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Abstract

Objective: To assess whether nominally statistically significant effects in meta-analyses of clinical trials are true and whether their

magnitude is inflated.

Study Design and Setting: Data from the Cochrane Database of Systematic Reviews 2005 (issue 4) and 2010 (issue 1) were used. We

considered meta-analyses with binary outcomes and four or more trials in 2005 with P! 0.05 for the random-effects odds ratio (OR). We

examined whether any of these meta-analyses had updated counterparts in 2010. We estimated the credibility (true-positive probability)

under different prior assumptions and inflation in OR estimates in 2005.

Results: Four hundred sixty-one meta-analyses in 2005 were eligible, and 80 had additional trials included by 2010. The effect sizes

(ORs) were smaller in the updating data (2005e2010) than in the respective meta-analyses in 2005 (median 0.85-fold, interquartile range

[IQR]: 0.66e1.06), even more prominently for meta-analyses with less than 300 events in 2005 (median 0.67-fold, IQR: 0.54e0.96). Mean

credibility of the 461 meta-analyses in 2005 was 63e84% depending on the assumptions made. Credibility estimates changed O20% in

19e31 (24e39%) of the 80 updated meta-analyses.

Conclusions: Most meta-analyses with nominally significant results pertain to truly nonnull effects, but exceptions are not uncommon.

The magnitude of observed effects, especially in meta-analyses with limited evidence, is often inflated. � 2011 Elsevier Inc. All rights

reserved.
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1. Introduction

Meta-analyses are often considered as the highest level

of evidence for evaluating interventions in health care

[1,2] and are very influential in the literature and in practice

[3]. However, there has been some debate on whether meta-

analyses provide reliable evidence. For example, in an anal-

ysis that stirred intense discussion and criticism, LeLorier

et al. [4] evaluated 19 meta-analyses and pointed out that

these studies had only modest ability to predict the results

of subsequent large clinical trials. Meta-analyses with lim-

ited evidence, biased studies, and poor-quality trials are

considered to be more prone to unreliable results [5e10].

Other investigators have pointed out that the current inter-

pretation of statistically significant results in meta-

analyses ignores the fact that studies are added one at

a time, thus one needs more conservative rules to claim sta-

tistical significance [7,10]. When corrections for sequential

testing are made, many statistically significant meta-

analyses lose their nominal significance [11].

Based on these concerns, clinicians, patients, and policy

makers are left with some uncertainty about how they

should interpret a meta-analysis, when they see that it has

a P-value! 0.05 and its 95% confidence intervals (CIs)

exclude the null. How likely is it that there is some genuine

treatment effect rather than a ‘‘false positive’’? Moreover, if
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What is new?

� Most statistically significant results from meta-

analyses of clinical trials are more likely to reflect

truly nonnull effects than false-positive results.

� It is more probable that the credibility of the updated

meta-analyses increases rather than decreases.

� Data added to the existing meta-analysis in a 5-year

window (2005e2010) indicated less prominent

effects than did the summary estimates in 2005.

� The median fold change in these summary esti-

mates was 0.85, but the reduction was greater for

meta-analyses with less cumulative data (median

reduction of 0.67-fold).

there is some effect, is the statistically significant meta-

analysis estimate reliable or inflateddand, if so, by how

much? Often clinicians and policy makers use nominal sta-

tistical significance as a first prerequisite before even con-

sidering an intervention for implementation. Then, they

may also ask for a sufficiently large treatment effect size.

However, there is evidence from diverse fields that, when

one focuses on statistically significant results that pass

a given threshold of significance (e.g., P! 0.05), some

of them are false positives [5] and effect size estimates

are inflated on average because of the winner’s curse phe-

nomenon [12]. The winner’s curse refers to the situation

where we select results based on the fact that they cross

a threshold of significance and at the same time we try to

obtain an effect size estimate. It is then mathematically

expected that, on average, these estimates are exaggerated

[12]. The extent of inflation of effect sizes varies substan-

tially across different studies and scientific fields and is

more prominent when the sample size is smaller [12e14].

False positives and inflation of effects for meta-analyses

of clinical trials require more systematic study. Both false

positives and inflated effects could cause misleading

impressions about an intervention and wrong treatment

choices.

Here, we evaluated empirically whether nominally statis-

tically significant results in meta-analyses of clinical trials

are credible and the effect sizes from such meta-analyses

are potentially inflated.We estimated the credibility (the pos-

terior probability of true-positive results) in independent

meta-analyses that had nominal statistical significance in

the Cochrane Database of Systematic Reviews (CDSR) in

late 2005. Then, we evaluated the change in the credibility

of these meta-analyses that had data from additional trials

included by early 2010. Moreover, we estimated whether

the updating data suggested smaller effects than the initial

meta-analyses.

2. Material and methods

2.1. Databases of meta-analyses

We have previously collected data on all 1,011 indepen-

dent meta-analyses from the CDSR (issue 4, 2005), with

binary outcomes and four or more trials [15,16]. Briefly,

one meta-analysis has been used per systematic review

(the one with the largest number of trials or the largest

number of events, if there were two or more with similar

number of studies). Further detailed information on selec-

tion criteria appears elsewhere [15e17]. In these 1,011

meta-analyses, we summarized results using the odds ratio

(OR) as the metric of effect by applying a random-effects

model [18] and selected those meta-analyses that had

a nominally statistically significant summary effect (P!

0.05). These meta-analyses are referred herein as ‘‘Signifi-

cant meta-analysesd2005.’’ For each of them, we searched

for the respective versions of these meta-analyses in the

CDSR, issue 1, 2010 and isolated meta-analyses where ad-

ditional trials had been included. The meta-analyses from

2005 comprise the ‘‘Meta-analyses with updatingd2005’’

data set, their updated versions are called the ‘‘Updated

meta-analysesd2010’’ data set, and the extra data included

in the 2005e2010 window are the ‘‘2005e2010 Update’’

data set. All data were electronically exported from the

Cochrane Library to avoid errors in manual data extraction.

We focused only on binary outcomes for consistency in the

effect metric.

