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Abstract
Background and Aims: Environmental variables within vineyards are spatially correlated, impacting the economic
efficiency of cultural practices and accuracy of viticultural studies that utilise random sampling. This study aimed to
test the performance of non-random sampling protocols that account for known spatial structures (‘spatially explicit
protocols’) in reducing sampling requirements versus random sampling.
Methods and Results: Canopy microclimate data were collected across multiple sites/seasons/training systems.
Autocorrelation was found in all systems, with a periodicity generally corresponding to vine spacing. Three spatially
explicit sampling models were developed to optimise the balance between minimum sample sizes and maximum fit
to a known probability density function. A globally optimised explicit sampling (GOES) model, which performed
multivariate optimisation to determine best-case sampling locations for measuring fruit exposure, reduced fruit
cluster sample size requirements versus random sampling by up to 60%. Two stratified sampling protocols were
derived from GOES solutions. Spatially weighted template sampling (STS) reduced sampling requirements up to 24 %
when based on probabilistic panel weighting (PW), and up to 21% when preferentially selecting specific locations
within canopy architecture (AW).
Conclusions: GOES, PW STS and AW STS each reduced required sample size versus random sampling. Comparative
analyses suggested that optimal sampling strategies should simultaneously account for spatial variability at multiple
scales.
Significance of the Study: This study demonstrates that dynamically optimised sampling can decrease sample sizes
required by researchers and/or wineries.
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Introduction

Viticulturists collect quantitative information of vine character-
istics and fruit composition to understand and guide cultural
practices. However, vineyards are heterogeneous and many key
viticultural variables vary significantly throughout a domain
(e.g. a block). Vine-level spatial autocorrelation in microclimatic
canopy variables have been measured by enhanced point
quadrat analysis (EPQA; Meyers and Vanden Heuvel, 2008),
and these variables correlate with flavour compounds in
winegrapes (Meyers et al. 2009). Block-level spatial patterns in
vineyards have been identified and quantified for a variety of
variables, including canopy fill (Bramley and Hamilton 2004),
yield (Bramley and Hamilton 2004, Taylor et al. 2005) and vine
water status (Acevedo-Opazo et al. 2010).

To address inherent variability within a block or vineyard,
viticulturists typically pool together multiple berries or clusters
to improve accuracy, and test samples in replicate to evaluate
the precision of their measurements and facilitate statistical
comparisons. Both commercial growers and researchers aim to
minimise the number and size of field samples to reduce labour
and material costs while still achieving acceptable accuracy and
precision. Many sampling protocols have been suggested for
collecting fruit from vineyards, with the majority of approaches
involving random selection of clusters from either the whole
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vineyard or a vineyard subsection. Some sampling protocols
involve the use of spatial patterns to ensure that fruit is sampled
from all regions of an individual vine (Rankine et al. 1962), or
balanced across sides of a row (Iland et al. 2004).

From a statistical perspective, the ideal protocol should
result in a representative sample of the population, such that
variables are sampled with a distribution similar to that of the
population. The justification for random sampling is that vari-
ables contributing to the variance of a population are expected
to be mutually independent with respect to their location in
time and space, i.e. independent and identically-distributed
(i.i.d.) random variables. Under these circumstances, any arbi-
trary set of sampled field measurements is equivalent to any
other set (of equal size) in its ability to estimate population
parameters, hence the standard use of random sampling in
viticultural experiments.

The realisation that random variables are not i.i.d. for most
agricultural plots (Student 1938, Jeffreys 1939) has led to the
introduction of blocking and replication to compensate for
potential spatial patterns. In modern agricultural experiments,
this compensation often takes the form of randomised complete
block designs (RCBD) and their variants. For the most part,
these techniques are applied to experimental designs without
attempting to gain prior knowledge of existing field patterns
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(van Es et al. 2007), despite the demonstration that compensa-
tion for known systematic variability can improve precision
in hypothesis testing (Kirk etal. 1980, Tamura etal. 1988;
Panten et al. 2010). Considering that spatiotemporal dynamics
of canopy architecture create localised ecophysiological variabil-
ity (Xu et al. 2008), sampling methods should ensure that vari-
ability is captured. In viticultural literature, some authors have
suggested using systematic approaches to sample berries from
all parts of the cluster as opposed to randomly selecting berries
(Roessler and Amerine 1958, Rankine et al. 1962, Iland et al.
2004) to compensate for variability in ripeness, but vineyard
sampling protocols that account for known spatial heterogene-
ity (i.e. ‘spatially explicit’) have not been thoroughly explored.

