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Because scientists tend to report only studies (publication bias) or analyses (p-hacking) that “work,”

readers must ask, “Are these effects true, or do they merely reflect selective reporting?” We introduce

p-curve as a way to answer this question. P-curve is the distribution of statistically significant p values

for a set of studies (ps � .05). Because only true effects are expected to generate right-skewed

p-curves—containing more low (.01s) than high (.04s) significant p values—only right-skewed p-curves

are diagnostic of evidential value. By telling us whether we can rule out selective reporting as the sole

explanation for a set of findings, p-curve offers a solution to the age-old inferential problems caused by

file-drawers of failed studies and analyses.
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Scientists tend to publish studies that “work” and to place in the

file-drawer those that do not (Rosenthal, 1979). As a result, pub-

lished evidence is unrepresentative of reality (Ioannidis, 2008;

Pashler & Harris, 2012). This is especially problematic when

researchers investigate nonexistent effects, as journals tend to

publish only the subset of evidence falsely supporting their exis-

tence. The publication of false-positives is destructive, leading

researchers, policy makers, and funding agencies down false ave-

nues, stifling and potentially reversing scientific progress. Scien-

tists have been grappling with the problem of publication bias for

at least 50 years (Sterling, 1959).

One popular intuition is that we should trust a result if it is

supported by many different studies. For example, John Ioannidis,

an expert on the perils of publication bias, has proposed that “when

a pattern is seen repeatedly in a field, the association is probably

real, even if its exact extent can be debated” (Ioannidis, 2008, p.

640). This intuition relies on the premise that false-positive find-

ings tend to require many failed attempts. For example, with a

significance level of .05 (our assumed threshold for statistical

significance throughout this article), a researcher studying a non-

existent effect will, on average, observe a false-positive only once

in 20 studies. Because a repeatedly obtained false-positive finding

would require implausibly large file-drawers of failed attempts, it

would seem that one could be confident that findings with multi-

study support are in fact true.

As seductive as this argument seems, its logic breaks down if

scientists exploit ambiguity in order to obtain statistically signifi-

cant results (Cole, 1957; Simmons, Nelson, & Simonsohn, 2011).

While collecting and analyzing data, researchers have many deci-

sions to make, including whether to collect more data, which

outliers to exclude, which measure(s) to analyze, which covariates

to use, and so on. If these decisions are not made in advance but

rather are made as the data are being analyzed, then researchers

may make them in ways that self-servingly increase their odds of

publishing (Kunda, 1990). Thus, rather than placing entire studies

in the file-drawer, researchers may file merely the subsets of

analyses that produce nonsignificant results. We refer to such

behavior as p-hacking.1

The practice of p-hacking upends assumptions about the number

of failed studies required to produce a false-positive finding. Even

seemingly conservative levels of p-hacking make it easy for re-

searchers to find statistically significant support for nonexistent

1 Trying multiple analyses to obtain statistical significance has received
many names, including bias (Ioannidis, 2005), significance chasing (Ioan-
nidis & Trikalinos, 2007), data snooping (White, 2000), fiddling (Bross,
1971), publication bias in situ (Phillips, 2004), and specification searching

(Gerber & Malhotra, 2008a). The lack of agreement in terminology may
stem from the imprecision of these terms; all of these could mean things
quite different from, or capture only a subset of, what the term “p-hacking”
encapsulates.
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effects. Indeed, p-hacking can allow researchers to get most studies

to reveal significant relationships between truly unrelated variables

(Simmons et al., 2011).

Thus, although researchers’ file-drawers may contain relatively

few failed and discarded whole studies, they may contain many

failed and discarded analyses. It follows that researchers can

repeatedly obtain evidence supporting a false hypothesis without

having an implausible number of failed studies; p-hacking, then,

invalidates “fail-safe” calculations often used as reassurance

against the file-drawer problem (Rosenthal, 1979).

The practices of p-hacking and the file-drawer problem mean

that a statistically significant finding may reflect selective report-

ing rather than a true effect. In this article, we introduce p-curve as

a way to distinguish between selective reporting and truth. P-curve

is the distribution of statistically significant p values for a set of

independent findings. Its shape is diagnostic of the evidential value

of that set of findings.2 We say that a set of significant findings

contains evidential value when we can rule out selective reporting

as the sole explanation of those findings.

As detailed below, only right-skewed p-curves, those with more

low (e.g., .01s) than high (e.g., .04s) significant p values, are

diagnostic of evidential value. P-curves that are not right-skewed

suggest that the set of findings lacks evidential value, and p-curves

that are left-skewed suggest the presence of intense p-hacking.

For inferences from p-curve to be valid, studies and p values

must be appropriately selected. As outlined in a later section of this

article, selected p values must be (a) associated with the hypothesis

of interest, (b) statistically independent from other selected p

values, and (c) distributed uniformly under the null.

Interpreting Evidential Value and Lack Thereof

The ability of p-curve to diagnose evidential value represents a

critical function: to help distinguish between sets of significant

findings that are likely versus unlikely to be the result of selective

reporting.

The inferences one ought to draw from a set of findings con-

taining evidential value are analogous to the inferences one ought

to draw from an individual finding being statistically significant.

For example, saying that an individual finding is not statistically

significant is not the same as saying that the theory that predicted

a significant finding is wrong. A researcher may fail to obtain

statistical significance even when testing a correct theory because

the manipulations were too weak, the measures were too noisy, the

samples were too small, or for other reasons. Similarly, when one

concludes from p-curve that a set of studies lacks evidential value,

one is not saying that the theories predicting supportive evidence

are wrong; p-curve assesses the reported data, not the theories they

are meant to be testing. Thus, both significance and evidential

value pertain to the specific operationalizations and samples used

in specific studies, not the general theories that those studies test.

Just as an individual finding may be statistically significant even

if the theory it tests is incorrect—because the study is flawed (e.g.,

due to confounds, demand effects, etc.)—a set of studies investi-

gating incorrect theories may nevertheless contain evidential value

precisely because that set of studies is flawed. Thus, just like

inferences from statistical significance are theoretically important

only when one is studying effects that are theoretically important,

inferences from p-curve are theoretically important only when one

p-curves a set of findings that are theoretically important.

Finally, just like statistical significance, evidential value does

not imply practical significance. One may conclude that a set of

studies contains evidential value even though the observed find-

ings are small enough to be negligible (Cohen, 1994), or useless

due to failures of internal or external validity (Campbell & Stanley,

1966).