2.2. Meta-analyses calculations for effect sizes

We used both fixed-effects and random-effects models to

calculate the summary estimates for meta-analyses. Fixed-

effects calculations were carried out using the general

inverse-variance method, and random-effects results were

obtained by the DerSimonianeLaird method, which incor-

porates the between-study variance t
2 estimated using the

method of moments [18]. Statistical significance was set

at a5 5%. For consistency, all comparisons were coined

to yield ORs greater than 1.0 for meta-analyses in the Sig-

nificant meta-analysesd2005 data set, and the same direc-

tion of comparison was maintained for the other data sets.

Results refer primarily to random effects, unless stated oth-

erwise, because there is evidence for between-study hetero-

geneity in the effects of some medical interventions.

When one selects results based on a statistical significance

threshold (here P! 0.05), it is expected that on average the

effect sizes of these results would be inflated compared with

the true effects. This is known as the winner’s curse phenom-

enon [12,19]. The inflation is expected to be greater when the

evidence is more limited [12,14]. If additional data are

obtained for these significant effects, the effect estimates of

these additional data should be unaffected by the winner’s

curse phenomenon. We compared the effect sizes in

the ‘‘Meta-analyses with updatingd2005’’ data set vs. the

‘‘Updated meta-analysesd2010’’ data set and vs. the
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‘‘2005e2010 Update’’ data set using the Wilcoxon test for

paired observations and the Mann-Whitney U test for inde-

pendent samples when appropriate. We also estimated the

fold change in OR estimates in the 2005e2010 Update vs.

the 2005 estimate andwhether this correlated with theweight

(1=s2ðbqÞ), total number of trials, total number of subjects,

and number of events of the evidence in 2005.

2.3. Credibility

The credibility (C ), the proportion of true positives, rep-

resents a posterior probability that an effect exists (it is non-

null, i.e., OR is not 1.00) [6,20]. C can be computed as:

C5

R

RþB

where R is the prior odds of the effect being true (nonnull)

and B is the Bayes factor. B is obtained from the evidence

provided by the meta-analysis. B-values below 1 mean that

the meta-analysis increases the chances that a nonnull

effect exists. The smaller the B-value, the larger the

increase in the odds that a nonnull effect exists.

There are different approaches to calculate B [21,22].

Here, we used a method that has been proposed previously

[6]. In brief, B is calculated by the following formula:
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where bq and s2ðbqÞ are the observed summary logarithm of

the OR (lnOR) and its variance, respectively, in the meta-

analysis, whereas qA stands for the mean lnOR that is antic-

ipated for true (nonnull) treatment effects. Thus, in this

framework, one needs to specify the mean effect antici-

pated for interventions that do have a nonnull effect.

We have performed analyses considering different mag-

nitudes of anticipated mean effects. One may anticipate that

effect sizes for medical interventions vary depending on the

type of outcome. For example, large reductions in mortality

are difficult to achieve, whereas large effect sizes may be

realistic for outcomes that refer to pain control, harms, or

laboratory tests. Therefore, we first classified the outcomes

of the 461 meta-analyses in the following categories: mor-

tality (including outcomes where death is a composite with

other major clinical events), withdrawals (including drop-

outs and loss to follow up, for any reason), toxicity (harms),

pain response, efficacy outcomes that are determined by

laboratory tests without any clinical component, and all

other efficacy outcomes.

In the main analysis, for each of these outcome cate-

gories, we specified a priori qA-values that correspond to

a mean OR of 1.10 for mortality, 2.00 for harms, pain

response, and laboratory-determined efficacy, and 1.25 for

withdrawals and other efficacy outcomes. This is commen-

surate with anticipated treatment effects used in previous

empirical evaluations of meta-analyses [11] for mortality

and withdrawals/efficacy and allowing for substantially

larger effects for harms, pain, and laboratory-determined

outcomes.

We also performed two sensitivity analyses with different

assumptions. In a first sensitivity analysis, we used qA-values

that correspond to the mean lnOR that was observed for each

category of outcomes based on the meta-analyses of all data

until 2005 (Significantmeta-analysesd2005), that is, assum-

ing that the meta-analyses of nominally statistically signifi-

cant results provide an unbiased estimate of the effect

sizes. In a second sensitivity analysis, we used qA-values that

correspond to the mean lnOR that was observed for each cat-

egory of outcomes based on the 2005e2010 Update data set,

that is, assuming that the updating data provide an unbiased

estimate of the effect sizes.

We considered two different values ofR. First we assumed

R5 0.5. This means that when an intervention goes into

extensive clinical trials testing (at least four trials), it is con-

sidered a priori to have a 33% chance (1:2 odds) to have an

effect for the outcome of interest. This may be a reasonable

assumption in the current environment where clinical trials

are performed only for interventions that have a substantial

chance of showing some effect, given the high cost of trial

research. In a second analysis, we assumed R5 0.1, that is,

an intervention having 1:10 odds (9% chance) to have an

effect a priori, amore pessimistic assumption. The range cov-

ered by these two R-values is commensurate with empirical

data from cohorts of randomized trials [23e26].

2.4. Software

All meta-analysis calculations were performed in Stata

8.0 (College Station, TX, USA). A Stata module has been

written, adapting the B and C calculations discussed above

for a meta-analysis context. A Stata module has been writ-

ten, implementing all calculations discussed below. This

program is available at the author’s website (http://www.

dhe.med.uoi.gr/software.htm). A simple Excel-based calcu-

lator can be found at www.dhe.med.uoi.gr/software.htm.

3. Results

3.1. Evaluated meta-analyses

Among the 1,011 meta-analyses, 461 had nominally sta-

tistically significant effects in 2005 by random-effects cal-

culations. Of the 461 meta-analyses, 199 belonged to

a systematic review that had been updated between 2005

and 2010. Eighty of these 199 meta-analyses included data

from additional trials in the 2005e2010 window. Appendix

shows the comparisons and outcomes for these 80 meta-

analyses, the amount of information available until 2005

and in the 2005e2010 Update (see Appendix on the

journal’s Web site at www.elsevier.com). Table 1 shows

summary characteristics for the different sets of meta-

analyses. The meta-analyses that had updates did not differ
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markedly from those without updates in effect sizes in 2005

(P5 0.054), P-values in 2005 (P5 0.74), or proportion of

different types of outcomes (P5 0.74), but had a substan-

tially higher number of trials (P5 0.0001) and participants

(P5 0.0014) in 2005.