An alternative to RCBD, the spatially balanced complete
block (SBCB) design, was developed to assist researchers in
minimising the effects of unknown block-level spatial trends
(van Es et al. 2007) through the use of static block-layout tem-
plates. Because they are designed to maintain spatial balance
among treatments in factorial experiments, SBCB designs are
superior to RCBD in their ability to protect against the adverse
effects of unknown field trends such as those reported in vine-
yards (Bramley and Hamilton 2004, Taylor et al. 2005; Meyers
and Vanden Heuvel 2009; Acevedo-Opazo etal. 2010). The
concept of spatially explicit design can be extended to field
sampling practices to maximise the fit of a sample distribution to
population statistics, such that a smaller spatially explicit sample
should achieve the same accuracy and precision as a larger
random sample, particularly when the population probability
density is known.

For example, a grower or researcher studying the effects of
cluster exposure on fruit composition may wish to perform
extensive chemical analyses on fruit sample. Ideally, sampling
protocols should minimise sample size, but also preserve the
population probability density function (PDF) to allow for non-
linear or discontinuous relationships among experimental vari-
ables. TDN (TDN = 1,1,6-trimethyl-1,2-dihydronaphthalene),
for example, has been shown to respond to cluster exposure in
Riesling only at levels above 20% of ambient light (Gerdes et al.
2002). Thus, a researcher studying physiological responses of
aroma compounds may be better served to preserve PDFs when
sampling while, similarly, a winemaker who wishes to control
chemical profiles within tight tolerances may be better served by
selectively harvesting towards particular PDF targets rather than
mean values.

In principle, a large sample size could be used to overcome
high variation in the population, but in practice, most sampling
protocols recommend a modest number of clusters out of prac-
tical considerations (e.g. logistics associated with sample trans-
port and sample preparation). If cluster light environment in a
vineyard has been previously characterised for a much larger
number of clusters, then this information can be used to define
a purposive model-based sampling method (as described by De
Gruijter et al. 2006) to ensure that any subsequent sample is
optimally representative of the population.

Stratified sampling, the process of balancing sampling fre-
quency among mutually exclusive strata, has been demon-
strated to improve sampling efficiency by reducing standard
error of samples (Lark and Marchant 2009). However, this
approach is generally used to estimate a population mean and
standard deviation and is not intended to preserve an existing,
potentially non-normal, probability density function. In the
example presented, estimation is not required because the
population is known. In this case, the sample can be fully
optimised without the uncertainty of estimation. As advances
in technology continue to improve density and precision of
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vineyard monitoring (e.g. three-dimensional canopy imagery),
parameter estimation may become less necessary while the
resulting increase spatial resolution will facilitate more precise
methods of characterisation and cultural control.

For our initial investigations into optimised spatially
explicit sampling protocols focused on microclimatic variables, as
canopy microclimate is widely reported to influence many
aspects of both grape and wine composition. Using natural varia-
tion in fruit cluster sunlight exposure in Riesling (Vitis vinifera L.)
and Vignoles (Vitis sp.) populations from the Finger Lakes region
of the state of New York, we determined the maximum potential
benefit in reducing sample size using spatially explicit globally
optimised (i.e. cluster-specific) sampling methods versus ran-
domised sampling methods. In the interest of convenient appli-
cation, we considered the use of univariate ‘sampling template’
strategies where clusters were preferentially sampled from spe-
cific regions within each panel, or from particular panels within
the vineyard. We then compared the performance of these
sampling template strategies against the global optimum and
against randomly sampled clusters.

