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Abstract

We investigate how people make choices when they are unsure about the value of 

the options they face and have to decide whether to choose now or wait and acquire 

more information first. In an experiment, we find that participants deviate from opti-

mal information acquisition in a systematic manner. They acquire too much infor-

mation (when they should only collect little) or not enough (when they should col-

lect a lot). We show that this pattern can be explained as naturally emerging from 

Fechner cognitive errors. Over time participants tend to learn to approximate the 

optimal strategy when information is relatively costly.

Keywords Search · Decision under uncertainty · Information · Optimal stopping · 

Real option

JEL Classification C91 · D81 · D83

1 Introduction

In the economic theory of decision under uncertainty (risk or ambiguity) the deci-

sion maker has to choose between alternatives while facing an irreducible uncer-

tainty about their final payoffs. However, in a wide range of situations, the decision 

maker has the possibility to reduce the uncertainty she faces by looking for informa-

tion before making a choice. Typical examples include the following situations: a 
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consumer can search for additional reviews before making a purchasing decision, 

an agent can look for more information before choosing between different invest-

ment opportunities, a doctor can request new tests before making a diagnostic, an 

inspector can decide to investigate a case further before making a decision. In such 

situations, the decision maker is confronted with an “optimal sequential sampling” 

problem whereby she needs to decide when to stop acquiring information about 

the different alternatives and make a choice between them. As early as 1945, Wald 

developed a formal framework to find the solution to this question. For a Bayes-

ian decision maker (henceforth DM), the optimal solution is to gather information 

until the marginal expected value of information is smaller than the cost of sampling 

information.

Does this model offer a good representation of actual individual behaviour? The 

empirical evidence is scarce, which is somewhat surprising given the general nature 

of this framework and the widespread situations where it can be used. In the present 

study we experimentally investigate whether this theoretical framework helps us 

understand how people make decisions. We design a controlled situation where indi-

viduals have to choose between two alternatives with uncertain payoffs. Before mak-

ing a choice, they have the opportunity to wait and collect additional (costly) pieces 

of information which help them get a better idea of the likely alternatives’ payoffs. 

The design of the experiment allows us to precisely identify the optimal sequential 

sampling strategy and to assess whether participants are able to approximate it.

We find that participants deviate in systematic ways from the optimal strategy. 

They tend to hesitate too long and oversample information when it is relatively 

costly, and therefore when the optimal strategy is to collect only little information. 

On the contrary, they tend to undersample information when it is relatively cheap, 

and therefore when the optimal strategy is to collect a lot of information. We show 

that this pattern of oversampling and undersampling can be explained as the result 

of Fechner cognitive errors which introduce stochasticity in decisions about whether 

or not to stop. Cognitive errors create a risk to stop at any time by mistake. When 

the optimal level of information to acquire is high, DMs should continue to sample 

information for a long time. As a consequence, errors are likely to lead to stop too 

early, and therefore to undersampling. When the optimal level of evidence to acquire 

is low, DMs should stop sampling early. In that case, cognitive errors are more 

likely to lead to fail to stop early enough, and therefore to oversampling. The devia-

tions we observe, lead participants to lose between 10 and 25% of their potential 

payoff. However, participants learn to get closer to the optimal strategy over time, as 

long as information is relatively costly.

The present study contributes to two strands of literature. First, it contributes to the 

empirical study of the ability of optimal sequential sampling models to explain human 

behaviour. The optimal sampling framework has recently attracted a lot of interest to 

explain human decision making. In psychology, it is now seen as giving a foundation to 

a wide range of cognitive models (e.g. drift-diffusion models) where it has been found 

to appropriately describe the information accumulation process in the brain. While 

such models have mainly focused on perceptual choices (Gold and Shadlen 2002; 

Bogacz et al. 2006), recent studies have suggested extending these models to economic 

choices (Webb 2013; Fehr and Rangel 2011; Krajbich et al. 2014; Caplin and Martin 
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2016). Optimal sequential sampling models can explain several empirical patterns. For 

instance, they imply that choices should be partly random due to the random nature of 

new information. As a consequence, they offer a foundation to random utility models 

(Webb 2013; Woodford 2014). Such models can also explain apparently puzzling pat-

terns such as the negative correlation between decision times and quality of decisions 

(Fudenberg et al. 2015). While the interest for the optimal sequential sampling frame-

work is growing in economics we still know little about its ability to explain actual 

behaviour. Our study adds to this emerging literature.

Second, this paper contributes more broadly to the study of the empirical rele-

vance of real option theory for individual decisions. When having to decide between 

making a choice now and waiting to get more information, the DM has to compare 

the cost of collecting the additional information to the option value of future infor-

mation. Such a situation is a type of real option problem. In the real option literature, 

it has been investigated in the specific case of a decision between making an irre-

versible investment now or waiting for more information, at the risk of seeing the 

investment opportunity disappear (McDonald and Siegel 1986). An empirical test 

of this theory was proposed by Oprea et al. (2009). They analyse the behaviour of 

agents who incur a fixed cost to seize an irreversible investment opportunity. Their 

main result is that despite poor performance at the start of the experiment, the sub-

jects learn “intuitive heuristics” to approximate the optimal behaviour. In follow-up 

experiments, Della Seta et al. (2014) find that real option models’ predictions with 

respect to risk aversion are supported, while Viefers and Strack (2014) find that sub-

jects are not always consistent and adopt a behaviour suggesting regret. Our paper 

extends this type of research by investigating behaviour in a general case where the 

DM faces two possible prospects with unknown values and has to weigh the value of 

collecting additional information against the cost of this information.

The rest of the paper is as follows: Sect. 2 presents the conceptual framework of 

the optimal sequential sampling model, Sect. 3 describes our experimental design, 

Sect. 4 presents our results and how participants’ choices deviate from the optimal 

solution to the problem, Sect. 5 shows that the pattern of behaviour we observe can 

be explained by a the stochastic nature of choices to stop, and Sect. 6 concludes.

2  Conceptual framework: optimal sequential sampling

2.1  Statement of the model

When hesitating to make a choice, the DM has the option to take an action in a finite 

set or to acquire more information.1 Wald (1945) gives the example of a statistician 

1 This is clearly the case when the DM can access new external information when waiting to make a 

choice. The framework we describe can also be used in situations where no new external information is 

available. In such situations, taking more time to engage in cognitive introspection can help reduce the 

uncertainty about the values of the different choices by matching previous memories with perceived fea-

tures of the available choices (Ratcliff et al. 2016).
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who has to discriminate between two hypotheses, and has the opportunity to sequen-

tially acquire more observations. Gathering more data comes at a cost, but, as the 

sample size grows, the statistician has a finer knowledge of the underlying data gen-

erating process. The optimal sequential sampling (OSS) model formalises this prob-

lem to determine the optimal stopping rule.

