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Publication selection bias is a serious challenge to the integrity of all empirical sciences. We derive meta-
regression approximations to reduce this bias. Our approach employs Taylor polynomial approximations to
the conditional mean of a truncated distribution. A quadratic approximation without a linear term, precision-
effect estimate with standard error (PEESE), is shown to have the smallest bias and mean squared error in most
cases and to outperform conventional meta-analysis estimators, often by a great deal. Monte Carlo simulations
also demonstrate how a new hybrid estimator that conditionally combines PEESE and the Egger regression
intercept can provide a practical solution to publication selection bias. PEESE is easily expanded to accom-
modate systematic heterogeneity along with complex and differential publication selection bias that is related
to moderator variables. By providing an intuitive reason for these approximations, we can also explain why the
Egger regression works so well and when it does not. These meta-regressionmethods are applied to several
policy-relevant areas of research including antidepressant effectiveness, the value of a statistical life, the
minimum wage, and nicotine replacement therapy. Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

Many other commentators have addressed the issue of publication bias. . . . All agree that it is a serious
problem—Begg and Berlin (1988, p. 421).

The bias that arises from the preferential reporting of statistically significant or ‘positive’ scientific results has
long been a focus and concern of statisticians (Sterling, 1959; Rosenthal, 1979; Hedges and Olkin, 1985; Begg
and Berlin, 1988; Sterling, Rosenbaum and Weinkam, 1995; Copas, 1999; Senn, 2008; Mandel and Rinott, 2009;
and Rücker et al., 2011, to mention a few). This ‘publication bias’ is widely recognized to exaggerate the
effectiveness of pharmaceuticals (Friedman, 2003; Cary, 2008; Turner et al., 2008). Publication bias is a misnomer;
‘reporting bias’ would be a more accurate reflection of this threat to scientific validity. Because the preference for
statistical significance is widely known among researchers, they will tend to select statistically significant findings
even in their unpublished working papers and theses. Others have found publication selection to be widespread
in the natural sciences and economics (Sterling and Weinkam, 1995; Doucouliagos and Stanley, 2013).

As shown in the succeeding text, the reported values of a statistical life are highly skewed and exaggerated
(Bellavance et al., 2009), and nearly, the entire left side of the results from clinical trials of antidepressants is
missing from the published record (Turner et al., 2008). How can health care providers or policy makers sensibly
correct for publication selection? We seek a practical solution to this widespread problem in social science and
medical research.

To minimize publication selection bias, the leading medical journals require the prior registration of clinical
trials as a condition of their later publication (Krakovsky, 2004). Nonetheless, a recent systematic review found that
publication selection is quite common in medical research (Hopewell et al., 2009). Without some way to correct or
minimize this bias, the validity of science itself comes into question (Lehrer, 2010).

aEconomics, Hendrix College, 1600 Washington St., Conway, AR 72032, USA
bSchool of Accounting, Economics, and Finance and Alfred Deakin Research Institute, Deakin University, 221 Burwood Highway, Burwood,
3125, Victoria, Australia
*Correspondence to: Tom D. Stanley, Professor of Economics, Hendrix College, 1600 Washington St., Conway, AR 72032, USA.
†Email: Stanley@hendrix.edu

Copyright © 2013 John Wiley & Sons, Ltd. Res. Syn. Meth. 2014, 5 60–78

Original Article

Received 12 July 2012, Revised 16 July 2013, Accepted 21 July 2013 Published online 3 September 2013 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/jrsm.1095

6
0



In this paper, we derive a practical solution to the exaggerated scientific record. Simple meta-regression
analysis (MRA) can greatly reduce publication selection bias. Following the seminal work of Begg and Berlin
(1988) and Copas (1999), we recognize that it may not be feasible to estimate all the needed parameters of a fully
specified statistical model of publication selection. ‘It is difficult to conceive of a correction methodology which
would be universally credible’ (Begg and Berlin, 1988, p. 440). Nonetheless, we identify an approximate meta-
regression model from considerations of limiting cases and a quadratic Taylor polynomial for the expected value
of a truncated normal distribution. Furthermore, this meta-regression model easily accommodates research
heterogeneity from different methods, data, populations, controls, and so on and can thereby distinguish
publication selectivity from more substantive research differences.

The purpose of this paper is to derive statistically and intuitively meta-regression approximations for
publication bias, improve them by combining the quadratic meta-regression approximation with the better-
known Egger regression intercept (Egger et al., 1997; Stanley, 2008), and offer a new multiple meta-regression
model that accommodates differential publication selection that may be related to any number of research
dimensions along with systematic heterogeneity and publication bias. This multiple MRA can explicitly distinguish
publication bias from funnel asymmetry that may be coincidentally correlated with moderator variables as well as
a more complex form of publication selection that depends on other research factors. In the process of deriving
and discussing these meta-regression approximations, we explain when and why the Egger regression works well
and when it does not (Egger et al., 1997).

Simulations reported here show that a quadratic meta-regression approximation can greatly decrease
publication selection bias found in the conventional meta-analytic summary statistics of reported research results.
This approach has already been successfully applied to correct highly exaggerated research on the efficiency
wage hypothesis (Stanley and Doucouliagos, 2007), antidepressant effectiveness (Moreno et al., 2009b), trade
effects of joining the Euro (Havranek, 2010), health care and income (Costa-Font et al., 2011), the relation of
foreign investments and taxes (Feld and Heckemeyer, 2011), and the value of a statistical life (VSL) (Doucouliagos
et al., 2012).

2. Models of publication selection

2.1. Publication selection as truncation

When all results are selected to be statistically significant in a desirable direction, reported effects may be regarded as
‘incidentally’ truncated. It is ‘incidental’ truncation because the magnitude of the reported effect, itself, is not selected
but rather some related variable, for example the calculated z-value or t-value (Wooldridge, 2002, p. 552). By referring
to the well-known conditional expectation of a truncated normal distribution, it is easy to show that observed effects
will depend on the population’s ‘true’ effect, μ, plus a term that reflects selection bias.

E effecti truncationÞ ¼ μþ σ i�λ cð Þ:jð (1)

λ(c) is the inverse Mills’ ratio, μ is the ‘true’ effect, which is the expected value of the original distribution, σi is the
standard error (SE) of the estimated effect, c= a�μ/σi, and a is the critical value of the standard normal
distribution (Johnson and Kotz, 1970, p. 278; Greene, 1990, Theorem 21.2). With selection for directional statistical
significance, an estimated effect is more likely to be observed if effecti/σi> a.

When we replace σi in Equation (1) with its sample estimate, SEi,

E effectið Þ ¼ μþ SEi�λ cð Þ: (2)

Equation (2) may be interpreted as a MRA of observed effect on its SE. Unfortunately, λ(c) is not generally
constant with respect to μ and σi, and this complication causes additional difficulty in providing an unbiased
corrected estimate.

To clarify the context of this selection problem, we briefly digress. In econometrics, there is the well-known
Heckman two-step solution to the analogous problem of sample selection (Heckman, 1979; Wooldridge, 2002;
Davidson and MacKinnon, 2004). However, in the empirically tractable case of sample selection, characteristics
of the unselected individuals are observed and used to estimate a selection equation, by logit or probit. The
estimated values of the inverse Mills’ ratio, λ(c), from this selection relation are then used to estimate the Heckman
regression, which is similar to our MRA in the preceding text. What makes the Heckman approach feasible is the
additional information contained in the selection variables that are observed whether the individual is selected or
not. We do not have the luxury of extra relevant information in the case of publication selection. In general,
nothing is known about the unreported empirical research results. Thus, this well-worn avenue is unavailable
for the problem at hand.