The only objective of significance testing is to rule out chance

as a likely explanation for an observed effect. The only objective

of testing for evidential value is to rule out selective reporting as

a likely explanation for a set of statistically significant findings.

P-Curve’s Many Uses

Because many scientific decisions would be helped by knowing

whether a set of significant findings contains evidential value,

p-curve is likely to prove helpful in making many scientific deci-

sions. Readers may use p-curve to decide which articles or liter-

atures to read attentively, or as a way to assess which set of

contradictory findings is more likely to be correct. Researchers

may use p-curve to decide which literatures to build on or which

studies to attempt costly replications of. Reviewers may use

p-curve to decide whether to ask authors to attempt a direct

replication prior to accepting a manuscript for publication. Authors

may use p-curve to explain inconsistencies between their own

findings and previously published findings. Policy makers may use

p-curve to compare the evidential value of studies published under

different editorial policies. Indeed, p-curve will be useful to any-

one who finds it useful to know whether a given set of significant

findings is merely the result of selective reporting.3

P-Curve’s Shape

In this section, we provide an intuitive treatment of the relation-

ship between the evidential value of data and p-curve’s shape.

Supplemental Material 1 presents mathematical derivations based

on noncentral distributions of test statistics.

As illustrated below, one can infer whether a set of findings

contains evidential value by examining p value distributions. Be-

cause p values greater than .05 are often placed in the file-drawer

and hence unpublished, the published record does not allow one to

observe an unbiased sample of the full distribution of p values.

However, all p values below .05 are potentially publishable and

hence observable. This allows us to make unbiased inferences

from the distribution of p values that fall below .05, i.e., from

p-curve.

When a studied effect is nonexistent (i.e., the null hypothesis is

true), the expected distribution of p values of independent (con-

tinuous) tests is uniform, by definition. A p value indicates how

likely one is to observe an outcome at least as extreme as the one

observed if the studied effect were nonexistent. Thus, when an

effect is nonexistent, p � .05 will occur 5% of the time, p � .04

2 In an ongoing project, we also show how p-curve can be used for
effect-size estimation (Nelson, Simonsohn, & Simmons, 2013).

3 Because p-curve is solely derived from statistically significant find-
ings, it cannot be used to assess the validity of a set of nonsignificant
findings.
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will occur 4% of the time, and so on. It follows that .04 � p � .05

should occur 1% of the time, .03 � p � .04 should occur 1% of

the time, etc. When a studied effect is nonexistent, every p value

is equally likely to be observed, and p-curve will be uniform (see

Figure 1A).4

When a studied effect does exist (i.e., the null is false), the

expected distribution of p values of independent tests is right-

skewed, that is, more ps � .025 than .025 � ps � .05 (Cumming,

2008; Hung, O’Neill, Bauer, & Kohne, 1997; Lehman, 1986;

Wallis, 1942). To get an understanding of this, imagine a re-

searcher studying the effect of gender on height with a sample size

of 100,000. Because men are so reliably taller than women, the

researcher would be more likely to find strongly significant evi-

dence for this effect (p � .01) than to find weakly significant

evidence for this effect (.04 � p � .05). Investigations of smaller

effects with smaller samples are simply less extreme versions of

this scenario. Their expected p-curves will fall between this ex-

treme example and the uniform for a null effect and so will also be

right-skewed. Figures 1B–1D show that when an effect exists, no

matter whether it is large or small, p-curve is right-skewed.5

Like statistical power, p-curve’s shape is a function only of

effect size and sample size (see Supplemental Material 1). More-

over, as Figures 1B–1D show, expected p-curves become more

markedly right-skewed as true power increases. For example, they

show that studies truly powered at 46% (d � 0.6, n � 20) have

about six p � .01 for every .04 � p � .05, whereas studies truly

powered at 79% (d � 0.9, n � 20) have about 18 p � .01 for every

.04 � p � .05.6

If a researcher p-hacks, attempting additional analyses in order

to turn a nonsignificant result into a significant one, then p-curve’s

expected shape changes. When p-hacking, researchers are unlikely

to pursue the lowest possible p value; rather, we suspect that

p-hacking frequently stops upon obtaining significance. Accord-

ingly, a disproportionate share of p-hacked p values will be higher

rather than lower.7

For example, consider a researcher who p-hacks by analyzing

data after every five per-condition participants and ceases upon

obtaining significance. Figure 1E shows that when the null hy-

pothesis is true (d � 0), the expected p-curve is actually left-

skewed.8

Because investigating true effects does not guarantee a statisti-

cally significant result, researchers may p-hack to find statistically

significant evidence for true effects as well. This is especially

likely when researchers conduct underpowered studies, those with

a low probability of obtaining statistically significant evidence for

an effect that does in fact exist. In this case p-curve will combine

a right-skewed curve (from the true effect) with a left-skewed one

(from p-hacking). The shape of the resulting p-curve will depend

on how much power the study had (before p-hacking) and the

intensity of p-hacking.

A set of studies with sufficient-enough power and mild-enough

p-hacking will still tend to produce a right-skewed p-curve, while

a set of studies with low-enough power and intense-enough

p-hacking will tend to produce a left-skewed p-curve. Figures

1F–1H show the results of simulations demonstrating that the

simulated intensity of p-hacking produces a markedly right-

skewed curve for a set of studies that are appropriately powered

(79%), a moderately right-skewed curve for a set of studies that are

underpowered (45%), and a barely left-skewed curve for a set of

studies that are drastically underpowered (14%).

In sum, the reality of a set of effects being studied interacts with

researcher behavior to shape the expected p-curve in the following

way:

• Sets of studies investigating effects that exist are expected to

produce right-skewed p-curves.

• Sets of studies investigating effects that do not exist are

expected to produce uniform p-curves.

• Sets of studies that are intensely p-hacked are expected to

produce left-skewed p-curves.

Heterogeneity and p-Curve

Because p-curve is expected to be right-skewed for any nonzero

effect size, no matter how researchers choose their sample sizes,

all combinations of studies for which at least some effects exist are

expected to produce right-skewed p-curves. This is true regardless

of the degree of variability in sample sizes or effect sizes in the set.

