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Abstract

This review uses the empirical analysis of portfolio choice to illustrate

econometric issues that arise in decision problems. Subjective expected util-

ity (SEU) can provide normative guidance to an investor making a portfolio

choice. The investor, however, may have doubts on the specification of the

distribution and may seek a decision theory that is less sensitive to the spec-

ification. I consider three such theories: maxmin expected utility, variational

preferences (including multiplier and divergence preferences and the asso-

ciated constraint preferences), and smooth ambiguity preferences. I use a

simple two-period model to illustrate their application. Normative empiri-

cal work on portfolio choice is mainly in the SEU framework, and bringing

in ideas from robust decision theory may be fruitful.
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1. INTRODUCTION

I use the empirical analysis of portfolio choice to illustrate econometric issues that arise in deci-

sion problems. For example, Barberis (2000) considers an investor with power utility over terminal

wealth. There are two assets: Treasury bills and a stock index. The investor uses a vector autore-

gression to specify a likelihood function and also specifies a prior distribution on the parameters.

Barberis considers both a buy-and-hold strategy and dynamic rebalancing, using postwar data on

asset returns and the dividend yield. The framework is Bayesian decision theory, corresponding

to subjective expected utility (SEU) preferences, as in Ramsey [1931 (1926)], Savage (1954), and

Anscombe & Aumann (1963). I believe this is the correct normative framework for decision mak-

ing under uncertainty. Nevertheless, investors may have doubts about their model, that is, about

the predictive distribution for future returns (which may have been based on specifying a likeli-

hood function and a prior). Diaconis & Skyrms (2018, p. 43) note that Ramsey was aware that the

assumptions going into utility-probability representations are highly idealized, and they provide

the following quote from Ramsey’s [1931 (1926)] paper on “truth and probability”:

I have not worked out the mathematical logic of this in detail, because this would, I think, be rather
like working out to seven places of decimals a result only valid to two. My logic cannot be regarded as
giving more than the sort of way it might work.

It is difficult to specify a predictive distribution precisely.Hansen & Sargent (2001, 2008, 2015)

respond to this difficulty by using robust control theory, which they relate to studies of ambigu-

ity in decision theory, including work by Gilboa & Schmeidler (1989), Klibanoff et al. (2005),

Maccheroni et al. (2006a), and Strzalecki (2011). Hansen & Sargent achieve robustness by work-

ing with a neighborhood of the reference model and maximizing the minimum of expected utility

over that neighborhood.

The Ellsberg paradox has played a key role in developing alternatives to SEU in decision theory

(Ellsberg 1961). The following example is from Klibanoff et al. (2005).Table 1 shows four acts:

f, g, f ′, and g ′, with payoffs contingent on three (mutually exclusive and exhaustive) events: A, B,

and C. This could correspond to an urn with 30 balls of color A and 60 balls divided in some

unknown way between colors B and C. The decision maker (DM) is asked to rank f and g, as

well as f ′ and g ′. Savage’s axiom P2, the sure-thing principle, states that if two acts are equal

on a given event, then it should not matter (for ranking the acts in terms of preferences) what

they are equal to on that event. The payoffs to f and g are 0 if C occurs. The ranking should not

change if, instead, that payoff is 10. So if f is preferred to g, then f ′ should be preferred to g ′. I

believe this is the correct normative conclusion. Nevertheless, one can argue for f � g because

E[u( f )] = 1
3
u(10) + 2

3
u(0), whereas evaluating E[u(g)] requires assigning a probability to the event

B, when we are told only that it is between 0 and 2/3. Likewise, one can argue for g ′ � f ′ be-

cause E[u(g ′)] = 1
3
u(0) + 2

3
u(10), whereas evaluating E[u( f ′)] requires assigning a probability to

the event C, when we are told only that it is between 0 and 2/3.

Table 1 Ellsberg example

A B C

f 10 0 0

g 0 10 0

f ′ 10 0 10

g ′ 0 10 10
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One motivation for alternatives to SEU preferences is the possibility of modeling observed

behavior, where f � g and g ′ � f ′ are common choices. My interest in alternatives to SEU is,

however, normative, as my objective is a more robust decision theory that is less sensitive to model

specification.

Section 2 uses a simple two-period portfolio choice problem to present alternatives to SEU.

The applications of robust decision theory byHansen& Sargent aremainly in general equilibrium

problems in macro economics and asset pricing. An alternative application is to portfolio choice.

Section 3 discusses empirical work on normative portfolio choice, in which the investor takes the

distribution of asset prices as given. This work is mainly in the SEU framework, and I think that

bringing in ideas from the ambiguity literaturemay be fruitful. Section 4 considers how these ideas

could be applied to questions raised by Barberis (2000). Section 5 considers a normative critique

of ambiguity preferences. Section 6 concludes.

2. PORTFOLIO CHOICE: THEORY

This section develops basic concepts in a simple setting. We begin with a single prior Bayesian

decision analysis based on SEU preferences. Next we consider the multiple priors framework

of Gilboa & Schmeidler (1989) and the special case of a rectangular set of priors developed by

Epstein & Schneider (2003). Then we examine multiplier preferences, which are a special case

of the variational preferences discussed by Maccheroni et al. (2006a). Strzalecki (2011) provides

axioms that characterize multiplier preferences. In some cases, multiplier preferences have a re-

cursive form. Divergence preferences are an important class of variational preferences, and they

include multiplier preferences as a special case. We connect divergence preferences to constraint

preferences, which are a special case of the multiple priors framework. Then we apply the smooth

ambiguity preferences of Klibanoff et al. (2005).

2.1. Single Prior

Consider a two-period problem with t = 0, 1. Investment decisions are made at the beginning of

each period. Initial wealth is given:W0 = w0 > 0. Utility is of the power form over (random) final

wealth,

u(W2 ) =

{

W
1−γ

2
1−γ

if γ �= 1,

log(γ ) if γ = 1.

There is one riskless asset with a (gross) return rf. There is one risky asset; its gross return in

period t is Rt, which can take on two values h (high) and l (low). Assume that 0 < l < rf < h. The

investor treats R0 and R1 as exchangeable and specifies the following likelihood function and prior

distribution: Conditional on θ ,R0 and R1 are independent and identically distributed (i.i.d.), with

Pr(Rt = h | θ ) = θ , Pr(Rt = l | θ ) = 1 − θ (t = 0, 1).

The prior for θ is a beta distribution with parameters α and β; the density function is

Ŵ(α + β )

Ŵ(α)Ŵ(β )
θα−1(1 − θ )β−1.
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R0 = h

R0 = h, R1 = h

qh = α +  1
α + β + 1

R0 = h, R1 = l

q0 = α
α + β

R0 = l

R0 = l, R1 = h

ql =
α

α + β +  1

R0 = l, R1 = l

Figure 1

Probability tree for the predictive distribution in Equation 1 implied by (R0, R1), independent and identically
distributed conditional on θ , with a beta distribution for θ with parameters α and β.

The implied predictive distribution for (R0, R1) can be factored as follows:

Pr(R0 = h) = E(θ ) =
α

α + β
= q0, 1.

Pr(R1 = h |R0 = h) = E(θ |R0 = h) =
α + 1

α + β + 1
= qh, and

Pr(R1 = h |R0 = l ) = E(θ |R0 = l ) =
α

α + β + 1
= ql .

Let q denote this predictive distribution (see Figure 1).

Let a0 denote the fraction of wealth that is invested in the risky asset in period 0. In period 1,

the investor has observed R0; the portfolio weight on the risky asset equals a1(h) if R0 = h and

equals a1(l ) if R0 = l. Simplify notation by setting a ′ = (a0, a1(l ), a1(h)), and denote 0 ≤ a0, a1(l ),

a1(h) ≤ 1 by 0 ≤ a ≤ 1. The investor has the following problem:

max
0≤a≤1

Eq
[

u
(

w0[(R0 − rf )a0 + rf ][(R1 − rf )a1(R0 ) + rf ]
)]

. 2.

The investor’s preferences are recursive, and this problem can be solved by dynamic programming

(as in Kreps & Porteus 1979). Using iterated expectations, the objective function is

Eq
[

Eq
[

u
(

w0[(R0 − rf )a0 + rf ][(R1 − rf )a1(R0 ) + rf ]
)

|R0

]]

≤ Eq

[

max
0≤ x≤ 1

Eq
[

u
(

w0[(R0 − rf )a0 + rf ][(R1 − rf )x+ rf ]
)

|R0

]

]

.

Define the maximized value functions as follows:

Jh(w)= max
0≤x≤1

[

qhu
(

w[(h− rf )x+ rf ]
)

+ (1 − qh )u
(

w[(l − rf )x+ rf ]
)]

and

Jl (w)= max
0≤x≤1

[

qlu
(

w[(h− rf )x+ rf ]
)

+ (1 − ql )u
(

w[(l − rf )x+ rf ]
)]

.
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Then the optimal portfolio weight on the risky asset in period 0 is given by

a∗
0 = arg max

0≤x≤1
Eq

[

JR0

(

w0[(R0 − rf )x+ rf ]
)]

3.

= arg max
0≤x≤1

[

q0Jh
(

w0[(h− rf )x+ rf ]
)

+ (1 − q0 )Jl
(

w0[(l − rf )x+ rf ]
)]

.

2.2. Multiple Priors

Gilboa & Schmeidler (1989) use Anscombe & Aumann’s (1963) framework, which distinguishes

between a roulette lottery, in which probabilities are given, and a horse lottery, in which probabil-

ities are not given. In the Ellsberg problem inTable 1, a bet on A corresponds to a roulette lottery

with Pr(A) = 1/3, whereas a bet on B corresponds to a horse lottery, where we are given only that

0 ≤ Pr(B) ≤ 2/3. Let the set Z denote the possible consequences (outcomes, prizes), and let △(Z)

denote probability distributions on Z with finite support (roulette lotteries). An act (horse lottery,

payoff profile) f is a finite-valued mapping from the state space S to lotteries over consequences,

that is, f : S → △(Z); the set of all such acts is denoted F (△(Z)). Gilboa & Schmeidler (1989)

weaken the independence axiom of Anscombe & Aumann (1963) to certainty independence; that

is, for all f , g ∈ F (△(Z)) and h � △(Z), and for all α � (0, 1), f � g if and only if αf + (1 − α)h �

αg+ (1 − α)h. [The convex combination αf+ (1 − α)h is an act whose value at s� S is the proba-

bility mixture of roulette lotteries αf (s) + (1 − α)h.] Anscombe & Aumann’s independence axiom,

which leads to SEU, holds for all acts h ∈ F (△(Z)), not just for roulette lotteries h � △(Z).

With Gilboa & Schmeidler preferences, there is a closed, convex set C of prior distributions

on S. An investor with these preferences evaluates a portfolio plan by calculating expected utility

under each prior q ∈ C and then taking the minimum. So the investor’s problem is

max
0≤a≤1

min
q∈C

Eq
[

u
(

w0[(R0 − rf )a0 + rf ][(R1 − rf )a1(R0 ) + rf ]
)]

, 4.

that is, maxmin expected utility (MEU). For example, let qk be the predictive distribution for (R0,

R1) in Equation 1, with parameters αk and βk (k = 1, . . . , K). Then we can let C consist of all

probability mixtures:

C =

{

K
∑

k=1

ξkqk : ξk ≥ 0,
K

∑

k=1

ξk = 1

}

. 5.

