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ABSTRACT. This article presents a framework for comparing bivariate distributions according to
their degree of regression dependence. We introduce the general concept of a regression dependence
order (RDO). In addition, we define a new non-parametric measure of regression dependence and
study its properties. Besides being monotone in the new RDOs, the measure takes on its extreme
values precisely at independence and almost sure functional dependence, respectively. A consistent
non-parametric estimator of the new measure is constructed and its asymptotic properties are inves-
tigated. Finally, the finite sample properties of the estimate are studied by means of a small simu-
lation study.
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1. Introduction and motivation

There is an extensive body of literature on the problem of ordering and measuring the depen-
dence of two random variables. Almost all of the research in this area is concerned with
the concept of positive dependence. Orders of positive dependence were considered by many
authors, e.g. Lehmann (1966), Esary et al. (1967) and Schriever (1987); see also Scarsini &
Shaked (1996) for a detailed survey. Axiomatic approaches to orders and measures of positive
dependence were introduced by Schweizer & Wolff (1981), Scarsini (1984) and Kimeldorf &
Sampson (1987). The abundance of notions of positive dependence contrasts, however, with
the silence concerning regression dependence, with the exception of the work of Dabrowska
(1981, 1985) and the measure suggested by Hall (1970).

This article presents a new approach to the problem of ordering and measuring regres-
sion dependence in the bivariate case. The terms ‘order’ and ‘ordering’ are used in the sense
of a preorder, i.e. a reflexive and transitive relation. We drop the requirement of antisym-
metry in order to allow for an arbitrary functional form of the regression. For convenience,
an order for random variables and the corresponding relations for distributions and distribution
functions are used synonymously. Also, we do not strictly discriminate between distribution
functions and distributions; the notation is the same.

Let (X , Y ) be a bivariate random vector with marginal distribution functions FX and FY ,
respectively, and joint distribution function FX ,Y . Since regression dependence is a direc-
tional relationship, it is first necessary to specify the direction of interest. Without loss of
generality, we study the dependence of Y on X. The fundamental idea behind regression is
predictability – the more predictable Y is from X, the more regression dependent they are. It
is straightforward to single out the two extreme cases: independence and almost sure
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functional dependence, when there exists a Borel measurable function g such that Y =g(X )
with probability one (Lancaster, 1963). In the former case, X provides no information about
Y, whereas in the latter case there is perfect predictability of Y from X.

Apart from the two extreme cases, however, there exists a variety of intermediate ones with
a certain degree of regression dependence in a sense yet to be specified. The essence of our
approach is the fact that the predictability of Y from X is intrinsically related to the variabil-
ity of the conditional distributions FY |X =x of Y given X =x. More precisely, the less variable
FY |X =x, the more predictable Y from X, and thus the more regression dependent (X , Y ). For
example, perfect predictability, i.e. almost sure functional dependence of Y on X, is equiv-
alent to the degeneracy of FY |X =x for almost all x. Unless otherwise stated ‘almost’ is used
in the sense of the respective probability measure, which is clear from the context. It follows
that, if (X̃ , Ỹ ) is another pair of random variables, then the general idea is to consider (X , Y )
less regression dependent than (X̃ , Ỹ ) if FY |X =x is more variable than FỸ |X̃ =x for almost all
x. Therefore, a bivariate regression dependence order is associated to a univariate variability
order, and different variability orders could lead, in general, to different regression orders.

This approach, however, is not applicable unless X and X̃ have the same distribution.
Moreover, it is even necessary that Y and Ỹ are identically distributed because, otherwise,
their different variability will affect the variability of FY |X and FỸ |X̃ and, in this way, the
degree of regression dependence. For this reason, a comparison of two bivariate random
vectors with arbitrary marginals is possible only after their transformation to the same Fréchet
class. If the marginals are continuous, it is natural to consider the probability integral trans-
formations (U , V )= (FX (X ), FY (Y )) and (Ũ , Ṽ )= (FX̃ (X̃ ), FỸ (Ỹ )), which have uniform
marginal distributions. In this case, we regard (X , Y ) less regression dependent than (X̃ , Ỹ )
if FV |U =u is more variable than FṼ |Ũ =u for almost all u.

It should be noted, however, that while lower variability of the conditional distributions is
a necessary condition for defining a regression dependence order, it is not sufficient. As the
details will be given later in section 3, we only mention here that the choice of the variabil-
ity order cannot be arbitrary, but should take into account the two extremes of regression
dependence, namely, independence and almost sure functional dependence. We will show that
the most common variability orders lead indeed to regression orders.

In section 4, we introduce a new non-parametric measure of regression dependence, study
its properties and demonstrate its advantages over the correlation ratio. Besides being mono-
tone in the new regression orders, the measure possesses several appealing properties. For
instance, it takes on its minimum if and only if X and Y are independent, and its maximum
if and only if Y is almost surely (a.s.) a Borel function of X.

