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For the past half-century, cognitive and social scientists have struggled with the

irrationalities of human choice behavior; people consistently make choices that

are logically inconsistent. Is human choice behavior evolutionarily adaptive or

is it an inefficient patchwork of competing mechanisms? In this review, I present

an interdisciplinary synthesis arguing for a novel interpretation: choice is effi-

ciently irrational. Connecting findings across disciplines suggests that observed

choice behavior reflects a precise optimization of the trade-off between the

costs of increasing the precision of the choice mechanism and the declining

benefits that come as precision increases. Under these constraints, a rationally

imprecise strategy emerges that works toward optimal efficiency rather than

toward optimal rationality. This approach rationalizes many of the puzzling

inconsistencies of human choice behavior, explaining why these inconsistencies

arise as an optimizing solution in biological choosers.

The riddle of human choice

Nicholas William Leeson was a trader at London’s Barings’ Bank, leading a unit at the

Singapore Stock Exchange. By the end of 1992, Nick’s group accounted for 10% of Barings’

annual worldwide profit. That year, however, one of Nick’s traders sold when she was

instructed to buy, accidentally losing £20 000. Facing this administrative loss, Nick began to

make secret trades, some risker than usual, to cover his deficit before it was discovered.

These riskier-than-usual trades sometimes worked out, but sometimes led to greater losses.

As his losses (and presumably his anxiety) grew, Nick became increasingly willing to accept

risky trades with lower and lower probabilities of success. By late 1993, Nick had clandestine

losses of £23 million, by 1994 his hidden losses had grown to £208 million.

To cover these losses, on January 16, 1995, Nick agreed to a particularly risky trade, betting a

huge amount on the overnight stability of the Tokyo Stock Market. At 05:46 h that morning, a

major earthquake struck Japan, decimating the Tokyo markets and Nick’s accounts. Now

facing truly massive losses, Nick bet more and more each day that the Nikkei average would

suddenly recover. By the morning of February 23, Nick had lost £827 million, bankrupting the

oldest merchant bank in the UK [1].

Scholars and philosophers (e.g., [2,3]) have generally assumed that people are trying to maxi-

mize, sometimes money, sometimes love, and sometimes something else, with their choices.

For example, Pascal hypothesized that, in the long run, we strive to maximize the accumulation

of these articles, referred to as expected value (see Glossary). Unfortunately, the observation

that humans often sacrifice higher expected value to avoid risk largely disproved this conjecture

in the 18th century [4]. This led mathematicians to hypothesize instead that human choice in all
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its complexity aims to maximize a more subjective notion of accumulation, referred to as

expected utility. The first half of the 20th century saw a general effort to narrow down the set

of all reasonable algorithms for maximization under this assumption by focusing on the notion

that well-organized patterns of choice must be transitive: if a human prefers feeling loved to

owning cars, and owning cars to pastrami sandwiches, then they simply cannot also prefer pas-

trami sandwiches to love (Box 1). If they do then it can be proven that their choices cannot achieve

any goal. No stable maximization (or utility) function can ever be used to describe (or justify)

intransitive choice (e.g., [5,6]). This critical insight led economists to refine definitions of the behav-

ioral signatures of goal-directed decision-making, focusing on the notion that choices can be

Box 1. Inconsistent patterns of choices

Inconsistent patterns of choices are those in which the decisions of a chooser cannot be construed as pursuing a

meaningful goal. A classic example would be a chooser who prefers apples to oranges and oranges to pears, but also

prefers pears to apples (Figure IA). Such a chooser who had a pear should reasonably be expected to trade their pear plus

US$0.01 for an orange. Having gained the orange, we might reasonably expect them to trade that orange plus US$0.01

for an apple. What makes this pattern inconsistent is that such a chooser should then also be willing to trade their apple

plus US$0.01 for their original pear. At this stage, they have spent money and time but gained nothing, a classic definition

of an inconsistent choice.

Broadly speaking, patterns of inconsistency can be separated into two classes: random and structured. Random incon-

sistency arises when subjective value varies randomly from moment to moment. A decision-maker who, on average,

values apples only a tiny bit more than oranges would occasionally make an intransitive choice just due to these uniformly

distributed random fluctuations (Figure IB). These kinds of inconsistencies have been well characterized by random utility

models [59,86]. The key feature of this class of model is that intransitive errors are expected to be distributed uniformly

across the whole range of subjective values.

Of greater relevance to this article are patterns of inconsistencies that suggest a non-uniform distribution of intransitive errors.

A chooser who prefers US$3 for sure over a 50% chance of winning US$10 when in the presence of 50% chance of winning

US$3, but prefers the risky 50% chance of winning US$10 when the unselected lottery is removed, shows amore structured

pattern of inconsistency. Structured inconsistencies of this kind generally arise from context effects; changing the context in

which an offer is made systematically changes the decision-maker’s preferences in a systematic and repeatable way.

The best understood of these context effects are those mediated by the reference point. One of Kahneman and Tversky’s

[9] central observations was that whether a chooser was risk-seeking or risk-averse depends not only on the specific

outcome they are considering, but also on a hidden internal reference point (originally called the status quo). Systematically

shifting the hidden reference point can even lead to choice cycles of the kind described in the preceding text.

In general, inconsistencies associated with random utility theory and the more complex inconsistencies associated with

behavioral economics have been seen asdistinct. One central goal of rational imprecision theory [24] has been toprovide a frame-

work that unites these two classes of inconsistency by defining non-uniform random utility models that can capture both classes

of inconsistent behavior. The main text of this article suggests a resolution to many classes of inconsistent choice in this way.
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Figure I. Patterns of intransitive choice.
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Glossary
Efficient coding hypothesis:

proposal that neural codes are

structured to carry as much information

per action potential as possible.

Expected utility: average long-run

subjective value of an option or offer.

It is calculated by first transforming

the gains and losses associated with

each possible outcome into a

subjective form, for example, by taking

the logarithm of the amount and

multiplying them by the associated

probabilities.