Rather than give up altogether, let us approximate the publication bias term, SEi � λ(c), by other means. The
inverse Mills’ ratio is the normal probability density function, ϕ(c), evaluated at c = a�μ/σi and divided by one
minus its cumulative density, [1�Φ(c)]. As a consequence, this term is a complex function of μ and σi. To
understand this complexity somewhat better, we take the derivative of Equation (1) with respect to σi.
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∂E effectijtruncationð Þ=∂σ i ¼ λ cð Þ þ σ i�∂λ cð Þ=∂σ i

¼ λ cð Þ þ σ i�∂λ cð Þ=∂c� ∂c=∂σ ið Þ: (3)

However, ∂ λ(c)/∂ c= λ(c)2� cλ(c)(Heckman, 1979, p. 159), which gives:

∂E effectijtruncationð Þ=∂σ i ¼ λ cð Þ þ μ=σ ið Þ�ðλ cð Þ2 � cλ cð Þ Þ: (4)

This derivative suggests that the conditional mean is, in general, a rather difficult, nonlinear function of σi; thus,
some approximation such as the Taylor polynomial (or power series) will need to be employed to estimate the
expected empirical relation between a reported estimate and its SE.

effecti ¼ β1 þ ∑
K

k¼1
αkSEki þ εi: (5)

Estimates of β1 from this Taylor polynomial approximation, Equation (5), will then serve as estimates of the
‘true’ effect, μ, corrected for publication bias. Econometricians typically employ linear or quadratic approximations
in similar applications. In our simulations, in the succeeding text, we investigate quadratic (i.e., K = 2), cubic (i.e.,
K = 3), as well as linear approximations (i.e., K = 1). However, before we turn to these simulations, we need to make
several relevant observations.

There is a rich, 200-year history of constructing limits and approximations for the Mills’ ratio, hence, by
extension for the inverse Mills’ ratio (Laplace, 1812; Johnson and Kotz, 1970). Some of these approximations are
in fact power series (Abramowitz and Stegun, 1964). For our application, all of these approximations will involve
complex functions of μ/σi and thereby involve the very parameter, μ, we wish to estimate. Unfortunately, we find
no specific estimation model that can be derived from these approximations. A possible exception is Gordon’s
(1941) upper bound for the Mills’ ratio. When this upper bound is applied to our Equation (1), it gives E(effecti|
truncation) = aσi as a lower bound. However, our limit cases, especially E(Effect|Selection) in Figure 1, are more
informative and useful.

2.2. Examining limit cases of publication selection

Examining limit cases reveals how a parabola in SEi might provide an adequate approximation to the relation
between the effect size and its SE. Figure 1 plots 300 randomly generated yet selected effects when there is strict
selection of significantly positive effects, and the true effect is one (μ= 1). These randomly generated values come
from the same data generating processes used by the simulations reported and discussed in the next section.
However, for our present purposes, the limiting cases of publication bias represented by the two lines in Figure 1
are much more informative than any random scatter of selected results. These limit cases give shape to the
relationship between the expected reported effect and the SEs. As we discuss in the succeeding text, this shape
is known a priori from statistical theory.

To understand the shaping forces of these simple lines, first consider the horizontal line, E(Effect|No selection).
When all empirical findings are reported with no selection, they will be randomly distributed, by definition, around
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Figure 1. Plots 300 randomly generated yet selected effects (vertical axis) against their standard errors.
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the true effect, μ=1 for this illustration. Without selection, the magnitude of the reported effect will be constant
and independent of SEi, hence, the horizontal line. Next, note the upwardly sloping line in Figure 1, E(Effect|
Selection). This second line represents the conditional expectation, Equation (1), when the true effect is zero,
μ=0. This upward-sloping line represents the worst-case scenario for publication bias. The slope of this line will
be equal to the inverse Mills’ ratio evaluated at the critical value, a. To see this, substitute μ= 0 into Equation
(4)—also see Section 2.3. To a greater or lesser extent, these two polar cases shape the reported effects.

Beginning with the most precise studies (those with small SEi), researchers will find little need to report
anything other than the first observed effect. When the true effect is many times larger than the SE, the probability
of finding an insignificant effect is virtually zero. Thus, even when there is selection for a statistically positive effect,
very precise studies will not be biased, assuming of course that there is some genuine positive effect to begin
with. As SE increases, occasionally an estimated effect will not be statistically significant and will need to be
re-estimated to become so. Thus, for the ‘middle’ range of SE, expected observed effects will be gradually
pulled up above the horizontal line. Notice the scatter for 0.3 ≤ SE ≤ 0.5 in Figure 1. As SE grows larger still,
the standardized true effect, μ/SEi, will play a weaker and weaker role, whereas the ray from the origin
presents a greater attraction for reported effects. In the limit, expected reported effects and their SEs will
be linearly related, λ(a)SEi.

Thus, a simple thought experiment identifies rather clearly the approximate shape of expected reported effects and
their SEs and, thereby, provides plausibility for the meta-regression model explored here. Equally apparent is that the
right half of a parabola (E effectið Þ ¼ β1 þ α2SE2i ) can approximate this relationship. Note further that a parabola will
also approximate this relationship when μ is increased or decreased. Changing μ lengthens or shortens the horizontal
line segment. Making α2 smaller in E effectið Þ ¼ α2SE2i allows for a more gradual increase initially and a wider parabola.
Of course, the fit will not be exact, but then, we need only to estimate theminimumof this the parabola (i.e., its vertex).

Our purpose for estimating this relationship between reported effect and its SE is merely to find an adequate
corrected estimate of effect, and we know that there will be no publication bias when SE is small, approaching zero.
In practice, think of σi between 0 and 0.1×μ. For such small σi, every observed effect will be statistically significant;
thus, there will be no publication selection bias near 0. In this region, observed effects will not depend on σi but rather
be randomly distributed around μ. From Equation (1), we know that f(0) = 0 in E(effecti) =μ+ f(σi). Also, we know from
Equation (3) that as σi approaches 0 from above f ’ (0)→ 0 for μ≠ 0. These properties give shape to the relationship
between reported effects and their SEs and constrain the form of the approximation that is needed to model this
relationship. Figure 1 also makes these points clear. The easiest way to give a Taylor polynomial, these properties is
to require that the linear term of a quadratic approximation be omitted from Equation (5); that is, α1 = 0 in Equation (5).

Our simulations, described in the succeeding text, demonstrate that constraining α1 to be zero in the quadratic
approximation of Equation (5) is critical. As discussed previously, very precise estimates will vary around μ and
contain negligible publication bias. This observation serves as the starting point for an alternative estimate of
the corrected effect—‘Top 10.’ Top10 is the simple mean of the most precise 10% of the estimates in a research
literature and has been shown to reduce publication bias significantly (Stanley et al., 2010). Thus, our ideal
corrected estimate is where this relation crosses the vertical axis, where SE approaches zero. The trick, of course,
is to estimate this intersection well from the statistical results typically reported in empirical studies.
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Figure 2. Plots 300 randomly generated yet selected effects (vertical axis) against their standard errors along with the least squares line.
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Using a linear approximation to the Taylor polynomial would be one approach, but not a very good one.
Previous simulations show that this leads to an underestimate of the true effect when there is an effect (Stanley,
2008), and this is easily seen in Figure 2. Figure 2 places the least squares line (upward sloping with a positive
intercept) through this scatter of reported effects, the intercept of which underestimates the true effect by
25%. This illustration is no isolated incident but is robustly confirmed by the simulations reported in the next
section. In spite of this bias, there is an important special case where the expected reported effect and its SE will
be linearly related.

