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Decisions under Risk Are Decisions under Complexity†

By Ryan Oprea*

We provide evidence that classic lottery anomalies like probabil-
ity weighting and loss aversion are not special phenomena of risk. 
They also arise (and often with equal strength) when subjects eval-
uate deterministic, positive monetary payments that have been 
disaggregated to resemble lotteries. Thus, we �nd, e.g., apparent 
probability weighting in settings without probabilities and loss 
aversion in settings without scope for loss. Across subjects, anom-
alies in these deterministic tasks strongly predict the same anom-
alies in lotteries. These �ndings suggest that much of the behavior 
motivating our most important behavioral theories of risk derive 
from  complexity-driven mistakes rather than true risk preferences.  
(JEL C91, D44, D81, D91)

In this paper we show that some of the most important lottery anomalies from 

the behavioral risk literature are not special phenomena of risk. They arise too (and 

often with equal strength) in the valuation of objects that are descriptively similar to 

lotteries but that are perfectly deterministic. We argue that this suggests that many 

important anomalies occur because lotteries are complex (costly or dif�cult to prop-

erly evaluate) rather than because they are risky. To the degree this is true, many 

anomalies that are commonly interpreted as expressions of risk preferences should 

instead be interpreted as systematic mistakes that are only indirectly related to risk.1

1 Throughout the paper, we will use the word “preferences” to refer to a decision-maker’s welfare-relevant rank 
ordering of lotteries. This is a narrower way of using the term than some treatments in which “preference” refers 
simply to the decision-maker’s observed choice (i.e., the revealed preference of an agent). We will use the word 
“mistakes” to refer to failures to make choices that are consistent with the normatively correct ordering described 
by preferences. However, in this usage we do not preclude the possibility that mistakes are optimal, i.e., that choices 
maximize overall welfare, given constraints such as information-processing costs. 
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In each task in our experiment, we elicit subjects’ dollar valuations for a set of 

100 “boxes,” each of which contains some dollar amount. For example, in one of our 

tasks (called G90), we ask subjects to value a set consisting of 90 boxes that each 

contain $25 and 10 boxes that each contain $0. Acquiring a set of boxes in�uences 

the subject’s earnings in the experiment according to a payoff rule, and we compare 

how subjects value these sets under two contrasting payoff rules.

By opening one of the boxes from the set at random and paying the subject the 

amount inside, we turn the set into a lottery (i.e., G90 becomes a risky prospect 

of earning $25 with probability 0.9), and the dollar value the subject attaches to it 

becomes a certainty equivalent: the certain dollar amount the subject judges to be 

equivalently valuable to the risky lottery. Eliciting subjects’ certainty equivalents 

(and related measures) for a standard set of such lotteries, we replicate the fourfold 

pattern of risk and loss aversion, two of the key anomalies in the lottery valuation 

literature. The fourfold pattern of risk is a tendency for risk postures to apparently 

change with the magnitude of probabilities and the gain/loss framing of lottery 

payments (typically attributed to what the literature calls “probability weighting”); 
loss aversion is a tendency for losses to receive more apparent weight than gains in 

valuations of mixed lotteries (typically attributed to “loss-averse” preferences that 

are more strongly in�uenced by losses than gains). These anomalous behaviors have 

served as primary empirical motivation for many of our most important behavioral 

theories of risk preferences, including prospect theory (Kahneman and Tversky 

1979; Tversky and Kahneman 1992). Because of their in�uence, we refer to these 

anomalies collectively as the classical pattern.

Our contribution is to compare these valuations to the valuations of what we 

call “deterministic mirrors” of the same lotteries. A deterministic mirror of a lot-

tery consists of the same set of 100 boxes used to describe the lottery but is char-

acterized by a different payoff rule: instead of paying the dollar amount in one of 

the 100 boxes selected at random as a lottery does, a mirror pays the sum of the 

rewards in all of the boxes, weighted by the total number of boxes. Thus, instead 

of paying $25 with probability 0.9 (as a lottery does), the mirror of G90 pays 

0.9  ×  $25 = $22.50 with certainty. The dollar values subjects attach to these 

objects are no longer certainty equivalents since there is no uncertainty in deter-

ministic mirrors. Instead, such valuations are simplicity equivalents: the  simply 

described dollar amounts subjects judge to be equivalently valuable to the rela-

tively more  complexly described mirror.

Mirrors are descriptively identical to lotteries, and valuing them requires simi-

lar information processing, but in contrast to lotteries, mirrors contain no risk, and 

therefore, their valuations provide no scope for the rational expression of risk or loss 

preferences. In contrast to a lottery, valuing a mirror at anything other than its deter-

ministic value (i.e., its corresponding lottery’s expected value) is unambiguously a 

dominated,  money-losing mistake. Nonetheless, we �nd that

 (i) The fourfold pattern arises in the valuations of deterministic mirrors just as it 

does in lotteries, and with roughly the same strength. Importantly, this means 

that we �nd strong evidence of what is usually called “probability weighting” 

in settings without probabilities.
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 (ii) Loss aversion arises in deterministic mirrors even though at the relevant mar-

gins they cannot actually produce losses. Thus, we �nd strong evidence of 

what is usually called “loss aversion” in settings without risk of loss.

 (iii) Across subjects, the severity of each of these anomalies in lotteries is 

strongly predicted by their severity in deterministic mirrors, suggesting that 

the behaviors in the two settings are strongly linked, deriving from a common 

behavioral mechanism (which, clearly, cannot be grounded in risk or risk 

preferences).

Additional treatments show that these results are robust to variation in the method 

of elicitation, the arithmetic dif�culty of the valuation task, subject pool, and stakes 

(Oprea 2024).
We interpret these results as evidence that lottery anomalies like probability 

weighting and loss aversion are not primarily rational expressions of  nonstandard 

risk preferences as is often believed (e.g., in some interpretations of prospect the-

ory) but are instead in large part systematic mistakes induced by the complexity 

(the costs and dif�culties) of properly valuing lotteries and similarly disaggregated 

objects.2 We argue that this suggests that such anomalies tell us little about tastes 

for risk or loss and therefore should not be accommodated in welfare analysis or 

policy design. On the other hand, we argue that the appearance of these anomalies 

as complexity responses in deterministic domains suggests that the patterns of heu-

ristic errors they describe likely distort choice in a far broader range of contexts than 

has so far been appreciated.

Our paper is organized as follows. In Section  I we describe our experimental 

design, and in Section II we report our results. In Section III we offer our interpre-

tation of our �ndings, and in Section IV we discuss how our work connects to the 

prior literature. In Section V we conclude.

I. Experimental Design

In our experiment, we elicit valuations for a set of 12 lotteries (discussed in 

Section IA) known to produce some of the key valuation anomalies in the behavioral 

literature on risky choice. We describe these lotteries in frequentist terms as a set of 

100 boxes, each containing some amount of money, one of which will be opened 

at random to determine the subject’s payment. For example, a lottery we call G75 

consists of 75 boxes containing $25 and 25 boxes containing $0, meaning this is a 

lottery that pays out $25 with 75 percent chance.

2 In using the term “complexity,” we follow the standard de�nition from computer science: the cost of imple-
menting the algorithm or procedure required to properly solve a problem. When we say a lottery is “complex,” 
we mean only that its value is not transparent to the decision-maker because the procedure required to optimally 
aggregate its disaggregated components into a value is costly or dif�cult. If these costs and dif�culties are suf-
�ciently severe—if a lottery is suf�ciently complex—the decision-maker may be induced to use a less optimal 
procedure instead (Simon 1955), producing  misvaluations. See Oprea (2020) for direct evidence that procedures 
produce complexity costs of this sort; Banovetz and Oprea (2022) for evidence that these costs drive people to use 
 simpler-than-optimal choice procedures; and Camara (2023) for a theoretical analysis of some consequences for 
 decision-making. 
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Our contribution is to also ask the same subjects to value what we call deter-

ministic mirrors of each of these 12 lotteries. Deterministic mirrors are described 

exactly as lotteries are, but with a change to the payoff rule that removes risk from 

the lottery. Instead of paying the contents of 1 box opened at random as in a lottery, 

in a mirror payoffs are determined by opening all 100 boxes, summing their values 

and weighting the total by the total number of boxes. In other words, the mirror pays 

the expected value of its corresponding lottery with certainty.

We designed the experiment to hold constant the information processing 

required to value a lottery and a mirror, varying only the presence of risk. To do 

this, we describe these two kinds of objects in identical, frequentist terms using 

virtually identical presentations, instructions, and computer displays. We also ran 

the experiment using a  within-subjects design: subjects valued a set of 12 lotter-

ies (the Lottery treatment) and also a set of 12 mirrors (the Mirror treatment) of 

those same lotteries. Importantly, we randomize the order in which subjects were 

assigned the 12 mirrors versus the 12 lotteries. To further minimize scope for 

contagion across treatments, we were careful not to tell subjects �rst assigned lot-

teries that they would later be asked to value mirrors or vice versa. We also were 

careful to use examples and comprehension questions to make it very clear that 

lotteries and mirrors have very different payoff rules. Instructions are reproduced 

in online Appendix B.

In our main design, we elicit valuations of lotteries and mirrors using multiple 

price lists (MPLs), the most commonly used method in the literature. An MPL 

is simply a series of closely related binary choice problems (between options A 

and B) “stacked” on top of one another in a table. In MPLs designed to elicit  

lottery/mirror valuations, Option A in each row of the table simply repeats the 

lottery/mirror we are eliciting the value for, while Option B is a degenerate lot-

tery (i.e., all 100 boxes contain the same dollar amount) whose value increases 

from  row to row in $1 steps. The subject selects either Option A or B on each 

row of the MPL to express her preference; if some row of the MPL is randomly 

selected for payment (see Section IB), her choice in that row is implemented to 

determine her earnings. By examining on which row the subject “switches” from 

preferring A to B, we get an interval estimate of the subject’s dollar valuation for 

the lottery or mirror. Following standard practice, throughout our data analysis, 

we use the  midpoint between rows of the MPL to measure values. Our software 

imposes a “single switching” rule that allows the subject to switch from Option A 

to Option B only once in the MPL. In online Appendix A.3 we report a robustness 

treatment in which we elicit values using the  Becker-Degroot-Marschak (BDM) 
method (Becker, DeGroot, and Marschak 1964) instead. Screenshots are provided 

in online Appendix A.8.2.

While the literature interprets the resulting valuations of lotteries as certainty 

equivalents—the certain dollar payments subjects value equivalently to risky lotter-

ies—the same interpretation cannot be applied to mirrors, which contain no uncer-

tainty. Instead, values for mirrors are simplicity equivalents: the  simply described 

payment amount subjects value equivalently to the more complexly described (but 

no less certain) mirror. Our question throughout the paper is whether simplicity 

equivalents have the same properties and suffer the same anomalies as certainty 

equivalents.
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A. Lotteries

Eight of the 12 lotteries we ask subjects to value we call “fourfold lotteries” 

because they are designed to replicate what Tversky and Kahenman (1992) call the 

“fourfold pattern of risk”—a pattern that summarizes much of what we’ve learned 

about the certainty equivalents of lotteries in the last half century of empirically 

studying them. The pattern is typically measured using the certainty equivalents 

subjects assign to simple,  two-state lotteries of the form  L ( p; $X)   (i.e., lotteries that 

pay $X with probability  p  and $0 otherwise). Following the literature, we mea-

sure the pattern using valuations of two sets of such lotteries. Our “gains lotteries” 

pay  X = $25  with probabilities  p ∈  {0.1, 0.25, 0.75, 0.9}   (yielding lotteries we 

call G10, G25, G75, and G90), and  Y = $0  otherwise. Our “loss lotteries” pay  

X = − $25  with probabilities  p ∈  {0.1, 0.25, 0.75, 0.9}   (yielding lotteries we call 

L10, L25, L75, and L90), and  Y = $0  otherwise. (In addition to the fourfold lotter-

ies, we also include lotteries G50 and L50, which pay $25 and −$25, respectively, 

with probability 0.5.)
Stated in terms of these lotteries, the fourfold pattern is a tendency for the cer-

tainty equivalent to (i) be lower than the lottery’s expected value (revealing apparent 

risk aversion), for low-probability prospects of losses (e.g., lotteries L10, L25) and 

high-probability prospects of gains (e.g., lotteries G75, G90) and to (ii) be greater 

than the lottery’s expected value (revealing apparent love for risk) for high-probabil-

ity prospects of losses (e.g., L75, L90) and low-probability prospects of gains (e.g., 

G10 and G25). The fourfold pattern is therefore a series of apparent reversals in risk 

posture that occur when probabilities switch from low to high, and when lottery 

outcomes switch from losses to gains.

