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Publication bias threatens the validity of meta-analytic results and leads to overestimation of the effect
size in traditional meta-analysis. This particularly applies to meta-analyses that feature small studies,
which are ubiquitous in psychology. Here we develop a new method for meta-analysis that deals with
publication bias. This method, p-uniform, enables (a) testing of publication bias, (b) effect size
estimation, and (c) testing of the null-hypothesis of no effect. No current method for meta-analysis
possesses all 3 qualities. Application of p-uniform is straightforward because no additional data on
missing studies are needed and no sophisticated assumptions or choices need to be made before applying
it. Simulations show that p-uniform generally outperforms the trim-and-fill method and the test of excess
significance (TES; Ioannidis & Trikalinos, 2007b) if publication bias exists and population effect size is
homogenous or heterogeneity is slight. For illustration, p-uniform and other publication bias analyses are
applied to the meta-analysis of McCall and Carriger (1993) examining the association between infants’
habituation to a stimulus and their later cognitive ability (IQ). We conclude that p-uniform is a valuable
technique for examining publication bias and estimating population effects in fixed-effect meta-analyses,
and as sensitivity analysis to draw inferences about publication bias.
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When more studies are conducted on a particular topic the need
to synthesize the results of these studies grows. Meta-analysis has
become a standard method to synthesize results; it is the statistical
synthesis of the data from separate but similar, that is, comparable
studies, leading to a quantitative summary of the pooled results
(Last, 2001). In meta-analysis, one effect size measure (e.g., Co-
hen’s d) is commonly extracted from each study together with
study characteristics. These data are used to estimate a common
underlying effect, and sometimes the effect and its heterogeneity
are modeled as a function of the studies’ characteristics. Applications
of meta-analysis are numerous and their number continuous to grow.
For instance, according to a search in PsycINFO (using the string
AB “meta-analysis”), the number of peer-reviewed articles con-
cerning meta-analysis went up from 67 in 1985 (0.2% of the total
number of articles) to 1,265 in 2012 (0.9% of the articles; cf.
Kisamore & Brannick, 2008). The number of citations of meta-
analyses grows as well (Aytug, Rothstein, Zhou, & Kern, 2012).

These trends suggest that meta-analysis is or is becoming an
influential methodological tool in psychology and related fields.1

One of the greatest threats to the validity of meta-analytic results
is publication bias (Banks, Kepes, & Banks, 2012; Rothstein,
Sutton, & Borenstein, 2005). We narrowly define publication bias
here as “the selective publication of studies with a statistically
significant outcome;” that is, the overrepresentation in the litera-
ture of studies with a significant outcome compared to studies with
so-called null results. The evidence of publication bias is over-
whelming (e.g., van Assen, van Aert, Nuijten, & Wicherts, 2014).
For instance, Fritz, Scherndl, and Küberger (2013) examined 1,000
randomly drawn psychological studies in 2007 and observed three
times as many outcomes just reaching significance than outcomes
just failing significance. Furthermore, in psychology about 95% of
published articles contain statistically significant outcomes, and
this percentage has been increasing over the years (Fanelli, 2012).
Neither the high percentage nor its increase can be explained by
the studies’ statistical power since power is generally low (Ellis,
2010) and there is no evidence that it has grown over the years
(Fanelli, 2012). Explanations of publication bias include research-
ers’ reluctance to submit studies with nonsignificant results (Coo-
per, DeNeve, & Charlton, 1997; Coursol & Wagner, 1986), and

1 Aguinis et al. (2011) conclude that meta-analysis is one of the most
influential methodological tools in management and related fields after
observing that meta-analyses were cited three times as much as other
empirical articles from 1963 to 2007 in the Academy of Management
Journal, one of the most influential management journals.
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lower appraisal of these studies by reviewers (Coursol & Wagner,
1986; Mahoney, 1977) and editors (Coursol & Wagner, 1986).
We continue our introduction on publication bias by first briefly

considering three harmful consequences of publication bias. Then
we relate how often publication bias is addressed in meta-analytic
studies. Thereafter, we describe different goals and problems of
current publication bias methods, and end with the goals and an
overview of our study.
Three harmful consequences of publication bias are that re-

searchers may exploit degrees of freedom (df) in the analysis of
data (Simmons, Nelson, & Simonsohn, 2011), uncertainty of the
existence of a true effect underlying a published statistically sig-
nificant effect, and more generally, overestimation of the popula-
tion effect (e.g., Asendorpf et al., 2013). Researcher df, or re-
searchers’ behavior directed at obtaining statistically significant
results (Simonsohn, Nelson, & Simmons, 2013), which is also
known as p-hacking or questionable research practices in the
context of null hypothesis significance testing (e.g., O’Boyle,
Banks, & Gonzalez-Mulé, 2014), results in a higher frequency of
studies with false positives (Simmons et al., 2011) and inflates
genuine effects (Bakker et al., 2012). Additionally, even in the
absence of researcher df, systematic investigations demonstrate
that publication bias leads to overestimation of effects, which can
be dramatic if sample sizes are small (Bakker, van Dijk, & Wich-
erts, 2012; Francis, 2012; Gerber, Green, & Nickerson, 2001;
Kraemer, Gardner, Brooks, & Yesavage, 1998). Consider extreme
publication bias, that is, only statistically significant effects are
published, and a population effect that is of medium or small size.
A study’s published effect size is then hardly informative of the
underlying population effect and merely reflects sample size
(Francis, 2012; Gerber et al., 2001; Kraemer et al., 1998). More-
over, a replication of a small study will generally obtain a smaller
effect than the original study. For example, Gerber, Green, and
Nickerson (2001, p. 388) show that in two-group studies with a
total sample size of 50, the probability is about .95 that the
observed effect in the replication study is smaller than in the
original study. This property may at least partly explain why many
replication studies fail to confirm results of original studies (Be-
gley & Ellis, 2012; Prinz, Schlange, & Asadullah, 2011; Sarewitz,
2012). Obviously, if individual published studies obtain biased
effect size estimates, meta-analyses mainly using these individual
studies will yield biased estimates as well, and may falsely give the
impression of a consistent research finding (Francis, 2012).
Because of the harmful consequences of publication bias it will

not come as a surprise that meta-analysis experts note that publi-
cation bias analyses should be included in meta-analytic studies
(e.g., Aytug et al., 2012; Banks, Kepes, & McDaniel, 2012; Field
& Gillett, 2010; Sterne, Gavaghan, & Egger, 2000; Sutton, 2006).
However, publication bias is unfortunately often not adequately
addressed in meta-analytic studies. For example, reviews showed
that publication bias was assessed in less than 10% of meta-
analytic studies in industrial organization psychology studies (Sut-
ton, 2006), less than 10% in management sciences (Aguinis, Dal-
ton, Bosco, Pierce, & Dalton, 2011), 18% in organizational
sciences (Aytug et al., 2012), 56% in education research (Banks,
Kepes, & Banks, 2012), 31% in management and industrial/orga-
nizational psychology (Banks, Kepes, & McDaniel, 2012), 70% in
journals published by the American Psychological Association and
the Association for Psychological Science (Ferguson & Brannick,

2012), and 33% in judgment and decision-making research (Ren-
kewitz, Fuchs, & Fiedler, 2011). To conclude, the failure to ad-
dress publication bias is omnipresent, although there is consider-
able variation across disciplines.
Many tests of publication bias have been developed over the

years. Most of these tests address the question whether any pub-
lication bias exists. A problem of latter tests lies in their limited
power to detect publication bias, particularly if the number of
studies in the meta-analysis is low (Borenstein, Hedges, Higgins,
& Rothstein, 2009; Sterne & Egger, 2006). Because of limited
power, one may falsely conclude that no publication bias exists in
a meta-analysis, while the population effect size is still overesti-
mated. Hence, rather than tests of publication bias, more interest-
ing questions would be how much bias there is, and to what degree
it affects the conclusions drawn from meta-analyses (Borenstein et
al., 2009, p. 284). Preferably, publication bias methods should
yield an accurate estimate of the population effect size after taking
publication bias into account. Only a few methods analyzing
publication bias generate such estimates, but the general consensus
is that these methods should be considered as sensitivity analyses
rather than yielding accurate estimates (Duval, 2005; Duval &
Tweedie, 2000b). In the present article we develop a new fixed-
effect meta-analysis method that should, unlike existing methods,
yield an accurate estimate of the population effect size, even when
publication bias is extreme. More specifically, the proposed
method allows for (a) testing of publication bias, (b) estimating
effect size, and (c) testing of the null-hypothesis of no effect. No
current meta-analysis method possesses all three qualities.
We continue with an overview of methods analyzing publication

bias. The overview is short for two reasons. First, other sources
already present similar overviews (e.g., Banks, Kepes, & Banks,
2012; Kepes, Banks, & Oh, 2012; Rothstein et al., 2005). And
second, we examine the performance of methods in a challenging
meta-analytic context in which only two of these methods, the
trim-and-fill method (Duval & Tweedie, 2000a, 2000b) and the
test for excess significance (TES; Ioannidis & Trikalinos, 2007b),
can be applied. Next, we explain our own method. Subsequently,
we present the results of a simulation study to examine the per-
formance of the new method to test publication bias, estimate
population effect size, and test the null-hypothesis of no effect. We
compare the performance of the new method with the performance
of traditional fixed-effect meta-analyses, the trim-and-fill method,
and TES, and apply all methods to a meta-analysis on the relation
between infant habituation performance and later IQ (McCall &
Carriger, 1993).