2.3. Egger regression and the precision-effect test

Egger et al. (1997) used the linear approximation to this complex relation of reported effect to its SE as a test for
the presence of publication bias.

effecti ¼ γ1 þ α1SEi þ εi: (6)

Testing H0: α1 = 0 in this simple meta-regression model is widely used in medical research to investigate
whether a research literature is contaminated by publication selection or more generally ‘small-study’ bias.
This Egger test serves as a valid if low power test for publication selection or small-sample bias (Egger et al.,
1997; Stanley, 2008). This test is related to the symmetry of the associated funnel graph. A funnel graph is a
plot of precision (1/SEi) versus effecti, and it has been widely used in systematic reviews as a visual indicator
of publication selection (Egger et al., 1997; Duval and Tweedie, 2000; Hopewell et al., 2009). Because this
MRA contains obvious heteroscedasticity, Equation (6) is almost never estimated using ordinary least
squares (OLS), but rather weighted least squares (WLS). WLS can be obtained by dividing the entire
Equation (6) by an estimate of the standard deviation of this heteroscedasticity (i.e., SEi ) or by using a
WLS routine in any standard statistical package when the weights are specified as 1/SE2i . See the Appendix
for the appropriate SPSS and STATA commands.

ti ¼ α1 þ γ1 1=SEið Þ þ ui: (7)

where ti is the commonly reported t-value, and 1/SEi is the precision of an estimate. Note that the intercept and
slope coefficients are reversed from the OLS version, Equation (6). Testing H0: γ1 = 0 (the ‘precision-effect test’
[PET]) from (6) or (7) provides a valid basis for determining whether there is a genuine empirical effect beyond
publication selection bias (Stanley, 2008). The weakness of this linear approximation becomes apparent when
one attempts to use γ̂1 as the corrected estimate of the true effect. Although PET provides a valid test for the
presence of a genuine nonzero effect, γ̂1 is downwardly biased, as seen in Figure 2. The reason for this apparent
discrepancy is easily explained when one realizes that the linear relation between reported effects and their SEs
can be derived as a special case of the conditional mean of a truncated distribution when the underlying true
effect, μ, is in fact zero.

When the underlying empirical effect is zero (i.e., μ= 0), Equation (4) simplifies to λ(c), implying that the slope of
the expected effect relation reduces to this inverse Mills’ ratio. Further recall that c = a�μ/σi, which is merely a for
μ=0. Thus, ∂ E(effecti|truncation)/∂σi reduces to the inverse Mills’ ratio evaluated at the critical value of the
standard normal distribution, λ(a), which is just a constant. When there is no genuine empirical effect, the slope
of expected reported effect is a constant, and the expected reported effect and its SE will be linearly related, as
illustrated by line E(Effect|Selection) in Figures 1 and 2. This observation is important because it further validates
the PET (H0: γ1 = 0). Because the null hypothesis assumes that there is no underlying effect, μ= 0, a linear relation
of reported effect and the SE provides a valid foundation for testing whether there is a genuine nonzero
empirical effect.

To recap, the aforementioned discussion and past simulations demonstrate that a simple linear relation
between an estimate and its SE may be used to test both for the presence of publication selection bias and
genuine true effect beyond publication bias (Egger et al., 1997; Stanley, 2008). However, this linear approximation
is also known to give biased estimates of the underlying true effect,μ, whenμ≠ 0 (Stanley, 2008). Our approach is
to appeal to a higher order. In particular, we recommend using the WLS estimate of β1 from a quadratic
approximation:

effecti ¼ β1 þ α2SE2i þ εi or (8)

ti ¼ α2SEi þ β1 1=SEið Þ þ ui: (9)

where MRA (8) uses WLS and 1=SE2i for weights. Note that this quadratic model of publication selection is
constrained to have α1 = 0.

Elsewhere, β̂1 has been called the ‘precision-effect estimate with SE’ (PEESE) (Stanley and Doucouliagos, 2007;
Havranek, 2010; Costa-Font et al., 2011; Doucouliagos et al., 2012; Stanley andDoucouliagos, 2012; Costa-Font et al., 2013).
This MRA correction for publication bias was first proposed in Stanley (2006), refined and applied in Stanley and
Doucouliagos (2007), comprehensively simulated by Moreno et al. (2009a), and further refined and applied in
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Doucouliagos and Stanley (2009), Moreno et al. (2009b, 2011), and Stanley and Doucouliagos (2012). Next, we
report simulations of PEESE’s bias and mean squared error (MSE) and compare them to alternative approximations
and estimates, including γ̂1 from the linear approximation to this relation, which is the Egger regression.

3. Simulations

The design of our simulations closely follows Stanley (2008) and Stanley et al. (2010). The range of parameters
employed is selected to mirror observed properties from several published meta-analyses. Briefly, random data
are generated and used to test whether a regression coefficient is zero. Random heterogeneity and residuals
are drawn from independent normal distributions. Regression is chosen because it is the most common
statistical technique employed in the social sciences, and it encompasses many other statistical tests, including
analysis of variance, t-tests, and tests of fixed-effects (Moore, 1997; Stanley et al., 2010). Thus, the true effect (μ)
in these simulations is a regression slope, and it is controlled to be either 0 or 1. Because these effects are
regression slopes, they are not ‘standardized’ or ‘effect sizes’ as meta-analysts understand these terms.
However, these simulations further control the magnitude of the true correlation coefficient, ρ, to be either 0
or 0.30 as the true slope coefficient is 0 or 1. When the true slope coefficient is equal to one, the effect size that
is being estimated is ‘small’ by conventional guidelines (Cohen, 1988). Although many correlations in
economics are much larger (e.g., aggregate consumer expenditures and income has a correlation of 0.999 in
the USA), this small effect size, ρ= 0.30, is chosen to be ‘conservative’ and to disadvantage PEESE. Likewise,
all sample sizes used to estimate this regression slope coefficient and thereby to represent the primary

Table 1. Means of the intercept of polynomial approximations (n=80).

Heterogeneity* True effect Selection incidence (%) Linear γ̂1 Quadratic Cubic PEESE, β̂1

0 0 0.00 �0.01 0.00 0.00
0 25 0.04 �0.08 0.04 0.13
0 50 0.06 �0.11 0.07 0.25
0 75 0.07 �0.07 0.14 0.36

I2= 25% 0 100 0.07 0.05 0.12 0.46
1 0 1.00 1.00 1.01 1.00
1 25 0.92 0.94 1.08 0.99
1 50 0.85 0.89 1.11 0.98
1 75 0.77 0.88 1.15 0.96
1 100 0.68 0.87 1.12 0.94
0 0 0.00 0.00 0.00 0.00
0 25 0.04 �0.05 �0.05 0.15
0 50 0.08 �0.03 �0.06 0.29
0 75 0.14 0.04 �0.02 0.44

I2= 58% 0 100 0.20 0.18 0.07 0.60
1 0 1.00 0.99 0.99 1.00
1 25 0.94 0.94 1.01 1.01
1 50 0.88 0.89 1.00 1.02
1 75 0.81 0.85 0.91 1.02
1 100 0.74 0.84 0.83 1.03
0 0 0.00 0.01 0.01 0.00
0 25 0.04 0.03 �0.09 0.18
0 50 0.10 0.10 �0.10 0.38
0 75 0.22 0.19 �0.09 0.61

I2= 85% 0 100 0.37 0.34 0.09 0.86
1 0 1.00 1.00 1.02 1.00
1 25 0.97 0.96 0.87 1.06
1 50 0.93 0.90 0.76 1.12
1 75 0.87 0.86 0.62 1.17
1 100 0.80 0.82 0.47 1.21

PEESE, precision-effect estimate with standard error.
*Heterogeneity is measured by I2 =σh

2/(σh
2 +σε

2). Linear, Quadratic, Cubic, and PEESE refer to different estimates of
the intercept of the polynomial approximation to the conditional mean of a truncated distribution—Equation (5).
In all cases, weighted least squares is used.
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literature estimates are quite modest for regression analysis—n = {30, 50, 75, 100, or 200}. See Stanley (2008) for
more complete details.

Publication selection is modeled as the repeated sampling from these distributions until a statistically positive
regression coefficient is obtained. If a given set of generated data, errors, and random heterogeneity does not
produce a significant regression coefficient, an entirely new set of data, errors, and random heterogeneity is
generated. This process continues until a statistically positive regression coefficient is found by chance. However,
we know that not all reported scientific findings are the result of publication selection because almost all areas of
research report at least a few insignificant estimates. To ensure that our simulations are realistic and robust,
varying incidences of publication selection are modeled (0%, 25%, 50%, 75%, and 100%). For example, when
the incidence of publication selection is 75%, exactly three fourths of the reported values have been chosen to
be statistically significant, whereas the first estimate generated, significant or not, is reported for the remaining
25% of the reported values.