Two estimates of the new dependence measure are introduced in section 5 and their asymp-
totic properties are investigated. Finally, section 6 contains a small simulation study which
shows that the proposed estimates have a reasonable performance for moderate sample size.

2. Notation and preliminaries

This section introduces the notation and states some technical facts which will be needed in
the sequel. Except for the results on univariate variability orders, attention is restricted to the
set � of all bivariate distribution functions with continuous marginal distribution functions,
as well as the set X of all bivariate random vectors with distribution functions in F. For
(X , Y ) ∈X, FX ,Y ∈F denotes its joint distribution function with marginal distribution func-
tions FX and FY , respectively, while FY |X =x denotes the conditional distribution function of
Y given X =x. For the probability integral transformations of (X , Y )∈X, we shall write

U :=FX (X ) and V :=FY (Y ).

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.



Scand J Statist Copula-based non-parametric measure 3

Thus, U and V have uniform distributions on the closed unit interval [0, 1], which will be
denoted by I. The notation FU ,V and FV |U =u will be used for joint and conditional distri-
bution of (U , V ) and V given U =u, respectively. The first result describes the two extreme
cases of regression dependence for (X , Y ) in terms of (U, V ).

Proposition 1. For any (X , Y )∈X, the following are true:

(i) X and Y are independent if and only if U and V are independent.
(ii) U and V are independent if and only if FV |U =u =FV for almost all u.

(iii) Y is a.s. a Borel function of X if and only if V is a.s. a Borel function of U.
(iv) V is a.s. a Borel function of U if and only if FV |U =u is degenerate for almost all u.

Proof. (i) and (ii) are obvious. As for (iii), since FX is continuous, Y = f ◦ X a.s. implies
Y = f ◦F −1

X ◦FX ◦X a.s., so that V =g ◦U a.s. with the measurable function g :=FY ◦ f ◦F −1
X ;

conversely, if V =g ◦ U we set f : =F −1
Y ◦ g ◦ FX . Finally, (iv) follows from the observation

that V = f (U ) is equivalent to the fact that the graph of f is measurable and has probability
one, i.e.

1=
∫

I 2
1grf (u, v) dFU ,V (u, v)=

∫
I

∫
I

1grf (u, v) dFV |U =u(v) dFU (u).

This is equivalent to FV |U =u being degenerate for almost all u.
Since we work with the probability integral transformations, the concept of copulas is

tailored for our approach. Formally, a bivariate copula (or briefly, a copula) is the restric-
tion to I 2 of a bivariate distribution function with uniform marginals on I. In fact, the unique
copula CX ,Y of (X , Y )∈X coincides with FU ,V on I 2. In particular, the copula corresponding
to independent variables is the product copula P(u, v)=uv.

Denote by C the set of all copulas, and by ∂iC the partial derivative of C ∈C with respect
to the ith variable. The following properties of copulas are easy consequences of the defini-
tion; for a proof see, e.g. Nelson (2006).

Proposition 2. For any C ∈C, the following statements are true:

(i) C is Lipschitz continuous; more precisely, for all (u1, v1), (u2, v2)∈ I 2 we have

|C(u2, v2)−C(u1, v1)|≤ |u2 −u1|+ |v2 − v1|.
(ii) For each v∈ I , ∂1C(u, v) exists for almost all u ∈ I ; similarly, for each u ∈ I , ∂2C(u, v)

exists for almost all v∈ I . Moreover, the partial derivatives satisfy

0≤∂iC ≤1

for i =1, 2 wherever they are defined.

Remark 1. (i) Note that the Lipschitz continuity implies that a copula is absolutely con-
tinuous in each argument, so that it can be recovered from any of its partial derivatives by
integration.

(ii) In fact, we have 0≤∂iC ≤1 for i =1, 2 Lebesgue almost everywhere (a.e.) on I 2 since,
as Lipschitz continuous functions, copulas are differentiable Lebesgue a.e. in view of
Rademacher’s Theorem (Evans, 1998). Moreover, by Evans (1998, theorem 5.8.4), we
also have ∂iC ∈Lp(I 2, R) with p≥1.

There is a relationship between the conditional distribution FV |U =u and the corresponding
copula CX ,Y , which is given by

FV |U =u(v)=∂1CX ,Y (u, v) (1)

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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wherever the partial derivative exists (Nelson, 2006). Moreover, we have the following result
related to proposition 1.

Proposition 3. For any (X , Y )∈X, the following are true:

(i) X and Y are independent if and only if ∂1CX ,Y (u, v)= v for Lebesgue almost all (u, v)∈ I 2.
(ii) Y is a.s. a Borel function of X if and only if ∂1CX ,Y (u, v)∈{0, 1} for Lebesgue almost

all (u, v)∈ I 2.