Expected value: average long-run

objective value of an option or offer. It is

calculated by multiplying the probability

of each possible outcome by the gain or

loss associated with that outcome. A fair

coinflip that pays US$2 on heads and

US$0 on tails has an expected value of

US$1.

Intertemporal choice: choices in

which a decision-maker must select

between a smaller sooner reward and a

larger delayed reward.

Intransitivity: formally, this is a violation

of the transitive relationship between

choice objects. If one prefers dogs to

cats and cats to birds, it would be

intransitive to also prefer birds to dogs.

This is the most fundamental form of an

irrational choice.

Likelihood: knowledge about how

likely an outcome is that a

decision-maker gathers during the

decision-making process.

Loss aversion: empirical observation

that, for many decision-makers, losses

loom larger than equivalent gains.

Moral value: the original name for

‘Utility’ proposed by Daniel Bernoulli in

the 18th century.

Multiple-selves: hypothesis that

human decision-makers comprise two

or more independent internal

decision-making modules that compete

for control of behavior. Under this

hypothesis, intransitive choices arise

when the modules in control of behavior

switch.

Neuroeconomics: relatively young

interdisciplinary field that unites

neuroscientists, psychologists, and

economists who seek to understand

choice behavior.

Objective function: formal

mathematical specification of what it is

that the decision-maker is trying to

accomplish with their choices.

Maximizing caloric intake is an example

of a simple objective function.



meaningful only if they maximize a subjective utility function, a pattern now referred to technically

by economists as rational choice (Box 2).

The extension of this approach to the domain of risky choice [7,8] reveals that Nick Leeson’s

decisions were technically ‘irrational’ in just this sense. It is reasonable for a decision-maker to

choose to tolerate or abjure risk. Either preference can lead to coherent, logically consistent,

and transitive choice behavior, maximizing a subjective notion of value that is rational in the

technical sense. However, what Nick Leeson did falls outside that category. When Leeson was

earning money, he was not risk seeking, but, as he lost money that he had earned, in an effort

to earn that same amount a second time, he became newly risk seeking. His decision criteria,

whether driven by emotions or logic, were changing dynamically in a destructive feedback loop

that induced a risk-related intransitivity. As his account balances dropped lower and lower

below his reference point, Nick changed his decision-making process. What he had rejected

previously as too risky, he now preferred, driven not by the absolute number of pounds in his

accounts, but rather by the widening gap between his balances and his hidden internal reference

point. This fundamental inconsistency, the neoclassical economists showed, meant that Nick’s

behavior could not be seen as maximizing or goal directed. No coherent hidden agenda or

(continuous monotonic and stable) subjective function was being pursued.

Over the past 50 years, it has become abundantly clear that this kind of intransitivity, an intransitivity

mathematically associated with an internally or externally held reference point, is a key feature of

human decision-making [9–12]. This is not the only form of inconsistency that is widely observed.

Human decision-makers systematically treat losses relative to the dynamic reference point differently

than they treat gains, and they distort their representations of outcome probabilities [9,13,14]. Both

of these lead to dynamic instabilities in choice behavior, such as the one shown by Leeson.

Until recently, the standard explanation for these puzzling failures to maximize rested on the

notion that human choosers behaved intransitively because decision-makers were built from sev-

eral independent modules (multiple-selves), some emotional and others coldly logical. While

Box 2. Rational choice

The word ‘rationality,’ as used by economists, has a highly technical meaning and this has generated endless confusion

among non-economists. At its heart, the notion captured by the phrase ‘rational choice’ is the idea that ‘rational choices’

are those that show logical consistency. This idea was first developed during the 1920s in an effort to identify patterns of

choice that were objectively wasteful.

What can be said about a chooser who strictly prefers apples to oranges, but also strictly prefers oranges to apples?

Samuelson [5] showed that there is no possible mathematical transformation of value (or anything related to value) that

can be maximized by such a pattern of behavior. Such a chooser is defined by an economist as ‘irrational’ because their

choices are not directed at any kind of maximization: their choices cannot be said to be goal-directed.

The 1940s saw an expanded mathematical definition of rationality that was somewhat more positivist. Houthakker [6]

examined the logical properties of a chooser who is both transitive in their choices (they prefer apples to oranges to pears)

and who is monotonic in their preferences, that is, they never see more of a good thing as worse than less of a good thing.

He proved that such a chooser can always be described as maximizing some monotonic transformation of value; they are

always, by definition, technically rational. Thus, a decision-maker who has a consistent plan to maximize utility by purchasing

drugs rather than food would be identified by an economist as ‘rational’ in the technical sense [87]. By contrast, someone

who switches back and forth between maximizing their drug consumption and maximizing their food consumption would

be technically defined as irrational.

The important thing to remember when thinking about the economic notion of rationality is that it is entirely neutral with

regard to morality, ethics, and perhaps even to some intuitive notions of well-being. It is perfectly reasonable to say that

someone is rational in their pursuit of heroin, suicide, orworld domination. All that rationality defines is the internal consistency,

the goal directedness, of the choices they use to pursue those goals.
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each module (even the emotional ones) might be fully transitive when operating on its own, when

control shifted dynamically between these multiple-selves, inconsistencies arose as the mecha-

nisms traded off control between one another (e.g., [15,16]). According to this view, having differ-

ent and potentially incompatible risk attitudes for losses and gains emerged from the fact that

different, and slightly incompatible, neurobiological or psychological modules are assumed to

be dynamically interacting as we make choices over gains and choices over losses, a dynamic

trade-off that leads to inconsistency.

However, over the past two decades, a revisionist interdisciplinary approach has begun to sug-

gest that humans are not as irrationally intransitive as they at first appeared [17–21]. Some data

suggest that the structural features of the human brain [22] impose resource constraints that

are the targets of rational optimization. Other work suggests a more fundamental information-

theoretical constraint [23–26]. Taken together, these data are beginning to suggest that humans,

emotions and all, are not only much more goal directed in their maximization than implied by

behavioral economics, but are also much closer to the objective optimizers that Pascal imagined

than the neoclassical economists imagined.