Here, meta-regression sample sizes are either 20 or 80. In economics, most areas of empirical research
have many times more estimates. Among 87 areas of economics research, the average number of reported
estimates exceeds 200 (Doucouliagos and Stanley, 2013). In medical research, there tend to be fewer
randomized controlled trials (RCTs) on a given topic. But some areas of medical research have more than
enough estimates. For example, Turner et al. (2008) reported findings on 74 antidepressant trials, and Stead
et al. (2008) reported 42 RCTs of nicotine replacement therapy (NRT) using the ‘patch’ and 112 trials when
other delivery systems are included. The meta-regression sample size of 20 is chosen because it is a rather
small sample size for any regression estimate, whereas 80 is both practically feasible in many cases and
gives these MRAs tests power to spare. Needless to say, regression-based estimators may not be appropriate
if only a very small number of comparable empirical estimates exist. However, conventional fixed-effects

Table 2. Mean square errors of precision-effect estimate with standard error (times 1000 with n=80).

Heterogeneity* True effect Selection incidence (%) Linear γ̂1 Quadratic Cubic PEESE, β̂1

0 0 27 195 1808 8
0 25 25 206 2148 24
0 50 22 193 2224 68
0 75 17 134 1749 135

I2= 25% 0 100 10 42 422 214
1 0 27 200 1837 8
1 25 30 192 1783 8
1 50 45 191 1700 8
1 75 74 182 1627 8
1 100 115 157 1385 10
0 0 51 344 2862 16
0 25 45 341 3357 35
0 50 43 303 3103 97
0 75 44 219 2353 204

I2= 58% 0 100 51 115 708 359
1 0 50 347 2927 15
1 25 50 317 2684 15
1 50 56 312 2529 13
1 75 73 284 2266 12
1 100 99 232 1841 11
0 0 116 616 3826 37
0 25 104 598 3952 63
0 50 94 525 3414 168
0 75 108 400 2466 385

I2= 85% 0 100 172 281 955 745
1 0 114 621 3819 36
1 25 101 552 3414 35
1 50 93 477 3088 41
1 75 88 421 2716 52
1 100 95 330 2111 65

PEESE, precision-effect estimate with standard error.
*Heterogeneity is measured by I2 =σh

2/(σh
2 +σε

2). Linear, Quadratic, Cubic, and PEESE refer to different estimates of
the intercept of the polynomial approximation to the conditional mean of a truncated distribution—Equation (5).
In all cases, weighted least squares is used.
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and random-effects meta-analysis suffer from nearly the same limitation, because they too are WLS
regression estimates (Raudenbush, 1994; Stanley and Doucouliagos, 2013). Although there is no generally
applicable lower limit for the sample size of a MA or a MRA, PEESE will require one more observation than
the conventional fixed-effects meta-analysis because it must estimate two parameters compared with fixed-
effect’s one.

In addition to the incidence of publication selection, the statistical properties of these alternative estimators
are most influenced by the relative magnitude of the unexplained heterogeneity relative to the sampling errors.
We use Higgins and Thompson’s (2002) I2 =σh

2/(σh
2 +σε

2) as the indicator of the size of the relative heterogeneity.
σh
2 is the between-study heterogeneity variance, and σε

2 is the within-study sampling variance. I2 is analogous to
R2 in regression analysis. It reflects the proportion of the total variation due to unexplained heterogeneity.
Simulations are conducted over a wide range of heterogeneity and publication selection and reported in
Tables 1–4 for n = 80, whereas the simulation results for n = 20 are reported in Tables 5–8. Although the exact
calculated value of I2 varies for each random sample, these tables state its population value when there is no
publication selection.

Table 1 reports the average of 10,000 replications for alternative polynomial approximations, Equation (5), and
Table 2 the associated MSE of these approximations. Recall that true effects (μ) are either 0 or 1. In all cases, the
estimated intercept,β1, is used as the corrected estimate in a WLS version of Equation (5). The first column of
simulation results reports the ‘linear’ approximation (i.e., K = 1) of Equation (5), which is equivalent to γ̂1 from
Equation (7). Next is the ‘quadratic’ approximation (i.e., K = 2), followed by the ‘cubic’ approximation (i.e., K = 3).
Lastly is our recommended PEESE estimator, which is the quadratic approximation that further constrains

Table 3. Means of alternative research summary estimators (n= 80).

Heterogeneity*
True
effect

Selection
incidence (%)

Simple
average FEE REE Top10

PEESE,
β̂1

PET-
PEESE

0 0 0.00 0.00 0.00 0.00 0.00 �0.01
0 25 0.23 0.20 0.22 0.13 0.13 0.04
0 50 0.47 0.39 0.43 0.28 0.25 0.07
0 75 0.70 0.59 0.63 0.41 0.36 0.08

I2= 25% 0 100 0.93 0.78 0.78 0.55 0.46 0.16
1 0 1.00 1.00 1.00 1.00 1.00 1.00
1 25 1.07 1.04 1.04 1.00 0.99 0.99
1 50 1.13 1.08 1.09 1.01 0.98 0.98
1 75 1.20 1.11 1.13 1.02 0.96 0.96
1 100 1.26 1.15 1.16 1.02 0.94 0.94
0 0 0.00 0.00 0.00 0.00 0.00 �0.01
0 25 0.27 0.23 0.25 0.14 0.15 0.03
0 50 0.54 0.45 0.51 0.30 0.29 0.09
0 75 0.81 0.68 0.75 0.47 0.44 0.16

I2= 58% 0 100 1.08 0.91 0.92 0.66 0.60 0.43
1 0 1.00 1.00 1.00 1.00 1.00 1.00
1 25 1.10 1.06 1.08 1.02 1.01 1.01
1 50 1.19 1.13 1.16 1.04 1.02 1.02
1 75 1.29 1.19 1.23 1.07 1.02 1.02
1 100 1.39 1.26 1.30 1.08 1.03 1.03
0 0 0.00 0.00 0.00 0.00 0.00 �0.02
0 25 0.36 0.29 0.34 0.18 0.18 0.02
0 50 0.72 0.58 0.68 0.38 0.38 0.10
0 75 1.09 0.88 1.02 0.62 0.61 0.26

I2= 85% 0 100 1.45 1.20 1.29 0.88 0.86 0.72
1 0 1.00 1.00 1.00 1.00 1.00 0.98
1 25 1.18 1.13 1.17 1.06 1.06 1.04
1 50 1.36 1.26 1.33 1.12 1.12 1.09
1 75 1.54 1.39 1.49 1.17 1.17 1.15
1 100 1.73 1.52 1.63 1.22 1.21 1.20

PEESE, precision-effect estimate with standard error; PET-PEESE, precision-effect test-precision-effect estimate
with standard error.
*Heterogeneity is measured by I2 =σh

2/(σh
2 +σε

2). FEE and REE denote the fixed-effects and random-effects
estimators, respectively. Top10 is the simple average of the most precise 10% of the observations. β̂1 is estimated
from Equation (9).
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α1 = 0. PEESE is the same as estimating β̂1 in Equation (9). With 10,000 replications, the results are stable. For

example, the average β̂1 varies only in the fourth decimal place, and its coefficient of variation is less than
0.06% when these 10,000 replications are repeated an additional 10 times.