The �nal two tasks we assign to subjects we call “loss aversion” tasks because 

they are designed to measure the empirical regularity of loss aversion. Loss aversion 

is an apparent tendency to place excess weight on negative payments relative to 

positive payments when evaluating lotteries that mix gains and losses. Alternatively, 

loss aversion can be described as risk aversion toward mixed lotteries (lotteries that 

contain both strictly positive and negative payoffs). In our main design we measure 

loss aversion by eliciting lottery equivalents of a certain payoff (of $0), instead of 

certainty equivalents of a lottery. Speci�cally, we ask subjects to choose between 

a sure payment of $0 (repeated in each row of the MPL) and a menu of lotter-

ies   (0.5; $X, $Y)   in which  Y < 0  is �xed at some negative value in each row and  

$ X > 0  increases from  row to row of the MPL in $2 steps. By looking for the value 

of $X at which the subject switches from preferring the sure payment of $0 to prefer-

ring the lottery, we get an implicit measure of the excess linear weight  λ  the subject 

places on negative relative to positive payoff events when valuing mixed lotteries. 

Lottery equivalents of this kind are popular for measuring loss aversion because they 

are believed to �x the reference point against which gains and losses are assessed at 

zero, allowing for cleaner measurement (Hershey and Schoemaker 1985; Sprenger 

2015). We include tasks with $Y equal to −10 and −15, giving us tasks  A10  and  A15 ,  

respectively.3

3 Because of possible losses, subjects were given endowments of $5 for the gains lotteries, $30 for loss lotteries, 
$15 for A10, and $20 for A15 
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We present each subject with a version of each of these 12 tasks using lottery 

incentives (the Lottery treatment) and a version using deterministic mirror incen-

tives (the Mirror treatment). In addition, in our main design we repeat two randomly 

selected lottery tasks and repeat the same two mirror tasks, allowing us to study the 

relationship between anomalies and inconsistencies across repeated choices (see 

online Appendix A.6). Thus, in total, subjects completed 14 tasks in each of the 

Lottery and Mirror treatments. The order of these two treatments (all Lottery tasks 

followed by all Mirror tasks or all Mirror tasks followed by all Lottery tasks) is 

randomized at the subject level.

B. Implementation

A total of 673 subjects participated in the experiment. We collected data from 

the main MPL treatment ( N = 184 ) in April of 2023 on Proli�c using custom 

Javascript programmed by the author and deployed via Qualtrics. Subjects were 

paid a $6 base payment and, with 20 percent chance, were additionally paid the 

outcome from a randomly selected MPL and MPL row. They spent a median of 

27.5 minutes in the experiment and earned an average of $13.11 per hour. At the 

end of the experiment, we included a short battery of three cognitive re�ection 

tasks (Frederick 2005), a short demographic survey (focused on the subject’s tech-

nical education), and a number of questions about subjects’ strategies and beliefs 

during the experiment. Details are provided in online Appendix A.5, and the results 

are discussed in Section IIC. In addition, we collected data from robustness treat-

ments in which we (i) elicited values using the BDM mechanism instead of MPLs  

( N = 100 ), (ii) attempted to lower the arithmetic dif�culty of valuation by chang-

ing the numbers used in the design ( N = 90 ), and (iii) used a university subject 

pool with more intensive training and higher incentives ( N = 113 ).4 Details on 

these robustness treatment are provided in Section IIC and online Appendix A.

C. Interpreting the Classical Pattern

The tasks we include in our design are characteristic of those typically used to 

measure the fourfold pattern of risk and loss aversion, two of the cardinal empirical 

patterns in the experimental literature on decision-making under risk. Throughout 

the paper, we will refer to these two patterns of anomalies jointly as the classical 

pattern, and deviations from expected value that are characteristic of this pattern 

 pattern-consistent deviations.

The fourfold pattern has been an important motivation for theories of deci-

sion-making under risk in the behavioral economics literature and in psychology. 

Most importantly, it has typically been interpreted as evidence of probability weight-

ing: a putative tendency for decision-makers to value low-probability prospects as 

if they are more likely and high-probability prospects as if they are less likely than 

4 The remaining 186 subjects in our dataset participated in an earlier run of our main MPL design. A referee 
noticed a typo in one of the examples used in the instructions, leading us to  rerun the experiment. Data from that 
earlier run of the main design are reported in online Appendix A.6; the results are nearly identical to those from 
our main design.
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they really are. The empirical regularity of loss aversion has similarly been in�uen-

tial in inspiring behavioral theories of preferences; the apparent excess weight on 

losses it describes is widely interpreted as evidence that risk preferences are refer-

ence dependent and that losses (relative to a  status quo reference point of zero) have 

a greater impact on utility than gains.

Because these features of risk preferences (probability weighting, reference 

dependence, loss aversion) are not easily accommodated by standard expected util-

ity theory (EUT), the classical pattern has served as the empirical foundation for 

a number of alternative theories of risk preferences. By far the most in�uential of 

these is prospect theory (Kahneman and Tversky 1979; Tversky and Kahneman 

1992; Wakker 2010), which assembles both tendencies into a uni�ed model of pref-

erences. In particular, prospect theory describes the classical pattern as growing 

out of the joint in�uence of a probability weighting function that shapes utility as a 

function of probabilities (giving rise to probability weighting) and a reference-de-

pendent value function that computes value based on distance from a reference point 

(e.g., the status quo) rather than �nal wealth (giving rise to reference dependence), 
and is steeper in losses than gains (giving rise to loss aversion). The classical pattern 

is a key motivation for and is central to the empirical study of prospect theory; the 

fourfold pattern describes prospect theory’s distinctive predictions concerning the 

evaluation of lotteries involving gains or losses (Tversky and Kahneman 1992 call 

it “the most distinctive implication of prospect theory”), and loss aversion its dis-

tinctive predictions concerning the evaluation of lotteries that mix gains and losses.

To the degree the classical pattern is indeed driven by risk preferences (i.e., tastes 

for risk that cause valuations to deviate from expected value), it should disappear 

when we remove risk from lotteries in our Mirror treatment. Because mirrors pay 

expected value with certainty, they effectively induce risk-neutral EUT preferences 

in subjects, making any valuations that depart from expected value dominated mis-

takes under any rational theory of subjects’ own native preferences. Thus, to the 

degree this distinctive pattern continues to arise in the absence of risk, we have evi-

dence for an alternative interpretation of the classical pattern: that it is a pattern of 

systematic mistakes, arising not because lotteries are risky, per se, but rather because 

they are complex (costly or dif�cult to properly value).5

II. Main Results

In Figure 1, we plot raw data from the experiment. On the  x-axis we plot the prob-

ability of the lottery’s  nonzero payment, and for the fourfold lotteries (G10, G25, 

G75, G90, L10, L25, L75, and L90), we plot the deviation of the certainty/simplicity 

equivalent from expected value on the  y-axis.6 Positive values of this difference are 

5 Our method for identifying the role of  complexity-derived mistakes in lottery anomalies is therefore to remove 
risk from lotteries and examine whether the anomalies persist. An alternative approach might be to attempt to 
remove complexity from lotteries to see if anomalies disappear. This alternative approach seems more dif�cult 
to implement and especially to verify; while we can directly remove risks from lotteries, it is more dif�cult to tell 
ex ante how to make valuing a lottery easy to evaluate or to verify that we were successful at doing so ex post. 
Nonetheless, convincing evidence gathered using such an alternative approach would be a powerful complement to 
the approach we take here. 

6 For legibility, we omit data from the G50 and L50 lotteries from these plots since these are not involved in 
either the fourfold pattern or loss aversion. We plot data from these lotteries instead in Figure 2 and examine them 
in more detail in online Appendix A.7.
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conventionally interpreted as revelations of  risk-loving preferences, and negative 

values as revelations of  risk-averse preferences. We plot means for each lottery/
mirror and include error bars that span two standard errors in each direction.

In gray, we plot data from the Lottery treatment and �nd strong evidence of 

the characteristic reversals of the fourfold pattern. Subjects appear risk averse for 

high-probability gains (G75, G90) but risk loving for low-probability gains (G10, 

G25). These postures appear to �ip in each case for losses: subjects instead appear 

risk loving for high-probability losses (L75, L90) and risk averse for low-proba-

bility losses (L10, L25). For every fourfold lottery, we can reject the hypothesis of 

equality of valuations with expected value at the 5 percent level using Wilcoxon 

tests.

Our �rst main �nding is that valuations are virtually identical in the Mirror treat-

ment, plotted as hollow dots; subjects display each of the four components of the 

fourfold pattern of risk, even though mirrors contain no risk at all. In each case 

these deviations from expected value continue to be signi�cant at the 5 percent level 

using Wilcoxon tests. In the left two panels of Figure 2, we  replot these same data 

Figure 1. Mean Deviations from Expected Value in Lotteries (Solid Gray Dots)  
and Mirrors (Hollow Dots)

Notes: For fourfold lotteries, the y-axis measures the difference between subjects’ certainty/simplicity equivalent 
and expected value, as stated in the axis label. The x-axis is the probability of the nonzero payoff. For loss aversion 
tasks, the y-axis measures instead the difference between the certain/simple payoff and the expected value of the 
mixed lottery/mirror. Two–standard error bars are included for every task.
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under the lens of probability weighting, following standard conventions from the 

literature (Tversky and Kahneman 1992). In these panels we plot (i) the probability 

of the  nonzero payment on the  x-axis and (ii) the ratio of the certainty/simplicity 

equivalent to the  nonzero payment of the lottery on the  y-axis. This provides a naïve 

visual estimate of the “probability weighting function” for both gains (left panel) 
and losses (middle panel). In lotteries (plotted in gray), we �nd conventional evi-

dence of probability weighting, with subjects acting as if they overweight low-prob-

ability prospects and underweight high-probability prospects relative to expected 

value (shown as a dashed  45-degree line). Our main �nding is that we observe virtu-

ally identical probability weighting in mirrors (plotted as hollow dots), even though 

there are no probabilities in these tasks.

RESULT 1: The fourfold pattern appears in deterministic mirrors, just as it does 

in lotteries. We �nd strong evidence of “probability weighting” in settings without 

probabilities.

We also plot data from our loss aversion tasks (A10, A15) in Figure 1. For these 

tasks, we plot on the  y-axis the difference between the certain payment of $0 and 

the expected value of the lottery subjects judge to be equivalently valuable to 0; 

a negative value of this statistic is conventionally interpreted as evidence of loss 

aversion since it is evidence of subjects rejecting positive expected value lotteries 

that contain possible losses. To complement this raw analysis, in the  rightmost 

panel of Figure 2, we plot estimates of  λ , the estimated linear weight placed on 

losses (relative to gains). A  λ > 1  is conventionally interpreted as evidence of 

loss aversion.

