 5 to 50 and found that PAV does slightly worse than binning with 

the optimal number of bins.

We also applied each method to the Adult dataset, which is available in 

the UCI ML Repository [10]. The prediction task is to determine whether a person 

makes over $50K a year, given demographic information about the person. This 

dataset is also divided in a standard way into a training set (32561 examples) and
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TIC Dataset TIC Dataset
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PAV NB

§ 0.112
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Number of binsNumber of bins

Figure V.E.2: Binning and PAV on the TIC dataset. The figure on the left shows 

results with Naive Bayes and the figure on the right shows results with SVM.

a test set (16281 examples). We apply both naive Bayes and SVM to this dataset, 

with no feature selection. For learning the SVM classifier, we use the SvmFu 

package [69] and, as done by P latt [63], use a linear kernel SVM (C  =  0.01) with 

discretized features.

Table V.4 shows MSE and error rates for this dataset. The error rate 

is calculated by classifying x  as positive if P(c|a;) > 0.5, where belonging to c 

indicates that x  has income greater than $50K. Note that by calibrating the naive 

Bayes scores, we reduce the error rate. This happens because 0.5 is not as good a 

threshold for the raw scores, as it is for the calibrated scores. However, with SVM 

the error rate is slightly increased when we apply the correction methods. This 

indicates that although the SVM scores are uncalibrated, the threshold used for 

classification is optimal. When the calibration methods are used, the error rate is 

increased because the refinement of the classifier is slightly reduced.

Surprisingly, even though the shape of the function mapping SVM scores 

to empirical probability estimates has a distinctive sigmoidal shape (Figure V.C.l), 

the PAV method performs slightly better than the sigmoid fitting method.

In figure V.E.3, we compare PAV to binning with bin sizes varying from 10
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MSE Error Rate
Method Training Test Training Test
NB
Sigmoid NB 
PAV NB

0.25112
0.21530
0.20312

0.25198
0.21515
0.20452

0.17100
0.15270
0.14665

0.17321
0.15190
0.14831

SVM
Sigmoid SVM 
PAV SVM

0.28719
0.20980
0.20815

0.28684
0.20962
0.20924

0.15190
0.15156
0.15115

0.14968
0.14993
0.15113

Table V.4: MSE and error rate on the Adult dataset.
Adult Dataset

Adult Dataset

Binned NB
N8

g  0.2115

q} 0.207

Number of binsso 100
Number of bins

Figure V.E.3: Binning and PAV on the Adult dataset. The figure on the left shows 

results with Naive Bayes and the figure on the right shows results with SVM.

to 100 for both naive Bayes and SVM, and found tha t binning is always worse than 

PAV. This indicates that, for this dataset, by using a fixed number of examples per 

bin we cannot accurately model the mapping from SVM and naive Bayes scores 

into calibrated probability estimates.

V.E.2 Multiclass problems

The first multiclass dataset we consider is Pendigits, available in the UCI 

ML Repository [10]. It consists of 7494 training examples and 3498 test examples 

of pen-written digits (10 classes). The digits are represented as vectors of 16 

attributes which are integers ranging from 0 to 100.
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Method MSE Error Rate
NB Normalization 
NB Least-Squares 
NB Coupling

0.0326
0.0319
0.0304

0.1672
0.1672
0.1715

PAV NB Normalization 
PAV NB Least-Squares 
PAV NB Coupling

0.0241
0.0260
0.0260

0.1498
0.1498
0.1512

BNB Normalization 
BNB Least-Squares 
BNB Coupling

0.0163
0.0164
0.0160

0.0963
0.0958
0.1023

PAV BNB Normalization 
PAV BNB Least-Squares 
PAV BNB Coupling

0.0150
0.0150
0.0149

0.0946
0.0946
0.0935

Table V.5: MSE and error rate on Pendigits (test set).

For these experiments, we use a one-against-all code matrix. We use both 

naive Bayes and boosted naive Bayes as the binary learners, and apply PAV to 

calibrate the scores. As we mentioned in Section V.D there are two methods for 

combining binary probability estimates into multiclass probability estimates for 

arbitrary code matrices: least-squares and coupling. For one-against-all, however, 

there is another possible method: normalization. Because in this case each binary 

classifier i outputs an estimate of P(ci\x), we can simply normalize these estimates 

to make them sum to 1.

Table V.5 shows MSE and error rate when we apply each of the methods 

to naive Bayes, PAV naive Bayes, boosted naive Bayes and PAV boosted naive 

Bayes. When we calibrate the probability estimates before combining them using 

any of the methods, both the MSE and the error rate are lower than when we 

use raw scores. However, it is not clear which of the methods for combining the 

binary estimates is to be preferred. When the calibrated estimates are used it 

makes less difference which method is used. For this reason, we recommend using 

simple normalization for one-against-all, which is the simplest method.

The second multiclass dataset we use is 20 Newsgroups, which was col­

lected and originally used by Lang [50]. It contains 19,997 text documents evenly
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Method MSE Error Rate
NB Norm 
NB LS 
NB Coup

0.01625 (±  0.00049) 
0.01720 (±  0.00045) 
0.01585 (±  0.00041)

0.15836 (±  0.0067) 
0.15530 (±  0.0064) 
0.16066 (±  0.0075)

PAV NB Norm 
PAV NB LS 
PAV NB Coup

0.01220 (±  0.00038) 
0.01419 (±  0.00029) 
0.01415 (±  0.00029)

0.15305 (±  0.0060) 
0.15299 (±  0.0057) 
0.15422 (±  0.0060)

Table V.6 : MSE and error rate on 20 Newsgroups.

distributed across 20 classes. Because there is no standard training/test split for 

this dataset, we randomly select 80% of documents per class for training and 2 0 % 

for testing. We conduct experiments on 10 training/test splits and report mean 

and standard deviation.

Previous research [6 8 ] found that one-against-all performed as well as 

other code matrices for this dataset in terms of error rate, so we again restrict our 

experiments to one-against-all. We calibrate the naive Bayes scores using PAV, 

and apply each of the methods for obtaining multiclass probability estimates to 

both the raw naive Bayes scores and the PAV scores. Table V . 6  shows MSE and 

error rates for each method. We see that by applying PAV to the binary naive 

Bayes scores, we can significantly reduce the MSE and slightly improve the error 

rate. The lowest MSE is achieved when we first calibrate the scores using PAV 

and then use normalization to obtain multiclass probability estimates.

V.F Conclusions

We have presented simple and general methods for obtaining accurate 

class membership probability estimates for two-class and multiclass problems, us­

ing binary classifiers that output ranking scores. We have demonstrated experi­

mentally that our methods work well on a variety of data-mining domains and for 

different classifier learning methods.

For two-class problems, we recommend using the PAV algorithm to learn 

a mapping from ranking scores to calibrated probability estimates. For multiclass
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problems, we first separate the problem into a number of binary problems, calibrate 

the scores from each binary classifier using PAV and combine them to obtain 

multiclass probabilities. We show experimentally that by calibrating the binary 

scores we can improve substantially the calibration of the multiclass probabilities 

obtained using one-against-all, the simplest way of breaking a multiclass problem 

into binary problems.

For many domains, however, using more sophisticated code matrices can 

yield better results, at least in terms of error rate [1]. Although we only con­

ducted experiments using one-against-all, our method is applicable to arbitrary 

code matrices. More experiments are necessary to determine the best method for 

combining the binary probability estimates in the general case. One open question 

for future research is how to design an optimal code m atrix for obtaining accurate 

class membership probability estimates.

A ckn ow led gm en ts

The text of this chapter, in part, is a reprint of the material as it appears in the 

Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and 

Data Mining [96]. The dissertation author was the primary author, and the co-author listed in 

this publication directed and supervised the research which forms the basis for this chapter.
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Chapter VI

Sample selection bias

One of the most common assumptions in the design of learning algorithms 

is that the training data consist of examples drawn independently from the same 

underlying distribution of examples about which the model is expected to make 

predictions. In many real-world applications, however, this assumption is violated 

because we do not have complete control over the data gathering process.

For example, suppose we are using a machine learning method to induce a 

model that predicts what are the side-effects of a treatment for a given patient. Be­

cause the treatment is not given randomly to individuals in the general population, 

the available examples are not a random sample from the population. Similarly, 

suppose we are learning a model to predict the presence/absence of an animal 

species given the characteristics of a geographical location. Since data gathering 

is easier in certain regions than others, we would expect to have more data about 

certain regions than others.