Proof. The first statement follows from remark 1 (i), while the second is a consequence of
Darsow et al. (1992, theorem. 11.1) and Siburg & Stoimenov (2010, theorem. 4.2).

Since our approach to ordering regression dependence employs the variability of the condi-
tional distribution functions, the rest of this section deals with stochastic orders that compare
the variability or dispersion of two arbitrary random variables X and Y (or their univariate
distributions FX and FY ); we refer to Müller & Stoyan (2002) and Shaked & Shanthikumar
(2007) for a detailed study of stochastic orders.

Probably, the most common variability order is the convex order. X is smaller than Y in
the convex order (denoted as X ≤cx Y ) if

E[�(X )]≤E[�(Y )] (2)

for all convex functions � : R → R, provided the expectations exist. Depending on the con-
text, i.e. whether working with random variables or distribution functions, we write X ≤cx Y
or FX ≤cx FY . This order reflects the intuitive idea that convex functions take on their
(relatively) larger values over regions of the form (−∞, a)∪ (b, ∞) for a < b. Therefore, if (2)
holds, Y is more variable (or more dispersed) than X. The next result is a direct consequence
of (2).

Proposition 4. Let X and Y be two random variables. If X ≤cx Y , then E[X ]=E[Y ] and
Var[X ]≤Var[Y ].

As can be seen from proposition 4, only random variables with the same expectations can
be compared. When X and Y have finite expectations, we can use the convex order to de-
fine a location-free variability order. Namely, we call X smaller than Y in the dilation order
(denoted as X ≤dil Y ) if

X −E[X ]≤cx Y −E[Y ]. (3)

Corollary 1. Let X and Y be two random variables. If X ≤dil Y, then Var[X ]≤Var[Y ].

Another important location-free variability order is the dispersive order. FX is smaller than
FY in the dispersive order (denoted as FX ≤disp FY ) if

F −1
X (b)−F −1

X (a)≤F −1
Y (b)−F −1

Y (a) (4)

for all 0 < a ≤b < 1. As noted in Shaked & Shanthikumar (2007), it is conceptually clear that
this order compares the variability of FX and FY because it requires the difference between
any two quantiles of FX to be smaller than the corresponding quantiles of FY .

The next result shows the relation between the orders ≤disp and ≤dil; compare Shaked &
Shanthikumar (2007, theorem. 3.B.16).

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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Proposition 5. Let X and Y be two random variables with finite expectations. Then X ≤disp Y
implies X ≤dil Y .

3. Regression dependence orders

The fundamental idea to introduce an order of regression dependence on X (respectively F)
is to compare the variability of the conditional distributions, since low and high dispersion is
tantamount to high and low predictability, respectively. However, as discussed in the intro-
duction, a comparison of two elements of X with arbitrary marginals is possible only after
their transformation to the same Fréchet class which can be accomplished using the prob-
ability integral transformations. Essentially, a random vector (X , Y ) ∈ X is less regression
dependent than another random vector (X̃ , Ỹ )∈X if FṼ |Ũ =u is less variable (in some univar-
iate variability order) than FV |U =u for almost all u. More precisely, we adopt the following
definition.

Definition 1. A relation � on X (or F) is a regression dependence order (RDO) if it is reflexive
and transitive, and satisfies the following:

(O1) (X , Y ) � (X̃ , Ỹ ) implies FṼ |Ũ =u ≤• FV |U =u for almost all u ∈ I , where ≤• is a uni-
variate variability order.

(O2) If Y is a.s. a Borel function of X, and if (X , Y ) � (X̃ , Ỹ ), then Ỹ is a.s. a Borel
function of X̃ .

(O3) If X and Y are independent, and if (X̃ , Ỹ )� (X , Y ), then X̃ and Ỹ are independent.

Property (O1) indicates that an RDO is always associated to a given variability order.
Therefore, a relation � satisfying (O1) with respect to the univariate variability order ≤•
will be denoted by �•.

Conditions (O2) and (O3) deal with the two extreme cases. Since almost sure functional
dependence is equivalent to perfect predictability of Y from X, the corresponding distribution
must have the greatest regression dependence possible. Consequently, any distribution which
is more dependent must also correspond to almost sure functional dependence; hence (O2).
Similarly, the least dependent situation is given when X and Y are independent. Hence, any
less dependent distribution must be again the distribution of independent random variables,
which is expressed in (O3).

In view of condition (O1), probably the easiest way to construct an RDO is to choose
some variability order ≤•, define (X , Y )� (X̃ , Ỹ ) if and only if FṼ |Ũ =u ≤• FV |U =u for almost
all u ∈ I , and check whether conditions (O2) and (O3) are satisfied. In fact, since no distri-
bution is less dispersed than a degenerate one, (O2) should always be satisfied in view of
proposition 1, and it remains to prove (O3).