Materials and methods

Vine material

Three commercial New York vineyards (Finger Lakes region,
east side of Seneca Lake) designated as domain ‘A’, ‘B” and ‘C’
were used for this study. From domain A, 66 Riesling vines (22
three-vine panels) trained to two-tier flatbow (as described by
Reynolds and Vanden Heuvel 2009) with vertical shoot posi-
tioning were selected for consistency (i.e. no missing vines or
obviously young replants) from an 11-row/77-panel subplot.
From domain B, 72 Scott Henry-trained (as described by Rey-
nolds and Vanden Heuvel 2009) Riesling vines (18 four-vine
panels) were selected for consistency from a 7-row/72-panel
subplot. From domain C, 96 Vignoles (Vitis sp.) vines (24
four-vine panels) trained to high-wire umbrella kniffen (as
described by Reynolds and Vanden Heuvel 2009) were selected
at random from an 8-row/96-panel subplot. Selected panels
from all domains were generally not contiguous. Vine spacing
was 280 cm (row) x 200 cm (vine), 280 cm x 200 cm and 280
by 180 cm for domains A, B and C, respectively. Data were
collected within each domain for two consecutive seasons (2008
and 2009 for domains A and B; 2007 and 2008 for domain C)
using the sample panels in consecutive seasons.

Canopy density and cluster exposure characterisation

EPQA and calibrated exposure mapping (CEM; Meyers and
Vanden Heuvel 2008) were performed at the onset of veraison
(18 July 2007 and 15 July 2008 for Vignoles; 25 August 2008
and 20 August 2009 for Riesling). A tape measure was used as
a guide for insertions, which were made at 20 cm intervals
along the length of the panels at the height of the fruiting wire,
resulting in 30, 39 and 35 insertions per panel at domains A, B
and C, respectively. A Decagon AccuPAR LP-80 photosyntheti-
cally active radiation sensor (Decagon Devices, Pullman, Wash-
ington, USA) was used to measure percent photon flux values
used in canopy calibration. The EPQA metrics occlusion layer
number (OLN), cluster exposure layer (CEL) and cluster expo-
sure flux availability (CEFA) were calculated as measures of
canopy biomass density, un-calibrated cluster exposure and
calibrated cluster exposure, respectively, using Microsoft Office
Excel version 12.0.6514.5000 SP2 (Microsoft Corporation,
Redmond, Washington, USA) and EPQA-CEM Tools version
1.6.2 (available on request from jmm533@cornell.edu). A sepa-
rate dataset was computed and maintained for each domain.
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Quantification of canopy autocorrelation

Autocorrelation in OLN, CEL and CEFA was calculated in 20 cm
lag distance increments along the length of each panel using
the autocorr function from the MATLAB add-on Econometrics
Toolbox version 1.1 (The Mathworks, Natick, Massachusetts,
USA). Results were averaged across all panels in each domain-
year combination and plotted to compare the autocorrelation
patterns between seasons and among the three tested EPQA
metrics. To quantify potential repetitive spatial patterns in
canopy architecture, Fourier series and signal periods were com-
puted for each EPQA metric, as a function of distance along
canopy row. Primary signal periods were computed for the
purpose of exploring the relationships among periodic cultural
practices (i.e. trunk spacing) and spatial structure. Secondary
signal periods were computed to explore the potential influence
of effects of structural features with periods either shorter or
longer than trunk spacing. Discrete Fourier transforms were
computed using MATLAB’s discrete Fourier transform function,
fit, and additionally processed via custom software to determine
signal periods.

Simulated sampling using real field data

A fruit cluster contact database for each domain-year combina-
tion was created by exporting the calculated EPQA-CEM values
as measured at veraison (i.e. OLN, CEL and CEFA) along with
location information (vineyard row number, panel number
and EPQA insertion position) to a text file containing a unique
record for each cluster. The six resulting cluster inventories
(three domains in each of 2 years) contained 706 and 819
clusters from 66 vines at domain A in years 2008 and 2009,
respectively; 1178 and 967 clusters from 72 vines at domain B in
years 2008 and 2009, respectively; and 591 and 490 clusters
from 96 vines at domain C in years 2007 and 2008, respectively.
These databases were imported into custom-written MATLAB
software (Version 7.10.0.499, The Mathworks; custom software
available on request from jmm533@cornell.edu) designed to
perform methods described below. The cluster inventory for
each domain assumed the role of that domain’s experimental
population for the remainder of the experiment.