In both cases, even though the available examples are not a random 

sample from the true underlying distribution of examples, we would like to learn 

a predictor from the examples that is as accurate as possible for this distribution. 

Furthermore, we would like to be able to estimate its accuracy for the whole 

population using the available data.

This problem has received a great deal of attention in econometrics, where

93
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it is called sample selection bias. There it appears mostly because data are collected 

through surveys. Very often people that respond to a survey are self-selected, 

so they do not constitute a random sample of the general population. As we 

saw in Chapter III (Section III.D .l), Heckman [43] has developed a procedure for 

correcting sample selection bias. The key insight in Heckman’s work is that if we 

can estimate the probability that an observation is selected into the sample, we can 

use this probability estimate to correct the model. The drawback of his procedure 

is that it is only applicable to linear regression models.

Also, in statistics, the related problem of missing data has been considered 

[54]. However, those methods are generally concerned with cases in which some of 

the features of an example are missing, and not with cases in which whole examples 

are missing.

In this chapter, we address the sample selection bias in the context of 

learning and evaluating classifiers. In Section VI.A we formally define the sam­

ple selection bias problem in machine learning terms. Then, in Section VI.B we 

present a new categorization of learning methods that is useful for characterizing 

their behavior under sample selection bias and study how a number of well-known 

classifier learning methods are affected by sample selection bias.

In Section VI.C, we present a bias correction method based on estimating 

the probability that an example is selected into the sample and using rejection 

sampling to obtain unbiased samples of the correct distribution. This method 

bears resemblance to the cost-sensitive learning methods by example weighting 

presented in Chapter IV and to weighting methods used in statistics for missing 

data [54]. It can be used both for learning classifiers and, more importantly, for 

evaluating a classifier using a biased sample.
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V I.A  Definition

Standard classifier learning algorithms (implicitly or explicitly) assume 

that we have examples (x, y), each drawn independently from a distribution D 

with domain X  x y  where X  is the feature space and y  is a (discrete) label space.

Here, we assume that examples (x , y, s ) are drawn independently from a 

distribution D  with domain X  x y  x S  where X  is the feature space, Y  is the label 

space and S  is a binary space. The variable s controls the selection of examples 

(1 means the example is selected, 0 means the example is not selected). We only 

have access to the examples that have s = 1 , which we call the selected sample. 

If the selected sample (ignoring s) is not a random sample of D  we say that the 

selected sample is biased.

There are four cases worth considering for the dependence of the selection 

variable s on the example (x, y) 1:

1. If s is independent of x  and independent of y, the selected sample is not 

biased, that is, the examples (x, y, s) which have s = 1 constitute a random 

sample from D  (ignoring s).

2. If s is independent of y given x  (that is P(s \x ,y)  =  P(s\x)),  the selected 

sample is biased but the biasedness only depends on the feature vector x.

3. If s is independent of x  given y (that is P(s\x ,y )  =  P (s|t/)), the selected 

sample is biased but the biasedness depends only on the label y. This cor­

responds to a change in the prior probabilities of the labels. This case has 

been studied in the machine learning literature and there are methods for 

correcting this type of bias [28, 9].

4. If no independence assumption holds between x, y and s , the selected sample 

is biased and we cannot hope to learn a mapping from features to labels using 

the selected sample, unless we have access to an additional feature vector

dn the statistics literature on missing data [54], cases (1), (2) and (4) are known as missing completely 
at random (MCAR), missing at random (MAR) and not missing at random (NMAR), respectively.
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x s tha t controls the selection (that is, P(s\xs,x ,y )  = P(s \xs)) for all the 

examples (even for the ones that have s =  0 ).

In econometrics, the usual assumption is (4) because the goal is to esti­

mate the parameters of a model for y that reflects the true dependence of y on 

x. Any feature variable that only affects the selection should not be included in 

x  (and it is included in x s, instead). In machine learning, this is not a concern, 

because we are mostly interested in maximizing accuracy and not in obtaining the 

“correct” parameters for a model.

For this reason, we argue that the most important sample selection bias 

case in the practice of classifier learning is case (2). In order to make the condition 

P(s\x, y) =  P(s|a;) true in practice, the input to the classifier x  has to include 

all the variables that affect the sample selection. For example, in the medical 

treatment case, we need to include in x  the variables about the patients that 

the doctors use to decide who gets the treatment (even if they do not affect the 

side-effects of the treatment directly).

Even if this assumption is not true in practice (either because we do not 

have access to all the variables that control the selection or because it truly depends 

directly on y), assuming case (2 ) is more realistic than the usual assumption of 

case (1). In the rest of this chapter, sample selection bias will refer to case (2).

VI.B Learning under sample selection bias

We can separate existing classifier learners into two categories:

• local: the output of the learner depends only on P(y\x).

• global: the output of the learner depends on both P(x)  and P(y\x).

The names “local” and “global” were chosen because P(x)  is a global distribution 

over the entire input space, while P(y\x)  is a local distribution, for each value of 

x.
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Local learners are not affected by sample selection bias because

P(y\x ,s  = 1) =  P(y\x)

while global learners are affected because the bias changes P(x).

Although this categorization is very simple theoretically, it is not straight­

forward to classify existing learning methods into it. Below, we study analytically 

and experimentally how sample selection bias affects different types of classifiers 

learning methods, including Bayesian classifiers, logistic regression, support vector 

machines and decision trees.

V I.B .l Bayesian classifiers

Bayesian classifiers compute posterior probabilities P(y\x)  using Bayes’

rule:

where P(x\y), P(y)  and P(x)  are estimated from the training data. An example 

x  is classified by choosing the label y that yields the highest posterior probability 

P(y\x).

We can easily show that Bayesian classifiers are not affected by sample 

selection bias. To see this is true, note that by using the biased sample as training 

data, we are estimating P(x\y ,s  = 1), P (x |s =  1) and P(y\s  = 1) instead of 

estimating P(x\y),  P(y)  and P(x). However, when we substitute these estimates 

into the equation above and apply Bayes’ rule again, we see th a t we still obtain 

the desired posterior probability P(y\x):

p M i , , a = w = i )  _  „ ,  s _  1}=
p(*l»  =  i )  p ( x \ s  =  i)  - n w . s  u  p y v m

since we are assuming that y and s are independent given x. Note that even though 

the estimates of P(x \y ,s  =  1), P(x\s  =  1) and P(y\s  =  1) are different from the 

estimates of P(x\y), P{x)  and P{y), the differences cancel out. Therefore, bayesian 

learners are local learners.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



98

In practice, we have a limited amount of training examples available to 

estimate P(y\x).  Compared to a random sample of the same size, the biased sample 

contains more examples in parts of the feature space where P(s  =  l|x ) is high and 

less examples where P(s  =  l|a;) is low. This will lead to estimates of P(y\x ) with 

lower variance where P(s  =  l|x ) is high and with higher variance where P(s  =  1 |rc) 

is low. However, as long as P(s  =  l|x) is greater than zero for all x, as we increase 

the sample size, the results on a selected sample will asymptotically approach the 

results on a random sample.

Naive Bayes

In practical Bayesian learning, we often make the assumption that the 

features are independent given the label y, that is, we assume that

P{x 1, x 2, . . . , x n\y) = P ( x l \y)P(x2 \y) . . .  P (x n\y).

This is the so-called naive Bayes assumption.

W ith naive Bayes, unfortunately, the estimates of P(y \x ) obtained from 

the biased sample are incorrect. In this case the desired posterior probability 

P(y\x)  is estimated as
P(x\y ,s  = l)P(y\s  =  1)

P(x\s = 1)

=  P ( x i , x 2, ■.., xn\y, s = l)P (y |s  =  1)
P(x\s = 1)

_  P(xi\v,  s -  l )P (x 2 \y, s = 1 ) . . .  P (x n\y, s = l)P(y\s  =  1 )
P(x\s  =  1)

which is different (even asymptotically) from the estimate of P(y\x)  obtained with 

naive Bayes without sample selection bias. We cannot simplify this further because 

there are no independence relationships between each Xi, y and s. Therefore, naive 

Bayes learners are global learners.
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YI.B.2 Logistic regression

In logistic regression, we use maximum likelihood to find the parameter 

vector ft of the following model 2.

p ( v  — — -----------------------------------------------------------------
1 +  ex p (^ o  +  P i x i  +  P 2X2 +  • • • +  f inx n)

W ith sample selection bias we will instead fit the parameters of

^   ̂  ̂ 1 +  exp(/?o +  P \ X \  +  P 2X2 +  • • • +  P n x n)

However, because we are assuming that y is independent of s given x  we have that

P(y = l|x , s =  1) =  P(y  =  1|®).