Figure 2 reports expected p-curves for a set of 10 heterogeneous

studies: No matter whether sample size and effect size are nega-

tively correlated, positively correlated, or uncorrelated across stud-

ies, p-curve is expected to be right-skewed.

When a set of studies has a right-skewed p-curve, we infer that

the set has evidential value, which means that at least some studies

in the set have evidential value. Inference from p-curve is hence

once again analogous to inference about statistical significance for

a single finding. When the average of the dependent variable

significantly differs across conditions, it means that at least some

observations were influenced by the manipulation. A right-skewed

p-curve does not imply all studies have evidential value, just as a

significant difference across conditions does not imply that all

observations were influenced by the manipulation.

If a set of studies can be meaningfully partitioned into subsets,

it is the job of the individual who is p curving to determine if such

partitioning should be performed, in much the same way that it is

the job of the person analyzing experimental results to decide if

a given effect should be tested on all observations combined or

if a moderating factor is worth exploring. Heterogeneity, then,

poses a challenge of interpretation, not of statistical inference.

P-curve answers whether selective reporting can be ruled out as an

explanation for a set of significant findings; a person decides

which set of significant findings to submit to a p-curve test.

4 Figure 1 assumes normally distributed data. As shown in Supplemental
Material 2, p-curve’s expected shape is robust to other distributional
assumptions.

5 Wallis (1942, pp. 237–238) provides the most intuitive treatment we
have found for understanding right-skewed p-curves.

6 Discussions of statistical power typically involve arbitrary effect sizes
(Cohen, 1962, 1992) or those estimated—with publication bias—from a
given sample (Ioannidis & Trikalinos, 2007). Throughout this article, we
talk about true power, the likelihood of obtaining statistical significance
given the true magnitude of the effect size being studied.

7 Supplemental Material 3 provides a formal treatment of the impact of
p-hacking on p-curve.

8 As we show in Supplemental Material 3, the effect of p-hacking on
p-curve depends on one key parameter: the expected correlation between p

values of consecutive analyses. Thus, although our simulations focus only
on p-hacking via data peeking, these results generalize to other forms of
p-hacking.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

536 SIMONSOHN, NELSON, AND SIMMONS



Statistical Inference With p-Curve

This section describes how to assess if the observed shape of

p-curve is statistically significant. A web-based application that

conducts all necessary calculations is available at http://p-curve

.com; users need only input the set of statistical results for the

studies of interest, and all calculations are performed automati-

cally. Readers not interested in the statistical details of p-curve

may skip or skim this section.

Does a Set of Studies Contain Evidential Value?

Testing for Right-Skew

This section describes how to test if p-curve is significantly

right-skewed; all calculations are analogous for testing if p-curve

is significantly left-skewed. A simple method consists of dichot-

omizing p values as high (p � .025) versus low (p � .025) and

submitting the uniform null (50% high) to a binomial test. For

example, if five out of five findings were p � .025, p-curve would

be significantly right-skewed (p � .55
� .0325). This test has the

benefits of being simple and resistant to extreme p values (e.g., to

a study with p � .04999).

This test, however, ignores variation in p values within the high

and low bins and is hence inefficient. To account for this variation,

we propose a second method that treats p values as test statistics

themselves, and we focus on this method throughout. This method

has two steps. First, one computes, for each significant p value, the

probability of observing a significant p value at least as extreme if

the null were true. This is the p value of the p value, and so we

refer to it as the pp value. For continuous test statistics (e.g., t

tests), the pp value for the null of a uniform p-curve against a

right-skew alternative is simply pp � p/.05. For example, under

the null that p-curve is uniform there is a 20% chance that a

significant p value will be p � .01; thus, p � .01 corresponds to

a pp value of .2. Similarly, there is a 40% chance that p � .02, and

so p � .02 corresponds to a pp value of .40.

The second step is to aggregate the pp values, which we do

using Fisher’s method.9 This yields an overall �
2 test for skew,

with twice as many degrees of freedom as there are p values. For

example, imagine a set of three studies, with p values of .001, .002,

and .04, and thus pp values of .02, .04, and .8. Fisher’s method

generates an aggregate, �
2(6) � 14.71, p � .022, a significantly

right-skewed p-curve.10

Does a Set of Studies Lack Evidential Value?

Testing for Power of 33%

Logic underlying the test. What should one conclude when a

p-curve is not significantly right-skewed? In general, null findings

may result either from the precise estimate of a very small or

nonexistent effect or from the noisy estimate of an effect that may

be small or large. In p-curve’s case, a null finding (a p-curve that

is not significantly right-skewed) may indicate that the set of

studies lacks evidential value or that there is not enough informa-

tion (i.e., not enough p values) to make inferences about evidential

value.

In general, one can distinguish between these two alternative

accounts of a null finding by considering a different null hypoth-

esis: not that the effect is zero, but that it is very small instead (see

e.g., Cohen, 1988, pp. 16–17; Greenwald, 1975; Hodges & Leh-

mann, 1954; Serlin & Lapsley, 1985). Rejecting a very small effect

against the alternative of an even smaller one allows one to go

9 Fisher’s method capitalizes on the fact that �2 times the sum of the
natural log of each of k uniform distributions (i.e., p values under the null)
is distributed �2(2k).

10 The ln of .02, .04, and .8 are �3.91, �3.22, and �.22, respectively.
Their sum is �7.35, and thus the overall test becomes �2(6) � 14.71.

Figure 1. P-curves for different true effect sizes in the presence and absence of p-hacking. Graphs depict

expected p-curves for difference-of-means t tests for samples from populations with means differing by d

standard deviations. A–D: These graphs are products of the central and noncentral t distribution (see Supple-

mental Material 1). E–H: These graphs are products of 400,000 simulations of two samples with 20 normally

distributed observations. For 1E–1H, if the difference was not significant, five additional, independent obser-

vations were added to each sample, up to a maximum of 40 observations. Share of p � .05 indicates the share

of all studies producing a statistically significant effect using a two-tailed test for a directional prediction (hence

2.5% under the null).
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beyond merely saying that an effect is not significantly different

from zero; it allows one to conclude that an effect is not larger than

negligible.

