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SUMMARY. We study recently developed nonparametric methods for estimating the number of missing 
studies that might exist in a meta-analysis and the effect that these studies might have had on its outcome. 
These are simple rank-based data augmentation techniques, which formalize the use of funnel plots. We show 
that they provide effective and relatively powerful tests for evaluating the existence of such publication bias. 
Af'ter adjusting for missing studies, we find that the point estimate of the overall effect size is approximately 
correct and coverage of the effect size confidence intervals is substantially improved, in many cases recovering 
the nominal confidence levels entirely. We illustrate the trim and fill method on existing meta-analyses of 
studies in clinical trials and psychometrics. 
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1. Introduction 
Since its introduction in the social sciences by Glass (1976), 
there has been enormous increase in the use of meta-analysis 
as a statistical technique for combining the results of many 
individual analyses. While the combined analysis may have 
increased inferential power over any individual study, there 
are several drawbacks to meta-analysis (cf., Thompson and 
Pocock, 1991; NRC Committee on Applied and Theoretical 
Statistics, 1992; Mengersen, Tweedie, and Biggerstaff, 1995), 
and one such concern is the need to collect all studies, both 
published and unpublished, relevant to the meta-analysis if 
the subsequent inferences are to be valid (Rosenthal, 1979; 
Begg and Berlin, 1988; Iyengar and Greenhouse, 1988; Dear 
and Begg, 1992; Hedges, 1992; Begg, 1994; Begg and Mazum- 
dar, 1994; Gleser and Olkin, 1996; Egger et al., 1997). This 
is because the use of a nonrepresentative proportion of signif- 
icant studies or studies differentially giving results in, say, a 
positive direction will lead to a nonrepresentative set of stud- 
ies in the meta-analysis data set. A standard meta-analysis 
model will then result in a conclusion biased toward signifi- 
cance or positivity. 

This is particularly problematic for a meta-analysis whose 
data come solely from the published scientific literature. It 
is a common belief, backed by several empirical assessments, 

that studies are not uniformly likely to be published in scien- 
tific journals (Cooper, 1998, pp. 54-55; Dickersin, Min, and 
Meinert, 1992). Easterbrook et al. (1991) suggest that statis- 
tical significance is a major determining factor of publication 
since some researchers (e.g., students with masters' or Ph.D. 
theses) may not submit a nonsignificant result for publication, 
and editors may not publish nonsignificant results even if they 
are submitted (British Medical Journal Editorial Staff, 1983). 
Studies may also be suppressed for many other reasons than 
failure to be published (see Givens, Smith, and Tweedie [1997] 
and the discussion thereof, Cooper [1998], and Misakian and 
Bero [1998]). This phenomenon has become known as publica- 
tion bias, or the file-drawer problem (Rosenthal, 1979; Iyengar 
and Greenhouse, 1988). 

Evaluating the effect of publication bias is difficult since the 
missing studies influence the overall mean that is estimated 
in the meta-analysis. Perhaps the most common method that 
has been proposed to detect the existence of publication bias 
in a meta-analysis is the funnel plot (Light and Pillemer, 
1984). The solid circles in Figure 1 depict a typical funnel 
plot, using data from 19 studies of I& scores and teacher ex- 
pectancy (see Section 6 for more details). Each of the studies 
supplies an estimate yZ of the effect in question in the ith 
study and an estimate of the variance a: within that study. 
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Figure 1. Top panel is a funnel plot of standardized mean 
differences of teacher expectancy of I& from Raudenbush 
(1984). Solid circles are original data, open circles are imputed 
filled values. Bottom panel shows overall mean and 95% CI 
of standardized mean differences before and after allowing for 
publication bias. 

Thus, the most precise estimates (typically, those from the 
largest studies) are at the top of the funnel and those from less 
precise or smaller studies are at the base of the funnel. (The 
funnel plots we use graph utT1 as the measure of size against 
Yi, although other authors use other indicators of study size.) 

Funnel plots give a subjective evaluation of bias since, in 
the models used in rneta-analysis, it is assumed that, at any 
fixed level of a:, studies are symmetrically distributed around 
the true mean A. The fact that there may be publication bias 
in the data set in Figure 1 might be subjectively inferred 
since the funnel shape is asymmetrical: There is an appear- 
ance of missing studies in the bottom left-hand corner and 
the assumption is that, whether because of editorial policy or 
author inaction or other reasons, these missing papers were 
not published because they showed, say, no significance or 
perhaps the reverse effect from the positive effect expected. 