Thus, logistic regression is not affected by sample selection bias, except for the fact 

that the number of examples is reduced. Asymptotically, as long as P(s  =  l|x ) 

is greater than zero for all x , the results on a selected sample will approach the 

results on a random sample. In fact, this is true for any learning method that 

models P(y\x)  directly. These are all local learners.

Figure VI.B.l illustrates the effect of sample selection bias on logistic 

regression for synthetically generated data, where x  is one-dimensional. The graph 

on the left-hand size shows 1 0 0 0  points where the x  value is chosen uniformly 

between - 1 0  and 1 0  and the y value is drawn with probabilities calculated using 

a logistic function (/30=3 and A =2). The curve is the logistic function obtained 

through maximum likelihood using the plotted points. The dashed line is the 

separator between the two classes. The graph on the right-hand side shows a 

selected sample of the points, where the probability of each point being selected is 

proportional to its x  value. We also show the logistic function obtained through 

maximum-likelihood using the selected points. We can see in the graphs that 

although the selected sample contains many less points on the negative side than 

the original sample, the estimated curve and the resulting separator are the same.

2We show the two-class version; for the multiclass version see [41]
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Figure VI.B.l: Logistic regression is unaffected by sample selection bias.

VI.B.3 Decision tree learners

Decision tree learners such as C4.5 [6 6 ] and CART [15] split the input 

space x  in a recursive, top-down manner. Figure VI.B.2 shows an example of a 

decision tree for a direct marketing problem. Each branch is a test on the value of 

one the features. For discrete features, the tree branches into nodes corresponding 

to each of the possible feature values. For real-value features, the tree branches 

into two nodes corresponding to some threshold on the feature. To predict the class 

of a new example, we work down the tree, at each node choosing the appropriate 

branch by comparing the example with the values of the variable being tested for 

that node [38].

The splitting criteria used by different decision tree learners to grow a 

tree vary, but they are all based on calculating the impurity of the nodes after the 

split. For example, CART uses the GINI index

GINI(t) =  l - £ P ( y | * )
y

where p(y\t) is the relative frequency of class y at node t. The GINI index is at its 

maximum when the examples are equally distributed among the classes and at its 

minimum when all the examples belong to the same class. For each possible split
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Figure VLB.2: A decision tree.

of the data, CART calculates

£  ^G IN I(i)
i=  1

where k is the number of nodes induced by the split.

C4.5 uses information (or entropy) instead of the GINI index, which is

given by

INFO(t) =  - ^ P ( i , |( ) lo g P ( » |i )
y

where P(y\t)  is the relative frequency of class y at node t. Like the GINI index, 

INFO is at its maximum when the examples are equally distributed among the 

classes and at its minimum when all the examples belong to the same class.

Because the splitting criteria are dependent on P(y\t),  where t  is a test 

on only one of the feature values, and, in general,

P ( y \ t , s =  1 ) ^  P(y\t),

the splits chosen by the learners are sensitive to sample selection bias. Thus, 

decision tree learners are global learners.

Even though the choice of each split is affected by sample selection bias, 

the final tree may not be. If the tree splits the input space into small enough
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rectangles, the proportion of examples of class y in each rectangle will be an un­

biased estimate of the probability of class y for that rectangle, even under sample 

selection bias. Thus, the majority class will be the correct label for new examples 

that fall into it.

V I.B .4 Support vector machines

In its basic form, the support vector machine (SVM) algorithm [8 6 , 44] 

learns the parameters a and b describing a linear decision rule

h(x) = sign(a • x  +  b),

whose sign determines the label of an example, so that the smallest distance be­

tween each training example and the decision boundary (called the margin) is 

maximized.

Given a sample of examples (£i,?/j), where yi € {—1,1}, it accomplishes 

margin maximization by solving the following optimization problem:

minimize: V (a, b) =  • a

subject to: Vi : yi[a • Xi + b] > I

The constraint requires that all examples in the training set are classified correctly. 

Thus, sample selection bias will not systematically affect the output of such this 

optimization, assuming that the selection probability P(s  =  l|x ) is greater than 

zero for all x.

Figure VI.B.3 illustrates the effect of sample selection bias on SVM for 

synthetically generated data, where x  is one-dimensional. The graph on the left- 

hand size shows 500 points for each of two classes, generated from two different 

two-dimensional gaussians. The line is the maximal margin separator. The graph 

on the right-hand side shows a selected sample from these points where the prob­

ability of each point being selected is proportional to its x  value. We also show

maximal marginal separator using the selected points. We can see in the graphs
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Figure VLB.3: SVM for separable data is unaffected by sample selection bias.

that although the selected sample contains many less points on the negative side 

than the original sample, the resulting separator is not significantly altered.

In practice, a decision rule that classifies all the examples correctly may 

not exist because of overlap of the classes. To allow for the possibility of misclassi- 

fied examples, one introduces slack variables & > 0 for each example (xi, yi). This 

is called a soft margin support vector machine classifier [72]. The optimization 

problem is changed to

minimize: V(a, b, £) =  \a  • a + C  & 

subject to: V i: yi[a • Xi +  b] > 1 — &, & > 0

If a training example lies on the wrong side of the decision boundary, the corre­

sponding & is greater than 1 . Therefore, an upper bound on the number

of training errors. The factor C  is a parameter that allows one to trade off training 

error and model complexity. We note that the algorithm can be generalized to 

non-linear decision rules by replacing inner products with a kernel function [8 6 ] in 

the formulas above.

Now, while sample selection bias does not affect the original SVM opti­

mization, it does affect the soft margin optimization because it optimizes the sum 

of & values. By making regions of the feature space denser than others, sample
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selection bias changes this sum and, with it, the decision boundary. Soft margin 

SVM is a global algorithm because changes in P(x)  will change the output.

V I.B .5  E x p e rim en ta l re su lts

To verify the effects of sample selection bias experimentally, we apply 

Naive Bayes, logistic regression, C4.5 and SVMLight (soft margin) [45] to the 

Adult dataset (see Chapter V, section V.E.l for information on this dataset). We 

assume that the original dataset is not biased and artificially simulate biasedness 

by generating a value for s for each example, such that s is correlated with one of 

the input features. When training, we only use the examples in the training set 

for which s =  1. When testing, we use all the examples in the test set, because 

we are interested in measuring the performance of the classifiers on the original 

distribution of examples.

Figure VI.B.4 shows the results of applying the different learners to the 

Adult dataset using unbiased and biased training sets of increasing size. For each 

size shown on the x-axis, we generated 50 unbiased samples from the original 

Adult training set. We also generated 50 biased samples by assigning s such that 

examples with feature age less than 30 are 9 times more likely to have s =  1 than 

examples with age more than 30. We trained the learners using each of the 50 

samples (in both the biased and unbiased cases) and tested each of the models 

on the Adult test set, to obtain the mean and standard error of the error rate, as 

shown in the graphs.

In accordance with our analysis, for logistic regression, the difference in 

error rate between using biased or unbiased training sets goes down as we increase 

the size of the training set. Also, as expected, we see th a t naive Bayes is very 

sensitive to sample selection bias. The error rate using the biased sample goes up 

as we increase the number of training examples.

On the other hand, surprisingly, C4.5 performs very well under sample 

selection bias. This might be explained by the fact that even though the choice of
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Figure VLB.4: Error rate using biased (dotted) and unbiased (dashed) training 

sets. Each point indicates the mean error rate for a given sample size and the 

error bars show the standard error of the error rate. These were computed using 

50 different training sets for each size.
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splits is biased, the class estimates at the leaves are not. More experiments with 

different types of selection biases are necessary to understand the effect of sample 

selection bias on decision tree learners.

W ith SVM, we see that the error rate using the biased training set de­

creases as the training set sizes increases. However, the difference between the 

error rates using biased and unbiased samples does not decrease. This indicates 

that, asymptotically, SVM (with soft margin) is affected by sample selection bias.