Figure 2. Naïve Visualization of the Probability Weighting Functions (Left Two Panels) and the Loss 
Aversion Parameter,  λ 

Notes: The �rst two panels plot a naïve estimate of the probability weighting function (following Tversky and 
Kahneman 1992) by plotting the ratio of the certainty/simplicity equivalent to the  nonzero payment amount as a 
function of the probability of the  nonzero payoff amount. The �nal panel plots a naïve estimate of  λ , the standard 
linear parameter of loss aversion, under the assumption of a reference point of zero.
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For lotteries (plotted in gray), we �nd standard evidence of loss aversion. As 

Figure 1 shows, subjects deviate signi�cantly from the  loss-neutral benchmark in 

a  loss-averse direction ( p < 0.01  in both cases by Wilcoxon tests). Figure 2 plots 

estimates of  λ  ranging from 1.5 to nearly 2, suggesting that subjects place signi�cant 

additional weight on losses relative to gains in their valuations. As with the four-

fold pattern, our main �nding is that behavior is very similar in mirrors. Valuations 

in Figure 1 signi�cantly deviate from the optimal “loss-neutral” benchmark in the 

same “loss-averse” direction as lotteries ( p < 0.01  in all cases by Wilcoxon tests). 
Loss aversion can also be described as risk aversion toward mixed lotteries. For 

this, it is useful to contrast the expected earnings subjects are willing to sacri�ce to 

avoid risk in unmixed 50/50 lotteries and mirrors (our L50 and G50 tasks, in which 

risk but not loss preferences can in�uence choice) to the expected earnings subjects 

are willing to sacri�ce to avoid risk in our mixed 50/50 lotteries (tasks A10 and 

A15). The average subject is willing to sacri�ce $3.02 more in expected earnings to 

avoid risk in mixed than unmixed 50/50 lotteries and similarly $3.22 more to avoid 

“mixed” than “unmixed” 50/50 mirrors, suggesting that subjects are, on average, 

substantially more averse to mixed than unmixed 50/50 lotteries and mirrors.

Importantly, conditional on making seemingly  loss-neutral or  loss-averse choices, 

there is no actual scope for loss in the mirrors of A10 and A15. We thus �nd strong 

evidence of apparent loss aversion in settings without actual risk of loss.

RESULT 2: Apparent loss aversion appears in deterministic mirrors, just as it does 

in lotteries. We thus �nd strong evidence of “loss aversion” in settings without risk 

of loss.

A. Relative Magnitudes

Visual inspection of Figures 1 and 2 suggests that the classical pattern not only 

arises in mirrors, it also arises with similar severity in mirrors as it does in lotteries. 

To study this more carefully, we examine relative magnitudes of these anomalies 

in mirrors and lotteries in several ways. First, we examine the  within-subjects dif-

ference in the lottery and mirror errors plotted in Figure 3 (effectively, measures of 

net risk/loss seeking) for the median and mean subject. For the median subject, this 

difference is 0 in all 12 of our tasks, meaning that in every task the median subject 

makes the same choices in lotteries and mirrors. The left-hand panel of Figure 3 

plots the mean difference in errors for each of our fourfold and loss aversion tasks 

and for tasks G50 and L50 (with two standard error bars extending in each direc-

tion). We �nd some variation in the mean across tasks, with mirror errors sometimes 

larger and sometimes smaller than lottery errors. But these differences tend to be 

small, and standard error bars overlap 0 for most of the tasks. Paired Wilcoxon tests 

do not allow us to reject the hypothesis that mirror and lottery choices are the same 

at the 5 percent level in 9 out of our 10 fourfold/loss aversion tasks (the exception 

is G75).
Second, we examine the ratio of mirror and lottery summed errors, normalized 

to be positive if they run in the direction of the classical pattern. This gives us a 

sense of the proportion of each anomaly in lotteries that also appears in mirrors in 

the aggregate. These proportions are plotted for each task in the right-hand panel 
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of Figure 3. Once again, we �nd variation across tasks, with anomalies sometimes 

more severe in lotteries and sometimes more severe in mirrors, but ratios are overall 

distributed roughly symmetrically around 1 (the benchmark for equal severity of 

the anomaly in mirrors and lotteries). Aggregating, for fourfold tasks the mean ratio 

is 97 percent across tasks, suggesting that, overall, the fourfold pattern is about 97 

percent as strong in mirrors as in lotteries. For our two loss aversion tasks, the mean 

ratio is 80 percent, suggesting that loss aversion may be moderately less severe in 

mirrors than lotteries by this metric.

Putting this evidence together, for the fourfold pattern, there is little evidence 

that mirror behavior is systematically different from lottery behavior; the median 

subject makes no distinction between the two treatments, we generally can’t sta-

tistically distinguish choices in the two treatments, and the relative magnitudes of 

 pattern-consistent deviations are, on average, close to 1. For loss aversion, evidence 

is mixed. On the one hand, once again, median differences are zero, mean differ-

ences are close to zero, and paired Wilcoxon tests fail to reject the hypothesis that 

the two behaviors are the same. However, in the aggregate, the mean magnitude of 

loss-averse errors is somewhat smaller for mirrors than lotteries. Viewed in the con-

text of the variation in the proportion of mirror/lottery errors in the dataset overall 

(pictured in the right panel of Figure 3), it is dif�cult to tell whether this is due to 

sampling variation or is a real systematic difference in loss aversion relative to the 

fourfold pattern. However, a straight reading of the evidence suggests that loss aver-

sion may be somewhat weaker on average (perhaps 80 percent as strong) in mirrors 

than it is in lotteries.7

7  The  left-hand panel of Figure 3 is also useful in that it allows us to study to what degree our loss aversion results 
are driven by the fact that they rely on 50/50 lotteries (which are plausibly arithmetically simpler than other lotteries 
in our design). In particular, it allows us to compare treatment differences in our mixed 50/50 lotteries to differences 
in our unmixed 50/50 lotteries, G50 and L50. There, we �nd that treatment differences are small for mixed lotteries 

Figure 3. Comparisons between Lottery and Mirror Tasks

Notes: The left panel plots the mean difference between mirror and lottery net risk/loss seeking for each task, with 
 two–standard error bars plotted in each direction. The right panel plots the ratio of total  pattern-consistent errors in 
mirrors relative to lotteries for each task. Dashed lines plot the mean of each measure, pooling across tasks.
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RESULT 3: The severity of the fourfold pattern is similar in lotteries and mirrors. 

By most measures, the severity of loss aversion is likewise similar, though some 

evidence suggests that loss aversion may be moderately weaker in mirrors than in 

lotteries.

B. Correlation and Heterogeneity

To what degree do these anomalies (the fourfold pattern and loss aversion) occur 

in risky lotteries and riskless mirrors for the same reason, driven by the same behav-

ioral mechanism? To study this, we make use of our  within-subjects design and 

examine the statistical relationship between anomalous behavior in mirrors and lot-

teries across subjects. Since there is no risk in mirrors, to the extent that evidence 

of anomalies is strongly correlated in lotteries and mirrors, we have evidence that 

they are likely both driven by the complexity of evaluation (the property lotteries 

and mirrors share) rather than by risk or risk preferences (a property absent from 

mirrors).
The left panel of Figure 4 plots a separate dot for each subject, with the  x-axis 

plotting that subject’s mean absolute deviation from the expected value–maximiz-

ing choice in mirrors and the  y-axis plotting the same deviation in lotteries. The 

plot shows a great deal of heterogeneity in the magnitude of errors across sub-

jects but a strikingly strong correlation between lottery and mirror errors of 0.68  

( p < 0.001 ). The right panel instead examines mean deviations normalized to be 

positive if they run in the direction of the classical pattern (i.e., the fourfold pattern 

or loss aversion), again plotting the mean value for mirrors on the  x-axis and for 

lotteries on the  y-axis. We make three observations. First, virtually all deviations 

are concentrated in the northeast quadrant, suggesting that subjects make highly 

asymmetric errors on net in the distinctive direction of the classical pattern in both 

lotteries and mirrors. Second, although the severity of these deviations is highly 

heterogeneous, there is again a very strong correlation (0.62,  p < 0.001 ) between 

mirror and lottery deviations, suggesting the two tendencies likely derive from a 

related behavioral mechanism. Finally, the correlation is virtually identical when 

subjects began in the Mirror treatment and move on to the Lottery treatment and 

vice versa (see online Appendix A.1 for details).

RESULT 4: The severity of the classical pattern is strongly correlated, across sub-

jects, in lotteries and mirrors.

We make three additional observations about these correlations. First in online 

Appendix A.8.1, we show that these correlations are similar for the fourfold pattern 

and loss aversion when calculated separately. Second, our measures are unavoidably 

noisy, and their correlations are therefore likely to be  underestimated due to atten-

uation bias (Gillen, Snowberg, and Yariv 2019). Thus, as high as these correlations 

are, they should be viewed as lower bound estimates of the relationship between 

lottery and mirror behaviors. Third, at the end of the experiment, we asked subjects 

when compared to G50 but large when compared to L50. We therefore have little systematic evidence that the larger 
treatment gap we �nd in loss aversion tasks is driven by the fact that they rely on 50/50 lotteries. 
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to report whether they used completely/mostly different strategies in lotteries and 

mirrors or identical/mostly similar strategies; 75 percent of subjects reported using 

identical or mostly similar strategies in the two treatments, strongly matching our 

behavioral �ndings and reinforcing the idea that the pattern is driven in each case by 

the same behavioral mechanism.

Finally, a key prediction of standard risk  preference–based interpretations of the 

classical pattern (e.g., prospect theory) is that the pattern should only arise in the 

presence of risk. What proportion of subjects actually �t this description? To study 

this, we classify a subject as “complexity sensitive” if she deviates from expected 

value in the direction of the classical pattern by at least one price list row in her aver-

age mirror valuation, and “risk sensitive” if she deviates by at least one row more 

in the average lottery than in the average mirror. Standard risk  preference–based 

theories predict that subjects’ tendencies to exhibit the pattern will be risk sensitive 

but complexity insensitive. We �nd that only 14 percent of subjects can be classi�ed 

this way, exhibiting the pattern in lotteries but not in mirrors. Most subjects there-

fore deviate from the most basic prediction of risk  preference–based theories. By 

contrast, the vast majority of subjects (82 percent) can be classi�ed as complexity 

sensitive, showing clear evidence of the classical pattern even in the absence of risk. 

Indeed, the modal subject (59 percent of subjects overall) is complexity sensitive 

but not risk sensitive, showing no more evidence of the pattern in lotteries than in 

mirrors. These results seem to suggest a dominant role for complexity in driving the 

classical pattern.

Figure 4. Deviations from Expected Value–Maximizing Choices in Mirrors ( x-axis)  
versus Lotteries (y-axis), by Subject

Notes: Each dot represents a separate subject. On the  x-axes we plot the subject’s data from the Mirror treatment, 
and on the  y-axes the same subject’s data from the Lottery treatment. The left panel plots the mean absolute devi-
ation from expected value. The right panel plots the mean deviation, normalized to be positive if it runs in the 
direction of the classical pattern. Gray dots are subjects who were assigned the Lottery treatment �rst, hollow dots 
subjects who were assigned the Mirror treatment �rst.
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RESULT 5: Most subjects make systematic mistakes matching the classical pattern 

in the absence of risk. Most subjects display the pattern no more strongly in the 

presence of risk than in its absence.

An additional 22 percent of subjects are both complexity and risk sensitive by 

this classi�cation, exhibiting the pattern in mirrors but even more strongly in lot-

teries. These complexity- and  risk-sensitive subjects are either (i) displaying the 

pattern more strongly in lotteries than mirrors due to the additional in�uence of 

risk preferences on top of the  complexity-driven mistakes they already display in 

mirrors or (ii) are simply more vulnerable to mistakes in the presence of risk than 

in its absence. As we discuss in Section  IV, the latter interpretation is consistent 

with Martinez-Marquina, Niederle, and Vespa (2019), who provide evidence that 

already-complex problems become more complex in the presence of risk.

C. Robustness and Additional Evidence

In the online Appendix we report results from several robustness treatments 

(using a total of 489 additional subjects) and several robustness exercises that aid in 

the interpretation of these results. First, in online Appendix A.1 we show that these 

results are not driven by order effects or contagion between treatments. Removing 

the  second-assigned treatment and conducting an entirely  between-subjects compar-

ison between subjects  �rst assigned the Lottery versus Mirror treatments, we �nd 

virtually identical results.

