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Applications in counterterrorism and corporate competition have led to the development of new methods for the analysis of decision making

when there are intelligent opponents and uncertain outcomes. This field represents a combination of statistical risk analysis and game theory,

and is sometimes called adversarial risk analysis. In this article, we describe several formulations of adversarial risk problems, and provide a

framework that extends traditional risk analysis tools, such as influence diagrams and probabilistic reasoning, to adversarial problems. We

also discuss the research challenges that arise when dealing with these models, illustrate the ideas with examples from business, and point

out relevance to national defense.
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1. INTRODUCTION

Game theory has long been considered impractical for risk
management decision-making (Bier and Cox 2007). This
viewpoint has recently become less dogmatic because:

High-profile terrorist attacks have demanded significant
national investment in protective responses, and there is
public concern that not all of these investments are prudent
or effective (Parnell et al. 2008).
Key business sectors (especially finance, e-commerce, and
software) have become much more mathematically sophis-
ticated, and are now using this expertise to shape corporate
strategy for auction bidding, timing of product release,
lobbying efforts, and other decisions (cf., McAfee and
McMillan 1996; Rothkopf 2007).
Regulatory legislation must balance competing interests (for
growth, environmental impact, safety) in a way that is
credible and transparent (cf., Heyes 2000).
The on-going arms race in cybersecurity means that the
financial penalties for myopic protection are large and ran-
dom (Killourhy, Maxion, and Tan 2004).

These challenges cross many fields (Statistics, Economics,
Operations Research, Engineering, and so on) and are char-
acterized by the fact that there are two or more intelligent
opponents who make decisions for which the outcome is
uncertain. Collectively, we call this problem area adversarial
risk analysis (ARA).

Traditional statistical risk analysis grew in the context of
nuclear reactor safety, insurance, and other applications in
which loss was governed by chance (sometimes called Nature,
and described as a neutral opponent) rather than the malicious
(or self-interested) actions of intelligent actors. But in ARA
one needs to have some model for the decision-making of
all the participants. This model might be classically game-
theoretical, with (noncooperative) Nash equilibria as the core
concept (Myerson 1991) or it might be more psychological,
reflecting either a Kadane-Larkey formulation (1982) or
empirical studies of game behavior (Camerer 2003). Hausken

(2002) provided additional insights on combining risk analysis
and game theory.

Much of the new ARA literature involves counterterrorism.
Banks and Anderson (2006) analyzed strategies for a smallpox
attack by modeling the problem as a zero sum game with
random payoffs and solving the game through both minimax
and Bayesian approaches. Zhuang and Bier (2007) computed
best responses and Nash equilibria as a basis for allocating
resources against terrorism when the defender and attacker
have different multiattribute utility functions, in situations
of both simultaneous and sequential play. Brown, Carlyle,
Salmeron, and Wood (2006) presented bilevel (max-min, min-
max) and trilevel (min-max-min) optimization models for
defender-attacker, attacker-defender, and defender-attacker-
defender problems that may be framed as Stackelberg games.
Kardes and Hall (2005) argued for the use of robust stochastic
games to deal with counterterrorism. Paté-Cornell and Gui-
kema (2002) provided an asymmetric prescriptive/descriptive
approach in the light of modern negotiation analysis (cf., Raiffa
2002). A decision analysis viewpoint is adopted by, among
others, von Winterfeldt and O’Sullivan (2006), who used
decision trees to evaluate Man-Portable Air Defense Systems
countermeasures; Pinker (2007), who applied influence dia-
grams to assess the deployment of various short-term coun-
termeasures; and Parnell (2007), who used generic
multiobjective decision trees and influence diagrams to eval-
uate bioterrorist threats. There is also a rich literature in
political science regarding game theory and terrorism, though it
places little emphasis on risk analysis aspects (e.g., Siqueira
and Sandler 2006; Arce and Sandler 2007; Powell 2007).

This article focuses upon ARA in simple two-person con-
flicts, but we emphasize that the same basic ideas apply to
corporate competition, government regulation, and cyberse-
curity. Our purpose is to provide a unifying perspective on
ARA by discussing the current techniques, comparing their
features, and identifying open challenges.

Section 2 describes a framework for conventional risk anal-
ysis that is generalized to ARA in Section 3. Section 4 assesses
previous methodologies based on game theory, decision analy-
sis, and negotiation analysis. We then present a novel approach
that encompasses previous work and apply it to simple auction
situations. Section 7 concludes with some open questions in this
area of potential interest to the statistical community.
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2. A FRAMEWORK FOR RISK ANALYSIS

This section reviews a schematic framework that formalizes
standard risk analysis, assessment, and management methods
as in Haimes (2004) or Bedford and Cooke (2001), adapted
to the classic proposal of Kaplan and Garrick (1981). The
framework uses influence diagrams to structure the problems
—these are popular in the decision analysis and artificial
intelligence communities, and encompass both simultaneous
and sequential games (in which decision trees are also used).
For simplicity, we shall assume that losses can be monetized as
costs. All the participating agents are assumed to be expected
utility maximizers (cf., French and Rios Insua 2000). In this
context, risk analysis entails activities of risk assessment and
risk management as described later.

Figure 1 shows an influence diagram (cf., Pearl 2005) that
displays the simplest version of a nonadversarial risk man-
agement problem. An influence diagram is a directed acyclic
graph with three kinds of nodes: decision nodes, shown as
rectangles; uncertainty nodes, shown as ovals; and value nodes,
shown as hexagons. Arrows into a value or uncertainty node
indicate functional and probabilistic dependence, respectively.
Thus, the utility function at the value node depends on its
immediately preceding nodes and probabilities at a chance
node are conditional on the values of its direct predecessors.
Arrows into a decision node indicate that when the decision is
made, the values of its preceding nodes are known. Influence
diagrams display some of the same information that is shown in
a decision tree (cf., Singpurwalla 2006, Sec. 2.9), but they are
organized differently, show the utility function explicitly, and
take a higher-level view of the problem.

In Figure 1 the rectangle represents the set A of possible
decisions or actions, the oval represents the random costs
associated with the decisions, and the hexagon represents the
net consequences, or values, in terms of the decision maker’s
utility function. It corresponds to a problem in which an
organization has to make a decision a from a set A of choices.
The cost c that results from each decision is uncertain and is
modeled through the density p(c j a); this cost may reflect the
fact that the outcome for a particular decision is uncertain, or
that the cost associated with a particular outcome is uncertain,
or both. The utility u(c) of the cost is decreasing and typically
nonlinear; costs are bad, and catastrophic costs are dis-
proportionately bad. One seeks the decision that maximizes the
expected utility

c ¼ max
a2A

cðaÞ ¼
ð

uðcÞpðc j aÞdc

� �
: ð1Þ

In practice, the cost for a particular action is complex and
conditional on the outcome; it often includes fixed and random
summands. The organization will typically perform a risk
assessment to:

1. identify disruptive events E1, E2, . . ., Ek (these may be
assumed to be mutually exclusive);

2. assess their probabilities of occurrence, P(Ei j a) ¼ qi(a);
and,

3. assess the cost ci conditional on the occurrence of Ei and
decision a (these costs are typically random and the
assessment may be a distribution).