Building on Herb Simon’s insight that biological constraints are critical to understanding human

choice [27,28] and Duncan Luce’s [29] insight that maximization by human choice is constrained

by stochasticity in the human brain (see also [30]), this neuroeconomic [31] approach has

suggested that economists may have misspecified the problem human decision-makers face.

The neoclassical economists treated humans as abstract computational machines that could

represent (and store) the subjective utilities of every option with infinite precision. They assumed

choosers could perfectly weigh these precise representations against one another. They

assumed that the human decision-making machinery was insensitive to the real biological

costs of storing information, representing value, and computing choice.

Nevertheless, we know that precision in neural computation is metabolically costly and that

increasing the precision of representation, storage, and computation necessarily increases

costs. This notion, that at an evolutionary timescale the benefits of precision must trade off

against the costs of representational accuracy, suggests that the imprecision in our choices,

our intransitivities, is a precisely calibrated feature. The finite precision of our decision-making

architecture may be efficient in the sense that reducing intransitivity any further might incur more

metabolic cost than it yields benefit. In fact, many of the technical irrationalities cataloged at the

end of the 20th century now appear to reflect an evolutionary trade-off that efficiently balances

the costs of computational precision against the costs of intransitivity [22,24,32]. Configurations

of choice that at first appear problematic or puzzling, begin to look like they maximize the efficient

trade-off of costs and benefits. Such systems may be seen as rationally imprecise, resting on a

razors-edge balance that regulates inconsistency to achieve efficiency.

From multiple-selves to subjective value

The reigning supposition that human decision-makers are inconsistent because of an internal

conflict is at least as old as literature. In the Phaedrus, Plato [33] explains that we are like a

charioteer with two horses, one ‘good’ and one ‘emotional.’ Freud’s system of id, ego, and

superego [34] follows this script closely, and its adoption by Paul Maclean in his Triune Brain Theory

[35] firmly established the notion that multiple neural modules compete to control behavior. How-

ever, data gathered over the past two decades challenge this conclusion. Neurobiological searches

for these competing modules have repeatedly identified instead a single representation of value. Al-

though puzzling, the source of our intransitivities appears to be something more fundamental than

an internal competition between our emotional and logical selves.
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The contemporary notion that value, subjective or objective, is represented neurobiologically in

the form of a single common currency, has its origins in the first efforts to search for subjective

value representations in the brain (Figure 1A; e.g., [36,37]). Those studies identified what looked

like a decision variable, but it was not until 2004 that it was definitively shown that firing rates could

be observed in the parietal cortex that tightly correlated with the economic notion of expected util-

ity, but not at all with choice probability (Figure 1B; see also [38]). However, this evidence

(Figure 1C) was silent about how these representations behaved when choosers became incon-

sistent. To search for conflict in the utility representation, one needed a reliably inconsistent be-

havior. For that, several labs turned to choices in which decision-makers are conflicted

between taking less now or waiting patiently for more later, that is, intertemporal choices.

Decision-makers prefer to receive rewards sooner rather than later. For economists, there is

nothing inconsistent about such a preference [39]. As long as the decision-maker decrements

the subjective value of a reward consistently, one can prove that perfect transitivity can be main-

tained [40]. Unfortunately, neither humans nor animals appear to decrement reward value in this

way. Instead, discount rates are higher for rewards offered at short delays and lower for rewards

offered at longer delays (e.g., [41–43]). This creates yet another inconsistency when choosers

view the first day or week of a delay as much more aversive or costly compared with many sub-

sequent days or weeks of additional delays.

How can one make sense of such inconsistent behavior? One answer [16] drawn from the

multiple-selves model is that our brains have two independent modules: an ‘impulsive’ chooser,

which only values immediately available rewards; and a ‘rational’ patient chooser, which values all

rewards as a function of the delay-to-reward duration. In this conception, human behavior repre-

sents the combined action of these two modules, each internally consistent when acting alone,

but yielding strongly intransitive behavior when combined.

In a landmark fMRI study designed to test this hypothesis [44], human decision-makersmade real

choices between rewards offered at different delays. When rewards were offered immediately, a

single value-related signal was identified at two locations: the ventral striatum (VS) and the ventro-

medial prefrontal cortex (vmPFC). When rewards were offered at longer delays, no value-related

signal was observed (Figure 2A). This was either because immediately available rewards are sim-

ply worthmore and, thus, easier to detect with fMRI or it was because a specific impulsivemodule

had been identified. To resolve this question, the authors set out to identify a signature of the pa-

tient chooser: isolating the trials in which subjects took the longest to respond, they looked for

particularly active brain areas. They found evidence of such activation in the dorsolateral prefron-

tal cortex (dlPFC) and the posterior parietal cortex (PPC) and hypothesized that this reflects the

activity of the independent patient module predicted by theory (Figure 2B).

However, the finding was unavoidably ambiguous. Was the VS signal so strong for immediately

available rewards because it only encoded immediate rewards, or was it also encoding the sub-

jective value of long-delayed rewards, but at a level so low that it was undetectable to early fMRI

scanners? To answer this, one would need to examine activity in the VS and the vmPFCwhen the

magnitude of the delayed reward was suddenly increased [45]. This manipulation revealed that,

as soon as the delayed reward was large enough to yield a subjective value signal detectable

by fMRI, its representation was clear in both of these brain areas. It turned out that this was

not an area that specifically represented the preferences of an emotional-impulsive self; instead,

it was an area that represented all rewards, at a magnitude modulated by delay. A detailed

characterization of the vmPFC and VS activity revealed that the signal precisely captured, at a

within-subject level, both the impulsive early high valuation and the more gradual later decline in
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Figure 1. Parietal neurons carry an abstract representation of subjective value. (A) When awake behavingmonkeys

are presented with potential rewards, the activity of single neurons encodes the value of those rewards. Parallel experiments