Methods for Assessing Publication Bias
We briefly discuss the following methods for assessing publi-

cation bias, along with their most important properties: failsafe N
(Rosenthal, 1979), funnel plot (Light & Pillemer, 1984), Begg and
Mazumdar’s (1994) rank correlation test, Egger’s test (Egger,
Davey Smith, Schneider, & Minder, 1997), the trim-and-fill
method (Duval & Tweedie, 2000b), the TES, and selection models
(Hedges and Vevea, 2005). The oldest and most popular (e.g.,
Banks, Kepes, & McDaniel, 2012; Ferguson & Brannick, 2012)
method is failsafe N (Rosenthal, 1979), which provides the number
of studies needed to render a statistically significant effect of a
meta-analysis insignificant. Because of its problematic assump-
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tions and typically overly optimistic results, experts recommend
abandoning failsafe N (e.g., Becker, 2005).
The funnel plot (Light & Pillemer, 1984) typically displays

studies’ effect sizes on the x-axis and their standard error or their
precision (the inverse of a study’s standard error) on the y-axis
(Sterne & Egger, 2001). Figure 1 shows the (contour-enhanced)
funnel plot of the meta-analysis of McCall and Carriger (1993; cf.
Bakker et al., 2012). Funnel plot asymmetry, with a lower fre-
quency of studies in the lower center of the plot corresponding to
studies with a small and statistically insignificant effect size and a
small sample size, is interpreted as an indication of publication
bias. Hence, the funnel plot in Figure 1 indicates that publication
bias may have affected the results. However, funnel plots can also
be asymmetric for other reasons (Sterne, Becker, & Egger, 2005).
To overcome this interpretation problem, Peters, Sutton, Jones,
Abrams, and Rushton (2008) developed the contour-enhanced
funnel plot, which explicitly links the presence of studies in the
funnel plot to their statistical (in)significance. The contour-
enhanced funnel plot in Figure 1 suggests publication bias, because
the asymmetry of the plot is linked to the statistical significance of
the studies. Nonetheless, funnel plot methods are subjective, and
many errors are made when identifying publication bias using the
funnel plot (Terrin, Schmid, Lau, & Olkin, 2003). Even experi-
enced meta-analysts only correctly identified 52.5% of the cases in
which a funnel plot was or was not affected by publication bias
(Terrin, Schmid, & Lau, 2005). Two methods, Begg and Mazum-
dar’s (1994) rank correlation and Egger’s regression method (Eg-
ger et al., 1997; Sterne & Egger, 2006), formally test funnel plot
asymmetry. Both methods test the association between studies’
effect size and corresponding standard error, where a significant
(typically positive) association signals publication bias. Because
these methods have low statistical power (e.g., Borenstein et al.,
2009, p. 291; Sterne & Egger, 2006), both tests are usually applied
using a significance level of .10. Due to their low power, their

application is only recommended for meta-analyses based on at
least 10 (Banks, Kepes, & Banks, 2012; Sterne & Egger, 2006) or
even 15 effect sizes (Kepes et al., 2012). Rothstein and Bushman
(2012) also argued that the results of both tests are not meaningful
if between-study heterogeneity in effect size is substantial. Finally,
a clear limitation of both methods is that they can only be applied
if there is reasonable variation in studies’ sample size, with pref-
erably at least a few samples with medium or large sample sizes
(Borenstein et al., 2009, p. 284).
The trim-and-fill method developed by Duval and Tweedie

(2000a, 2000b) is another method for assessing publication bias on
the basis of the funnel plot. It entails an iterative procedure that
fills in missing studies that are needed to restore funnel plot
symmetry, and provides an estimate of both the number of such
missing studies and the effect size. Duval and Tweedie (2000a,
2000b) developed three estimators (R0, L0, Q0) for the number of
missing studies. Estimators R0 and L0 perform better than Q0, and
L0 is more robust than R0 against the occurrence of a few aberrant
studies (Duval & Tweedie, 2000a, 2000b). L0 is also used in most
applications of the trim-and-fill method. Stated advantages of the
trim-and-fill method are that it is relatively simple and provides an
estimate of the effect size corrected for publication bias. However,
the consensus is that the method should not be regarded as a way
of yielding a more “valid” estimate of the overall effect size, but
rather as a sensitivity analysis (Duval, 2005; Duval & Tweedie,
2000b; Viechtbauer, 2010). Results on the performance of the
trim-and-fill method are mixed; some suggest the method is quite
powerful and yields close to unbiased effect size estimates (Duval
& Tweedie, 2000b), whereas others suggest it has low power to
test the null-hypothesis of no effect (Ferguson & Brannick, 2012).
Agreement exists, however, that the method should not be used
when population effect sizes are heterogeneous, because then it is
likely to add nonexisting studies (Rothstein & Bushman, 2012;
Terrin et al., 2003).
Ioannidis and Trikalinos (2007b) developed a test for publica-

tion bias based on a comparison between the observed (O) and
expected (E) number of statistically significant studies in a meta-
analysis. The expected number E is calculated as the sum of the
studies’ observed power, based on the effect size as estimated in
the meta-analysis: E ! !i!1

K "1 " #i#. The test for excess signif-
icance (TES) for publication bias is the common !2-test, with
degrees of freedom equal to 1:

(O"E)2

E
$
(O"E)2

K"E
.

If the p value of the test statistic is significant at .10, the test is
interpreted as a signal of publication bias for a given meta-
analysis. However, Francis (2012, 2013) showed that a statistically
significant test outcome may also be the result of researcher df
such as data peeking. Any process (publication bias or researcher
df) leading to an abundance of statistically significant studies may
be picked up by the TES. The TES has low power when only a
limited number of studies is included in a meta-analysis (Francis,
2012, 2013; Ioannidis & Trikalinos, 2007a), and has particularly
low power when population effects are heterogenous (Francis,
2013). Ioannidis and Trikalinos (2007b) also recommend not using
the test if between-study heterogeneity exists, but to first create
homogenous subgroups of effect sizes before applying the test.

Figure 1. Contour-enhanced funnel plot of the meta-analysis of McCall
and Carriger (1993). Areas represent studies with two-tailed p-values larger
than .10 (white), smaller than .05 (light gray), smaller than .01 (dark gray),
and smaller than .001 (light gray outside large triangle).
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Finally, the TES neither provides an answer to the question
whether the population effect differs from zero, nor does it provide
a (corrected) estimate of the effect.
In selection models, the probability of observing an effect de-

pends on its value. Several versions of selection models exist
(Hedges & Vevea, 2005; Terrin et al., 2003). Some versions
estimate both the meta-analytic effect and the so-called weight
function representing the probabilities of observing an effect as a
function of their value. These versions are quite technical and have
typically been effective only with meta-analyses containing rela-
tively large numbers of studies (more than 100; Field & Gillett,
2010). The requirement of at least 100 studies severely limits the
usefulness of selection models to estimate effect size in actual
meta-analyses. However, other versions have been developed that
do not estimate the weight function but allow the user to specify
the weight function in advance (Vevea & Woods, 2005). Hedges
and Vevea (2005) argued that these a priori specified selection
models provide a means for sensitivity analyses. Terrin et al.
(2003) examined the performance of a selection model with a step
weight function with one cutpoint at p " .05 in meta-analyses of
either 10 or 25 studies. Estimation failed to converge most of the
time when the population effect size was homogenous or when it
was heterogeneous with 10 studies. Convergence was better (58%–
98%) for heterogeneous effect sizes with 25 studies, and the
selection model outperformed the trim-and-fill method. When
studies’ population effects are heterogeneous, Hedges and Vevea
(2005) recommend selection models as sensitivity analysis, be-
cause more simple methods such as the trim-and-fill method and
the TES provide misleading results in that case. However, Boren-
stein, Hedges, Higgins, and Rothstein (2009, p. 281) concluded
that “selection models have rarely been used in actual research
because they are difficult to implement and also because they
require the user to make some relatively sophisticated assumptions
and choices.” Although it should be noted that R routines are
available (e.g., Vevea & Woods, 2005), it is unlikely that selection
models will be used routinely in meta-analysis (Hedges & Vevea,
2005).