It is convenient to let E0 be the event that there are no dis-
ruptions, with probability q0(a). Figure 2 shows the influence
diagram that extends the previous formulation to include a risk
assessment that accounts for specific disruptive hazards and the
additional random costs these may entail.

Let q(a) be the vector of probabilities corresponding to
decision a and let pi(c j a) be the cost density under decision a
if event Ei occurs. Then, the density of the cost for decision a is
the mixture

Pk
i¼0 qiðaÞ piðc j aÞ. Once the risk assessment is

performed, the organization wants the maximum expected
utility decision, which is found by solving

cr ¼ max
a

crðaÞ ¼
Xk

i¼0

qiðaÞ
ð

uðcÞpiðc j aÞ dc

" #
: ð2Þ

In some cases, the probabilities qi(a) are themselves uncertain
(e.g., if one is combining elicited assessments from multiple
experts). In that case, one can describe that uncertainty through
a distribution g(q(a)) on the unit simplex S in IRkþ1 and solve

cr ¼ max
a

crðaÞ ¼
ð

S

gðqðaÞÞ
�

3
Xk

i¼0

qiðaÞ
ð

uðcÞpiðc j aÞ dc

 !
dqðaÞ

#
:

ð3Þ

Note that this maximizes the utility with respect to uncertainty
from two different sources—the randomness in the costs and
the imprecise knowledge about the disruption probabilities.

Consider the difference c – cr. This is nonnegative, as c

describes a decision problem that excludes costs associated
with disruptive events, whereas cr relies upon risk assessment
and is more realistic. To reduce this difference, organizations
often undertake a risk management strategy. Risk management
introduces an additional set of choices M, such as contingency
plans or insurance policies; these tend to lower the costs
associated with particular disruptions or lower the chance of

Figure 1. Basic influence diagram. Figure 2. Influence diagram with risk assessment.
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disruption or both. As an example of risk management in a
nonadversarial situation, imagine that an engineering company
is building a dam in a foreign country. The company considers
two possible designs, these being the decisions in A. But the
risk assessment indicates the possibilities of a national strike or
logistic delays in critical supplies. The company therefore
considers buying insurance (which would protect against the
costs associated with both hazards) or employing extranational
engineers (at more expense, but with less chance of striking) or
doing neither. These choices are elements in M.

In principle, one could take the cross product of the sets A
and M and then solve for cr over this extended set. But in
practice, it is often helpful for managers to keep these distinct.
The risk management solution remains the same,

cm ¼ max
ða;mÞ2A3M

crða; mÞ ð4Þ

where, in an obvious extension of previous notation,

crða;mÞ ¼
X

i qiða;mÞ
ð

uðcÞpiðc j a;mÞ dc:

As before, a slightly more complicated formula applies when
there is uncertainty in the qi(a, m) probabilities. Figure 3 shows
the influence diagram for a risk management problem.

Because risk management extends the set of choices, then
cm $ cr, but both are still less than c. The problem described
in (4) can be viewed as an example of a sequential decision
problem and could be represented as a decision tree; first one
picks the design, and then one picks a choice in M, with the
corresponding uncertainty nodes. In general, problems of this
kind require dynamic programming, because the decision at
each time period depends on the likely future outcomes, deeper
in the tree. But trees can be a problematic representation,
because the choice sets need not be discrete (as in our example)
but could be continuous (e.g., if the construction company can
choose among insurance policies with infinitely divisible pri-
ces). Clearly, additional complexity arises if there are many
levels of sequential investment, if one allocates risk manage-
ment resources according to a portfolio analysis that constrains
total expenses, and if there are multiattribute utility functions.

3. ADVERSARIAL RISKS: MODELING

We now consider the situation in which there are adversaries
whose actions affect each other’s risks. Assume that there are

just two opponents (Apollo and Daphne). Their decision
problems are structurally similar: both can take actions that
affect the costs of the other, and both seek to maximize their
expected utilities. The sets of actions for Apollo and Daphne
are, respectively, denoted by A and D; their utility functions
are uA(�) and uD(�); and their collection of probabilities about
outcomes are PA and PD.

In this kind of situation, Apollo and Daphne may have dif-
ferent utility functions and different probability assessments of
the costs. Each player knows their own utilities but the other’s
utilities and probability assessments may be unknown. A
simple example is a two-party auction; neither party knows
what utility the other puts upon the object of the bidding.
Furthermore, players may also be uncertain about their own
object valuation, as in procurement auctions in which bidders
are uncertain about their costs and, therefore, their benefits
associated with the execution of the auctioned project or
service. Similarly, a situation with different probability
assessments might arise in counterterrorism, where both parties
could have intelligence that leads to very different estimates for
the probability of successful attack under different Attacker/
Defender choices.

To illustrate these ideas in the context of a two-person pro-
curement auction for a construction contract, we extend the
traditional influence diagram in Figure 4 to show the inter-
action between the decisions of Apollo and Daphne in an
adversarial situation. Essentially, the presence of an adversary
changes the risk analysis probabilities from being conditioned
on one event (Nature’s actions) to being conditioned on two
events (Nature and the choices made by the opponent).

In this procurement example the roles are symmetric, as
indicated in the diagram, although in, say, a counterterrorism
situation, the diagram would probably be asymmetric. One of
the nodes is common (i.e., the node labeled ‘‘Hazard’’); it

Figure 3. Influence diagram with risk management. Figure 4. Symmetric adversarial risk influence diagram.
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reflects (e.g., the mutual chance of weather delays in a con-
struction project leading to additional costs). Other cost nodes
(i.e., ‘‘Cost’’ and ‘‘Extra Cost’’) are not common; these rep-
resent the random costs associated with Apollo’s and Daphne’s
respective firms, and could be very different. Similarly, the
utility functions are not common; a small firm has much more
at stake in a given bid than a large firm.

For the ARA case, the expected utilities of Apollo and
Daphne depend upon the actions of both. Specifically,
extending (1), the utility that Apollo expects from choosing
action a2A when Daphne makes decision d2D is

cAða; dÞ ¼
ð

uAðcÞpAðc j a; dÞdc;

where pA(c j a, d) 2 PA represents Apollo’s beliefs about the
distribution of his costs for the decision pair (a, d). As in (3),
Apollo can identify events E1, . . ., Ek that affect his costs and
include their impact explicitly:

cAða; dÞ ¼
ð

S

gAðqða; dÞÞ

3
X

i

qiða; dÞ
ð

uAðcÞpAðc j a; d;EiÞ dc

 !
dqða; dÞ;

ð5Þ
where gA(�), qA (a, d), pA(c j a, d, Ei) 2 PA. The expected utility
cD(a, d) for Daphne is analogous. In this framework, the key
remaining problem is to determine how Apollo and Daphne
make their decisions.