(not shown) indicate that, when the likelihood of reward is varied, these same neurons also encode reward probability in

exactly the manner predicted by economic theory [36]. (B) These changes in neuronal activity specifically encode an

abstract representation of reward value and not the likelihood that a decision-maker will select the reward. Using a

strategic game, it is possible to show that, when an abstract notion of subjective value varies, but the directly observable

probability that the subject will make a particular behavioral response (the choice probability) is held constant (left), these

neuronal firing rates change. When abstract subjective value is held constant but choice probabilities are systematically

(Figure legend continued at the bottom of the next page.)
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value with time. Across subjects, the data revealed that brain activations were just as intransitive

as the subjects. An individual subject’s degree of inconsistency, if significant, could be derived

from the neural measurement [45,46]. Thus, even when decision-makers were behaving

inconsistently, there was a unitary neural representation of a single hidden decision variable

(Figure 2C). Subsequent replication of these experiments in monkeys (Figure 2D) showed that,

if anything, the match between the neural firing rates in the PPC and the irrational subjective

value curves was even better at the higher resolution of single neuron recordings. Could it be

that there is a unitary representation of a single utility-like signal, rather than the many competing

signals predicted by multiple-selves theory?

At the same time, a similar examination of another behavioral pattern sometimes seen as an

inconsistency, loss aversion, yielded similar results [47]. Humans often treat losses relative to

the reference point as more consequential than equivalent gains, presumably because losses

are more anxiety‐provoking. In this study, brain activity was examined as decision-makers evalu-

ated financial lotteries that involved varying levels of gains and losses. As in intertemporal choice,

these data revealed that human choosers were inconsistent, but that this inconsistency did not

appear to arise from multiple modules, one only anxious and one only logical. Instead, the

study revealed that several brain areas irrationally encoded losses and gains asymmetrically,

but not by using multiple independent modules (but see [48] for one counter-example).

A series of three subsequent meta-studies strongly support this conclusion that a single decision-

variable is represented neurally and that emotional and rational evaluations are fully integrated

[49–51]. All three of these metastudies, together aggregating data from hundreds of studies, tell

the same story. Value representations in the brain do not reflect multiple competing agents. Instead,

these data suggest that the irrationalities we observe in behavior reflect a fundamental irrationality in

the neural representation of subjective value, in humans, nonhuman primates [52], rodents [53],

and perhaps even insects [54]. The representation of subjective value appears fundamentally imper-

fect, but imperfect in similar ways, in animals separated by hundreds of millions of years of evolution.

From irrational subjective value to efficient subjective value

What neural features underlie these imperfect or technically irrational representations of subjective

value? One widely accepted answer is that these imperfections arise from ‘unavoidable’ limits to

neural computation: inconsistent behavior reveals an imprecision in the neurobiological represen-

tation that evolution has failed to eliminate for some reason (e.g., [55,56]).

Consider thinking about this process another way: the human brain consumes 10 watts of power.

To provide that power, humans ingest ~2000 kcal of food a day, 20% of which (400 kcal) drives the

brain [57]. Imagine a brain with ten times the precision and capacity, hence ten times the metabolic

demand. That brain would require an additional 3600 kcal, requiring that we triple our daily intake to

support this ten-times increase in precision.

Should natural selection push against costly irrationalities toward a more precise brain even if that

added precision comes at such a high cost? Natural selection does not aspire to perfection. It

pushes organisms toward greater fitness (e.g., [58]). Building a brain that always picks the best

candy bar is better than building a brain that occasionally picks second-best, but perhaps not if

varied (right), the neuronal firing rate is constant [84]. (C) When reward rates are dynamically changed and the decision-maker

must decide how to best allocate its choices to maximize reward, neuronal firing rates depend on the average rate of reward.

Stacked green and blue lines accurately rank rates of reward obtained by freely choosing monkeys [37].
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(See figure legend at the bottom of the next page.)
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you have to buy three times as many candy bars to survive. Formally, it is known that precision is

monotonically costly and increasing precision must, by the laws of thermodynamics, increase

metabolic costs [24]. Once we incorporate these costs into our thinking, it becomes clear that

intransitivities might simply be desirable economies. Rather than modeling neural decision-

variables as Platonic signals corrupted by noise, one might see in them an optimized trade-off

between informational density and representational costs. Once we acknowledge that it is

efficiency, not rationality as the neoclassicists proposed, that the brain should maximize, this

significantly changes how we need to model choice [23,32].

When are irrationalities efficient?

Random Utility Theory [59] pioneered our understanding of the irrationalities expected from a

chooser with limited precision. As precision declines, decision-makers make more and more

errors, sometimes picking the second-best option rather than the best, or even occasionally picking

the third-best option. The theory predicts that these errors are more common when the options

being compared are close in value, regardless of the values of those options. Thus, Classical

Random Utility theory presumes that people are imperfect choosers, but hypothesizes that there

is no real pattern to their errors, certainly not patterns like the systematic irrationalities that we

observe in human and animal choice behavior.

Could a biological system do better than Random Utility Theory predicts? Consider an idealized

chooser who knows they have limited precision to encode subjective value, but also knows with

certainty that they are much more likely to encounter a subjective value in a particular range, for

example, something around the value of a candy bar rather than the value of a car (Figure 3A).

Such a chooser would maximize their efficiency by dedicating more precision to the likely range

of subjective values and less to the unlikely ranges; efficiently adapting their precision to maximize

accuracy where it is most important and tominimize accuracy where it is less valuable (Figure 3B).

This efficient coding hypothesis (Box 3), the idea that neural codes could be efficient, not

simply accurate, was first studied during the 1950s and 1960s [60,61] and has been broadly

impactful in the study of perceptual systems [62].