We model the behaviour of a Bayesian DM that sequentially investigates the 

nature of a state of the world, � = {A;B} , by accumulating some evidence on it. 

Time is discrete, finite and indexed by t ∈ {0, ..., T} = �  . The problem of the DM 

is twofold, she has to find what state of the world she is in, and when to make this 

decision. We denote by d
t
= {a;b} the set of actions at any given period t, where 

choosing a (b) is the right action to take when the true state of the world is A (B).

To make up her mind, the DM can gather independently and identically distrib-

uted (i.i.d.) binary signals ( X
t
∈ {−1;1} ). These signals are informative about the 

nature of the state of world (i.e. ℙ(X
t
= 1|𝜃 = B) > ℙ(X

t
= 1|𝜃 = A) ), but come at 

a unit cost c. Given all the gathered signals ( Xt

1
= (X1, ...X

t
) ), we can construct the 

Bayesian DM’s posterior at time t, �
t
 , about the likelihood of state of the world B :

When the expected utility from stopping is greater than the expected utility from 

sampling, the DM makes a guess about the nature of the state of the world she is 

facing. We consider a “certain difference” optimal sequential sampling problem 

(Fudenberg et al. 2018), whereby the DM knows for sure the difference between the 

utility of making the right ( U
1
∈ ℝ ) and the wrong guess ( U

0
∈ ℝ ). Let U(d

t
= i;�

t
) 

be the expected utility from choosing action i, given the DM’s Bayesian beliefs.2 

When stopping at time t = � , the DM chooses the action that maximises her 

expected utility:

The sequential nature of the problem appears when considering the decision to 

stop. At a given time t, the DM compares the value of stopping now with that of 

continuing. Let G̃(t,𝜋
t
) be the value of the continuation option at time t, such that 

G̃(t,𝜋
t
) = max{�[G(t + 1,𝜋

t+1)|𝜋t
];�[G̃(t + 1,𝜋

t+1)|𝜋t
]}.

Following Kruse and Strack (2015), we use the concept of marginal incentive to 

sample in order to characterise the stopping time.

Definition 1 (Marginal Incentive) The marginal incentive, m ∶ 𝕋 × [0;1] → ℝ , 

measures the expected gain from proceeding to the next stage of the sampling 

process:

�
t
=

ℙ(� = B)
∏t

k=1
ℙ(X

k
�� = B)

ℙ(� = B)
∏t

k=1
ℙ(X

k
�� = B) + ℙ(� = A)

∏t

k=1
ℙ(X

k
�� = A)

(1)G(�,�
�
) = max

i=a,b

U(d
�
= i;�

�
)

2 That is U(d
t
= a;�

t
) = �

t
U0 + (1 − �

t
)U1 if dt

= a and U(d
t
= b;�

t
) = �

t
U1 + (1 − �

t
)U0 if dt

= b.
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The optimal sequential sampling strategy is to continue sampling as long as 

there is a gain to it, that is whenever m(t,𝜋
t
) > 0 . It can be shown that there are 

two levels of Bayesian beliefs that make the DM indifferent between sampling or 

not (i.e. m(t,�
t
) = 0 , see Tartakovsky et al. (2014)). We respectively call A

t
 and 

B
t
 the beliefs �

t
 solutions of equation (2). For these beliefs, the DM is indifferent 

between sampling and choosing d
t
= a or d

t
= b at time t. The left panel of Fig-

ure 1 summarises the decision rules to be followed by the DM.

The informational content of each signal can be summarised by a log-likeli-

hood ratio, Z
t
 , which in the case of binary signals can only take two values 

( Z
t
∈ {− log(

P(X
t
=1|�=B)

P(X
t
=1|�=A)

; log(
P(X

t
=1|�=B)

P(X
t
=1|�=A)

} ). The rationale for using this measure is 

that it gives a simple additive form to the information that has been accumulated 

in the learning process: �
t
=

∑t

k=1
Z

k
 . It is then possible to define a stopping rule 

in the log-likelihood space, which summarises not only what decision the DM 

should make, but also when it should be made (Wald 1945). Wald called this 

stopping rule a sequential probability ratio test (SPRT).

Definition 2 (Minimum Optimal Stopping Time) The minimum optimal stopping 

time �∗ is the first time �
t
 hits a lower or an upper boundary, respectively a

t
 and b

t
:

Where a
t
= log

A
t

(1−A
t
)
 and b

t
= log

B
t

(1−B
t
)
 are the transforms of A

t
 and B

t
 in the log-

odds space. The right panel of Figure 1 shows an example of path followed by �
t
 

over time, and the optimal stopping rule.

Wald and Wolfowitz (1948) show that for a given level of acceptance of statisti-

cal errors (type I and type II), the SPRT stopping time is optimal in the sense that it 

minimises the expected sample size. In our case, it means that the SPRT minimises 

the expected number of signals needed to reach a given level of risk.

2.2  Our experimental setting

We provide here a numerical example of the OSS model and its optimal solution, for 

the setting which we will use in our experiment. Let’s consider a situation where the 

two states of the world are represented by urns with different proportions of white 

and black balls. A DM receives binary signals which are informative of the real 

state of the world: balls drawn from the urn. Suppose that both states of the world 

are a priori equally likely ( ℙ(� = A) = ℙ(� = B) = 0.5 ) and let’s assume that white 

balls are “ − 1 ” signals, while black balls are “ + 1 ” signals. Suppose urn A contains 

(2)m(t,𝜋
t
) = G̃(t,𝜋

t
) − c − G(t,𝜋

t
)

(3)�
∗ = inf{t ≥ 0 ∶ �

t
∉ [a

t
, b

t
]}
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6 white balls and 4 black balls ( ℙ(X
t
= 1|� = A) = 0.4) ) and urn B contains 4 white 

balls and 6 black balls ( ℙ(X
t
= 1|� = B) = 0.6)).3 The first step towards estimating 

the stopping region is to construct the Bayesian belief of the DM. Let n
B
 ( n

A
 ) be 

the number of black (white) balls accumulated. Let’s define, the signal intensity as 

the sum of accumulated signals, S
t
=

∑t

i=1
X

i
 . A negative (positive) signal intensity 

indicates that state of the world A (B) is more likely. The Bayesian belief after t sig-

nals is given by:

It is possible to construct all the possible Bayesian beliefs after t draws, by look-

ing at all the possible signals combinations. Let’s consider a risk neutral DM 

with the following payoffs: being right yields $20 ( U
1
= 20 ), being wrong yields 

$0 ( U
0
= 0 ) and sampling an additional signal costs $0.50 ( c = 0.5 ). For a given 

Bayesian belief ( �
t
 ), it is possible to derive the expected payoff from stopping 

( G(t,�
t
) ) in period t. In the last period ( t = T  ) the only possible choice is to stop, 

therefore the expected payoff from sampling at the period before the last one is 

G̃(T − 1,𝜋
T−1) = �[G(T ,𝜋

T
|𝜋

T−1)] − c . By backward induction, we can derive the 

expected payoff from sampling ( ̃G(t,𝜋
t
) ) at any period t. From the expected payoffs 

of stopping and the expected payoffs of sampling, we can determine the boundaries 

A
t
 and B

t
 , that make the DM indifferent between sampling and stopping, by solving 

the equation m(t,�
t
) = 0 . Figure 2 represents these boundaries in terms of beliefs 

(left panel) and in the corresponding log-likelihood space (right panel) for the three 

levels of cost used in our experiment.