As written, this description of ARA applies to normal form
games, in which players make simultaneous decisions. But it
also applies to sequential (or ‘‘extensive form’’) games, such as
Stackelberg games in which the Leader and Follower alternate
their moves, or games in which agents act asynchronously. The
influence diagram representation encompasses all of these, but
alternating games are usually represented through decision
trees. The risk analysis must condition on the choices that have
already been made when calculating expected utilities. The tree
form is conceptually transparent, but often the tree of unmade
decisions that drives the risk calculation is elaborate, and
simplifying assumptions are needed. A special case of this
arose in Equation (4), where M was used to denote a set of
decisions that were made separately. Additionally, in realistic
applications there are usually more than two adversaries,
requiring an even more complex analysis.

4. GAME THEORY FOR ARA

The previous section emphasized the risk analysis aspect of
ARA. This section emphasizes the adversarial aspect, focusing
on specific solution concepts.

4.1 Nash Equilibria Analysis

The typical game theory approach to predict Apollo and
Daphne’s choice of actions is to find the Nash equilibria for
their expected utilities. This is a combination of choices such
that no unilateral deviation from the choice can improve a
player’s situation. Essentially, each player makes the choice
that helps them the most, while taking account of the fact that

the other will do the same. Thus, the best choice for Apollo
depends upon the action taken by Daphne, and conversely. The
typical result is that neither party gets the outcome they would
like, but they mutually avoid the worst results.

Under reasonable conditions at least one equilibrium exists,
but often there are many. Sometimes equilibrium is a pure
strategy, in which the choices of both players are determined;
but often an equilibrium corresponds to a ‘‘mixed strategy’’ in
which Apollo and Daphne choose among their available
actions with fixed, mutually known, probabilities. When the
sets A and D are finite, then the payoff table with choice a in
Apollo’s row and choice d in Daphne’s column has entry
(CA(a, d), CD(a, d)), the expected utilities for both. A sequence
of linear programming problems can be solved to eventually
find Nash equilibrium (Lemke and Howson 1964).

The simplest example is a two-person zero sum game. Sup-
pose Apollo and Daphne are playing a game in which Apollo has
two possible actions (A1 and A2), as does Daphne (D1 and D2).
For each pair of actions, there is a payoff; the payoff is the
amount that, say, Daphne wins, which equals the amount that
Apollo loses. This is shown in the following payoff table.

A1 A2

D1 a b
D2 c d

Suppose b > a > c. In that case, Daphne will choose D1 and
Apollo will choose A1. The (D1, A1) choice is a saddlepoint
solution, because Daphne cannot improve her outcome by
switching, nor can Apollo. The (D1, A2) choice is not a solution
because Apollo would be better off with (D1, A1); some thought
shows that each of the other possible choices is similarly
improvable for one or both players, and that the value of d is
irrelevant.

Now suppose that a $ d > b $ c. The payoff table has no
saddlepoint (i.e., there is no dominating strategy). In this case
the minimax theorem shows that the solution is a mixed
strategy, in which Daphne chooses D1 with probability (d – c)/
(a þ b – d – c) and Apollo chooses A1 with probability (d – b)/
(aþ b – d – c). This maximizes each of their expected gains (or
minimizes their expected losses) given that their opponent is
trying to do the same, and neither player can deviate from this
solution without lowering their expected return.

For this simple example, one can solve the game using
algebra. In more complicated tables, where players have more
than two choices, or in which there are more than two players,
linear programming is required. A particularly important case
is the nonzero sum game, in which each pair of actions has two
payoffs, one for Daphne and one for Apollo, and the gain/loss
for Daphne is not equal to the loss/gain for Apollo. In these
games it may be possible for both players to gain or both to
lose. Such problems are usually more realistic, but can be very
difficult to solve.

Zhuang and Bier (2007) modeled a nonzero sum game in
which a government must spend resources on countermeasures
against both terrorism and natural disasters. Generic utility
functions are assumed with appropriate risk aversion and
marginal return features. The terrorists aim at maximizing their
expected utility by choosing an optimal level of effort to devote
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to each target, whereas the government aims at maximizing its
expected utility by choosing an optimal level of defensive
investments for each target. No explicit resource constraints are
assumed for either party; these are implicit in the options
considered. For this set-up, Zhuang and Bier (2007) considered
two approaches, both under the assumption of common knowl-
edge. In the first model, the government and the terrorists
decide simultaneously and solve for a Nash equilibrium; that is,
they seek (a*, d*) such that

cAða�; d�Þ ¼ max
a2A

cAða; d�Þ and cDða�; d�Þ ¼ max
d2D

cDða�; dÞ:

The notation is as before; just consider the terrorists as the
Attacker with the same notation as for Apollo and the the
government as the Defender with the same notation as for
Daphne. For the second model, Zhuang and Bier (2007) con-
sidered a sequential game with first-mover advantage. Here the
Defender chooses a defensive investment and then the Attacker
selects an action after observing the defensive investments.
This is a special case of a Stackelberg game (Gibbons 1992)
and is sometimes called a ‘‘Defend-Attack’’ model. In this set-
up the concept of best response is especially relevant. The
Attacker solves

a*ðdÞ ¼ argmaxa2AcAða; dÞ;
where d is known. The Defender knows the kind of calculation
the Attacker will make and must solve

d* ¼ argmaxd2DcDðd; a*ðdÞÞ;
with a*(d) as previously. Bier, Oliveros, and Samuelson (2007)
applied this approach to a range of problems in public policy
decision-making.

ARA with alternating moves is also treated in Brown et al.
(2006) and Brown, Carlyle, and Wood (2008), who consider
not only Defend-Attack scenarios, but also Attack-Defend and
Defend-Attack-Defend cases. In the Defend-Attack-Defend
model, the Defender makes initial investments, some of which
may entail deploying resources for future use. The Attacker
observes these investments and chooses a response, and then
the Defender uses the deployed resources to recover after the
attack. These authors solve the corresponding nested opti-
mization problems, allowing:

incorporation of explicit resource constraints on the Attacker
and the Defender;
(implicit) calculation of the Nash equilibrium when the
payoff table contains performance measures such as the
mean, the median, or the 99th percentile of the Defender’s
distribution on the random cost.

The Defend-Attack-Defend model replaces the random
outcomes with the performance measure, and then uses uses
mathematical programming to solve the game theory problem:

d2
*ðd1; aÞ ¼ argmaxd22D2

cDðd1; a; d2Þ
a*ðd1Þ ¼ argmaxa2AcAðd1; a; d2

*ðd1; aÞÞ

d�1 ¼ argmaxd12D1
cDðd1; a

*ðd1Þ; d2
*ðd1; a*ðd1ÞÞÞ;

where D1 and D2 are the sets of decisions available to the
Defender at the initial and recovery phases, respectively. These
decision sets can incorporate cost constraints. There are scaling

issues as the complexity of the constraints grows and the sizes
of the decision sets increase.

A different approach is taken in Kardes (2005), who con-
sidered robust stochastic games. These involve dynamic
models in discrete time, using robustness to address the
uncertainty in expert probability assessments. This uncertainty
is related to robust Bayesian methods (cf., Rios Insua and
Ruggeri, 2000), in which rather than specifying distributions gA

and pA in (5) to find expected utilities, one puts constraints on
the set of distributions and calculates expected utilities for
worst-case distributions. These are then used in computing
Nash equilibria.