Although the shape of bias (Table 1) is rather complex, a few clear patterns emerge, especially when one

considers both bias and efficiency as measured by MSE. First, PEESE (β̂1) has the smallest MSE in the great
majority (70%) of cases, often by a wide margin (Table 2), and it also has the smallest bias in a plurality of
simulations. However, PEESE is upwardly biased when the true effect is zero. Second, the PET coefficient,γ̂1,
dominates PEESE as expected when μ= 0. Recall that the linear approximation is correctly specified when
the true effect is zero. Nonetheless, in a few incidences, either the quadratic or the cubic approximation
has a smaller bias than γ̂1 . Like PEESE, it is easy to see that γ̂1 is upwardly biased when μ= 0. Perhaps, this
upward bias is a reflection of attenuation bias (or, equivalently, ‘errors-in-variables’ bias) that will result from
using a fallible estimate, SEi, in the place of σi. Third, the unconstrained quadratic and cubic approximations

are clearly inferior to either β̂1 or γ̂1 . Their MSEs are typically many times larger than these other
approximations. The few cases where they have a slightly smaller bias seem random and unpredictable unless
we were to know the exact incidence of publication selection. In practice, we have no way to know the
percent of estimates that have been selected.

The unreliability of the unconstrained quadratic and cubic approximations is likely caused by multicollinearity
among powers of SE. These powers of SE are highly correlated. For example, the variance inflation factor for the
unconstrained quadratic approximation using the data shown in Figure 1 is 6.5 and 166 for the cubic

Table 4. Mean square errors of alternative research summary estimators (times 1000 with n= 80).

Heterogeneity*
True
effect

Selection
incidence (%)

Simple
average FEE REE Top10

PEESE,
β̂1

PET-
PEESE

0 0 3 3 3 14 8 22
0 25 58 41 49 33 24 23
0 50 221 156 187 87 69 23
0 75 494 344 396 180 135 24

I2= 25% 0 100 875 603 603 310 214 73
1 0 3 3 3 14 8 8
1 25 7 4 5 13 8 8
1 50 20 8 10 13 8 8
1 75 41 15 18 13 8 8
1 100 71 25 28 13 10 10
0 0 6 6 5 27 16 42
0 25 78 55 69 49 35 42
0 50 295 207 260 115 97 45
0 75 658 464 560 243 203 65

I2= 58% 0 100 1168 829 839 447 358 255
1 0 6 6 5 27 15 16
1 25 15 9 11 26 15 16
1 50 42 22 29 25 13 14
1 75 88 42 58 25 12 13
1 100 152 70 93 26 11 11
0 0 16 14 14 64 36 96
0 25 145 94 129 97 63 96
0 50 535 344 477 206 170 95
0 75 1087 788 1041 422 388 159

I2= 85% 0 100 2100 1435 1672 792 743 619
1 0 16 15 12 63 36 59
1 25 46 30 39 59 35 58
1 50 144 80 120 63 41 64
1 75 305 162 245 71 52 72
1 100 534 273 406 82 64 74

PEESE, precision-effect estimate with standard error; PET-PEESE, precision-effect test-precision-effect estimate
with standard error.
*Heterogeneity is measured by I2 =σh

2/(σh
2 +σε

2). FEE and REE denote the fixed-effects and random-effects
estimators, respectively. Top10 is the simple average of the most precise 10% of the observations. β̂1 is estimated
from Equation (9).
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approximation. This multicollinearity-induced unreliability is clearly seen in the large MSEs of the cubic model
(Table 2). The MSEs of the cubic model get much worse still for n=20 (Table 6). Our constrained quadratic,
Equation (8), as well as the linear approximation, has no multicollinearity; hence, the resulting estimators are much
more efficient.

Several implications and suggestions can be drawn from the relative bias and efficiency of these alternative
approximations. First, both unconstrained polynomial approximations are distinctly inferior and can thereby be
eliminated from further consideration. Second, PEESE dominates the linear approximation, γ̂1 , when there is a
genuine nonzero effect. Third, the opposite is largely true when there is no genuine effect. This suggests that a
combined estimator may be better than either PEESE or γ̂1, by themselves. We propose that the PEESE estimator
be used only when there is evidence of a nonzero effect (reject H0: γ̂1 = 0) in Equation (7). When PET is not passed
(i.e., accept H0: γ1 = 0), γ̂1 should be used as the corrected estimate. We call this conditional estimator, ‘PET-PEESE,’
and its bias and MSE are reported in Tables 3 and 4 along with alternative conventional meta-analysis summary
estimates.

Tables 3 and 4 display the bias and efficiency of PEESE, the combined estimator, PET-PEESE, and several
conventional summary meta-estimates. The fixed-effects and random-effects estimators (FEE and REE) are
weighted averages of the reported effects, where the weights are the inverse of the estimates’ variances.
REE employs a more complex variance estimate that includes the between-study variance, σh

2 (Cooper
and Hedges, 1994). In our simulations, excess unexplained heterogeneity is always included; thus, by
conventional practice, REE should be preferred over FEE. However, conventional practice is wrong when
there is publication selection. With selection for statistical significance, REE is always more biased than
FEE (Table 3). This predictable inferiority is due to the fact that REE is itself a weighted average of the
simple mean, which has the largest publication bias, and FEE. Both weighted averages are less biased than

Table 5. Means of the intercept of polynomial approximations (n= 20).

Heterogeneity* True effect Selection incidence (%) Linear γ̂1 Quadratic Cubic PEESE, β̂1

0 0 0.00 0.01 �0.01 0.00
0 25 0.04 �0.09 0.01 0.13
0 50 0.06 �0.10 0.15 0.25
0 75 0.07 �0.08 0.19 0.36

I2= 25% 0 100 0.07 0.07 0.15 0.46
1 0 1.00 1.01 1.01 1.00
1 25 0.92 0.97 1.14 0.99
1 50 0.86 0.91 1.14 0.98
1 75 0.77 0.89 1.18 0.96
1 100 0.69 0.88 1.10 0.94
0 0 0.00 0.02 0.01 0.00
0 25 0.05 �0.06 0.02 0.15
0 50 0.09 �0.06 �0.13 0.30
0 75 0.14 0.04 �0.03 0.44

I2= 58% 0 100 0.20 0.19 0.09 0.59
1 0 1.00 1.00 1.08 1.00
1 25 0.94 0.93 1.03 1.01
1 50 0.88 0.87 0.98 1.02
1 75 0.82 0.87 0.95 1.03
1 100 0.74 0.86 0.79 1.03
0 0 0.00 0.01 0.04 0.00
0 25 0.02 0.03 �0.10 0.17
0 50 0.10 0.08 �0.11 0.38
0 75 0.23 0.20 �0.19 0.61

I2= 85% 0 100 0.39 0.36 0.07 0.86
1 0 1.00 0.98 0.96 1.00
1 25 0.98 0.99 0.90 1.07
1 50 0.93 0.92 0.82 1.12
1 75 0.91 0.88 0.63 1.19
1 100 0.82 0.84 0.42 1.22

PEESE, precision-effect estimate with standard error.
*Heterogeneity is measured by I2 =σh

2/(σh
2 +σε

2). Linear, Quadratic, Cubic, and PEESE refer to different estimates of
the intercept of the polynomial approximation to the conditional mean of a truncated distribution—Equation (5).
In all cases, weighted least squares is used.
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the simple mean because they give greater weight to the less selected and thereby less biased estimates,
which also tend to be the most precise (recall the discussion in Section 2).

The simple average is included in Table 3 and 4 to document how large the publication biases are, when
there is selective reporting of scientific results. The magnitude of this bias can be especially severe when
there is no genuine underlying empirical effect. Top10 is a more radical weighted average introduced by
Stanley et al. (2010) to emphasize the importance of publication bias for scientific inference. Top10 is the simple
average of the most precise 10% (smallest SEs) of the reported research results. That is, 90% of research results
are assigned a weight of 0, whereas the most precise 10% are given a weight of 1. Publication bias is such a
serious threat to the integrity of scientific inference that it is often better to just throw out 90% of the reported
research (Stanley et al., 2010). For all incidences of selection, Top10 has smaller bias than any of the conventional
summary statistics that use all the research results. Throwing away 90% of the research is more efficient in the
majority of cases (Table 4). Nonetheless, the meta-regression estimators derived here are clearly better than
the Top10 and the more conventional summary statistics.