When p-curve is not significantly right-skewed, we propose

testing whether it is flatter than one would expect if studies were

powered at 33%.11 Studies with such extremely low power fail 2

out of 3 times, and so, of course, do direct replications that use

identical sample sizes. If a set of studies has a p-curve that is

significantly flatter than even that produced by studies that are

powered at 33%, then we interpret the set of findings as lacking

evidential value. Essentially, we would be concluding that the

effects of interest, even if they exist, are too small for existing

samples and that researchers interested in the phenomenon would

need to conduct new studies with better powered samples to allow

for data with evidential value to start accumulating. If the null of

such a small effect is not rejected, then p-curve is inconclusive. In

this case, more p values are needed to determine whether or not the

studies contain evidential value.

Implementation of the test. Recall that expected p-curves

are, like statistical power, a function of only sample size and effect

size. Because of this, it is straightforward to test the null hypoth-

esis of a very small effect: The procedure is the same as for testing

right-skew, except that pp values are recomputed for the expected

p-curves given a power of 33% and the study’s sample size. (As

we detail in Supplemental Material 1, this is accomplished by

relying on noncentral distributions).

For example, we know that t tests with 38 degrees of freedom

and powered at 33% will result in 57.6% of significant p values

being greater than .0l, and so the pp value corresponding to p � .01

for a t(38) test would be pp � .576. Similarly, only 10.4% of

significant p values are expected to be greater than .04, and so the

pp value corresponding to p � .04 for this test would be pp �

.104.12

Consider three studies, each with 20 subjects per cell, producing

t tests with p values of .040, .045, and .049.13 For the right-skew

test, the pp values would be .8, .9, and .98, respectively, leading to

an overall �
2(6) � 0.97, p � .99; in this case, p-curve is far from

significantly right-skewed. We then proceed to testing the null of

a very small effect. Under the null of 33% power the pp values are

.104, .0502, and .0098, respectively, leading to an overall �
2(6) �

19.76, p � .003; in this case, we reject the null of a small effect

against the alternative of an even smaller one. Thus, we conclude

that this set of studies lacks evidential value; either the studied

effects do not exist or they are too small for us to rule out selective

reporting as an alternative explanation.

11 As is the case for all cutoffs proposed for statistical analyses (e.g.,
“p � .05 is significant,” “power of 80% is appropriate,” “d � .8 is a large
effect,” “a Bayes factor � 3 indicates anecdotal evidence”), the line we
draw at power of one-third is merely a suggestion. Readers may choose a
different cutoff point for their analyses. The principle that one may classify
data as lacking evidential value when the studies are too underpowered is
more important than exactly where we draw the line for concluding that
effects are “too underpowered.”

12 In this case, we are interested in whether the observed p values are too
high, so we compute pp values for observing a larger p value.

13 None of the analyses in this article require the sample sizes to be the
same across studies. We have made them the same only to simplify our
example.

Figure 2. Expected p-curves are right-skewed for sets of studies containing evidential value, no matter the

correlation between the studies’ effect sizes and sample sizes. Graphs depict expected p-curves for difference-

of-means t tests for 10 studies for which effect size (d) and sample size (n) are perfectly positively correlated

(A), perfectly negatively correlated (B), or uncorrelated (C). Per-condition sample sizes ranged from 10 to 100,

in increments of 10, and effect sizes ranged from .10 to 1.00, in increments of .10. For example, for the positive

correlation case (A), the smallest sample size (n � 10) had the smallest effect size (d � 0.10); for the negative

correlation case (B), the smallest sample size (n � 10) had the largest effect size (d � 1.00); and, for the

uncorrelated case (C), the effect sizes ranged from .10 to 1.00 while the sample sizes remained constant (n �

40). Expected p-curves for each of the sets of 10 studies were obtained from noncentral distributions (see

Supplemental Material 1) and then averaged across the 10 studies. For example, to generate 2A, we determined

that 22% of significant p values will be less than .01 when n � 10 and d � 0.10; 27% will be less than .01 when

n � 20 and d � 0.20; 36% will be less than .01 when n � 30 and d � 0.30; and so on. Figure 2A shows that

when one averages these percentages across the 10 possible combinations of effect sizes and sample sizes, 68%

of significant p values will be below .01. Similar calculations were performed to generate 2B and 2C.
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If, instead, the three p values had been .01, .01, and .02, then

p-curve would again not be significantly right-skewed, �
2(6) �

8.27, p � .22. However, in this case, we could not reject a very

small effect, �
2(6) � 4.16, p � .65. Our conclusion would be that

p-curve is too noisy to allow for inferences from those three p

values.

A Demonstration

We demonstrate the use of p-curve by analyzing two sets of

diverse findings published in the Journal of Personality and Social

Psychology (JPSP). We hypothesized that one set was likely to

have been p-hacked (and thus less likely to contain evidential

value) and that the other set was unlikely to have been. We used

p-curve to test these two hypotheses.

The first set consisted of experiments in which, despite partic-

ipants having been randomly assigned to conditions, the authors

reported results only with a covariate. To generate this set, we

searched JPSP’s archives for the words “experiment” and “cova-

riate,” and applied a set of predetermined selection rules until we

located 20 studies with significant p values (see Supplemental

Material 5). The decision to collect p values from 20 studies was

made in advance.

The second set consisted of 20 studies whose main text gave no

hints of p-hacking. To generate this set we searched JPSP’s

archives for experiments described without terms possibly associ-

ated with p-hacking (e.g., “excluded,” “covariate,” and “trans-

form”; see Supplemental Material 5).

It is worth emphasizing that there is nothing wrong with con-

trolling for a covariate, even in a study with random assignment. In

fact, there is plenty right with it. Covariates may reduce noise,

enhancing the statistical power to detect an effect. We were sus-

picious of experiments reporting an effect only with a covariate

because we suspect that many researchers make the decision to

include a covariate only when and if the simpler analysis without

such a covariate, the one they conduct first, is nonsignificant. So

while there is nothing wrong with analyzing data with (or without)

covariates, there is something wrong with analyzing it both ways

and reporting only the one that works (Simmons et al., 2011).

Some readers may not share our suspicions. Some readers may

believe the inclusion of covariates is typically decided in advance

and that such studies do contain evidential value. Ultimately, this

is an empirical question. If we are wrong, then p-curve should be

right-skewed for experiments reporting only a covariate. If we are

correct, then those studies should produce a p-curve that is uniform

or, in the case of intense p-hacking, left-skewed.