Determination of arbitrary sample fitness
The term ‘fitness’, in this context, is borrowed from the field of
computer science and the optimisation methods employed. A
type of optimisation algorithm known as a genetic algorithm
(GA; Holland 1975) simulates a Darwinian evolutionary system.
As the simulation runs, potential solutions to the optimisation
problem are evaluated for their ‘fitness’ (i.e. a quantitative
measure of suitability), and the fittest solutions are allowed to
survive to influence the structure of downstream potential solu-
tions. For these simulations, a scoring system for sample fitness
was designed to preserve the PDE

A numerical measure of sample fitness was computed as
follows: (i) cluster exposure maps, defined as a set of CEFA
values binned in fixed 1% increments, from 0 to 100% sunlight
exposure, were calculated to establish a histogram representing
the discrete probability density of population cluster exposure
for each domain’s cluster inventory, P(CEFAp,,), and formatted
as a vector of 101 histogram bins; (ii) a similar vector represent-
ing the CEFA probability density of a particular sample, P(CE-
FAgampie), was computed for every sample generated during a
simulation; (iii) sample fitness was determined by subtracting
the P(CEFAsumpe) vector from the P(CEFAy,,) vector and com-
puting Euclidean length of the resulting vector as shown in
Equation 1.
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Determination of random sample fitness

A baseline model of random sample fitness was established
through simulation for the purpose of later comparison with
spatially explicit sample fitness scores. The baseline was deter-
mined by computing the fitness scores of simulated random
samples ranging in size from 1 to 100% of the population
equally spaced in 1% increments. To account for variation in
results, the simulation was repeated in 30 trials and the final
fitness score for each sample size was determined as the aver-
aged score across all trials.

Determination of globally optimal samples

Maximally fit samples (i.e. those sampling patterns determined
by simulation to have the best fitness score, and thus, be opti-
mally representative of the population) were calculated to
establish the best-case scenario of spatially explicit sampling
performance. These globally optimised explicit samples (GOES)
were computed by searching for the maximally fit combination
of clusters (i.e. the sample with the best sample fitness score)
from the known population while constrained only by a target
sample size (e.g. 5% of population) and without regard for
balancing the sample among individual vines or panels. No
assumptions were made regarding the consistency of spatial
variability within the block, and no spatial extrapolation was
performed (i.e. sampling of uncharacterised areas in the vine-
yard was not performed).

Because of the combinatorial complexity of the problem
space (e.g. exploring every sampling combination of 80 clusters
in a population of 800 would require computing the sample
fitness value of over 10'® sampling combinations), heuristic
methods were used to identify the optimal sampling locations
for each sample size. Two heuristic optimisation methods, Tabu
Search (TS; Glover 1990) and GA (Holland 1975) were imple-
mented to perform a minimisation of sample fitness score (with
0 as a perfect score) while searching the global sample space for
samples of the specified size. A preliminary comparison of algo-
rithm performance, using a subset of the experimental data,
indicated that TS and GA optimisations converged on function-
ally equivalent solutions, but that TS found its minimum for our
fitness function in about 10% of the computing time required
by GA. Thus, TS was chosen for use in this experiment and the
complete set of simulation trials, which analysed approximately
1.2 billion sample combinations, was computed in <48 hours
processing time using a personal workstation.

Our custom simulation software was used to identify the
optimal GOES solutions for samples ranging in size from 1 to
100% of the population equally spaced in 1% increments. The
simulation was repeated in 30 trials and the final fitness score
for each sample size was determined as the averaged score
across all trials. Cluster sampling location information from the
30 trials was analysed to determine the probability of each
cluster being included in the optimal sampling solution. Results
were plotted, one plot for each domain-year combination, to
illustrate the spatial patterns and their relationship to sample
size.