Second, in online Appendix A.3, we show that these results are not a special 

outgrowth of our use of multiple price lists but are instead a broader phenome-

non of valuation. There, we report a variation on our main design using the BDM 

mechanism (Becker, DeGroot, and Marschak 1964) rather than multiple price lists ( 
N = 100 ) and �nd very similar results: both the fourfold pattern and loss aversion 

arise similarly in lotteries and mirrors. However, as in previous work (discussed in 

Section IV), we �nd that the “shape” of these anomalies changes with the method of 

elicitation; the fourfold pattern is more severe at high probabilities, and loss aversion 

is weaker in BDM than in our MPL elicitations. Remarkably, we �nd the exact same 

“elicitation effects” in mirrors (i.e., switching from MPL to BDM changes behavior 

nearly identically in lotteries and mirrors), suggesting that these elicitation effects 

themselves have little to do with risk. Indeed, we �nd that varying the method of 

elicitation (BDM versus MPL) has a far larger effect on behavior than does varying 

the objective function itself (lottery versus mirror); switching from MPL to BDM 

has a roughly four times larger effect on valuations than does removing risk from the 

lottery altogether. This strongly reinforces the interpretation offered below that val-

uations of objects like lotteries and mirrors do not transparently reveal preferences 

but instead derive from subjects’ use of relatively shallow heuristics that are highly 

sensitive to super�cial details of the choice environment. In a follow-up experiment 

to ours, Vieider (2023) reports evidence that simple binary choices over mirrors are 

nearly identical to binary choices over lotteries, suggesting that our �ndings may 

extend to risky  decision-making more generally.

Third, in online Appendix A.4 we provide evidence that these results are not due 

to simple math errors or an aversion to mathematical dif�culty. There, we report a 
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version of our main design in which we attempt to lower the arithmetic dif�culty of 

calculating, e.g., expected value by (i) describing frequencies using “4 boxes” rather 

than “100 boxes” (e.g., a 75 percent chance of earning $25 is described as 3 boxes 

containing $25 rather than 75 boxes containing $25) and (ii) in some exercises using 

rewards of $20 rather than $25 (making the arithmetic particularly simple). We �nd 

these interventions have little effect on our results, suggesting that our �ndings do 

not derive from mathematical mistakes or even an aversion to dif�cult arithmetic. 

Subjects seem to be valuing lotteries heuristically not because the math is too dif�-

cult but rather in order to avoid the “�xed costs” of properly setting up the valuation 

problem and of deploying the cognitive resources required to carefully evaluate dis-

aggregated objects like lotteries and mirrors.

Fourth, in online Appendix A.2, we show that these results are slightly weak-

ened but are not eliminated with higher stakes and a more sophisticated subject 

pool. We report a version of our main design (i) run on undergraduate students  

( N = 113 ) instead of an online sample and (ii) using signi�cantly higher (quin-

tupled) incentives. We �nd broadly similar results; the fourfold pattern and loss 

aversion continue to arise strongly in both lotteries and mirrors. However, the four-

fold pattern and especially loss aversion are somewhat weaker in mirrors relative to 

lotteries than in our other treatments (the fourfold pattern shrinks to 82 percent as 

strong and loss aversion 54 percent as strong). Perhaps the most important �nding 

from this treatment is that the fourfold pattern is substantially smaller in both lotter-

ies and mirrors in this treatment than in our main treatment. The weakening of the 

pattern in both mirrors and lotteries (and in mirrors relative to lotteries) when we 

use stronger incentives and a more mathematically sophisticated subject pool is con-

sistent with a boundedly rational interpretation of these anomalies since it suggests 

that higher incentives to optimize (and plausibly lower costs of optimizing among 

students) weaken these effects to some degree.

Finally, we collected a number of additional pieces of data in our main exper-

iment that we correlate with the severity of the classical pattern in lotteries 

and mirrors (see online Appendix A.5 for details), giving us some insight into 

the behaviors that drive the classical pattern. For instance, we �nd that (i) fast 

 decision-making, (ii) noisy, inconsistent choices in repeated instances of the 

same task, and (iii) poor performance on cognitive re�ection tasks administered 

 post-experiment are all positively correlated with the severity of the classical pat-

tern. We also asked subjects after the experiment (iv) how likely they believed it 

was that they made suboptimal choices (measuring “cognitive uncertainty,” a la 

Enke and Graeber 2023), (v) how imprecise they thought their  decision-making 

process was (on a  100-point Likert scale), and (vi) how little attention subjects 

believe they themselves paid to payoffs and proportions in the descriptions of 

mirrors (again, using a  100-point Likert scale), and found that all of these were 

signi�cantly correlated with the pattern too. These results therefore link the clas-

sical pattern in both lotteries and mirrors to hasty, noisy, imprecise, and inattentive 

 decision-making and suggest that subjects were largely aware that they were mak-

ing imperfect decisions in these valuations (i.e., in important respects they know 

they are heuristically valuing these objects). Importantly, this is virtually identi-

cally true in lotteries and mirrors: we �nd highly consistent correlations between 

the classical pattern and all of these measures in the two settings, reinforcing our 
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conclusion that the pattern is driven by the same behavioral mechanism in lotteries 

and mirrors.

Putting these strands of evidence together, the twin appearance of the classical 

pattern in lotteries and mirrors suggests that the pattern represents a response not to 

risk but rather to the complexity of valuation. Perhaps surprisingly, this complexity 

does not seem to be primarily rooted in the arithmetic required in valuation, but in 

other cognitively taxing aspects of the task. For instance, simply thinking through 

how one’s preferences connect to the primitives of lotteries and mirrors and articulat-

ing the implications for behavior plausibly requires signi�cant mental effort, even if 

one has little dif�culty with the math once the problem is “set up.” We speculate that 

subjects make a kind of “extensive margin” choice when deciding how to approach 

valuation tasks like these, deciding �rst whether to (i) do a precise, careful job of 

evaluation or instead to (ii) casually or informally approximate value using heuris-

tic methods. Following approach (i) requires more mental effort, strain, and time 

than approach (ii), leading many subjects to pursue approach (ii) instead. Auxiliary 

evidence from online Appendix A.5 seems consistent with this account since this 

evidence shows that features of behavior that we would expect to accompany casual 

or informal valuation procedures (e.g., hasty, inconsistent, imprecise, inattentive, 

and  error-prone choices) are highly predictive of the severity of the classical pattern.

III. Interpretation

We interpret these �ndings as evidence that preferences for even the sim-

plest-seeming lotteries are not transparent to  decision-makers (as is often implic-

itly assumed in the literature) and that lottery valuations therefore do not reliably 

reveal subjects’ risk preferences. Instead, lotteries are complex in the sense that their 

values are costly or dif�cult for subjects to properly assess, and lottery valuations 

therefore often reveal the consequences of systematic heuristic mistakes instead of 

true preferences for risk. We show this by inducing  risk-neutral preferences in stan-

dard lottery valuation tasks (i.e., “deterministic mirrors”) and showing that subjects 

systematically fail to reveal those induced preferences in their valuations. Instead, 

subjects make systematic valuation errors that take the distinctive shape of the clas-

sic fourfold pattern of risk and loss aversion, two key empirical regularities in the 

literature that have inspired a number of behavioral theories of risk preferences. 

These systematic mistakes in mirrors strongly predict the same distinctive behaviors 

in lotteries, suggesting that the key empirical regularities typically used to measure 

putative components of preferences like probability weighting, reference depen-

dence, and loss aversion in lotteries are likely to a great extent driven by heuristic 

mistakes as well.

In offering this interpretation, it is important to emphasize that we do not make 

several seemingly related claims. We do not claim, for instance, on the basis of these 

data that risk preferences or even loss preferences do not exist but only that they are 

unlikely to be reliably revealed in lottery valuations. Indeed, our �nding of poten-

tially stronger loss aversion in lotteries than mirrors might even be evidence that true 

loss-averse preferences act as a secondary driver of loss aversion in lotteries on top 

of the mistakes that exclusively drive the same phenomenon in mirrors (though see 

Section IV for a caution concerning this interpretation). Likewise, our data suggest 
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that the classical pattern sometimes appears as mistakes in deterministic settings 

(revealing that the pattern is not a special phenomenon of risk), but we do not have 

any basis to claim that this is a universal phenomenon. It is possible that some alter-

native framings of deterministic mirrors might make it less dif�cult or costly to infer 

the mirror’s true value, attenuating or eliminating this effect. On the other hand, we 

would not be surprised (on the basis of evidence from  Martinez-Marquina, Niederle, 

and Vespa 2019, discussed in the next section) if this were less true of lotteries: risk 

itself may make inferring true value dif�cult, regardless of the framing. As a result, 

there may well be some settings in which there is a larger wedge between lottery and 

mirror behavior than in our experiment.8 However, this possibility has little impact 

on our main conclusion: that the classical pattern is in large part a description of 

the heuristic mistakes people make when the values of disaggregated objects (like 

lotteries or their mirrors) are dif�cult or costly for them to properly assess.9

Importantly, the literature has, in recent years, offered a number of descriptions 

of heuristic behaviors that are capable of generating the classical pattern without 

appeal to risk or risk preferences. A growing literature interprets lottery anomalies 

as growing out of imprecise valuation strategies and the tactics decision-makers use 

to compensate for noise in their internal representations of numbers or calculations 

of aggregates. The “noisy coding” literature (Woodford 2020; Glimcher 2022), for 

instance, shows that if decision-makers shade noisy evaluations of lotteries toward 

prior beliefs in a Bayesian manner, this can produce the fourfold pattern (Steiner 

and Stewart 2016; Khaw, Li, and Woodford 2022; Vieider 2023; Frydman and Jin 

2023) and even loss aversion (Woodford  2012) under some assumptions. Enke 

and Graeber (2023) show, similarly, that uncertainty about the quality of value 

calculations, combined with cognitive defaults, can produce the fourfold pattern. 

Blavatskyy (2007) shows that if decision-makers do nothing more in response to 

valuation noise than ensure that their valuations do not exceed the bounds of the 

lottery’s support, the fourfold pattern will emerge as a result. Closely related is the 

literature on “decision by sampling,” which roots the classical pattern in heuristics 

built on imprecise comparisons between past and present circumstances (Friedman 

1989; Stewart, Chater, and Brown 2006). Another literature shows that the pattern 

can arise instead from inattentive valuation strategies. Bordalo, Gennaioli, and 

Shleifer (2012) show that if decision-makers put excess weight on salient compo-

nents of lotteries when valuing them, this can generate the fourfold pattern; given 

 widespread evidence in psychology on the greater salience of negative relative to 

8 To give an extreme example, if we were to directly tell subjects in our experiment the expected value, we would 
expect the classical pattern to shrink much more in mirrors than in lotteries. This is because knowing the expected 
value directly removes the dif�culties of valuation in mirrors (since the value of mirrors just is the expected value), 
but it doesn’t in any clear way remove those same dif�culties in lotteries. In order to value lotteries, the subjects 
still must face the dif�cult task of accessing their preferences for risk and linking those preferences to the properties 
of the lottery, plausibly preserving the temptation to avoid these dif�culties by valuing lotteries instead using the 
heuristics responsible for the classical pattern. Indeed, there is little evidence that simply showing subjects statis-
tics like expected value meaningfully affects their evaluations of lotteries (Lichtenstein, Slovic, and Zink 1969; 
Montgomery and Adelbratt 1982; Beauchamp et al. 2020). 