Consider a chooser who must represent the nutritional value of food choices to maximize the

expected nutritional outcomes. We can think of Figure 3A as plotting a histogram of the many

options that our chooser might encounter in a particular environment [63]. For this 1D case, the

optimal encoding strategy for a system of limited precision, the provably efficient solution, is for

the neuronal firing rate function to be the integral of the frequency histogram (Figure 3C). For

contrast, consider Figure 3D, which plots a linear firing rate function. Of course, like all neurons,

these two hypothetical neurons are imprecise. Their mean firing rate is marked by the black

line, but moment-by-moment firing rates lie randomly within the gray bands. When the efficient

neuron is firing at half its maximal rate, we know that reward magnitude lies between 13 and

17. By contrast, when the linear neuron is at its half-maximal rate, the reward magnitude lies

between 20 and 43. This reveals that, by tuning the firing rate function correctly, either by sculpting

Figure 2. Human subjective value signals predict both impulsive and patient choices. Value-related brain activity tracks

subjectively measured reward magnitude in an intertemporal task, even when that subjective value declines hyperbolically in a way

characteristic of inconsistent choices. (A) Activity in the medial prefrontal cortex (mPFC), posterior parietal cortex (PPC), and ventral

striatum (VStr) is much stronger for immediately available rewards than it is for delayed rewards [44]. (B) For a single representative

subject, activity in these areas declines smoothly (dots), but hyperbolically (black curves), as the delay to reward increases. This

decline precisely matches the same subject’s behaviorally estimated subjective value curve, which is also hyperbolic (red) [45].

(C) More precise measures of single neuron activity made in monkeys making intertemporal choices yield even more precise

matches between behavioral estimates and neuronal estimates (same colors as in B) [38]. Both behavioral and neural estimates

are clearly hyperbolic. Abbreviation: BOLD, blood oxygen-level dependent.
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the curvature of the function optimally or rescaling the function linearly (e.g., [64]), we can increase

precision where it is most valuable at the cost of decreasing precision where it is least valuable. Of

course, this would also impose a structure on our errors and intransitivities would be more

common in some cases than in others.

The theory of efficient representation

A significant amount of work during the 1990s [65–67] examined efficient coding in the visual

system using the divisive normalization equation (Equation 1):

FR1 ¼
Inputα1

M þ ∑iωiInput
α

i

, ½1�

where the firing rate of neuron 1 is equal to the primary input to that neuron (e.g., the brightness of

a particular pixel) raised to an exponent divided by the mode (or center) of the input distribution

plus a weighted sum of all current inputs to the other neurons, each raised to the same power.

Using numerical methods [68], it has been shown that, if this divisive normalization equation is used

to represent a set of visual images pixel-by-pixel, one can find values for α,M, andω that do, in fact,

minimize the total number of errors (or equivalently maximize the amount of information) in the

representation of the image. This class of function re-encodes visual images in a maximally efficient

way, putting the most information in the fewest action potentials.
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Figure 3. Noisy neural systems must adopt nonlinear firing rates to be efficient. The goal of efficient coding in

decision-making is to maximize information about the objective values of rewards in the spike rates used to compare

options. This maximizes the likelihood of selecting the best possible option. (A) Hypothetical distribution describing the

objective probability that a chooser operating in an example environment will encounter rewards of any given magnitude.

(B) To maximize information, precision should be greatest at reward magnitudes that are likely to be encountered.

Allocating precision uniformly erroneously dedicates neuronal bandwidth to options that are rarely encountered. (C) Taking

the integral of the encounter probability curve yields (under 1D conditions) a firing rate function that maximizes accuracy at

the expectation point. The half-maximal firing rate (black horizontal line) then indicates the actual reward magnitude with

higher precision. (D) By contrast, a uniform firing rate yields estimates of reward magnitude that are less accurate at

expectation (and more accurate off expectation).
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Over the past few years, this work has been extended to the domain of subjective value [24] and

has yielded a clear view of how an efficient decision-making system would encode subjective

value and, thus, what kinds of intransitivity it would be expected to produce. Treating the efficient

encoding problem as a problem in thermodynamics, it was possible to derive the class of func-

tions that achieves an optimal trade-off between maximizing information and minimizing costs.

Interestingly, the class of functions derived in this way is formally equivalent to the divisive normal-

ization class of representations used in the study of the visual system. Perhaps even more

surprising, a large class of behaviorally observed ‘irrational’ choice behaviors are mathematically

equivalent to both divisive normalization and information maximization. Divisive normalization

class functions are optimally efficient representations for subjective value, and they unavoidably

yield irrational choice behavior specifically because they efficiently trade off the costs and benefits

of precision.

So what exact firing rate functions (or equivalently subjective value functions) should we expect to see

in an efficient system? Several groups [20,23,32] have examined how a neural system might be de-

signed to optimally encode specific inputs. The basic answer is that an optimal systemmust select a

transformation function that maximizes a specific quantity (e.g., calories obtained) for a specific class

of inputs. The firing rate function needs to be tuned to the inputs, as in Figure 3A. This work is critical

because it refocuses us on two properties that are the subject of intense current investigation: what is

the input distribution the chooser should seek to represent and what is the actual object (expected

information, expected value, or expected sample recovery) being maximized. However, all of this

work points to the notion that, to maximize fitness, organisms require economical transformations

of value that yield some irrationalities because eliminating those irrationalities would be inefficient.

Divisive normalization in choice

The classic divisive normalization equations achieve efficiency by devoting more firing rate range

to more likely inputs; when the likely inputs are tightly clustered, then a sigmoidal firing rate

Box 3. The efficient coding hypothesis

Attneave and Barlow [60,61], building on Claude Shannon’s Theory of Information [88], proposed that neural codes in

sensory systems were driven by evolution towardmaximization of the amount of information carried by each action potential.

This information maximization can be viewed as a two-stage process. First, eliminate redundancy in the incoming informa-

tion. Second, adjust the firing rate function somore of the available range is dedicated to encoding likely inputs. This prevents

one fromwasting bandwidth on improbable events that are never observed. If encoding visual images, for example, the over-

all brightness of the image changes over the day in a way that induces both redundancy and local correlations. Changes in

pupil size both reduce this redundancy and adapt to the range of brightness that impinges on the retina.