There is nothing special about studies being omitted on the 
left side rather than the right, but in what follows, we will be 
considering missing left studies for convenience of notation. 
If studies are missing on the right, then merely by reversing 
the sign of the effect size, we reach the same conclusions as 
those discussed here, as illustrated in the second example in 
Section 6. 

The drawback to  using the funnel plot is that it is purely 
subjective. There are a number of more quantitative methods 
that attempt to detect publication bias in the literature. The 

rank correlation test of Begg (1994) and a regression-based 
test (Egger et al., 1997) are most often used. However, these 
typically have low power to detect bias when using a standard 
hypothesis testing framework, and indeed Begg (1994) sug- 
gests using a very liberal significance level and notes that any 
evidence of publication bias should make us cautious about 
proceeding with the analysis. There also exist several quanti- 
tative methods that estimate the number of missing studies 
and provide estimates of the effect of the missing studies (Dear 
and Begg, 1992; Hedges, 1992; Givens et al., 1997). However, 
all are complex and highly computer intensive to run. 

As DuMouchel and Harris note in the comments on Givens 
et al. (1997, p. 244), “attempts to assess publication bias be- 
yond simple graphs like the funnel plot seem to involve a tour 
de force of modeling, and as such are bound to run up against 
resistance from those who are not statistical modeling wonks.” 

In Duval and Tweedie (2000), we described a new approach 
that requires very simple computation (the trim and fill al- 
gorithm) for accounting for the magnitude of the publication 
bias problem. Based only on symmetry assumptions, we de- 
velop a number of estimators (denoted Ro, Lo, and Qo be- 
low) of the number of missing studies. These are simple to 
implement, in contrast to, say, Dear and Begg (1992), Hedges 
(1992), or Givens et al. (1997); they can be used in an it- 
erative manner when the effect size is unknown, in contrast 
to methods of Gleser and Olkin (1996); and they appear in 
practice to pick up the missing studies indicated visually by 
funnel plots. 

Once we have these estimates, in Duval and Tweedie (2000), 
we showed how to impute the missing values using an itera- 
tive but still computationally simple algorithm that gives es- 
timates of the effect on the inferences in the meta-analysis 
due to the publication bias. 

In this paper, we investigate three properties of this ap- 
proach. ‘(a) We consider which of the estimators has the best 
mean square error (MSE) properties. We show in Section 3 
that the estimators Ro and LO are both better than Qo but 
that there are values of the number of observed and missing 
studies for which each is better than the other. (b) We use 
the distributional properties of the estimators to formulate 
tests for the existence of publication bias and compare these 
with recent methods of Begg (1994) and Egger et al. (1997) 
(the resulting tests, in Section 5 ,  appear to be quite powerful if 
there are more than 5-6 missing studies). And (c) we compare 
the properties of the iterated version of the algorithm (used 
in practice) with the analytic results in Duval and Tweedie 
(1998). Using simulations, we see in Section 4 that the itera- 
tion does not adversely affect accuracy in general and so the 
analytic descriptions of the tests and estimators can be used 
in the iteration. 

In Section 6, we apply the iterative algorithm and the test 
methods to  two existing meta-analyses: a psychometric meta- 
analysis of I& scores and teacher expectancy, collected by 
Raudenbush (1984) and analyzed by Begg (1994) and Gleser 
and Olkin (1996), and a collection of clinical trials on anti- 
malarial drugs (McIntosh and Olliaro, 1998). 

2. Trim and Fill: A Simple Estimation Approach 
The trim and fill algorithm is based on a formalization of 
the qualitative approach using the funnel plot. Simply put, 
we trim off the asymmetric outlying part of the funnel after 
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estimating how many studies are in the asymmetric part. We 
then use the symmetric remainder to estimate the true center 
of the funnel and then replace the trimmed studies and their 
missing counterparts around the center. The final estimate of 
the true mean, and also its variance, are then based on the 
filled funnel plot. 

This is illustrated in Figure 1, where we have estimated, 
using this algorithm, that the number of missing studies is 
2-6; have replaced three symmetrically as indicated by the 
open circles using the estimator Lo+ defined in Section 2; and 
have recovered a visually symmetric funnel plot. Rather more 
importantly, after filling the funnel plot using Lo+, we obtain 
an overall estimate of A, which is considerably reduced from 
that estimated from the original data (see Section 6), as shown 
in the bottom panel of Figure 1. 

The key to this method lies in estimating the number of 
missing studies. We now describe the nonparametric 
approach to this that we shall use. 

In the standard structure for a meta-analysis (in the ab- 
sence of publication bias), we assume we have n individual 
studies, all of which are addressing the same problem, and 
that there is some global effect size A that is relevant to the 
overall problem and that each study attempts to measure. For 
each j = 1, . . . , n, study j produces an effect size Y3, which 
estimates A, and an estimated within-study variance u;. 