The p-Uniform Method
p-uniform is a new method for conducting meta-analyses that

allows for testing publication bias and estimating a fixed effect
size under publication bias, or that can be used as a sensitivity
analysis to address and examine publication bias in meta-analyses.
The method only considers studies with a statistically significant
effect, and hence discards those with an insignificant effect.
Hedges (1984) also suggested a method to estimate effect size
using only statistically significant studies, based on maximum
likelihood. And currently Simonsohn, Nelson, and Simmons
(2014) are also working on a method to estimate effect size only
using statistically significant studies.
p-uniform makes two assumptions. First, like in other methods,

the population effect size is taken to be fixed rather than hetero-
geneous. Although the assumption of a fixed effect will not be
tenable for all psychological meta-analyses, Klein et al.’s (2014)
“Many Labs Replication Project” provides evidence that it holds
for lab studies on many psychological phenomena; 36 scientific
groups in 12 different countries directly replicated 16 effects, with
no evidence of a heterogeneous effect size in eight of 16 effects

(50%). Heterogeneity may be more common in observational
studies. Second, p-uniform assumes that all studies with statisti-
cally significant findings are equally likely to be published and
included in the meta-analysis The second assumption is formalized
as f(pi) " C for pi % #, indicating that there is no association
between an effect size’s significant p value and the probability that
the study containing this p value will get published. p-uniform
does not make assumptions about the magnitude of the publication
probability (the value of C), or the probability that statistically
insignificant studies get published (f(pi) for pi $ #). An example
of a violation of the second assumption is if highly significant
findings, for example, in combination with a large sample size,
have a higher probability of getting published and being included
in the meta-analysis. A violation will probably have minor conse-
quences on the performance of p-uniform, because most statisti-
cally significant findings will get published. In principle,
p-uniform allows # to be specific for a study or researcher, which
is relevant if studies or researchers vary in their chosen
significance-level (e.g., some use .01 whereas others use .05) or in
the direction of the test (one-tailed and two-tailed tests correspond
to one-tailed significance-levels of # and #/2, respectively).
The basic idea of p-uniform is that the distribution of p values

conditional on the population effect size is uniform. This assump-
tion is equivalent to the assumption underlying standard null
hypothesis testing, with the important distinction that we now
focus on the (conditional) p% value distribution, which is the p
value distribution under the alternative hypothesis that the popu-
lation effect size equals %. p-uniform’s effect size estimate will
equal the effect size % yielding a p% value distribution that is fitted
best by a uniform distribution. p-uniform’s test of the hypothesis of
no effect is based on the deviation of the p0 value distribution from
the uniform distribution, where the p0 value distribution corre-
sponds to the distribution of original p values (i.e., corresponding
to p values of the test of no effect, or % " 0). p-uniform’s test of
publication bias is based on the deviation of the p&̂ value distri-
bution from the uniform distribution, where &̂ equals the effect
size estimate of traditional fixed-effect meta-analysis.
We will explain effect size estimation and the two tests using an

artificial example. The example is based on testing the hypothesis
of no effect (% " 0) against the alternative of a positive effect (% $
0) with # " .05. However, p-uniform can estimate and test any
effect size measure. In the example, 80 studies with sample size 25
are generated using a fixed-effect model with % " .33 and & " 1,
where all statistically significant studies and 25% of insignificant
studies are published. If each study tests the hypothesis of no effect
(% " 0) against the alternative of a positive effect (% $ 0) with
# " .05, then each study has a power of .5. Figure 2a shows the
distribution of transformed p values (p0 value distribution, or the
distribution of p values ' 1/#) of the K " 40 statistically signif-
icant studies of one simulation of the traditional example. Tradi-
tional fixed-effect meta-analysis carried out on all 50 published
studies using the Metafor package (Viechtbauer, 2010) yields a
biased effect size estimate of 0.43 (SE " .063, p ( .001).
Test of ! " 0. If % " 0 then the p0 value distribution in

Figure 2a should be close to the uniform distribution. Hence,
p-uniform tests the hypothesis % " 0 by testing whether the
observed p0 value distribution deviates from the uniform distribu-
tion. Fisher’s (1932) method has been used before to test devia-
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tions from the uniform distribution. Notably, independently of us,
Simonsohn, Nelson, and Simmons (2013) have applied exactly the
same test of % " 0 as we did. The first step of Fisher’s method is
to convert each p value into numbers in the interval from 0 to 1 by
computing the conditional probability of the p value given its
significance (# " .05). The probability that a p value is statistically
significant is .05 if % " 0, hence all p values are multiplied by 20
in the first step. Applying Fisher’s (1932) method, if % " 0 then
the test statistic L0 ! " !i!1

K ln"20pi# is gamma distributed with
K and 1 degrees of freedom, here denoted by )(K, 1). If the
studies’ p values are generally small, as in Figure 2a, L0 will be
high. p-uniform rejects % " 0 whenever the value of L0 is larger
than the 95th percentile of the gamma distribution, denoted by
).95(K, 1). In the example with K " 40, ).95(40, 1) " 50.94. The
null-hypothesis is rejected since L0 " 82.26 (p ( .001); the
population effect is larger than zero.
Test of publication bias. The test for publication bias by

p-uniform amounts to a one-tailed test of the null-hypothesis % "
&̂, that is, whether the population effect size equals the effect size
estimate of a traditional fixed-effect meta-analysis. The basic idea
is that the null-hypothesis is rejected if the p&̂ value distribution
deviates from the uniform distribution. The p&̂ value distribution is
a conditional distribution. More generally, we will assume a test of
% " %! for defining this conditional distribution. The definition
uses the sampling distributions of effect size Mi

&* of all studies i,
assuming %i " %!. The conditional p value distribution pi

&* is then
defined as:

pi
&* !

p"Mi
&* ' &̂i#

p"Mi
&* 'Mi

CV#
.

Mi
CV denotes the critical value of Mi

&* for which p"Mi
0 '

Mi
CV# ! (, and &̂i denotes the estimated effect size in study i. The

probabilities in the numerator and denominator are calculated
under the assumption that Mi

&* is normally distributed. In words,
pi

&* represents the probability of observing effect &̂i or larger,
conditional on both a population effect %! and a significant p value
(when tested against the null hypothesis of no effect). It is impor-
tant to note that in each study i can be based on a different sample
size Ni, and that pi

&*’s dependence on %! is stronger for larger Ni.
Figure 2b depicts the distribution of pi

&̂, that is, the p&̂ value
distribution. The distribution is not uniform but skewed to the left

with many high p values, suggesting publication bias. The hypoth-
esis of no publication bias is rejected if L&̂ ( ).05(40, 1) " 30.2,
with L&̂ ! " !i!1

K ln"pi
&̂#. Applying Fisher’s test to the distribu-

tion of pi
&̂ yields L&̂ " 28.11 (p " .020), indeed suggesting

publication bias; the population effect is smaller than its value
estimated by the traditional fixed-effect meta-analysis.
Interval and point estimation of !. The 100(1 * #)% con-

fidence interval &̂L
* % & % &̂U

* is obtained by L&̂L
*

" )1–0.5#(K, 1)
and L&̂U

*
" )0.5#(K, 1). That is, each border of the interval is a

value of & for which the null-hypothesis is only just accepted in a
two-tailed test at significance level #. The probability that the
null-hypothesis is rejected that effect size equals & is exactly .05,
because (only) for & is the p value distribution exactly uniform.
Consequently, this proofs that the interval estimate of p-uniform is
unbiased: 95% of all confidence intervals (CI) contain &, or the
coverage probability of p-uniform is exactly .95.
The borders of the confidence interval are easily obtained,

because L&̂* decreases monotonically in &̂*.2 The confidence in-
terval in the example is 0.21 % & % 0.43. p-uniform’s point
estimate &̂* equals the effect size yielding a p&̂*value distribution
that is fitted best by a uniform distribution. The point estimate is
defined as the value of &̂* for which L% equals K, which is the
expected value of )(K, 1). In the example, &̂* " .32. Figure 2c
depicts the distribution of pi

0.32. Note that 0.32 closely corresponds
to % " .33 used to generate the studies in this hypothetical
example.
Alternative estimators in p-uniform: 1 # p. The basic idea

of p-uniform is that the p value distribution conditional on the
population effect size is uniform. However, the distribution of
some transformation of p values are then also uniform. For in-
stance, if p is uniformly distributed, then so is 1 * p. Conse-
quently, we can also (a) test % " 0, (b) test publication bias, and
(c) estimate &̂*, using 1 * pi

&* rather than pi
&*. The two estimators

are differently sensitive to outliers, that is, studies with extreme

2 p-uniform’s point estimates and the bounds of its confidence interval
are obtained by the R CRAN function uniroot. The input of uniroot is a
function and an interval. It searches for a value in the interval for which the
function equals zero. The functions were L&̂L

*
" )1"0.5a"K, 1#, L&̂* " K,

L&̂U
*

" )0.5a"K, 1# for lower bound, point estimate, and upper bound of the
confidence interval, respectively. The interval was [*1, 1] in all cases.

Figure 2. p-value distribution for (a) % " 0, (b) % " %…, and (c) % " %…! as a function of the transformed
significant p-values on the x-axis and its frequency on the y-axis.
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effect size estimates, where the estimator based on pi
&* is very

much affected by outliers, whereas the other is not. A very large effect
size will yield a small pi

&*, hence a large—ln(pi
&*), resulting in a large

positive effect of that effect size on estimate &̂*. However, one very
large effect size hardly affects &̂* whenever the estimator based on
1 * pi

&* is used, because then—ln(1 * pi
&*) approaches 0. To con-

clude, we expect the estimator based on 1* pi
&* to be more robust to

outliers and a violation of the homogeneity assumption than the
estimator based on pi

&*. Properties of both estimators are examined in
this study.
Characteristics of p-uniform. p-uniform allows for testing

the null-hypothesis of no effect, testing publication bias, and
estimating point and interval effect sizes. Other methods do not
meet these three goals simultaneously. The trim-and-fill method
also estimates effect size after imputing some studies that may
have been missing, but statistical properties (e.g., bias) of that
trim-and-fill estimate remain unclear. Because p-uniform is de-
rived from solid statistical theory, p-uniform yields unbiased in-
terval estimation (i.e., coverage probability equal to 1 * #) if its
assumptions are met.
One assumption of p-uniform is that no questionable research

practices were used in the studies, or, as Simonshon et al. (2013)
put it, “p-hacking” did not occur. p-hacking will typically result in
p values just below .05 (Simonsohn et al., 2013). Because p values
close to .05 provide evidence for a low or even negative population
effect size in p-uniform, p-hacking will in general result in an
underestimation of the population effect size whenever p-uniform
is applied. We consider this conservatism to be a positive quality
of p-uniform; it will give estimates on the safe side, rather than
traditional meta-analysis methods that overestimate population
effect size because of p-hacking.
Another important assumption of p-uniform is that the popula-

tion effect size is fixed. Our simulation study of p-uniform in-
cludes a test on the robustness of p-uniform to a violation of the
homogeneity assumption. We expected that both point and interval
estimation of the effect size would no longer be accurate in the
case of between-study heterogeneity, and that estimation would be
more biased whenever estimation is based on pi

&* rather than 1 * pi
&*.