The minimax theorem can be used to reverse the order of minimization and maximization in

Equation 4. Then, for a given q, the inner maximization is the investor’s problem with a single

prior, as in Equation 2. Let V(q) denote the maximized value. Then the least favorable prior is

q∗ = argmin
q∈C

V(q).

Chamberlain (2000b) develops an algorithm for solving this problem, based on a convex program.

Once the least favorable prior q∗ has been obtained, the investor solves the single prior problem

in Equation 2 using q∗.

2.2.1. Rectangular set of priors. I follow Knox (2003a,b) in using the two-period model to

examine the restrictions implied by Epstein & Schneider’s (2003) condition that the convex set C
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R0 = h

R0 = h, R1 = h

qh ∈ [qh, qh]

R0 = h, R1 = l

q0 ∈ [q0, q0]

R0 = l

R0 = l, R1 = h R0 = l, R1 = l

ql  ∈ [ql, ql]

Figure 2

Probability tree for the rectangular set of prior distributions for (R0, R1).

be rectangular. This condition takes the following form:

Pr(R0 = h)∈ [q0, q0],

Pr(R1 = h |R0 = h)∈ [qh, qh], and

Pr(R1 = h |R0 = l )∈ [ql , ql ].

The key here is that in forming the set of distributions C for (R0,R1), any marginal distribution for

R0 can be combined with any conditional distribution for R1 given R0. Therefore, select any three

values, q0 ∈ [q0, q0], qh ∈ [qh, qh], and ql ∈ [ql , ql ]. Then the following distribution is an element of

C (see Figure 2):

Pr(R0 = h,R1 = h)= q0qh,

Pr(R0 = h,R1 = l )= q0(1 − qh ),

Pr(R0 = l ,R1 = h)= (1 − q0 )ql , and

Pr(R0 = l ,R1 = l )= (1 − q0 )(1 − ql ).

When C is rectangular, we can use iterated expectations to break up the minimization over C

into three separate minimizations:

min
q0∈[q

0 ,q0]

[

q0 min
qh∈[q

h ,qh]

[

qhu

(

w0[(h− rf )a0 + rf ][(h− rf )a1(h) + rf ]

)

+ (1 − qh )u

(

w0[(h− rf )a0 + rf ][(l − rf )a1(h) + rf ]

)]

+ (1 − q0 ) min
ql∈[q

l ,ql ]

[

qlu

(

w0[(l − rf )a0 + rf ][(h− rf )a1(l ) + rf ]

)

+ (1 − ql )u

(

w0[(l − rf )a0 + rf ][(l − rf )a1(l ) + rf ]

)]]

.
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The preferences are recursive, and the investor’s problem can be solved by dynamic

programming:

Jh(w)= max
0≤x≤1

min
qh∈[q

h ,qh]

[

qhu
(

w[(h− rf )x+ rf ]
)

+ (1 − qh )u
(

w[(l − rf )x+ rf ]
)]

,

Jl (w)= max
0≤x≤1

min
ql∈[q

l ,ql ]

[

qlu
(

w[(h− rf )x+ rf ]
)

+ (1 − ql )u
(

w[(l − rf )x+ rf ]
)]

, and

J0(w0 )= max
0≤x≤1

min
q0∈[q

0 ,q0]

[

q0Jh
(

w0[(h− rf )x+ rf ]
)

+ (1 − q0 )Jl
(

w0[(l − rf )x+ rf ]
)]

.

Knox (2003a,b) stresses that in each of the three subproblems, the investor behaves as if there were

a separate asset whose return uncertainty is described by an interval of probabilities.

In our specification for C in Equation 5, we have imposed exchangeability: For each q ∈ C, we

have

Prq(R0 = h,R1 = l ) = Prq(R0 = l ,R1 = h).

This restriction is not compatible with a rectangular set of priors, and so we may not want to

impose the rectangularity restriction.

A related issue is discussed by Epstein & Schneider (2003) in the context of a dynamic, three-

color Ellsberg urn experiment in which there are 30 balls with color A and 60 balls with color B

or C (in that paper, A is red, B is blue, and C is green). A ball is drawn at random from the urn at

time 0. A bet on (1, 0, 1) pays off 1 util if the color is A or C, and (0, 1, 1) pays 1 util if the color

is B or C. At t = 1 the DM is told whether or not the color is C and is asked to choose between

(1, 0, 1) and (0, 1, 1). The state space is {A, B,C}. A prior distribution consists of three probabilities

(qA, qB, qC) that are nonnegative and sum to 1. Consider the set of priors

C =

{

q =

(

1

3
, qB,

2

3
− qB

)

:
1

6
≤ qB ≤

1

2

}

.

The DM can form a contingent plan. For example, they can choose (1, 0, 1) if C c (not C) and

choose x if C, where x could be (1, 0, 1) or (0, 1, 1). If C, then (1, 0, 1) and (0, 1, 1) both pay 1 util,

and so, for either choice of x, the value of the plan is

min
q∈C

[Prq(C
c )Prq(A |Cc ) · 1 + Prq(C) · 1] = min

q∈C
[Prq(A) + Prq(C)] =

1

2
.

Likewise, the plan that chooses (0, 1, 1) if C c has value

min
q∈C

[Prq(C
c )Prq(B |Cc ) · 1 + Prq(C) · 1] = min

q∈C
[Prq(B) + Prq(C)] =

2

3
.

Therefore (0, 1, 1) is chosen over (1, 0, 1).

This choice is often regarded as intuitive, but the set of priors is not rectangular. Epstein &

Schneider (2003) say that their modeling approach would suggest replacing C by the smallest
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rectangular set containing C, which they define as

Crect =

{(

1

3

1
3

+ q′
B

1
3

+ qB
, qB

1
3

+ q′
B

1
3

+ qB
,
2

3
− q′

B

)

:
1

6
≤ qB, q

′
B ≤

1

2

}

.

In the rectangular prior there is a range of probabilities for A, even though it is given that the frac-

tion of A balls in the urn is 1/3. So the DMmay not want to impose the rectangularity restriction.

[With the rectangular set of priors, (1, 0, 1) is chosen over (0, 1, 1), reversing the choice based on

the original set of priors C.]

2.2.2. Conditional preferences. Epstein & Schneider (2003) develop a conditional preference

ordering conditional on the information available at each date. Imposing dynamic consistency

across these preference orderings leads to the rectangularity restriction on the set of priors. Knox

(2003a,b) argues that the problematic aspects arise because these conditional preferences impose

consequentialism, the property that counterfactuals are ignored. This is further developed by

Hanany & Klibanoff (2007, p. 262):

AsMachina (1989) has emphasized, once we move beyond expected utility and preferences are not sep-
arable across events, updating in a dynamically consistent way entails respecting these nonseparabilities
by allowing updated preferences to depend on more than just the conditioning event. For this reason,
we will see that dynamic consistency naturally leads a decision maker (DM) concerned with ambiguity
to adopt rules for updating beliefs that depend on prior choices and/or the feasible set for the problem.

Hanany &Klibanoff (2007) also use a version of Ellsberg’s three-color problem as a motivating

example. The urn contains 90 balls, 30 of which are known to be A and 60 of which are some-

how divided between B and C, with no further information on the distribution. (In that paper,

A= black,B= red,C= yellow, and the urn contains 120 balls, with 1/3 A and 2/3B or C.) A ball is

to be drawn at random from the urn, and the DM faces a choice among bets paying off depending

on the color of the drawn ball. Any such bet can be written as a triple (uA, uB, uC ) ∈ R
3, where

each ordinate represents the payoff if the respective color is drawn. Typical preferences have

(1, 0, 0) � (0, 1, 0) and (0, 1, 1) � (1, 0, 1), reflecting a preference for the less ambiguous

bets. In the dynamic version of the problem there is an interim stage in which the DM is told

whether or not the drawn ball is C. Two choice pairs are considered. In choice pair 1, if the

drawn ball is C, then the payoff is 0. If not C, and therefore conditional on the event E =

{A, B}, the DM chooses between A and B. The choice “Bet on A” leads to the payoff vector

(1, 0, 0), whereas the choice “Bet on B” leads to payoff (0, 1, 0). In choice pair 2, if the drawn ball

is C, the payoff is 1. If not C, then the DM chooses between A and B. Now the choice “Bet on

A” leads to the payoff vector (1, 0, 1), whereas the choice “Bet on B” leads to payoff (0, 1, 1) (see

Figure 3). Hanany & Klibanoff argue that in choosing between the bets (1, 0, 0) and (0, 1, 0),

the opportunity to condition the choice on the information at the interim stage does not change

the problem in an essential way. Therefore, preferences should remain (1, 0, 0) � (0, 1, 0) and

(0, 1, 1) � (1, 0, 1), as in the original problem. Hanany & Klibanoff (2007, p. 264) conclude that

these preferences are inconsistent with backward induction, which requires the DM to snip the

tree at the node following the event {A, B} and to choose as if this were the entire problem:

But then the choice between (1, 0, 0) and (0, 1, 0) must be the same as the choice between (1, 0, 1) and
(0, 1, 1) since the snipped trees for the two choice pairs are identical, rendering the Ellsberg choices
impossible. It follows that no model of dynamic choice under ambiguity implying backward induction
can deliver the Ellsberg preferences in this example.
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Choice pair 1

1

A

0

B

Bet on A

0

A

1

B

Bet on B

{A, B}

0

C

Choice pair 2

1

A

0

B

Bet on A

0

A

1

B

Bet on B

{A, B}

1

C

Figure 3

Dynamic Ellsberg problem with an urn containing 30 A balls and 60 balls that are either B or C. The
decision maker is told whether the drawn ball is C before betting on A or B. The payoffs for A and B are 1.
The payoff for C is 0 in choice problem 1, and it is 1 in choice problem 2.

This point is, I think, fundamental. The Ellsberg paradox has been a major motivation for

developing models for preferences that distinguish between roulette lotteries and horse lotteries,

allowing for ambiguity aversion. In the dynamic version of these preferences, the stress has been

on recursive models, which can be solved by backward induction. Conditional preferences that

have a recursive form are very convenient for computation, but there is a tension here with the

motivating Ellsberg intuition in which conditional preferences are not recursive. If the goal is the

positive one of modeling observed behavior, then recursive preferences may not be suitable. My

goal is the normative one of adding robustness to SEU preferences, so the failure of recursive

preferences to model dynamic Ellsberg behavior is less of a concern.

Hanany & Klibanoff (2007) develop conditional preferences in the MEU framework. These

preferences are dynamically consistent in that ex-ante optimal contingent choices are respected

when a planned-for contingency arises. Their general results provide update rules for MEU pref-

erences that apply Bayes’s rule to some of the probability measures used in representing the DM’s

unconditional preferences. They apply their general results to the dynamic Ellsberg problem.