We do not report the statistical properties for the widely used nonparametric ‘Trim & Fill’ correction strategy
(Duval and Tweedie, 2000), because previous simulations have shown that both PEESE and the PET coefficient,
γ̂1: ‘consistently outperformed the Trim & Fill estimators. . . . With respect to the popular Trim & Fill method, we
find it hard to recommend over the regression-based alternatives due to its potentially misleading adjustments
and poor coverage probabilities’ (Moreno et al., 2009a, p. 1 and 12).

For ease of comparison, we report the simulation results for PEESE (β̂1) in Tables 3 and 4 along with our new
hybrid estimator, PET-PEESE. First, notice how PEESE dominates all of the conventional summary estimators and
Top10. Table 4 shows very clearly that PEESE has smaller MSE when there is publication selection. Even when there
is no selection, PEESE has only slightly larger variance. Otherwise, there is little reason to use any of the better

Table 6. Mean square errors of polynomial approximations (times 1000 with n= 20).

Heterogeneity* True effect Selection incidence (%) Linear γ̂1 Quadratic Cubic PEESE, β̂1

0 0 105 910 12,805 31
0 25 93 960 15,507 45
0 50 76 837 15,772 84
0 75 55 629 13,268 143

I2= 25% 0 100 25 196 2889 217
1 0 105 960 12,749 32
1 25 108 909 12,117 31
1 50 114 861 11,916 29
1 75 138 778 10,694 28
1 100 177 677 9236 28
0 0 208 1705 21,298 64
0 25 182 1719 25,583 78
0 50 154 1506 24,863 133
0 75 126 1082 18,969 231

I2= 58% 0 100 89 452 5468 362
1 0 208 1690 21,122 64
1 25 196 1553 19,738 60
1 50 186 1432 19,300 55
1 75 182 1242 16,471 48
1 100 193 1015 13,080 41
0 0 482 3350 33,902 150
0 25 447 3429 37,066 167
0 50 377 3074 34,960 256
0 75 316 2190 24,800 454

I2= 85% 0 100 281 1033 8735 778
1 0 494 3416 34,339 153
1 25 418 3014 32,328 134
1 50 373 2553 28,468 131
1 75 320 2196 22,638 133
1 100 270 1645 17,405 124

PEESE, precision-effect estimate with standard error.
*Heterogeneity is measured by I2 =σh

2/(σh
2 +σε

2). Linear, Quadratic, Cubic, and PEESE refer to different estimates of
the intercept of the polynomial approximation to the conditional mean of a truncated distribution—Equation (5).
In all cases, weighted least squares is used.
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known summary statistics in a systematic review. Only Top10 has smaller bias in any of these simulation
combinations, and this occurs only in a small minority of cases.

Lastly, note that our conditional estimator (β̂1 when we reject H0: γ1 = 0 and γ̂1 when we fail to reject it)
improves upon both PEESE and the PET coefficient, γ̂1. PET-PEESE has a smaller MSE than γ̂1 in 70% of the
cases, and it has a smaller bias than PEESE in the majority of cases. On the other hand, PEESE has smaller bias
than PET-PEESE in only 17% of the cases (Table 3). If there is any selection for statistical significance, PET-
PEESE has equal or smaller bias, in some cases by several times. When there is no publication selection the
conditional estimator has a very small downward bias. Overall, however, PET-PEESE has the smallest average
bias among any of these estimators. When it comes to efficiency, the simulations are less favorable to PET-
PEESE. Nonetheless, it has equal or smaller MSE than PEESE in the majority of cases, and recall that PEESE
is more efficient than any of these other estimates in the great majority of cases (Table 4). Thus, our new
conditional estimator is the best choice whenever a research literature is suspected to contain publication
selection, and such a suspicion will be warranted for most empirical literatures across the social, medical,
and natural sciences.

These meta-regression methods do not perform quite as strongly when there are only 20 estimates available
(n=20)—see Tables 5–8. Nonetheless, they still have lower average bias and MSE than the conventional
alternatives. Even when there are only 20 estimates, PEESE has the lowest average MSE, and PET-PEESE has the
lowest average bias.

In spite of these favorable findings, we would be remiss if we did not recommend some caution. The
largest threat to these meta-regression methods of publication bias reduction occurs when there is no

Table 7. Means of alternative research summary estimators (n= 20).

Heterogeneity*
True
effect

Selection
incidence (%)

Simple
average FEE REE Top10

PEESE,
β̂1 PET-PEESE

0 0 0.00 0.00 0.00 0.00 0.00 �0.02
0 25 0.23 0.20 0.21 0.14 0.13 0.03
0 50 0.47 0.39 0.43 0.28 0.25 0.06
0 75% 0.70 0.59 0.63 0.41 0.36 0.07

I2= 25% 0 100 0.93 0.78 0.78 0.55 0.46 0.10
1 0 1.00 1.00 1.00 1.00 1.00 0.98
1 25 1.07 1.04 1.05 1.01 0.99 0.95
1 50 1.13 1.08 1.09 1.01 0.98 0.93
1 75 1.20 1.11 1.13 1.02 0.96 0.90
1 100 1.27 1.15 1.17 1.03 0.94 0.86
0 0 0.00 0.00 0.00 0.00 0.00 �0.03
0 25 0.27 0.23 0.26 0.15 0.15 0.03
0 50 0.54 0.45 0.51 0.31 0.30 0.09
0 75 0.81 0.68 0.75 0.48 0.44 0.15

I2= 58% 0 100 1.08 0.91 0.92 0.67 0.59 0.27
1 0 1.00 1.00 1.00 1.00 1.00 0.93
1 25 1.09 1.07 1.08 1.03 1.01 0.93
1 50 1.19 1.13 1.16 1.05 1.02 0.92
1 75 1.29 1.19 1.23 1.07 1.03 0.91
1 100 1.39 1.26 1.30 1.09 1.03 0.90
0 0 0.00 0.00 0.00 0.00 0.00 �0.04
0 25 0.36 0.28 0.34 0.19 0.17 0.00
0 50 0.72 0.58 0.68 0.39 0.38 0.10
0 75 1.09 0.89 1.02 0.64 0.61 0.23

I2= 85% 0 100 1.44 1.20 1.29 0.90 0.86 0.47
1 0 1.00 1.00 1.00 1.00 1.00 0.88
1 25 1.18 1.13 1.17 1.07 1.07 0.91
1 50 1.36 1.26 1.33 1.14 1.12 0.92
1 75 1.54 1.40 1.49 1.19 1.19 0.95
1 100 1.72 1.52 1.63 1.23 1.22 0.96

PEESE, precision-effect estimate with standard error; PET-PEESE, precision-effect test-precision-effect estimate
with standard error.
*Heterogeneity is measured by I2 =σh

2/(σh
2 +σε

2). FEE and REE denote the fixed-effects and random-effects
estimators, respectively. Top10 is the simple average of the most precise 10% of the observations. β̂1 is estimated
from Equation (9).
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genuine underlying empirical effect (i.e., μ= 0). In these cases, all estimators are biased if there is
selection for statistical significance. In the unlikely case that all studies are prepared to report only
significantly positive effects, very large biases are manufactured. However, even under such worse case
scenarios, PET-PEESE has a much smaller bias than the other alternatives, reducing the publication bias
seen in the simple mean by at least half and often much more. When there is evidence of publication
bias (reject H0: α1 = 0 in Equation (7)) but no evidence of an underlying empirical effect (accept H0:
γ1 = 0), caution might suggest that we offer no summary estimate of effect. Second, meta-regression
methods (and Top10) are unlikely to be reliable when there are only a few comparable research results
in a given area. In very small samples, FEE is likely to provide the best summary of a systematic review,
because it will be less biased than REE. However, FEE tends to give confidence intervals that are too
small, but this can be easily remedied through WLS (Stanley and Doucouliagos, 2013). Nonetheless, when
there are as few as 20 estimates, these meta-regression approximations still fare rather well relative to
alternative methods.