Spatially explicit sampling models

In the interest of developing simple field methods that could
more easily be used by growers and researchers, and illu-
minating the relationships between domain variability and
optimal sampling solutions, two strategies for spatially weighted
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Figure 1. Example of a panel-weighted (a), architecture-weighted (b) and globally optimised (c) sampling template generated from EPQA
dataset. The panel-weighted template indicates what percentage of the overall vineyard sample should be collected from this panel (i.e. 8.5%
of the total sample — other panels will have different weights and all weights add up to 100%). The architecture-weighted sampling template
indicates what percentage of the overall vineyard sample should be collected from this location along the length of each panel (applied
consistently to each panel). The locations are based on 20 cm increments and the weights add up to 100% for each panel. The globally
optimised template indicates precisely which clusters should be sampled from each panel (Y = sample, N = do not sample). Each panel has

a unique template.

template sampling (STS) were developed, which employed a
form of pseudo-random sampling that concentrated sampling
frequencies within specific panels or to specific panel locations
in quantities proportionate with the globally optimised prob-
ability densities. For each domain-year combination, GOES
solutions were analysed to determine the inter-panel and intra-
panel probability densities of optimal cluster sampling locations.
These densities were used to define two types of weighted
sampling templates for re-sampling the panels: a panel-
weighted (PW) template, which determined the number of clus-
ters to be harvested from each panel within the domain; and a
canopy architecture-weighted (AW) template that assigned a
weighted number of clusters to each 20 cm increment along the
length of a panel (Figure 1). More specifically, the sampling
strategy of PW templates directed sampling towards preferen-
tially weighted panels, which were then sampled at random
locations, while the sampling strategy of AW templates chose
panels randomly, which were then sampled at preferentially
weighted locations. For GOES solutions, all panels and clusters
were included in the sampling selection, although as a conse-
quence of the probabilistic weightings PW eliminated any panels
that failed to appear in the GOES solution and AW eliminated
any panel locations that failed to appear in the GOES solution.

© 2011 Australian Society of Viticulture and Oenology Inc.

PW templates consider variability as a function of vineyard
location while AW templates consider variability as a function of
vine organ distribution as influenced by vine spacing and train-
ing system. In PW sampling, each panel represented a stratum
and each stratum was randomly sampled at a relative frequency
corresponding to its appearance in the globally optimised solu-
tion. Similarly, in AW sampling each panel position (i.e. 20 cm
increment) defined a stratum and each stratum was randomly
sampled, among all of the panels in the dataset, at a relative
frequency corresponding to its appearance in the globally
optimised solution. Custom software simulated the template
application for samples ranging in size from 1 to 100% of the
population equally spaced in 1% increments. The simulation
was repeated in 30 trials and the final fitness score for each
sample size was determined as the averaged score across all
trials.

Efficiency of GOES and STS versus random sampling

Fitness values versus sample size (1 to 100% of population)
were determined for random, GOES and STS sampling protocols
as described in previous paragraphs. For each domain-year com-
bination, the resulting sample size versus fitness scores were
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Ten of the 18 domain-year-metric combinations analysed
revealed primary signal periods within 10 cm of the vine spacing
(domain A: OLN in 2008 and 2009, CEL in 2008 and 2009,
CEFA in 2009; domain B: CEL in 2009; domain C: OLN in 2007
and 2008, CEL in 2007 and 2008, CEFA in 2007). Four of the
remaining eight combinations revealed either a primary signal
that was reflective of double-vine spacing (domain A: OLN in
2008), half-vine spacing (domain C: CEFA in 2008) or a sec-
ondary signal period within 10 cm of the vine spacing (domain
B: OLN in 2008 and 2009).

Spatial structure and sampling efficiency in GOES solutions

The globally optimised and randomised cluster sampling strate-
gies over a range of sample sizes are shown in Figure 4 (domain
A, 2009 data is presented; other domain-year combinations not
shown). The optimal sampling strategy, as determined by GOES
simulations, resulted in preferential selection of specific clusters
at low sample sizes. The preferred clusters are associated with
the darker bands in Figure 4b, and are more representative of
the population distribution of CEFA. Conversely, non-preferred
clusters, which are poorly representative of the CEFA of the
population (i.e. outliers), appear as white bands in Figure 4b.
Optimal cluster sampling locations, as determined by GOES
simulations, indicated that certain cluster positions were
preferential across all sample sizes, domains, years and training
systems.