4.2 Expected Best Choice Analysis

The preceding methods handle the uncertainty in the risk
analysis by replacing the random cost with its expectation (or
sometimes the median cost, or the 99th percentile of a cost
distribution). This approach to uncertainty permits more scal-
able calculation and allows portfolio analysis to account for
resource constraints, but it is at best an approximation. Taking
expectations and computing Nash equilibria do not commute,
and this section treats methods that reverse the order in the
previous section. In general, one wants to make the decision
that has the best average outcome, rather than the best decision
for the average outcomes.

To address this issue, Banks and Anderson (2006) described
two approaches in the context of a counterbioterrorism sce-
nario in which there are three kinds of smallpox attacks and
four possible defenses, all pairs of which involve uncertain
costs/damages. The first step is a risk analysis that elicits
probabilities from experts to determine a joint distribution p(T)
for entries in the payoff table whose rows and columns repre-
sent the actions available to the adversaries. Then, in the first
approach, they:

1. generate many random payoff tables according to the
elicited distribution p(T); these payoff tables represent
random realizations of the unknown table that nature has
chosen for the game the opponents must play;

2. solve the Nash equilibrium problem for each table in the
sample, finding the best action for each opponent and the
corresponding payoffs; and

3. identify the action that has the best average payoff, thus
estimating the play that is the best expected value for the
unknown true payoff matrix.

Obviously, the entries in the payoff table T are unlikely to be
independent. The dependence structure is obtained from sub-
ject-matter experts during the risk analysis stage.

The second approach in Banks and Anderson (2006) is
similar to the first, except that after the risk analysis produces a
distribution on the payoff tables, the next step is to put a dis-
tribution on the actions of the opponent. This enables the
decision-maker to select the action that maximizes the expec-
ted payoff with respect to the prior on the adversary’s action. In
their counterterrorism example, this approach reflects the
belief that terrorists do not use classical game theory, and that
there is relevant intelligence information that makes some of their
choices more likely than others. This prior could incorporate
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expert judgment about the Attacker’s utility function, ration-
ality, and resources. This analysis is a Bayesian version of
game theory, as proposed in Kadane and Larkey (1982). It is
similar to the approach in Raiffa (1982); see Kadane (1993) for
historical background.

Broadly speaking, Bayesian approaches to game theory are
less conservative than classical game theory. The Nash equi-
librium (in a zero-sum game) assumes that the opponent
invariably chooses the action that most advantages them, given
their calculation of their opponent’s choice. This forces each
player to defend against the worst-case scenario, leading to
solutions that are typically expensive and often unrealistic. The
Bayesian approach allows the analyst to use subjective beliefs
about the constraints and goals of the opponents to better
forecast their decisions. Bayesian game theory can be
approached in several ways, but the common element is that
each party must mirror the decision-making process of the
other, placing distributions over the actions of their adversary
that reflect symmetric reasoning on the part of their opponent.

4.3 Decision Analysis

Some ARA methods avoid explicit Nash solution; instead
this gets built into probabilities about the actions of opponents.
The second approach in Banks and Anderson (2006) is one
example, but there are several others. These typically employ
decision trees or influence diagrams.

As an example, the Department of Homeland Security has
used a tree-based analysis for risk assessment in counter-
bioterrorism. That effort was strongly criticized by a National
Academies panel (cf., Parnell et al. 2008). That investigation
motivated Parnell (2007) to propose a more rigorous decision
tree approach that expresses uncertainty through probabilities
of terrorist choices. Similarly, Pinker (2007) and von Winter-
feldt and O’Sullivan (2006) used, respectively, influence dia-
grams and decision trees from the point of view of the
Defender, who somehow assesses probabilities for the
Attacker’s actions.

Paté-Cornell and Guikema (2002) addressed the problem of
assigning probabilities to terrorist decisions by using separate
influence diagrams, one for the Attacker and one for the
Defender. They use the influence diagram of the Attacker, with
probabilities and utilities of the Attacker from the point of view
of the Defender, to assess the expected utilities of the Attack-
er’s actions and to estimate the probabilities of these actions.
Specifically, the Defender estimates the Attacker’s perceived
expected utility of different attacks. These are then renormal-
ized as probabilities and multiplied by a ‘‘base rate’’ that is the
probability that each of the possible attacks is undertaken in a
unit time period. These then feed the Defender’s influence
diagram, enabling computation of the estimated optimal coun-
termeasures. However, from a game-theoretical perspective,
this approach seems flawed. The renormalization of expected
utilities is problematic (e.g., if it is equally easy to steal $5 or
$10, it seems unreasonable to say there is 1/3 chance that a
person will choose to steal the $5). Also, it is unclear how
to combine this approach with intelligence information or
resource constraints. And there is no explicit ‘‘mirroring’’ of
the thought processes of each adversary about the other, only a

one-sided assessment by the Defenders. This asymmetric pre-
scriptive/descriptive approach is in the spirit of Raiffa’s (2002)
approach to games.

The influence diagram in Figure 5 represents an example of
this decision theoretical approach for a Defender-Attacker
problem in which the Attacker chooses after observing the
Defender’s decision. We have converted the Attacker’s deci-
sion node to a chance node and (implicitly) removed the
Attacker’s other chance nodes, those not shared with the
Defender. Once we have assessed pDða j dÞ 2 PD, which are
the Defender’s beliefs about the Attacker’s response given the
Defender’s actions, we determine the Defender’s decision d*
that has the largest expected utility with respect to the uncer-
tainty in both a and the cost:

d* ¼ argmaxd2D
X
a2A

pDða j dÞ
ð

uDðcÞpDðc j a; dÞdc:

A sampling-based approach, as in Banks and Anderson (2006),
could be used to solve this. For complex applications one could
use augmented probability simulation, as in Bielza, Muller, and
Rios Insua (1999), or numerical integration. However, when
model uncertainty dominates, it seems faster and more robust
to use sampling procedures that automatically focus on the
high-probability events.

The main obstacle, as pointed out already in Kadane and
Larkey (1982), is the assessment of pD(a j d). Paté-Cornell and
Guikema (2002) suggested taking pD(a j d) } cA(a, d), so that
actions with larger expected utility to the Attacker have larger
probability of being selected. But this proposal does not take
proper account of the fact that the (idealized) Attacker is an
expected utility maximizer and thus would certainly choose the
optimal action a*(d) (a choice that could be divined by the
Defender, if the Defender knows the Attacker’s utilities and
risk analysis). This is why Harsanyi (1982) objected to the
decision theory approach as contrary to the spirit of game
theory, because the assessment of the adversaries’ actions
should be based on an analysis of their rational behavior. The
standard rebuttal is that Harsanyi assumes full and common
knowledge of the game by both players; the use of pD(a j d) is
the Defender’s way of expressing uncertainty about the utilities
and risk analysis of the Attacker. One could think of assessing
pD(a j d) by standard probability assessment methods (cf.,

Figure 5. Transformed adversarial risk influence diagram.
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O’Hagan et al. 2006), but we prefer methods that take account
of the game theoretical structure. Bier et al. (2007) provided
extended consideration of these issues.