In most of these 461 meta-analyses, fixed-effects esti-

mates were very similar to random effects. However, in

2005, for a total of 47 meta-analyses (10.2%), the random-

effects estimate was �1.25-fold higher than the fixed-

effects estimate, whereas for a total of three meta-analyses

(0.65%), the random-effects estimate was �0.8-fold the

fixed-effects estimate (for effects coined so that random-

effects ORs are �1.00).

3.2. Effect sizes

For the 80 meta-analyses that had updating information,

the point estimates of the effect sizes changed significantly

toward lower values between 2005 and 2010 (P5 0.001).

Likewise, the effect sizes of the updating data were smaller

than that of the respective meta-analyses in 2005

(P5 0.007). The median change in the OR was 0.85-fold

(interquartile range [IQR]: 0.66e1.06) in the 2005e2010

Update vs. the 2005 estimate (Fig. 1). Results were similar

with fixed-effects calculations (P5 0.001 and P5 0.008,

respectively; median effect size change 0.85-fold).

The change in the effect size in the 2005e2010Update vs.

the 2005 estimate correlated inversely with the weight

(1=s2ðq̂Þ) (Spearman’s correlation coefficient, rs5�0.30,

P5 0.006), total number of trials (rs5�0.41, P5 0.002),

total number of subjects (rs5�0.39, P5 0.003), and num-

ber of events (rs5�0.32, P5 0.004) of the evidence in

2005. The median change in the OR was 0.88-fold (IQR:

0.80e1.09) in the 2005e2010 Update vs. the 2005 estimate

for the 40 meta-analyses with higher weights and 0.65-fold

(IQR: 0.54e0.96) for the 40 meta-analyses with lower

weights. The median change in the OR was 0.87-fold

(IQR: 0.80e1.08) in the 2005e2010 Update vs. the 2005

estimate for the 40 meta-analyses with higher total number

of subjects (>2,202) and 0.68-fold (IQR: 0.55e0.96) for

the 40 meta-analyses with lower total number of subjects.

Similar results were obtained when meta-analyses were

grouped into two with total number of events above and

below the median (300 events), respectively: the median

Fig. 1. Summary odds ratio (OR) estimates observed in trials added in

2005e2010 prior vs. ORs observed in 2005 (N5 80). Each comparison

is represented by a circle, whose area is proportional to the inverse of

the standard error (larger areas are given for comparisons with more pre-

cision) in 2005. Summary estimates are derived from random-effect calcu-

lations (DerSimonianeLaird method). The discontinuous line diagonal

corresponds to the points where the OR in 2005 is the same as in the

2005e2010 data.

Table 1

Summary characteristics of the examined meta-analyses

Characteristics

Significant meta-

analysesd2005

(N5 461)

Meta-analyses with

updatingd2005

(N5 80)

Meta-analyses without

updatingd2005

(N5 381)

Updated meta-

analysesd2010

(N5 80)

Update 2005e2010

(N5 80)

Trials, median (IQR) 8 (5e14) 12 (7e20) 8 (5e12) 15 (8e28) 2 (1e7)

Participants, median (IQR) 1,234 (630e3,396) 2,202 (836e6,039) 1,131 (597e2,905) 3,158 (1,126e9,216) 577 (190e1,883)

Type of outcome, n (%)

Efficacydclinical 282 (61.2) 55 (68.8) 227 (59.6) 55 (68.8) 55 (68.8)

Efficacydlaboratory 29 (6.3) 3 (3.8) 26 (6.5) 3 (3.8) 3 (3.8)

Harms 57 (12.4) 7 (8.8) 50 (13.1) 7 (8.8) 7 (8.8)

Pain response 26 (5.6) 5 (6.3) 21 (5.5) 5 (6.3) 5 (6.3)

Withdrawals 39 (8.5) 6 (7.5) 33 (8.7) 6 (7.5) 6 (7.5)

Mortality 28 (6.1) 4 (5) 24 (6.3) 4 (5) 4 (5)

�log10 (P-value), median (IQR)

Random effects 3.20 (2.02e6.14) 3.46 (2.06e7.12) 3.20 (2.01e6.13) 3.74 (2.28e7.63) 0.74 (0.33e3.42)

Fixed effects 4.80 (2.67e9.95) 4.99 (2.65e10.94) 4.73 (2.69e9.62) 5.21 (2.66e10.7) 0.99 (0.35e3.98)

OR, geometric mean (range)a

Random effects 2.73 (1.08e99.9) 2.35 (1.08e11.4) 2.82 (1.10e99.9) 2.21 (1.08e11.4) 2.03 (0.74e10.6)

Fixed effects 2.52 (1.05e99.9) 2.20 (1.08e9.1) 2.59 (1.05e99.9) 2.06 (1.08e9.1) 1.88 (0.74e10.6)

Abbreviations: OR, odds ratio; IQR, interquartile range.
a OR estimates were coined to be greater than one for consistency in the meta-analyses in 2005, and the same direction of comparison also was used in

the other data sets.
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change in theORwas 0.87-fold (IQR: 0.80e1.08) for the for-

mer, whereas this changewas 0.67-fold (IQR: 0.54e0.96) for

the latter. The decrease in the effect size in the 2005e2010

Update vs. the 2005 estimate, conversely, did not correlate

with the amount of evidence added in 2005e2010 (e.g.,

rs5�0.02,P5 0.86 and rs5�0.09,P5 0.41 for the num-

ber of participants and trials in the evidence in 2005e2010,

respectively).

The observed effects differed significantly across the six

types of outcomes (P5 0.0001, Table 2) with largest effect

sizes seen for harms, pain response, and laboratory efficacy

and the smallest effects were seen for mortality. This ranking

is consistent with the a priori anticipated average effects for

these types of outcomes. However, the magnitude of the

effects for each type of outcome in 2005 was larger than

our prior expectations. The effects seen on the 2005e2010

updates were smaller for all types of outcomes and modestly

closer to our a priori expectations (Table 2). Inferences based

on a fixed-effects model yielded similar results (not shown).

3.3. Credibility

In the main analysis, the median B-values in 2005

suggested a median 24-fold increase in the odds that the

effect is true (IQR: 3.57e3,571-fold) (Table 3). In the two

sensitivity analyses, the median (IQR) increase was 50-fold

(4.35e32,258) assuming the average effects to be those ob-

served in the 2005 meta-analyses and 50-fold (4.2e18,248)

assuming the average effects to be those observed in the

2005e2010 Update data.