When compared to random samples of equal fitness scores,
GOES achieved a reduction in sample size versus random
sampling at all sample sizes in all domain-year combinations
(Figure 5), although the extent of the improvement varied
among treatments. For operationally practical sample sizes
below 20% of the population, GOES resulted in reductions
in required sample size ranging from 25 to 60% compared to
random sampling (Figure 5b).

Spatial structure and sampling efficiency in STS solutions
Similar to the GOES optimisation, the use of a panel-weighted

template strategy (PW STS) resulted in some panels being

© 2011 Australian Society of Viticulture and Oenology Inc.

Cluster Exposure Flux
Availability; CEL, Cluster
Exposure Layer.

10 15 20

-

09
= 08 §
E :
® 07 ©
2 £
Q
g 062
5 05 B
£ 100 S
o 04 2
N 80 4y £
2 5 03§
g | 8
3 40 022

20 ; 0.1

0 0

100 200 300 400 500 600 700 800
Cluster location (from EPQA data set)

Figure 4. Comparison of sampling patterns generated by random
sampling (a) and globally optimised spatially explicit sampling (b) at
domain A in 2009. Banded pattern in the optimised sample indicates
that some clusters (i.e. the dark bands) are preferred over others (i.e.
the light bands) when choosing a minimum sample that best repre-
sents the targeted population variables (i.e. the probability distribu-
tion of cluster exposure flux availability in the population). Each
cluster location on the x-axis corresponds to a specific cluster in an
enhanced point quadrat analysis dataset. Each row on the y-axis
represents a sample of size Y%.

preferably sampled over others in the optimal strategy, indicated
by the visual banding pattern in Figure 6b. Unlike the GOES
optimisation, a banding pattern is also visible when clusters are
selected at random because of variation in cluster count among
panels and thus cluster sampling frequencies (illustrated for
domain A 2009 in Figure 6a; other domains not shown). Similar
banding patterns appear for AW STS, reflecting higher cluster
count numbers at some positions along the panel than other
positions (Figure 7a). Visual banding in Figure 7b represents the
variation in sampling frequencies after being adjusted to the
optimal AW frequency.
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Figure 5. Reduction in sample size achieved through spatially explicit global optimisation of sampling. The sample sizes indicated on the
x-axis are Y% (i.e. the value on the y-axis) smaller than a statistically comparable random sample. 2TFB, two-tier flatbow; SH, Scott Henry;
U, Umbrella. Sample optimisation was performed for cluster exposure flux availability (CEFA). Panel A shows all tested sample sizes. Panel

B shows detail of sample sizes between 1% and 20% of population. Site = sampling domain.
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Figure 6. Sample density in random (a) and panel-weighted
sampling templates (b; PW STS). Optimised panel-weighted sam-
pling frequencies demonstrating the impact of globally optimised
sampling on the probability that a cluster is sampled from each panel
(data from domain A, 2009). Visual banding in the random sample
plot is caused by variability in cluster count among panels that
result in some panels naturally being sampled more than others.
Banding differences in the optimised samples are a result of weight-
ing adjustments introduced to improve sample fitness with respect
to population variables.

When compared to random samples of equal fitness scores,
PW STS achieved a reduction in sample size at random-sample
sizes below 95% of population in all domain-year combinations
(Figure 8) and reductions varied among treatments. For random
sample sizes below 20% of population, PW STS achieved sample
reductions ranging from 1 to 24% (plus one outlier of 47%)
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Figure 7. Sample density in random (a) and architecture-weighted
sampling templates (b; AW STS). Optimised vine-architecture-
weighted sampling frequencies demonstrating the impact of globally
optimised sampling on the probability that a cluster is sampled from
each position within a canopy panel (data from domain A, 2009).
Visual banding in the random sample plot is caused by variability in
cluster count among panel locations that result in some locations
being sampled more than others. Banding differences in the opti-
mised samples are a result of weighting adjustments introduced to
improve sample fitness with respect to population variables.