It is important to note that an RDO corresponding to a variability order which is not
location-free (e.g. the convex order ≤cx) is unnecessarily restrictive, for then only distri-
butions with the same regression function can be compared. However, since we want to
compare the strength of regression dependence with respect to possibly different regression
functions, we will consider location-free orders only. Amongst them, the dilation order ≤dil

and the dispersive order ≤disp are the most important and common ones. The next result
states that the corresponding relations �dil and �disp are indeed RDOs.

Theorem 1. The relations �dil and �disp are RDOs.

Proof. In view of proposition 5, we need only prove (O2) and (O3) for the relation �dil. It
is clear from corollary 1 that �dil satisfies (O2). In order to prove (O3), we may, in view of

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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proposition 1, restrict to considering U and V instead of X and Y. Assuming that (Ũ , Ṽ )�dil

(U , V ) with independent U and V, we conclude from corollary 1 that

Var[Ṽ | Ũ =u]≥ 1
12

(5)

for almost all u. By the law of total variance, we obtain equality in (5), as well as

E[Ṽ | Ũ =u]=E[Ṽ ]= 1
2

(6)

for almost all u. From (6) and (5) it follows that, for almost all u, FV |U =u ≤cx FṼ |Ũ =u with
equal variances. But then both distributions are the same (Shaked & Shanthikumar, 2007,
theorem. 3.A.42). This proves (O3), and hence the theorem.

4. Measures of regression dependence

We now turn to the subject of how to measure the degree of regression dependence in the set
X (or F). It is clear that without specifying an RDO any discussion of measures of regression
dependence is problematic. We adopt the following definition.

Definition 2. Let � be an arbitrary RDO. A function � : X→ [0, 1] is a measure of regression
dependence (MRD) with respect to � if it satisfies the following conditions:

(M1) (X , Y )� (X̃ , Ỹ ) implies �(X , Y )≤�(X̃ , Ỹ );
(M2) �(X , Y )=1 if and only if Y is a.s. a Borel function of X ;
(M3) �(X , Y )=0 if and only if X and Y are independent.

Remark 2. Alternatively, � can also be defined as a functional on F, and we sometimes
write �(FX ,Y ) instead of �(X , Y ).

Condition (M1) is the usual monotonicity property required by any measure of depen-
dence. (M2) and (M3) concern the two extreme cases of regression dependence. We point
out how strong both conditions are – in fact, a measure of dependence satisfying (M2) and
(M3) has not yet been proposed in the literature. For instance, (M2) is much stronger than
Rényi’s corresponding postulate in Rényi (1959), according to which a measure of depen-
dence should take on its maximal value 1 if one of X and Y is a.s. a function of the other.
What is more, Rényi mentioned that it is natural to pose an ‘only if ’ requirement, but since
the condition was rather restrictive, it was better to leave it out. With respect to (M3), we
point out that the well-known correlation ratio is not a MRD in the sense of Definition 2
because it attains its minimum at 0 not only when X and Y are independent; examples are
presented later in this section.

We now turn to the construction of a non-parametric MRD. The following is the main
result in this section.

Theorem 2. The function r :X→ [0, 1] defined by

r(X , Y )=6
∫ 1

0

∫ 1

0
FV |U =u(v)2 dv du −2 (7)

is an MRD concurring with both �dil and �disp.

Remark 3. Note that in view of (1), we have

r(X , Y )=6‖∂1CX ,Y ‖2
2 −2, (8)

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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where ‖ · ‖2 denotes the L2-norm on I 2. By remark 1(ii), this shows that r is indeed well
defined. Moreover, r can also be viewed as a functional on the set of copulas C, and we
write r(CX ,Y )= r(X , Y ).

In order to prove theorem 2, we make use of the following result.

Lemma 1. For any CX ,Y ∈ C, we have ‖∂1CX ,Y ‖2
2 ∈ [1/3, 1/2]. Moreover, the following asser-

tions hold:

(i) ‖∂1CX ,Y ‖2
2 =1/3 if and only if X and Y are independent.

(ii) ‖∂1CX ,Y ‖2
2 =1/2 if and only if Y is a.s. a Borel function of X.

Proof.
(i) Consider the inequality

0≤
∫ 1

0

∫ 1

0
(∂1CX ,Y (u, v)− v)2 du dv=

∫ 1

0

∫ 1

0
(∂1CX ,Y (u, v))2 du dv− 1

3
.