4.4 A Critique of ARA

The ARA framework described in Section 4 accommodates
many different views of game theory. But game theory is an
unreliable guide to human behavior (Camerer 2003) and, until
recently, an unpopular basis for policy decisions (Bier and Cox
2007). This section reviews some main concerns. See also
Rothkopf (2007) for a related discussion concerning the role of
game theory and decision analysis in auctions.

First, most versions of game theory assume that the oppo-
nents not only know their own payoffs, preferences, beliefs,
and possible actions, but also those of their opponent. More-
over, when there is uncertainty in the game, it is assumed that
players have common probabilities over the uncertain varia-
bles. This strong common knowledge assumption allows a
symmetric joint normative analysis in which players try to
maximize their expected utilities and expect the other players
to do the same, and therefore their decisions can be anticipated.
It leads to Nash equilibrium concepts in static games (in which
both opponents choose their actions simultaneously) and
backward induction solutions in dynamic ones (in which the
decisions of the opponents alternate in time, or occur on more
complicated schedules). However, in real life, players do not
typically have full knowledge of their opponent’s objectives,
beliefs, and possible moves, and this problem is aggravated
when participants try to conceal information, as would occur in
terrorism or business (cf., Bier et al. 2007).

From a policy standpoint, game theory methods can lead to
social dilemmas. Heal and Kunreuther (2006) studied the
implementation of security measures in interconnected net-
works (e.g., baggage screening for airline passengers). In their
example, security increases with investments in risk reduction
by the network members. However, each member is better off
if he defects but the others contribute. A defector contributes
nothing but enjoys the benefits of investments by the other
network members, so defection is the selfish optimal strategy.
However, if everyone defects, the result is worse for each
player than if they were all to cooperate. For this reason, third
party regulators are needed to impose mechanisms to ensure
security investments. But creating such mechanisms is diffi-
cult; in complex games there may be multiple Nash equilibria,
and the regulators should expect unintended outcomes.

Classical noncooperative game theory assumes that opponents
do not communicate. But in adversarial situations, communi-
cation allows players to acquire common knowledge and influ-
ence the views of the opponent. Communication in policy
applications can expand the set of actions and reduce the chance
of socially inferior equilibria. On the other hand, communication
among corporations allows collusion with competitors for
mutual benefit, even when the market is designed to promote
competition. There are games in which a player is better off
without communication, see Raiffa (2002) (e.g., if an Attacker
can choose an action that hurts himself but hurts the opponent
more, then the Defender is vulnerable to threats). Communi-
cating threats and bluffs can leverage disproportionate invest-

ment in protective strategies by the Defender (an issue that arises
in connection with the U.S. response to Al-Qaeda).

Despite these problems, leaders must have good tools to
manage risks. ARA needs to advise a player on the best stra-
tegic decision given knowledge and beliefs about how their
opponents will behave. This information about the opponent’s
objectives is based on expert knowledge and past behavior.
Probability is used to represent uncertainty about adversarial
thinking, but the elicitation should rest on a game-theory view
that models the opponent’s analysis.

5. A UNIFIED BAYESIAN FRAMEWORK FOR ARA

This section proposes an analysis that reflects both the ele-
ments of ARA and the issues raised in the preceding critique.
Our objective here is to provide a unified framework for
analysis aimed at prescribing advice to one of the participants.
The key issue in our framework is the assessment of the
probabilities of adversaries’ actions under the assumption that
adversaries are expected utility maximizers. Thus, the proba-
bilities on the adversary’s possible actions stem from our
uncertainty about the adversary’s decision problem.

5.1 The Game-Theoretical Analysis

We describe first the game-theoretical approach to ARA,
through two simple cases. The first one is a simultaneous-move
game in which Apollo and Daphne each have just two options,
respectively A ¼ {a1, a2} and D ¼ {d1, d2} and the only
uncertainty is a binary outcome S (say, success or failure for
Apollo). The utility functions over the costs are uA(cA) and
uD(cD), with costs dependent on actions of both parties. This
problem can be represented by a coupled influence diagram for
Apollo and Daphne jointly, and also as a decision tree, both
shown in Figure 6.

Solving this problem requires probability assessments over
the costs, conditional on (a, d, S); and about S, conditional on
(a, d). Apollo and Daphne may have different assessments: for
example, for success, these are pA(S¼ 1 j a, d) and pD(S¼ 1 j a,
d), respectively. For Apollo, the expected utility obtained with
(a, d) is

cAða; dÞ ¼ pAðS ¼ 0 j a; dÞ
ð

uAðcAÞpAðcA j a; d; S ¼ 0ÞdcA

ð6Þ
þ pAðS ¼ 1 j a; dÞ

ð
uAðcAÞpAðcA j a; d; S ¼ 1ÞdcA

and symmetrically for Daphne. The Nash equilibrium solution
(a*, d*) satisfies

cAða*; d*Þ $ cAða; d*Þ 8a 2 A and CDða*; d*Þ
$ CDða*; dÞ; 8d 2 D

and this may require randomized strategies.
The second case is a sequential decision game, say a Defend-

Attack situation, in which Daphne chooses a defense in D and
then Apollo, having observed the defense, chooses an attack in
A. The consequences for both players depend on the success of
his attack. The new influence diagram adds an arc to show that
Daphne’s choice is observed by Apollo, and the decision tree

Rios Insua, Rios, and Banks: Adversarial Risk Analysis 847

D
ow

nl
oa

de
d 

by
 [

St
on

y 
B

ro
ok

 U
ni

ve
rs

ity
] 

at
 1

0:
21

 2
3 

O
ct

ob
er

 2
01

4 



also reflects this sequencing, as shown in Figure 7. The solution
does not require Apollo to know Daphne’s probabilities and
utilities because he observes Daphne’s actions, but Daphne
needs to model Apollo’s. The expected utilities of the players at
node S in Figure 7 are computed as in (6) and Apollo’s best
attack for each of Daphne’s defenses is

a*ðdÞ ¼ argmaxa2AcAða; dÞ: ð7Þ
Knowing this, Daphne’s best defense is

d* ¼ argmaxd2DcDða�ðdÞ; dÞ:
The solution (a*(d*),d*) is a Nash equilibrium. Daphne has an
advantage; she is the first to move and, ceteris paribus, has
larger expected utility than in a simultaneous game—if she can
accurately model Apollo’s pA, uA, and pA. Bier et al. (2007)
discussed this in detail, pointing out that sometimes disclosing
information about one’s defenses against terrorism can have
deterrent effects.