Our work could equally apply to effect size measures such 
as log relative risks, risk differences, or log mortality ratios 
in clinical or epidemiological trials or to differences in perfor- 
mance in sociological experiments. 

In Duval and Tweedie (2000), we modified this standard 
model to account for publication bias. We assume that, in 
addition to the n observed studies, there are an additional ko 
relevant studies that are not observed due to publication bias. 
The value of ko and the effect sizes that might have been found 
from these ko studies are unknown and must be estimated, 
and uncertainty about these estimates must be reflected in 
the final meta-analysis inference. 

The key assumption behind the nonparametric method in 
Duval and Tweedie (2000) is that the suppression has taken 
place in such a way that it is the ko values of the Y3 with 
the most extreme left-most values that have been suppressed. 
This might be expected to lead to a truncated funnel plot such 
as the solid circles in Figure 1, for example. We will call this 
model for the overall set of studies the suppressed Bernoulli 
model. 

This assumption differs slightly from that used in some 
other papers (Dear and Begg, 1992; Hedges, 1992; Gleser and 
Olkin, 1996), where the assumption is that the suppressed 
studies are exactly those with the largest pvalues against the 
null hypothesis of no effect. A number of authors (cf., Du- 
Mouchel and Harris, 1997) have pointed out that this simple 
pvalue suppression scenario is rather simplistic since it fails 
to acknowledge the role of other criteria, such as size of study, 
in the decision about whether a study is published. Misakian 
and Bero (1998) found that pvalues may be the critical de- 
terminant in delaying publication but that study size does 
appear to have some effect also. In practice, the same papers 
will be suppressed under our assumption as under a strict p 
value suppression rule except when the size of the study is 
large, and in that case, one might well expect the study to re- 
main unsuppressed (as we assume) even if it is nonsignificant. 

The trim and fill algorithm uses the ranks of the absolute 
values of the observed effect sizes and the signs of those effect 
sizes around A. We first describe the method assuming that 
A is known. An iterative method when A is not known will 
be described below and will be used in practice. 

We write X i  for the observed value of Y, - A and denote 
the ranks of the observed values of the IX,I as T::  these ranks 
run from one to  n. We let y* 2 0 denote the length of the 
rightmost run of ranks associated with positive values of the 
observed X, ,  and we also denote the Wilcoxon rank test statis- 
tic for the observed n values as Tn = Cx,>or:. Note that 
because there are ICo suppressed values, Tn does not have the 
usual distribution of a Wilcoxon statistic. 

Based on these quantities, Duval and Tweedie (2000) de- 
fined three estimators of ko, given by 

Ro = y* - 1, 

Lo = {4T, - n(n + 1)}/(2n - l), 
(1) 
(2) 

(3) 

and 

Qo = n - 1/2 - d 2 n 2  - 4Tn + 114. 

The properties of the estimators (l) ,  (2), and (3) are devel- 
oped in Theorem 1 of Duval and Tweedie (2000). Under the 
suppressed Bernoulli model, when the median of the original 
X i  is zero, the estimator Ro has mean and variance given by 

E[Ro] = ko, var[Ro] = 2k0 + 2 (4) 

and the estimator Lo has mean and variance given by 

E[Lo] = ko - ki/(2n - l), 

(5) 
var[Lo] = 16var[Tn]/(2n - 1) 2 , 

where var[Tn] = 24-'{n(n+ 1)(2n+ 1) + l0ki  +27k; + 17ko - 
18nki - l8nko + 6n2ko}. The estimator Qo has mean and 
variance given (approximately) by 

E[Qo] M ko + 2var[Tn]/{(n - 1/2)2 - ko(2n - k~ - 1))"' 

(6) var[Qo] M 4var[T,]/{(n - 1/2)2 - ko(2n - ko - 1)). 

Remark. In using any of these estimators, we round to the 
nearest nonnegative integer, and we denote these rounded es- 
timators by R:, Lof, Qof, respectively. The means and vari- 
ances of these estimators are shown using simulations in Du- 
Val and Tweedie (2000) to be acceptably close to the analytic 
forms given by (4), (5), and (6) for the ranges of n, ko that we 
address, and thus the use of the analytic values seems justified 
in practice. 

3. Choosing an Optimal Estimator of ICo 
We first compare the behavior of the means and MSEs of the 
empirical estimators Rof, L:, and Qof using simulated data 
and find that Lo+ and Rof seem to perform better than Q:. 