Assuming a prior odds of effects being true of 0.5, the

median credibility of statistically significant effects in

2005 was 0.92 (0.96 in the two sensitivity analyses),

whereas the mean was 0.82 (0.84 in both the sensitivity

analyses). A total of 425 (92%) effects had more than

50% credibility (409 [89%] and 414 [90%] in the two sen-

sitivity analyses, respectively), and this did not change

much by fixed-effects calculations (444 [96%], 426

[92%], and 433 [94%], respectively).

Assuming a prior odds of effects being true of 0.1, the

median credibility of statistically significant effects in

a meta-analysis in 2005 was 0.71 (0.84 and 0.82 in the

two sensitivity analyses, respectively) and the mean was

0.63 (0.68 and 0.67 in the two sensitivity analyses, respec-

tively). A total of 264 (57%) effects had more than 50%

credibility (309 [67%] and 303 [66%] in the two sensitivity

analyses, respectively). The estimates improved modestly

by fixed-effects calculations (351 [76%], 368 [80%], and

363 [79%], respectively).

3.4. Evolution of credibility in 2010 vs. 2005

In the main analysis, the Bayes factor suggested better

credibility in 56 of the 80 meta-analyses and worse credi-

bility in the other 24 (including five meta-analyses that lost

nominal statistical significance) with the inclusion of the

2005e2010 updates as compared with 2005. Table 4 pres-

ents summary estimates and the extent of the heterogeneity

found in these five systematic reviews.

Thus, it was significantly more likely for the credibility

of the updated meta-analyses to increase rather than de-

crease (P5 0.0005) with accumulation of more data over

the period 2005e2010. Assuming different expected ef-

fects, in the first sensitivity analysis 51 Bayes factors im-

proved and 29 worsened (P5 0.019), whereas in the

second sensitivity analysis 53 Bayes factors improved and

27 worsened (P5 0.0052).

Fig. 2 shows the credibility estimates in 2010 vs. that in

2005. It can be noticed that the variability in credibility es-

timates was larger when we assumed R5 0.1 rather than

R5 0.5. Assuming R5 0.5, 19 (24%) of the 80 effects

changed credibility by O20% in 2010 vs. 2005 (six de-

creased, 13 increased). Assuming R5 0.1, 31 (39%) of

the 80 interventions changed credibility by O20% in

2010 vs. 2005 (nine decreased, 22 increased). In sensitivity

analyses assuming different expected effects, 15e31

(19e39%) of the 80 effects changed credibility by O20%

in 2010 vs. 2005.

4. Discussion

We evaluated 461 meta-analyses of clinical trials on

diverse interventions, 80 of which had also been updated

over a period of 5 years. We estimated under different

assumptions that 63e84% of the 461 meta-analyses

Table 2

Summary effect sizes and between-study heterogeneity (t2) for the period 2005e2010 by outcome type

Type of outcome N (%)

Meta-analyses with updatingd2005 Updated meta-analysesd2010 Update 2005e2010

ORa
t
2 ORa

t
2 ORa

t
2

Efficacydclinical 55 (68.8) 2.23 (1.15e9.51) 0.08 (0.03e0.35) 2.12 (1.16e7.72) 0.11 (0.03e0.26) 1.89 (0.74e10.6) 0.10 (0.00e0.37)

Efficacydlaboratory 3 (3.8) 2.21 (1.60e3.04) 0.47 (0.01e0.59) 2.06 (1.55e3.06) 0.38 (0.01e0.44) 1.78 (1.11e3.89) 0.19 (0.19e0.19)

Harms 7 (8.8) 4.14 (1.99e11.4) 0.26 (0.02e0.39) 4.21 (1.95e10.3) 0.14 (0.00e0.30) 4.42 (1.70e10.5) 0.17 (0.00e0.18)

Pain response 5 (6.3) 4.68 (1.76e9.50) 0.20 (0.00e0.24) 3.81 (1.61e6.50) 0.19 (0.16e0.30) 2.53 (1.28e5.01) 0.14 (0.08e0.30)

Withdrawals 6 (7.5) 1.60 (1.24e2.12) 0.01 (0.00e0.12) 1.50 (1.27e1.85) 0.01 (0.00e0.13) 1.12 (0.77e1.35) 0.00 (0.00e0.93)

Mortality 4 (5) 1.40 (1.08e1.66) 0.00 (0.00e0.01) 1.24 (1.08e1.54) 0.00 (0.00e0.02) 1.16 (0.89e1.39) 0.05 (0.02e0.16)

Abbreviations: OR, odds ratio; IQR, interquartile range.
a OR estimates were coined to be greater than one in the meta-analyses in 2005 and are given as geometric mean (range). t2is summarized as median (IQR).
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probably represent true effects, whereas the remaining

16e37% of the statistically significant meta-analyses are

false positives. Moreover, based on the updated sample,

the point estimates of the nominally statistically significant

effects are, on average, inflated. The inflation is greater for

meta-analyses that have more limited data and thus greater

uncertainty about their estimates.

The estimated proportion of true-positive meta-analyses

suggests that this design, the most highly valued in

evidence-based medicine, does detect true effects rather than

noisedusually, but false positives are probably not

uncommon. The estimated proportion of false positives

(16e37%) depends on assumptions that are unavoidably sub-

jective to some extent. We did not consider here significant

meta-analyses with only two to three trials. Single trials with

statistically significant results may have credibility ranging

from!20% (when small, underpowered, biased studies find

some nominally statistically significant result) to 95% (when

a very large, well-conducted trial finds a significant effect)

[5]. Empirical data are also commensurate with these esti-

mates [27e29]. Our findings suggest that meta-analyses

are indeed a useful way for improving substantially the

Table 4

Characteristics of the five meta-analyses that lost nominal statistical significance in 2010 compared with 2005

Meta-analysis ID Trials (participants)