When t is not too large, the optimal strategy is to stop when the differ-

ence between A and B signals crosses a threshold. For a low level of cost 

( c = 0.1 ), the optimal strategy is to wait to have five more signals in one direction 

( �∗ = inf{t ∈]5;66]| |S∗
t
| = 5} ). For c = 0.5 , the DM should wait to have two signals 

in the same direction, that is �∗ = inf{t ∈ � ; |S∗
t
| = 2} . Finally, c = 1 is a degener-

ate case and the DM should gather only one signal. That is, �∗ = 1 and |S∗

1
| = 1 . As 

the experiment is done in a finite horizon, the optimal signal-strength threshold, |S∗

t
| , 

is decreasing after a large number of draws, when t is getting close to T. This situa-

tion represents only a negligible part of the observed behaviour in our experimental 

data: respectively 0.38%, 0.37% and 1.19% of the observed stopping time for the 

low, medium and high cost conditions.4

�
t
=

0.6
n

B
−n

W

0.6n
B
−n

W + 0.4n
B
−n

W

4 Ideally, one could prefer a constant optimal threshold, but it would require an infinite horizon. Since 

the participants have to pay to sample signals, we provide them with a budget to do so. This budget is 

finite and, as a consequence, the experiment has a finite horizon and an optimal threshold which is not 

constant. Our analyses rely on the identification assumption that participants are not influenced by the 

length of the horizon as such (e.g. via some heuristic using a proportion of the horizon to decide when 

to stop). Note that an alternative solution would have been to vary the budget of participants across treat-

ments to provide the same horizon. But such design implies potential wealth effect issues as a major 

drawback.

3 Among all the possible choices of urn compositions, we chose this one to have signals which are mod-

erately informative. We can therefore study participants facing a flow of moderately informative signals 

and deciding when to stop.
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2.3  Hypotheses

This section summarises the features and predictions of the OSS model that can be 

tested in our experiment.

We define optimality as choosing to stop after the minimum optimal stopping 

time. As described above, we are able to characterise the optimal sampling strategy 

with a simple decision rule: a risk neutral agent should stop acquiring information 

when the log likelihood-ratio crosses one of the boundaries of the sampling region, 

a
t
 or b

t
.

Hypothesis 1 Optimality. An agent maximising expected payoffs follows the opti-

mal sequential sampling strategy.

If the participants do not follow the optimal strategy, we would expect them to 

react to incentives. The OSS model predictions are very simple: When the cost of 

information increases, the opportunity cost of going to the next round is higher. 

Hence, the higher the sampling cost, the lower the optimal number of draws.

Hypothesis 2 Reaction to incentives. Individuals increase (decrease) their informa-

tion acquisition when the cost of information decreases (increases).

If Hypothesis  1 is violated, we can expect participants to learn to make better 

decisions during the course of the experiment. Studies have shown that participants 

are able to learn to approximate optimal behaviour in demanding problems, such 

as equilibrium bidding in a double auction market (Friedman and Rust 1993); or 

approximating the optimal timing of investment (Oprea et  al. 2009). The optimal 

policy gives a clear stopping rule based on the difference between the number of 

Fig. 1  Theoretical representation of the sampling problem at a given time and in a dynamic setting. 

Left panel: Typical behaviour of the expected utility from stopping ( G(t,�
t
) ) and sampling ( ̃G(t,𝜋

t
) ), at 

a given stopping time. The dotted area represents the expected gains from sampling when beliefs are 

between A
t
 and B

t
 . The hatched area represents the expected losses from sampling when beliefs are out-

side the range [A
t
, B

t
] . Right panel typical behaviour of the SPRT statistics ( �

t
 ). The bold parabola rep-

resents the sampling frontier. The optimal strategy is to stop as soon as �
t
 crosses this frontier (at t = �

∗).
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white and black balls. Participants may be able to learn to approximate it, after some 

practice.

Hypothesis 3 Learning. With experience, individuals will learn to get closer to the 

optimal sequential sampling solution.

Fig. 2  Plot of the sampling problem in the Bayesian beliefs space (left panel) and log-likelihood space 

(right panel) for c = 0.10, c = 0.50, c = 1. Participants’ endowment to buy signals is constant across the 

treatments, $10. This endowment determine the maximum number of signals T which can be bought. 

The grey dots represent the stopping region. The black dots represent the sampling region. The prior is 

ℙ(� = A) = 0.50 , a correct decision yields a payoff of U
1
= 20 and a wrong decision a payoff of U

0
= 0 . 

The dashed lines represent the estimated optimal frontiers.
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3  Experimental design

3.1  Design and treatments

We design a sampling experiment where the participant has to decide what state 

of the world she is in, which determines her payoff.5 The states of the world are 

represented by two urns (A and B), from which signals (balls) can be gathered at 

a unit cost. One of the urns, A, contains 4 black balls and 6 white balls and the 

other one, B, contains 6 black balls and 4 white balls. Both are depicted in Figure 13 

in “Experimental instructions” section of Appendix in Electronic Supplementary 

Material. The participant has to guess which urn has been selected. She can pay a 

unit cost c to see a ball, which goes back into the urn after being observed. The balls 

are drawn automatically every 2s, and the participant decides when to stop the pro-

cess. If she makes a correct guess, she earns $20, and $0 otherwise.6 In each round, 

we gave participants a $10 endowment to observe balls drawn from the urn.7

The participant takes part in 80 rounds. At the start of each round, one of the two 

urns is randomly selected by the computer with a probability �
0
= 0.5 . One of the 

rounds is selected for payment at the end of the experiment. At all times during the 

experiment, all the relevant information is displayed on a screen (possible payoffs, 

number of draws, share of black and white balls in each urn, past draws). At the end 

of each round, participants receive feedback as to whether they chose the right urn 

and what is their payoff.