Neurobiological functions that achieve this same kind of informationmaximizationwhen encoding visual images have nowbeen

widely studied (e.g., [66,68]). Neurons in the visual cortex, for example, encode something along the lines of Equation I:

FR1 ¼
X1

2

σ
2 þ ∑i ωiXið Þ2

, ½I�

where FR1 is the firing rate of the neuron encoding the objective intensity of pixel 1,σ is the expectedmean intensity level, andωi

are weights that capture the correlations between pixels. The denominator removes from the firing rate of neuron 1 information

already carried by other neurons, maximizing information per action potential. This model, known as divisive normalization, has

subsequently been observed in many sensory systems and it has even been proposed that this mechanism is a canonical

neural computation [89].

It has also been proposed [18] that a similar process might be operating in the neural representation of subjective value, a

hypothesis that has been confirmed in several experiments (e.g., [90]). While this is an active area of research, it is not yet

clear exactly how efficiently either sensory or decisional variables are represented in the nervous system. Over the next

decade or so, it should become clear whether neural computations, such as divisive normalization, provide an accurate

approximation widely used by the nervous system or whether more complex models will be required to understand the

underlying neural architecture.
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function centered on these likely values is efficient.When the likely inputs are more broadly distrib-

uted, then an efficient encoding function would use a more gradually sloped form. The divisive

normalization functions achieve this flexibility with two key parameters, M and α. As Figure 4

shows for a simple example with a single choice option, M centers the transformation on the

most likely input and αcontrols the overall shape of the function. At α = 1, the function looks

very much like a classical utility function [4]. As α increases, that function takes on the character-

istically sigmoidal shape of the Kahneman and Tversky [9] value function. This suggests that the

shift from a classically concave function to a sigmoid observed behaviorally is driven by changes

in the distribution of the options under consideration.

In situations with more than one option, as in Equation 1,M serves as a kind of a temporal average,

an estimate of what future input is most likely. By contrast, the weighted sum that aggregates

information about the current options is a kind of spatial average that, because of the exponent,

controls the shape of the function based on the specific values of each of the current inputs.

These temporal and spatial averages can be thought of as a kind ofprior and likelihood estimation,

maximizing information in the posterior firing rate distribution [24]. In fact, some current research

suggests that the relative contributions of temporal and spatial components are under dynamic

control to better align the firing rate function with the best estimate of the input distribution [69].

Efficient representation of the most common input

IfM reflects a tool for centering the encoding function on the median or mode of the distribution of

possible rewards, then what happens if we change the size of the median (or modal) reward size?
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Figure 4. Divisive normalization firing rate functions are highly flexible. Functions that relate firing rate to objective

reward magnitude for a system using divisive normalization (Equation 1 in the main text; note that, in this functional form

derived from [85], the exponent α is embedded in the constant M, rather than being written separately for clarity in

expressing the lateral shift of the function.). (A) Adjusting the exponent in Equation 1 steepens the function around the

expectation, or reference, point. This corresponds to adjusting the firing rate function to encode narrower or wider input

distributions. However, these functional shapes also tile the set of previously described utility and value functions. When

α= 1 (blue), the function mimics the shape of the classical utility function proposed by Bernoulli. As the exponent increases

(red, α= 3), the function comes to resemble the value function of Kahneman and Tversky. (B) As the expectation point M is

increased, the center of the function shifts to the right. This corresponds to a strategy that centers the firing rate function

on the modal value of the input distribution.
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In 2005, this experiment was conducted while recording from midbrain dopamine neurons [70].

As predicted, dopamine neurons indeed re-centered their firing rate functions in response to

changes in the input distribution. More recently, similar results have been observed in the

orbitofrontal cortex [71] and the PPC [72]. The neural firing rate functions adapt to changes in

the input distribution as expected in an efficient system. However, what kind of irrationalities

would such a system yield at the behavioral level (see also [73])?

In one experiment designed to search for such irrationalities [74] (Figure 5), hungry subjects were

asked to indicate the maximum amount they would pay for each of 30 different snacks. Ten high-

value (and ten low-value) snacks were then identified for each individual, and subjects made

repeated bids on these high (or low) value items during a 300-trial adaptation block. Without

warning, the input set was suddenly changed to include all 30 snack foods. After the change,

subjects transiently shifted their bids downward (or upward after low-value adaptation), and

this shift decayed over the course of about 45 trials, exactly the effect that would be expected if

an efficient coding system using a divisive normalized representation was re-centering the mode

of its representation. The critical feature is that the subjects showed inconsistent pricing behavior

when the mean of the input distribution changed. However, that inconsistency reflected a provably

efficient encoding scheme that makes the most of a limited informational capacity (see also [25]).

Efficient representation of the current offerings

The role of the weighted sum in the denominator is to adapt the firing rate function to the current

choice set. Consider a situation in which all of the options in the current choice set are suddenly

high valued. In a systemwithout divisive normalization, this can result in all of the firing rates being

close to the maximum rate and, thus, hard to distinguish, a loss of information created by the

bounded and limited precision firing rate. An efficient system solves this problem by reducing

the overall firing rates (much like M, but instantaneously), more accurately centering the firing

rates for each option within the available firing rate range. To put all of this more formally:ω reduces

informational redundancy induced by input covariance and α captures distributional shape. The

summing operation with the reference point term M adjusts the slope and lateral position of the

function by combining all of these terms.

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 5. Human choice anomalies show evidence of divisive normalization. Effect of adapting the reference point

on choice behavior. (A) Task design from [74]. Subjects state the maximum amount they would pay for different foods in an

incentive-compatible manner. First, they encounter a range of values (black). Subjects are then adapted to a low-value

subset, shifting the expectation downward (blue). Finally, valuations are remeasured immediately after adaptation (black).

(B) Initial bids made during the first test period show an average value of about US$0.70 (black). Measurements during the

second test period indicate that subjective values are initially shifted upward by adaptation by about 10% (blue). (C) The

effect of this adaptation of the reference point declines over 90 trials with a roughly exponential time course.
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Choice set size effects

However, such a system would be highly sensitive to the number of options under consideration.