In sum, when there are sufficient reported estimates, we advocate that meta-analysts first run MRA (7). If

they find evidence of a genuine empirical effect (reject H0: γ1 = 0), then use β̂1 from MRA (9) as the corrected
estimate of effect. Otherwise, γ̂1 should be employed. Of course, MRA models (6) and (8) may be used in
place of Equations (7) and (9), respectively, when a WLS statistical routine is also employed. To be

conservative, one should always use either β̂1 or γ̂1 even if there is insufficient evidence of publication
selection (i.e., accept H0: α1 = 0 in Equation (7)) because the Egger test is known to have low power (Egger
et al., 1997; Stanley, 2008).

Table 8. Mean square errors of alternative estimators (times 1000 with n=20).

Heterogeneity*
True
effect

Selection
incidence (%)

Simple
average FEE REE Top10

PEESE,
β̂1

PET-
PEESE

0 0 13 11 11 56 31 89
0 25 65 47 55 83 44 86
0 50 228 161 191 135 84 74
0 75 497 347 397 214 144 57

I2= 25% 0 100 878 606 608 323 217 53
1 0 13 11 11 55 32 53
1 25 16 12 12 54 31 63
1 50 27 15 17 51 29 69
1 75 47 22 25 50 28 85
1 100 77 31 35 49 28 103
0 0 24 22 20 112 64 173
0 25 92 69 81 143 78 161
0 50 307 220 270 202 134 144
0 75 667 474 566 307 231 128

I2= 58% 0 100 1171 834 858 476 368 167
1 0 23 23 21 112 64 132
1 25 30 25 26 103 60 139
1 50 54 35 41 97 55 147
1 75 97 53 68 92 48 150
1 100 161 81 103 87 41 155
0 0 62 58 56 270 150 400
0 25 182 130 162 336 167 393
0 50 564 376 500 428 256 343
0 75 1211 819 1060 614 454 307

I2= 85% 0 100 2113 1461 1692 906 778 425
1 0 63 58 55 284 153 322
1 25 87 68 76 257 134 304
1 50 178 113 150 237 131 306
1 75 330 195 273 218 133 297
1 100 554 298 427 208 124 291

PEESE, precision-effect estimate with standard error; PET-PEESE, precision-effect test-precision-effect estimate
with standard error.
*Heterogeneity is measured by I2 =σh

2/(σh
2 +σε

2). FEE and REE denote the fixed-effects and random-effects
estimators, respectively. Top10 is the simple average of the most precise 10% of the observations. β̂1 is estimated
from Equation (9).
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4. Examples

In many areas of empirical science, correcting for publication bias will make an important practical difference
to our understanding. For example, the magnitude of the value of a statistical life (VSL) is a critical parameter
for many public health and safety initiatives. The VSL measures the trade-off between money and risk for very
small risks of death as revealed by the choices that workers and consumers are observed to make. These
statistical estimates may be derived from a regression of workers’ wages on the risk of a job-related fatality
along with other determinants of wages (Viscusi, 1993). A meta-analysis of 39 separate VSL estimates finds
the average VSL to be $9.5 million (Bellavance et al., 2009). Figure 3 plots these 39 estimates of VSL, measured
in millions of US dollars and corrected for inflation.

Column 1 of Table 9 reports the MRA findings for these VSL estimates using meta-regression models (6) and (8)
using (WLS) and 1=SE2i for the weights. The VSL is reduced by 82% when publication selection is considered;
PEESE = $1.67 million—see column 1 Table 9 and Doucouliagos et al. (2012). Needless to say, there is clear
evidence of publication bias (reject H0:α1 = 0; p< 0.01), and this is reflected by the highly skewed funnel graph
—Figure 3. Which researcher would be willing to report that the value of life is negative? Furthermore, there is
strong evidence that VSL is genuinely larger than zero (reject H0:γ1 = 0; p< 0.01); thus, PET-PEESE would also be
$1.67 million. Needless to say, reducing VSL by 82% greatly affects the number of health and safety projects
and regulations that are socially beneficial (or cost effective).

The adverse employment effect from a rise in the minimum wage is another important dimension for public
policy. Raising the minimum wage always engenders a public controversy that is often stated in terms of harm
to workers. When we apply these methods to 1474 elasticity estimates of the effect of minimum wage on
employment, a small adverse employment effect, �0.19, is reduced to one that is both statistically and practically
insignificant, �0.009—see column 2 of Table 9 (Doucouliagos and Stanley, 2009). These effects are measured in
terms of elasticity, which, in this case, measures the percent decrease in teen employment that results from a
1% increase in the minimum wage. Because we accept H0:γ1 = 0, γ̂1 =�0.009 is our preferred estimate. Our
corrected estimate of effect, �0.009, implies that a doubling of the minimum wage would cause a less than 1%
reduction of teen employment.
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Figure 3. Funnel plot of the estimated value of a statistical life (in millions of US dollars) with their precisions (1/SE) on the vertical axis.

Table 9. Corrected estimates and weighted least squares meta-regression.

Variable 1: Statistical life 2: Minimum wage 3: NRT patch 4: Antidepressants

α̂1 3.20 (6.67) �1.60(�17.36) 1.09 (2.38) 1.84 (5.47)
γ̂1 0.81 (3.56) �0.0009 (�1.09) 0.197 (2.00) 0.13 (2.50)
Simple mean $9.5mil �0.19 0.657 0.47
PEESE, β̂1 $1.67mil �0.036 0.314 0.29
n 39 1474 42 50

t-values are reported in parenthesis. α̂1 andγ̂1 are estimated from Equation (6), and β̂1 is estimated from
Equation (8).
NRT, nicotine replacement therapy; PEESE, precision-effect estimate with standard error.
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No doubt, some economists may be skeptical about such a large correction of minimum wage’s adverse
employment effect. However, we find that a negligible practical effect fromminimumwage is a very robust summary
of this extensive empirical literature. This employment effect remains practically insignificant whether one uses
PEESE=�0.036, Top10=�0.0217, or multiple MRA results that use dozens of moderator variables (Doucouliagos
and Stanley, 2009). In actual applications, the simple meta-regression models of publication selection bias advanced
here need to be embedded within more complex, multiple MRAs that also account for observed systematic
heterogeneity. Current space does not permit a detailed discussion of the conventional econometric practice of using
moderator variables in multiple meta-regression models to explain much of the observed variation among research
results. See Doucouliagos and Stanley (2009); Havranek (2010); Feld and Heckemeyer (2011), and Doucouliagos et al.
(2012) for examples. Conservatively, the modest average adverse employment effect found in the minimum-wage
literature is reduced by a factor of five when observed publication selection is accommodated.

Or, for a medical example with public health policy implications, consider Stead et al. (2008) systematic
review of all of the clinical trials of NRT for smoking cessation, 42 of which involve the ‘patch.’ Column 3 of
Table 9 reports the MRA findings for these clinical trials measured by log risk ratios and indicates
publication selection (reject H0:α1 = 0; p< 0.05). The average log risk ratio is 0.657, which implies that
smokers who use the ‘patch’ are 93% more likely to quit smoking. Because these clinical trials do not pass
the PET (i.e., accept H0: γ1 = 0; p> 0.05), the PET coefficient, γ̂1 = 0.197, is our preferred corrected estimate.
Such a correction reduces the efficacy of the patch to only 22%. The Table A1 provides this data on NRT
using the ‘patch’ along with the SPSS and STATA commands needed to reproduce our PET-PEESE results.