Consistent with our hypothesis, Figure 3A shows that p-curve

for the set of studies reporting results only with a covariate lacks

evidential value, rejecting the null of 33% power, �
2(40) � 82.5,

p � .0001. (It is also significantly left-skewed, �
2(40) � 58.2, p �

.031).14

Figure 3B, in contrast, shows that p-curve for the other studies

is significantly right-skewed, �
2(44) � 94.2, p � .0001, indicating

that these studies do contain evidential value.15 Nevertheless, it is

worth noting that (a) the observed p-curve closely resembles that

of 33% power, (b) there is an uptick in p-curve at .05, and (c) three

of the critical p values in this set were greater than .05 (and hence

excluded from p-curve).

Selecting Studies

Analyzing a set of findings with p-curve requires selecting (a)

the set of studies to include and (b) the subset of p values to extract

from them. We discuss p-value selection in the next section. Here

we propose four principles for study selection:

1. Create a rule. Rather than decide on a case-by-case basis

whether a study should be included, one should minimize

subjectivity by deciding on an inclusion rule in advance.

The rule ought to be specific enough that an independent

set of researchers could apply it and expect to arrive at

the same set of studies.

2. Disclose the selection rule. Articles reporting p-curve

analyses should disclose what the study selection rule

was and justify it.

3. Robustness to resolutions of ambiguity. When the imple-

mentation of the rule generated ambiguity as to whether

a given study should be included or not, results with and

without those studies should be reported. This will in-

form readers of the extent to which the conclusions hinge

on those ambiguous cases. For example if a p-curve is

being constructed to examine the evidential value of

studies of some manipulation on behavior, and it is

unclear whether the dependent variable in a particular

study does or does not qualify as behavior, the article

should report the results from p-curve with and without

that study.

4. Single-article p-curve? Replicate. One possible use of

p-curve is to assess the evidential value of a single article.

This type of analysis does not lend itself to a meaningful

inclusion rule. Given the risk of cherry-picking analyses

that are based on single articles—for example, a re-

searcher may decide to p-curve an article precisely be-

cause she or he has already observed that it has many

significant p values greater than .025—we recommend

that such analyses be accompanied by a properly pow-

ered direct replication of at least one of the studies in the

article. Direct replications would enhance the credibility

of results from p-curve and impose a marginal cost that

will reduce indiscriminate single-article p curving.

Peer-reviews of articles reporting p-curve analyses should ensure

that the principles we have outlined above are followed or devia-

tions from it be properly justified.

14 A reviewer provided an alternative explanation for a left-skewed
p-curve for this set of studies: Some researchers who obtain both a low
analysis of covariance and analysis of variance p value for their studies
choose to report the latter and hence exit our sample. We address this
concern via simulations in Supplemental Material 7, showing that this type
of selection cannot plausibly account for the results presented in Figure 3A.

15 There are 22 p values included in Figure 3B because two studies
involved reversing interactions, contributing two p values each to p-curve.
Both p-curves in Figure 3, then, are based on statistically significant p

values coming from 20 studies, our predetermined “sample size.”
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Selecting p Values

Most studies report multiple p values, but not all p values should

be included in p-curve. Included p values must meet three criteria:

(a) test the hypothesis of interest, (b) have a uniform distribution

under the null, and (c) be statistically independent of other p values

in p-curve.

Here, we propose a five-step process for selecting p values that

meet these criteria (see Table 1). We refer to the authors of the

original article as “researchers” and to those constructing p-curve

as “p-curvers.” It is essential for p-curvers to report how they

implemented these steps. This can be easily achieved by complet-

ing our proposed standardized “p-curve disclosure table.” Figure 4

consists of one such table; it reports a subset of the studies behind

the right-skewed p-curve from Figure 3B. P-curve disclosure table

makes p-curvers accountable for decisions involved in creating a

reported p-curve and facilitates discussion of such decisions. We

strongly urge journals publishing p-curve analyses to require the

inclusion of a p-curve disclosure table.

Step 1. Identify Researchers’ Stated Hypothesis and

Study Design (Columns 1 and 2)

As we discuss in detail in the next section, the researcher’s

stated hypothesis determines which p values can and cannot be

included in p-curve. P-curvers should report this first step by

quoting, from the original article, the stated hypothesis (column

1); p-curvers should then characterize the study’s design (col-

umn 2).

Step 2. Identify the Statistical Result Testing the

Stated Hypothesis (Column 3)

In Figure 5 we identify the statistical result associated with

testing the hypotheses of interest for the most common experimen-

tal designs (the next section provides a full explication of Figure

5). Step 2 involves using Figure 5 to identify and note the statis-

tical result of interest.

Figure 3. P-curves for Journal of Personality and Social Psychology (JPSP) studies suspected to have been

p-hacked (A) and not p-hacked (B). Graphs depict p-curves observed in two separate sets of 20 studies. The first

set (A) consists of 20 JPSP studies that only report statistical results from an experiment with random

assignment, controlling for a covariate; we suspected this indicated p-hacking. The second set (B) consists of 20

JPSP studies reported in articles whose full text does not include keywords that we suspected could indicate

p-hacking (e.g., exclude, covariate).

Table 1

Steps for Selecting p Values and Creating p-Curve Disclosure Table

Step Action Column

Step 1 Identify the researchers’ stated hypothesis and study design Columns 1 & 2
Step 2 Identify the statistical result testing the stated hypothesis (use Figure 5) Column 3
Step 3 Report the statistical results of interest Column 4
Step 4 Recompute the precise p value(s) based on reported test statistics Column 5
Step 5 Report robustness results Column 6
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Step 3. Report the Statistical Result(s)

of Interest (Column 4)

P-curvers should quote directly from the relevant paragraph(s),

or tables, in which results are reported.

Step 4. Recompute Precise p Values Based on

Reported Test Statistics (Column 5)

We recommend recomputing precise p values from reported test

statistics. For example, if an article reports “F(1, 76) � 4.12, p �

.05,” p-curvers should look up the p value associated with F �

4.12 for the F(1, 76) distribution. Recomputation is necessary

because p values are often reported merely as smaller than a

particular benchmark (e.g., p � .01) and because they are some-

times reported incorrectly (Bakker & Wicherts, 2011). The online

app available at http://p-curve.com does this automatically. The

recomputed p values should be reported in column 5 of the

disclosure table.