As we are able to precisely identify the optimal solution we can test whether par-

ticipants approximate it (Hypothesis 1). Each participant enters one of three costs 

conditions (low $0.10, medium $0.50 and high $1). Comparing decisions across 

these three treatments we can test whether participants at least react to the level of 

information cost (Hypothesis 2). By repeating the task multiple times and providing 

participants with feedback, we are able to test whether participants learn to approxi-

mate the optimal solution over time (Hypothesis 3). Finally, we frame the decision 

in two ways: payoffs are either presented as gains, or as losses relative to an initial 

endowment. This framing is neutral in terms of monetary incentives, the structure of 

payoffs being strictly identical across the two types of framing, and each participant 

enters only one of the two conditions.8 These two types of framing allow us to test 

whether participants sample more to avoid losses than to secure gains.9

5 This choice is identical to choosing an action d
t
∈ {a, b} mirroring the state of the world.

6 All amounts are in Australian dollars.
7 It is enough to reach the expected stopping time in each treatment. Time horizons were the following: 

T = 100 in the $0.10 condition, T = 20 in the $0.50 condition and T = 10 in the $1 condition.
8 In the loss frame we inform the participants that they are all given $20 at the start of the session, and 

that correctly guessing the nature of the urn will allow them to keep this money. On the other hand, in the 

gain frame we tell them that if they make the right guess, they will get $20.
9 According to the optimal sequential sampling model, framing the payoffs as gains or losses should not 

matter. However, there is extensive evidence that individual behaviour substantially changes depending 

on whether a prospect is framed as leading to possible gains or losses (Kahneman and Tversky 1979; 

Wakker 2010). A simple way to introduce the idea that “losses loom larger than gains”, is to consider 

that when the DM faces a potential loss, the payoff V is subjectively transformed in �V  , with 𝜇 > 1 . 
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In summary, we have a 2 × 3 between-subject design (Frame × Cost) and the task 

is repeated 80 times.

3.2  Experimental procedure

The experimental sessions were conducted between July 2015 and November 2016, 

in a large Australian university using z-Tree (Fischbacher 2007). The participants 

were students from various faculties, and were recruited through ORSEE (Greiner 

2015). In total, 162 students took part in the experiment (with an average of 23.7 

years old, and 56% males). Each session was approximately two hours long, includ-

ing a short quiz testing participants’ understanding of the game.

After the 80 rounds were completed, the participants entered an incentivised risk 

preferences elicitation task (Holt and Laury 2002). The subjects were then asked a 

few demographic questions and completed a cognitive reflection test (CRT, Freder-

ick , 2005).10 When all these tasks were completed, the participants were informed 

of their payoffs. The average payoff was $28.5, including a $5 show up fee and the 

risk preference elicitation procedure. One of the rounds the participants entered was 

randomly selected by the computer and the subjects were given the corresponding 

payoff.11

4  Results

4.1  Sampling behaviour

From these optimal rules, we can determine the corresponding average stopping 

times ( ̄𝜏∗ ). To do so, we ran 100,000 simulations of a rational DM following the 

optimal decision rule for each level of information cost. From our simulations, 

on average 19.1 signals are required to reach a decision when c = 0.1 , 3.84 when 

c = 0.5 and 1 when c = 1 . The theoretical signal intensities and corresponding aver-

age stopping times are compared with the participants’ average decisions in Table 1. 

The table also presents the proportion of inconsistent decisions where participants 

choose an urn while their observed signals pointed to the other urn. Such choices 

represent only around 4% of all the choices and we do not take them into account in 

our analysis.

Overall, participants make their decisions too quickly (sample too little informa-

tion) when information is relatively cheap. Inversely, they hesitate too long (sample 

10 The results of the CRT are provided in “CRT” section of Appendix in Electronic Supplementary 

Material.
11 This has been shown to be an efficient way to allocate payment in experiments with repeated choices, 

see Baltussen et al. (2012).

Mechanically, the higher stakes push the optimal frontier outwards and make the marginal incentive to 

sample greater. We did not find any effect of framing. We report these analyses in “Framing effects” sec-

tion of Appendix in Electronic Supplementary Material.

Footnote 9 (continued)
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too much information) when information is relatively expensive. They stop after 

approximately 9 draws in the $0.10 treatment, 7 draws in the $0.50 treatment and 

4 draws in the $1 treatment. In the lower cost treatment, this average is below the 

theoretical prediction, and in the two other costs treatments it is above it. The aver-

age stopping time is significantly different from the theoretical one in each treatment 

( p < 0.001 for a Wilcoxon signed-rank test in $0.10 and $1 treatments, p = 0.0085 

in the $0.50 treatment). To avoid potential issues of truncation on stopping time, we 

complement our results with median values. Medians analyses confirm our previous 

results with median stopping time statistically different from the theoretical predic-

tions according to Wilcoxon signed-rank tests (median = 9.26 for $0.10 treatment; 

median = 7.11 for $0.50 treatment; median = 4.82 for $1 treatment; p < 0.001 for 

all treatments). We use a between subject design and, in each treatment, individuals 

made 80 decisions. Looking at each individual, we reject the null hypothesis that the 

average number of draws is equal to the theoretical predictions for 142 out of 162 

subjects (setting significance at p < 0.05 for a Wilcoxon signed-rank test).12

When the decision to stop has been taken, the signal intensity |S
�
| reflects the 

level of uncertainty that was chosen by the DM. We observe the same deviation 

in this dimension, participants gathered too few signals in the $0.10 treatment, and 

too many in the $0.50 and $1 ones. This information is provided in the central part 

of Table 1. On average, in the $0.10 treatment, the participants had 2.85 signals in 

the same direction when they stopped—as opposed to 4.99 in theory. In the $0.50 

treatment, they had 2.27 signals in the same direction, while theory predicted 1.98 

signals. In the $1 treatment, the average signal intensity at the stopping time was 

1.74 instead of 1. Looking at the individual level and comparing with the prediction 

from the condition the individual is in, the average signal intensity is significantly 

different the theoretical one for 133 of our 162 subjects (with a p < 0.05 thresh-

old for a Wilcoxon signed-rank test). As a consequence, at the aggregate level, we 

strongly reject the hypothesis that the average signal intensity in the sample is equal 

to the theoretical predictions for each treatments ( p < 0.001 for Wilcoxon signed-

rank tests). As signal intensity is truncated at 0, medians may be a better measure 

of central location than means. Medians analyses confirm our previous results with 

median signal intensity statistically different from the theoretical predictions accord-

ing to sign tests (median = 2.88, p < 0.001 for $0.10 treatment; median = 2.14, 

p = 0.0035 for $0.50 treatment; median = 1.71, p < 0.001 for $1 treatment).