Hence, ‖∂1CX ,Y ‖2
2 ≥1/3 with equality if and only if ∂1CX ,Y (u, v)= v Lebesgue a.e. on

I 2, which by proposition 3(i) is equivalent to the independence of X and Y.
(ii) By theorem 2(ii), we have 0≤∂1CX ,Y ≤1 and thus (∂1CX ,Y )2 ≤∂1CX ,Y , with equality

if and only if ∂1CX ,Y ∈{0, 1}. Consequently,

‖∂1CX ,Y ‖2
2 ≤
∫ 1

0

∫ 1

0
∂1CX ,Y (u, v) du dv= 1

2

with equality if and only if ∂1CX ,Y ∈{0, 1} Lebesgue a.e. in I 2, which by proposition
3(ii) is equivalent to Y being a.s. a Borel function of X.

We will also make use of the following representation formula for univariate distribution
functions whose support is contained in I. The proof uses integration by parts for Lebesgue–
Stieltjes integrals (Hewitt & Stromberg, 1975, theorem. 21.67) and is omitted.

Lemma 2. Let F be a univariate distribution function with support in I. Then

2
∫ 1

0

∫ p

0
F −1(t) dt dp−

∫ 1

0
F −1(t) dt =

∫ 1

0
F (v)2 dv−

∫ 1

0
F (v) dv.

We now turn to the proof of the theorem.

Proof of theorem 2. The property 0≤ r(X , Y )≤1, as well as the conditions (M2) and (M3),
are immediately implied by lemma 1.

It remains to show the monotonicity condition (M1); in view of proposition 5, it suffices
to prove it for the RDO �dil. Ramos & Sordo (2003) showed that two univariate distribution
functions F and G with finite expectations satisfy F ≤dil G if and only if, for all v∈ [0, 1],∫ v

0
F −1(t) dt − v

∫ 1

0
F −1(t) dt ≥

∫ v

0
G−1(t) dt − v

∫ 1

0
G−1(t) dt. (9)

Now assume that (X , Y ) �dil (X̃ , Ỹ ) so that FṼ |Ũ =u ≤dil FV |U =u for almost all u ∈ I . Then,
integrating (9) over v we obtain∫ 1

0

∫ v

0
F −1

Ṽ |Ũ =u
(t) dt dv− 1

2

∫ 1

0
F −1

Ṽ |Ũ =u
(t) dt ≥

∫ 1

0

∫ v

0
F −1

V |U =u(t) dt dv− 1
2

∫ 1

0
F −1

V |U =u(t) dt

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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for almost all u ∈ I . Applying lemma 2 we find that, for almost all u,∫ 1

0
FṼ |Ũ =u(v)2 dv−

∫ 1

0
FṼ |Ũ =u(v) dv≥

∫ 1

0
FV |U =u(v)2 dv−

∫ 1

0
FV |U =u(v) dv.

Integrating this over u ∈ I , substituting ∂1CX ,Y (u, v) for FV |U =u(v) by (1), and using∫ 1
0

∫ 1
0 ∂1CX ,Y (u, v) dv du =1/2 for all CX ,Y ∈C, we obtain

‖∂1CX̃ , Ỹ ‖2
2 =
∫ 1

0

∫ 1

0
(∂1CX̃ , Ỹ (u, v))2 dv du ≥

∫ 1

0

∫ 1

0
(∂1CX ,Y (u, v))2 dv du =‖∂1CX ,Y ‖2

2.

Since, by remark 3, r(X , Y )=6‖∂1CX ,Y ‖2
2 −2, this proves (M1) and hence the theorem.

Proposition 6. If f, g : R→R are strictly monotone functions then

r(f (X ), g(Y ))= r(X , Y ).

Proof. We distinguish four different cases. If f and g are both increasing, it is well known
(Nelsen, 2006, theorem 2.4.3) that

Cf (X ),g(Y ) =CX ,Y ,

which immediately implies r(f (X ), g(Y ))= r(X , Y ). If f is increasing and g is decreasing, then
(Nelsen, 2006, theorem 2.4.4)

Cf (X ),g(Y )(u, v)=u −CX ,Y (u, 1− v).

Therefore, we conclude ‖∂1Cf (X ),g(Y )‖2
2 =‖∂1CX ,Y ‖2

2, which again implies r(f (X ), g(Y ))=
r(X , Y ). If f is decreasing and g is increasing, the result follows from interchanging f and g in
the previous case. The final case when f and g are both decreasing can be shown
similarly.

The following example illustrates the behaviour of the MRD r as a function of the copula
parameter for some well-known one-parameter copula families.

Example 1. (a) Let Ca denote the Gaussian copula with parameter a ∈ [−1, 1]. Since the
Gaussian copula is positively ordered with respect to a, i.e. it is monotone in the standard
concordance order, and C0 corresponds to independence, it is not surprising that r(Ca) is an
increasing function of |a| as depicted in Fig. 1A. Moreover, for a ∈{−1, 1}, we have almost
sure functional dependence and, thus, r =1.