Summary estimates

P (Q) I
2

Fixed effects Random effects

OR (95% CI) P OR (95% CI) P

Evidence in 2005

CD001865 10 (7,465) 1.32 (1.17e1.50) 0.0001 1.50 (1.11e2.03) 0.008 !0.001 81

CD003288 23 (2,549) 0.69 (0.52e0.90) 0.007 0.69 (0.52e0.90) 0.007 0.736 0

CD003295 4 (276) 0.39 (0.17e0.89) 0.025 0.39 (0.16e0.94) 0.035 0.370 5

CD003388 14 (815) 1.55 (1.02e2.34) 0.038 1.55 (1.02e2.36) 0.038 0.442 1

CD003634 5 (731) 0.71 (0.51e0.98) 0.039 0.71 (0.51e0.98) 0.039 0.675 0

Evidence in 2010

CD001865 14 (7,341) 1.13 (1.02e1.24) 0.020 1.31 (0.98e1.77) 0.073 !0.001 88

CD003288 28 (7,450) 0.91 (0.78e1.05) 0.18 0.91 (0.78e1.05) 0.18 0.630 0

CD003295 5 (340) 0.48 (0.22e1.02) 0.055 0.49 (0.21e1.16) 0.11 0.331 13

CD003388 15 (862) 1.48 (0.99e2.21) 0.055 1.48 (0.99e2.21) 0.055 0.465 0

CD003634 7 (1,039) 0.79 (0.59e1.06) 0.11 0.79 (0.59e1.06) 0.11 0.518 0

Abbreviations: OR (95% CI), odds ratio (95% confidence intervals); P (Q), P-value for the Cochran’s Q-test of homogeneity.

Detailed information on topic/comparison/outcome for each of these systematic reviews is found in the Appendix. Note that for CD001865, the evidence

in 2010 includes more trials but the total sample size is less than that in 2005. This is because, compared with 2005, the 2010 version included six more trials,

but also excluded two trials (one of which had a large sample size) that the reviewers considered that they were addressing different comparisons/outcomes.

Table 3

Median (IQR) Bayes factor and credibility estimates from the investigated meta-analyses according to different scenarios of alternative effect sizes (qA)

and prestudy probabilities (R)

Bayes factor and credibility

Significant meta-

analysesd2005 (N5 461)

Meta-analyses with

updatingd2005 (N5 80)

Meta-analyses without

updatingd2005 (N5 381)

Updated meta-

analysesd2010 (N5 80)

Bayes factor

Main analysis 0.04 (2.8� 10�4
e0.28) 0.03 (3.4� 10�7

e0.20) 0.04 (3.8� 10�4
e0.29) 0.01 (2.2� 10�9

e0.15)

Assuming outcome-specific qA based on

2005 estimates

0.02 (3.1� 10�5
e0.23) 0.009 (8.7� 10�9

e0.29) 0.02 (5� 10�5
e0.22) 0.004 (2.2� 10�9

e0.12)

Assuming outcome-specific qA based on

2005e2010 estimates

0.02 (5� 10�5
e0.24) 0.009 (1.7� 10�8

e0.22) 0.03 (1� 10�4
e0.24) 0.004 (2.6� 10�9

e0.10)

Credibility

Based on prior odds R5 0.5

Main analysis 0.92 (0.64e1.00) 0.95 (0.71e1.00) 0.92 (0.64e1.00) 0.98 (0.77e1.00)

Assuming outcome-specific qA based on

2005 estimates

0.96 (0.69e1.00) 0.98 (0.63e1.00) 0.96 (0.69e1.00) 0.99 (0.80e1.00)

Assuming outcome-specific effects based

on 2005e2010 estimates

0.96 (0.68e1.00) 0.98 (0.69e1.00) 0.95 (0.68e0.99) 0.99 (0.83e1.00)

Based on prior odds R5 0.1

Main analysis 0.71 (0.26e1.0) 0.78 (0.33e1.00) 0.70 (0.26e0.99) 0.91 (0.40e1.00)

Assuming outcome-specific qA based on

2005 estimates

0.84 (0.31e1.00) 0.91 (0.25e1.00) 0.83 (0.31e1.00) 0.96 (0.45e1.00)

Assuming outcome-specific qA based on

2005e2010 estimates

0.82 (0.30e1.00) 0.91 (0.31e1.00) 0.80 (0.30e1.00) 0.96 (0.50e1.00)

Abbreviation: IQR, interquartile range.
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credibility of the evidence. On average, the evidence from

these meta-analyses changed by 25- to 50-fold the prior odds

of an effect being present. However, many clinicians and

statisticians may still find a 16e37% false-positive rate

alarmingly high.

For clinical practice, detecting a true treatment effect is

useful, but decision making also typically requires the mag-

nitude of the treatment effect [30]. The ability to arrive at

more accurate treatment effects with reduced uncertainty

(tight CIs) is a commonly stated advantage of meta-

analysis [31,32]. This is probably true, if one considers all

meta-analyses regardless of their results. However, when

one focuses on meta-analyses with nominally statistically

significant results, the effect sizes are, on average, inflated.

The winner’s curse phenomenon that has been pinpointed

in very diverse disciplines [13,14,24,33e49], including also

in single randomized trials, stopped early for perceived effec-

tiveness [11,35,37,49]. The winner’s curse is a form of

regression to the mean. Its basic principle is that one cannot

select and estimate accurately at the same time [12]. On

average, when significant meta-analyses find ORs of 2, the

true ORs may be around 2� 0.855 1.7. As expected from

theory [13,14], we observed a greater inflation when the

amount of the evidence was more modest. Our analyses sug-

gest that, on average, when significant meta-analyses find

ORs of 2, but have fewer than 300 accrued events, the true

ORsmay be around 2� 0.675 1.34. Thus, large statistically

significant effects that arise from meta-analyses with limited

evidence should be met with caution and get deflated for

practice and health policy considerations. These lessons are

very much in line with what has been proposed with sequen-

tial testing approaches to meta-analyses [7,10,11]. These

approaches adjust statistical significance and effect size tak-

ing into account the sequential nature of accumulation of trial

results and have the advantage of allowing continuous mon-

itoring of the meta-analysis results as new trials are added.

However, sequential testing approaches also need to make

assumptions about the plausible effect sizes and account

for the extent of heterogeneity, but the estimate of heteroge-

neity usually has substantial uncertainty in the average meta-

analysis.

Inflated treatment effects also may be because of biases

other than winner’s curse. There may be differential biases

in early vs. late studies. For example, time lag bias may result

in themore promising ‘‘positive’’ results being published ear-

lier than ‘‘negative’’ results on the same intervention [50].