VI.C Correcting sample selection bias

In the last section, we saw that some classifier learning methods are af­

fected by sample selection bias, while others are not. In this section, we present a 

bias correction method that can be applied to any classifier learner, provided that 

we have a model for the selection probabilities P(s  =  1 |rr). The method works 

by correcting the distribution of examples through re-sampling and then apply­

ing the classifier learner to the corrected sample.lt bears resemblance to weighting 

methods proposed in the statistics literature for missing data [54] and also to the 

cost-sensitive learning by example weighting methods presented in Chapter IV.

Classifier learners try to find h to minimize the expected value of loss 

function over the distribution of examples given by

y ) ] .

The loss function is, in many cases, given by an indicator of error I(h(x) ^  y ), but 

we make the analysis more general by considering an arbitrary loss function (such 

as the one used in cost-sensitive learning).

Under sample selection bias, a classifier learner will minimize instead

E Xty tSr v £ ) [ l ( h ( x ) , y ) \ s  =  l]

because only the examples with s = 1 are available to the learner.
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Assume that we know the selection probabilities P(s  =  l|a;) and that 

they are greater than zero for all x. Let D  be a new distribution such that

where P(s  — 1 ) =  Y2^x<ytS)^D P(s  = l , x )  is the overall selection probability.

The following theorem shows that if we change the distribution of exam­

ples from D  to D,  we will obtain the desired expected value under sample selection 

bias.

T h eo rem  V I .C .l .  (Bias Correction Theorem) For all distributions, D, for all 

classifiers, h, for any loss function I — l(h(x),y),  if we assume that P(s  =  1|x,y)  =  

P(s = l |x )  (that is, s and y are independent given x)  then

Ex<ŷ D[l{h{x),y)) = Ex ^ b {l(h{x),y)\s =  1]

Proof.

E x , y , s ~ b [ K H x ) , y ) \ s  =  1] =  J 2 l { h { x ) , y ) P b ( x , y \ 8  =  l )
x,y

= J2 l^ x ŷ p̂b(x ŷ\s = 1)
*,y

x,y 17

-  X ' K h ( x )  v) Pd (s = 1>> Pd {s = l \ x ,y )P D{x,y) 2^mxhy)pD{s = 1\x) Pd{s=: i)
=  ^ 2 l(h {x ) ,y )PD{x ,y)

x,y

= EX0 „D[l(h(x),y)]

□

The left-hand side {Ex>y~D[l{h(x), y)]) is the expected value tha t we would 

like to minimize but cannot directly under sample selection bias. The right-hand 

side {E s„fi[l(h(x), y)|s =  1 ]) can be minimized as long as we can draw examples 

from D.
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As we have seen in Chapter IV obtaining a sample from a weighted distri­

bution given a finite set of training examples is not completely straightforward. We 

have demonstrated that costing, a method based on rejection sampling, achieves 

the best results in practice. For this reason, we recommend using costing for sample 

selection bias correction, where instead of using misclassification costs as weights 

we use the selection ratio P(s — 1)/P(s  =  l|x ) as a weight for each example.

Up to now, we have assumed that we know the selection probabilities

P(s = l|x ). In practice, we would have to estimate these from data. If we have a 

sample (x,s)  ~  D (note that y is not necessary), we can use it to estimate these 

probabilities using a classifier learning method along with the calibration methods 

presented in Chapter V. Note that this is a two-class problem, since s takes values

This assumes that we have unlabeled examples drawn from the true un­

derlying distribution and can determine whether they are selected or not. This is 

a situation that is likely to occur in practice. For example, in medical treatment, 

we only know the outcome of the treatment (y ) for patients x  tha t were given the 

treatment (s =  1). On the other hand, we can come up with examples of the form 

(x, s) that are drawn from the population as a whole.

V I.C .l Evaluation under sample selection bias

In evaluation, for a given a classifier h, we would like to obtain an estimate 

of the loss of the classifier, given by

P'x,y~D[l{h'{x), y)\.

Usually this is done by applying the classifier to a set of test examples 

drawn from D  and obtaining the empirical loss on the test examples

in {0 , 1 }.

where m  is the number of available examples.
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However, under sample selection bias, since we only see the examples for 

which s  = 1 , we instead obtain an estimate of

which in general is not an unbiased estimate of the loss of the classifier.

As we have seen in Section VI.B, local learning methods are insensitive 

to sample selection bias. However, the evaluation step is always affected by sample 

selection bias because we are calculating an expected value over the whole input 

space (which is always “global”). Therefore, we argue that accounting for sample 

selection bias on the evaluation step is more important than accounting for sample 

selection bias during learning.

We can use the bias correction theorem (theorem V I.C .l) for evaluating a 

classifier if we have estimates of the selection probabilities P(s  = l|a;). We simply 

have to weigh each example by P(s  =  1 ) /P ( s  =  l|x ) when calculating the expected 

loss on the biased test sample. Thus, the empirical loss is given by

Again, in practice, we would have to estimate P(s  =  l |x )  and P(s  = 1) 

from a set of examples.

VI.C.2 Example

To illustrate how the bias correction method works, we constructed an 

example using the KDD-98 competition dataset described in Chapter II. This 

example is artificial in the sense that we assume we know the selection probabilities 

P(s = l|x) and we enforce the selection of examples using these probabilities. By 

doing this, we can compare the estimates of the expectation obtained using the 

whole sample and using the selected sample (corrected and uncorrected).

E x,y>s~ D [ l ( h { x ) , y ) \ s  =  1],
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The KDD-98 dataset contains information about persons who have made 

donations in the past to a particular charity. For the purpose of this example, 

we only need to look at two variables: income and amount. Income is a variable 

that takes values in {0 , 1 , 2 , 3 , 4 , 5 , 6 ,7} and indicates the different levels of income 

(from lower to higher). Amount is how much the person has donated (in dollars) 

in the last donation campaign. We only use examples of people th a t have donated 

in the last campaign.

In the notation of the theorem, income is x  and amount is I. (We chose to 

side-step the classifier h(x) and the label y and assume we have the loss I directly 

for each example).

Suppose that s is such that

f  0.3 if a? € {0,1,2,3}
P (S  = l \ X  = x ) =  I

y 0.9 if x  € {4 ,5 ,6 , 7}

In this case, the overall probability of selection P(s = 1) is 0.6.

The empirical estimate of the expected amount obtained by averaging 

the amounts of all the examples is 15.62. Because there is a positive correlation 

between income and donation amount, if we select the examples according to the 

probabilities above, we will overestimate the expected amount.

To demonstrate this experimentally we can assign s values for each ex­

ample according to the probabilities above and calculate the empirical mean of I 

using only the examples that have s = 1. By repeating this for 1000 different ran­

dom draws of s, i.e., 1 0 0 0  different selected samples, we obtain the distribution of 

estimated expected values of Y  seen in Figure VI.C.l. The vertical dashed line (on 

the left side) shows the estimated expected amount using the whole sample. The 

graph shows that, by using only the selected examples to estimate the expected 

value of I, we consistently overestimate it, as expected.

In contrast, Figure VI.C.2 shows the distribution of estimated expected 

values for I, when we use only the selected examples but apply the bias correction 

method. The distribution is centered near the value estimated from the whole
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Uncorrected estim ate of the expected value of I

Figure VI.C.l: Distribution of the u n co rre c ted  estimates of expected amount 

(I) when different selected samples are used. The vertical dashed line shows the 

estimated expected value using the whole sample.

sample (and the mean is 15.62). Therefore, we can conclude that, in fact, the 

proposed method succeeds at correcting the bias. We note, however, that the 

variance is increased when we use the correction method (from 0.0170 to 0.0434).

In this case, we knew the selection probabilities, so we used them directly. 

In a more realistic case, these probabilities would have to be estimated from data.

VI.D Conclusions

In this chapter we have presented a formal definition of the problem of 

sample selection bias in classifier learning. By studying the behavior of different 

classifier learners under sample selection bias analytically and experimentally, we 

separated existing classifier learners into two categories:

•  local: the behavior of these learners only depends on P(y\x).  Examples: 

logistic regression, SVM (without soft margin).
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Figure VI.C.2: .

Distribution of the co rrec ted  estimates of expected amount (/) when different 

selected samples are used. The vertical dashed line shows the estimated expected

value using the whole sample.