Another way to look at stopping times is to wonder how many draws too many or 

too few participants tend to make, given the specific thresholds they faced in each 

specific round.13 The optimal threshold �∗
ij
 during a round j is easy to observe when a 

participant i goes beyond it. However, when a participant stops too early, we do not 

observe how many draws she would have made before crossing the threshold. We 

can however estimate an expected number of draws she would have needed to cross 

12 All the Wilcoxon signed-rank tests reported are performed on subject-wise moments and bootstrapped 

10,000 times
13 The previous analyses only made comparison between average optimal strategy and average behaviour 

over all the rounds.
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the threshold, by simulating draws and continuing the sequence after the participant 

stopped. By averaging the optimal threshold over these simulated sequences, we 

obtain an expected optimal threshold crossing time for each participant for each 

round: �∗
ij
 (using 100,000 simulations). We can then define an estimated optimal 

threshold for each participant as �̂∗
ij
= �∗

ij
 if the participant stopped too late and 

�̂∗
ij
= �∗

ij
 if the participant stopped too early. Table 1 presents the values of �ij − �̂∗

ij
 for 

the different treatments. When this value is negative it indicates undersampling and 

when it is positive it indicates oversampling. We observe the same pattern than for 

the other measures we have used to compare participants’ decision to the optimal 

strategy.

The results of both the average stopping time and the average signal intensity 

suggest that participants stopped too early in the $0.10 treatments, and too late in the 

$0.50 and $1 treatments. Figure 3 breaks down participants’ choices between under/

oversampling and optimal behaviour, defined as stopping at the right time. The first 

column of the figure shows this breakdown for the whole sample. The under/over-

sampling pattern is clear with the proportion of optimal behaviour staying low in 

each cost conditions. Over the three cost conditions, only 6.8% of decisions are in 

line with the optimal solution �∗.

One possibility could be that the optimal solution we discussed is for risk neu-

tral DM while our participants may have different risk preferences. To make sure 

this is not what is driving the low levels of optimality, we use the risk preferences 

we measured using the Holt and Laury (2002) procedure to look at the participants 

who are risk neutral. The third column of Figure 3 displays the breakdown of their 

choices between under/oversampling and optimal behaviour. We do not observe 

that risk neutral participants perform better. Only 6.1% ( N = 33 ) of their decisions 

occurred at the optimal stopping time, whereas this figure is respectively 6.3% and 

8.3% for risk averse and risk loving participants ( N = 98 and N = 31 ). A further test 

of the impact of risk preferences on sampling behaviour is provided in Sect. 1.

Looking only at the number of times participants precisely stopped at the opti-

mal threshold of information is quite a stringent test of optimality. It may give the 

impression that participants fail to optimise even though they may be approximating 

Table 1  Summary statistics from observed stopping times and signal intensity

100,000 simulations were used to determine the average stopping time with a DM following the optimal 

stopping strategy. The last row reports the proportion of inconsistent decisions when participants made a 

choice in opposition with the direction of their signals

$0.1 $0.50 $1

N Mean SD N Mean SD N Mean SD

� (Observed) 4560 9.38 8.82 4160 6.55 3.91 4240 4.19 2.49

�
∗ (Theory) 19.1 13.83 3.84 2.64 1 0

|S
�
| (Observed) 4560 2.85 2.03 4160 2.27 1.65 4240 1.74 1.37

|S∗

�
| (Theory) 4.99 0.13 1.98 0.04 1 0

�ij − �̂∗
ij
 (Observed) − 9.88 14.43 2.66 4.34 3.20 2.49

Inconsistent decisions 127 2.8% 190 4.6% 215 5.1%
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the optimal strategy quite well. To address this concern, we defined a “loose” opti-

mal behaviour such that being one draw away from the right stopping time �∗ is 

defined as optimal.14 The second and fourth columns of Figure 3 show the corre-

sponding breakdown of participants’ choices over the whole sample and for risk 

neutral participants. The rate of loose optimality is 23.5% in the whole sample and 

20% for risk neutral agents. For all participants, this figure ranges from 13% in the 

$0.10 treatment, 23.5% in the $0.50 and 34.8% in the $1 treatment. The sampling 

pattern persists in the “loose” definition of optimality, as we still observe 77% of 

undersampling for c = 0.1 , and respectively 59% and 65% of oversampling for 

c = 0.5 and for c = 1.

The cost of the deviation we observe is substantial. In the $0.10 treatment, the 

average expected payoff is $2 lower than the optimal level ( $15.65 vs $13.61 ). In 

the $0.50 treatment, the average payoff is $1 lower than model prediction ( $11.42 

vs $10.15 ). In the $1 treatment, participants earn $2.5 less than expected ( $10.47 

vs $7.96 ). These deviations correspond to foregone payoffs worth between 10% and 

25% of potential payoffs.

Result 1 Individuals deviate systematically from the optimal solution.

 (i) For low information costs, participants undersample relative to the optimal 

solution.

 (ii) For high information costs, participants oversample relative to the optimal 

solution.

 (iii) The same pattern is observed among the sub-sample of participants who are 

risk neutral.

4.2  Reaction to incentives

A possible explanation to these results is that participants did not react to the change 

in incentives. It could be that they always chose the same signal intensity, regardless 

of the cost incurred to sample. Looking at the distribution of stopping times and 

signal intensities for the three levels of costs, it appears that, on the contrary, par-

ticipants reacted to incentives. The right panels of Figure 4 represent the cumulative 

distribution functions (CDF) of stopping times and signal intensities for each level 

of sampling cost. In each case, we observe a clear first stochastic dominance from 

the distributions with lower costs relative to distributions with higher costs. Kol-

mogorov–Smirnov tests (clustered at the individual level and bootstrapped 10,000 

times) confirm that distribution for each level of cost significantly differs from other 

ones both for stopping times and for signal intensity ( p < 0.001 in each case except 

for the test of signal intensity between high and medium cost—p = 0.003 ). These 

results show that participants have reacted to the changes in the cost of information 

as predicted.

14 In the $0.1, $0.50, and $1 treatments, this is equivalent to increasing the size of the sampling set by 

10%, 25% and 100% respectively.
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Result 2 Participants react to changes in incentives by reducing information acqui-

sition for higher costs.

This result supports our Hypothesis 2: more costly information leads to earlier 

stopping times.

4.3  Learning

One of the main findings in Oprea et al. (2009) is that after a learning phase, partici-

pants were able to approximate the optimal behaviour in the stopping problem. In 

our case, we are able to locate how far a stopping decision is from the average min-

imum theoretical optimal stopping time ( 𝜏 − 𝜏
∗ ), the average minimum estimated 

optimal stopping time ( 𝜏 − 𝜏
∗)and the difference between the resulting signal inten-

sity and the average optimal one ( |S
𝜏
| − |S̄

𝜏∗
|).