9 To show that the classical pattern is a pattern of mistakes, it seems suf�cient to show that there are some 
settings that super�cially resemble lotteries in which the classical pattern appears but is not rationalizable by pref-
erences. To show that the same is likely true of lotteries, it seems suf�cient to show that the pattern is strongly pre-
dicted by clear instances of such mistakes. These conclusions seem unaffected by the possible existence of settings 
in which the same mistakes are easier to avoid. 
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positive information (Baumeister et al. 2001; Rozin and Royzman 2001), it is easy 

to see how a similar mechanism might produce apparent loss aversion as well (e.g., 

Bhatia and Golman 2019).
What these styles of explanations have in common is that, unlike theories of 

behavioral risk preferences, they formally apply equally to lotteries and mirrors and 

therefore can explain why these patterns occur both with and without risk. As we 

highlight in Section  IIC (and online Appendix A.5), the severity of the classical 

pattern in our data is strongly correlated with measures of behavioral noise (choice 

inconsistency) and cognitive uncertainty (expressed uncertainty about the optimal-

ity of one’s own actions), which seems especially suggestive of explanations rooted 

in the use of imprecise valuation strategies, a tentative conclusion that is consistent 

with several recent papers (Enke and Graeber 2023; Frydman and Jin 2023; Vieider 

2023; Khaw, Li, and Woodford 2022) that provide more direct evidence linking lot-

tery anomalies to the predictions of noisy cognition models. However, we emphasize 

that multiple tactics for avoiding complexity may coexist in the heuristics subjects 

use in lieu of rational valuation (see, e.g., Ba, Bohren, and Imas 2023 for evidence 

that both inattentive and imprecise tactics are used by subjects in inference tasks). 
In light of our results, understanding in more depth what heuristic behaviors drive 

these anomalies seems like an important future task for the literature.

IV. Connections to the Literature

Methodologically, the closest paper to ours is  Martinez-Marquina, Niederle, and 

Vespa (2019), who, like us, compare behavior in risky and deterministic versions 

of the same tasks. In their main exercise they study simple bidding tasks in which 

subjects fail to properly contingently reason about objects of uncertain value, lead-

ing them to overbid on those objects. Their main �nding is that such overbidding 

occurs also in deterministic versions of these tasks (in which objects are worth their 

expected value with certainty) but that the rate of overbidding is 20 percentage 

points lower. In another task,  Martinez-Marquina, Niederle, and Vespa (2019) ask 

subjects to bet on which of two stochastic states will occur by allocating lottery 

tickets across states and vary whether subjects are paid stochastically based on the 

realized state or based on the expected value of their bet. They �nd that “probability 

matching” (a mistake in which subjects bet on each state in proportion to the state’s 

likelihood of occurring instead of rationally betting everything on the more likely 

state) is about  8 percentage points more common in the risky version of the task than 

in the deterministic version.

These �ndings suggest that problems involving risk are often more complex than 

isomorphic deterministic problems, generating more mistakes. This provides a use-

ful caution in interpreting our results because it suggests that the complexity of 

lotteries may be greater than that of mirrors in at least some decision settings. To 

the degree this is true, we should view the decomposition afforded by our approach 

as providing a conservative, lower bound estimate of the role complexity plays in 

driving lottery anomalies—in at least some cases, we should expect lottery errors to 

be more severe than mirror errors, even if errors in each are produced by complexity 

alone. Indeed, by some measures, we �nd about a 20 percentage point difference 

in loss aversion in lotteries relative to mirrors, which may be a result of true loss 
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aversion compounding the effects of complexity in lotteries but might instead be an 

instance of the same sort of increase in complexity  Martinez-Marquina, Niederle, 

and Vespa (2019) �nd in the presence of risk. On the other hand, we �nd only a few 

percentage point difference in mistakes rates between lotteries and mirrors in our 

fourfold lotteries. One lesson from Martinez-Marquina, Niederle, and Vespa (2019) 
is that the size of the effect risk has on task complexity can vary dramatically across 

problems (e.g., it is much smaller in absolute terms in their probability matching 

task than in their bidding task), and it may be that the fourfold lotteries are easier 

to reason about than mixed lotteries, reducing scope for risk to amplify complex-

ity. Understanding in greater depth when and how risk itself in�uences complexity 

seems an important topic for future investigation.

Topically, our paper connects to a vast literature on risky choice in economics 

and psychology. One particularly relevant strand of this literature suggests that 

lottery choices are heavily in�uenced by complexity and cognitive errors, mirror-

ing a key conclusion of our paper. The literature has amassed signi�cant evidence 

linking departures from expected value (including the ones described by the clas-

sical pattern) to cognitive ability (Benjamin, Brown, and Shapiro 2013; Choi et al. 

2021), cognitive load (Benjamin, Brown, and Shapiro 2013; Deck and Jahedi 2015; 

Gerhardt et al. 2016), choice inconsistency (Khaw, Li, and Woodford 2021; Enke 

and Graeber 2023), and inattention (Pachur et al. 2018), all of which suggest that 

many such departures may be driven by judgment errors. The literature has also 

produced evidence that making lotteries more complex (typically by adding out-

comes to otherwise similar lotteries) produces stronger departures from expected 

value (Huck and Weizsacker 1999; Bernheim and Sprenger 2020; Puri 2023); Enke 

and Shubatt (2023) identify a number of lottery characteristics that predict subjects’ 

failures to correctly infer the expected value of lotteries and show that these same 

characteristics strongly predict departures from expected value maximization in lot-

tery choice.

Another strand of the literature casts doubt on the assumption that lottery val-

uations reveal stable preferences, echoing another theme of our paper. A growing 

literature shows that people’s preferences for risk, including aspects of prefer-

ences related to the classical pattern, change dramatically when the method 

of elicitation is changed (Friedman et  al. 2017, 2022; Beauchamp et  al. 2020; 

Bauermeister, Hermann, and Musshof 2018; Harbaugh, Krause, and Vesterlund 

2010; Holzmeister and Stefan 2021), casting some doubt on the idea that we are 

directly measuring preferences in these tasks. A large literature (e.g., Hertwig 

et al. 2004) shows that “decisions from experience” (decisions made between lot-

teries whose properties are discovered by sampling them) produce very different 

behavior than conventional “decisions from description,” including a reversal of 

probability weighting. Another literature shows that anomalous phenomena often 

attributed to preferences including small-stakes risk aversion (Ert and Haruvy 

2017; Charness, Chemaya, and Trujano-Ochoa 2023), probability weighting 

(Van de Kuilen 2009), and the Allais paradox (Van de Kuilen and Wakker 2006) 
are transient, declining, or even disappearing with experience, calling into ques-

tion the idea that these phenomena measure  welfare-relevant preferences at all. 

Two recent papers provide direct evidence that people prefer the normative axioms 

of EUT but fail to reveal those preferences in their lottery choices due, apparently, 
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to  complexity-derived mistakes (Nielsen and Rehbeck 2022; Benjamin, Fontana, 

and Kimball 2023).
Because of its intimate connections to the classical pattern, our paper connects to 

a long literature on prospect theory, by far the most in�uential “behavioral” theory 

of decision under risk (e.g., Kahneman and Tversky 1979; Tversky and Kahneman 

1992; Barberis 2013; Wakker 2010), which was built to explain the classical pattern 

and related phenomena. Prospect theory describes the classical pattern as growing 

out of risk preferences, but the literature has long been ambivalent about the interpre-

tation of these preferences and in particular whether prospect theory describes deci-

sion-makers’  welfare-relevant tastes for risk and loss or whether it instead describes 

judgment errors. We view our results as strong support for the latter interpretation.

Finally, our paper is connected to a growing literature in economics on how com-

plexity shapes human decision-making (e.g., Oprea 2020; Camara 2023). A strand of 

this literature that is particularly relevant to our paper focuses on a �rst-order impli-

cation of complexity: that it causes  decision-makers to be insensitive to features of 

decision problems that matter for optimal choice. The classical pattern can be inter-

preted, in large part, as an outgrowth of just this sort of insensitivity, an observation 

that goes back at least to Tversky and Kahneman (1992). Enke and Graeber (2023) 
use overt complexity manipulations and direct measures of “cognitive uncertainty” 

about the optimality of subjects’ own choices to show that phenomena as  seemingly 

distinct as probability weighting, errors in forming expectations, and failures of 

Bayesian updating arise in large part due to this kind of  complexity-derived insen-

sitivity. Ba, Bohren, and Imas (2023) show that  well-known anomalies in belief 

updating can similarly be interpreted as resulting from insensitivities to primitives 

(in conjunction with incomplete allocations of attention). Abeler and Jäger (2015) 
show that increasing the complexity of taxes results in insensitivities to marginal tax 

rates. Enke, Graeber, and Oprea (2023) use methods like ours (“atemporal mirrors” 

of intertemporal choice problems) in conjunction with measures of cognitive uncer-

tainty and complexity manipulations to show that hyperbolic discounting in inter-

temporal  decision-making is also primarily a phenomenon of  complexity-driven 

insensitivity. These kinds of results underscore and expand upon our interpretation 

of our results by suggesting that the patterns of insensitivity that describe the clas-

sical pattern may be generic to the evaluation of complex things, a possibility that 

may unify a great number of anomalies in behavioral economics.

V. Conclusion

We provide evidence that some of the central lottery anomalies in behavioral 

economics (those used to measure phenomena like probability weighting, reference 

dependence, and loss aversion) are not special phenomena of risk and therefore are 

unlikely to re�ect decision-makers’ risk preferences. Instead, they are to a great 

extent patterns of heuristic mistakes that occur because lotteries are complex to 

properly evaluate, i.e., because their values are not transparent to decision-mak-

ers but are instead costly or dif�cult to infer. There are two implications of this. 

First, theories of risk preferences designed to explain these anomalies (e.g., pros-

pect theory) are unlikely to contain much normative content and therefore should 

not be accommodated in the inference of welfare or the design of policy. Second, 
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our  �nding of systematic departures from neoclassical benchmarks in perfectly 

deterministic settings suggests that many of our descriptive theories of preferences 

for risk are really descriptive theories of the way people evaluate complex things. 

Because of this, many of the phenomena that have animated the rich behavioral liter-

ature on decision-making under risk likely have a much broader scope of application 

than has been so far appreciated.
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A Additional Results

A.1 Between-Subjects Comparison

A natural concern about our results is that they may be a consequence of contagion between mirrors

and lotteries resulting from our use of a within-subjects design. Perhaps subjects re-use heuristics

they first employ in lotteries in their later mirror decisions or vice versa, causing behavior in the

two treatments to be similar on average for reasons artificial to our design?

We can evaluate this alternative interpretation simply by restricting attention to subjects facing

the first of the two treatments they are assigned, transforming our within-subjects design (with

potential contamination) into a between-subjects design (without scope for contamination). This

transformation is credible because subjects facing their first treatment (Mirror or Lottery) were not

aware that they would later be facing the other treatment (Lottery or Mirror), removing scope for

even prospective contamination. Figure 5 reconstructs Figure 1 using only this subset of the data

and produces nearly identical qualitative results, suggesting that these results are not an artifact of

cross-treatment contamination. Subjects continue to display very similar evidence of the pattern

in mirrors and lotteries even when they have not yet experienced (or even learned of the existence

of) the other treatment. Valuations continue to deviate significantly (at at least the 5% level via

Wilcoxon tests) from expected value in the direction of the pattern in both lotteries and mirrors

for all valuations.

A related concern is that the correlations between lotteries and mirrors visualized in Figure 4

are driven by subjects carrying over their behavior from the first treatment into the second, rather

than by a deep connection in behavioral mechanism between the two treatments. A reason to doubt

this interpretation is that (as just discussed) we find nearly identical initial behavior across the two

treatments before subjects know the other treatment exists. What’s more, the correlations between

the two treatments in Figure 4 are also nearly identical regardless of the order of treatments.10 Since

contagion doesn’t seem to be a first order driver of behavior and the correlations between treatments

are not affected by order, the correlations are instead likely to be driven by subjects using similar

valuation strategies in the two different treatments in the first place.

Thus our evidence suggests that our results are not an artifact of order effects or cross-treatment

contagion.

Result 6 The classical pattern continues to arise in both mirrors and lotteries in between-subjects

comparisons. There is little evidence of contagion or order effects in the data.