• global: the behavior of these learners depends on both P ( x ) and P(y\x).

Examples: naive Bayes, SVM (with soft margin), decision tree learners.

While global learners are affected by sample selection bias, local learners 

are not. This is a new categorization that is different than the more usual catego­

rization of learning methods into discriminative and generative learners [61]. As 

we have seen in Section VI.B.l, although generative (or Bayesian) methods model 

P(x\y), P(y)  and P{x),  their behavior is generally independent of P(x)  (although 

this is not true for naive Bayes).

This categorization is also useful for characterizing situations in which 

we can learn from both labeled and unlabeled data, an area of research that has 

received some attention in recent years (see, for example, [80]). Clearly, global 

learners can take advantage of unlabeled data, while local learners cannot.
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For global learners, we showed that we can still learn correctly under 

sample selection bias if we have data to estimate the selection probabilities P(s  =  

l|:r). Also, we showed how to evaluate a classifier using a biased sample and 

the estimates of the selection probabilities. The calibration methods presented 

in Chapter V can be used for obtaining these estimates using classifier learning 

methods.
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Chapter VII

Reinforcement learning 

w ith traces

In this chapter we give an overview of reinforcement learning and for­

mally define the policy mining problem using the Markov Decision Process (MDP) 

framework that is commonly used in reinforcement learning. We argue that the 

current reinforcement learning methodology is not suitable for the policy mining 

setting and present a new formulation that we call reinforcement learning with 

traces. This formulation does not require the availability of a simulator for the 

environment and, instead, uses a trace model that can be simulated with fixed 

sets of data collected offline. We show that for one-step MDPs, we can reduce 

reinforcement learning with traces to cost-sensitive learning with sample selection 

bias correction. For MDPs with arbitrary number of steps, we present a greedy it­

erative method that learns a classifier for each step. The policy obtained with this 

method is the approximately best possible local improvement over the arbitrary 

policy used for collecting the data. We also show how to evaluate a policy using a 

fixed set of data by using the sample selection bias correction methods presented 

in Chapter VI. Finally we present data mining applications that can benefit from 

this methodology and show experimental results using a data generator.
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VILA Reinforcem ent learning

In the reinforcement learning framework [78], an agent interacts with its 

environment by executing actions. The environment responds to  those actions 

by presenting new situations and rewards to the agent. At each time step t , the 

environment is in some state s, the agent takes one of several actions a, receives a 

finite reward r, and the environment makes a transition to another state s'.

depend on the current state s and action a, we say that the environment satisfies 

the Markov property. Many environments satisfy this property and are called 

Markov decision processes (MDPs).

In this case, we can completely specify the environment by specifying a 

tuple (£, D, A, {P,sa} ,7 , {.Rsa}), where S' is a set of states; D  is the initial-state 

distribution; A is a set of actions; {Psa} are the transition probabilities, with Psa 

giving the next-state distribution when action a is executed in state s; 7  G [0,1] 

is a discount factor; and {R sa} are the reward distributions, with R sa giving the 

reward distribution when action a is executed in state s.

The environment starts in an initial state so drawn from the initial-state 

distribution and the learner repeatedly takes actions until a final sta te  sn is reached. 

This results in a sequence of states {sf}"=0, actions {at}]L0, and rewards {rt}”_0, 

that is called an episode.

When choosing actions, the agent follows a policy that can be represented 

by a mapping 7r(s), from states to actions. The value of a policy n  is the expected 

discounted sum of rewards obtained when 7r is executed, which is given by

where ESô d,tt denotes that the initial state is drawn from the initial-state distri­

bution and that we use policy tt to choose the actions.

The optimal policy 7r* is the policy th a t maximizes V  (7r) . Reinforcement 

learning (RL) methods attem pt to learn the optimal policy by interaction with the

If the probability distributions of the reward r and the next state s' only

n

_ t—0
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environment or with a simulator of the environment. Current RL methods can be 

divided into two categories: indirect and direct methods.

VII.A. 1 Indirect M ethods

Indirect methods first estimate the function Q*(s, a) that gives the ex­

pected value of executing action a in state s under the optimal policy, that is,

SO — S , CLq — CL

_ t= 0 .

where En* denotes the expectation with respect to the optimal policy 7r* which is 

used to define the actions taken in all states except the initial s0- The optimal 

policy can be obtained from Q(s , o) by choosing the action that maximizes Q(s, a) 

at each state, that is,

7r*(s) =  argmaxaQ (s, a)

When the set of possible states and actions is finite, it is possible to learn Q(s, a) 

using online iterative algorithms such as Q-learning [90] and sarsa [71]. These 

methods start with an estimate of Q(s, a) for every s and a and update the estimate 

after each action is executed. Provided that every action in every reachable state 

is executed infinitely often, they are guaranteed to probabilistically converge to 

the optimal value function [91].

However, in most practical applications, the state space is infinite or 

prohibitively large. In this case, instead of representing the value function explicitly 

as a look-up table, we can represent it as a parameterized function of the state- 

action pair. Given examples of the form ((s, a), Q(s, a)) function approximation 

methods such as linear regression [82], neural networks [81, 98] or decision trees 

[89] are used to create a mapping from state-action pairs to Q-values. The problem 

with this approach is that little is known about convergence guarantees and error 

bounds for the policy derived from the function approximator.
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VILA.2 Direct M ethods

Direct methods do not estimate an intermediary function from which to 

derive the policy. Instead, they search for a good policy in a restricted class of 

policies. Given a fixed class of policies II, the goal is to find a policy n € II that is 

the best policy in the class. The best possible value achievable in class II is given 

by

V * { U )  = s u p F ( 7 r ) .
7rgn

Direct methods attem pt to find a policy ft £ II such that V(7t) is as close as 

possible to Vr*(II).

Different direct methods vary on the optimization procedure used for 

searching the space of policies and on the method used for estimating the value 

of a policy. If the action space is continuous and II =  {ire\d £ R m} is a smoothly 

parameterized family of policies it is possible to use gradient descent methods for 

searching the space of policies [5, 79]. Otherwise, optimizations procedures such 

as the downhill simplex method [53] and differential evolution [76] can be used. 

Note tha t some of these optimization procedures can be implemented using only 

comparative information of the form “Is policy tta better than policy 7r^?” [77].

All the existing methods for estimating the value of a policy or for com­

paring the values of two policies assume that we have access to a simulator of the 

underlying MDP. Most methods assume access to a stochastic function that takes 

as input any state-action pair (s, a) and outputs the next state s' and the reward 

r  according to the state transition and reward probabilities of the MDP.

Other methods make even stronger assumptions. For example, the Pega­

sus method [60] assumes that we have a function g : S  x A  x [0, l]d •-> S, such that 

for any fixed state-action pair (s, o) and p distributed uniformly in [0, l]d, g(s, a ,p ) 

gives the distribution of possible transition states when action a is executed in 

state s (they assume that the rewards are deterministic). This function is used to 

obtain the value of a policy for a scenario (i.e. a given initial state and values of 

P ) -
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VII.B  The policy mining setting

In the most general setting of policy mining, we have a set of exam­

ples each of the form ((so, ao, rQ), (sx, ax, rq ),. . . ,  (sT, at , rr))> where T  > 1. Each 

example describes a fixed-length episode of interaction with the same unknown 

MDP, where the actions are chosen according to an unknown and, in general, non- 

deterministic, policy. We assume that each initial state is an i.i.d. sample from 

the initial-state distribution. We call these examples “traces” , because they are 

traces of the execution of a policy on an MDP. We now want to learn a  good policy 

for the MDP exclusively from these traces. We also want to be able to evaluate 

the policy to convince ourselves that it performs well before deploying it in the 

real-world.

One possible solution is to try to learn a simulator of the underlying MDP 

using the data and then use direct reinforcement learning methods to  learn a policy. 

This requires learning models for predicting the transition probabilities and the 

reward distribution given a state-action pair. Since for most practical applications 

the state space is infinite, we would have to use function approximation methods 

to learn the models. The drawback of this approach is that modeling the MDP 

may be very difficult and, as a consequence, the policy that we derive from the 

simulator is likely to be suboptimal for the true MDP. Furthermore, it could be 

difficult to quantify how suboptimal it is.