5.2 The Bayesian Analysis

We now weaken the common knowledge assumptions for the
sequential decision game. (In Section 6 we shall also weaken it
for simultaneous games, using the example of an auction.)
Suppose Daphne does not know (pA, uA, pA). Daphne’s influ-
ence diagram, in Figure 8, no longer has the hexagonal value
node with Apollo’s information. And her decision tree denotes
uncertainty about Apollo’s attack by replacing A with �A

To solve this game, Daphne needs more than pD(S j a, d),
pD(cD j a, d, S) and uD(cD). She also needs pD(a j d), which is
her assessment of the probability that Apollo will choose attack
a after observing that Daphne has chosen defense d. To find

pD(a j d), she must estimate Apollo’s utility function and his
probabilities about both success S, conditional on (a, d), and the
associated costs cA, conditional on (a, d, S), and consequently
compute the required probability. Eliciting these assessments
requires Daphne to analyze the problem from Apollo’s per-
spective, and this is one of the most difficult aspects in the
Bayesian approach of ARA, as we describe.

First, Daphne must put herself in Apollo’s shoes, and mirror
his decision problem. Figure 9 represents Apollo’s problem (as
seen by Daphne). Daphne must analyze Apollo’s problem
taking into account that he is an expected utility maximizer.
Thus, she will use all the information and judgment that she can
about Apollo’s utilities and probabilities. Instead of using point
estimates for pA, pA, and uA to find Apollo’s optimal decision
a*(d) as in (7), Daphne’s uncertainty about Apollo’s decision
should derive from her uncertainty about Apollo’s (pA, pA, uA).
Specifically, a Bayesian strategy for expressing this uncertainty
puts a distribution F over (pA, pA, uA), inducing a distribution
on Apollo’s expected utility cA(a, d) defined in (6). Thus,
assuming Apollo is rational, Daphne finds

pDða j dÞ ¼ IPF ½a ¼ argmaxx2ACAðx; dÞ�
where

CAða; dÞ ¼ PAðS ¼ 0 j a; dÞ
ð

UAðcAÞPAðcA j a; d; S ¼ 0ÞdcA

ð8Þ
þ PAðS ¼ 1 j a; dÞ

ð
UAðcAÞPAðcA j a; d; S ¼ 1ÞdcA

Figure 7. The two-player sequential decision game.
Figure 6. The two player simultaneous decision game.
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for (PA, PA, UA) ; F. She can use Monte Carlo simulation to
approximate pD(a j d) by drawing n samples pi

A; p
i
A; u

i
A

� �� �n

i¼1
from F and setting

pDða j dÞ �
#fa ¼ argmaxx2A ci

Aðx; dÞg
n

: ð9Þ

Once Daphne has completed these assessments, she can solve
the problem. Her expected utilities at node �S in Figure 8 are

cDða; dÞ ¼ pDðS ¼ 0 j a; dÞ
ð

uDðcDÞpDðcD j a; d; S ¼ 0ÞdcD

þ pDðS ¼ 1 j a; dÞ
ð

uDðcDÞpDðcD j a; d; S ¼ 1ÞdcD:

Working up the tree, her estimated expected utilities at node�A
are

cDðdÞ ¼ cD a1; dð ÞpD a1 j dð Þ þ cD a2; dð ÞpD a2 j dð Þ:
Finally, her optimal decision is d� ¼ argmaxd2D cDðdÞ:

We summarize the previous discussion with the following
procedure to find a recommendation for Daphne in the Defend-
Attack model.

1. Assess uD, pD, pD, from Daphne.
2. Assess F ¼ (UA, PA, PA), describing Daphne’s uncer-

tainty about uA, pA, pA.
3. For each d, simulate to assess pD(a j d) as follows:

(a) generate (ui
A, pi

A, pi
A) ; F, i ¼ 1, . . . , n

(b) solve a�i ðdÞ ¼ argmaxa2A ci
Aða; dÞ

(c) approximate p̂Dða j dÞ ¼ #fa ¼ a�i ðdÞg=n
1. solve Daphne’s problem

d* ¼ argmaxd2D cDða1; dÞ p̂Dða1 j dÞ þ cDða2; dÞp̂Dða2 j dÞ:

Note that, in terms of classic game theory, the solution d* for
the sequential game need not correspond to a Nash equilibrium.
For example, assume there is a third party who knows Daphne’s
true (pD, pD, uD) and her beliefs F about Apollo’s utilities and
probabilities, as well as knowing Apollo’s true (pA, pA, uA) and
his beliefs G about Daphne. That party would then be able to
predict the game, identifying the decisions chosen by each
player. However, this omniscient prediction would not be the
Nash equilibrium computed based on the true (pD, pD, uD) and
(pA, pA, uA). Because the players lack full and common
knowledge, their choices are unlikely to coincide with those
made in the traditional game theory formulation.

6. BIDDING IN AUCTIONS

As a simple, realistic, and specific case of ARA, we consider
two applications in auctions. The first is nonadversarial but
introduces the basic ideas. The second describes the adversarial
case. Moreover, it illustrates the application of the ARA
framework to a simultaneous decision making problem in
which the assessment of probabilities on the adversary’s
actions needs to be more elaborate than in the sequential
decision game from Section 5.

Figure 8. The decision problem as seen by Daphne.

Figure 9. Daphne’s analysis of Apollo’s problem.
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6.1 One Sealed Bid, Unknown Reservation Price

Suppose Daphne is bidding for a certain object. She is the
only bidder, but the owner has set a secret reservation price y

below which the object will not be sold. Daphne does not know
y, and expresses her uncertainty through a distribution F(y).
Daphne’s utility function in money is uD(�) and her personal
valuation of the auctioned object is yD. Her choice set is D ¼
IRþ and her expected utility for a bid of d2D is uD(yD – d)
IP[d > V]. Thus, by standard decision theory (cf., Raiffa 2002),
Dahpne should maximize her expected utility by bidding d* ¼
argmaxd2DuD(yD–d)F(d).

6.2 Two Sealed Bids, the Highest Bid Wins

Suppose now that Daphne and Apollo are bidding against
each other. Each knows their own valuation of the auctioned
object but does not know the valuation of the other. Each
submits their bid in a sealed envelope without knowing the
other’s bid, and the winner is the highest bidder. This simul-
taneous decision-making situation is shown in the influence
diagram in Figure 10.

Harsanyi’s (1967) approached leads to the solution concept
of Bayes’-Nash equilibrium for games with incomplete infor-
mation, based on the assumption that players share a common
prior, which in this case requires that players disclose, inter
alia, their true beliefs about the other player’s valuation. Thus,
Daphne’s probabilistic assessment of Apollo’s valuation and
Apollo’s probabilistic assessment of Daphne’s valuation would
be common knowledge. Only under this assumption it is pos-
sible to compute the solution.

The following approach seems more realistic than Harsanyi’s.
We analyze the game from the perspective of Daphne, who
knows her value yD for the object and has a (secret) proba-
bilistic assessment of Apollo’s valuation yA ; VA. Daphne has
to choose her bid d. If this is bigger than Apollo’s bid a, she
wins, obtaining a utility uD(yD – d); if it is smaller (d < a), she
gets 0, as reflected in Figure 11(a). Therefore, as in Section 6.1,
the problem she must solve is

max
d

uDðyD� dÞIPDðd > A j dÞ:

The key issue is assessing Daphne’s probability IPD(d > A j d)
of winning for each of her possible bids. This assessment
would be based on her prediction about Apollo’s bid, repre-
sented by the probability distribution pD(a), as IPDðd > A j dÞ ¼Ð d

�‘
pDðaÞ da. She might assess pD(a) from historical data on

the behavior of bidders, as in Keefer, Beckley, and Back
(1991), or to use a noninformative distribution.