Note, however, that the performance of other methods assessing
publication bias is also negatively affected by between-study het-
erogeneity (Moreno et al., 2009; Peters et al., 2007; Terrin et al.,
2003). Moreover, it is often possible to select homogeneous sub-
sets of studies on the basis of methodological or substantive
characteristics, and apply p-uniform to these subsets. This is also
the recommended approach for the other methods for assessing
publication bias whenever there is heterogeneity (e.g., Ioannidis &
Trikalinos, 2007b; Kepes et al., 2012).
A final assumption of p-uniform is that there is no association

between the probability of statistically significant studies being in
the meta-analysis and their p value. This is a weaker assumption
than the (typically untenable) assumption underlying traditional
meta-analysis, namely that all studies, statistically significant or
not, have an equal chance to be included in the meta-analysis.
Selection models either make a stronger assumption than
p-uniform on this function for the whole range of p values, or
estimate the probability of a study to be selected in the meta-
analysis as a function of its p value. Estimation of particularly this

function is problematic in selection models, requiring a very large
number of studies (100 or more), and often leading to convergence
problems (Terrin et al., 2003) and biased (Hedges & Vevea, 1996)
or unrealistic functions (Hedges & Vevea, 2005).
A disadvantage of p-uniform seems that it discards all informa-

tion from statistically insignificant studies. If there is no publica-
tion bias, using information from all studies will certainly yield a
more precise estimate of population effect size. However, retrieval
of unpublished studies is often hard and possibly biased (Ferguson
& Brannick, 2012), for instance because such studies are typically
not even documented properly (Cooper et al., 1997). Moreover, it
is impossible (without study or trial registers) to be aware of how
many unpublished studies there actually are. However, it is likely
that the percentage of statistically insignificant studies is higher
among the unpublished studies. To conclude, although meta-
analysts often recommend researchers to search extensively for
both published and unpublished studies when conducting tradi-
tional meta-analysis (e.g., Rothstein & Bushman, 2012), this
search and its outcomes may introduce bias as well (Ferguson &
Brannick, 2012). Most importantly, although omitting statistically
insignificant studies may seem rather restrictive, the majority of
published studies report statistically significant results, with a
prevalence estimate of around 95% in psychology (e.g., Fanelli,
2010, 2012; Sterling, 1959; Sterling, Rosenbaum, & Weinkam,
1995). Hence, not many available studies need to be omitted by
p-uniform anyway. Finally, statistically insignificant studies must
be omitted in p-uniform; only by omission of insignificant studies
will p-uniform yield accurate estimates.

Method
All methods for assessing publication bias work for any effect

size measure (cf. Borenstein et al., 2009, Chapter 34). For illus-
trative purposes, we compare the methods in the most simple
research situation. Effect sizes of studies were generated with a
fixed population mean % and standard deviation & " 1 in all
conditions, and a right-tailed test of the null-hypothesis H0: % " 0
was conducted in each individual study with # " .05. The perfor-
mance of p-uniform and other techniques for assessing publication
bias were examined by means of Monte-Carlo simulations. In
these simulations, equal sample sizes of 25 were imposed for each
study in the meta-analysis. A sample size of 25 resembles the
median cell size of 24 in both between- and within-subjects de-
signs in experimental psychology observed by Wetzels et al.
(2011).
Due to using equal sample sizes, not all available techniques for

assessing publication bias can be applied. Neither the rank-
correlation test, nor Egger’s test can deal with equal sample sizes
(e.g., Ioannidis & Trikalinos, 2007a), and were therefore excluded
from the simulation study. The fixed-effect model was applied
because studies’ effect sizes were generated from the same popu-
lation with one fixed mean. The trim-and-fill method was imposed
to impute only studies in the left-hand side of the funnel plot
because studies were tested for being significantly larger than zero.
Two-tailed tests (# " .05) were conducted for testing the effect
size estimates obtained by the fixed-effect model, the trim-and-fill
method, and p-uniform. The TES and p-uniform’s publication bias
test were also conducted two-tailed with an alpha level of 0.05; a
0.05 significance level rather than the more common 0.10 was

Th
is
do
cu
m
en
ti
s
co
py
rig
ht
ed
by
th
e
A
m
er
ic
an
Ps
yc
ho
lo
gi
ca
lA
ss
oc
ia
tio
n
or
on
e
of
its
al
lie
d
pu
bl
ish
er
s.

Th
is
ar
tic
le
is
in
te
nd
ed
so
le
ly
fo
rt
he
pe
rs
on
al
us
e
of
th
e
in
di
vi
du
al
us
er
an
d
is
no
tt
o
be
di
ss
em
in
at
ed
br
oa
dl
y.

6 VAN ASSEN, VAN AERT, AND WICHERTS



selected to be consistent with the tests of effect size and its 95%
CI.
For each condition, p-uniform was applied and compared with

other existing methods for three purposes. First, we evaluated
p-uniform’s performance in estimating the population’s effect size.
p-uniform’s effect size estimates, standard deviations of the effect
size estimates, 95% CI, and coverage probabilities were compared
with estimates obtained by the traditional fixed-effect model and
the trim-and-fill method. We calculated the coverage probability as
the proportion of runs with % in the calculated 95% CI. Hence, an
accurate method yields a coverage probability of .95 in all condi-
tions. Second, in each replication we tested whether the population
effect size is different from 0 (H0: % " 0). For this test, Type-I
error rates and statistical power were used to compare p-uniform,
the fixed-effect model, and the trim-and-fill method. Third, we
tested whether p-uniform can detect the presence of publication
bias (H0: % " &̂). Type-I error rates and statistical power were also
used to compare p-uniform’s publication bias test with the TES.
Three parameters were varied in the main simulation study: the

number of studies (K), the population effect size %, and the pro-
portion of statistically nonsignificant studies selected in the meta-
analysis (pp). Simultaneous with selecting values for K, levels for
statistical power were chosen in such a way that the expected
number of studies with an observed mean significantly larger than
zero was eight in each condition. Recall that eight is a very small
number of studies, because some publication assessment methods
such as Begg and Mazumdar’s (1994) rank correlation and Egger’s
regression method are only recommended when the number of
effect sizes is at least 10 or 15. We particularly selected a small
value of K to show that p-uniform may work well in meta-analyses
based on a small number of studies that are common in the
literature. The following values for K and statistical power (1* +)
were selected: K " 160 (1* + " # " .05); K " 40 (1* + " 0.2);
K " 16 (1 * + " 0.5); and K " 10 (1 * + " 0.8). Six different
levels of publication bias were selected: pp " (0; 0.025; 0.05; 0.25;
0.5; and 1), where pp denotes the proportion of statistically insig-
nificant studies getting published. In case of extreme publication
bias pp " 0), meta-analyses only consisted of on average eight
published studies. The conditions pp " 0.025 and pp " 0.05 were
chosen based on the probability of finding a statistically significant
effect in the literature.3 Proportions pp " 0.25 and pp " 0.5 were
selected to reflect situations with less severe publication bias. A
condition without publication bias (pp " 1) was also included in
order to compare the performance of p-uniform to the traditional
fixed-effect model. This is the situation where the traditional
fixed-effect model yields an unbiased estimate based on all studies.
For each condition in the simulation study, 10,000 replications
were conducted.
We also ran an additional simulation study to examine the

robustness of p-uniform to violations of the homogeneity assump-
tion. Four cells of the design of the main simulation study were
selected (K/% " (0; 0.33)' pp " (0; 0.25)), and heterogeneity was
manipulated using three levels (,2 " (0.013333; 0.04; 0.12) in
each of these four cells. Parameter ,2 represents the variance of
true study means. The levels of ,2 correspond to low (I2 " .25),
moderate (I2 " .50), and high (I2 " .75) heterogeneity (Borenstein
et al., 2009, p. 119). The main dependent variables in the simula-

tion were the point and interval estimates of traditional meta-
analysis, the trim-and-fill method, and p-uniform.
To summarize, the main simulation study consisted of K/% '

pp " 4 ' 6 " 24 conditions, whereas the additional simulation
study had K/% ' pp ' ,2 " 2 ' 2 ' 3 " 12 conditions.
Simulations and p-uniform were programmed in R (R Core Team,
2012). The Metafor package (Viechtbauer, 2010) was used for
conducting the trim-and-fill method and fixed-effect (main simu-
lation) and random-effects (small simulation) meta-analyses. See
the supplementary information for the R code of our simulations.