To carry out the simulations we generated, for each of the 
cases below, 5000 sets of N = n+ko normal variates, each with 
mean zero and variance a:, the ui being taken from a r(3,1/9) 
distribution. This appears to give more typical funnel-plot 
shapes than does the choice of a uniform distribution for ui 

as in, e.g., Light and Pillemer (1984). We allowed N to range 
over the values 25-75 in increments of five and examined ko = 
0,5,10. 



Biornetrics, June 2000 

When ko = 0, the effect on the means of truncating to  en- 
sure nonnegative forms is simple: Rof produces a mean around 
0.5 and both Lo+ and Qof produce means of 1-2 over the range 
of N examined. Thus, one should be cautious about deducing 
that there is publication bias when these estimators produce 
such small positive values. More formal tests are developed in 
Section 5 below. 

For all three estimators, Rof&, and Q i ,  the simulated 
mean behavior is quite accurate over the entire range of n 
when ko = 5 ,  while at ko = 10, we find that R: is still 
accurate, Q; tends to overestimate a little for the smaller 
values of n, and L$ tends to underestimate in this same range. 

We also compared MSEs and found that, based on these, 
the two estimators of choice are likely to be Lo+ and Rof, with 
the former being slightly preferable in circumstances when n 
is smaller. Both seem to give more robust performance over 
virtually all ranges than does &of. More details are given in 
Duval (1999). 

Another way of considering which of these two estimators 
is preferable is to compare the analytic forms of their MSEs, 
based on (4), (5), and (6). We find that, for any fixed n, 
the MSE of LO is smaller than that of Ro for larger values 
of ko. This can be quantified, and the region in which Lo is 
better is very closely approximated by ko 2 n/4 - 2 .  Thus, 
if the number of missing studies is estimated to be more than 
about 25% of those observed, we suggest use of Lo might be 
preferable. 

In practice, we advise using both these estimators before 
making a judgment on the actual number that might be sup- 
pressed, and indeed we advocate considering the value of &,’ 
also. If the three agree, then conclusions are obvious, and if 
there is disagreement, one should perhaps use the resulting 
range of values as a basis for a sensitivity analysis. 

4. Iterative Methods and Filling Funnel Plots 
The estimators of ko we have used above depend on knowing 
the value of A because they rely on knowledge of whether 
a given observation is to the left or the right of A. This is 
clearly not the case in practice, and assuming that A = 0 will 
lead to an obvious bias if in fact A > 0. 

In Duval and Tweedie (2000), we formally described how to 
carry out an iterative algorithm using the estimators above, 
and we now investigate the properties of this method. 

The iteration is simple in concept. We first estimate A using 
a standard fixed or random effects model as described below. 
Using this value, we use one of the estimators of ko (say Lof) 
to decide how many unmatched values there might be around 
the initial estimate of A. We trim off this many values, and 
this leaves a more symmetric funnel plot. 

On this trimmed set of data, we then reestimate A,  typi- 
cally getting a value to the left of our previous value due to 
the studies we have trimmed. Using this new central value, we 
re-estimate the number of missing studies and then repeat the 
trimming process. We found in practice that this stabilizes on 
the real examples below after only 2-3 iterations. 

When we have a final estimate of A and a final estimate of 
ko, we fill the funnel with the imputed missing studies. We do 

this simply by taking the rightmost ,ko studies, symmetrically 
reflecting their values of around the mean A and using their 
values of ~7% for the imputed new studies. As a final step, we 
then re-estimate A using the observed and imputed studies 
and also use the observed and imputed studies to estimate 
a standard error for the effect size corresponding to that we 
would have seen if all these studies had been observed. 

The random effects (RE) model that we use t o  combine the 
Y3 is = A + pJ + E ~ ,  where PJ - N(0, T ~ )  is introduced to 
account for heterogeneity between studies and e3 N N(0, u,”) 
represents the within-study variability of study 3 .  The RE 
approach has been argued (NRC Committee on Applied and 
Theoretical Statistics, 1992) to be preferable to the fixed ef- 
fects (FE) model, which assumes that T’ = 0, i e., that any 
heterogeneity between studies is purely random. 

Standard theory (Cooper and Hedges, 1994) then gives the 
meta-analyzed estimate of A as A = Cy3w3/Cw3,  where 
wJ = (0,” + T ’ ) - ~  and var[A] = 1/C w3. In fitting this esti- 
mator, it is usually assumed that the u: are known. In the 
RE model, there are various moment-based and maximum 
likelihood approaches giving estimates of T~ (Biggerstaff and 
Tweedie, 1997). The most common is the DerSimonian-Laird 
estimator (DerSimonian and Laird, 1986), and we use this 
method throughout. 