Alternatively, early trials may have more flaws in study

design and conduct than later trials. These biases are difficult

to decipher and dissociate from each other. Evaluation of

time lag bias requires registry information [51] on when each

trial was launched. Differential biases in the design and con-

duct of early vs. late trials also require in-depth knowledge of

each field and insider views of the trials. However, typical

design features, such as randomization, blinding, and alloca-

tion concealment, have, on average, more modest impact on

the treatment effects (in the range of !10%) [8] than the

inflations that we have documented here. Early trials some-

times may target higher risk patients with more prominent

treatment effects, whereas later studiesmay targetwider pop-

ulationswhere the benefit ismore questionable. Nonetheless,

such effect modification based on baseline risk is difficult to

document unless very extensive data are available. Finally,

statistically significant results from small trials and their

meta-analyses that are considered to be too good to be true

may sometimes encourage more, larger trials to verify them,

and these may turn out to show no effect.

Some limitations should be discussed. Updates between

2005 and 2010 were performed for selected topics. Most

meta-analyses did not have updates including more trials in

this time window. Regardless of whether new trials were

available or not available, the reviewers did not update their

review. Both the decision to perform new trials and to update

a review may be related to the status of the evidence in 2005.

One might expect that debated topics with more uncertainty

would be more likely to have additional trials performed and

reviews updated. With strong evidence, it is unethical to run

Fig. 2. Credibility estimates obtained by combined data up to 2010 vs.

credibility observed in 2005 (N5 80). Each comparison is represented

by a circle, whose area is proportional to the inverse of the standard error

(larger areas are given for comparisons with more precision) in 2005.

Panels A and B correspond to random-effects analyses considering R equal

to 50% and 10%, respectively. The discontinuous line diagonal corre-

sponds to the points where the credibility in 2010 is the same as in 2005.
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more trials. Moreover, reviewers may be inclined to update

systematic reviewswhen they feel that new evidence changes

the big picture [52e55]. If so, updated meta-analyses may be

prone to show greater changes in the effect size than the av-

erage meta-analysis, had more trials and updates been per-

formed on all meta-analyses. Nevertheless, we did not

observe any major differences between meta-analyses that

had updates and those that did not in terms of types of out-

comes, distribution of P-values and effect sizes, except for

a nonsignificant trend for smaller effect sizes in updated

meta-analyses. If anything, the updated meta-analyses had

by 2005 more trials and more participants than those that

were not updated. Thus it seems that, on average, these topics

were simply more popular for clinical experimentation.

Moreover, a clinical trial takes on average 5 or more years

from its design to its publication [56], thus most of the trials

added in the 2005e2010 updates had probably been launched

before the 2005 meta-analysis.

We used the CDSR, which is a well-established, inclusive

database with wide coverage of diverse medical fields.

Cochrane reviews differ from non-Cochrane reviews in sev-

eral aspects, and on average their quality is better [57,58].

Also, non-Cochrane meta-analyses tend to have more trials

and make more conclusive statements [59]. Nonetheless, it

is unlikely that the credibility and accuracy of significant

effect estimates are better in Cochrane reviews than in the

average non-Cochrane meta-analysis with similar amount

of evidence. However, exceptions may exist, for example,

in meta-analyses sponsored by the industry with spuriously

inflated results [60]. Similar evaluations of Bayes factors

and credibility would be useful to perform also in non-

Cochrane meta-analyses.

We focused onmeta-analyses with statistically significant

results by random-effects calculations. These comprise

slightly less than half of all meta-analyses. One may also

ask how nonsignificant meta-analyses should be interpreted.

Some of these meta-analyses have statistically significant

results based on fixed effects only, whereas others are nonsig-

nificant with either fixed or random effects. In the sample of

1,011 meta-analyses, these two groups included 78 and 472

meta-analyses, respectively, and 48 (62%) of the first group

had P-values by fixed effects that ranged from 0.01 to 0.05;

thus their Bayes factors would not be impressive. Bayes fac-

tors can be calculated regardless of what the P-value is.

Bayes factors for studies with P > 0.05 are generally very

modest [6,61,62]; that is, the evidence does not improve

much the chances that an effect is present compared with

prior beliefs. Thus, nonstatistically significant meta-

analyses should probably be interpreted based on prior

beliefs and also examining the range of the CIs about the

remaining uncertainty. Not surprisingly, most systematic

reviews conclude that the evidence is inconclusive [58,59].

Occasionally, CIs are so tight that no more trials are

indicated, and the topic can be laid to rest, knowing that

either no effect exists or, if it exists, it is too small. This

is particularly useful for questions of noninferiority [63].

In most nonsignificant meta-analyses, additional trials are

warranted. Of note, the winner’s curse acts in the opposite

direction when meta-analyses are selected based on not

crossing a threshold of statistical significance. The true

effect sizes, on average, should be larger than the observed

point estimates of nonsignificant meta-analyses which is

another reason why obtaining additional evidence is indi-

cated in most of them.

Bayesian approaches offer advantages to frequentist,

P-based interpretations of research [61], but the biomedical

literature has been entrenched in P-values [62]. Commonly

listed disadvantages for Bayesianmethods are computational

difficulty and the need to make assumptions that affect the

conclusions [64]. Here we have used a simple method that

can be implemented routinely. Other full-Bayesian or false

discovery rate methods may be considered, and usually they

give comparable inferences [65]. We have tried different

assumptions in sensitivity analyses to provide a plausible

range for our main inferences. One could also examine in

everyday practice for each meta-analysis how inferences

change under different assumptions.

Appendix

Supplementary material

Supplementary material can be found, in the online ver-

sion, at doi:10.1016/j.jclinepi.2010.12.012.

References

[1] Olkin I. Meta-analysis: current issues in research synthesis. Stat Med

1996;15:1253e7.

[2] LymanGH,KudererNM.The strengths and limitations ofmeta-analyses

based on aggregate data. BMC Med Res Methodol 2005;5:14.

[3] PatsopoulosNA,AnalatosAA, Ioannidis JP. Relative citation impact of

various study designs in the health sciences. JAMA 2005;293:2362e6.

[4] LeLorier J, Gregoire G, Benhaddad A, Lapierre J, Derderian F. Dis-

crepancies between meta-analyses and subsequent large randomized,

controlled trials. N Engl J Med 1997;337:536e42.