In their setup, for any MEU preference over payoff vectors in R
3, there exists a convex set of

probability measures, C, over the three colors and a utility function, u : R → R, such that for all

f , g ∈ R
3, f 
 g ⇐⇒ minq∈C

∫

(u ◦ f ) dq ≥ minq∈C
∫

(u ◦ g) dq. Let u(x)= x for all x ∈ R, and let C

= {( 1
3
,α, 2

3
− α : α ∈ [ 1

4
, 5
12
]}, a set of measures symmetric with respect to the probabilities of B and

C. According to these preferences, (1, 0, 0) � (0, 1, 0) and (0, 1, 1) � (1, 0, 1). Hanany & Klibanoff

show that dynamically consistent updating in the Ellsberg problem corresponds to updating the

set of measures to be any closed, convex subset of C1
E = {(α, 1 − α, 0) : α ∈ [ 1

2
, 4
7
]} in choice prob-

lem 1, and any closed, convex subset of C2
E = {(α, 1 − α, 0) : α ∈ [ 4

9
, 1
2
]} in choice problem 2.

This result corresponds to updating the least favorable priors in the unconditional problem.

Let f = (1, 0, 0) and g = (0, 1, 0). The least favorable prior q∗ satisfies

q∗ = argmin
q∈C

[

max

{∫

(u ◦ f ) dq,

∫

(u ◦ g) dq

}]

.

Note that

max

{∫

(u ◦ f ) dq,

∫

(u ◦ g) dq

}

=

{

1
3
, if q(B) ≤ 1

3
;

q(B), otherwise.
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The minimum over q ∈ C is achieved by any q∗ =( 1
3
,α, 2

3
− α) with α ∈ [ 1

4
, 5
12
] and α ≤ 1

3
. So the

set of least favorable priors is

Q =

{

q∗ =

(

1

3
,α,

2

3
− α : α ∈

[

1

4
,
1

3

]}

.

Now condition on the event E = {A, B} and update a least favorable prior using Bayes’s rule:

q∗(A |E ) =
1

1 + 3q∗(B)
∈

[

1

2
,
4

7

]

.

Therefore, updating the set of least favorable priors gives

QE =

{

(α, 1 − α, 0) : α ∈

[

1

2
,
4

7

]}

= C1
E .

The conditional preferences have (1, 0, 0) � (0, 1, 0), that is,

min
q∈C1

E

∫

(u ◦ f ) dq = min
q∈C1

E

q(A) =
1

2
> min

q∈C1
E

∫

(u ◦ g) dq = min
q∈C1

E

q(B) =
3

7
.

In choice problem 2, let f = (1, 0, 1) and g = (0, 1, 1). Updating the set of least favorable priors

gives C2
E . The conditional preferences have (1, 0, 1) < (0, 1, 1):

min
q∈C2

E

∫

(u ◦ f ) dq = min
q∈C2

E

q(A) =
4

9
< min

q∈C2
E

∫

(u ◦ g) dq = min
q∈C2

E

q(B) =
1

2
.

2.3. Multiplier Preferences

I follow Strzalecki (2011) in setting up multiplier preferences. They are based on a reference

probability model q. Other probability models p are considered, but they are penalized by the

relative entropy R( · ‖ q), which is a mapping from △(S), the set of probability distributions on the

state space S, into [0, ∞]:

R(p‖ q) =

{

∫

S

(

log d p
dq

)

d p, if p is absolutely continuous with respect to q;

∞, otherwise.
6.

The set Z denotes the possible consequences, and △(Z) denotes probability distributions on Z

with finite support. Let � denote a sigma-algebra of events in S. An act f is a finite-valued

�-measurable mapping from the state space S to lotteries over consequences, that is, f : S→ △(Z);

the set of all such acts is denoted F (△(Z)). Acts f are ranked according to the criterion

V( f ) = min
p∈△(S)

∫

S

u( f (s)) d p(s) + κR(p‖ q), 7.

where u : △(Z) → R is a nonconstant, affine function; κ � (0, ∞); and q � △(S). Define a class of

transformations ζκ : R → R that are strictly increasing and concave,

ζκ (u) = − exp
(

−
u

κ

)

, 8.
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with ζ−1
κ (u) = −κ log(−u). There is a very useful variational formula proposed by Dupuis & Ellis

(1997, proposition 1.4.2): For any bounded, measurable function h : S → R and q � △(S), we

obtain

min
p∈△(S)

∫

S

h(s) d p(s) + κR(p‖ q) = ζ−1
κ

(∫

S

(ζκ ◦ h)(s) dq(s)

)

.

The minimum is attained uniquely at p∗, which has the following density with respect to q:

d p∗

dq
(s) =

exp(− 1
κ
h(s))

∫

S exp(−
1
κ
h(s)) dq(s)

.

Hence, we have

V( f ) = −κ log

(∫

S

exp

(

−
1

κ
u( f (s))

)

dq(s)

)

,
d p∗

dq
(s) =

exp
(

− 1
κ
u( f (s))

)

∫

S exp
(

− 1
κ
u( f (s))

)

dq(s)
. 9.

In our two-period portfolio choice problem, let the state space be

S = {(h, h), (h, l ), (l , h), (l , l )}, 10.

corresponding to the possible values for the returns (R0, R1). The investor has a contingent plan

in which the fraction of wealth invested in the risky asset at t = 0 is a0; at t = 1, it is a1(h) if R0 =

h and a1(l ) if R0 = l. The payoff profile f for this plan is given by

f (h, h)= w0[(h− rf )a0 + rf ][(h− rf )a1(h) + rf ], 11.

f (h, l )=w0[(h− rf )a0 + rf ][(l − rf )a1(h) + rf ],

f (l , h)= w0[(l − rf )a0 + rf ][(h− rf )a1(l ) + rf ], and

f (l , l )= w0[(l − rf )a0 + rf ][(l − rf )a1(l ) + rf ].

For the reference probability model q, we can use the predictive distribution in Equation 1:

Prq(R0 = h)=
α

α + β
= q0,

Prq(R1 = h |R0 = h)=
α + 1

α + β + 1
= qh, and

Prq(R1 = h |R0 = l )=
α

α + β + 1
= ql .

Note that this predictive distribution is exchangeable:

Prq(R0 = h,R1 = l ) = Prq(R0 = l ,R1 = h) =
αβ

(α + β )(α + β + 1)
.

Given p � △(S), use the notation

p0 = Prp(R0 = h), ph = Prp(R1 = h |R0 = h), pl = Prp(R1 = h |R0 = l ).

www.annualreviews.org • Robust Decision Theory and Econometrics 249

A
n
n
u
. 
R

ev
. 
E

co
n
. 
2
0
2
0
.1

2
:2

3
9
-2

7
1
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

 A
cc

es
s 

p
ro

v
id

ed
 b

y
 C

o
rn

el
l 

U
n
iv

er
si

ty
 o

n
 0

8
/2

3
/2

0
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 



The investor’s problem is

max
0≤a≤1

min
p∈△(S)

(∫

S

u( f (s)) d p(s) + κR(p‖ q)

)

. 12.

Note that

min
p∈△(S)

∫

S

u( f (s)) d p(s) + κR(p‖ q) = −κ log

(

−

∫

S

ζκ (u( f (s))) dq(s)

)

.

So we can replace the utility function u by ζ κ ◦ u. The function ζ κ ◦ u is not a von Neumann–

Morgenstern (VNM) utility function—it is not affine on �(Z). This does not matter because,

for each s � S, the distribution of f (s) assigns probability 1 to a single point. So we can apply

SEU preferences using ζ κ ◦ u and the reference distribution q. This can be solved by dynamic

programming, as in Section 2.1. Define the maximized value functions

Jh(w)= max
0≤x≤1

[

qhζκ ◦ u
(

w[(h− rf )x+ rf ]
)

+ (1 − qh )ζκ ◦ u
(

w[(l − rf )x+ rf ]
)]

and

Jl (w)= max
0≤x≤1

[

qlζκ ◦ u
(

w[(h− rf )x+ rf ]
)

+ (1 − ql )ζκ ◦ u
(

w[(l − rf )x+ rf ]
)]

.

Then the optimal portfolio weight on the risky asset in period 0 is

a∗
0 = arg max

0≤x≤1

[

q0Jh
(

w0[(h− rf )x+ rf ]
)

+ (1 − q0 )Jl
(

w0[(l − rf )x+ rf ]
)]

. 13.

In our application of multiplier preferences, the reference distribution q for (R0, R1) is ex-

changeable, but the alternative distributions p are not constrained to be exchangeable. We can

impose this restriction by working with a different state space. Now let S = [0, 1]. Conditional on

θ � S, the distribution of (R0, R1) is

Prθ (R0 = h,R1 = h)= θ2, 14.

Prθ (R0 = h,R1 = l )= θ (1 − θ ),

Prθ (R0 = l ,R1 = h)= (1 − θ )θ , and

Prθ (R0 = l ,R1 = l )= (1 − θ )2.

The investor has a contingent plan in which the fraction of wealth invested in the risky asset at

t = 0 is a0; at t = 1, it is a1(h) if R0 = h and a1(l ) if R0 = l. The payoff profile g for this plan maps

states θ � S into lotteries over consequences. In state θ , the lottery assigns probabilities θ2, θ (1 −

θ ), (1 − θ )θ , and(1 − θ )2 to the consequences f (h, h), f (h, l ), f (l, h), and f (l, l ) (where f is defined

in Equation 11). So we obtain

u(g(θ ))= [θ2 f (h, h)1−γ + θ (1 − θ ) f (h, l )1−γ

+ (1 − θ )θ f (l , h)1−γ + (1 − θ )2 f (l , l )1−γ ]/(1 − γ ).

For the reference probability model q, we shall use a beta distribution with parameters α and β.

The investor’s problem is

max
0≤a≤1

min
p∈△([0,1])

(∫ 1

0

u(g(θ )) d p(θ ) + κR(p‖ q)

)

= max
0≤a≤1

−κ log

(

−

∫ 1

0

ζκ (u(g(θ ))) dq(θ )

)

.
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Now it matters that ζ κ ◦ u is not a VNM utility function. The optimal portfolio weights can be

obtained by maximizing the following objective function with respect to a0, a1(h), and a1(l ):

−κ log

∫ 1

0

exp

(

−
1

κ

w
1−γ

0

(1 − γ )

(

θ2
[

[(h− rf )a0 + rf ][(h− rf )a1(h) + rf ]
]1−γ

15.

+ θ (1 − θ )
[

[(h− rf )a0 + rf ][(l − rf )a1(h) + rf ]
]1−γ

+ (1 − θ )θ
[

[(l − rf )a0 + rf ][(h− rf )a1(l ) + rf ]
]1−γ

+ (1 − θ )2
[

[(l − rf )a0 + rf ][(l − rf )a1(l ) + rf ]
]1−γ

))

Ŵ(α + β )

Ŵ(α)Ŵ(β )
θα−1(1 − θ )β−1 dθ.