As the number of elements in the denominator grows, so does the aggregate value of the

denominator, shifting overall firing rates lower and lower. As choice sets grow in size, error

rates (irrationalities) should increase in a characteristic fashion, a pattern very different from the

class of errors predicted by the Random Utility Theory [75]. This arises because, as the number

of options increases, the amount of information we put into the system also increases. Perfor-

mance decays efficiently as the informational demand on the network increases.

It has been known for some time (e.g., [76]) that, as choice sets increase in size, performance

decreases. However, a precise examination of the form of performance decrease observed

under these conditions reveals that the divisive normalization model significantly outperforms

traditional random utility models in accounting for the irrational features of decision-making in the

face of large choice sets. While humans do choose irrationally when faced with large choice

sets, it appears they do so in a way that maximizes accuracy in the face of increasing informational

demands [75].

Three option irrationalities

A more subtle class of irrationalities that one might expect in an efficient system are so-called

‘three option errors,’ errors that arise when a subject must identify the best of three possible

options (e.g., [72,77]). Consider the problem faced by a divisively normalized system when it

must choose between two options very close in value to one another, both in the presence,

and in the absence, of a low-valued third option. The insertion of the third option, even if it is

never chosen, adds information to the system and should degrade performance. Worse, as

the value of the unchosen third option increases, performance (and neuronal firing rates) should

degrade further. Parietal neurons [72] turn out to show patterns of firing rates that also align well

with the prediction of the divisive normalization model under these conditions. Subsequent

work [77] aimed at understanding the role of gain adaptation more generally on encoding

accuracy has yielded a similar result. A generally efficient representation could account for

systematic errors as efficiencies, in this case under a broader range of conditions than those

captured in the original experiment.

However, this class of three-option irrationalities has been somewhat more controversial than

some of the other features of an efficient representation, which have been more widely observed.

One important paper [78] yielded similar results, but not with complete consistency. Another

study [79] initially reported a failure to observe this particular irrationality in human choosers

when measuring reaction times rather than choices, although a reanalysis of that data [80]

suggests that most of their subjects do show this effect, if somewhat more weakly than might

have been expected. While much work remains, it does seem clear that richer forms of divisive

normalization [81] will be important and may be able to effectively capture even these more

heterogeneous results.

To summarize, efficient coding systems should show very characteristic irrationalities, and there

is growing evidence that the neural architecture is well tuned to provide just this kind of efficiency

(Box 4). Choice errors should show a strong dependency on a kind of reference point, and they

do both neurally and behaviorally. Subjects should be risk-averse above this reference point and

risk-seeking below it, as has been observed. Sudden shifts in the mean of the input distribution

should cause systematic intransitivities (like the ones Nick Leeson showed) while the reference

point is adapting, again as observed. Increases in the number of options should lead to inconsis-

tencies, as should direct manipulation of the structure of the choice set, a phenomenon that has
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now been well documented. What should stand out here is that many of the inconsistencies that

motivated Simon, Luce, Kahneman, and Tversky emerge as efficient responses from an informa-

tionally constrained system.

Box 4. Computing subjective value with neurons

One important test of any neurobiological theory is whether real neurons can perform the computations the theory

requires. Growing evidence suggests that simple networks can perform divisive normalization-like computations [91]. In

such a network (Figure I), neuron R1 receives a direct excitatory input (V1), a baseline rate of activation that it shares with

all other R neurons, and a single inhibitory interneuron input, G1, which divisively regulates the activity of R1. Each gain

control neuron receives inputs from all other output neurons, thus computing a (weighted) sum of those inputs and using that

as the divisive input to the output neurons exactly as required by the efficient equations. Although such broad connectivity

appears counterintuitive, it has been documented in the rodent visual system [92].

Essentially all networks of this kind have a single equilibrium state [91]. When inputs are applied to the network, the network

eventually settles to represent the input divided by a weighted sum of the outputs of all of the output neurons. If the inputs

change faster than the time constant of the network, the output signal represents a time-weighted average of the se-

quence of inputs. One cannot help but notice that this means that any broadly integrating gain control network converges

to something almost like, but not completely identical to, the divisive normalization equations described in the main text.

At full equilibrium, the output of the network shown in Figure I closely approximates Equation I:

FR1 ¼
x1

M þ ∑iωiFRi

: ½I�

How mightM be represented in a real network? One possibility is that a long time-constant version of this network might

computeM and pass it on to a faster network optimized to compute the weighted sum of current options. When two such

networks are cascaded, one with rapid dynamics and one with slow dynamics, the network with slow dynamics effectively

computes the M term and then injects it into the faster network [69].

At least in the parietal cortex, both the dynamics predicted by these models and the dependence of firing rate on output

(rather than input, as in the original divisive normalization equations) have now been observed [90]. Parietal neurons do,

indeed, receive both excitatory and inhibitory inputs and those inputs are, over at least a limited range, interacting roughly

divisively in nature as required by the models.

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure I. A divisive normalization network. The proposed network of LoFaro and colleagues [91] computes a divisive

normalization-like transformation. Individual pyramidal cells receive an objective value input. The output of each R-neuron

is divisively reduced by a nearby inhibitory interneuron, which aggregates information about all inputs to the R-neuron layer.

Thus, the G-neurons capture all available information about the choice set and remove that information from the R-neuron,

effectively maximizing information about how the V-input of that neuron differs from other V-inputs. LoFaro and colleagues

showed that models of this class must have a single equilibrium state that closely approximates standard divisive

normalization.
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From expected value theory to rational imprecision

In the mid-17th century, Pascal proposed that what humans were doing when they made

choices was to objectively maximize the expected value. The goal of choice should be defined

by a simple objective function: compare options by multiplying the probability of each outcome

with the magnitude of gain and then select the option that objectively maximizes the long-run

average value one accumulates from all of one’s decisions. It seems as if Nick Leeson was not

doing that when he bet his bank on riskier and riskier options each day.