Again we use simulations to evaluate the behavior of the 
iterated form of the estimators. The simulations are carried 
out for N = n-t ko at values of 25,50,75, and the three values 
of ko = 0,5,10. We generate, for each of these combinations, 
1000 sets of funnel plots, with each individual plot generated 
as in Section 3. These simulations are generated under a fixed 
effects model, although we analyze them using RE methods, 
as would typically be done in practice. Thus, the confidence 
intervals (CIS) we generate are conservative. 

In Table 1, we first give the means and standard errors 
of each estimator for each of the parameter combinations. We 
also compare them with the means and standard errors for the 
noniterated versions, where A is known. It is clear that there 
is very little difference between the two except in the extreme 
case where n = 15 and ko = 10. Here the iterated version was 
more conservative than the version where we assumed that A 
is known. 

This is precisely the outcome we might hope for. It indicates 
that the properties of the iterated version, which we must use 
in practice, are essentially exactly those of the noniterated 
version, which we are able to assess analytically. 

Second, using these simulations, we consider the effect of 
the filling mechanism on recovering estimates of the true mean 
and on the inference concerning whether the mean is positive 
or zero. In Table 2 ,  we give the average of the estimates of 
A and its 95% CI in four scenarios, i.e., when there are sup- 
pressed data and when the data are augmented by filled val- 
ues based on R:, L t ,  and Qof .  It is clear that the trim and 
fill algorithm improves the accuracy when there are missing 
studies. 

We also give the percentage of the 1000 data sets in which 
the lower end of the relevant calculated CIS were less than 
zero. If these are true 95% CIS, this percentage should be 
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Table 1 
Behavior of various estimators of ko using the iterative method for A unknown 

n = 25 n = 50 n = 75 

Iterative Noniterative Iterative Noniterative Iterative Noniterative 

ko = 0 Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE 
~ ~ ~ ~ 

Rof 0.5 1.2 0.5 1.1 0.6 1.2 0.5 1.1 0.5 1.2 0.5 1.1 

Lo+ 1.1 1.8 1.3 1.8 1.7 2.6 1.7 2.5 2.0 3.0 2.0 3.0 

0,' 1.3 2.5 1.4 2.1 1.9 3.0 1.8 2.7 2.1 3.4 2.1 3.2 

n = 20 n = 45 n = 70 

Iterative Noniterative Iterative Noniterative Iterative Noniterative 

ko = 5 Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE 

Rof 4.6 3.6 5.0 3.4 5.1 3.7 5.0 3.4 5.0 3.4 5.1 3.5 

Lof 3.7 2.7 4.4 2.8 4.9 3.9 5.0 3.8 5.1 4.4 5.5 4.6 

Q o f  5.8 5.6 5.7 4.3 5.9 5.6 5.5 4.5 5.7 5.3 5.9 5.2 

n = 15 n = 40 n = 65 

Iterative Noniterative Iterative Noniterative Iterative Noniterative 

ko = 10 Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE 

Rof 6.4 3.3 9.6 3.9 10.0 5.3 10.1 4.8 9.9 5.4 10.0 4.7 

L,f 4.6 2.1 6.6 1.8 7.9 4.2 8.8 4.1 8.7 5.3 9.3 5.1 

Q o f  8.6 5.1 10.8 3.9 11.4 8.5 10.7 5.9 10.7 7.9 10.4 6.2 

Table 2 
Behavior of various estimators of A and its CI using the iterative t r im  and fill algorithm; 

% cover indicates the frequency with which the left end of the GI is less than zero 

n = 25 n = 50 n = 75 

ko = 0 % Cover A [CII % Cover A PI1 % Cover A [CII 
Suppressed 98.4 0.00 [-0.09,0.08] 98.5 0.00 [-0.06,0.06] 97.8 0.00 [-0.04,0.05] 
R,+ 98.6 0.00 [-0.09,0.08] 98.6 0.00 [-0.06,0.06] 98.0 0.00 [-0.05,0.05] 
Lof 98.5 -0.01 [-0.09,0.08] 99.0 -0.01 [-0.06,0.05] 98.1 0.00 [-0.05,0.04] 
Qt 98.5 -0.01 [-0.10,0.08] 99.0 -0.01 [-0.06,0.05] 98.1 0.00 [-0.05,0.04] 

n = 20 n = 45 n = 70 

ko = 5 % Cover A [CII % Cover A [CII % Cover A [CII 
Suppressed 89.5 0.03 [-0.05,0.12] 
R,f 95.7 0.00 [-0.08,0.09] 
L: 94.4 0.01 [-0.07,0.10] 
Q o f  94.9 -0.01 [-0.09,0.08] 