We could also use indirect methods and learn a Q-value function using the 

data. This is the approach taken by Pednault et al. [62], called batch reinforcement 

learning. However, as we saw in Section VII.A.l indirect methods with function 

approximation are not guaranteed to yield a good policy. Another problem is that 

we still need to evaluate the policy learned. The solution used by Pednault et al. 

is to learn a simulator of the underlying MDP and then run simulations using the 

policy. But, again, the simulator is only a crude approximation of the MDP and 

it may behave very differently from the original MDP.
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Here, we present a direct reinforcement learning method that does not 

require a simulator and, instead, uses a fixed set of episodes to learn the policy. We 

call this method reinforcement learning with traces, because all th a t is provided 

to the method are traces of the execution of a policy. In the next section, we show 

that in the case of one-step MDPs (T =  1), we can solve reinforcement learning 

with traces by reducing it to a cost-sensitive classifier learning problem with sample 

selection bias correction.

VII.C One-step reinforcement learning w ith  traces

We assume that we have m  training examples (x , y, r) drawn from a joint 

distribution D  with domain X  x y  x 71 where X  is an (arbitrary) state space, y  

is a (discrete) action space and 7Z is (nonnegative, real) reward space.

We can view these examples as being generated by repeatedly executing a 

stochastic training policy on a one-step MDP and recording traces of the execution 

in the form of state-action-reward triples, where the reward of executing action y  in 

state x  is is given by a stochastic function R  : X  x J 7 —> [0, oo] (th a t is r  ~  R (x, y)).

Our goal is to approximate the optimal policy for this MDP, i.e., a func­

tion h : X  y  that maximizes the expected value of the reward given by

Ex„D[R{x,h{x))]  (VII.C.l)

using only the available examples.

Standard classifier learners try to find H  to maximize the  accuracy

/(* (* )  =  !,)
(x,y)

but, according to the translation theorem (Proposition IV .A .l), can be made to 

maximize

i  £  wI(H(x)  =  y).  (VII.C.2)
(x,y,w)
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The following theorem shows that the expectation in (VII.C.l) can be 

rewritten in a way that allows us to use a classifier learner tha t maximizes (VII.C.2) 

to learn the policy h.

T h eo rem  V II .C .l .  For all distributions, D, for any deterministic function, h : 

X  y  and for any stochastic function R  : X  x y  -¥ [0,oo], i f  we assume that 

P(y\x) > 0 Vx, y then

E D[R(x, h(x))] =  E d
P {y\x)

I(h (x) = y)

Proof

Ed
P{y\x) I(h(x) = y)

’R {x ,y)
[P(y\x) 

'R (x, y)
,P (y\x)

R(x, h(x))

h(x) =  y

—  E x , y , r ~ D

=  Ed

— E d

?  P(fi(z) =  y\x) 
R(x, h(x))

I(h(x) =  y)

P(h(x) = y)

mP{h(x) = y\x) 
R(x, h(x))

h(x) =  y

^  P(h(x) = y\x) 

=  J ^ R (x ,h (x ) )P (x )
X

= E d[R(x , h(x)\

P(h{ x) = y) 

P(x\h(x) = y)P (h(x) = y) 

P(x, h(x) = y)

□

From this theorem, it follows that

-  £
m  ( w > p(via:)

I{h{ x) =  y), (VII.C.3)

is an unbiased empirical estimate of the value of policy h. Thus, if we know P(y\x), 

that is, the probability that action y is executed in state x  by the training policy, 

we can use a classifier learner to learn the policy from the examples. Looking back 

at (VII.C.2) we see that we simply have to weigh each example (x ,y ,r )  by p ^ y
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Note that the theorem holds only if Vx, y P (y\x) > 0, that is, in order to 

guarantee convergence to the optimal policy, we require that the training policy 

have non-zero probability of executing each action in each state. However, the 

reduction degrades gracefully even when this is not the case if we define that

I(h (x) = y)
P (y\x)

when I(H (x)  =  y) =  0 and P (y \x ) — 0. In this case, it is easy to see that the 

reduction will converge to the optimal policy for an MDP tha t is identical to the 

original one, except that action y is not allowed in state x.

This theorem can be seen as a combination of the translation theorem 

for cost-sensitive learning (Chapter IV, Theorem IV.A.l) and the bias correction 

theorem (Chapter VI, Theorem VI.C.l). This demonstrates that in policy mining 

it is crucial to account both for costs (or, in this case, rewards) and for the sample 

selection bias related to the use of a training policy that is not completely random.

In Chapter IV we showed that learning from a weighted distribution of 

examples is not straightforward with many classifier learners but that costing, a 

method based on rejection sampling, achieves good results in practice. For this 

reason, we recommend using costing here, where instead of using misclassification 

costs as weights we use the ratio p ^ r f ĵ y as a weight for each example (x ,y , r). 

Another option is to use the transparent box methods, with learners that accept 

weights directly, such as naive Bayes and SVM.

As is the case for selection probabilities in Chapter VI, in practice we may 

not know the probabilities P (y \x ) used by the training policy in advance. However, 

we can estimate these from the available training data by using a classifier learning 

method coupled with the calibration methods presented in Chapter V.

Table VII. 1 shows the pseudo-code for the one-step reinforcement learning 

with traces algorithm. Given a training set of the form (x , y , r ), we first learn a 

model for P(y\x). This can be accomplished by using a classifier learner that 

outputs calibrated class membership probability estimates. We then calculate 

weights for each example (x , y , r ) by dividing r by P(y\x). We can now use a
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One-Step RL w ith traces (Training Set S  =  (x , y , r ))

1. Learn a m odel for P ( y \ x ) using S.

2. Calculate a weight for each example (x , y , r ): w  =

3. Learn a classifier h using a cost-sensitive learner on S' =  ( x , y ,w ) .

4. Output h.

Table VII.1: The one-step RL with traces algorithm.

cost-sensitive learning method that takes examples (x, y,  w)  as input, such as the 

ones presented in Chapter III to learn a classifier that is the desired the policy for 

the MDP.

VII.D  T -step reinforcement learning with traces

Here, we introduce the trace model, which has the following operation:

• trace(7r): returns a trace from the execution of a (non-deterministic) policy 

7r on the MDP, that is, a sequence of state-action-reward triples of the form

((so, ao, ri), (si, 0 1 , r2), . . . ,  (sr-i, rr)),

where So is drawn from P ( s 0), each a* is drawn from 7r(o|sj), each s, (for 

0 <  t < T)  is drawn from P (s /|sj_i,aj_i) and = R(si).

This model is weaker than a generative model since we can simulate the 

trace operation using a generative model operations but the opposite is not true.

We are going to reduce the problem of finding a good policy in this setting 

to T  instances of classification, one for each timestep. The T  learned classifiers 

are denoted ct for t £ { 1 , . . . ,T }  and the nonstationary policy they create is 

7r(a|s,t) =  ct (s).
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The optimization starts with some arbitrary initial policy, cx, . . .  ,c t and 

new classifiers ct are learned iteratively, starting from t =  1 until t =  T  and then 

going back to t =  1 and so forth.

For each optimization problem, we learn a new classifier c't, and then 

compare the two policies c i , . . . ,  dt, . . . ,  ct and c i , . . . ,  ct, . . . ,  or by using the trace 

model. If the new policy has a provably larger expected value, we replace ct 4— c't , 

then move on to the next optimization problem. The process halts after we observe 

T  non-updates in a row.

The reduction for timestep t works by first calling the operation trace(7r') 

m  times, where the policy 7r'(a|s,z) is given by Cj(s) for i < t and i > t. At 

timestep t, 7r'(a|s, i) is an arbitrary distribution. Each returned trace is made into 

an example of the form (s, y, w), where x  =  st, y =  at and w =  L ^2j=i+1 rt .

Let
i t

W ( s t,at) =  -  £  R(Si)
i= t+ 1

where sf+1 ~  P (s'\st,a t) and Sj+i ~  P(s'|s;,7r'(sj)) for t < i < T .

Then E [W (x,c t(x))] is the expected value of the reward obtained by 

following ct(x) in step t while following 7r' in all the subsequent steps.

Theorem VII.C.l shows that this expected value can be rewritten in a 

way that allows us to use a classifier learner that maximizes (VII.C.2) to learn the 

t-th step classifier ct that maximizes E [W (x,ct(x))} using the examples (x ,y ,w ).