Results

Estimation of Effects When Effects Are Homogenous

Convergence rates for the effect size estimates with p-uniform
were above 98.9% and 96.3% across conditions for the pi

&* and
1 * pi

&* estimator, respectively.4 Table 1 shows average effect size
estimates, standard errors or standard deviations of the effect size esti-
mates, confidence intervals, and coverage probabilities of the fixed-effect
model, the trim-and-fill method, and p-uniform. The performance
of p-uniform was only evaluated as a function of the population
effect size % because the method does not take statistically non-
significant studies into account. Coverage probabilities of
p-uniform were 95% in all conditions for both estimators (see last

3 Assume that the probability that an effect truly exists (P(H1)) is 0.5.
Ioannidis (2005) used this value as starting point in his article and argued
that this value may be lower in fields with less confirmatory research. Also
assume that the statistical power accompanied with the applied statistical
test is 0.5 (using # " 0.05). Statistical power is often lower than the
convention of 0.8. Bakker et al. (2012) even suggested that the typical
power in psychological research is 0.35. These findings suggest that
assuming a statistical power of 0.5 may even be liberal. The proportion of
statistically significant studies in the literature (P(‘H1’ | lit)) can then be
found after entering values for p in the following equation:

P( ‘H1’ | lit)!
P( ‘H1’$ lit)

P( ‘H0’$ lit)$ P( ‘H1’$ lit)

!
(1" #) · P(H1)$ ( · P(H0)

p[# · P(H1)$ (1" () · P(H0)]$ (1" #) · P(H1)$ ( · P(H0)

where P(‘H0’) is the proportion of statistically non-significant findings in
the literature. For instance, the proportion of statistically significant find-
ings in the literature if p " 0.025 is:

0.5 · 0.5$ 0.05 · 0.5
0.025[0.5 · 0.5$ 0.95 · 0.5]$ 0.5 · 0.5$ 0.05 · 0.5

! 0.94.

If p " 0.05, the proportion of statistically significant studies in the
literature is 0.88. These results are in line with research by Fanelli (2012)
who showed that the proportion of studies reporting a positive result is
approximately 85.9% in a variety of research fields, and in line with
psychological research where 96%–97% of the studies report statistically
significant results (Sterling, Rosenbaum, & Weinkam, 1995).
4 Lack of convergence primarily occurred when there was no effect (% "

0). Averages for the lower and upper bound of p-uniform’s confidence
interval and effect size estimates were computed after exclusion of non-
converging replications. Coverage probabilities were based on all replica-
tions because lower and upper bounds of the confidence interval in case of
nonconvergence were below *1 or above 1. As a result, if the estimate of
one bound did not converge, the other bound’s estimate could always be
used to determine if % was within the confidence interval.
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row of Table 1), so exactly equal to the nominal coverage rates,
confirming that p-uniform performs very well when its assump-
tions are satisfied. Figure 3 presents the average effect size esti-
mates with the proportion of statistically nonsignificant studies
included in the meta-analysis (pp) on the x-axis, and on the y-axis
the population effect size % (horizontal dotted lines) and the
average effect size estimates (&̂ and &̂*). p-uniform’s average
effect size estimates are indicated by an asterisk (estimator pi

&*)
and a cross (estimator 1 * pi

&*) on the y-axis. p-uniform’s average
effect size estimate (&̂*) had a slight negative bias for both esti-
mators, which was significantly different from zero in some con-
ditions. That is, bias of estimator pi

&* for % " 0, % " 0.16, % "
0.33, % " 0.5 was *0.059 (*z " 5.9, p ( .001), *0.048 (*z "
4.8, p ( .001), *0.035 (*z " 3.5, p ( .001), *0.018 (*z " 1.8,
p " .065), respectively, and of estimator 1 * pi

&* it was *0.011
(*z " 1.1, p " .27),*0.020 (*z " 2.0, p " .046),*0.020 (*z "
2.0, p " .046), *0.007 (*z " 0.7, p " .48), respectively.5

Apparently, for the conditions in the simulations, the estimator 1*

pi
&* slightly outperformed the estimator pi

&*.
Average effect size estimates of the fixed-effect model and the

trim-and-fill method are presented as a function of pp and popu-
lation effect size % using lines in Figure 3. Unsurprisingly, the
fixed-effect model and the trim-and-fill method yielded accurate
average effect size estimates in cases of no publication bias (pp "
1). In particular, average effect size estimates obtained by the
fixed-effect model (open bullets) fell exactly on the dotted lines
reflecting the population effect size %. Without publication bias
(pp " 1), the average effect size estimates of the trim-and-fill

5

z "
& " &̂

1 ⁄$10,000
, where % is the population value, &̂ is the effect size

estimate,1 ⁄$10,000 the standard error of &̂.

Table 1
Average Effect Size Estimates and Corresponding Standard Errors/Standard Deviations, Confidence Intervals, and Coverage
Probabilities for the Fixed-Effect Model, the Trim-and-Fill Method, and p-Uniform Based on Monte-Carlo Simulations of
Homogenous Effects (10,000 Replications)

pp

% (K)

0 (160) 0.16 (40) 0.33 (16) 0.5 (10)

0
Fixed-effect model 0.412 (0.028) CP: (.0001 0.440 (0.035) CP: .009 0.489 (0.045) CP: .359 0.569 (0.054) CP: .901

[0.267, 0.557] [0.295, 0.585] [0.347, 0.631] [0.429, 0.708]
Trim-and-fill 0.411 (0.028) CP: (.0001 0.439 (0.035) CP: .009 0.487 (0.044) CP: .362 0.566 (0.054) CP: .906

[0.267, 0.556] [0.295, 0.583] [0.346, 0.629] [0.428, 0.705]
1/40
Fixed-effect model 0.274 (0.071) CP: .026 0.408 (0.050) CP: .037 0.481 (0.047) CP: .402 0.567 (0.055) CP: .903

[0.157, 0.392] [0.271, 0.546] [0.341, 0.621] [0.427, 0.706]
Trim-and-fill 0.247 (0.066) CP: .035 0.391 (0.067) CP: .080 0.477 (0.051) CP: .415 0.564 (0.055) CP: .908

[0.135, 0.358] [0.259, 0.524] [0.339, 0.616] [0.426, 0.702]
1/20
Fixed-effect model 0.202 (0.066) CP: .074 0.382 (0.056) CP: .074 0.474 (0.049) CP: .443 0.564 (0.056) CP: .907

[0.101, 0.304] [0.251, 0.512] [0.336, 0.612] [0.426, 0.703]
Trim-and-fill 0.187 (0.062) CP: .092 0.358 (0.071) CP: .142 0.468 (0.057) CP: .464 0.561 (0.056) CP: .910

[0.088, 0.286] [0.233, 0.482] [0.331, 0.604] [0.424, 0.699]
1/4
Fixed-effect model 0.054 (0.035) CP: .542 0.266 (0.056) CP: .434 0.426 (0.056) CP: .696 0.549 (0.059) CP: .928

[*0.004, 0.112] [0.166, 0.365] [0.300, 0.551] [0.414, 0.684]
Trim-and-fill 0.049 (0.037) CP: .577 0.250 (0.054) CP: .533 0.412 (0.066) CP: .726 0.543 (0.062) CP: .926

[*0.009, 0.107] [0.153, 0.347] [0.289, 0.534] [0.410, 0.677]
1/2
Fixed-effect model 0.020 (0.024) CP: .833 0.207 (0.044) CP: .772 0.383 (0.056) CP: .859 0.531 (0.061) CP: .946

[*0.023, 0.063] [0.127, 0.288] [0.270, 0.497] [0.400, 0.662]
Trim-and-fill 0.011 (0.032) CP: .791 0.196 (0.046) CP: .821 0.371 (0.061) CP: .875 0.523 (0.065) CP: .937

[*0.031, 0.053] [0.117, 0.275] [0.259, 0.482] [0.394, 0.652]
1
Fixed-effect model 0.000 (0.016) CP: .949 0.161 (0.032) CP: .948 0.330 (0.050) CP: .952 0.500 (0.063) CP: .951

[*0.031, .031] [0.099, 0.223] [0.232, 0.428] [0.376, 0.624]
Trim-and-fill *0.020 (0.030) CP: .634 0.149 (0.039) CP: .869 0.322 (0.053) CP: .926 0.492 (0.066) CP: .932

[*0.050, 0.011] [0.088, 0.209] [0.225, 0.418] [0.370, 0.615]
p-uniform
Estimator p *0.059 (0.224) CP: .952 0.112 (0.187) CP: .950 0.298 (0.142) CP: .951 0.481 (0.103) CP: .952

[*0.427, 0.313] [*0.224, 0.418] [0.031, 0.539] [0.282, 0.677]
Estimator 1-p *0.011 (0.271) CP: .948 0.140 (0.240) CP: .949 0.313 (0.188) CP: .952 0.493 (0.137) CP: .947

[*0.468, 0.367] [*0.307, 0.459] [*0.094, 0.564] [*0.183, 0.686]

Note. K " total number of studies; pp " proportion of nonsignificant studies included in a meta-analysis; () " average standard error or, in case of
p-uniform, standard deviation of all 10,000 estimates; [] " average bounds of 95% confidence interval; CP " coverage probability.
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method (triangles in Figure 3) slightly underestimated the popu-
lation effect size % (&̂ " 0.49). This underestimation of the
average effect size was caused by the imputation of studies while
no studies were missing. Table 2 shows the average number of
studies imputed by the trim-and-fill method in each condition. The
first row of the last column indicates that, on average, nine studies
were imputed when there was no effect (% " 0) and no publication
bias (pp " 1), resulting in an underestimated effect. The other rows
in Table 2 also illustrate the poor performance of the trim-and-fill
method. If the proportion of statistically nonsignificant studies
included in the meta-analysis (pp) decreases, more studies are
omitted from the meta-analysis and the trim-and-fill method
should impute more studies. However, this is not the case because

the trim-and-fill method hardly ever imputed studies if there was
extreme publication bias (cf. pp " 0, third column in Table 2).
In conditions with publication bias (pp ( 1), the fixed-effect

model and the trim-and-fill method severely overestimated effect
sizes. This is shown in Figure 3: As publication bias increased, the
lines representing the fixed-effect model and the trim-and-fill
method deviated more strongly from the population effect size %.
These average effect size estimates deviated more from the pop-
ulation effect size % when there was at the same time no effect
(% " 0) and extreme publication bias (pp " 0), with &̂ " 0.41 for
both the fixed-effect model and the trim-and-fill method (see the
first two rows of the first column in Table 1). If there was actually
an effect in the population (% $ 0), the overestimation in average