As it became clear during the 18th century that human choosers often fail to maximize the ex-

pected value, mathematicians abandoned the notion of an objective maximization function. In-

stead, they concluded that humans maximize a hidden subjective transformation of value,

which today we call the utility function. The virtue of this approach is that it appears to explain

both why and how humans are risk averse.

The neoclassical economists of the late 19th and early 20th centuries shifted their emphasis away

from the specification of a particular utility function and toward a more general notion of what

constituted utility maximization. Developing the notion of rationality, they defined axiomatic

rules that any kind of perfect maximizing behavior would have to follow. If humans followed

these rules, humans were choosing in a goal-directed fashion even if we could not be certain

exactly what goal or goals they were pursuing.

Accepting that logic, empirical economists and psychologists working at the end of the 20th

century noted a range of conditions under which humans behaved intransitively. While a few

economists and psychologists sought to explain that this behavior might be related to the

physical limitations of human brains, there was an overwhelming shift toward seeing human

choosers as accumulations of small mechanisms that were troublingly inefficient when working

in aggregate. Instead of trying to define why humans chose the way that they did, these scholars

tended to accept that humans were disordered.

However, interdisciplinary work conducted over the past two decades offers a very different inter-

pretation. These data appear to suggest that, as Pascal might have suggested if he had been a

neurobiologist, humans really do use a representation of the expected value of each option, but a

representation distorted by the needs of a limited precision neural representation. What these

data appear to show is that our biological objective function really is, as Pascal hoped, to maxi-

mize long-run average value. However, this is a maximization we wisely perform with a level of

precision driven by the constraints of efficiency. While many questions remain (see Outstanding

questions), in this view the structure of the transform from value to subjective value is specified not

by a need for risk aversion, as the classical economists of the 19th century imagined (e.g., [82]),

but by a need for efficiency. We can conclude instead that the observed subjective value function

reflects a trade-off between the rising cost of precision, the diminishing returns from increasing

precision, and the distributional properties of the world in which we make choices.

What is perhaps most ironic about that notion is that Pascal may have been less wrong than we

have thought for the past 350 years. The utility function may not be so much a moral value as

Bernoulli proposed in the 18th century, but rather a mechanistic tool that tunes our behavior

for maximal efficiency in the face of limited precision.

Concluding remarks

The framework we use to make sense of human choice behavior impacts how we think about

ourselves and the predictions we make about how people will choose in novel situations. This
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Outstanding questions
How efficient is divisive normalization?

Theoretically, the class of functions

in which divisive normalization sits

are optimal encoding functions. Exactly

which function is most efficient depends

on the distribution of possible inputs.

Future work will have to: (i) relate

specific patterns of inputs to perfectly

efficient encoding systems; (ii) gather

data that define what distributions real-

world choices take; and (iii) identify the

exact divisive cost functions used by

the brain.

Can all classes of inconsistent

behavior be modeled using divisive

normalization? The basic model

cannot account for situations in

which a contextual element causes a

clear reversal of preferences. Divisive

normalization models that operate

in two successive stages or that

encode attributes of the choice objects

separately can achieve these kinds of

preference reversal. Future work will

have to establish the plausibility of

these extensions of the basic model.

How is divisive normalization computed

in the brain? Simple models that use

simulated neurons compute very close

approximations of divisive normalization.

The development of these models is

in its infancy. Opportunities for new

discoveries abound.

Divisive normalization focuses on

the magnitudes of rewards or

punishments. How are probabilities

represented in the brain and how do

they influence these representations?

The representation of probabilities

is probably one of the most difficult

aspects of the theory and one in

which little progress has been made.

Importantly, we can identify two kinds

of probabilistic representation in the

brain. In the first, humans or animals

make repeated samples of an action

or reward that is variable, and by

averaging derive a value estimate

which has probability bundled into it.

The dopaminergic reward prediction

error system is an example. The other

kind of probability, in which a truly

mathematical representation of the

probability of an event is encoded and

manipulated, is more poorly understood.

Understanding how humans construct

these probabilistic representations will be

critical.



influences not only research, but also social policy. As our understanding of human behavior has

changed, the policies we consider fair or desirable also change. During the 1950s, humans were

thought of as perfectly rational. People accurately maximized their personal preferences, or utility

functions. To limit an individual’s choices, or to force a particular choice, was unthinkable (as long

as no one else was being harmed). During the 1970s and 1980s, however, it became clear that

humans are often irrational, apparently beset by unresolvable internal conflict between their

multiple-selves. Policymakers could help such a decision-maker by restricting their options so

as to minimize destructive internal conflict. This logic, that irrationalities arise from an internal con-

flict and that policymakers should structure the choice environment to eliminate these conflicts,

has recently taken a dominant role in policy circles [83]. Designing the choice environment to

limit conflict inside the decision-maker is now a standard recipe for improving the well-being of

decision-makers.

However, the neuroeconomic data presented here appear to indicate that humans are not intran-

sitive because of internal conflict. Instead, these data suggest that human intransitivities arise

from the limits of human computational precision and how the brain distributes that precision in

representing subjective value. If true, that conclusion calls for policy interventions that may be dif-

ferent from the ones prescribed by contemporary behavioral economists. In an efficiently irrational

chooser, eliminating irrationality ultimately comes down to findingways to reduce either the costs,

or the need for, precision. Consider this example: human choosers are intransitive [74] when they

rapidly shift from choosing at a low-value range to a high-value range (Figure 5). This reflects not a

conflict between two modules, but rather the slow adaptation of the divisive normalization mech-

anism as it shifts to maximize precision in a new range. In this case, minimizing irrationalities is

simply a matter of waiting for the mechanism to align with the new value range.

All of this suggests that our new understanding of the limits of the choice mechanism reveals a

surprisingly simple structure that admits new approaches to old irrationalities. Understanding

that irrationalities emerge from the limits of our precision will suggest new classes of policy inter-

vention that specifically target our representational limits while exploiting our irrational efficiencies.
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