compared to random sampling. Similarly, AW STS achieved
reduction in sample size at random sample sizes below 65% of
population in all domain-year combinations (Figure 9) and
reductions varied among treatments. For random sample sizes
below 20% of population, AW STS achieved sample reductions
ranging from 2 to 21%.
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Discussion

Consistency of structural patterns

Autocorrelation among the reported EPQA metrics (Figure 3)
suggests that measures of biomass density (OLN) exhibit more
recognisable periodic spatial patterns than measures of cluster
exposure (CEFA, CEL), perhaps because of higher number of
leaf contacts versus cluster contacts per unit of row length, and
the efficacy of cultural practices (i.e. leaf pulling) intended to
improve exposure consistency. As expected, the vine spacing
(180 or 200 cm) was similar to either the primary or secondary
periods from Fourier analysis (Table 1) in nearly all treatments,
suggesting that vine spacing is a major factor in determining
within-panel spatial patterns in cluster exposure.

Limits of univariate sampling templates

Based on the presence of spatial patterns, and the potential for
decreasing sampling sizes by up to 60% (Figure 5), we expected
that an AW sampling template based on selecting clusters at
regular locations along the panel (AW STS) should be successful
in reducing cluster sample sizes because certain positions would
be more representative of the population than others. While
AW STS resulted in a reduction in sample size as compared to
random selection (up to 21%), the smaller reductions enabled
by AW STS compared to both PW STS (up to 24% reduction)
and GOES (up to 60% reduction) suggests that the localised
three-dimensional structure of a vine row, as influenced by vine
spacing, training system and vine morphology can only partially
explain the patterns.

Similarly, PW STS resulted in modest improvements as com-
pared to random sampling, indicating that some panels are more
representative of the population then other panels. However,
the additional sample size reductions achieved with GOES as
compared to PW STS suggests that those inter-panel patterns do
not, in isolation, explain the majority of the spatial structure
within the block. Moreover, the additive sample size reductions
achieved with both sampling templates (AW and PW) was still
less that the global optimum. This suggests that there are addi-
tional dimensions, some likely temporal in nature, that must be
simultaneously balanced to achieve a reduction in sample size
or maximise precision when measuring and describing cluster
exposure.

Seasonal stability of spatial patterns

The reduction in sample size requirements for all optimised
sampling methods versus random sampling varied between
seasons (Figure 5), as did autocorrelation in vineyard variables
and signal period (Table 1), suggesting that optimal sampling
patterns would differ season to season. While it seems likely that
temporal variability in seasonal weather patterns had an effect
on season-to-season variability, cultural variability in cane
pruning at all three domains may have been a more important
factor, particularly for the sampling template based on position
along a vine (AW STS). Cane positioning, with respect to trunk
location at the vineyard floor, was inconsistent both within a
vineyard row and between seasons (data not reported). Indi-
vidual vines in vineyards in the Finger Lakes region often have
several trunks that are trained without deliberate vertical posi-
tioning. Recording the location along the panel where a cane (or
cordon) meets the fruiting wire would allow for new AW sam-
pling templates based on position with respect to the trunk, and
potentially improve season-to-season portability of vineyard
maps and sampling solutions. In support of this work, EPQA-
CEM Tools (Meyers and Vanden Heuvel 2008; available from
first author upon request) has been updated to allow for the
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recording of this location, as designated by the letter ‘T, which
can be added to any EPQA insertion string to denote the loca-
tion where the cane/cordon meets the fruiting wire.

Economically scalable operational models

The results of the optimised sampling methods demonstrated
here suggest a substantial potential for improvement in sam-
pling efficiency, but the practicality of implementation must also
be considered. The optimum solution defined by GOES requires
locating individual clusters during sampling. While this type
of selective harvesting may be justifiable for a researcher who
wishes to limit sample size because of limited availability or
constraints associated with sample preparation, cluster-scale
GOES methods are not likely to translate to a commercial
vineyard, where sampling is often done by seasonal labour.
Ultimately, the increased application of robotic automation in
vineyards (Morris 2007, Cunha et al. 2010) may make GOES
approaches commercially viable, but the current state of com-
mercial grape production requires a more straightforward and
less labour-intensive approach towards improving sampling
protocols.