When we impose the exchangeability restriction on the distribution of (R0, R1), we lose the re-

cursive structure of preferences and the ability to solve the problem by dynamic programming. A

similar issue arises in the dynamic Ellsberg three-color problem in Figure 3. Suppose that 1/3 of

the balls in the urn areA, with 2/3 being either B or C. The DM is told whether the ball drawn is C

before betting onA or B. In choice pair 1, the payoff forC equals 0, and the choice “Bet onA” leads

to the payoff vector (1, 0, 0), whereas the choice “Bet on B” leads to payoff (0, 1, 0). In choice pair 2,

the payoff for C equals 1, and the choice “Bet on A” leads to the payoff (1, 0, 1), whereas the choice

“Bet on B” leads to the payoff (0, 1, 1). In setting up the problem using multiplier preferences, the

reference probability model would assign probability 1/3 to drawing A. In general we would also

want the alternative distribution p to assign probability 1/3 to drawing A, but consider setting up

the problem without imposing that restriction. The state space is S = {A, B, C}, and △ is the unit

simplex in R
3. The DM forms a contingent plan. For example, in problem 1, the DM chooses

(1, 0, 0) if not C and chooses x if C, where x could be (1, 0, 0) or (0, 1, 0). If C, then (1, 0, 0) and

(0, 1, 0) both have a payoff of zero, and so, for either choice of x, the value of the plan is

min
p∈△

[

Prp(C
c )Prp(A |Cc ) · 1 + Prp(C) · 0 + κR(p‖ q)

]

=min
p∈△

[

Prp(A) · 1 + Prp(C) · 0 + κR(p‖ q)
]

= −κ log

[

Prq(A) exp

(

−
1

κ
· 1

)

+ Prq(B) exp

(

−
1

κ
· 0

)

+ Prq(C) exp

(

−
1

κ
· 0

)]

.

Likewise, the plan that chooses (0, 1, 0) has value

−κ log

[

Prq(A) exp

(

−
1

κ
· 0

)

+ Prq(B) exp

(

−
1

κ
· 1

)

+ Prq(C) exp

(

−
1

κ
· 0

)]

.

In problem 2, the plan that chooses (1, 0, 1) has value

−κ log

[

Prq(A) exp

(

−
1

κ
· 1

)

+ Prq(B) exp

(

−
1

κ
· 0

)

+ Prq(C) exp

(

−
1

κ
· 1

)]

,

and the plan that chooses (0, 1, 1) has value

−κ log

[

Prq(A) exp

(

−
1

κ
· 0

)

+ Prq(B) exp

(

−
1

κ
· 1

)

+ Prq(C) exp

(

−
1

κ
· 1

)]

.

www.annualreviews.org • Robust Decision Theory and Econometrics 251

A
n
n
u
. 
R

ev
. 
E

co
n
. 
2
0
2
0
.1

2
:2

3
9
-2

7
1
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

 A
cc

es
s 

p
ro

v
id

ed
 b

y
 C

o
rn

el
l 

U
n
iv

er
si

ty
 o

n
 0

8
/2

3
/2

0
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 



So the DM makes the same choice on A versus B in problems 1 and 2, choosing A if Prq(A) >

Prq(B). We can obtain these solutions by snipping the trees at the decision nodes following the

event E = {A, B}, setting the state space to {A, B}, and applying multiplier preferences using q ′ as

the reference distribution, where q ′ is the Bayesian update of q:

Prq′ (A) = 1 − Prq′ (B) = Prq(A |E ) = Prq(A)/
(

Prq(A) + Prq(B)
)

.

If Prq(A) = Prq(B) = Prq(C) = 1/3, then (1, 0, 0) ∼ (0, 1, 0) and (1, 0, 1) ∼ (0, 1, 1).

Now consider restricting Pr(A) = 1/3 under p and q. The state space is S= {θ : θ � [0, 1]}, with

Prθ (B) = 2
3

− Prθ (C) = 2
3
θ . Suppose that

∫ 1

0

2

3
θ dq(θ ) =

1

3
.

In problem 1, the contingent plan with “Bet on A” has value 1/3. The plan “Bet on B” has value

min
p∈△([0,1])

∫ 1

0

2

3
θ d p(θ ) + κR(p‖ q) = −κ log

(∫ 1

0

exp

(

−
1

κ

2

3
θ

)

dq(θ )

)

.

By Jensen’s inequality, we have

∫ 1

0

exp

(

−
1

κ

2

3
θ

)

dq(θ ) > exp

(

−
1

κ

2

3

∫ 1

0

θ dq(θ )

)

= exp

(

−
1

κ

1

3

)

,

and so (1, 0, 0) � (0, 1, 0).

In problem 2, the contingent plan “Bet on B” has value 2/3. The plan “Bet on A” has value

1

3
+ min

p∈△([0,1])

∫ 1

0

2

3
(1 − θ ) d p(θ ) + κR(p‖ q) =

1

3
− κ log

(∫ 1

0

exp

(

−
1

κ

2

3
(1 − θ )

)

dq(θ )

)

.

By Jensen’s inequality, this is less than 2/3, and so (0, 1, 1) � (1, 0, 1). So when we restrict Pr(A) =

1/3 under p and q, we do not have the consequentialist solution that snips the trees at the decision

nodes following the event E = {A, B}. Now our solution exhibits typical Ellsberg behavior.

Hansen & Miao (2018) explore the relative entropy relations between priors, likelihoods, and

predictive densities in a static setting. There is a prior distribution π for parameter values θ � 


and a likelihood λ for the density, given θ for possible outcomes y ∈ Y (with respect to a measure

τ ). The predictive density for y is

φ(y) =

∫




λ(y | θ )π (dθ ).

The reference distribution counterparts are π̂ , λ̂, and φ̂.Hansen&Miao (2018) pose and solve two

problems that adjust for robustness. First, robust evaluation of a y-dependent utility U( y) gives

min
φ

∫

Y

U (y)φ(y)τ (dy) + κ

∫

Y

[

logφ(y) − log φ̂(y)
]

φ(y)τ (dy) 16.

= −κ log

∫

Y

exp

[

−
1

κ
U (y)

]

φ̂(y)τ (dy).
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Second, they target prior robustness by restricting λ = λ̂, eliminating specification concerns about

the likelihood, and solving

min
π∈�

∫




U (θ )π (dθ ) + κ

∫




log

[

dπ

dπ̂
(θ )

]

π (dθ ) 17.

= −κ log

∫




exp

[

−
1

κ
U (θ )

]

π̂ (dθ ),

where � is the set of priors that are absolutely continuous with respect to π̂ , and

U (θ ) ≡

∫

Y

U (y)λ̂(y | θ )τ (dy).

The first problem corresponds to our first application of multiplier preferences to the portfo-

lio choice problem, in which we did not restrict the set of distributions for (R0, R1). The second

problem corresponds to our second application of multiplier preferences, in which we imposed the

restriction that R0 and R1 are i.i.d. conditional on θ , where the marginal distribution of θ is unre-

stricted. Likewise, the first problem corresponds to our first application of multiplier preferences

in the dynamic Ellsberg three-color problem, in which we did not restrict the alternative distribu-

tion p to assign probability 1/3 to drawing A. The second problem corresponds to imposing the

restriction that Prp(A) = 1/3.

2.4. Divergence Preferences and Constraint Preferences

Maccheroni et al. (2006a) weaken Anscombe & Aumann’s (1963) independence axiom to weak

certainty independence. Using the notation from Section 2.3, this implies that if f , g ∈ F (△(Z));

x, y � △(Z); and α � (0, 1), then we have

α f + (1 − α)x � αg+ (1 − α)x

⇒ α f + (1 − α)y � αg+ (1 − α)y.

This leads to variational preferences in which acts f are ranked according to the criterion

V( f ) = min
p∈△(S)

∫

S

u( f (s)) d p(s) + c(p), 18.

where u : △(Z) → R is a nonconstant affine function, and the cost function c : △(S) → [0, ∞] is

convex. This includes multiplier preferences as a special case with c (p) = κR(p ‖ q). It also includes

MEU preferences as a special case with

c(p) =

{

0, if p ∈ C;

∞, otherwise.

Strzalecki (2011) shows that multiplier preferences can be characterized by adding Savage’s

P2 axiom [applied to all Anscombe & Aumann’s (1963) acts] to the axioms of Maccheroni et al.

(2006a).With E� �, let fEg denote an act with fEg(s) = f (s) if s� E and fEg(s) = g(s) if s /∈ E. Then

Strzalecki adds Axiom P2, or Savage’s sure-thing principle: For all E� � and f , g, h, h′ ∈ F (△(Z)),
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we obtain

fEh � gEh ⇒ fEh
′ � gEh

′.

Consider an individual’s conditional preferences upon learning that an event E has occurred.

Following Machina & Schmeidler (1992), let an act h defined over the complement of E provide

a counterfactual, and define a conditional of � on E given h (denoted by �E, h) by

f �E,h g if and only if f Eh � gEh.

Gumen & Savochkin (2013) note that dynamic consistency is used here as a definition of condi-

tional preferences, rather than as a link between two exogenously given preference relations. Con-

sequentialism can be imposed on preferences by requiring that all conditionals �E, h be indepen-

dent of h. In this setting, this is equivalent to Savage’s sure-thing principle. Gumen & Savochkin

show that multiplier preferences are stable in that the corresponding conditional preferences �E, h

(which are independent of h) belong to the class of multiplier preferences.

Divergence preferences are an important class of variational preferences, and they include

multiplier preferences as a special case. There is an underlying probability measure q � △(S).

Given a convex, continuous function φ : R+ → R such that φ(1) = 0 and limt → ∞φ(t)/t = ∞, the

φ-divergence of p � △(S) with respect to q is given by

Dφ (p‖ q) =

{

∫

S φ
(

d p
dq

)

dq, if p is absolutely continuous with respect to q;

∞, otherwise.

Acts are ranked according to the criterion

V( f ) = min
p∈△(S)

∫

S

u( f (s)) d p(s) + κDφ (p‖ q), 19.

where κ � (0, ∞). Setting φ(t) = t log (t), these divergence preferences coincide with the multi-

plier preferences in Equation 7. Maccheroni et al. (2006a) also consider φ(t) = 2−1(t − 1)2 (χ2-

divergence). They refer to these divergence preferences as Gini preferences and relate them to

mean-variance preferences. Other examples of φ-divergence appear in the literature on general-

ized empirical likelihood (Newey & Smith 2004); in work on robust estimation using neighbor-

hoods based on squaredHellinger distance (Kitamura et al. 2013); and in global sensitivity analyses

using convex duality to obtain dual representations of infinite-dimension optimization problems

as low-dimension convex programs (Christensen & Connault 2019).

The optimization problem in Equation 19 can be simplified using convex duality. Let h(s) =
d p
dq
(s). Then, we obtain

V( f ) = inf
h( · )≥0,

∫

h dq=1

∫

S

u( f (s))h(s) dq(s) + κ

∫

S

φ(h(s)) dq(s).

Setting up the Lagrangian, we have

V( f ) = max
δ∈R

(

inf
h( · )≥0

∫

S

[u( f (s))h(s) + κφ(h(s)) + δh(s)] dq(s) − δ

)
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(see Luenberger 1969, chapter 8.6, theorem 1; chapter 8.8, problem 7). Note that we have

inf
h( · )≥0

∫

S

[u( f (s))h(s) + κφ(h(s)) + δh(s)] dq(s) 20.