Another possibility is to assess pD(a) judgmentally, as in
Section 5.2, through an analysis of Apollo’s bidding decision
problem from Daphne’s perspective, shown in Figure 11(b). To
simplify the discussion assume that both Apollo and Daphne
are risk neutral in the range of interest, so that their utility
functions uD and uA are linear. Then, Daphne knows that
Apollo would solve maxa (yA – a) IPA(a > D j a).

Daphne needs to know Apollo’s solution, but she cannot
solve this since she does not know yA and IPA(a > D j a). But her
beliefs about yA are modeled through VA, and she can elicit her
subjective assessment of IPA(a > D j a) for Apollo’s distribution
pA on her bid d, written as IPAða>D j aÞ ¼

Ð a

�‘
pAðdÞ dd. This

assessment might incorporate information from data on
Daphne’s bids that, she thinks, are available to him, or expert
opinion, or both; or she could use a noninformative distribution
for pA(d). The detailed ARA analysis can help Daphne to elicitFigure 10. ID of the sealed bid auction problem.

Figure 11. Auction analysis from Daphne’s perspective. Influence
diagram (top) and decision tree (bottom) representations.
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pA(d) through the identification of variables that may affect
Apollo’s guess about her bid.

Daphne knows that, symmetrically, Apollo will analyze her
problem as in Figure 11(a) and solve

max
d

ðŷD � dÞ IPDðd > Â j dÞ;

where ŷD represents Apollo’s assessment of Daphne’s valu-
ation yD. Because Apollo’s estimate is unknown to Daphne in
her analysis of Apollo’s analysis of her problem, the ŷD is (to
Daphne) a random variable V̂D. Similarly, Daphne’s assess-
ment of Apollo’s bid, as elicited from Apollo’s perspective, is
the random variable Â. Thus, implicitly, the elicitation of D ;

pA(d) depends on V̂D and Â, both assessed by Daphne.
If Daphne goes one more step further in the ARA analysis,

she finds that, in turn, the assessment of Â depends on (1) V̂A,
the random variable that Daphne thinks Apollo uses to repre-
sent Daphne’s estimate of his valuation yA, and (2) the dis-
tribution of D̂, representing what Daphne thinks Apollo thinks
about what Daphne thinks Apollo thinks about her bid. To
avoid an infinite regress, she stops here and uses a heuristic
approach, assessing the distribution D ; pA(d) based on the
relevant V̂D and V̂A distributions that have been identified, but
disregarding the more complex model that describes a think-
ing-about-what-the-other-is-thinking-about kind of analysis.
That level of detail is difficult to handle and is not a realistic
reflection of how people think about auctions.

In this framework, we assume that Apollo expects Daphne to
make a bid d that is a function f ðŷD; ŷAÞ, but Daphne has some
uncertainty about it. We explore the case in which Apollo
expects Daphne to bid

minða ŷD;b ŷAÞ; ð10Þ
where a, b 2 (0, 1), ŷD is Apollo’s estimate of her valuation yD,
and ŷA is Daphne’s estimate of Apollo’s valuation yA, as
assessed by Apollo. The intuitive interpretation of Equation
(10) is that Daphne’s bidding behavior consists of submitting a
bid that takes into account (1) Daphne’s profit in terms of a
proportion (1 – a) of her valuation of the object ŷD; (2)
Apollo’s profit in terms of a proportion (1 – b) of his object
valuation ŷA; and (3) that she will not overbid Apollo’s bid.
Note that (1) and (2) are consistent with standard linear bidding
functions based on available information (cf., McAfee and
McMillan 1987 or Aliprantis and Chakrabarti 2000).

Daphne’s uncertainty about her assessment of the dis-
tributions over ða; ŷD;b; ŷAÞ, as well as her uncertainty about
the accuracy of the proposed heuristic for her analysis of
Apollo’s problem, could be described through a hierarchical
model with a new parameter s that models her certitude; for
example, by arguing that pAðd ja; ŷD;b; ŷA;sÞ has a normal
distribution with mean minða ŷD;b ŷAÞ and standard deviation
s, truncated on ½0; ŷD�, with ða; ŷD;b; ŷA;sÞ;PA. As s gets
larger, Daphne approaches a noninformative distribution for
pA(d).

We have reduced Daphne’s ARA about D with probability
density function pA(d) to the elicitation of the distribution
PA representing her uncertainty over the unknown parameters.
All these quantities can be obtained directly from Daphne
through her analysis of Apollo’s problem, yielding a specific
distribution for D. Note that Daphne’s distribution PA might

reflect her opinions about (e.g., how Apollo uses his valuation
yA of the object to assess his estimate of ŷD), and, therefore,
PA would depend upon VA. We illustrate this in the following
numerical example.

The Monte Carlo solution estimates IPD(d > A j d) by loop-
ing, for i ¼ 1, . . . , n iterations,

1. draw yi
A; VA;

2. draw vi ¼ ðai; ŷi
D;b

i; ŷi
A;s

iÞ ; PA j yi
A;

3. set Di jvi ; N min ai ŷi
D;b

i ŷi
A

� �
;si

� �
truncated on

½0; ŷi
D�, with pi

A di j við Þ its probability density function;
4. solve a�i ¼ argmaxaðyi

A � aÞ IPpi
A
ðDi<a j a;viÞ, where

IPpi
A
ðDi < a j a;viÞ ¼

ða
�‘

pi
Aðdi j viÞ ddi:

Then use IP̂Dðd > A� j dÞ ¼ #fd > a�i g = n as an approx-
imation to Daphne’s probability of winning conditional on her
bid d.

To sum up, Daphne’s analysis should be:

1. Find yD, her known valuation of the object.
2. Assess F¼ (VA, PA) describing Daphne’s uncertainties in

her analysis of Apollo’s problem.
3. Estimate (by Monte Carlo as before) IPD(d > A j d)

through IP̂Dðd > A� j dÞ:
4. Solve d� ¼ arg maxd ðyD � dÞ IP̂Dðd > A� j dÞ:

It is a bit more complicated if the utility functions must also
be assessed, but the strategy is straightforward.

Note that the elicitation for Daphne’s bid D could be sim-
plified by just asking Daphne for point estimates for the
quantities ða; ŷD;b; ŷA;sÞ; in which case we would not model
her certitude in her numerical assessments or in the accuracy of
(10) as a heuristic representation of bidding behavior. We
illustrate this approach with an example.