n =  15 

ko = 10 % Cover A [CII 

92.6 0.01 [-0.04,0.07] 
97.3 0.00 [-0.06,0.06] 
96.8 0.00 [-0.06,0.06] 
97.3 0.00 [-0.06,0.05] 

n = 40 

% Cover A [CII 

95.3 0.01 [-0.03,0.05] 
97.7 0.00 [-0.05,0.05] 
97.5 0.00 [-0.05,0.05] 
97.6 0.00 [-0.05,0.04] 

n = 65 

% Cover PI1 
Suppressed 58.8 0.09 [-0.01,0.19] 80.0 0.03 [-0.02,0.09] 87.9 0.02 [-0.03,0.06] 
Rof 83.1 0.04 [-0.05,0.14] 95.9 0.00 [-0.06,0.06] 97.5 0.00 [-0.05,0.05] 
L,f 78.9 0.06 [-0.04,0.16] 94.2 0.01 [-0.05,0.07] 96.8 0.00 [-0.04,0.05] 
Q i  84.5 0.02 [-0.07,0.11] 95.1 0.00 [-0.06,0.05] 97.2 0.00 [-0.05,0.04] 
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Table 3 
Power and size of tests based o n  R: 

ko 0 1 2 3 4 5 6 7 8 9 10 
~ 

P ( R t  5 1) 0.875 0.688 0.500 0.344 0.227 0.145 0.090 0.055 0.033 0.019 0.011 

P(R; I 2) 0.938 0.813 0.656 0.500 0.363 0.254 0.172 0.113 0.073 0.046 0.029 

P(R: I 3) 0.969 0.891 0.773 0.637 0.500 0.377 0.274 0.194 0.133 0.090 0.059 

97.5’70, or half the Type I error rate. (Note that, since sup- 
pression moves the mean to the right, we would only expect 
the Type I error rate to increase because of noncoverage of 
zero on this side.) 

When there are no missing studies, the error rate is actu- 
ally a little less than the nominal 2.5% due to the conserva- 
tive nature of the RE model. This is not much affected by the 
filling algorithm. When there are missing studies, the filled 
versions are much closer to the real values and the coverage is 
much improved. When there is a large number of suppressed 
studies (ko = lo), the coverage typically reaches reasonable 
ranges (often around 95-97.5%) even though the observed 
(suppressed) data set leads to coverages as poor as 60-80%. 
When there are proportionally fewer missing studies, the cov- 
erage becomes more accurate still with the filling method. 

5.  Formal Tests of ICo = 0 

Using the distributional properties of R:, we are able to 
construct surprisingly powerful tests of the hypothesis that 
ko = 0, where the rejection regions are of the form {R: > K }  
for suitable values of K .  Theorem 2 of Duval and Tweedie 
(2000) shows that, from ( l ) ,  RIJ has the modified negative 
binomial distribution, 

ko + m + 1 0,5ko+m+2 P(Ro = m) = > ( m + l  ) 
for m = - 1 , O ,  1 , .  . . . (7) 

Using this, we can explicitly construct both the size and power 
of tests of the form {R,f > K } .  Table 3 shows the cumulative 
distribution for RJ under various values of ko (recall that 
when Ro = -1 then R: = 0). This shows that, under the 
null hypothesis ko = 0, a test of size greater than 95% is 
given by the region {R: > 3). This test is of power uniformly 
greater than 80% for alternative hypotheses of ko 2 7. If we 
consider the region {R: > a}, the size is still over 93% and 

the power is 75% for alternative hypotheses of ko 2 5. Note 
that these regions are independent of n and so can be used 
for meta-analyses with arbitrary numbers of studies. 

We do not have the analytical properties of the estimator 
R: under the iterative trimming algorithm. However, simu- 
lation studies show that the analytical size and power of the 
regions {R: > 3) and {R,f > 2) hold virtually exactly for 
all combinations of n , k o ,  even when the iterative algorithm 
is used. 

Although we do not have a simple form for the distribu- 
tion of L, f ,  based on simulations, we find that the regions 
{L: > K }  typically give tests of smaller size and lower power 
for given K than those using R;. Table 4 gives some illustra- 
tive values. This does show that, even if we accept the null 
hypothesis based on the test using RZ, we might still reject 
based on the test using Lo+ if we find Lo+ is larger than R,f 
by two or three. These configurations should thus clearly be 
treated with some caution. 