Table 2
Average Number of Imputed Studies by the Trim-and-Fill Method Based on Monte-Carlo
Simulations (10,000 Replications)

% (K)

pp
0 0.025 0.05 0.25 0.5 1

0 (160) 0.06 (0.25) 1.41 (1.45) 0.82 (1.18) 0.59 (1.84) 2.01 (4.84) 9.00 (12.06)
0.16 (40) 0.05 (0.25) 0.82 (1.36) 1.17 (1.48) 0.90 (1.33) 0.81 (1.52) 1.49 (2.74)
0.33 (16) 0.07 (0.28) 0.17 (0.59) 0.27 (0.74) 0.61 (1.07) 0.61 (1.09) 0.49 (1.08)
0.5 (10) 0.10 (0.36) 0.11 (0.39) 0.12 (0.50) 0.21 (0.59) 0.27 (0.68) 0.30 (0.72)

Note. Studies were imputed on the left-hand side of the funnel plot. pp " proportion of nonsignificant studies
included in the meta-analysis; % " the effect size estimate used for simulating data; (K) " total number of
studies; () " standard deviation.

Figure 3. Average effect size estimates of the fixed-effect model, the trim-and-fill method, and p-uniform as
a function of the proportion p of non-significant studies included in the meta-analysis and the population effect
size %. Average effect size estimates are indicated by open bullets (traditional fixed-effect model), triangles
(trim-and-fill), asterisks (p-uniform estimator p), and crosses (p-uniform estimator 1–p). Dotted black lines
illustrate the population effect size %. Solid black lines refer to % " 0, dashed black lines refer to % " 0.16, solid
gray lines refer to % " 0.33, and dashed gray lines refer to % " 0.5.
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effect sizes of both the fixed-effect model and the trim-and-fill
method decreased in %. The lines belonging to the fixed-effect
model and the trim-and-fill method for % " 0.5 (dashed gray lines
in Figure 3) diverged less from its population effect size % than the
lines belonging to both methods for % " 0 (solid black lines).
Coverage probabilities of both the fixed-effect model and the

trim-and-fill method were far below the nominal 95% rate for % (
0.5 and whenever publication bias was present (pp ( 1). For
conditions without an effect (% " 0) and extreme publication bias
(pp " 0), coverage probabilities were even close to 0 (see the first
two rows of the first column in Table 1). Coverage probabilities
became closer to the nominal rate as the effect increased and the
amount of publication bias decreased. However, the coverage
probability was still unsatisfactory in condition % " 0.33 and pp "
.5 for the fixed-effect model (0.88) and the trim-and-fill method
(0.86). Coverage probabilities of both methods approached 95%
when % " 0.5 and in conditions without publication bias (pp " 1).
To conclude, coverage probabilities of p-uniform were 95% in

all conditions, which did not apply to the fixed-effect model and
the trim-and-fill method. Average effect size estimates of
p-uniform were accurate, albeit slightly underestimated. Average
effect size estimates of the fixed-effect model and the trim-and-fill
method substantially deviated from the population effect size %
except for a medium size population effect (% " 0.5) and no
publication bias (pp " 1). At the same time, the standard devia-
tions of p-uniform’s effect size estimates were substantially larger
than those of the fixed-effect model and the trim-and-fill method.
As a consequence, average effect size estimates of p-uniform were
accurate but more uncertain. In contrast, the results of the fixed-
effect model and the trim-and-fill method provided false certainty.
These estimates were precise but highly inaccurate if the popula-
tion effect size % was smaller than medium (% ( 0.5) and publi-
cation bias was present (pp ( 1).

Test of an Effect When Effects Are Homogenous
In Table 3, Type-I error rates and statistical power of the

fixed-effect model, the trim-and-fill method, and estimator pi
&* of

p-uniform are presented for testing whether the population effect
size equals 0. p-uniform’s Type-I error rates were exactly equal to
the nominal rate in all conditions (see third row of the last column
in Table 3). Statistical power of p-uniform increased in % from
0.26 for % " 0.16 to 0.98 for % " 0.5. Consequently, p-uniform
already has very high power to detect a medium effect size (% "
d " 0.5) when only eight studies with n " 25 are statistically
significant.
If there was no effect (% " 0) and no publication bias (pp " 1),

the Type-I error rate of the trim-and-fill method was lower than the
nominal rate (# " .035). This was caused by the imputation of
studies while no publication bias was present (see Table 2). If there
was publication bias (pp ( 1) the Type-I error rates were grossly
overestimated by the fixed-effect model and the trim-and-fill
method. The Type-I error rates increased as publication bias be-
came more severe. If there was no effect (% " 0) and extreme
publication bias (pp " 0), Type-I error rates of the fixed-effect
model and the trim-and-fill method equaled 1 (see first two rows of the
first column in Table 3) meaning that both methods always yielded a
Type-I error in this condition. This Type-I error rate was severely
inflated due to overestimated average effect size estimates by both
methods as explained in the previous section (see also Table 1 and
Figure 3).
The fixed-effect model and the trim-and-fill method were pow-

erful in detecting an effect when it truly existed (% $ 0) and no
publication bias was present (pp " 1). The levels of statistical
power rapidly approached one for these conditions (see last col-
umn in Table 3). If there was an effect (% $ 0) and publication bias
was present (pp ( 1), the statistical power of the fixed-effect

Table 3
Results of Monte-Carlo Simulations (10,000 Replications) on Type-I Error Rates and Statistical
Power for Testing Whether the Effect Size Is Significantly Different From Zero

pp
0 1/40 1/20 1/4 1/2 1

% (K)
0 (160)
Fixed-effect model 1.000 0.985 0.952 0.566 0.249 0.053
Trim-and-fill 1.000 0.978 0.939 0.524 0.208 0.035
p-uniform (estimator p) 0.050

0.16 (40)
Fixed-effect model 1.000 1.000 1.000 0.998 0.999 0.999
Trim-and-fill 1.000 1.000 0.999 0.996 0.996 0.990
p-uniform (estimator p) 0.259

0.33 (16)
Fixed-effect model 1.000 1.000 1.000 1.000 1.000 1.000
Trim-and-fill 1.000 1.000 1.000 1.000 1.000 1.000
p-uniform (estimator p) 0.722

0.5 (10)
Fixed-effect model 1.000 1.000 1.000 1.000 1.000 1.000
Trim-and-fill 1.000 1.000 1.000 1.000 1.000 1.000
p-uniform (estimator p) 0.980

Note. pp " proportion of nonsignificant studies included in a meta-analysis; % " the effect size estimate for
simulating data; (K) " total number of studies.
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model and the trim-and-fill method was close to 1 or equaled 1 in
every condition. However, these results reflect false certainty
because effect size estimates of both methods were overestimated
due to the presence of publication bias (see previous section).
To summarize, the accurate proportion of Type-I errors was

made for testing whether the population effect size equals 0
based on p-uniform and p-uniform’s statistical power was high
to detect a population effect of medium size (% " 0.5) with only
eight small statistically significant studies. The fixed-effect
model and the trim-and-fill method overestimated the effect
size in case of publication bias and therefore yielded many
Type-I errors and false certainty with respect to the presence of
population effects.

Publication Bias Test When Population
Effects Are Homogenous
Table 4 shows Type-I error rates and statistical power of two

publication bias tests: estimator pi
&* of p-uniform and the TES.

Type-I error rates of p-uniform were close to 5% in the conditions
% ( 0.5 without publication bias (pp " 1; see last column in Table
4). With % " 0.5 and without publication bias (pp " 1), Type-I
error rates obtained by p-uniform were lower than the nominal rate
(# " .012). p-uniform had reasonable statistical power when a
considerable number of studies had been excluded from the meta-
analysis. For example, statistical power of the method was 0.75 for
% " 0.16 and extreme publication bias (pp " 0; see fourth row of
first column in Table 4).
The last column in Table 4 illustrates that in conditions without

publication bias (pp " 1) the TES was more conservative than
p-uniform. Type-I error rates of the TES ranged from 0.022 for no
effect (% " 0) to 0.003 for % " 0.5. With one exception, the TES was
less powerful than p-uniform in detecting publication bias. This ex-
ception was that the TES had more power if no effect existed (% " 0)
and at least some statistically nonsignificant studies were published
(pp $ 0). p-uniform had more statistical power to detect publication
bias if there was no effect (% " 0) and extreme publication bias (pp "
0), and if an effect indeed existed (% $ 0).

The statistical power of the TES and p-uniform was low for the
two largest population effect sizes (% " 0.33 and % " 0.5). For
example, for % " 0.5 the statistical power was not higher than 0.03
for p-uniform and 0.001 for the TES. The statistical power of
p-uniform was low for two reasons. First, few studies were statis-
tically significant (eight on average) resulting in a wide confidence
interval for the average effect size estimate. Second, few studies
were not statistically significant (on average two for % " 0.5 or
eight for % " 0.33), such that the average effect size estimate
based on all studies was close to the average effect size estimate
based on only the statistically significant studies. In conditions
where only few studies were omitted from the meta-analysis,
which occurred when the population effect size or a study’s power
is high, publication bias was hard to detect.
To conclude, both publication bias tests were too conservative, but

this conservatism was higher for the TES. p-uniform had higher
statistical power than the TES when there was an effect (% $ 0).
p-uniform was especially powerful compared with the TES when no
or only a limited amount of statistically nonsignificant studies were
included in the meta-analysis. This is a common situation in meta-
analytical reviews, particularly in psychology (Fanelli, 2012).