≥

∫

S

inf
t∈R+

[u( f (s))t + κφ(t ) + δt] dq(s)

and

inf
t∈R+

[u( f (s))t + κφ(t ) + δt] = −κ sup
t≥0

[

−
u( f (s)) + δ

κ
t − φ(t )

]

= −κφ∗

(

−
u( f (s)) + δ

κ

)

,

where φ∗ is the convex conjugate of φ with φ∗ : R → (−∞,∞], that is,

φ∗(x) = sup
t≥0

[xt − φ(t )].

The lower bound in Equation 20 is achieved by setting

h(s) = argmin
t≥0

[u( f (s))t + κφ(t ) + δt] 21.

(assuming the minimum in Equation 21 is attained) and then

V( f ) = max
δ∈R

−κ

∫

S

φ∗

(

−
u( f (s)) + δ

κ

)

dq(s) − δ. 22.

For example, with φ(t) = t log t and φ∗(x) = exp (x − 1), the simplified expression for divergence

preferencesV( f ) in Equation 22 coincides with the simplified expression formultiplier preferences

V( f ) in Equation 9.

Consider the investor’s problem in Equation 12, but replace relative entropy R(p ‖ q) with φ-

divergence Dφ(p ‖ q):

max
0≤a≤1

min
p∈△(S)

(∫

S

u( f (s)) d p(s) + κDφ (p‖ q)

)

. 23.

The state space, as in Equation 10, is S = {(h, h), (h, l ), (l, h), (l, l )}, and the act f is as defined in

Equation 11. Note that

max
0≤a≤1

min
p∈△(S)

(∫

S

u( f (s)) d p(s) + κDφ (p‖ q)

)

= max
0≤a≤1

max
δ∈R

(

−κ

∫

S

φ∗

(

−
u( f (s)) + δ

κ

)

dq(s) − δ

)

=max
δ∈R

(

max
0≤a≤1

(

−κ

∫

S

φ∗

(

−
u( f (s)) + δ

κ

)

dq(s)

)

− δ

)

. 24.

For a given value of δ, define the increasing concave function bδ : R → [−∞,∞) by

bδ (x) = −κφ∗

(

−
x+ δ

κ

)

.
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Replace the utility function u by bδ ◦ u and solve

max
0≤a≤1

∫

S

bδ ◦ u( f (s)) dq(s). 25.

The function bδ ◦ u is not a VNM utility function, as it is not affine on �(Z). This does not matter

because, for each s � S, the distribution of f (s) assigns probability 1 to a single point. So we can

apply SEU preferences using bδ ◦ u and the reference distribution q. Then Equation 25 can be

solved by dynamic programming, as in Section 2.1 and Equation 13. The solution in Equation 24

is completed by maximizing over δ in R.

Hansen & Sargent (2001) and Hansen et al. (2006) relate multiplier preferences to the MEU

preferences of Gilboa & Schmeidler (1989). Acts f are ranked according to the criterion

V( f ) = min
p∈△(S):R(p‖ q)≤η

∫

S

u( f (s)) d p(s), 26.

where η > 0 fixes an entropy neighborhood of the reference distribution q, providing the set C

of priors in MEU. Hansen & Sargent refer to Equation 26 as constraint preferences. Multiplier

preferences in Equation 7 and constraint preferences in Equation 26 are distinct, but they gen-

erate the same optimal portfolio strategies for corresponding values of η and κ . This holds more

generally, connecting divergence preferences in Equation 19 and constraint preferences defined

by

V( f ) = min
p∈△(S):Dφ (p‖ q)≤η

∫

S

u( f (s)) d p(s). 27.

We can see this by applying a minimax theorem. For example, suppose that the set of feasible

portfolio strategies is finite: a = (a0, a1(l ), a1(h)) � A with the finite set A = {a( j)}J

j=1, and we allow

mixed strategies.The probability weights in the mixed strategy are α � �, with� = {(α1, . . . ,αJ ) :

α j ≥ 0,
∑

J

j=1 α j = 1}. Let f (j) denote the act corresponding to a(j) and define

W (α, p) =

J
∑

j=1

α j

∫

S

u( f ( j)(s)) d p(s).

Then the minimax theorem for S games implies that

max
α∈�

min
p∈△(S):Dφ (p‖ q)≤η

W (α, p) = min
p∈△(S):Dφ (p‖ q)≤η

max
α∈�

W (α, p), 28.

and

max
α∈�

min
p∈△(S)

W (α, p) + κDφ (p‖ q)

= min
p∈△(S)

max
α∈�

W (α, p) + κDφ (p‖ q) 29.

(see Blackwell & Girshick 1954, theorem 2.4.2; Ferguson 1967, chapter 2, theorem 1). Fix a value

for κ > 0 and let (α∗, p∗) denote a solution to the multiplier problem in Equation 29:

min
p∈△(S)

max
α∈�

W (α, p) + κDφ (p‖ q)

= max
α∈�

W (α, p∗ ) + κDφ (p
∗ ‖ q) =W (α∗, p∗ ) + κDφ (p

∗ ‖ q).
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Then, with η = Dφ(p∗ ‖ q), (α∗, p∗), solve the constraint problem in Equation 28:

min
p∈△(S):Dφ (p‖ q)≤η

max
α∈�

W (α, p) = max
α∈�

W (α, p∗ ) =W (α∗, p∗ )

(Luenberger 1969, chapter 8.4, theorem 1). So we can interpret p∗ as a least favorable prior for

the corresponding constraint preferences with η = Dφ(p∗ ‖ q).

If we focus on constraint preferences, then the connectionwith divergence preferences can pro-

vide an algorithm. Solve the portfolio choice problem using divergence preferences with a range

of values for the multiplier κ [taking advantage of the simplified form for V( f ) in Equation 22

or, with multiplier preferences, in Equation 9]. This will provide solutions to the portfolio choice

problem using constraint preferences for a range of values of the constraint parameter η. Then

the choice of η will fix a convex set C of priors for MEU preferences. Good (1952) considers a

set of priors and argues that a minimax solution is reasonable, provided that only reasonable sub-

jective distributions are entertained (see also Chamberlain 2000a). So the choice of the constraint

parameter η would be based on considering the set of implied predictive distributions for portfo-

lio returns. Connecting optimal portfolios for divergence preferences and constraint preferences

is useful, because the optimal portfolio problem with divergence preferences can be solved using

dynamic programming (as in Equations 24 and 25), when we do not restrict the set of distributions

for (R0,R1) by imposing the reference likelihood function.The solution simplifies using multiplier

preferences (as in Equation 13).

We can also work directly with constraint preferences. Set up the Lagrangian

V( f )= min
p∈△(S):Dφ (p‖ q)≤η

∫

S

u( f (s)) d p(s)

= max
δ1∈R,δ2∈R+

(

inf
h(·)≥0

∫

S

[u( f (s))h(s) + δ1h(s) + δ2φ(h(s))] dq(s) − δ1 − δ2η

)

= max
δ1∈R,δ2∈R+

(

−

∫

(δ2φ)
∗(−(u( f (s)) + δ1 )) dq(s) − δ1 − δ2η

)

,

where (δ2φ)∗ is the convex dual of δ2φ:

(δ2φ)
∗(x) =

{

δ2φ
∗( x

δ2
), if δ2 > 0;

supt≥0 xt, if δ2 = 0.

For a given value of δ = (δ1, δ2), define

bδ (x) = −(δ2φ)
∗(−(x+ δ1 )).

The portfolio choice problem is

max
0≤a≤1

V (p)= max
0≤a≤1

max
δ1∈R,δ2∈R+

(∫

bδ ◦ u( f (s)) dq(s) − δ1 − δ2η

)

= max
δ1∈R,δ2∈R+

(

max
0≤a≤1

(∫

bδ ◦ u( f (s) dq(s)) − δ1 − δ2η

)

. 30.
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If for each s � S the distribution of f (s) assigns probability 1 to a single point, then the solution

to

max
0≤a≤1

∫

S

bδ ◦ u( f (s)) dq(s)

can be obtained by dynamic programming. The solution to the portfolio choice problem in

Equation 30 is completed by maximizing over δ1 ∈ R and δ2 in R+.

Maccheroni et al. (2006b) develop dynamic variational preferences.These are conditional pref-

erences that impose consequentialism.The atemporal model is a special case of the dynamicmodel

with one period of uncertainty: It corresponds to preferences over one-step-ahead continuation

plans. In the case of divergence preferences, the dynamic model can be applied to our two-period

portfolio choice with state space S = {(h, h), (h, l ), (l, h), (l, l )}, and the act f as in Equation 11.We

obtain

Vr0 ( f )= min
p∈�(S)

∫

S

u( f (r0, r1 )) d p(r1 | r0 ) + κDφ (p( · | r0 )‖q( · | r0 )) (r0 ∈ {h, l}),

V0( f )= min
p∈�(S)

∫

S

Vr0 ( f ) d p0(r0 ) + κDφ (p0‖q0 ),

where p is the joint distribution for (R0, R1) and p0 is the marginal distribution for R0. These dy-

namic preferences do not correspond to the φ-divergence preferences represented by Equation 19

in the atemporal model, except when the φ-divergence is relative entropy, giving multiplier pref-

erences. Maximizing the value functions gives

Jr0 (w)= max
0≤x≤1

min
p∈�(S)

∫

S

u(w[(r1 − rf )x+ rf ]) d p(r1 | r0 ) + κDφ (p( · | r0 )‖q( · | r0 )),

J0(w0 )= max
0≤x≤1

min
p∈�(S)

∫

S

Jr0 (w0[(r0 − rf )x+ rf ]) d p0(r0 ) + κDφ (p0‖q0 ).

In the case of multiplier preferences, this corresponds to the dynamic programming recursion in

Equation 13 for the atemporal model.

2.5. Smooth Ambiguity Preferences

Hansen&Miao (2018) note that the solution to the problem in Equation 17 is a smooth ambiguity

objective and a special case of Klibanoff et al. (2005). The general form of the smooth ambiguity

model developed by Klibanoff, Marinacci, and Mukerji (henceforth, KMMmodel) values an act f

as follows:

V( f ) = ζ−1

[∫




ζ

(∫

S

u( f (s)) dπθ (s)

)

dμ(θ )

]

. 31.

The state space S= � × (0, 1] and f : S → C is a Savage act, where C ⊂ R is a set of consequences.

The set of Savage acts is denoted byF .The space (0, 1] is introduced tomodel a rich set of lotteries

as a set of Savage acts; there is an (objective) distribution on (0, 1] given by Lebesgue measure.

An act l ∈ F is a lottery if l depends only on (0, 1]. There is a preference ordering � over F . The

distribution π θ is a prior distribution on S indexed by the parameter θ in the parameter space 
.

The function ζ : R → R is strictly increasing. The distribution μ provides a prior on 
. If the
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function ζ is linear, then the prior on priors reduces to a single prior
∫



πθ dμ(θ ), but in general

attitudes toward ambiguity are captured by a nonlinear ζ function.