A subtler version of the same concern is that, for reasons that have little do with contagion,

subjects might be drawn to heuristics usually reserved for interpreting (or valuing) probabilities

10For absolute deviations (the left panel of Figure 4) the correlation is 0.71 when mirrors come first and 0.65 when

lotteries come first; for normalized deviations (the right panel) it is 0.61 when mirrors come first and 0.64 when

lotteries come first.
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Figure 5: Between-subjects mean deviations from expected value in lotteries (gray dots) and mirrors
(hollow dots) from the main (MPL) treatment. Notes: For fourfold lotteries, the y-axis measures the difference

between subjects’ certainty/simplicity equivalent and expected value, as stated in the axis label. The x-axis is the probability of

the non-zero payoff. For loss aversion tasks, the y-axis measures instead the difference between the certain/simple payoff and

the expected value of the mixed lottery/mirror. Two-standard-error bars are included for every task.
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when valuing riskless mirrors. For instance, it may be that subjects apply risk preferences or distort

probabilities in mirrors simply because they contain probabilities and subjects are acccustomed to

responding to probabilities in a distorted way whenever they see them. However, it is important

to emphasize that we deliberately attempted to rule this out in our design by framing the entire

exercise in frequentist terms. Mirrors were described entirely as a “box opening” exercise in order

to allow us to completely avoid mention of probabilities, likelihoods or randomness in our framing

and instructions of this treatment. Consequently, subjects who were initially assigned mirrors (and

who, recall, were not told that they would later be assigned lotteries) had no basis for importing

lottery-like responses to the deterministic weights we assigned in these valuation tasks. The fact

that (as Figure 5 shows) these subjects continue to display the pattern strongly suggests that

such “mis-importation” of loettry behavior is unlikely to account for our results. If subjects apply

probabilistic reasoning to these frequentist problems, arguably we should equally expect them to

do so in virtually any other deterministic valuation task as well.

A.2 Student Sample

An important question is whether our results are a consequence of implementation choices such as

(i) our use of an online subject pool rather than a conventional student pool, (ii) limitations in

training of subjects due to our online implementation, or (iii) the scale of incentives we used in our

design (recall we only pay subjects based on their choices with 20% chance). Perhaps our results

are artifacts of unsophisticated subjects, insufficient trading or weak incentives – any of which could

plausibly exaggerate noisy and biased behavior.

We ran a nearly identical version of our main design using 113 undergraduate students at UC

Santa Barbara in a manner that removes (or at least reduces) these concerns by using more intensive

training and stronger incentives. First, this experiment used undergraduate students at a selective

university rather than an online subject pool. Experiments were run on Zoom in conventional,

fixed experimental sessions monitored by the experimenter, allowing subjects to ask the experi-

menter clarifying questions in real time before and during the experiment. Second, this experiment

featured more intensive training than in our main design. Specifically, we quadrupled the number

of comprehension questions subjects were asked immediately before each of the treatments (Mirror

and Lottery). These questions were designed to highlight for subjects the differences between the

incentives of lotteries vs. mirrors in order to remove the possibility that subjects mistook one payoff

rule for the other. Finally, this experiment quintupled the incentives in the main experiment by

paying subjects based on a random lottery with certainty (rather than with 20% chance).

The UCSB sessions were conducted in February and March 2021 using 113 subjects from the

subject pool of the Laboratory for the Integration of Theory and Experiments (LITE) at UC Santa

Barbara. Because of the Covid-19 pandemic, the physical laboratory was closed at this time so

the five sessions of data collection were held remotely on Zoom. In each session no more than 25

subjects from the undergraduate population at UC Santa Barbara were invited by email to log
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into our Zoom account at a pre-specified time. They were then given a link to the experimental

software and were allowed to ask the experimenter questions throughout the session.

Relative to the main sessions run on Prolific, the UC Santa Barbara sessions differed in three

major respects:

• The main sessions conducted on Prolific were more demographically diverse, drawing subjects

from throughout the United States and included largely non-student subjects. By contrast,

the UCSB sessions included only students from the University of California, Santa Barbara,

a selective public university.

• As the instructions in Supplemental Appendix B discuss, we gave subjects four identical quiz

questions concerning the nature of payments immediately prior to the Lottery treatment

and again prior to the Mirror treatments in the Prolific sessions. Because the answers to

these questions differed across the two treatments, these questions allowed us to make payoff

differences across treatments salient to subjects. In the UCSB sessions we quadrupled the

number of questions, adding additional questions in both the gains and loss domain. Thus

these sessions intensified subjects’ training.

• In the Prolific sessions we gave subjects a $6 fixed payment for participation and paid 20%

of subjects (randomly selected, ex post) a bonus based on their decision in a random price

list and row. By contrast, in the UCSB sessions we paid subjects a $5 fixed payment and,

in addition, paid all subjects a bonus based on their decision in a random price list and row.

Incentives were therefore substantially larger in the UCSB sessions.

Additionally, the sessions differed in two respects that are less likely to have influenced the

results reported in the paper:

• In the Prolific sessions, we asked subjects a number of unincentivized questions at the end

of the experiment about their decision-making (reviewed in Supplemental Appendix A.5).

In the UCSB sessions, we included only the cognitive reflection test and a single cognitive

uncertainty measure.

• The UCSB sessions included four additional price lists not included in the Prolific sessions.

These were rather more complex lotteries designed to gather non-parametric measures of

prospect-theoretic value function curvature using methods suggested by Wakker & Deneffe

(1996). These lists, intriguingly, produced evidence of similar degree of value function cur-

vature in Mirrors and Lotteries, but the results were extremely noisy and sensitive to speci-

fication. For this reason (and because these results are only of secondary importance to our

main motivating questions), we did not use these lists in our main Prolific sessions.
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Figure 6: Student sample deviations from expected value in lotteries (gray dots) and mirrors (hollow
dots). Notes: For fourfold lotteries, the y-axis measures the difference between subjects’ certainty/simplicity equivalent and

expected value, as stated in the axis label. The x-axis is the probability of the non-zero payoff. For loss aversion tasks, the

y-axis measures instead the difference between the certain/simple payoff and the expected value of the mixed lottery/mirror.

Two-standard-error bars are included for every task.

In all other respects, including instructions, software and decision tasks the UCSB sessions were

identical to the main sessions.

Figure 6 plots the results from these sessions and they strongly suggest that these features

of the implementation are not driving our results. The plot shows continued evidence that the

full classical pattern appears in mirrors and to a similar degree as in lotteries; we can reject the

hypothesis that subjects choose expected value in every list for both lotteries and mirrors (at the

1% level by Wilcoxon tests). We also continue to find a similarly strong correlation between the

pattern in the two cases (ρ = 0.64 for absolute deviations and ρ = 0.5 for deviations normalized

in the direction of the pattern). The main difference in this sample is that by some metrics there

is a somewhat larger “gap” between the strength of the pattern in mirrors and lotteries: summed

errors in the direction of the fourfold pattern are overall 82% as large and loss aversion 54% as

large in Mirrors as Lotteries.

Result 7 A robustness sample of university students with increased training and quintupled incen-
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Figure 7: Mean deviations from expected value in BDM lotteries (gray dots) and mirrors (hollow
dots). Notes: For fourfold lotteries, the y-axis measures the difference between subjects’ certainty/simplicity equivalent and

expected value, as stated in the axis label. The x-axis is the probability of the non-zero payoff. For loss aversion tasks, the

y-axis measures instead the difference between the certain/simple payoff and the expected value of the mixed lottery/mirror.

Two-standard-error bars are included for every task.

tives produces results similar to those in the main dataset.

A second interesting difference is, as is clear from Figure 6, we find a somewhat weaker fourfold

pattern in this data than in the main sample: valuations are closer to expected value. But this is

true in both lotteries and mirrors, meaning whatever mechanism drives these sample effects is linked

to complexity (shared by lotteries and mirrors) rather than risk or risk preferences. Conversely, we

find an intensification of loss aversion in lotteries in our student sample, but no such intensification

in mirrors, driving the increased gap in loss aversion. This increase in loss aversion in student

samples has been reported in recent work (Chapman et al. 2022) and may suggest that the “gap”

in loss aversion between lotteries and mirrors is driven by true loss averse preferences operating as

a secondary driver of loss averse valuation.
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Figure 8: Naive visualization of the probability weighting functions (left two panels) and the loss
aversion parameter, λ in the BDM treatment. Notes: The first two panels plot a naive estimate of the probability

weighting function (following Tversky & Kahneman (1992)) by plotting the ratio of the certainty/simplicity equivalent to the

non-zero payment amount as a function of the probability of the non-zero payoff amount. The final panel plots a naive estimate

of λ, the standard linear parameter of loss aversion, under the assumption of a reference point of zero.

A.3 BDM Treatment

Another natural question about our results is whether they are a special outgrowth of our use of

mulitiple price lists (MPLs), or if they are a more general phenomenon of valuation. To answer

this question we ran the the BDM treatment (N = 100, collected on Prolific in April 2023) in

which we replicated our main MPL design but elicited certainty/simplicity equivalents using the

Becker-Degroot-Marschak or “BDM” mechanism (Becker et al. 1964). In our BDM tasks, subjects

are shown the lottery being evaluated (e.g., G10) and asked to express their willingness to pay

either to acquire (WTP-to-acquire) or to avoid (WTP-to-avoid) this lottery. Specifically, subjects

were asked to enter a certainty/simplicity equivalent C in the lottery’s support in a text box (see

Figure 18 for a screen shot from a WTP-to-acquire task and Figure 19 for a screen shot from a

WTP-to-avoid task). The subject was informed that the computer would later draw a random

price P in the support. For WTP-to-acquire tasks, if C<P the subject is not assigned a payment

based on the lottery in question; if C≥P, the subject acquires the lottery and pays price P. For

WTP-to-avoid tasks, if C<P the subject is assigned the lottery; if C≥P, the subject is not assigned

the lottery and pays price P.

The fourfold lotteries used in this design are identical to those used in the main MPL treatment.

However, because it is difficult to measure quantities other than certainty/simplicity equivalents

using the BDM we are unable to use lottery equivalents (i.e. tasks A10 and A15) to measure

loss aversion. We instead measure loss aversion by eliciting certainty/simplicity equivalents for
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Figure 9: Deviations from expected value maximizing choices in mirrors (x-axis) versus lotteries
(y-axis) in the BDM treatment, by subject. Notes: Each dot represents a separate subject. On the x-axes we

plot the subject’s data from the Mirror treatment and on the y-axes the same subject’s data from the Lottery treatment. The

left panel plots the mean absolute deviation from expected value. The right panel plots the mean deviation, normalized to be

positive if it runs in the direction of the classical pattern. Gray dots are subjects who were assigned the Lottery treatment first,

hollow dots subjects who were assigned the Mirror treatment first.

(i.e. willingness to pay to avoid) the mixed lotteries/mirrors M10 = (0.5; 5,−10) and M15 =

(0.5; 5,−15). We chose these negative expected value lotteries to create scope for subjects to reveal

not only loss averse but also loss seeking valuations in simple elicitations of subjects’ willingness-to-

pay-to-avoid. We thus subjects’ WTP-to-acquire lotteries G10, G25, G50, G75 and G90 and their

WTP-to-avoid lotteries L10, L25, L50, L75, L90, M10 and M15 in these experiments. Subjects were

paid at the end based on their choice in one randomly selected task and one randomly selected

price, P.

We present our findings in Figures 7, 8 and 9, designed to mirrors Figures 1, 2 and 4, respectively,

from the body of the paper. As Figure 7 shows, from the perspective of our main motivating

questions, the BDM results are very similar to those for the main MPL treatment. As with MPL,

we find evidence of the fourfold pattern in both lotteries and mirrors. Summing up pattern-

consistent choices, we find that the fourfold pattern is 99% as strong in mirrors as in lotteries. We

also find evidence of loss aversion in both lotteries and mirrors, with loss aversion 83% as strong

in the latter as in the former. In each of our 12 tasks we find (as in MPL) that for the median

subject the difference in valuations between lotteries and mirrors is 0. As Figure 9 shows, mirror

and lottery deviations are strongly correlated: we find a correlation of 0.72 for absolute deviations

and 0.6 for normalized deviations, closely matching results from the MPL treatment.
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We conclude that our main results are not driven by our use of multiple price lists, but instead

reflect a more general phenomenon of valuation.

Result 8 Results from the BDM treatment are similar to those from our main MPL treatment.