A Numerical Example. Assume that we are able to obtain
from Daphne the following subjective assessments:

yD ¼ 100: The value of the object for her.
yA ; VA: Daphne believes that Apollo’s object valuation
must be in a range between 60 (min) and 90 (max), and most
likely is 80 (mode). Based on this information, she fits a
triangular distribution.
ŷD ; V̂D: This is Apollo’s estimate of Daphne’s valuation
yD, as assessed by Daphne. Daphne believes that Apollo
thinks her valuation of the auctioned object is around 100
units higher than his (yA), with an error range between �5
and 5 units. She also believes that all values within this range
are equally likely, so V̂D j yA ¼ yA þ 100þ U where U is
uniform on [ �5, 5].
ŷA ; V̂A: This is Daphne’s estimate of yA as derived by
Apollo. Daphne believes that Apollo thinks that she believes
that his valuation of the object is 50 units lower than his (yA),
with an error range between �5 and 5 units. She also
believes that all values within this range are equally likely.
Thus V̂A j yA ¼ yA � 50þ V where V is uniform on [ �5, 5].
1–a and 1–b: These are profit value proportions used by
Apollo in his analysis of her bidding problem when he thinks
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about how she analyzes bidding behavior. Daphne’s sub-
jective belief is that these parameters are 1–a¼ 1–b¼ 0.3þ
W, for W uniform on [ �0.05, 0.05].
s ¼ 1: This measures Daphne’s confidence in the heuristic
model and second order parameter assessment.

To solve this problem, for each i ¼ 1, . . ., n, we simulate
yi

A; VA and vi; PA j yi
A; set Di j vi ¼ N min ai ŷi

D;b
i ŷi

A

� �
;

�
siÞ; truncated on ½0; ŷi

D�; and solve Apollo’s optimization
problem

a�i ¼ argmaxa2Aðyi
A � aÞ IPAða > Di j a;viÞ:

Figure 12(a) illustrates the optimization problem solved at one
of the iterations, including Apollo’s expected utility for each of
his possible bids along with his optimal bid a�i ¼ 23:4 at that
iteration. After n ¼ 1000 iterations we obtain a sample

a�i ; i ¼ 1; . . . ; 1000
� �

from A* ¼ argmaxa2A(VA – a)IPA(a > D
j a), which represents Daphne’s predictive distribution on
Apollo’s bid. Its probability density function pD(a) has been
estimated from the sample through a kernel density estimator
shown in Figure 12(b). Finally, we solve Daphne’s decision
problem

d� ¼ argmaxd2DðyD � dÞ IP̂Dðd > A� j dÞ;
where IP̂Dðd > A� j dÞ is the proportion of simulated a�i below a
given d : # d > a�i

� �
=1000:

Figure 12(c) plots the Monte Carlo estimate of Daphne’s
expected utility for each of her possible bids. Her maximum
expected utility bid is d* ¼ 30.6 with (estimated) expected
utility of 68.5.

Should Daphne be unable to provide the information needed
to assess a density pA(d) for D, or if she is not confident with
the heuristic avoidance of the infinite regression, then she could
use a noninformative prior to describe the distribution of D. We
now run the same numerical example as before but with s ¼
100, an approximation of the noninformative case. Figure 13
summarizes the results, parallel to the previous description.
We note that when pi

Aðdi j viÞ � Uð0; ŷi
DÞ at each iteration i.

Therefore, Apollo’s expected utility for each of his possible
bids a is ðyi

A � aÞ a = ŷi
D, corresponding to the parabola shown

in Figure 13(a). This result and, consequently, Daphne’s
maximum expected utility bid, are independent of V̂A, a and b.
This is appropriate when a noninformative distribution is used.

7. DISCUSSION

We have reviewed key approaches in adversarial risk anal-
ysis (ARA), a new research area that is becoming prominent in
the context of terrorism, but which also arises in bidding and
corporate competition. ARA entails both statistical problems in
risk analysis and a game-theoretical perspective in anticipating
the actions of one’s opponents. Additionally, we have described
a Bayesian approach to the ARA problem, drawing upon pre-
vious work by Kadane and Larkey (1982) and Raiffa (1982,
2002), and modifying influence diagrams to express decision
processes for multiple agents.

Real problems are extremely complex. For example, coun-
terterrorism involves thousands of possible decisions, and there
are large uncertainties associated with the goals and resources

Figure 12. Numerical example. (a) Solving Apollo’s optimization
problem at the ith iteration, (b) Kernel density estimation of pD(a),
and (c) Daphne’s expected utility function.
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of the terrorists. For this reason, we have focused on developing

a general formulation of the ARA problem and making com-

parisons among the proposed solution strategies, while keeping

attention on the scalability of the analyses.
This article focused on two-person games, but the discussion

directly extends to n-person games. We did not explicitly dis-
cuss cooperative games, but the formulation is general enough
so that all previous results apply. However, when there are n
players and cooperation is allowed, the number of possible
actions increases combinatorially, quickly posing computa-
tional challenges.

We briefly mentioned problems with resource constraints of
various kinds. This leads directly to the analysis of portfolios of
decisions (e.g., wise investment in counterterrorism requires
tuning investments in many different, partially interacting and
overlapping defensive measures). The models and solution
concepts would remain the same, but the implementation
would have to be very different. One cannot address the
problem by considering action sets that consist of every pos-
sible funding allocation.

A second kind of problem is that game theory solutions are
generally not decomposable. For example, if different federal
agencies each use game-theoretical thinking to make counter-
terrorism investments, they are extremely unlikely to select the
solutions that would result from a higher-level analysis that
took the interests of all of the agencies into account together.
Concretely, the Transportation Security Administration can
invest in training and personnel and protocols, but they cannot
invest in counterintelligence, but if the Central Intelligence
Agency (CIA) were to invest more effectively in counter-
intelligence, it might obviate the need for some TSA expen-
ditures. This article does not address decentralized decision
making, but it is often an important issue in practice and
deserves more attention.

A third issue is the timing of the moves of the opponents.
The article carefully treats several kinds of staging, but is not
exhaustive. We focus on simultaneous play, and sketch the
formulation of the Defend-Attack model. The strategy for
strictly alternating games is a simple extension, but the harder
and more realistic problem concerns asynchronous play, cou-
pled with the unexpected emergence of new information. This
would require dynamic programming methods, and is likely to
be intractable. Alternatively, the case of continual evolution
over time might be formulated in terms of systems of stochastic
differential equations (cf., Yeung and Petrosyan 2005). This
could include the use of negotiation analysis to enlarge the set
of actions and enable better outcomes for all; it also opens the
door to the study of misinformation. The issue of multi-
objective decision-making was not addressed, except insofar as
these goals can be tied together in a multiattribute utility
function.

ARA is a new branch of collaborative statistics. The
problems are numerous and the applications are important.
We believe that the Bayesian perspective has important con-
tributions to make in this arena, and that our formulation is
more realistic than the traditional Nash equilibrium analysis
in Operations Research or the ad hoc decisions that are
commonly made in practice by federal agencies and corporate
executives.

Figure 13. Noninformative case (s ¼ 100). (a) Solving Apollo’s
optimization problem at the ith iteration, (b) Kernel density estimation
of pD(a), and (c) Daphne’s expected utility function.
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DISCLAIMER

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.
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