The policy obtained from this reduction is the (approximately) best pos­

sible local improvement over the arbitrary policy used for training. “Local” here 

refers to the fact th a t we optimize the classifier ct for each step t in a greedy man­

ner, assuming th a t the policy will remain the same for the other steps. However, 

we continually change the policy to improve its overall value. The only guarantee 

is that each classifier ct added will increase the overall policy value.

Even though this is a local reduction it is interesting because it is the 

first method for reinforcement learning in the policy mining setting, where we 

have traces of the execution of a (stochastic) training policy on the MDP. This set
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of traces can be used to simulate the trace model by rejection sampling to produce 

a subset of traces consistent with the policy 7r given to the trace model.

VILE Policy evaluation using a fixed dataset

The most obvious way to estimate the value of a policy given a fixed set of 

episodes is to select the episodes whose sequence of actions agrees with the policy. 

Then, we can average the cumulative rewards obtained in each of the selected 

episodes to obtain an estimate of the value of the policy. This is reasonable if the 

number of episodes in the set is large, the length of each episode is short and the 

number of possible actions is small, so that we can obtain enough episodes that 

agree with the policy.

Nonetheless, even when these conditions are true, selecting the available 

episodes in this manner will result in a biased estimate of the policy value. The 

initial state of the episodes used to evaluate the policy will not be an i.i.d. sample 

of the initial state distribution because the episodes are being selected according 

to a criteria that is not necessarily independent of the initial state. For example, 

in the direct marketing case, the initial state describes a particular customer. If 

we have a policy that is more likely to agree with the data for the “rich customers” 

(who presumably tend to donate more), by using this kind of evaluation we may 

think it is a very good policy. However, if we apply the policy to the general 

population of customers it may not perform as well.

In the policy evaluation case, we can translate the episodes into examples 

(x ,y , s), such that x  is an initial state, y is the cumulative reward obtained in the 

episode and s indicates whether the policy we would like to evaluate agrees with 

the actions in the episode. The expected value of y corresponds to the expected 

value of the policy, but we can only see the value of y when s = 1.

This is exactly the evaluation under sample selection bias problem pre­

sented in Chapter VI. Therefore, we can use the bias correction theorem to obtain
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an unbiased estimate of the value of the policy. As stated before, this theorem 

assumes that y and s are conditionally independent given x. This assumption is 

reasonable when the selection is based solely on x. In the direct marketing case, 

the decision about mailing a customer depends only on x  (the customer features) 

because y (the donation amount) is unknown. Therefore, if there is a dependence 

between y and s it disappears when we know x.

VII.F Applications

The methods presented in this chapter are useful for data mining appli­

cations in which the available data consists of records of an agent making decisions 

and receiving rewards. There is a surprisingly large number of practical data min­

ing applications tha t can be cast in this framework, including direct marketing, 

fraud detection, recommender systems and medical treatment.

In all these cases, we are interested in discovering policies for how to act 

in different states of an environment. Depending on the domain, a state of the 

environment might describe a customer, a patient or a sequence of telephone calls. 

Because there are decision-making agents already in place for these applications 

(either humans or software systems), we can record the actions that the agents 

take and the rewards received by the agents.

Depending on the goals of the application, the nature of the rewards 

will vary. For example, in business applications (such as fraud detection), we are 

typically interested in maximizing profit, whereas in medicine one possible goal is 

to maximize the life span of the patient

The following subsections describe in more detail two of these applications 

for which there are datasets available publicly.
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V II.F .l M edical treatment

In medical treatment, we can think of the condition of a patient (which 

includes, for example, exam results) as a state. The doctor who prescribes a 

treatment is a decision-making agent and the different possible treatments are 

different actions. Depending on the treatment goals, we can use one of several 

measures to describe the success of a treatment program.

It is important to distinguish medical treatment from medical diagno­

sis. In medical diagnosis, we are interested in diagnosing a disease (for example, 

whether a patient has cancer or not). In medical treatment, we are interested in 

deciding what treatment to prescribe to a patient (for example, chemotherapy), 

based on evidence that the treatm ent is the best choice for the patient in the long 

run.

The problem of medical diagnosis can be easily cast as a classifier learning 

problem, where each example describes characteristics of a patient (such as exam 

results) and the label says whether or not the patient has the disease. In fact, the 

application of supervised learning techniques to medical diagnosis is fairly common. 

This is evidenced by the large number of medical datasets available in the UCI 

Machine Learning repository [10], such as Audiology, Breast Cancer, Dermatology, 

Diabetes, Hepatitis and Thyroid Disease.

On the other hand, medical treatment can only be cast as a classifier 

learning problem if we assume that the existing agent (i.e., the doctor) always takes 

the optimal actions. Then, we can use a classifier learning method to “capture” 

these actions and apply them to other patients. However, in general, we do not 

expect that the doctors will always take the optimal actions. In fact, the goal is to 

use the available data to learn what those actions should be for different patients 

based on how they react to the treatments. The policy mining presented in this 

chapter is the first that aims at solving this problem directly in a general manner.

A publicly available dataset that can be used for learning medical treat­

ment policies is the Wisconsin Prognostic Breast Cancer Chemotherapy Dataset
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(WPBCC) [92]. It contains medical information about 253 patients who have gone 

through breast cancer surgery (31 features). For each patient, there is a variable 

describing if the patient was given chemotherapy or not after surgery (140 of the 

patients were given chemotherapy) and the number of days lived after the surgery 

(survival time). The goal is to learn a policy based on the feature values for decid­

ing which patients should be given chemotherapy, such that the expected number 

of days that each patient lives after the surgery is maximized.

Note th a t this particular medical treatment problem is not sequential be­

cause there is only one decision point: to give chemotherapy or not to a given pa­

tient described by the features. However, it is still challenging because chemother­

apy is not given to a random set of patients. In fact, the average survival time 

for patients who were treated with chemotherapy (58.93) is less than the average 

survival time for patients who were not treated

The current approach for dealing with this data by Lee, Mangasarian and 

Wolberg [51] is to cluster the patients into three groups: Good, Intermediate and 

Poor. These groups strongly reflect patient survival times. None of the Good group 

patients receive chemotherapy and they have the highest average survival times. 

All of the Poor group patients receive chemotherapy and they have the lowest 

average survival times. About half of the patients in the Intermediate group receive 

chemotherapy, but those patients have better survival than the patients which did 

not receive it. Based on these results, they suggest that patients in the Good group 

should not receive chemotherapy and patients in the Intermediary group should 

receive therapy. The authors say that their approach is the first to identify a group 

of patients for which it is better to prescribe chemotherapy than not to prescribe 

it (the Intermediary group).

Note th a t the clustering results cannot be used on a new patient since it 

uses the chemotherapy feature (which is unavailable) and the lymph node status 

(which is very risky to obtain). For this reason, they learn a classifier for predicting 

Good, Intermediate or Poor for new patients based on available features. This
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classifier achieves 82.7% accuracy on a test set.

A drawback of this clustering approach is that it is difficult to replicate 

it for other datasets. The clustering procedure “is based on physicians’ knowledge 

and experience” and it involves a series of intermediary steps. Another problem is 

th a t the decision policy is very coarse-grained: it only separates the patients into 

three groups.

VII.F.2 Direct marketing

In direct marketing, an organization can encode the purchasing history 

of a customer and any other available data about the customer into a state. Any 

communication directed from the organization to the customer (such as a catalog 

mailing) is an action that changes the state of the customer and results in a reward 

to the organization (which may be positive or negative). Depending on the organi­

zation goals, different measures can be used to assess the success of its marketing 

strategy with respect to a customer. A common measure of success is the profit 

th a t the customer generates.

Many catalog mailing organizations have customer databases and soft­

ware systems in place for deciding which customers should be mailed a catalog in 

a direct marketing campaign. Commonly, these systems are based on classifiers 

that try to distinguish customers who respond from customers who do not respond 

to a particular kind of catalog. Although these are likely not to be the optimal 

decisions with respect to profit in the long run, we can use the data collected in 

this manner to learn a mailing policy using policy mining.

A publicly available dataset that can be used for learning direct market­

ing policies is the dataset from the KDD-98 competition, described in Chapter

II. Although the original task associated with this dataset concerns only the last 

campaign, it contains a detailed donation history of individuals who donated to 

the charity over a period of two years (22 campaigns). The data is divided into a 

training set and a test set, each containing 95412 and 96367 individuals, respec­
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tively. For each campaign, we know whether each individual was mailed or not, 

whether he or she responded or not and how much was donated. Additionally, if 

the individual was mailed, the date of the mailing is available (month and year), 

and if the individual has responded, the date of the response is available.