In some cases, authors do not report the results for the relevant

statistical test. A common case is when the stated hypothesis

involves the moderation of an effect but the authors report only

simple effects and not the test associated with the interaction

(Gelman & Stern, 2006; Nieuwenhuis, Forstmann, & Wagenmak-

ers, 2011). If the results of interest cannot be computed from other

information provided, then the p value of interest cannot be in-

cluded in p-curve. P-curvers should report this in column 5 (e.g.,

by writing “Not Reported”).

Step 5. Report Robustness p Values (Column 6)

Some experiments report results on two or more correlated

dependent variables (e.g., how much people like a product and

how much they are willing to pay for it). This will lead to multiple

p values associated with a given finding. Similarly, sometimes

researchers will report multiple analyses on the same measure

(e.g., differences in liking of the product across conditions tested

with both a t test and a nonparametric test). P-curvers should not

simultaneously include all of these p values because they must be

statistically independent for inference from p-curve to be valid.

Instead, p-curvers should use selection rules and report robustness

of the results to such rules. For example, report a p-curve for the

first p value that is reported across all studies, and another for the

last one that is reported.

Figure 5. Which p values to select from common study designs.
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P-curvers should document this last step by quoting, from the

original article, all statistical analyses that produced such p values

(in column 4) and report the additional p values (in column 6). See

the last row of our Figure 4.

P-Curving Findings That Do Not Test the

Researcher’s Stated Hypothesis

We envision that most applications of p-curve will involve

assessing the evidential value of the core findings put forward in a

set of studies, whatever those findings were. Examples include

assessing the evidential value of findings aggregated by article,

author, journal, or method of analysis. For instance, if a p-curver

were interested in assessing the evidential value of the Top 10

most cited empirical articles published in this journal, her statis-

tical results of interest would be those testing the stated hypotheses

in those articles, whatever those hypotheses might be.

Sometimes, however, p-curve will be used to aggregate studies

based on a finding, as in traditional meta-analytic applications, and

the finding of interest to the p-curver may not be the one directly

testing the stated hypothesis by the original researchers. Thus, it

may not correspond to that arising from looking up the study

design in Figure 5.

For example, a p-curver may be interested in meta-analyzing the

evidential value of gender differences in helping behavior but may

be obtaining p values from articles whose authors’ stated hypoth-

esis pertains to the effects of mood on helping behavior and who

just happened to also report the impact of gender. Similarly, a

p-curver may be interested in a simple two-cell comparison com-

prising a subset of a 2 � 2 � 2 design. When this occurs, a column

should be added to p-curve disclosure table, column 3.5, placed

between columns 3 and 4, identifying the finding to be p-curved.

In some of those cases, when the finding of interest to the

p-curver is not that identified by Figure 5, the result may not

validly be included in p-curve even if it is reported in the original

article. For example, if the p-curver is interested in the relationship

between two variables (e.g., gender and math performance) but the

researcher’s interest was to investigate a moderator of this rela-

tionship (e.g., showing that this relationship is weaker under some

condition), then the finding of interest to the p-curver (the simple

effect) cannot be included in p-curve because when researchers

investigate attenuated interactions, p values for simple effects are

not uniformly distributed under the null.

This is explained more fully in the next section; the important

lesson at this juncture is that when p-curvers are interested in

findings different from those testing the stated hypothesis, and thus

different from those indicated in Figure 5, they may not always be

able to validly include the study in p-curve.

Selecting p Values for Specific Study Designs

For simple designs, such as two- or three-cell designs, identi-

fying which p value is valid to select is simple (see Figure 5).

However, many psychological findings involve interactions. Inter-

actions occur when the impact of predictor X on dependent vari-

able Y is influenced by a third variable Z. For example, the impact

of winter versus summer (X) on sweating (Y) can be influenced by

whether the person is indoors versus outdoors (Z).

When the researcher’s stated hypothesis is that the interaction

attenuates the impact of X on Y (e.g., people always sweat more in

summer, but less so indoors), the relevant test is whether the

interaction is significant (Gelman & Stern, 2006), and hence

p-curve must include only the interaction’s p value. Even if the

p-curver is only interested in the simple effect (e.g., because she is

conducting a meta-analysis of this effect), that p value may not be

included in p-curve if it was reported as part of an attenuated

interaction design. Simple effects from a study examining the

attenuation of an effect should not be included in p-curve, as they

bias p-curve to conclude evidential value is present even when it is

not.16

When the researcher’s stated hypothesis is that the interaction

reverses the impact of X on Y (e.g., people sweat more outdoors

in the summer, but more indoors in the winter), the relevant test is

whether the two simple effects of X on Y are of opposite sign and

are significant, and so both simple effects’ p values ought to go

into p-curve. The interaction that is predicted to reverse the sign of

an effect should not be included in p-curve, as it biases p-curve to

conclude evidential value is present even when it is not.17

In some situations it may be of interest to assess the evidential

value of only one of the opposing simple effects for a predicted

reversal (e.g., if one is obvious and the other counterintuitive). As

long as a general rule is set for such selections and shared with

readers, subsets of simple effect p values may validly be selected

into p-curve as both are distributed uniform under the null.

Sometimes one may worry that the authors of a study modify

their “predictions” upon seeing the data (Kerr, 1998), such that an

interaction is reported as predicted to reverse sign only because

this is what occurred. Changing a hypothesis to fit the data is a

form of p-hacking. Thus, the rules outlined above still apply in

those circumstances, as we can rely on p-curve to assess if this or

any other form of p-hacking have undermined the evidential value

of the data. Similarly, if a study predicts an attenuated effect, but

the interaction happens to reverse it, the p value associated with

testing the hypothesis of interest is still the interaction. Keep in

mind that a fully attenuated effect (d � 0) will be estimated as

negative approximately half the time.

For more complicated designs, for example a 2 � 3, one can

easily extend the logic above. For example, consider a 2 � 3

design where the relationship between an ordinal, three-level vari-

able (i.e., with levels low, medium, and high) is predicted to

reverse with the interaction (e.g., people who practice more for a

task in the summer perform better, but people who practice more

in the winter perform worse; see Figure 5). Because here an effect

is predicted to reverse, p-curve ought to include both “simple”

16 When a researcher investigates the attenuation of an effect, the inter-
action term will tend to have a larger p value than the simple effect
(because the latter is tested against a null of 0 with no noise, and the former
is tested against another parameter estimated with noise). Because publi-
cation incentivizes the interaction to be significant, p values for the simple
effect will usually have to be much smaller than .05 in order for the study
to be published. This means that, for the simple effect, even p values below
.05 will be censored from the published record and, thus, not uniformly
distributed under the null.