6. Examples from Psychometrics and Clinical Trials 
We now apply the method to two examples from psychomet- 
rics and clinical trials and compare the results obtained from 
three other methods, i.e., those of Begg (1994), Egger et al. 
(1997), and Gleser and Olkin (1996). The first provides an 
estimate of the rank correlation between the individual stan- 
dardized effect sizes and their variances based on Kendall’s 
tau. We correct for ties, so our values differ slightly from those 
in Begg (1994) or Begg and Mazumdar (1994), who do not 
appear t o  make this correction. The second of these calculates 
the intercept of a simple regression of the effect size divided by 
its standard error against the precision, defined as the inverse 
of the standard error. The third is based on an  assumption 
that the true value of A = 0, and this appears to make it less 
applicable in many data sets. 

19 0.711 0.828 0.898 0.948 0.975 0.993 0.999 1.000 
28 0.691 0.775 0.866 0.917 0.951 0.979 0.989 0.996 
29 0.679 0.796 0.864 0.924 0.955 0.979 0.989 0.995 
35 0.655 0.766 0.842 0.903 0.946 0.962 0.978 0.990 
50 0.641 0.723 0.795 0.853 0.896 0.931 0.955 0.972 



Publication Baas an Meta-Analysis 46 1 

Example 1. I& and teacher expectancy. As a first example, 
we consider the set of 19 randomized studies of the effects of 
teacher expectancy on later pupil performance on an I& test 
(Raudenbush, 1984) depicted in Figure 1. In these studies, a 
researcher tests the I& of a random set of students. A ran- 
domly selected treatment group is identified to  their teachers 
as likely to experience substantial intellectual growth, and the 
test is readministered at a later date. The effect size for each 
study represents the mean increase in I& score of the high ex- 
pectancy group minus the mean increase of the control group 
divided by a pooled standard deviation. One might hypothe- 
size that teacher expectancy increases performance. 

In a meta-analysis ignoring publication bias, the RE overall 
estimate of A = 0.089 with 95% CI (-0.020,0.199). 

These data have been analyzed for publication bias by Begg 
(1994) and Gleser and Olkin (1996), among others. The tests 
all give results consistent with some degree of publication bias: 
p = 0.07 for Begg (1994), p = 0.06 for Egger et al. (1997), 
p = 0.13 for R:, and p = 0.17 for L:. 

Estimating the number of missing studies, the methods of 
Gleser and Olkin (1996) yield three possible values: 0, 59, 
or (under some quite strong assumptions) 82. This degree of 
variability seems to indicate considerable unreliability in their 
approach. Our method gives much more plausible results than 
any of the Gleser and Olkin results: R: = 2 and L,f = 3 (after 
three iterations), with standard errors of 2.4 and 2.9, respec- 
tively, using (4) and (5). We also find Q: = 6, indicating the 
overestimate discussed above. 

Filling with the three missing studies indicated by L:, 
then, as in Figure 1, we obtain an overall estimate of A = 
0.027 with 95% CI (-0.100,0.155). The overall effect is con- 
siderably reduced from that estimated from the original data. 
After allowing for even this small amount of publication bias, 
the estimate of A is reduced by 2/3, as shown in the bottom 
panel of Figure 1. 

This shows not only that there might be missing studies 
but that, on this data set, publication bias could be causing 
problems. Certainly there is sufficient indication to warrant 
wider investigation in this area. 

Example 2. Antimalarial drugs. As a second example, we 
consider a review of antimalarial drugs in the Cochrane Data- 
base of Systematic Reviews (McIntosh and Olliaro, 1998). 
Thirteen studies, including a total of 2448 patients, compared 
artemisinin derivatives with quinine. These derivatives may 
have advantages for treating severe malaria since they are 
fast acting and effective against quinine-resistant malaria par- 
asites. The objective of this review was to  assess the effects 
of artemisinin drugs for severe and complicated falciparum 
malaria in adults and children. Since negative effect sizes (re- 
duced mortality) are positive results in this study, the sign of 
the reported effect size needed to be reversed to fit our model. 
The data are shown as the solid circles in Figure 2. 

In a meta-analysis ignoring publication bias, the RE over- 
all estimate of the log odds ratio A = 0.482, with 95% CI 
(0.157,0.807), i.e., the artemisinin derivatives appear to be 
significantly more effective overall than quinine. An FE analy- 
sis gave similar results, A = 0.362, with 95% CI (0.141,0.582). 

As is visually plausible from Figure 2, tests give results 
consistent with some degree of publication bias, i.e., p = 0.18 
for Begg (1994) and p = 0.04 for Egger et al. (1997). The sim- 
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Figure 2. Top panel is a funnel plot of log odds ratios of 
mortality in studies of malaria from McIntosh and Olliaro 
(1998). Solid circles are original data, open circles are imputed 
filled values. Bottom panel shows overall mean and 95% CI 
of odds ratios before and after allowing for publication bias. 

ple estimator of Gleser and Olkin (1996) yields an estimated 
number of missing studies of one. 