(b) Consider the Farlie–Gumbel–Morgenstern (FGM) family of copulas, defined by
Ca(u, v)=uv+auv(1−u)(1−v) with a∈ [−1, 1]. As in the previous example, the FGM family
is positively ordered and C0 characterizes independent random variables. In particular, we
obtain r(Ca)=a2/15; see Fig. 1B. However, as mentioned in Nelsen (2006), FGM copulas
can only model relatively weak positive dependence, which explains intuitively the low values
of r.

(c) A plot of r as a function of the parameter of the Frank copula

Ca =−1
a

ln
(

1+ (e−au −1)(e−av −1)
e−a −1

)
with a ∈ (−∞, ∞)\{0} is presented in Fig. 1C.

(d) Finally, consider the Gumbel copula, given by

Ca = uv e−a ln u ln v

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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A B

C D

Fig. 1. The measure of regression dependence (MRD) r as a function of the parameter a of the four
parametric copula families in example 1.

with a ∈ (0, 1]. By direct calculation we obtain

r(Ca)= 3
4a

e
3

2a E1

(
3

2a

)
+ a

3
− 1

2
,

where E1(x) :=∫ ∞
1 e−xs/s ds is the exponential integral; see Fig. 1D.

We now turn attention to another quantity that might seem a natural choice for an MRD,
namely the correlation ratio of the probability integral transformations. Define the functional
�̃ :X→R by

�̃(X , Y )2 :=�(U , V )2 = Var[E[V |U ]]
Var[V ]

=1− E[Var[V |U ]]
Var[V ]

. (10)

Since Var[V ]=1/12, it follows that

�̃(X , Y )2 =12 Var[E[V |U ]].

In fact, the ordering of regression dependence suggested in Dabrowska (1981, section 3.1)
is an ordering by correlation ratios and therefore is not consistent with our approach to
RDOs. Moreover, neither the correlation ratio of Y on X nor the related measure �̃(X , Y )2

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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are MRDs in the sense of definition 2, because (M3) will not be satisfied. Indeed, it follows
from propositions 5 and 4 that �̃ is monotone with respect to both �disp and �dil; in addi-
tion, �̃(X , Y )=1 if and only if Y is a.s. a Borel function of X. However, �̃ does not satisfy
condition (M3) because there are random variables X and Y with �̃(X , Y )=0, which are not
independent; we give two such examples.

Example 2. Consider X and Y whose probability integral transformations U and V have
the singular distribution with the support depicted in Fig. 2A. The support is the union
of the main and secondary diagonal in I 2, so that probability mass 1/2 is uniformly distri-
buted on each line segment. For every u∈ I , the resulting conditional distribution FV |U =u is a
two-point distribution at v=u and v=1−u and, thus, E[V |U =u]=1/2. Consequently, the
conditional expectation E[V |U ] is degenerate and its variance Var[E[V |U ]] vanishes, which
means that �(U , V )= �̃(X , Y )=0. However, U and V and, thus, X and Y are not indepen-
dent.

Example 3. Another situation where �̃(X , Y )=0 but X and Y are not independent is given
when FX ,Y is the circular uniform distribution. It is well known that in this case the ordinary
correlation ratio �(X , Y ) vanishes. The same is true for the related measure �̃(X , Y ) since in
this case FU ,V is a degenerate distribution whose support is given in Fig. 2B (Nelsen, 2006,
section 3.1.2). The arguments are analogous to those in the previous example.

5. Non-parametric estimation of r

In this section, we present a sample version of the MRD defined in (8). As pointed out
in remark 3, r is a function of the copula CX ,Y alone. CX ,Y can be consistently estimated
by the empirical copula (Deheuvels, 1979; Fermanian et al., 2004). However, the empirical
copula is locally constant and, thus, the estimation of r is more involved since it requires
the estimation of the copula’s partial derivative. The need for differentiability calls for a
s smooth (differentiable) estimation of the copula, e.g. with a kernel-based technique.

For this purpose let (X1, Y1), . . .(Xn, Yn) denote i.i.d. random variables with distribution
function F and copula C, let K denote a symmetric kernel with compact support, say [−1, 1],
with corresponding cumulative distribution function

A B

Fig. 2. Examples of �̃(X , Y )=0 where X and Y are not independent.
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K̄ (x)=
∫ x

−∞
K (t) dt.