17 Similar logic to the previous footnote applies to studies examining
reversals. One can usually not publish a reversing interaction without
getting both simple effects to be significant (and, by definition, opposite).
This means that the reversing interaction p value will necessarily be much
smaller than .05 (and thus some significant reversing interactions will be
censored from the published record) and thus not uniformly distributed
under the null.
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effects, which in this case would be both linear trends. If the

prediction were that in winter the effect is merely attenuated rather

than reversed, p-curve would then include the p value of the

attenuated effect: the interaction of both trends.

Similarly, if a 2 � 2 � 2 design tests the prediction that a

two-way interaction is itself attenuated, then the p value for the

three-way interaction ought to be selected. If it tests the prediction

that a two-way interaction is reversed, then the p values of

both two-way interactions ought to be selected.

How Often Does p-Curve Get It Wrong?

We have proposed using p-curve as a tool for assessing if a set

of statistically significant findings contains evidential value. Now

we consider how often p-curve gets these judgments right and

wrong. The answers depend on (a) the number of studies being

p-curved, (b) their statistical power, and (c) the intensity of

p-hacking. Figure 6 reports results for various combinations of

these factors for studies with a sample size of n � 20 per cell.

First, let us consider p-curve’s power to detect evidential value:

How often does p-curve correctly conclude that a set of real findings

in fact contains evidential value (i.e., that the test for right-skew is

significant)? Figure 6A shows that with just five p values, p-curve has

more power than the individual studies on which it is based. With 20

p values, it is virtually guaranteed to detect evidential value, even

when the set of studies is powered at just 50%.

Figure 6B considers the opposite question: How often does

p-curve incorrectly conclude that a set of real findings lack evi-

dential value (i.e., that p-curve is significantly less right-skewed

than when studies are powered at 33%)? With a significance

threshold of .05, then by definition this probability is 5% when the

original studies were powered at 33% (because when the null is

true, there is a 5% chance of obtaining p � .05). If the studies are

more properly powered, this rate drops accordingly. Figure 6B

shows that with as few as 10 p values, p-curve almost never falsely

concludes that a set of properly powered studies—a set of studies

powered at about 80%—lacks evidential value.

Figure 6C considers p-curve’s power to detect lack of evi-

dential value: How often does p-curve correctly conclude that a

set of false-positive findings lack evidential value (i.e., that the

test for 33% power is significant)? The first set of bars show

that, in the absence of p-hacking, 62% of p-curves based on 20

false-positive findings will conclude the data lack evidential

value. This probability rises sharply as the intensity of

p-hacking increases.

Finally, Figure 6D considers the opposite question: How often

does p-curve falsely conclude that a set of false-positive findings

contain evidential value (i.e., that the test for right-skew is signif-

icant)? By definition, the false-positive rate is 5% when the orig-

inal studies do not contain any p-hacking. This probability drops as

the frequency or intensity of p-hacking increases. It is virtually

Figure 6. This figure shows how often p-curve correctly and incorrectly diagnoses evidential value. The bars

indicate how often p-curve would lead one to conclude that a set of findings contains evidential value (a

significant right-skew; A & D) or does not contain evidential value (powered significantly below 33%; B & C).

Results are based on 100,000 simulated p-curves. For A and B, the simulated p-curves are derived from p-values

drawn at random from noncentral distributions. For C and D, p-curves are derived from collecting p values from

simulations of p-hacked studies. The p-hacking is simulated the same way as in Figure 1.
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impossible for p-curve to erroneously conclude that 20 intensely

p-hacked studies of a nonexistent effect contain evidential value.

In sum, when analyzing even moderately powered studies, p-curve

is highly powered to detect evidential value; and when a nonexistent

effect is even moderately p-hacked, it is highly powered to detect lack

of evidential value. The “false-positive” rates, in turn, are often lower

than nominally reported by the statistical tests because of the conser-

vative nature of the assumptions underlying them.

Cherry-Picking p-Curves

All tools can be used for harm and p-curve is no exception. For

example, a researcher could cherry-pick high p value studies by

area, journal, or set of researchers, and then use the resulting

p-curve to unjustifiably argue that those data lack evidential value.

Similarly, a researcher could run p-curve on article after article, or

literature after literature, and then report the results of the signif-

icantly left-skewed p-curves without properly disclosing how the

set of p values was arrived at. This is not just a hypothetical

concern, as tests for publication bias have been misused in just this

manner (for the discussion of one such case see Simonsohn, 2012,

2013). How concerned should we be about the misuse of p-curve?

How can we prevent it? We address these questions below.

How concerned should we be with cherry-picking? Not too

much. As was shown in Figure 6, p-curve is unlikely to lead one

to falsely conclude that data lack evidential value, even when a set

of studies is just moderately powered. For example, a p-curve of

20 studies powered at just 50% has less than a 1% chance of

concluding the data lack evidential value (rejecting the 33% power

test). This low false-positive rate already suggests it would be

difficult to be a successful cherry-picker of p-curves.

We performed some simulations to consider the impact of

cherry picking more explicitly. We considered a stylized world in

which articles have four studies (i.e., p values), the cherry-picker

targets 10 articles, and he or she chooses to report p-curve on the

worst five of the 10 articles. The cherry-picker, in other words,

ignores the most convincing five articles and writes her critique on

the least convincing five. What will the cherry-picker find?

The results of 100,000 simulations of this situation showed that

if studies in the targeted set were powered at 50%, the cherry-

picker would almost never conclude that p-curve is left-skewed,

only 11% of the time conclude that it lacks evidential value

(rejecting 33% power), and 54% of the time correctly conclude

that it contains evidential value. The remaining 35% of p-curves

would be inconclusive. If the studies in that literature were prop-

erly powered at 80%, then just about all (�99.7%) of the cherry-

picked p-curves are expected to correctly conclude that the data

have evidential value.