One of the interesting aspects of this example is that use of 
RE and FE models give different results. For the RE model, 
we find R: = 0, L: = 6, and Q,' = 12, while for the FE 
model, we find R: = 6, L: = 6, and Q$ = 12 (so Q,' again 
seems to overestimate Ico). A test based on L: therefore gives 
significance, but that based on R; is significant only in the 
FE case. This difference is due to the different initial estimates 
of A in these two situations since R: can be sensitive to the 
distance of the leftmost value from this initial point. 

Filling with the six missing studies indicated by L:, then 
as in Figure 2 for the RE case, we obtain an overall estimate of 
A = 0.123 with 95% CI (-0.242,0.488); for the FE estimator, 
we obtain an overall estimate of A = 0.114 with 95% CI 
(-0.085,0.313). This is shown in terms of the odds ratio in 
the bottom panel of Figure 2. 

This changes the inference in the Cochrane Database of 
Systematic Reviews from one of significance to one of non- 
significance, showing that again one needs to be sure that all 
the negative studies really have been reported in this area. 
A more detailed assessment of the degree of such bias in a 
large subset of the meta-analyses in the Cochrane Database 
of Systematic Reviews is in Sutton, Duval, Tweedie, Abrams, 
and Jones (unpublished manuscript). 
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7. Discussion 
It is well known that there may be a nonrepresentative set of 
studies in the scientific literature. Dear and Dobson (1997), 
commenting on existing frequentist approaches (Dear and 
Begg, 1992) and the Bayesian approach in Givens et al. (1997) 
to solving this problem, noted (p. 246) ‘previous methods have 
not been much used . . . (and) . , . the value of any new statis- 
tical methodology depends, in part, on the extent t o  which it 
is adopted’; they also noted (p. 245) that ‘the culture of meta- 
analysis has traditionally favoured very simple methods’. 

The trim and fill technique seems to fit this description. I t  
uses only simple symmetry assumptions and an iterative ap- 
proach, easy to implement in practice, to estimate the number 
of missing studies. In the real examples we have examined, the 
trim and fill method matches the subjective impression of bias 
given by the funnel plots. 

Simulations indicate that our nonparametric estimators for 
the number of missing studies work well, and we identify ap- 
propriate ranges where using either R$ or L: appears opti- 
mal. By using both, we get a good basis for judgment about 
the number of studies that need to be trimmed. Our evalu- 
ation of the iterative method shows that the estimates of A 
based on using the trim and fill approach are close to unbi- 
ased, and their variability is of an order that allows us to test 
for the existence of missing studies. 

How much do we need to be concerned about publication 
bias? It  is clear from simulations that we might wish to  change 
the inferences made if we had the full picture. In the real ex- 
amples we have examined here, in Duval (1999) and in Sutton 
et al. (1999), we have found the same thing. In those datasets 
where we detect considerable publication bias, the filled fun- 
nel plot may lead to inferences that are quantitatively differ- 
ent from those in the original data when one ignores possible 
suppressed studies. 

Nonetheless, the main goal of this work should be seen as 
providing methods for sensitivity analyses rather than actu- 
ally finding the values of missing studies. We are not inter- 
ested in the exact imputed values. We are, however, interested 
in how much the value of A might change if there are missing 
studies, and from that perspective, the trim and fill approach 
does seem to give good indications of which meta-analyses do 
not suffer from publication bias and which need to be evalu- 
ated much more carefully. 

RBSUME 
Nous Btudions des mBthodes non-paramBtriques rBcemment 
dBvelopp6es pour l’estimation du nombre d’Btudes man- 
quantes pouvant exister dans une mBta-analyse, et l’effet que 
ces Btudes pourraient avoir sur son rBsultat. Ce sont des tech- 
niques simples par accroissement des donnBes, basBes sur les 
rangs, et qui formalisent l’utilisation des diagrammes en en- 
tonnoir. Nous montrons qu’elles fournissent des tests valides 
et relativement puissants pour Bvaluer l’existence de tels biais 
de publication. Aprhs ajustement pour les Btudes manquantes, 
nous montrons que l’estimateur de l’effet taille global est ap- 
proximativement correct et que la qualit6 des intervalles de 
confiance de l’effet taille est nettement amBliorBe, Bgalant le 
niveau de confiance nominal dans de nombreux cas. Nous il- 
lustrons la mkthode de coupure et remplissage a partir de 
mBta-analyses existantes sur des Btudes d’essais cliniques et 
de psychomBtrie. 
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