Estimation of Effects When Population
Effects Are Heterogeneous
Here we study the performance of the methods under violations

of a homogeneous population effect. Convergence rates for the
effect size estimates with p-uniform were above 98.3% and 99.2%
across conditions for the pi

&* and 1 * pi
&* estimator, respectively.

Table 5 shows average effect size estimates, standard errors or
standard deviations of the effect size estimates, and coverage proba-
bilities of the random-effects model (with the most frequently used
DerSimonian Laird procedure), the trim-and-fill method, and
p-uniform. We compare the results of the three methods to each other,
but also compare them with the results of these methods when effects
are homogenous (see Table 1). First, note how introducing heteroge-
neity increases the number of significant studies from eight when
effect size is homogenous or % " .33, to 32.8 when heterogeneity is

Table 4
Results of Monte-Carlo Simulations (10,000 Replications) on Type-I Error Rates and Statistical
Power for Publication Bias Tests

pp
0 1/40 1/20 1/4 1/2 1

% (K)
0 (160)
p-uniform (est. p) 0.902 0.519 0.340 0.090 0.063 0.051
TES 0.555 0.570 0.644 0.565 0.239 0.022

0.16 (40)
p-uniform (est. p) 0.748 0.620 0.520 0.184 0.092 0.050
TES 0.338 0.245 0.185 0.065 0.029 0.006

0.33 (16)
p-uniform (est. p) 0.365 0.342 0.319 0.182 0.100 0.043
TES 0.074 0.068 0.061 0.023 0.005 0.002

0.5 (10)
p-uniform (est. p) 0.033 0.032 0.031 0.024 0.019 0.012
TES 0.001 0.001 0.001 0.001 0.002 0.003

Note. pp " proportion of nonsignificant studies included in a meta-analysis; % " the effect size estimate for
simulating data; (K) " total number of studies; TES " test for excess significance.
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high and % " 0 (second row of Table 5). Consequently, p-uniform
uses relatively more than 5% (up to about 20%) of the studies if no
effect exists and effects are heterogeneous.
From the results of Table 5 and comparing its results with those in

Table 1, it follows that random-effects meta-analysis and the trim-
and-fill method perform worse as heterogeneity increases; both bias
increases and the coverage probability decreases in heterogeneity.
Moreover, the estimate of heterogeneity (,2) is biased in random-
effects meta-analysis as well; for example, ,2 is severely underesti-
mated if only statistically significant studies are published, whereas ,2

is grossly overestimated if 25% of the statistically insignificant studies
are published (not shown in Table 5). The trim-and-fill method on
average imputed less than .1 studies if only statistically significant
studies are published (also when about 130 or more studies were
omitted), and up to 6.3 studies when 25% of the statistically insignif-
icant studies are published and no effect exists (when on average
about 95 studies were omitted; not shown in Table 5). To conclude,
the performance of random-effects meta-analysis and the trim-and-fill
method is bad in case of publication bias and worsens when hetero-
geneity increases.
Whereas the performance of p-uniform is excellent when effects

are homogenous (see Table 1), performance worsens when heter-
ogeneity increases; both bias increased and the coverage probabil-
ity decreased in heterogeneity (see Table 5). As expected, estima-
tor 1 * pi

&* is more robust to heterogeneity than estimator pi
&*.

However, in our opinion the performance of 1 * pi
&* is only

acceptable when heterogeneity is low, with coverage probabilities
of .895 and .926 and bias of .086 and .047 for % " 0 and % " .33,
respectively. Both p-uniform estimators outperformed traditional
random-effects meta-analysis and the trim-and-fill method under
conditions of heterogeneity when statistically insignificant studies
are not published (pp " 0), but not when pp " 0.25. This suggests
that if effects are heterogeneous, p-uniform only outperforms the
other methods when publication bias is extreme (with pp close to
0). To conclude, p-uniform is generally not robust to heteroge-
neous effects, only provides acceptable estimates if heterogeneity

is low, and outperforms other methods only if publication bias is
extreme under conditions of heterogeneity.

Application to Meta-Analysis of
McCall and Carriger (1993)

McCall and Carriger (1993) carried out a meta-analysis on
studies examining the association between infants’ habituation
to a give stimulus and their later cognitive ability (IQ). Their
meta-analysis used 12 studies with sample sizes varying from
11 to 96 reporting a correlation between children’s habituation
during their first year of life and their IQ as measured between
1 and 8 years of age (see also: Bakker et al., 2012). Of these 12
correlations, 11 were statistically significant, and one was not,
r " .43, p " .052. Because there was no indication of hetero-
geneity in the studies’ effect sizes (!2 " 6.74, p " .82, I2 " 0),
a fixed-effect meta-analysis was performed on the 12 studies.
This resulted in a Fisher-transformed correlation of .41 (p (
.001), corresponding to an estimated correlation of .39 (CI 95%:
[.31, .47]).
The apparent negative association between effect size and

standard error in the contour-enhanced funnel plot (see Figure
1) suggests publication bias. This is confirmed by both Begg
and Mazumdar’s rank-correlation test (, " 0.636, p " .003) and
Egger’s test (z " 2.24, p " .025). The TES also provides
evidence for the presence of publication bias (!2 " 6.22, p "
.013). The funnel plot after application of the trim-and-fill
technique using statistic L0 is presented in Figure 4. Six studies
were imputed to the left. Trim-and-fill’s estimate of the Fisher-
transformed correlation was .35 (p ( .001), corresponding to an
estimated correlation of .34 (CI 95% [.26, .41]). Based on the
R0 statistic, nine studies were imputed reducing the Fisher-
transformed correlation to 0.31 (p ( .001). The untransformed
correlation coefficient based on the R0 statistic became .30 (CI
95% [.23, .37]). Hence, the trim-and-fill method reduced the
estimated correlation somewhat for both statistics (from .39 to

Table 5
Average Effect Size Estimates and Corresponding Standard Errors/Standard Deviations, and Coverage Probabilities for the Random-
Effects Model, the Trim-and-Fill Method, and p-Uniform Based on Monte-Carlo Simulations of Heterogeneous Population Effects
(10,000 Replications)

Heterogeneity (,2)

% " 0, K " 160 % " 0.33, K " 16

Low (0.0133) Mod. (0.04) High (0.12) Low (0.0133) Mod. (0.04) High (0.12)

No. of significant studies 12.33 (3.35) 19.62 (4.11) 32.80 (5.16) 8.04 (2.01) 8.02 (2.00) 8.02 (2.00)
pp " 0 Random-effects model 0.433 (.059) 0.469 (.046) 0.554 (.036) 0.514 (.073) 0.554 (.075) 0.648 (.075)

CP ( .0001 CP % .0001 CP % .0001 CP " .225 CP " .107 CP " .035
Trim-and-fill 0.433 (.059) 0.469 (.046) 0.554 (.036) 0.512 (.073) 0.553 (.075) 0.645 (.089)

CP ( .0001 CP ( .0001 CP ( .0001 CP " .229 CP " .112 CP " .039
pp " 0.25 Random-effects model 0.081 (.039) 0.126 (.044) 0.211 (.054) 0.447 (.072) 0.473 (.081) 0.532 (.097)

CP " .441 CP " .185 CP " .026 CP " .604 CP " .535 CP " .505
Trim-and-fill 0.071 (.039) 0.099 (.045) 0.145 (.055) 0.428 (.071) 0.449 (.081) 0.497 (.111)

CP " .539 CP " .404 CP " .268 CP " .655 CP " .594 CP " .570
p-uniform Estimator p 0.091 (.160) 0.262 (.102) 0.503 (.075) 0.367 (.137) 0.464 (.137) 0.641 (.153)

CP " .827 CP " .223 CP ( .0001 CP " .887 CP " .644 CP " .206
Estimator 1-p 0.086 (.219) 0.228 (.141) 0.406 (.080) 0.357 (.187) 0.428 (.173) 0.535 (.163)

CP " .895 CP " .593 CP " .045 CP " .926 CP " .840 CP " .610

Note. K " total number of studies; pp " proportion of non-significant studies included in a meta-analysis; () " average standard error or, in case of
p-uniform, standard deviation of all 10,000 estimates; CP " coverage probability.
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.34 for L0 and .30 for R0), but still suggested a significant and
medium correlation.
The pi

&* estimator of p-uniform was performed on the 11 statis-
tically significant studies. The publication bias test indicated pub-
lication bias (L&̂ ! 4.07, p " .003).6 Its estimated Fisher-
transformed correlation was .175, corresponding to an estimated
correlation of .17 (95% CI [*.027, .35]), which did not differ
significantly from 0 (L0 ! 17.35, p " .083, two-tailed test). To
conclude, the effect size estimate obtained by p-uniform is remark-
ably lower than the fixed-effect estimate, and suggests that the
evidence in favor of a positive association between infants’ habit-
uation and their later cognitive ability (IQ) is not conclusive.