How to prevent cherry-picking? Disclosure. In the Selecting

Studies and p values sections, we provided guidelines for disclosing

such selection. As we have argued elsewhere, disclosure of ambiguity

in data collection and analysis can dramatically reduce the impact of

such ambiguity on false-positives (Simmons et al., 2011; Simmons,

Nelson, & Simonsohn, 2012). This applies as much to disclosing how

sample size was determined for a particular experiment and what

happens if one does not control for a covariate, as it does for describ-

ing how one determined which articles belonged in a literature and

what happens if certain arbitrary decisions are reversed. If journals

publishing p-curve analyses require authors to report their rules for

study selection and their p-curve disclosure tables, it becomes much

more difficult to misuse p-curve.

P-Curve Versus Other Methods

In examining p-value distributions for a set of statistically

significant findings, p-curve is related to previous work that has

examined the distribution of p values (or their corresponding t or

Z scores) reported across large numbers of articles (Card &

Krueger, 1995; Gadbury & Allison, 2012; Gerber & Malhotra,

2008a, 2008b; Masicampo & Lalande, 2012; Ridley, Kolm, Freck-

elton, & Gage, 2007). Because these articles (a) include p values

arising from all reported tests (not just those associated with the

finding of interest), and/or (b) focus on discrete differences around

cutoff points (instead of differences between overall observed and

expected distributions under a null), they do not share p-curve’s

key contribution: the ability to assess if a set of statistically

significant findings contains evidential value.

Three main approaches exist for addressing selective reporting.

The most common uses “funnel plots,” concluding that publication

bias is present if reported effect sizes correlate with sample sizes

(Duval & Tweedie, 2000; Egger, Smith, Schneider, & Minder,

1997). A second approach is the “fail-safe” method. It assesses the

number of unpublished studies that would need to exist to make an

overall effect size statistically (Rosenthal, 1979) or practically

(Orwin, 1983) nonsignificant. A third and more recent approach is

the “excessive-significance test.” It assesses whether the share of

significant findings is higher than that implied by the statistical

power of the underlying studies (Ioannidis & Trikalinos, 2007).

All three of these approaches suffer from important limitations

that p-curve does not suffer from. First, when true effect sizes

differ across studies, as they inevitably do, the funnel plot and the

excessive significance approaches risk falsely concluding publica-

tion bias is present when in fact it is not (Lau, Ioannidis, Terrin,

Schmid, & Olkin, 2006; Peters, Sutton, Jones, Abrams, & Rushton,

2007; Tang & Liu, 2000). Second, whereas p-curve assesses the

consequences of publication bias, neither the fail-safe method nor

the excessive-significance test do so. The funnel plot’s fill-and-

trim procedure does, but it is only valid if publication bias is

affected only by effect size, not by statistical significance (Duval

& Tweedie, 2000), even though in many disciplines, including

psychology, publication bias operates primarily through statistical

significance rather than effect size (Fanelli, 2012; Sterling, 1959;

Sterling, Rosenbaum, & Weinkam, 1995). Third, as we mentioned

in the introduction, p-hacking invalidates the reassurances pro-

vided by the fail-safe method. With enough p-hacking, a large set

of false-positives can be achieved with file-drawers free of failed

studies. In short, only p-curve provides an answer to the question,

“Does this set of statistically significant findings contain evidential

value?”

Limitations

Two main limitations of p-curve, in its current form, are that it

does not yet technically apply to studies analyzed using discrete

test statistics (e.g., difference of proportions tests) and is less likely

to conclude data have evidential value when a covariate correlates

with the independent variable of interest (e.g., in the absence of

random assignment).
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Formally extending p-curve to discrete tests (e.g., contingency

tables) imposes a number of technical complications that we are

attempting to address in ongoing work, but simulations suggest

that the performance of p-curve on difference of proportions tests

treated as if they were continuous (i.e., ignoring the problem) leads

to tolerable results (see Supplemental Material 4).

Extending p-curve to studies with covariates correlated with the

independent variable requires accounting for the effect of col-

linearity on standard errors and hence p values. One could use

p-curve as a conservative measure of evidential value in nonex-

perimental settings (p-curve is biased flat).

Another limitation is that p-curve will too often fail to detect

studies that lack evidential value. First, because p-curve is mark-

edly right-skewed when an effect is real but only mildly left-

skewed when a finding is p-hacked, if a set of findings combine (a

few) true effects with (several) nonexistent ones, p-curve will

usually not detect the latter. Something similar occurs if studies are

confounded. For example, findings showing that egg consumption

has health benefits may produce a markedly right-skewed p-curve

if those assigned to consume eggs were also asked to exercise

more. In addition, p-curve does not include any p values above .05,

even those quite close to significance (e.g., p � .051). This

excludes p values that would be extremely infrequent in the

presence of a true effect, and therefore diagnostic of a nonexistent

effect.

Why Focus on p Values?

Significance testing has a long list of weaknesses and a longer

list of opponents. Why propose a new methodology based on an

old-fashioned and often-ridiculed statistic? We care about p values

because researchers care about p values. Our goal is to partial out

the distorting effect of researcher behavior on scientific evidence

seeking to obtain .05; because that behavior is motivated by p

values, we can use p values to undo it. If the threshold for

publication was based on posterior-distributions, some researchers

would engage in posterior-hacking, and one would need to devise

a posterior-curve to correct for it.

It is worth noting that while Bayesian statistics are not generally

influenced by data peeking (ending data collection upon obtaining

a desired result), they are influenced by other forms of p-hacking.

In particular, Bayesian inference also exaggerates the evidential

value of results obtained with undisclosed exclusions of measures,

participants, or conditions or by cherry-picked model assumptions

and specifications. Switching from frequentist to Bayesian statis-

tics has some potential benefits, but eliminating the impact of the

self-serving resolution of ambiguity in data collection and analysis

is not one of them.

Conclusions

Selective reporting of studies and analyses is, in our view, an

inevitable reality, one that challenges the value of the scientific

enterprise. In this article, we have proposed a simple technique to

bypass some of its more serious consequences on hypothesis

testing. We show that by examining the distribution of significant

p values, p-curve, one can assess whether selective reporting can

be rejected as the sole explanation for a set of significant findings.

P-curve has high power to detect evidential value even when

individual studies are underpowered. Erroneous inference from

p-curve is unlikely, even when it is misused to analyze a cherry-

picked set of studies. It can be applied to diverse sets of findings

to answer questions for which no existing technique is available.

While p-curve may not lead to a reduction of selective reporting,

at present it does seem to provide the most flexible, powerful, and

useful tool for taking into account the impact of selective reporting

on hypothesis testing.
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