As an estimate for the partial derivative of the copula �(u, v)=∂1C(u, v) we use

�̂n(u, v)= 1
nh1

n∑
i =1

�

(
u − F̂ n1(Xi)

h1
,

v− F̂ n2(Yi)
h2

)
, (11)

where F̂ n1 and F̂ n2 denote the empirical distribution functions of X1, . . ., Xn and Y1, . . ., Yn,
respectively, h1, h2 denote bandwidths converging to 0 with increasing sample size and
�(x, y)=K (x)K̄ (y). Note that �̂n is an integrated version of the estimate for the copula den-
sity considered in Fermanian (2005). Intuitively, we have for large sample size

E[�̂n(u, v)]≈ 1
h1

∫
�

(
u −FX (x)

h1
,

v−FY (y)
h2

)
dF (x, y)

= 1
h1

∫ 1

0

∫ 1

0
�

(
u − s

h1
,

v− t
h2

)
c(s, t) ds dt

=
∫ 1

0
K̄
(

v− t
h2

)
c(u, t) dt · (1+o(1))

=
∫ v

0
c(u, t) dt · (1+o(1))=∂1C(u, v)(1+o(1)),

where FX , FY denote the marginal distributions of (X1, Y1) and c(s, t) is the copula density.
The following result makes these heuristic arguments more precise and gives a corresponding
statement for the integrated version of �̂n(u, v)

�̂2
n =
∫ 1

0

∫ 1

0
�̂2

n(u, v) du dv, (12)

which will serve as an estimate for the quantity

�2 =
∫ 1

0

∫ 1

0
‖∂1C(u, v)‖2

2 du dv.

The estimate of the measure r defined in (8) is finally given by

r̂n =6�̂2
n −2. (13)

The next results show that �̂2
n and r̂n are asymptotically normal distributed.

Theorem 3. Assume that the copula C(u, v) is three and two times continuously differen-
tiable with respect to the variable u and v, respectively. If the kernel K is symmetric, two
times continuously differentiable with compact support and the bandwidths h1 and h2 satisfy

nh3
1 −→∞; nh1h2 −→∞; nh4

1 −→0; nh4
2 −→0 (14)

then

√
n(r̂n − r) D−→N (0, 144�2),

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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where

�2 =
∫

[0,1]3
�(s, v∧w)�(s, v)�(s, w) ds dv dw+ 1

2

(∫
[0,1]2

�2(u, v) du dv
)2

+ 1
4

∫
[0,1]4

∂1�
2(x1, y1)∂1�

2(x2, y2)(x1 ∧x2 −x1x2) dx1 dy1 dx2 dy2

+ 1
4

∫
[0,1]4

∂2�
2(x1, y1)∂2�

2(x2, y2)(y1 ∧y2 −y1y2) dx1 dy1 dx2 dy2

−
∫

[0,1]3
�2(x1, v)�2(x1, w) dx1 dv dw

−
∫

[0,1]4
I{y1 ≤w}�(x1, w)�2(u, y1)∂2�(x1, y1) du dw dx1 dy1

+ 1
2

∫
[0,1]4

�2(x1, v)�2(u, y1)∂2�(x1, y1) du dv dx1 dy1. (15)

Proof. The assertion follows from (13) and the weak convergence
√

n(�̂2
n − �2) D−→N (0, 4�2). (16)

Recalling the definition of �̂n(u, v) and �̂2
n in (11) and (12) and using the notation

(�h1,h2 *c)(u, v)= 1
h1

∫
[0,1]2

�

(
u −u1

h1
,

v− v1

h2

)
c(u1, v1) du1 dv1

we obtain the decomposition

�̂2
n =B1n +2B2n +B3n, (17)

where

B1n =
∫

[0,1]2
(�̂n −�h1,h2 *c)2(u, v) du dv,

B2n =
∫

[0,1]2
(�̂n −�h1,h2 *c)(u, v) · (�h1,h2 *c)(u, v) du dv,

B3n =
∫

[0,1]2
(�h1,h2 *c)2(u, v) du dv.

Arguments similar to the ones in Fermanian (2005) show that

B1n =Op

(
1

n
√

h1

)
=op

(
1√
n

)
, (18)

while standard arguments (using the differentiability of the copula) yield

B3n = �2 +O(h2
1), (19)

B2n = B̂2n(1+op(1)), (20)

where the quantity B̂2n is defined by

B̂2n =
∫

[0,1]2
(�̂n −�h1,h2 *c)(u, v) · �(u, v) du dv.

In addition, we obtain

B̂2n − B̃2n −C1n −C2n =oP

(
1√
n

)
, (21)
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where the random variables C1n and C2n are defined by

C1n = 1
nh2

1

∫ 1

0

∫ 1

0

n∑
i =1

K ′
(

u −FX (Xi)
h1

)
K̄
(

v−FY (Yi)
h2

)
�(u, v) du dv

× (F̂ n1(Xi)−FX (Xi)),

C2n = 1
nh1h2

∫ 1

0

∫ 1

0

n∑
i =1

K
(

u −FX (Xi)
h1

)
K
(

v−FY (Yi)
h2

)
�(u, v) du dv

× (F̂ n2(Yi)−FY (Yi))

and where the statistic B̃2n is obtained from B̂2n by replacing the empirical distribution func-
tion F̂ n1 and F̂ n2 by their theoretical counterparts FX and FY , respectively, that is