Visual comparison of Figures 7 and 1 (from the body of the paper) reveals significant effects of

the method of elicitation (MPL vs. BDM) on estimates of the severity of the fourfold pattern in

lotteries. In particular, deviations from expected value are somewhat smaller at low probabilities

and much larger at high probabilities in BDM than in MPL. As we discuss in Section 5 these kinds

of “elicitation effects” are standard in the literature – measured risk preferences (including prospect

theoretic parameters) tend to vary (often within-subject) across choice contexts. What is new here

is that we find virtually identical elicitation effects in mirrors, with the shape of the fourfold pattern

changing in identical ways in the two contexts. As a result, mirror behavior tracks lottery behavior

across elicitation methods, suggesting that elicitation effects themselves have little to do with risk

or risk preferences.

This is important for the interpretation of our results, because it strongly reinforces our finding

that lottery valuations fail to reveal risk preferences. As we show in the paper, changing the

objective function itself – the preferences these elicitations are generally deployed to measure – by

inducing risk neutral preferences using mirrors has surprisingly small effects on lottery valuations.

By contrast, changing seemingly superficial details of the elicitation method has large, first-order

effects that are identical across objective functions (i.e. across lotteries and mirrors). Comparing

the change in valuations due (i) to changes in the objective function (mirrors vs. lotteries) and

(ii) to changes in the method of elicitation (MPL vs. BDM), we find that the latter effect is at

least twice as large for every one of our tasks and typically much larger. Pooling across all of our

tasks we find that changes in the method of elicitation are, on average, four times larger in absolute

value than changes in the underlying objective function (2.96 vs. 0.737). This differential strongly

suggests that valuation is dominated by heuristic behaviors that respond to details of the choice

environment but that have little connection to underlying preferences.

It is also apparent when comparing Figures 7 and 1 that loss aversion estimates differ between

MPL and BDM, a finding that may be notable for a different reason. A very conventional expla-

nation for the large differences in loss aversion in these two cases is that while A10/A15 (studied

in MPL) likely firmly establishes a reference point of zero, M10/M15 (studied in BDM) plausibly

establishes a reference point of less than zero. As a result λ, as we’ve calculated it, plausibly under-

estimates loss aversion in M10/M15 relative to A10/A15 due to a change in the reference point

across the two cases. Perhaps surprisingly, we find an identical “reference point effect” in mirrors,

with an almost identical weakening of loss averse behavior in M10/M15 relative to A10/A15. Of

course, this effect (like the effects observed in the fourfold pattern) might be due, in both lotteries

and mirrors, to the change in the elicitation mechanism. However, to the degree we interpret this

weaking of measured loss aversion as a reference point effect, the results suggest that not only does

loss aversion and probability weighting survive the removal of risk, so does reference dependence
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Figure 10: Results from the Easier treatment (4 box), overlaid on on results from the main sample
(100 box). Notes: Panels are included for Lotteries (left) and Mirrors (right). For fourfold lotteries, the y-axis measures

the difference between subjects’ certainty/simplicity equivalent and expected value (as stated in the axis label). The x-axis is

the probability of the non-zero payoff. For loss aversion tasks, the y-axis measures instead the difference between the certain

payoff and the expected value of the mixed lottery. Two-standard-error bars are included for every lottery. .

and its sensitivity to manipulations of the reference point.

Result 9 Variation in the method of elicitation influences the anomalies of the classical pattern in

identical ways in lotteries and mirrors. Variation in the method of elicitation has a substantially

larger effect on these anomalies than does variation in the objective function itself.

A.4 4-Box Treatment

A further question about our main results is whether they are a consequence of arithmetic difficulties

that arise due to the numbers used in the main design. For instance, we describe lotteries/mirrors

using 100 outcomes (i.e., 100 boxes) and perhaps it is difficult to perform calculations involving this

many outcomes. Likewise, the non-zero payment in our fourfold lotteries was $25 which does not

produce whole-number expected values in any of our lotteries – perhaps this makes it unnecessarily

difficult to calculate true value in mirrors and the expected value in lotteries. Perhaps subjects are

constrained in their ability to perform arithmetic, causing them to make errors that show up as

the classical pattern.

A strong ex ante reason to doubt this interpretation is that all of our treatments were run online,
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meaning all of our subjects had ready access to powerful calculators that make the arithmetic trivial.

This means that subjects were not constrained in their ability to (with some minor effort) precisely

calculate expected value. To reinforce this point, we report a robustness treatment we call “4-Box”

in which we reduce the difficulty of the arithmetic required to calculate expected value. First, in our

main dataset, likelihoods are described using 100 boxes, each of which contains a dollar amount,

and non-zero payments are described as appearing in 10, 25, 50, 75 or 90 of the boxes. In the 4-Box

treatment we shrink the outcome space from 100 boxes to 4 boxes without changing the underlying

probabilities. Doing this allows us to express payoffs occurring with 0.25, 0.5 and 0.75 probabilities

as dollar amounts contained in 1,2 or 3 of the boxes instead of 25, 50 or 75 of the boxes, plausibly

making the problem easier to reason about and mathematical calculations easier to conduct. Thus,

in the 4-Box treatment we repeat the G25, G50, G75, L25, L50, L75 and A10 lotteries but describe

them using 4 boxes instead of 100.11

The 4-Box treatment was conducted in May of 2022 using 90 subjects on Prolific and MPL

elicitation. The treatment repeated Lotteries G25, G50, G75, L25, L50, L75 and A10. The reason

we did not include G10, G90, L10 and L90 is because the main idea of the treatment is to describe

probabilities in frequentist terms using four outcomes (four “boxes”) instead of 100. While 25%,

50% and 75% odds can be described using this coarse of a state space, clearly 10% and 90% cannot.

The treatment also included (i) a repetition of L50 and G50 and (ii) treatments sG75 and sL25 which

replaced the non-zero payment of $25 in G75 and L25 with $20. The instructions, implementation

and payoff rules from the 4-Box treatment were identical to those in the main treatment except

for the descriptions of frequencies. Instead of describing 25%, 50%, 75% and 100% as payouts

contained in 25 out of 100, 50 out of 100, 75 out of 100 and 100 out of 100 boxes (as in the rest of

the dataset), we described them as being contained in 1 out of 4, 2 out of 4, 3 out of 4 and 4 out

of 4 boxes.

Figure 10 plots the results. It includes one panel for lotteries and another for mirrors and in

these panels repeats the data pictured in Figure 1 using solid dots (100 box data), for reference.

On each of these panels we overlay, using hollow dots, data from 4-box versions G25, G50, G75,

L25, L50, L75 and A10 lotteries from the 4-Box treatment. We make two observations. First, the

pattern continues to arise (for both lotteries and mirrors) under this simplified framing – Wilcoxon

tests continue to allow us to reject the hypothesis of valuation at expected value for both Lotteries

and Mirrors (p < 0.01 throughout). Second, valuations change little in either lotteries or mirrors

when we move from 100-box to 4-box frames – Wilcoxon tests allow us to reject the hypothesis of

identical valuation in 100-box and 4-box lotteries for only one of the ten comparisons (G25 mirrors).

We conclude that the number of outcomes has at most a secondary effect on the appearance and

11It is important to highlight that this treatment does not make lotteries/mirrors any less disaggregated (the

lottery’s support continues to contain two elements) and therefore it does not make it any less complex in the sense

of Bernheim & Sprenger (2020), Puri (2023) and Fudenberg & Puri (2022). This treatment holds the amount of

information that has to be processed (the number of elements that must be aggregated) constant but attempts to

reduce the mathematical difficulty of that processing.
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severity of the pattern.

A second potential source of arithmetic difficulties in the main dataset is the use of a non-zero

payoff of $25 in the fourfold lotteries, which may be more difficult to reason about than a rounder

number that is more easily multiplied by the relevant probabilities/weights in the task. To examine

this we added to the 4-Box treatment a repetition of lotteries L25 and G75 but with a payoff of

$20 instead of $25. We ran this also with the 4-box (rather than 100-box) design, making intuitive

calculations of expected value particularly easy ($20 in 2 or 3 boxes is easily seen to imply expected

values of $10 or $15 through simple whole-number division). We call these lotteries sL25 and sG75

and plot valuations from these lotteries in Figure 10. We find no overall reduction in the severity

of the pattern. Again, this suggests that mere arithmetic difficulty has little power to explain our

results.

Together, these treatment interventions (combined with our already maximally simple 2-outcome

setting, featuring a zero-outcome in one of the two outcomes) produce perhaps the arithmetically

simplest possible lotteries in which the pattern can be measured. Our $20 lists ask subjects to

value lotteries that have the minimal possible number of outcomes (for a true lottery), one of these

outcomes pays nothing and can be ignored in computation, the numbers describing the likelihoods

are small and the non-zero payoff is calibrated to allow for whole-number computations of expected

value by simple division. Nonetheless, we continue to find strong evidence of the pattern both in

lotteries and their mirrors even in these maximally arithmetically simple valuation tasks.

Result 10 Making valuation tasks arithmetically easier has only minor effects on the severity of

the classical pattern in mirrors or lotteries.

A.5 Correlates of the Pattern

Strong correlations between behavior in lotteries and mirrors suggest they are driven by a common

mechanism and, because there is no risk in mirrors, suggest that this mechanism is rooted in the

complexity the two types of tasks share. In order to gather some clues as to the common mechanisms

that drive the pattern in both lotteries and mirrors, we collected a number of auxiliary measures

and here we study to what degree these measures predict the severity of classical anomalies in both

cases. We gathered three types of measures and we conduct a primarily exploratory analysis of

how they relate to the incidence and severity of anomalous behavior in our main treatment. For

this analysis, we restrict attention to our main MPL treatment where we have the most data and

therefore the most reliable estimates.

First, we gathered several behavioral measures. Most importantly, we repeated two random

valuation tasks in both lotteries and mirrors, allowing us to measure re-test consistency of choices in

identical problems. The mean absolute difference in valuation between identical problems gives us a

direct measure of noise in subjects’ decision making. Next, we measured the average response time

for each subject’s choices – a commonly used measure of effort. Finally, after the main experiment
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Figure 11: Correlates predictors (labeled dots) with pattern-consistent bias in mirrors (x-axis) and
lotteries (y-axis). Notes: Each dot is a different predictor and the x- and y-axes show the correlation of each predictor

with pattern-consistent bias in mirrors and lotteries, respectively.

we administered a three-question cognitive reflection test (Frederick (2005)), commonly used to

measure how strongly subjects lean on intuitive vs. careful decision making.

Second, we administered several post-experiment questions that asked subjects to reflect on their

choices. For instance, we we asked subjects how confident they were (in percentage terms) that

they made the optimal choice in both lotteries and mirrors. Measures of cognitive uncertainty

like this have proved predictive of the fourfold pattern and other anomalies in recent work (e.g.,

Enke & Graeber (2023), Enke et al. (2023)). We also asked subjects (separately for lotteries and

mirrors) to report on a 100-point Likert scale how much attention they paid (0 for little attention,

100 for a lot of attention) to the number of boxes (i.e., to the probabilities) and to the dollar

amounts (i.e., payoffs) when evaluating lotteries/mirrors. This gives us measures of inattention

for each subject for both lotteries and mirrors. Likewise we asked subjects to use a 100-point Likert

scale to estimate the degree to which they “guessed” (0) versus “made a precise (exact) decision”

(100) in their valuations, again for both lotteries and mirrors. This gives us a self-reported measure

of imprecision of decisions.

Third, we gathered several demographic measures, focused on measures that proxy for mathe-

matical ability. We asked subjects to report their highest level of math education, coding subjects

as 1 (relatively advanced mathematical training) if they had taken any college-level math and 0
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otherwise. We asked a similar question about whether subjects had any college-level economics

training. We also asked subjects their college major, coding them as STEM if they reported ma-

joring in Science, Mathematics or Business. Finally, we asked for the subject’s gender which is of

interest because of debates in the literature about whether risk preferences are related to gender.

In Figure 11, we estimate the Pearson correlation between each measure and the mean error

(normalized to be positive if in the direction of the classical pattern) in mirrors and lotteries,

plotting the correlation coefficient ρ for (i) mirrors on the x-axis and (ii) lotteries on the y-axis.12

We make several observations.