Table 2 presents the result of OLS regressions testing the significance of learning 

over time in the different treatments. Figure  5 provides a visual representation of 

the evolution of the participants’ average stopping times � and the resulting signal 

intensities |S
�
| , throughout the 80 rounds of the experiment. We observe that the gap 

between observed behaviour and the optimal solution decreases over time for the 

two treatments where information acquisition is relatively costly (c = 0.5 and c = 1). 

These trends are statistically significant for the average stopping time ( p = 0.03 for 

c = 0.5 and p < 0.001 for c = 1, ordinary least squares, henceforth OLS15 ) and for 

the average signal intensity (respectively p = 0.1 and p < 0.01 , OLS). If we analyse 

the last 20 periods of both treatments, we reject the hypothesis that the distance to 

Fig. 3  Distribution of sampling behaviour by treatments, definition of optimality and risk preferences. 

Strict optimality is defined as stopping at �∗ with a signal intensity S
∗

�
 . Under and oversampling are 

respectively stopping before and after �∗ . The loose optimality is defined as stopping between �∗ − 1 and 

�
∗
+ 1 with a signal intensity S∗

�
.

15 All regressions are clustered at the individual level.
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the optimal stopping time, as well as the distance to the optimal number of draws, is 

equal to zero ( p < 0.001 for Wilcoxon signed-rank tests in all cases), meaning that 

oversampling persisted. The average stopping time just reaches the boundary of the 

loose optimality at the end of the experiment in the $1 condition.

These results suggest that participants learned to make better decisions over time 

in the conditions with c = 0.50 and c = 1 . In the treatment where information was 

the most costly, c = 1 , participants were able to approximate the optimal solution 

over time. In contrast, we do not find any convergence towards the optimal solution 

in the $0.10 treatment.16

These results support Hypothesis 3 when sampling is relatively costly. We pur-

posely chose to have a large number of repetitions of the decision situation to give 

enough time for learning to take place. Our findings suggest that learning takes 

place, except when the sampling is relatively cheap.

Result 3 We observe learning and a convergence towards the optimal sequential 

sampling solution when sampling is relatively costly.

 (i) Participants tend to learn and get closer to the optimal strategy when informa-

tion acquisition is costly.

 (ii) No learning seems to take place in the treatment where information acquisition 

is relatively cheap. The undersampling pattern does not decrease.

 (iii) In our treatment with the highest cost of information acquisition, participants 

learn to closely approximate the optimal strategy.

Fig. 4  Cumulative distribution of stopping times and signal intensity. For clarity purpose we restrict the 

figures to stopping times below 26 and signal intensity below 6. The complete figures can be found in 

Appendix of Electronic Supplementary Material

16 The slope of the regression line is neither statistically significant for the average stopping time 

( p = 0.21 ) nor for the signal intensity ( p = 0.54).
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To summarise, we find that participants substantially deviate from optimality 

in a systematic way: they oversample information when the sampling cost is high, 

and undersample it when the cost is low. However, participants respond to incentive 

changes and decrease the amount of information collected when the cost increases. 

The overall performance improves as time passes, without fully converging towards 

the optimal solution.

Table 2  Learning across 

the different rounds of the 

experiment as a function of the 

cost treatments

The reference treatment is c = 0.10. In italic: the coefficient and sig-

nificance of the slopes for the treatments c = 0.5 and c = 1

* p<0.05, ** p<0.01

Variable Coefficient SE p value

𝜏 − 𝜏
∗

 Round − 0.018 0.01 0.21

 Round * c = $0.5 0.006 0.016 0.68

  Round+Round * c = $0.5 − 0.012 0.03*

 Round * c = $1 − 0.002 0.015 0.91

  Round+Round * c = $1 − 0.020 < 0.01**

 c = $0.5 12.16 1.22 < 0.01

 c = $1 11.50 1.17 < 0.01

 Constant − 8.96 1.14 < 0.01

𝜏 − 𝜏
∗

 Round − 0.09 0.02 0.53

 Round * c = $0.5 − 0.003 0.016 0.83

  Round+Round * c = $0.5 − 0.012 0.03*

 Round * c = $1 − 0.011 0.015 0.48

  Round+Round * c = $1 − 0.020 < 0.01**

 c = $0.5 12.67 1.19 < 0.01

 c = $1 13.51 1.13 < 0.01

 Constant − 9.50 1.10 < 0.01

|S
�
| − |S∗

�
|

 Round − 0.002 0.003 0.54

 Round * c = 0.50 − 0.001 0.003 0.77

  Round+Round * c = 0.50 − 0.003 0.09

 Round * c = 1 − 0.004 0.003 0.26

  Round+Round * c = 1 − 0.005 < 0.01**

 c = 0.50 2.46 0.25 < 0.01

 c = 1 2.50 0.24 < 0.01

 Constant − 1.79 0.22 < 0.01
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5  Under and over sampling as a result of stochastic choices

The decision thresholds predicted by the optimal sampling model should be reached 

by rational DMs if they do not make mistakes. Here we show that random mistakes 

such as Fechner errors (Hey and Orme 1994; Conte et al. 2011) generate sampling 

biases which differ as a function of the optimal amount of information to sample. 

Fig. 5  Evolution of the distance 

to the optimal stopping time and 

signal intensity. Description of 

the different panels: a) distance 

to the average optimal stopping 

time ( 𝜏 − 𝜏
∗ ). The dashed lines 

represent the “loose” optimality 

condition, such that stopping 

one ball away from the optimal 

rule is regarded as optimal. b) 

distance to the estimated actual 

optimal stopping time ( 𝜏 − 𝜏
∗ ) 

in each round. c) distance to the 

average optimal signal intensity 

( |S
𝜏
| − |S̄

𝜏∗
| ). The black line 

represents the linear fit and the 

outer grey lines are the 95% 

confidence intervals. The value 

displayed below each graph is 

the p-value used in testing the 

null hypothesis that the OLS 

regression coefficient is 0 (clus-

tered at the individual level)
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Random mistakes generate undersampling when the optimal threshold is high, and 

oversampling when it is low. The intuition of this explanation is easy to understand: 

random errors lead to two types of mistakes: stopping too early on a draw preced-

ing the optimal threshold, or not stopping at the time of the draw which crosses 

the optimal threshold. When the optimal threshold is high, there are many possible 

draws where a mistake leads the DM to stop too early. In that case, early attrition 

will accumulate and it will not be compensated by the fact that, on the draw when 

the threshold is crossed, some DMs choose to continue. On average we will observe 

undersampling. On the contrary, when the optimal threshold is low, then this attri-

tion will not be large and the error at the time of crossing the threshold may be more 

important in comparison. It will lead many DMs to oversample.