[5] Ioannidis JP. Why most published research findings are false. PLoS

Med 2005;2:e124.

[6] Ioannidis JP. Effect of formal statistical significance on the credibility

of observational associations. Am J Epidemiol 2008;168:374e83.

[7] Pogue J, Yusuf S. Overcoming the limitations of current meta-analysis

of randomised controlled trials. Lancet 1998;351:47e52.

[8] Wood L, Egger M, Gluud LL, Schulz KF, Juni P, Altman DG, et al.

Empirical evidence of bias in treatment effect estimates in controlled tri-

als with different interventions and outcomes: meta-epidemiological

study. BMJ 2008;336:601e5.

[9] Kjaergard LL, Villumsen J, Gluud C. Reported methodologic quality

and discrepancies between large and small randomized trials in

meta-analyses. Ann Intern Med 2001;135:982e9.

[10] Wetterslev J, Thorlund K, Brok J, Gluud C. Trial sequential analysis

may establish when firm evidence is reached in cumulative meta-

analysis. J Clin Epidemiol 2008;61:64e75.

[11] Thorlund K, Devereaux PJ, Wetterslev J, Guyatt G, Ioannidis JP,

Thabane L, et al. Can trial sequential monitoring boundaries reduce

spurious inferences from meta-analyses? Int J Epidemiol 2009;38:

276e86.

1067T.V. Pereira, J.P.A. Ioannidis / Journal of Clinical Epidemiology 64 (2011) 1060e1069



[12] Ioannidis JP. Why most discovered true associations are inflated.

Epidemiology 2008;19:640e8.

[13] Zollner S, Pritchard JK. Overcoming the winner’s curse: estimating

penetrance parameters from caseecontrol data. Am J Hum Genet

2007;80:605e15.

[14] Pereira TV, Patsopoulos NA, Salanti G, Ioannidis JP. Discovery prop-

erties of genome-wide association signals from cumulatively com-

bined data sets. Am J Epidemiol 2009;170:1197e206.

[15] Patsopoulos NA, Evangelou E, Ioannidis JP. Sensitivity of

between-study heterogeneity in meta-analysis: proposed metrics

and empirical evaluation. Int J Epidemiol 2008;37:1148e57.

[16] PatsopoulosNA, Ioannidis JP. The use of older studies inmeta-analyses

of medical interventions: a survey. Open Med 2009;3:e62e8.

[17] Ioannidis JP, Patsopoulos NA, Rothstein HR. Reasons or excuses for

avoiding meta-analysis in forest plots. BMJ 2008;336:1413e5.

[18] DerSimonian R, Laird N. Meta-analysis in clinical trials. Control

Clin Trials 1986;7:177e88.

[19] Young NS, Ioannidis JP, Al-Ubaydli O. Why current publication

practices may distort science. PLoS Med 2008;5:e201.

[20] Ioannidis JP. Calibration of credibility of agnostic genome-wide asso-

ciations. Am J Med Genet B Neuropsychiatr Genet 2008;147B:

964e72.

[21] Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian approaches to

clinical trials and health-care evaluation. Chichester, UK: John Wiley

& Sons; 2004.

[22] Gelman A, Carlin J, Stern H, Rubin D. Bayesian data analysis.

2nd ed. New York: Chapman & Hall/CRC; 2004.

[23] Djulbegovic B, Kumar A, Soares HP, Hozo I, Bepler G, Clarke M,

et al. Treatment success in cancer: new cancer treatment successes

identified in phase 3 randomized controlled trials conducted by the

National Cancer Institute-sponsored cooperative oncology groups,

1955 to 2006. Arch Intern Med 2008;168:632e42.

[24] Bassler D, Briel M, Montori VM, Lane M, Glasziou P, Zhou Q, et al.

Stopping randomized trials early for benefit and estimation of treat-

ment effects: systematic review and meta-regression analysis. JAMA

2010;303:1180e7.

[25] Kumar A, Soares H, Wells R, Clarke M, Hozo I, Bleyer A, et al. Are

experimental treatments for cancer in children superior to established

treatments? Observational study of randomised controlled trials by

the Children’s Oncology Group. BMJ 2005;331:1295.

[26] Soares HP, Kumar A, Daniels S, Swann S, Cantor A, Hozo I, et al.

Evaluation of new treatments in radiation oncology: are they better

than standard treatments? JAMA 2005;293:970e8.

[27] Ioannidis JP. Contradicted and initially stronger effects in highly

cited clinical research. JAMA 2005;294:218e28.

[28] Ioannidis JP, Lau J. The impact of high-risk patients on the results of

clinical trials. J Clin Epidemiol 1997;50:1089e98.

[29] Trikalinos TA, Churchill R, Ferri M, Leucht S, Tuunainen A,

Wahlbeck K, et al. Effect sizes in cumulative meta-analyses of mental

health randomized trials evolved over time. J Clin Epidemiol 2004;57:

1124e30.

[30] Guyatt G, Rennie D. The users’ guides to the medical literature:

a manual for evidence-based clinical practice. 2nd ed. New York,

NY: McGraw-Hill; 2008.

[31] Sacks HS, Berrier J, Reitman D, Ancona-Berk VA, Chalmers TC.

Meta-analyses of randomized controlled trials. N Engl J Med

1987;316:450e5.

[32] Lau J, Ioannidis JP, Schmid CH. Quantitative synthesis in systematic

reviews. Ann Intern Med 1997;127:820e6.

[33] Jeffries NO. Ranking bias in association studies. Hum Hered

2009;67:267e75.

[34] Montori VM, Devereaux PJ, Adhikari NK, Burns KE, Eggert CH,

Briel M, et al. Randomized trials stopped early for benefit: a system-

atic review. JAMA 2005;294:2203e9.

[35] Gehr BT, Weiss C, Porzsolt F. The fading of reported effectiveness. A

meta-analysis of randomised controlled trials. BMC Med Res Meth-

odol 2006;6:25.

[36] Krum H, Tonkin A. Why do phase III trials of promising heart failure

drugs often fail? The contribution of ‘‘regression to the truth’’. J Card

Fail 2003;9:364e7.

[37] Pocock SJ, Hughes MD. Practical problems in interim analyses, with

particular regard to estimation. Control Clin Trials 1989;10:

209Se21S.