Discussion
Publication bias is a major threat to meta-analytical reviews

(Banks, Kepes, & McDaniel, 2012; Rothstein et al., 2005), and is
omnipresent in many fields of scientific research. Hence, publica-
tion bias analyses should be routinely included in meta-analysis
(e.g., Borenstein et al., 2009, p. 291; Rothstein et al., 2005).
Current techniques cannot provide accurate average effect size
estimates and should be interpreted as sensitivity analyses, and
tests for publication bias often suffer from a lack of power (e.g.,
Begg & Mazumdar, 1994; Borenstein et al., 2009, p. 291; Sterne
et al., 2000) or are overly conservative (Francis, 2012; Ioannidis &
Trikalinos, 2007b). Due to overestimated average effect sizes in
case of publication bias, Type-I error rates of statistical tests for
testing whether the population effect size is zero become strongly

inflated. The objective of this article was to introduce a new
method (p-uniform) that can (a) accurately estimate average effect
size in case of publication bias, (b) test whether the population
effect size is zero, and (c) test for publication bias. p-uniform is
counterintuitive for meta-analysts because the method only takes
the p values of statistically significant studies into account. The
basic idea of p-uniform is that the distribution of the statistically
significant p values conditional on the population effect size is
uniform. Our simulation study compared the performance of
p-uniform with the TES, the fixed-effect model, and the trim-and-
fill method by means of a simulation study. Stringent conditions
for examining the performance of p-uniform were selected, with
small numbers of studies included in the meta-analysis and small
sample sizes for each individual study.
Results of the main simulation study on homogenous population

effect sizes showed good statistical properties of p-uniform in
comparison with the trim-and-fill method, TES, and standard
fixed-effects meta-analysis. Coverage probabilities of p-uniform
were always 95%, whereas p-uniform’s slightly underestimated
the population effect. Our results and those of others (Moreno et
al., 2009; Peters et al., 2007; Terrin et al., 2003) clearly show that
the fixed-effect model and the trim-and-fill method cannot be
trusted when there is publication bias. The average effect size
estimates and coverage probabilities of existing methods were only

6 All test statistics of p-uniform are compared with a Gamma distribution
with df1 " 1 and df2 " 11. F z

Figure 4. Funnel plot of the studies of McCall and Carriger’s (1993) meta-analysis after the trim-and-fill
method imputed six studies (open circles) based on the L0 statistic. The vertical line corresponds to trim-and-
fill’s effect size of 0.352.
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acceptable in the absence of publication bias (pp " 1) or sufficient
power in the primary studies (.80 for % " 0.5). For testing whether
the population effect is zero, the Type-I error rate of p-uniform was
exactly equal to the nominal rate, and p-uniform’s statistical power
was high to detect a population effect of medium size. The fixed-
effect model and the trim-and-fill method yielded too many Type-I
errors if publication bias was present. Both p-uniform and the TES
for the presence of publication bias were too conservative. How-
ever, p-uniform’s publication bias test outperformed the TES in
most conditions of homogenous population effects. An additional
simulation study on heterogeneous population effects revealed that
both p-uniform and other fixed-effects techniques performed
poorly under increasing heterogeneity. Our transformed estimator
1 * pi

&* was more robust to heterogeneity than estimator pi
&*, but

its performance was only acceptable if heterogeneity was low.
However, the transformed estimator did outperform other fixed-
effect techniques when publication bias was extreme.
p-uniform did not converge to an effect size estimate in a small

percentage of the simulations ((2%) when no effect existed. The
reason of the nonconvergence is the small number of studies in
combination with the distribution of p values under the null-
hypothesis of no effect; p-uniform sometimes cannot estimate % if
all p values are higher than .025 and close to .05. Because this is
unlikely as K increases, the nonconvergence problem quickly
disappears if K increases. For instance, p-uniform’s convergence
rates were all above 99.9% if the number of studies was twice as
large as in the conditions with homogeneous population effects,
with 16 rather than eight expected statistically significant studies.
The effect size estimates of both estimators p-uniform based on

Fisher’s method were slightly negatively biased. The negative bias
is a consequence of the estimate &̂ being a nonlinear function of p.
We first examined the bias for estimating &̂ on the basis of one
single statistically significant study. The expected value of &̂
turned out negative because p values close to .05 yielded very
negative estimates of %. The negative bias decreases in the study’s
sample, with factor $N, and in population effect size %. Addi-
tional simulations, with on average twice as many statistically
significant studies in a meta-analysis (16 instead of eight), sug-
gested that the bias also decreases in the number of statistically
significant studies whenever effect size is larger than zero, al-
though the bias did not disappear entirely. Future studies should
consider examining systematically the performance of other sta-
tistical tests for uniformity than those based on Fisher’s method
(such as p-uniforms pi

&* and 1 " pi
&* estimator; e.g., using the fact

that the expected value of the uniform distribution equals 0.5, the
Kolmogorov–Smirnov test (Massey, 1951), and the Anderson-
Darling test (Anderson & Darling, 1954)) decrease this bias in
effect size estimates and also provide lower standard errors than
we obtain with Fisher’s method.
The newly proposed p-uniform method has numerous advan-

tages over existing techniques in examining and correcting for
publication bias. First of all, it is the first method that can provide
an effect size estimate, test whether the population effect is zero,
and test for publication bias at the same time. An important second
advantage of p-uniform is that, even though power may be low for
testing publication bias in applications with a small number of
studies, the average effect size is accurately estimated by
p-uniform when its assumptions are satisfied. When there is pub-

lication bias and effects are homogenous, p-uniform has good
statistical properties compared with fixed-effect meta-analyses, the
TES, and the trim-and-fill method. Our study did not compare
p-uniform’s performance with that of Egger’s and the rank corre-
lation test. However, because other studies (e.g., Moreno et al.,
2009) showed that the latter two methods had low power for the
conditions with eight studies examined in our simulation study, it
is likely p-uniform also outperforms them. Third, no sophisticated
assumptions or choices have to be made when applying p-uniform.
No additional (unpublished) data have to be collected and inter-
pretation of the results is straightforward. Hence, in principle,
meta-analysts should be able to easily apply p-uniform in their
research. We are currently working on developing a website that
will have R programs enabling researchers to apply p-uniform to
their research. Finally, p-uniform will provide conservative effect
size estimates in case of researcher df, rather than further overes-
timating effect size.
We suggest a number of recommendations for the practice of

meta-analysis. First, because publication bias is ubiquitous and
effects may be small or nonexistent, we follow-up on others (e.g.,
Aytug et al., 2012; Banks, Kepes, & McDaniel, 2012; Field &
Gillett, 2010; Sterne, Gavaghan, & Egger, 2000; Sutton, 2006) by
recommending the application of publication bias analysis in all
meta-analyses. We recommend applying p-uniform to estimate
average effect size and to test for publication bias if the population
effect is homogenous, or to apply p-uniform as a sensitivity anal-
ysis to address and examine publication bias in meta-analyses.
Although the restriction to homogenous effects may seem to restrict
the potential usefulness of p-uniform, examinations of results of
meta-analyses suggest that there is no evidence of heterogeneity in
about half of the meta-analyses in psychology based on lab studies
(Klein et al., 2014), and medicine (Borenstein et al., 2009, p. 119).
Also, it is often feasible to select on the basis of theoretical and
methodological considerations homogeneous subsets of studies that
are reasonably expected to have one underlying population effect.
Another alternative may be to apply selection models as sensitivity
analysis whenever there is strong evidence for heterogeneity, because
other techniques provide misleading results when effects are hetero-
geneous (Hedges & Vevea, 2005).
Future studies should examine how p-uniform performs (com-

pared with selection models and other existing methods) if its
assumptions are violated, and how p-uniform may be adapted to be
more robust to violations of heterogeneity. Although our results
show that p-uniform’s 1 " pi

&* estimator is more robust than the
pi

&* estimator, other estimators can be developed that are even
more robust. Notably, methods to incorporate heterogeneity in the
estimation could be examined in the future, for example, by
specifying a distribution of effects sizes rather than one fixed
effect size (as is done in selection models). p-uniform’s perfor-
mance also has to be examined in conditions where the probability
of publishing depends on the p value lower than 0.05. The effect
of researcher df on p-uniform’s performance also deserves atten-
tion in future studies. Researcher df will lead to a lower average
effect size estimate obtained by p-uniform because studies with p
values just below .05 are overrepresented. Performance of
p-uniform should also be evaluated in less restrictive conditions
than the selected conditions in the present simulation studies. For
instance, in theory, p-uniform should perform just as well when
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studies vary in sample size; in conditions with studies varying in
sample size the performance of p-uniform can then also be com-
pared with Egger’s test and the rank correlation test. Finally,
following others (Banks, Kepes, Banks, 2012; Banks, Kepes, &
McDaniel, 2012), we recommend conducting publication bias
analyses in both past and future meta-analytic studies. Moreover,
following Banks, Kepes, and Banks (2012, p. 193), we encourage
journals to publish reevaluations of previous meta-analytic reviews
regardless of their results to avoid ‘publication bias in publication
bias results’.
Publication bias can distort the validity of meta-analyses and

may lead to false conclusions with far-reaching consequences.
Current meta-analytic techniques perform well in the absence of
publication bias. However, it cannot be assumed that there is no
publication bias in a particular research field because not all
file-drawers can be opened, and relevant studies will be below the
radar of meta-analysts. As a consequence, traditional techniques
may lead to unreliable results as this study and other studies have
shown. p-uniform takes a different perspective on analyzing meta-
analytical datasets to counteract this problem. In simulations,
p-uniform showed promising results that were superior to those
from existing methods. The method still needs further develop-
ment, but can become the technique for examining publication bias
and estimating population effects in meta-analytic reviews.
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