PW STS represents an example of an operationally custom-
ised approach to spatially explicit vineyard operation. Choosing
clusters for sampling at the panel-scale preserves some of the
spatial information computed for the best-case GOES solution
without the challenge and cost of locating specific clusters. Once
CEFA or another variable of interest (e.g. average estimated
berry temperature) is characterized, a commercial vineyard
could then use selective sampling of particular blocks to direct
vineyard operations and improve sampling efficiency. More-
over, by using a cluster-scale GOES model as an ideal target, the
spatial unit of work within vineyard operations can be scaled up
(i.e. moving performance towards logistical simplicity) or down
(i.e. moving performance towards the ‘best-case’ sampling sce-
nario) as current labour cost, equipment capability, resource
planning maturity and other economic factors dictate. In a
heavily monitored vineyard where canopy density information
is already available, the incremental cost of computing the pro-
tocols would be very low, making even a modest improvement
in sample quality economically justifiable. Architecture-based
sampling strategies (AW STS) also offered improvements over
random sampling, and would be simple to translate into verbal
instructions, e.g. ‘take clusters at 80, 140 and 200 cm from
the left edge of each panel’. However, the improvements were
more modest than those achieved with the block-level-based
sampling strategies.

Multivariate applications

Although the demonstrated cluster sampling optimisation
was based on a single ecophysiological variable (i.e. fruit cluster
exposure), heuristic optimisation methods naturally facilitate
optimisations across multiple operational objectives. Rather
than simply finding the best sampling strategy for representing
the population cluster exposure, a multi-objective optimisation
strategy could balance the influence of additional vineyard vari-
ables. Although collecting the necessary spatial vineyard values
for multiple variables requires an investment in labour and/or
technology, continued advances in vineyard sensing technology
are likely to improve the economics of data collection through
increases in sensor density, sampling frequency and variety of
measurable variables (Cunha etal. 2010). Although current
canopy imaging methods cannot produce fruit exposure maps
with a spatial resolution and sensitivity equal to manual
data collection, vineyard imagery will eventually surpass the
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precision of manual collection. As this shift occurs, spatial inter-
polation of vineyard variables will likely become decreasingly
necessary, while globally optimised data analysis methods will
become increasingly beneficial in maximising operational effi-
ciency, particularly when optimising around highly dimensional
decision models. While the increased application of traditional
data processing tools is an obvious response to increasingly
larger datasets, the adoption of more sophisticated information
processing and operational decision support methods such as
those presented here could fundamentally transform vineyard
management.

Conclusions

All tested spatially explicit models reduced required sample size
to achieve similar performance as random sampling. Reduction
in the required sample size was observed for both panel-
weighted (PW STS) and architecture weighted (AW STS) sam-
pling templates, although neither reduction was as great as the
best-case globally-optimised sample (GOES). Measurements of
cluster exposure have been shown to exhibit varying scales of
spatial patterns within a domain. Although some patterns can
be loosely predicted based on deliberate repetitive cultural prac-
tices (e.g. vine spacing or shoot positioning), some are based on
less visibly obvious field conditions (e.g. soil structure or slope).
Autocorrelation in canopy biomass and fruit exposure was
quantitatively linked to fixed vine spacing, but the smaller effi-
ciency gains associated with AW and PW sampling suggest that
optimal sampling strategies should simultaneously account for
spatial variability at multiple scales. However, even when the
underlying cause for the patterns is not definitively known, data
from measured spatial patterns can be used to improve opera-
tional efficiency by guiding vineyard activities (e.g. sampling or
selective harvesting) towards the locations that will most effec-
tively achieve a desired goal. Finally, the methods presented
here should be readily applicable to optimising sampling proto-
cols for other targeted variables, including multivariate models.
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