The KMM model defines second-order acts, f : 
 → C, that associate an element of 
 with

a consequence; F denotes the set of second-order acts, and �2 is the DM’s preference relation

defined on F. Then KMM derives the representation in Equation 31 from three assumptions.

The first assumption is expected utility on lotteries. This fixes a VNM utility function u, which is

assumed to be strictly increasing. The second assumption is subjective expected utility on second-

order acts. This fixes a utility function ν, assumed to be strictly increasing, and a probability dis-

tribution μ on 
 such that for all f, g ∈ F, we have

f �2 g ⇐⇒

∫




ν(f(θ )) dμ(θ ) ≥

∫




ν(g(θ )) dμ(θ ).

The set △(S) of probability distributions on S is indexed by the parameter θ � 
: △(S) = {π θ :

θ � 
}. An act f and a probability π θ induce a probability distribution π θ , f on consequences:

With B ⊂ C, we obtain π θ , f (B) = π θ ( f −1(B)). There is a lottery act with the distribution π θ , f and

certainty equivalent cθ , f, which is assumed to be the certainty equivalent of f given π θ . Given f ∈

F , f 2 ∈ F denotes a second-order act associated with f : f 2(θ ) = cθ , f . Then, the third assumption

is consistency with preferences over associated second-order acts: Given f , g ∈ F and f 2, g2 ∈ F,

we have

f � g ⇐⇒ f 2 �2 g2.

These three assumptions imply that � is represented by Equation 31 with ζ = ν ◦ u−1.

We can apply these preferences to our two-period portfolio choice problem. Let � be the state

space in Equation 10, with f equal to the act in Equation 11 (so that f depends only on �). Let the

VNM utility function be u(w) = w
1 − γ /(1 − γ ). Let π θ = ηθ × λ, where ηθ is the distribution on

� in Equation 14 in which the returns (R0, R1) are i.i.d. conditional on θ , and λ is the Lebesgue

measure on (0, 1]. For the strictly increasing function ζ , use ζ κ defined in Equation 8. Let the

parameter space 
 equal the unit interval [0, 1] with the prior distribution μ being equal to a

beta distribution with parameters α and β. Then the optimal portfolio weights can be obtained

by maximizing the following objective function with respect to a0, a1(h), and a1(l ) (which are part

of the act f ):

V( f )= −κ log

∫ 1

0

exp

(

−
1

κ

1

1 − γ

(

θ2 f (h, h)1−γ + θ (1 − θ ) f (h, l )1−γ 32.

+ (1 − θ )θ f (l , h)1−γ + (1 − θ )2 f (l , l )1−γ

))

Ŵ(α + β )

Ŵ(α)Ŵ(β )
θα−1(1 − θ )β−1 dθ.

V( f ) equals the objective function in Equation 15, which we obtained using multiplier preferences

with state space equal to the unit interval [0, 1], and we restricted the distribution for (R0, R1) to

be i.i.d. conditional on θ .

An alternative application of the KMM model could continue to use � from Equation 10

with f equal to the act in Equation 11. However, set π θ equal to the predictive distribution in

Equation 1 with parameters αθ and βθ , with parameter space 
 = {1, . . . , K} and a discrete prior

distribution μ(k) = ξ k (with ξ k ≥ 0 and
∑K

k=1 ξk = 1). These preferences do not correspond to

multiplier preferences.As κ → 0, they exhibitMEUbehavior as in Equations 4 and 5 (seeKlibanoff

et al. 2005, proposition 3).
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Klibanoff et al. (2009) develop a model of recursive preferences that provides an inter-temporal

version of the KMM smooth ambiguity model. In their approach, the atemporal model is a special

case of the dynamic model with one period of uncertainty—that is, the atemporal model corre-

sponds to preferences over one-step-ahead continuation plans.This approach is similar to the way

Maccheroni et al. (2006b) develop dynamic variational preferences from their atemporal model.

I have focused on modeling the DM’s preferences over acts as a weak order � (complete and

transitive), and I have used some particular preference representations: MEU, multiplier prefer-

ences, divergence and constraint preferences, and smooth ambiguity preferences. These prefer-

ence representations are related to work by Savage (1954) and Anscombe&Aumann (1963). Some

other approaches to robust decisions are covered in the survey by Watson & Holmes (2016). The

review by Stoye (2012) covers minimax regret. Manski (2004) and Stoye (2009) apply a minimax

regret criterion to models of treatment choice.

3. PORTFOLIO CHOICE: EMPIRICAL WORK

In the preface to their monograph Strategic Asset Allocation: Portfolio Choice for Long-Term Investors,

Campbell & Viceira (2002, p. viii) write:

There has always been a tension in economics between the attempt to describe the optimal choices of
fully rational individuals (“positive economics”) and the desire to use our models to improve people’s
imperfect choices (“normative economics”). The desire to improve the world with economics was well
expressed by Keynes [1932 (1930)]: “If economists could manage to get themselves thought of as hum-
ble, competent people, on a level with dentists, that would be splendid!” For much of the twentieth
century, economists concentrated on improving economic outcomes through government economic
policy; Keynes may have imagined the economist as orthodontist, intervening with the painful but ef-
fective tools of monetary and fiscal policy. Today dentists spend much of their time giving advice on
oral hygiene; similarly, economists can try to provide useful advice to improve the myriad economic
decisions that private individuals are asked to make. This book is an attempt at normative economics
of this sort.

This section surveys some of the empirical work on normative portfolio choice.The framework

is mainly SEU. Section 4 considers how some of the theory from Section 2 on ambiguity could

be applied in this context.

Barberis (2000) considers an investor with power utility over terminal wealth. There are two

assets: Treasury bills and a stock index. The investor uses a vector autoregression (VAR) model

that includes the excess return on the stock index and variables, such as the dividend-price ratio

(dividend yield), that may be useful in predicting returns. The model takes the form

zt = a+ Bxt−1 + ǫt , 33.

with z′
t = (rt , x′

t ), xt = (x1, t, . . . , xn, t)′, and ǫt ∼ i.i.d. N(0, �). The first component of zt is rt, the

continuously compounded excess stock return over month t (i.e., the rate of return on the stock

portfolio minus the Treasury bill rate, where both returns are continuously compounded). The

remaining components of zt are predictors of the stock return. For simplicity, the continuously

compounded real monthly return on Treasury bills is treated as a constant, rf. Barberis considers

both a buy-and-hold strategy and dynamic rebalancing. In both cases he examines the effect of

parameter uncertainty. The empirical work uses postwar data on asset returns and the dividend

yield, with 523 monthly observations from June 1952 through December 1995.

In the buy-and-hold case, the investor observes {zt}
T
t=1 and chooses the allocation x to the stock

index at t = T. If initial wealthWT = 1, then end-of-horizon wealth is

WT+T̂ = (1 − x) exp(rf T̂ ) + x exp(rf T̂ + rT+1 + · · · + rT+T̂ ). 34.
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The investor’s preferences over terminal wealth follow a power utility function u with coefficient

of relative risk aversion equal to γ :

u(W ) =
W 1−γ

1 − γ
.

The investor’s problem is

max
x
ET

(

[(1 − x) exp(rf T̂ ) + x exp(rf T̂ + RT+T̂ )]
1−γ

1 − γ

)

,

where RT+T̂ denotes the cumulative excess return over T̂ periods:

RT+T̂ = rT+1 + rT+2 + · · · + rT+T̂ .

The investor calculates the expectation ET conditional on the information set at time T.

In the version that ignores parameter uncertainty, the VAR parameters θ = (a, B, �) are esti-

mated, and then the model is iterated forward with the parameters fixed at their estimated values.

This generates a distribution for future stock returns conditional on a set of parameter values,

which is denoted by p(RT+T̂ | z, θ̂ ), where z = {zt}Tt=1 is observed by the investor up until the start

of their investment horizon. Then the investor’s problem is

max
x

∫

u(WT+T̂ )p(RT+T̂ | z, θ̂ ) dRT+T̂ . 35.

In order to allow for parameter uncertainty, a single prior distribution for θ is specified. This

prior is intended to be relatively uninformative, so that it can be dominated by sample evidence.

The likelihood based on Equation 33 and the prior imply a posterior distribution p(θ | z) and a

predictive distribution for long-horizon returns,

p(RT+T̂ | z) =

∫

p(RT+T̂ | z, θ )p(θ | z) dθ.

Then the investor’s problem is

max
x

∫

u(WT+T̂ )p(RT+T̂ | z) dRT+T̂ . 36.

Without using predictor variables (so that zt = rt, and xt is null), and ignoring parameter uncer-

tainty (as in Equation 35), the optimal portfolio weight on the risky asset is approximately inde-

pendent of the investment horizon. Barberis notes the similarity to the result found by Samuelson

(1969), who shows that with power utility and i.i.d. returns, the optimal allocation is indepen-

dent of the horizon. This, however, is for an investor who optimally rebalances their portfolio,

rather than the buy-and-hold investor considered here. Allowing for parameter uncertainty (as in

Equation 36), the allocation to stocks falls as the horizon increases. The magnitude of this effect

is substantial. For an investor using the full data set and with a coefficient of relative risk aversion

equal to 5, the difference in allocation at a 10-year horizon compared with a 1-year horizon is

roughly 10 percentage points. If the investor only uses data from 1986 to 1995, the difference is

35 percentage points.

Now consider including the dividend yield as a predictor variable xt in the VAR. Ignoring pa-

rameter uncertainty, the optimal allocation to stocks for a long-horizon investor is much higher
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than for a short-horizon investor. When the uncertainty about the parameters is taken into ac-

count, the long-horizon allocation is again higher than the short-horizon allocation, but the dif-

ference between the long and short horizons is not nearly as great as when estimation risk is

ignored.

Barberis (2000) also considers dynamic allocation in which investors optimally rebalance over

their investment horizon. Consider the case without predictor variables, so that zt = rt = a +

ǫt in Equation 33 is i.i.d. conditional on the parameters a and �. Now allowing for parameter

uncertainty involves learning, because the uncertainty about the parameters changes over time.

As new data are observed, investors update their posterior distribution for the parameters. The

investors anticipate this learning, and this affects their portfolio holdings. This corresponds to the

two-period problem with a single prior discussed in Section 2.1. The investor’s problem corre-

sponds to Equation 2, which can be solved by dynamic programming as in Equation 3. Barberis

uses dynamic programming to calculate the optimal allocation to stocks at T for horizons T̂ vary-

ing from 1 to 10 years.The result is that the investor who acknowledges the parameter uncertainty

allocates less to stocks at longer horizons. The magnitude of the effect is substantial and similar

to the results for the buy-and-hold strategy.

Xia (2001) works with a continuous-time model based on Brownian motion. This leads to

closed-form formulas for optimal portfolios with learning in some special cases. Maenhout (2004,

2006) works with a continuous-time model based on Brownian motion. Using results from

Anderson et al. (2003), he obtains closed-form solutions for robust portfolio rules in some special

cases.