First and perhaps most importantly, there is a strikingly strong relationship between the corre-

lates of the pattern in mirrors and lotteries. Correlation coefficients hover around the 45 degree line

and there is a ρ =0.94 correlation between correlation estimates across the two valuation problems

This relationship strongly reinforces our conclusion that the two types of behavior are driven by the

same underlying behavioral mechanisms and that the driver of the pattern in lotteries is therefore

likely rooted in the way people respond to disaggregation.

Result 11 There is a strong similarity in the predictors of the classical pattern in lotteries and

mirrors.

Second, the strongest correlations are for variables that relate to the types of simpler-than-

optimal decision procedures the literature has proposed as potential proximal mechanisms for the

classical pattern. We find that (i) self-reported inattention is strongly positively correlated and

(ii) correct responses in cognitive reflection test questions are strongly negatively correlated with

pattern-consistent errors. This is potentially evidence in favor of the hypothesis that the classical

pattern occurs because subjects use inattentive procedures, like those described by Bordalo et al.

(2012). We also find that (i) noise in decision making and (ii) self-reported cognitive uncertainty are

both strongly positively correlated with pattern-consistent errors. This is highly consistent with the

hypothesis that the classical pattern occurs because subjects use imprecise strategies that produce

cognitive noise (e.g., Blavatskyy 2007, Woodford 2012a, Steiner & Stewart 2016, Woodford 2020,

Enke & Graeber 2023, Woodford 2012b, Khaw et al. 2022, Vieider 2023, Frydman & Jin 2023).

Both types of accounts seem consistent with our finding that decision time is strongly negatively

correlated with the classical pattern – potential evidence that such behavior is especially strong for

subjects who expend less effort on the valuation task.

Third, by contrast, we find much weaker evidence that our other variables are very predictive of

the classical pattern. Perhaps most importantly, we find little evidence linking the classical pattern

to mathematical preparation. Prior mathematical or economic training and reporting majoring in

a STEM training have, at best, weak predictive power in either lotteries or mirrors. This seems

consistent with our finding that varying the arithmetic difficulty of calculating expected value has

12To reduce risks of attenuation, we pooled several of these measures. In particular, we averaged our post-

experiment cognitive uncertainty, inattention and imprecision measures at the subject level and used a single pooled

noise measure.
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little effect on the classical pattern in our sample. This does not mean that there isn’t a strong

cognitive dimension to these findings, but rather that prior training in arithmetic calculation doesn’t

seem to be a major modulator of the effect.

We summarize the results of this correlational analysis as a further result:

Result 12 The classical pattern is especially pronounced in subjects who (i) invest less time in

valuation, (ii) report paying less attention to valuation, (iii) make mistakes on cognitive reflection

test, (iv) make noisy or inconsistent decisions and (v) report cognitive uncertainty about the quality

of their valuations.

Together, these results seem to suggestthat subjects consciously (and perhaps deliberately) use

hasty, casual, inattentive and imprecise strategies to value disaggregated objects like lotteries and

mirrors and that this choice is an important driver of pattern-consistent errors.

A.6 Additional MPL data

We originally ran our main MPL treatment on Prolific in May of 2022 with 186 subjects. During

the reviewing process, a helpful referee discovered a typo in one of the examples used to explain

price lists in this treatment. In particular, the “Choosing a Set of Boxes” page of the instructions

(reproduced in Section B.2.1 of this Appendix), in the second sentence of the second bullet point

read “Set B has 50 boxes containint $10 and 50 boxes containing $0” instead of “Set B has 40

boxes containing $10 and 60 boxes containing $0” as it should have (and as the current instructions

does). The referee raised legitimate concerns that this might have confused subjects and caused or

intensified some of our findings.

For this reason, we re-ran the main MPL treatment (as described in the body of the paper) with

this typo fixed, and report the results from the original run of the experiment in this Appendix.

The original run of the experiment was nearly identical to the experiment that has taken its place

in the main body of the paper. The only difference is that in the original version of the experiment

we repeated tasks G50 and L50 for each subject, while in the revised the experiments we randomly

selected two tasks to be repeated.

We present data from the original run of the experiment in Figures 12, 13 and 14, which mirror

Figures 1, 2 and 4 for MPL in the main text. The results are virtually identical. As with the

main dataset, we find in Figure We present data from the original run of the experiment in Figures

12 evidence of the fourfold pattern in both lotteries and mirrors. Summing up pattern-consistent

choices, we find that the fourfold pattern is 97% as strong in mirrors as in lotteries. We also find

evidence of loss aversion in both lotteries and mirrors, with loss aversion 64% as strong in the

latter as in the former. This is somewhat smaller than in our main MPL sample and in our BDM

treatment. Nonetheless, in each of our 12 tasks we find (as in the main dataset) that for the median

subject the difference in valuations between lotteries and mirrors is 0. As Figure 14 shows, mirror
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Figure 12: Mean deviations from expected value in lotteries (gray dots) and mirrors (hollow dots)
in the original run of the main MPL treatment. Notes: For fourfold lotteries, the y-axis measures the difference

between subjects’ certainty/simplicity equivalent and expected value, as stated in the axis label. The x-axis is the probability of

the non-zero payoff. For loss aversion tasks, the y-axis measures instead the difference between the certain/simple payoff and

the expected value of the mixed lottery/mirror. Two-standard-error bars are included for every task.

and lottery deviations are strongly correlated. We find a correlation of 0.65 for absolute deviations

and 0.59 for normalized deviations, closely matching results from the main MPL sample.

A.7 Analysis of G50 and L50

In Figure 15 we plot deviations from expected value for the 50/50 lotteries (G50 and L50) we

included in all of our treatments, mirroring Figure 1 (recall, for space reasons we omitted these

lotteries from the main Figure). These lotteries are potentially interesting because they seem

particularly arithmetically easy to evaluation – they require math no more difficult than simple

averaging (i.e. to calculate expected value). Evaluating behavior in these tasks provides another

opportunity (alongside the analysis in Supplemental Appendix A.4) to examine to what degree our

main results are rooted in the arithmetic difficulty of lottery/mirror valuation. Under the hypothesis

that it is arithmetic difficulty that drives the pattern, we might expect errors to diminish in mirrors

relative to lotteries in these easier problems, allowing lotteries to reveal true risk preferences.
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λ

Figure 13: Naive visualization of the probability weighting functions (left two panels) and the loss
aversion parameter, λ in the original run of the main MPL treatment. Notes: The first two panels plot

a naive estimate of the probability weighting function (following Tversky & Kahneman (1992)) by plotting the ratio of the

certainty/simplicity equivalent to the non-zero payment amount as a function of the probability of the non-zero payoff amount.

The final panel plots a naive estimate of λ, the standard linear parameter of loss aversion, under the assumption of a reference

point of zero.

However, we find little evidence of this. In most cases, lottery and mirror valuations are identical,

and deviations are never systematically closer to expected value in mirrors than lotteries in any

cases.13

A.8 Additional Tables and Figures

A.8.1 Correlations By Anomaly

Figure 16 repeats the analysis reported in the right-hand panels of Figure 4 separately for the

fourfold pattern and loss aversion. In particular, the left hand panels plots mean bias measured

in “fourfold lotteries” (G10, G25, G75, G90, L10, L25, L75, L90) for mirrors and lotteries (each

dot, again, is an individual subject). In the right hand panel we do the same for biases from “loss

aversion lists” (A10 and A15 or M10 and M15). In MPL, for fourfold lists (left hand panel) we

measure a lottery-mirror correlation of ρ = 0.63 (p < 0.001) and for loss aversion (right hand

panel) we measure ρ = 0.50 (p < 0.001). In BDM, for fourfold lists (left hand panel) we measure

a lottery-mirror correlation of ρ = 0.58 (p < 0.001) and for loss aversion (right hand panel) we

13The lotteries G50 and L50 produce deviations in opposite directions in lotteries and mirrors in our main sample

and student sample, which is the biggest difference we find. Clearly this isn’t a very robust pattern as it doesn’t

show up in losses, BDM or 4-Box framings of the problem. What’s more, in our main sample the deviations are more

severe in mirrors than lotteries.
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Figure 14: Deviations from expected value maximizing choices in mirrors (x-axis) versus lotteries
(y-axis) in the original run of the main MPL treatment, by subject. Notes: Each dot represents a separate

subject. On the x-axes we plot the subject’s data from the Mirror treatment and on the y-axes the same subject’s data from

the Lottery treatment. The left panel plots the mean absolute deviation from expected value. The right panel plots the mean

deviation, normalized to be positive if it runs in the direction of the classical pattern. Gray dots are subjects who were assigned

the Lottery treatment first, hollow dots subjects who were assigned the Mirror treatment first.

measure ρ = 0.616 (p < 0.001).

A.8.2 Screenshots
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Figure 15: Mean deviations from expected value in 50/50 unmixed lotteries (gray dots) and mirrors
(hollow dots). Notes: The y-axis measures the difference between subjects’ certainty/simplicity equivalent and expected

value (as stated in the axis label). On the x-axis is experimental treatment.
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Figure 16: Deviations from expected value maximizing choices in mirrors (x-axis) versus lotteries
(y-axis), by subject and pattern: the fourfold pattern (left panel) and loss aversion (right panel).
Notes: Each dot represents a subject. “Lottery First” designates subjects who were initially assigned lotteries (Mirror First is

the reverse). The left panel plots mean “bias” (mean deviations normalized to be positive if they are in the direction of the

classical pattern) for “fourfold lists” (G10, G25, G75, G90, L10, L25, L75, L90) while the right hand panel plots the same for

“loss aversion lists” (A10 and A15 or M10 and M15).
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Figure 17: Screenshot from a mirror task (list G10) under MPL. Notes: In lottery tasks, the screen is

identical except for the text in green which instead reads “...plus the value of one of the boxes from the Set you selected,

randomly chosen by the computer.”
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Figure 18: Screenshot from a lottery task (task G10) under BDM. Notes: In mirror tasks, the screen is

identical except for the text at the bottom which instead reads “...to have the average of these boxes’ contents added to my

Initial money.’

Figure 19: Screenshot from a lottery task (task L10) under BDM. Notes: In mirror tasks, the screen is

identical except for the text in green which instead reads “...to prevent the average of these boxes’ contents from being subtracted

from my Initial Money.”
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B Instructions to Subjects

B.1 MPL Treatment

B.1.1 Beginning of Instructions

The first part of the instructions are given at the beginning of the session, regardless of whether

subjects are assigned ,mirrors or lotteries first.
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B.1.2 Treatment Instructions

Next, one of the following two pages of instructions is given, depending on whether subjects are as-

signed mirrors or lotteries first. After subjects have completed making choices in the first treatment

(Mirror or Lottery), they are given the other page from the Treatment Instructions, below.
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B.2 Comprehension Questions

Regardless of treatment, subjects are given 4 comprehension questions like the following which

they must answer correctly before moving on. Crucially, although the questions are identical

regardless of treatment, the correct answers to these questions depend on whether subjects are

about to enter the Mirror or Lottery treatment. After subjects have completed the first treatment

(Mirror or Lottery) and have read instructions for the next treatment, they are given the same 4
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comprehension questions, now with different correct answers. This makes the difference between the

payment schemes especially salient to subjects and is designed to prevent subjects from confusing

payoffs in the two treatments.

28



B.2.1 Final Part of Instructions
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B.3 BDM Treatment

B.3.1 Beginning of Instructions

The first part of the instructions are given at the beginning of the session, regardless of whether

subjects are assigned mirrors or lotteries first.
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B.3.2 Treatment Instructions

Next, one of the following two pages of instructions is given, depending on whether subjects are

assigned mirrors or lotteries first. After subjects have completed making choices the first treatment

(Mirror or Lottery), they are given the other page from the Treatment Instructions, below.
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B.4 Comprehension Questions

We next gave subjects the same comprehension questions used in the MPL treatment.
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B.4.1 BDM Mechanism
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B.4.2 Final Part of Instructions
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