Lastly, we apply these meta-regression methods to the controversial issue of the efficacy of antidepressants.
Turner et al. (2008) collected data on all of the phase II and phase III trials of antidepressants registered at the
US Department of Food and Drug Administration (FDA) and those that were also published. To sell
pharmaceuticals in the USA, RCTs of their safety and efficacy must be reported to the FDA. Thus, the FDA registry
of clinical trials is considered the ‘gold standard.’ Of these 74 RCTs of antidepressants, only 50 are published in
journals (Turner et al., 2008). Furthermore, Moreno et al. (2009b) found that PEESE is the best method to correct
these 50 published RCT results for publication bias.

Figure 4 plots the funnel for the FDA gold standard using the data of Turner et al. (2008) with the effect size,
measured by Glass’s g, on the horizontal axis. In Figure 4, published trails are shown twice—first, as they were reported
to the FDA (‘diamond’) and second, as published (‘half-moon’). It is difficult to imagine a clearer depiction of selective
reporting.Many published trials report different effect sizes using alternativemeasures fromwhat are found in the FDA
registry for the same clinical trials. This is shown in Figure 4 for those ‘half-moons’ that are clear on their left sides. If the
same results were reported to the FDA as those published, then a diamond would show through the open left side of
that half-moon. Chan et al. (2004) found that published clinical trials often report different outcome measures than
those stated in their research protocols. Needless to say, the funnel-asymmetry test (FAT; H0:α1 = 0; Equation (6) finds
significant publication selection for positive effects (t=5.47; p< 0.01; column 4 of Table 9).

Fortunately, there is also evidence of a genuine positive clinical effect from taking antidepressants (t = 2.50;
p< 0.05). However, the modest average effect size of 0.47 is exaggerated by over 60% when compared with

PEESE = 0.29. PEESE-MRA model (8) is represented by the curve in Figure 4. Note how β̂1 is twice as large as
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γ̂1 here and also for our other example where PET is passed (column 1). Thus, using the appropriate
approximation can make an important practical difference. Our corrected meta-regression estimate for the effect
size of antidepressants is almost exactly equal to the weighted average, 0.31 (FEE and REE), of those 74 trials reported
to the FDA (Moreno et al., 2009b; Turner et al., 2008). Knowing that antidepressants have a smaller effect than what
published RCTs report might change clinical practice and thereby affect millions of patients.

Perhaps the biggest advantage of these meta-regression approximations for publication selection is that they
easily accommodate systematic heterogeneity, publication selection (or small-study) bias, and a differential
publication selection that is associated with other moderator variables. Nearly, all areas of empirical research
contain excess systematic heterogeneity. That is, empirical effects depend on the population being treated, the
severity of the subjects’ prior conditions, dosage, the exact treatment protocol, and so on. Among hundreds of
MRAs of economics research, none have found the absence of excess heterogeneity as measured by the
conventional Cochran’s Q-test (Cooper and Hedges, 1994). In all cases, meta-regression analysts have found that
the choice of variables, econometric model, and methods makes a large practical difference to reported research
results. Thus, statistically valid meta-analyses must also accommodate systematic heterogeneity. Other publication
correction strategies do not (Moreno et al., 2009a).

Explaining reported research variation can easily be accomplished by expanding any of our meta-regression
models of publication selection. For example, meta-regression model (8) becomes

effecti ¼ β1 þ ∑
k
δkZk þ α0SE2i þ ∑

j
αjK jSE

2
i þ εi: (10)

where Zk is a moderator variable that can help to explain genuine systematic variation among reported findings,
and Kj is a selection variable that is related to a greater or a lesser intensity to report statistically significant positive
findings. This model can address possible interaction of funnel plot asymmetry and moderator variables by
simultaneously fitting a meta-regression and a publication bias model.

5. Conclusion

Publication selection bias is a widely recognized threat to the validity of empirical scientific inquiry. This threat is
often so severe that a balanced assessment of the efficacy of medical treatments is difficult or impossible. This
threat remains even when there have been clear findings reported from the ‘gold standard’ of empirical
science—double-blind, placebo-controlled randomized clinical trials. In the social sciences where empirical
inquiry often uses observational data, this bias is routinely much worse still (Doucouliagos and Stanley, 2013).
Fortunately, there is a long history of statistical interest in this problem. Unfortunately, corrections for publication
selection bias have not been widely adopted, and their performance and reliability has been wanting.

In this paper, we derive meta-regression methods that are easy to apply, are likely to greatly reduce publication
selection bias inmost applications and offer a practical solution to this important threat tomodern science. As a side effect
of investigating the theoretical foundation for our meta-regression model of publication selection, we are able to explain
both the success and the bias of the Egger meta-regression model, which may be seen as a linear approximation to a
complex nonlinear function. Nonetheless, this linear approximation provides practical tests of both the existence of
selection and the presence of a genuine nonzero empirical effect beyond publication bias (Stanley, 2008).
Unfortunately, the linear approximation does not offer a suitable corrected estimate when there is nonzero ‘true’ effect.

For these cases, we demonstrate how a constrained quadratic approximation, PEESE, to the conditional
expected value of a truncated distribution is considerably less biased and often more efficient. Furthermore,
simulations demonstrate how a hybrid between these two approximations improves the correction for
publication selection bias yet further. Both approximations are very simple to apply, merely OLS of common
statistics (t-values, SEs, and precision) or, equivalently, WLS of reported effects, their SEs, and/or variances.

Needless to say, these methods have limitations. First, being based on regression analysis, they require more
than a few estimates on the same empirical phenomenon. Second, overwhelming unexplained heterogeneity
can invalidate the underlying meta-regression tests (i.e., the PET) (Stanley, 2008). However, when unexplained
heterogeneity is responsible for more than 90% of the observed variation among reported research results,
uncorrected publication biases will expand greatly. Thus, balanced scientific assessment does not have the luxury
to do nothing. Even in these extreme cases, the methods advanced here will remain a marked improvement over
conventional meta-analytic summary statistics.

Appendix

The purpose of this appendix is to supply the reader with a dataset and the statistical commands that will enable
the replication of the FAT-PET-PEESE results reported in this paper. Table A1 reports the 42 trials of NRT using the
‘patch’ as found in Stead et al. (2008). The findings reported in column 3 Table 9 can be obtained using SPSS by
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The SPSS PEESE results can be found by

These same findings will result in STATA using: ‘regress logRR SE [aweight = Precision_sq]’ or ‘regress t
Precision’ and ‘regress logRR Variance [aweight = Precision_sq]’ for PEESE.

Table A1. Randomized controlled trials of the ‘patch’ for nicotine replacement therapy

Study ID Log(RR) SE Precision t Variance Precision_sq

Hughes 1999 0.517974 0.173580 5.761032 2.984065 0.030130 33.189494
Paoletti 1996 1.321756 0.532291 1.878672 2.483145 0.283334 3.529407
Campbell 1996 0.379032 0.288775 3.462904 1.312551 0.083391 11.991702
Ehrsam 1991 1.252763 0.779194 1.283377 1.607768 0.607143 1.647058
Wong 1999 1.212758 0.530483 1.885075 2.286139 0.281412 3.553506
Otero 2006 0.467009 0.100209 9.979144 4.660350 0.010042 99.583307
Lewis 1998 0.530899 0.534102 1.872302 0.994003 0.285265 3.505513
CEASE 1999 0.355630 0.121645 8.220642 2.923507 0.014798 67.578955
Richmond 1994 0.721681 0.304625 3.282725 2.369080 0.092796 10.776281
TNSG 1991 0.591664 0.188984 5.291453 3.130762 0.035715 27.999477
Oncken 2007 0.123060 0.245511 4.073137 0.501240 0.060276 16.590447
Sonderskov 1997 0.418471 0.337193 2.965661 1.241043 0.113699 8.795143
Perng 1998 1.163151 0.616329 1.622510 1.887224 0.379861 2.632539
Westman 1993 2.104759 0.732925 1.364396 2.871725 0.537179 1.861577
Tonnesen 2000 1.551034 0.769624 1.299336 2.015314 0.592321 1.688273
ICRF 1994 0.362814 0.172201 5.807167 2.106922 0.029653 33.723191

Continues
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