Kandel & Stambaugh (1996) consider a problem similar to that of Barberis (2000), but with

a one-month horizon (T̂ = 1) and a potentially large number n of predictor variables. They are

interested in providing a metric to assess the economic significance of the regression evidence

on stock-return predictability. They use the perspective of a single-prior Bayesian investor who

uses the sample evidence (with a likelihood function based on Equation 33) to update prior beliefs

about the regression parameters. The investor then uses these revised beliefs to compute the op-

timal asset allocation. They specify a prior that is intended to be relatively uninformative, as well

as an informative prior that is weighted against return predictability. They find that the economic

significance of the sample evidence need not correspond to standard statistical measures. An in-

vestor can assign an important role to the predictor variables even though the regression results

produce a large p-value for the null hypothesis that the coefficients on the predictor variables are

jointly equal to zero. This is particularly relevant with a large number of predictor variables (e.g.,

25).The investor’s allocation decision does not involve accepting or rejecting a specific hypothesis.

The investor’s problem is to select a portfolio, not a hypothesis.

Stambaugh (1999) also considers a problem similar to that of Barberis (2000), with a focus on a

single predictor variable equal to the dividend yield on the aggregate stock market portfolio. The

dividend yield is highly persistent, with estimated autoregression coefficient close to 1. This leads

to sharp contrasts between frequentist and Bayesian inference. Stambaugh explores this, provid-

ing empirical counterparts to issues raised by Sims (1988) and Sims & Uhlig (1991). Stambaugh

develops predictive distributions, which incorporate estimation risk arising from parameter un-

certainty. These are used to calculate an optimal portfolio for buy-and-hold investors facing a

stocks-versus-cash allocation decision. The investors consider investment horizons ranging from

1 month to 20 years. They examine sensitivity to conditioning on the initial observation in form-

ing the likelihood function (based on Equation 33) versus treating the initial observation as a draw

from the ergodic distribution. They also examine sensitivity to alternative prior specifications that

are intended to be uninformative.
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Pástor & Stambaugh (2012) base their likelihood function on the following model:

rt+1 = μt + ut+1, 37.

xt+1 = θ + Axt + vt+1, and

μt+1 = (1 − β ) + βμt + wt+1.

Their annual data consist of observations for the 206-year period from 1802 through 2007, as

compiled by Siegel (1992, 2008). The return rt is the annual real log return on the US equity

market, and xt contains three predictors: the dividend yield on US equity, the first difference in

the long-term high-grade bond yield, and the difference between the long-term bond yield and

the short-term interest rate. The variable μt is not observed. It is motivated by considering the

possibility of an information set Ft that includes the observed data {rt , xt}Tt=1 and additional pre-

dictor variables that are not observed by the investor. Then, we have μt = E(rt+1 |Ft ). Conditional

on Ft , the innovation vector (ut + 1, vt + 1, wt + 1) is i.i.d.N(0, �). The observed predictor variables

xt are related to the latent μt because vt and wt are correlated. In this model, the mean of rt + 1

conditional on the observed {rs, xs}ts=1 depends in a parsimonious way on the entire history, not

just on (rt, xt).

The authors specify a range of informative prior distributions. A key prior distribution is the

one on the correlation ρuw between ut and wt. Their benchmark prior has 97% of its mass below

zero. This prior is based on the argument by Pástor & Stambaugh (2009) that the correlation

between innovations in return and expected return is likely to be negative. The authors use the

likelihood function based on their model in Equation 37 and their prior distributions to calculate

optimal stock allocations for an investor in a target-date fund. The investor’s horizon is K years,

and the investor’s utility for end-of-horizon wealthWK isW
1−γ

K /(1 − γ ). The investor commits to

a predetermined investment strategy in which the stock allocation evolves linearly from the first-

period allocation x1 to the final-period allocation xK.When parameter uncertainty is ignored, the

parameters in Equation 37 are treated as known and equal to their posterior means. In that case,

the initial allocation increases steadily as the investment horizon lengthens, increasing from 30%

at the 1-year horizon to about 85% at long horizons of 25 or 30 years (with γ = 8). The results

are quite different when the predictive distribution is used to incorporate parameter uncertainty.

The initial allocation increases from 30% at the 1-year horizon to 57% at the 30-year horizon.

Campbell & Viceira (2002) provide insights into how an individual investor would best allocate

wealth into broad asset classes over a lifetime. The authors use approximate analytical solutions to

long-term portfolio choice problems.This provides analytical insights intomodels that fall outside

the limited class that can be solved exactly. One of their models allows consumption at every

date. The inter-temporal budget constraint is that wealth in the next period equals the portfolio

return multiplied by reinvested wealth—that is, it equals today’s wealth less what is subtracted for

consumption:

Wt+1 = (1 + Rp,t+1 )(Wt −Ct ).

Preferences over random consumption streams are defined recursively,

Ut =
[

(1 − δ)C1−ρ
t + δD1−ρ

t

]
1

1−ρ , Dt = (EtU
1−γ

t+1 )
1

1−γ ,

where δ equals the time discount factor, ψ = 1/ρ equals the inter-temporal elasticity of substitu-

tion, and γ is related to risk aversion. These preferences were developed by Epstein & Zin (1989,

1991) and Weil (1989) using the theoretical framework of Kreps & Porteus (1978).
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Campbell & Viceira (2002, chapter 4) use their general framework to investigate how investors

should allocate their portfolios among three assets: stocks, nominal bonds, and nominal Treasury

bills. Investment opportunities are described using a VAR system that includes short-term, ex-

post real interest rates, excess stock returns, excess bond returns, and variables that have been

identified as return predictors by empirical research: the short-term nominal interest rate, the

dividend-price ratio, and the yield spread between long-term bonds andTreasury bills.The annual

data cover the period 1890–1998. Their source are the data used by Grossman & Shiller (1981),

updated following the procedures of Campbell (1999). Point estimates from the VAR are used in

the analytic formulas for optimal portfolios. A range of different values for γ are used, assuming

ψ = 1 and δ = .92 in annual terms. The investor optimally rebalances the portfolio each period.

The solutions do not impose constraints that might prevent short selling or borrowing to invest

in risky assets. At γ = 5, the stock allocation is 67%, the bond allocation is 91%, and the cash

position is −58% to finance stock and bond positions that exceed 100% of the portfolio. As risk

aversion increases above 5, the demand for bonds increases and accounts for almost the entire

portfolio of extremely conservative long-term investors.

Campbell & Viceira (2002, chapter 6) also develop asset allocation models with labor income,

considering the role of labor income risk and precautionary savings. Empirical results from the

Panel Study of Income Dynamics (PSID) are used to calibrate the models. In chapter 7, they

develop a life-cycle model of consumption and portfolio choice. They use the PSID to measure

differences in the stochastic structure of the labor income process across industries and differences

between self-employed and non-self-employed households. They examine the effects of these dif-

ferences, and of other sources of investor heterogeneity, on optimal consumption and portfolio

choice. These models and questions suggest a rich set of decision problems in which a variety of

data sets can be used, including administrative data. We could also include human capital invest-

ment decisions that individuals make for themselves and their children, location decisions, and

health decisions involving treatment choice.

4. WORKING WITH DIVERGENCE AND CONSTRAINT PREFERENCES

This section discusses how the analysis proposed by Barberis (2000) could work with divergence

and constraint preferences. We shall also consider including consumption choices, as done by

Campbell & Viceira (2002). First, consider a buy-and-hold strategy. The reference model q is

based on the VAR in Equation 33 and a prior distribution π for the parameters θ = (a,B,�) in the

parameter space 
. Let z = (z(1), z(2)) with z(1) = {zt}
T
t=1 and z

(2) = {zt}
T+T̂
t=T+1. The VAR provides a

conditional density λ(z | θ ) for z ∈ Z . Set the state space S = Z = Z (1) × Z (2). Then, for A ⊂ Z ,

we obtain

q(A) =

∫

A

∫




λ(z | θ ) dz dπ (θ ).

The investor observes z(1) and chooses the allocation x to the stock index at t = T as a function of

z(1): x= a(z(1))� [0, 1].The corresponding act is based on end-of-horizon wealth as in Equation 34

(withWT = 1):

f (z) = f (a(z(1) ), z(2) ) = (1 − a(z(1))) exp(rf T̂ ) + a(z(1)) exp(rf T̂ + rT+1 + · · · + rT+T̂ ). 38.

The investor’s problem is

max
0≤a(·)≤1

min
p∈�(Z )

∫

Z

u( f (z)) d p(z) + κDφ (p‖ q). 39.
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From Section 2.4, we have

min
p∈�(Z )

∫

Z

u( f (z)) d p(z) + κDφ (p‖ q) = max
δ∈R

−κ

∫

Z

φ∗

(

−
u( f (z)) + δ

κ

)

dq(z) − δ.

For a given value of δ, define the increasing concave function bδ : R → [−∞,∞) by

bδ (x) = −κφ∗

(

−
x+ δ

κ

)

.

Then, Equation 39 is equivalent to

max
δ∈R

(

max
0≤a(·)≤1

(∫

Z

bδ ◦ u( f (z)) dq(z)

)

− δ

)

. 40.

For each z ∈ Z , the distribution of f (z) puts probability 1 on a single point. So we can replace the

utility function u by bδ ◦ u and apply SEU preferences using the reference distribution q:

max
0≤a(·)≤1

∫

Z

bδ ◦ u( f (z)) dq(z) =

∫

Z(1)

(

max
x∈[0,1]

∫

Z(2)
bδ ◦ u( f (x, z(2))) dq(z(2)

∣

∣

∣

∣

z(1))

)

dq(z(1)).

Then, the solution to Equation 40 is completed bymaximizing over δ inR. In the case of multiplier

preferences, by replacing Dφ(p ‖ q) by R(p ‖ q), the solution a∗ to Equation 39 simplifies to

a∗(z(1)) = arg max
x∈[0,1]

∫

Z(2)
ζκ ◦ u( f (x, z(2) )) dq(z(2) | z(1)).

As in Section 2.4, we can use the solutions for a range of values of the multiplier κ to pro-

vide solutions using the associated constraint preferences for a range of values for the constraint

parameter η in Equation 27. Then the constraint parameter η will fix the convex set C of distribu-

tions for MEU preferences. The choice of η can be based on a consideration of the set of implied

predictive distributions for portfolio returns. Following Good (1952), only reasonable predictive

distributions should be included.

Now consider applying robustness to the prior π (θ ), maintaining the conditional density

λ(z | θ ). Set the state space S equal to the parameter space 
. Using the notation for f (z) in

Equation 38, the act g(θ ) is an objective distribution that, for A ⊂ R, is given by

g(θ )(A) =

∫

f −1 (A)

λ(z | θ ) dz.

Evaluating the VNM utility function u at g(θ ) gives

u(g(θ )) =

∫

Z

u( f (z))λ(z | θ ) dz.

With multiplier preferences, we obtain

min
p∈�(
)

∫




u(g(θ )) d p(θ ) + κR(p‖ π ) = ζ−1
κ

(∫




ζκ (u(g(θ ))) dπ (θ )

)

.
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Now it matters that ζ κ ◦ u is not a VNM utility function. The optimal portfolio rule solves

max
0≤a(·)≤1

∫




ζκ

(∫

Z

u( f (a(z(1)), z(2)))λ(z | θ ) dz

)

dπ (θ ).