The KDD-98 dataset has been used by Pednault et al. [62] to demonstrate 

the applicability of reinforcement learning to direct marketing problems. Based 

on the campaign information in the data, they generated a number of temporal 

features that are designed to capture the state of that individual a t the time of 

each campaign. These include the frequency of gifts, recency of gift and promotion, 

number of recent promotions in the last 6 months, etc.

VII.G  Experimental evaluation

V II.G .l Quest Synthetic Data Generator

We first present experimental results using a synthetic d a ta  generator

that is a modification of the IBM Quest Synthetic Data Generation Code for

classification (Quest) [75]. Quest randomly generates examples for a person data 

set in which each person has the nine attributes described below.

•  Salary: uniformly distributed between 20000 and 150000.

•  Commission: if Salary  > 75000, Commission =  0, else uniformly distributed 

between 10000 and 75000.

•  Age: uniformly chosen from 60 integer values (20 to 80).

•  Education: uniformly chosen from 4 integer values.

•  CarMake: uniformly chosen from 20 integer values.

•  ZipCode: uniformly chosen from 9 integer values.

•  HouseValue: uniformly distributed from 50000 k to 150000 k, where 0 <  k < 

9 and depends on the ZipCode.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



130

• YearsOwned: uniformly distributed from 1 to 30.

• Loan: uniformly distributed between 0 and 500000.

In the original Quest generation code, there are a series of classification 

functions of increasing complexity that used the above attributes to  classify people 

into different groups. After determining the values of different attributes of an 

example and assigning it a group label according to the classification function, the 

values for non-categorical attributes are perturbed. If the value of an attribute A 

for an example x  is v and the range of values of A is a, then the value of A  for x  

after perturbation becomes v + r * a , where r is a uniform random variable between 

-0.5 and +0.5.

We modified Quest to include both action generation functions and a 

reward generation functions. These are used in policy mining (instead of the 

classification functions) to generate examples of the form (x , y , r ), where a: is a 

person described by the attributes above, y is an action taken for that person 

(such as mailing a particular catalog) and r  is the reward received after action y 

is taken (such as the amount purchased from the catalog).

The action generation function corresponds to a training policy. Given 

an example, it determines what action will be taken for that example. We use 

two different action generation functions that were created based on classification 

functions already implemented in Quest. These are shown in Table VII.2.

Given an example x  and the action y taken for that example, the reward 

generation function determines a reward for executing action y w ith person x. We 

use two different reward generation functions, which are shown in Table VII.3.

The advantage of using a synthetic data generator is th a t we can evaluate 

any policy by generating the rewards for each possible action, which is not possible 

with real data. In the real-world, we cannot “reset” customers to the same state 

and mail a different catalog as if the customer had not received the first one, but 

we can do this with Quest.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



131

A ctio n  F u n c tio n  1 A ctio n  F u n c tio n  2

i f  (Age < 40) i f  (Age < 40)
i f  (50000 <  S alary  < 100000) probA ctionl = 0.2;

probA ctionl = 0.3; e ls e
e lse i f  (40 < Age < 60)

probA ctionl = 0.7; probA ctionl = 0.8;
e lse e ls e
i f  (40 < Age < 60) probA ctionl = 0.2;

i f  (75000 < S alary  < 125000)
probA ctionl = 0.1; i f  (probA ctionl > randO )

e lse a c tio n = l;
probA ctionl = 0.9; e ls e

e lse action=0;
i f  (25000 < S alary  < 75000)

probA ctionl = 0.4;
e lse

probA ctionl = 0.6;

i f  (probA ctionl > ran d O )
a c tio n = l;

e lse
action=0;

Table VII.2: Action generation functions. The function rand () generates a random 

number drawn uniformly from the interval [0,1].
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R ew ard  F u n c tio n  1 R ew ard  F u n c tio n  2

i f  (YearsOwned < 20) i f  (Age < 40)
eq u ity  = 0; i f  (Education € {0,1})

e lse i f  (ac tio n  =  0)
eq u ity  = 0.1*YearsQwned -  2; reward = ran d n (100,20); 

e lse
d isposab le  = 2*Salary/3 reward = ran d n (80,20);

-  Loan/5 e lse
+ 5000*Education i f  (ac tio n  =  0)
+ eq u ity /5 reward = ran d n (5 0 ,2 0 );
-  10000; e lse

reward = randn(120 ,20);
i f  (d isp o sab le  > 0) e lse

i f  (a c tio n  = 0) i f  (40 < Age < 60)
reward = randn(250,20); i f  (Education € { 1 ,2 ,3 } )

e lse i f  (ac tio n  =  0)
reward = randn(200,20); reward = ran d n (100,20);

e lse e lse
i f  (a c tio n  = 0) reward = ran d n (150,20);

reward = randn(80,20); e lse
e lse i f  (ac tio n  =  0)

reward = randn(150,20); reward = randn(120 ,20 ); 
e lse

reward = ran d n (140,20);
e lse

i f  (Education E {2,3,4}) 
i f  (ac tio n  =  0)

reward = ran d n (90,20); 
e lse

reward = ran d n (70,20);
e lse

i f  (ac tio n  =  0) 
reward = ran d n (50,20); 

e lse
reward = ran d n (70,20);

Table VII.3: Reward generation functions. The function randn(/x, cr) generates a 

random number drawn from a Gaussian with mean fi and standard deviation a.
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We applied the One-Step RL with traces algorithm VII. 1 to three training 

sets of 50000 examples generated using three settings of the action and reward func­

tions (Actionl-Rewardl, Actionl-Reward2 and Action2-Reward2). For obtaining 

the estimates of P(y\x) we use naive Bayes followed by the PAV calibration algo­

rithm (see Chapter V). For learning the policy, we use three methods:

• weighted Naive Bayes,

•  costing with Naive Bayes as base learner,

• costing with C4.5 as base learner.

For evaluating the policies, we use the simulator to generate three test 

sets of 50000 examples. We evaluate the policies using three methods:

•  T rue: use the generator to obtain reward values for the two actions for each 

test example and average the rewards for the actions chosen by the policy 

(unbiased but unrealistic in a data mining setting).

•  B iased: select only the test examples that agree with the policy and average 

the rewards for those examples.

•  C o rrec te d : select only the test examples that agree with the policy and 

use the bias correction method proposed in Section VII.E to calculate the 

expected reward of the policy (unbiased and realistic).

The probabilities P(y\x) necessary for the bias correction method are 

obtained by applying the model learned on the training set to the test examples.

Table VII.4 summarizes the results obtained. For comparison purposes, 

it also includes the true expected value of the training policy, the best possible 

policy and the worst possible policy.

In all cases, the one-step RL with traces algorithm improves upon the 

training policy. Furthermore, by comparing the two settings with the same reward 

function and different training policies, we see that the training policy does not
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Action Function 1 - Reward Function 1
Evaluation Method

Policy True Biased Corrected
worst possible 146.94 - -

best possible 206.31 - -

training policy 178.06 - -

weighted NB 192.74 180.74 191.86
costing NB 192.30 180.80 191.80
costing C.45 190.94 180.23 190.78

Action Function 1 - Reward Function 2
Evaluation Method

Policy True Biased Corrected
worst possible 73.87 - -

best possible 116.01 - -

training policy 102.99 - -

weighted NB 107.21 115.65 107.85
costing NB 107.06 115.53 107.76
costing C.45 112.45 120.30 112.56

Action Function 2 - Reward Function 2
Evaluation Method

Policy True Biased Corrected
worst possible 73.87 - -

best possible 116.01 - -

training policy 96.12 - -
weighted NB 107.08 112.20 108.50
costing NB 107.09 112.34 108.56
costing C.45 112.67 116.41 112.52

Table VII.4: Experimental results using Quest.
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a great influence on the final result. The different learning algorithms (weighted 

NB, costing NB and costing C4.5) in general led to policies that are equally good, 

except that costing C4.5 resulted in a better policy for the settings with Reward2.

Whereas using only the selected examples to evaluate the policy yields in­

correct estimates of the value of the policy, the evaluation using the bias correction 

method yields results that are very close to the true (and unrealistic) evaluation.
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