[38] Bagshaw SM, McAlister FA, Manns BJ, Ghali WA. Acetylcysteine in

the prevention of contrast-induced nephropathy: a case study of the

pitfalls in the evolution of evidence. Arch Intern Med 2006;166:

161e6.

[39] Goring HH, Terwilliger JD, Blangero J. Large upward bias in estima-

tion of locus-specific effects from genomewide scans. Am J Hum

Genet 2001;69:1357e69.

[40] Allison DB, Fernandez JR, Heo M, Zhu S, Etzel C, Beasley TM,

et al. Bias in estimates of quantitative-trait-locus effect in genome

scans: demonstration of the phenomenon and a method-of-moments

procedure for reducing bias. Am J Hum Genet 2002;70:575e85.

[41] Siegmund D. Upward bias in estimation of genetic effects. Am J

Hum Genet 2002;71:1183e8.

[42] Beavis WD. QTL analysis: power, precision, and accuracy. In:

Paterson AH, editor. Molecular dissection of complex traits. Boca

Raton, FL: CRC Press; 1998. p. 145e73.

[43] Garner C. Upward bias in odds ratio estimates from genome-wide

association studies. Genet Epidemiol 2007;31:288e95.

[44] Jennions MD, Moller AP. Relationships fade with time: a meta-

analysis of temporal trends in publication in ecology and evolution.

Proc Biol Sci 2002;269:43e8.

[45] Leimu R, Koricheva J. Cumulative meta-analysis: a new tool for

detection of temporal trends and publication bias in ecology. Proc

Biol Sci 2004;271:1961e6.

[46] Steyerberg EW, Eijkemans MJ, Harrell FE Jr, Habbema JD. Prognos-

tic modelling with logistic regression analysis: a comparison of selec-

tion and estimation methods in small data sets. Stat Med 2000;19:

1059e79.

[47] Steyerberg EW, Harrell FE Jr, Borsboom GJ, Eijkemans MJ,

Vergouwe Y, Habbema JD. Internal validation of predictive models:

efficiency of some procedures for logistic regression analysis. J Clin

Epidemiol 2001;54:774e81.

[48] Steyerberg EW, Eijkemans MJ, Habbema JD. Stepwise selection in

small data sets: a simulation study of bias in logistic regression anal-

ysis. J Clin Epidemiol 1999;52:935e42.

[49] Simon R, Altman DG. Statistical aspects of prognostic factor studies

in oncology. Br J Cancer 1994;69:979e85.

[50] Hopewell S, Clarke M, Stewart L, Tierney J. Time to publication for

results of clinical trials. Cochrane Database Syst Rev 2007;MR000011.

[51] Rennie D. Trial registration: a great idea switches from ignored to

irresistible. JAMA 2004;292:1359e62.

[52] Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF.

Improving the quality of reports of meta-analyses of randomised con-

trolled trials: the QUOROM statement. Quality of Reporting of

Meta-analyses. Lancet 1999;354:1896e900.

[53] Moher D, Tsertsvadze A. Systematic reviews: when is an update an

update? Lancet 2006;367:881e3.

[54] Moher D, Tsertsvadze A, Tricco AC, Eccles M, Grimshaw J,

Sampson M, et al. A systematic review identified few methods and

strategies describing when and how to update systematic reviews.

J Clin Epidemiol 2007;60:1095e104.

[55] Moher D, Tsertsvadze A, Tricco AC, Eccles M, Grimshaw J,

Sampson M, et al. When and how to update systematic reviews.

Cochrane Database Syst Rev 2008; MR000023.

[56] Ioannidis JP. Effect of the statistical significance of results on the

time to completion and publication of randomized efficacy trials.

JAMA 1998;279:281e6.

[57] Moseley AM, Elkins MR, Herbert RD, Maher CG, Sherrington C.

Cochrane reviews used more rigorous methods than non-Cochrane

reviews: survey of systematic reviews in physiotherapy. J Clin Epide-

miol 2009;62:1021e30.

1068 T.V. Pereira, J.P.A. Ioannidis / Journal of Clinical Epidemiology 64 (2011) 1060e1069



[58] Moher D, Tetzlaff J, Tricco AC, Sampson M, Altman DG. Epidemi-

ology and reporting characteristics of systematic reviews. PLoS Med

2007;4:e78.

[59] Tricco AC, Tetzlaff J, Pham B, Brehaut J, Moher D. Non-Cochrane

vs. Cochrane reviews were twice as likely to have positive conclusion

statements: cross-sectional study. J Clin Epidemiol 2009;62:380e6.

[60] Jorgensen AW, Hilden J, Gotzsche PC. Cochrane reviews compared

with industry supported meta-analyses and other meta-analyses of

the same drugs: systematic review. BMJ 2006;333:782.

[61] Goodman SN. Toward evidence-based medical statistics. 2: the Bayes

factor. Ann Intern Med 1999;130:1005e13.

[62] Goodman SN. Toward evidence-based medical statistics. 1: the P

value fallacy. Ann Intern Med 1999;130:995e1004.

[63] Piaggio G, Elbourne DR, Altman DG, Pocock SJ, Evans SJ.

Reporting of noninferiority and equivalence randomized trials:

an extension of the CONSORT statement. JAMA 2006;295:

1152e60.

[64] Johnson SR, Tomlinson GA, Hawker GA, Granton JT, Feldman BM.

Methods to elicit beliefs for Bayesian priors: a systematic review.

J Clin Epidemiol 2010;63:355e69.

[65] Katki H. Invited commentary: evidence-based evaluation of p-values

and Bayes factors. Am J Epidemiol 2008;168:384e8.

1069T.V. Pereira, J.P.A. Ioannidis / Journal of Clinical Epidemiology 64 (2011) 1060e1069


	 Statistically significant meta-analyses of clinical trials have modest credibility and inflated effects
	1 Introduction
	2 Material and methods
	2.1 Databases of meta-analyses
	2.2 Meta-analyses calculations for effect sizes
	2.3 Credibility
	2.4 Software

	3 Results
	3.1 Evaluated meta-analyses
	3.2 Effect sizes
	3.3 Credibility
	3.4 Evolution of credibility in 2010 vs. 2005

	4 Discussion
	Appendix Supplementary material
	References