This does not correspond to applying SEU preferences with a modified utility function.

Consider allowing for consumption and portfolio choice at dates T ,T + 1, . . . ,T + T̂ − 1,

as in Campbell & Viceira (2002). Let zt = {zτ }
t
τ=1. At date T, wealth wT is given and consump-

tion is a function of wT and the history zT: cT = cT (wT, zT). Likewise, the stock allocation is

aT = aT (wT, zT). Then wealth is defined recursively,

wt+1 = [wt − ct (wt , z
t )][(1 − at (wt , z

t )) exp(rf ) + at (wt , z
t ) exp(rf + rt+1 )],

for t = T ,T + 1, . . . ,T + T̂ − 1. Define T ′ = T + T̂ . Multiplier preferences are given by

U = min
p∈�(Z )

∫

(

T ′−1
∑

t=T

ut (ct ) + uT ′ (wT ′ )

)

d p+ κR(p‖ q).

We shall see that these preferences are recursive. First, we need to decompose R(p ‖ q) into

conditional and marginal components.

Let (Z1, . . . ,ZT ′ ) denote the random vector with distribution p, and let pt denote the marginal

distribution of (Z1, . . . , Zt). Let p+(·|zt) denote the conditional distribution of Zt + 1 given

(Z1, . . . , Zt) = zt. Define ht = dpt/dqt and apply iterated expectations:

R(pt | qt )=

∫

log[ht (z
t )] d pt

=

∫

log[ht (zt | z
t−1 )ht−1(z

t−1 )] d pt

=

∫

(

∫

log[ht (zt | z
t−1 )] d p+(zt | z

t−1 )

)

d pt−1 +

∫

log[ht−1(z
t−1 )] d pt−1

=

∫

R(p+( · | zt−1 ) ‖ q+( · | zt−1 )) d pt−1 + R(pt−1 ‖ qt−1 ).

Note that

∫

(

T ′−1
∑

t=T

ut (ct ) +

(

∫

uT ′ (wT ′ ) d p+(zT ′ | zT
′−1 )

+ κR(p+( · | zT
′−1 ) ‖ q+( · | zT

′−1 ))

))

d pT
′−1 + κR(pT

′−1 ‖ qT
′−1 )

≥

∫

(

T ′−1
∑

t=T

ut (ct ) + min
p+ ( · | zT

′−1 )

(

∫

uT ′ (wT ′ ) d p+(zT ′ | zT
′−1 )

+ κR(p+( · | zT
′−1 ) ‖ q+( · |zT

′−1 )

))

d pT
′−1 + κR(pT

′−1 ‖ qT
′−1 ).
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Suppose that T̂ ≥ 2 and define the value function

VT ′−1 = uT ′−1(cT ′−1 ) + ζ−1
κ

(

∫

ζκ (uT ′ (wT ′ )) dq+(zT ′ | zT
′−1

)

.

Then, we obtain

U = min
pT

′−1

∫

(

T ′−2
∑

t=T

ut (ct ) +VT ′−1

)

d pT
′−1 + κR(pT

′−1 ‖ qT
′−1 ).

Recursively define the value functions

Vt = ut (ct ) + ζ−1
κ

(

∫

ζκ (Vt+1 ) dq
+(zt+1 | zt )

)

(t = T ′ − 2,T ′ − 3, . . . ,T ). 41.

Make the inductive assumption that for some t ≥ T,

U = min
pt+1

∫

(

t
∑

τ=T

uτ (cτ ) +Vt+1

)

d pt+1 + κR(pt+1 ‖ qt+1 ).

Note that

∫

(

t
∑

τ=T

uτ (cτ ) +

(

∫

Vt+1 d p
+(zt+1 | zt ) + κR(p+( · | zt ) ‖ q+( · | zt ))

))

d pt

+ κR(pt ‖ qt )

≥

∫

(

t
∑

τ=T

uτ (cτ ) + min
p+ ( · | zt )

(

∫

Vt+1 d p
+(zt+1 | zt ) + κR(p+( · | zt ) ‖ q+( · | zt ))

))

d pt

+ κR(pt ‖ qt ).

Then, we have

U =min
p t

∫

(

t−1
∑

τ=T

uτ (cτ ) +Vt

)

d pt + κR(pt ‖ qt ) (t = T ′ − 1,T ′ − 2, . . . ,T + 1)

=min
pT

∫

VT d p
T + κR(pT ‖ qT ).

The value function Vt depends on the policy functions {cτ }
T ′−1
τ=t and {aτ }

T ′−1
τ=t , on wealth w, and

on the history zt:Vt = Vt (w, zt; {cτ }
T ′−1
τ=t , {aτ }

T ′−1
τ=t ). These recursive preferences have the important

property of probabilistic sophistication with respect to the reference distribution q: If acts f and g

imply the same distribution of outcomes under q, then we have f ∼ g (see Machina & Schmeidler

1992, Maccheroni et al. 2006a).

Given the recursion for the value function in Equation 41,we can apply dynamic programming

to obtain optimal policy functions. Starting at the end of the horizon, construct the maximized
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value function at T ′ − 1:

JT ′−1(w, zT
′−1 ) = max

0≤x1≤w,0≤x2≤1

[

uT ′−1(x1 ) + ζ−1
κ

(

∫

ζκ (uT ′ (w̃)) dq+(zT ′ | zT
′−1 )

)]

,

with

w̃ = (w − x1 )[(1 − x2 ) exp(rf ) + x2 exp(rf + rT ′ )].

Then, working backwards, recursively construct the maximized value functions for the other

dates:

Jt (w, zt )= max
0≤x1≤w,0≤x2≤1

[

ut (x1 ) + ζ−1
κ

(

∫

ζκ (Jt+1(w̃, zt+1 )) dq+(zt+1 | zt )

)]

(t = T ′ − 2,T ′ − 3, . . . ,T ), 42.

with

w̃ = (w − x1 )[(1 − x2 ) exp(rf ) + x2 exp(rf + rt+1 )].

The optimal policy functions c∗t and a∗
t evaluated at (w, zt) are obtained from the solutions (arg

max) for x1 and x2 in Equation 42.

With dynamic divergence preferences, the atemporal model is applied to the one-step-ahead

continuation plans to form conditional preferences. The value function at T ′ − 1 is

VT ′−1 = uT ′−1(cT ′−1 ) + max
δ∈R

−κ

(

∫

φ∗

(

−
uT ′ (wT ′ ) + δ

κ

)

dq+(zT ′ | zT
′−1 )

)

− δ,

where φ∗ : R → (−∞,∞] is the convex conjugate of φ:

φ∗(x) = sup
y≥0

[xy− φ(y)].

The value function recursion in Equation 41 becomes

Vt = ut (ct ) + max
δ∈R

−κ

(

∫

φ∗

(

−
Vt+1 + δ

κ

)

dq+(zt+1 | zt )

)

− δ. 43.

As in the multiplier case, these recursive preferences have probabilistic sophistication with respect

to the reference distribution q. Given the recursion for the value function in Equation 43, we can

apply dynamic programming to obtain optimal policy functions.

Strzalecki (2013) shows how these recursive preferences can be reinterpreted. Instead of am-

biguity aversion, they can reflect a preference for the timing of the resolution of uncertainty, as

proposed by Kreps & Porteus (1978).

5. CRITIQUE

In his article on “pitfalls to a minimax approach to model uncertainty,” Sims (2001, p. 51) wrote:

In fact, because it violates the sure-thing principle,most people, and certainlymost policymakers,would
be likely to alter behavior fitting the maximin theory if they were shown certain consequences of it.
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For example, because maximin expected utility behavior, if applied de novo to each of a sequence of
choice sets, can imply behavior consistent with no single set of probabilistic prior beliefs, it can allow
a Dutch Book, a situation where someone agrees to a set of bets that causes him to lose money with
probability 1.

Multiplier preferences satisfy the sure-thing principle on a given state space, but this does not

necessarily address Sims’s critique. In Section 2.3 we imposed the restriction that the alternative

distributions p for (R0, R1) should be i.i.d. conditional on θ , and we used {θ : 0 ≤ θ ≤ 1} as the

state space. In that case, the multiplier preferences were not recursive with respect to the filtration

generated by (R0, R1).

A similar issue arose with Ellsberg’s three-color problem when we restricted the alternative

distributions p to assign probability 1/3 to drawing the A ball. The state space was {θ : 0 ≤ θ ≤ 1}.

Then our solution exhibited typical Ellsberg behavior, which violates the sure-thing principle

applied to the state space {A, B, C} in Table 1 and Figure 3.

On the other hand, if we do not restrict the predictive distribution for (R0, R1), then we ob-

tain recursive preferences and can solve for the optimal portfolio using dynamic programming.

Likewise, in Section 4, when we do not restrict the predictive distribution for {Zt}
T+T̂
t=1 , the multi-

plier and divergence preferences are recursive with respect to the filtration generated by {Zt}
T+T̂
t=1 .

These preferences satisfy consequentialism, which is related to the sure-thing principle.

The lack of a single set of probabilistic beliefs can arise if one uses the least favorable prior as

the beliefs. This least favorable prior depends on the feasible set of actions and will change if the

problem changes. An alternative is to use the reference distribution q to provide a single set of

probabilistic beliefs. The multiplier and divergence preferences are probabilistically sophisticated

with respect to q for a given state space.This does not, however, necessarily address Sims’s critique.

Consider the Ellsberg three-color problem, where we restrict the alternative distributions p to

assign probability 1/3 to drawing the A ball, and we use {θ : 0 ≤ θ ≤ 1} as the state space. The

multiplier preferences in Section 2.3 are probabilistically sophisticated with respect to this state

space, but they exhibit typical Ellsberg behavior. So they are not probabilistically sophisticated

with respect to the state space {A, B, C} (Machina & Schmeidler 1992, p. 752).

6. CONCLUSION

My preference is to stay within the SEU framework. Then multiplier preferences can be used in

a sensitivity analysis, with the reference distribution q based on SEU. The multiplier parameter κ

can be chosen to ensure that the least favorable distribution is plausible. The least favorable prior

can focus attention on parts of the reference distribution that are particularly important for the

decision problem. The sensitivity analysis can provide protection against specifying a reference

distribution that has unintended dogmatic aspects.

If the reference distribution is built up from a likelihood function λ(z | θ ) and a prior distri-

bution π on the parameter space 
, then one possibility is to hold the likelihood function fixed

and apply the sensitivity analysis only to the prior distribution π . We saw in Section 5 that multi-

plier preferences in this case are particularly vulnerable to a normative critique.We are on firmer

ground when the alternative distributions p do not restrict the predictive distribution, so that the

likelihood function λ and the prior π on the parameter space are both subject to the sensitivity

analysis. Then the multiplier preferences are recursive and satisfy consequentialism with respect

to the (natural) filtration generated by the observations {Zt}
T+T̂
t=1 . Divergence and dynamic diver-

gence preferences can also be used in a sensitivity analysis.
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