To model this, we estimate a stochastic model of stopping choice where partici-

pants choose, at each draw, whether to stop or not by comparing the utility of stop-

ping and the expected utility of continuing. We assume a Fechner error, which can 

be conceived a noise due to cognitive error. This error is added to the perception of 

the utility of each decision. It makes each decision stochastic: sometimes the DM 

make the wrong decision between stopping and continuing.

Let’s consider a DM who is risk neutral. She considers the utilities associated 

with the choice of continuing to sample or stopping at period t by taking into account 

the marginal incentive to sample from equation (2): m(t,𝜋
t
) = G̃(t,𝜋

t
) − c − G(t,𝜋

t
) . 

We allow for two types of mistakes in the DM decision making. First, his perception 

of this marginal incentives is affected by a Fechner error: a cognitive noise � which 

follows a distribution N(0, �) . Second, we allow for a possible bias � in favour 

of oversampling ( 𝛽 > 0 ) or in favour of undersampling ( 𝛽 < 0 ). The DM stops at 

period t iff:

As a consequence, the DM’s probability to continue sampling at period t is:

Where Φ is the CDF of a standard normal distribution. We estimate this model, by 

maximising the log-likelihood function:

Where Y
n

i

= 1 if the decision to stop has been taken, and Y
n

i

= 0 otherwise, and N
i
 is 

the total number of decisions that was taken by individual i.

By estimating this model with our experimental data, we can assess whether par-

ticipants’ mistakes are driven by biases in favour of under or over sampling ( � ) or 

due to the stochasticity of the DM’s perception of utility ( �
t
 ). Furthermore, we can 

estimate whether the tendency to make mistake vary as a function of observable 

characteristics of the experiment such as the treatment.

m(t,𝜋
t
) + 𝛽 + 𝜀

t
< 0

ℙ(Sampling) = ℙ(m(t,𝜋
t
) + 𝛽 > −𝜀

t
) = Φ

(

m(t,𝜋
t
) + 𝛽

𝜎

)

ln L
i
=

N
i

∑

n
i
=1

Y
n

i

× ln
[

ℙ(Sampling)
]

+ (1 − Y
n

i

) × ln
[

1 − ℙ(Sampling)
]
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Table 3 presents the result of the estimation of the model with different specifica-

tions. In specification (1), the parameters � and � are estimated as constants. In the 

other specifications, these parameters are estimated as linear functions of the charac-

teristics of the decision situation, such as the number t of the draw, the round Round 

(out of 80), and dummies for the treatment where the cost c is $1 and $0.50 (the 

reference category is then c = 0.10). The results show a clear pattern. First, there is 

a significant bias towards over-sampling ( 𝛽 > 0 ) in all specifications. When this bias 

is allowed to vary as a function of the draw, it increases with the number of the draw. 

It suggests that participants may become more impatient as the number of draws 

increases and become more likely to stop early as the game progresses through a 

given decision situation. Second, this bias does not differ significantly across treat-

ments. This result is noteworthy. It indicates that our stochastic model does not 

explain the differences in sampling behaviour across treatments as a consequence of 

a differential bias towards sampling as such. Third, the size of the cognitive errors is 

large and it tends to increase with t. It suggests that participants make more errors at 

the number of draws increase in a decision situation.

To assess how well this model explains our data, we used the estimated parameter 

to simulate DM making their way through the optimal stopping problem repeatedly, 

in the three different treatments. We ran 100,000 simulations and compared our sim-

ulated behaviour with the decision observed in the experiment and those predicted 

by the theory. Table 4 presents these comparison. It includes two models, one which 

assumes there is no difference in bias across cost treatment ( � = 0 ) and one which 

allows for such differences to exist. Both models give very similar patterns to the 

observed data, with undersampling in the $0.10 treatment and oversampling in the 

$0.50 , $1 treatments.

Our model therefore does not need to assume differences in bias across treatment 

to explain the existence of undersampling and oversampling. This pattern emerges 

naturally from the stochasticity of choices.17

Our experimental data provides another exogenous source of exogenous variation 

in the optimal stopping time. In each round, the time when the optimal threshold is 

crossed for the first time is random. It depends on the specific sequence of draws. 

Some sequences of draws lead to a quick reduction of uncertainty, like drawing the 

same colour several times in a row (e.g. BBBBB). Other sequences are less informa-

tive, like drawing colours which alternate (e.g. BWBWB). In the former case, the 

optimal threshold will be crossed quickly, in the latter case, more draws will be 

required to reach the threshold. We can use these random variations, in the num-

ber of draws required to reach the optimal threshold, to see how it affects the par-

ticipants’ choices.18 Our explanation presented above suggests that thresholds which 

are further away should lead to a tendency to under-sample because of participants 

stopping too early at some point while making decisions through a long sequence of 

draws.

17 We did not find any significant difference in individual characteristics such as gender or CRT score on 

their tendency to make mistakes.
18 We thank a reviewer for making this very useful suggestion.
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Table 5 shows the results of regressions of the measures of under-/over-sampling 

as a function of the optimal threshold in the treatments c = 0.10 and c = 0.50 (there is 

no random variations in the treatment c = 1 because the threshold is always reached 

Table 3  Estimation of the parameters of the stochastic model of optimal stopping

The parameter � represents a bias towards over-sampling ( 𝛽 > 0 ) or under-sampling ( 𝛽 < 0 ). The param-

eter � represents the standard deviation of the cognitive noise. Significance: * 5%, ** 1%, *** 0.1%

(1) (2) (3) (4)

� � � � � � � �

Cons − 4.70*** 4.98*** − 1.92* − 0.75 − 2.81** − 0.68 − 4.72* − 1.30

( 0.42) ( 0.43) ( 0.77) ( 0.69) ( 0.95) ( 0.74 ) ( 1.91) ( 1.13)

t − 2.10** 2.73** − 2.09** 2.73** − 2.78* 3.77*

( 0.77) ( 0.96) ( 0.77) ( 0.97) ( 1.14) ( 1.53)

Round 0.02* − 0.00 0.03* − 0.00

( 0.01) ( 0.00) ( 0.01) ( 0.01)

c = 1 1.91

( 1.16)

c = 0.50 − 0.48

( 1.24)

N 162 162 162 162

AIK 72,929.12 71,498.49 71430.51 71,228.12

Table 4  Summary statistics 

from observed stopping times 

and signal intensity

100,000 simulations were used to determine the average stopping 

time with a DM following the optimal stopping strategy. The last 

row reports the proportion of inconsistent decisions when partici-

pants made a choice in opposition with the direction of their signals. 

The stochastic models 3 and 4 refer to the respective estimation in 

Table 3 Model 3 does not include differences in bias per treatment 

while model 4 allows for such differences to exist

$0.10 $0.50 $1

Mean Mean Mean

� (Observed) 9.38 6.55 4.19

� (Stochastic model 3) 8.24 7.08 5.09

� (Stochastic model 4) 9.39 7.92 6.15

�
∗ (Theory) 19.1 3.84 1

|S
�
| (Observed) 2.85 2.27 1.74

|S
�
| (Stochastic model 3) 2.61 2.36 1.96

|S
�
| (Stochastic model 4) 2.85 2.56 2.23

|S∗

�
| (Theory) 4.99 1.98 1

�ij − �̂∗
ij
 (Observed) − 9.87 2.66 3.20

�ij − �̂∗
ij
 (Stochastic model 3) − 10.93 3.26 4.08

�ij − �̂∗
ij
 (Stochastic model 4) − 9.77 4.10 5.13
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at the first draw). We find that when the threshold to reach is further away, partici-

pants are significantly more likely to stop with a lower signal intensity |S
�
| . To assess 

the magnitude of this effect, we can take the effect of a standard deviation in the dis-

tribution of �∗ , the number of draws required to reach the threshold. Within the treat-

ment c = 0.10, an increase of one standard deviation leads to stopping with a lower 

signal intensity |S
�
| , by 0.6 balls. Within the treatment c = 0.50, an increase of one 

standard deviation leads to stopping with a lower signal intensity |S
�
| , by 0.45 balls.

This result confirms and supports the findings from our structural model: partici-

pants are more likely to under-sample when they need more time to consider the evi-

dence before making a choice. We showed that a simple reason can be the progres-

sive attrition with participants stopping too early by mistake due to cognitive errors 

present at the level of each decision to stop or continue to sample.

This explanation is simple and intuitively allows us to make sense of the different 

patterns in our experimental data. We nonetheless investigated other possible expla-

nations, and analysed a range of other possible models (e.g. heuristics, risk aver-

sion, confirmation bias, regret aversion. Most of them do not provide a satisfying 

answer to explain the under-/over-sampling pattern we observe. Only a confirmation 

bias could possibly produce the same pattern. The corresponding analyses are in 

“Potential alternative explanations” section of Appendix in Electronic Supplemen-

tary Material.

6  Conclusion

This study has investigated to what extent people are able to optimally hesitate 

between two options with uncertain values. To do so we have designed an experi-

ment where participants have imperfect information about the payoffs associated 

with two possible choices, A and B. These choices can be thought as representing 

goods to purchase, investments to make or diagnostic decisions to consider. Partici-

pants can choose to wait and learn more information about the values associated 

with these choices, or to stop (at any moment) and select one of them. In our experi-

mental setting, we know exactly the participant’s information and the alternatives’ 

payoffs. We are therefore able to determine the optimal behaviour in this situation: 

Table 5  Effect of the number of 

draws �∗ required to reach the 

optimal threshold on the signal 

intensity |S
�
| reached when 

stopping

*** p<0.001

|S
�
|

Coefficient SE p value

Treamtent c = 0.1

�
∗ − 0.04 0.003 < 0.001***

Cons 3.71 0.19 < 0.001***

Treamtent c = 0.5

�
∗ − 0.18 0.010 < 0.001***

Cons 3.13 0.087 < 0.001***
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the optimal sequential sampling strategy. We can then measure whether (and how) 

participants deviate from optimality.

Our results can be summarised as follows. First, we find that participants deviate 

substantially from the optimal strategy. When sampling is relatively expensive, and 

the optimal threshold of evidence is low, participants acquired too much information 

before making a decision; on the other hand, when information is relatively cheap, 

and the optimal threshold of evidence is low, they did not acquire enough and made 

their decision too early. This pattern echoes findings in “secretary problem” type of 

experiments, where it has been found that participants inspect too many alternatives 

when inspection is costly, and too few when it is free (Zwick et al. 2003).

Second, we find that participants learn over time to improve how long they wait 

before making a choice when information is relatively costly. In the treatments with 

costly information, the oversampling of information decreases over the duration 

of the experiment. At the end of the experiment, the average behaviour of partici-

pants is close to the optimal solution. When information is cheap we do not observe 

improvement over time, with participants consistently collecting less information 

than they should under the optimal sampling strategy.

We estimate a stochastic model of stopping decision and find two results. First, 

participants display a tendency to wait too long before stopping. This result differs 

from the typical empirical finding in the literature on sequential search where people 

have been found to tend to stop too early (Bearden et al. 2006).

The over-sampling bias tends to become significantly lower as the number of 

rounds increases. There is no difference in bias between treatment, the under- and 

over-sampling is instead generated as a natural consequence from the existence of 

Fechner errors in the specific decision context faced here. Early errors lead to attri-

tion of participants who are not able make decisions afterwards. This simple fact 

means that when the optimal threshold of evidence takes time to reach, a DM is 

more likely to make an error before reaching it and to end up undersampling. Con-

versely, when the optimal threshold is low, a DM is more likely to make a mistake 

when the threshold is crossed, leading to oversampling.

These results contribute to our understanding of how people behave in situations 

where they face a choice and are uncertain of the values of the different options they 

face. They can then invest time and effort to gather additional information about 

the different options. These situations are pervasive in economic life. We find that 

the optimal sequential sampling framework can be a good benchmark to model the 

behaviour of experienced DMs. However, our results show that non-experienced 

DM may systematically make mistakes. In particular, the mere stochastic nature of 

decision means that when it is optimal to collect a lot of information, DMs are likely 

to collect too little. On the contrary when it is optimal to collect only a small amount 

of information, DMs are likely to collect too much of it. This asymmetric pattern 

can be explained by random cognitive errors which are unbiased toward stopping 

earlier or later but lead to something akin to attrition (early stopping) during the 

time needed to reach the optimal level of information. Our results depend on our 

assumption that participants’ decision making was not influenced by the differ-

ent horizons of maximum search duration imposed by their fixed budgets and the 
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different search costs. The robustness of our result to this assumption could be tested 

in future experiments.

Noticeably, an interesting application of our results is that they can help explain 

why people tend to spend too much time making their mind about decisions with 

small stakes (Sela and Berger 2012). In such situations, the cost of information 

search is relatively high compared to the stakes and so the optimal strategy is to 

make quick decisions. On the contrary, people may be too quick to make important 

decisions (Perlow et al. 2002). In such situations, the cost of information search is 

relatively low compared to the stakes and so the optimal strategy is to make slow 

decisions.

Supplementary Information The online version contains supplementary material available  at https:// doi. 

org/ 10. 1007/ s10683- 021- 09718-7.
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