B̃2n =
∫

[0,1]2
(�̃n −�h1,h2 *c)(u, v) · �(u, v) du dv

with

�̃n(u, v)= 1
nh1

n∑
i =1

�

(
u −FX (Xi)

h1
,

v−FY (Yi)
h2

)
. (22)

A standard calculation shows that∫
[0,1]2

�̃n(u, v)�(u, v) du dv= 1
nh1

n∑
i =1

∫
[0,1]2

�

(
u −FX (Xi)

hi
,

v−FY (Yi)
h2

)
�(u, v) du dv

= 1
n

n∑
i =1

∫ 1

0
�(FX (Xi), w)I{w≥FY (Yi)} dw · (1+op(1))

= C̃0n · (1+op(1)), (23)

where we have used the assumption (14) and the last line defines the random variable C̃0n in
an obvious manner. By an approximation of a sum of conditional expectations, we obtain

C1n = (1+op(1))
n2h2

1

∑
i /=k

∫
[0,1]2

K ′
(

u −FX (Xi)
h1

)
K̄
(

v−FY (Yi)
h2

)
× (I{Xk ≤Xi}−FX (Xi))�(u, v) du dv

= (1+op(1))
nh2

1

n∑
k =1

∫
[0,1]2

E
[

K ′
(

u −FX (X )
h1

)
K̄
(

v−FY (Y )
h2

)
× (I{Xk ≤X}−FX (X )) |Xk

]
�(u, v) du dv

= (1+op(1))
nh2

1

n∑
k =1

∫
[0,1]4

(I{FX (Xk)≤x1}−x1)K ′
(

u −x1

h1

)
K̄
(

v−y1

h2

)
× �(u, v)c(x1, y1) du dv dx1 dy1

=− (1+op(1))
n

n∑
k =1

∫
[0,1]3

(I{FX (Xk)≤x1}−x1)K̄
(

v−y1

n2

)
×∂1�(x1, v)c(x1, y1) dv dx1 dy1

=− (1+op(1))
n

n∑
k =1

∫
[0,1]2

(I{FX (Xk)≤x1}−x1) ∂1�(x1, w)�(x1, w) dx1 dw

= (1+op(1)) · C̃1n,
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where (X , Y )∼F is independent of (Xi , Yi)n
i =1 and the last identity defines C̃1n in an obvious

manner. Similar arguments yield

C2n = (1+op(1))C̃2n

where

C̃2n = 1
n

n∑
k =1

∫ ∫
(I{FY (Yk)≤y1}−y1)∂2�(x1, y1)�(x1, y1) dx1 dy1.

Obviously, C̃0n, C̃1n and C̃2n are of order Op(1/
√

n) and observing (17), (18) and (19)–(23)
now yields

√
n(�̂2

n − �2)=2
√

n(C̃0n − �2 + C̃1n + C̃2n)+oP(1). (24)

The assertion can now be proved by showing the asymptotic normality of

√
n(C̃0n − �2 + C̃1n + C̃2n)= 1√

n

n∑
i =1

(Xni −E[Xni ]) (25)

with

Xni =
∫ 1

0
I{w≥FY (Yi)}�(FX (Xi), w) dw

+
∫

[0,1]2
I{FX (Xi)≤u}∂1�(u, v)�(u, v) du dv

+
∫

[0,1]2
I{FY (Yi)≤ v}∂2�(u, v)�(u, v) du dv

=X (1)
ni +X (2)

ni +X (3)
ni (26)

(i =1, . . ., n), where the last identity defines the random variables in an obvious manner. The
expectation of X (1)

ni is given by

E[X (1)
ni ]=

∫
[0,1]3

I{w≥y1}�(x1, w)c(x1, y1) dy1 dx1 dw=
∫

[0,1]2
�2(u, v) du dv,

where we have used the fact that
∫ 1

0

∫ w

0 c(x1, y1) dy1 dx1 =∫ 1
0 �(x1, w) dx1. Similarly, the

second moment is obtained as

E[(X (1)
n1 )2]=

∫
[0,1]3

�(s, v∧ ṽ)�(s, v)�(s, ṽ) ds dv dṽ,

which yields

Var(X (1)
n1 )=

∫
[0,1]3

�(s, v∧w)�(s, v)�(s, w) ds dv dw−
(∫

[0,1]2
�2(u, v) du dv

)2

.

By an analogous calculation, we have

E[X (2)
ni ]= 1

2

∫
[0,1]2

(�2(1, y1)− �2(x1, y1)) dx1 dy1 = 1
2

∫
[0,1]2

y1∂2�
2(x1, y1) dx1 dy1,

Var(X (2)
ni )= 1

4

∫
[0,1]4

(x1 ∧x2 −x1x2)∂1�
2(x1, y1)∂1�

2(x2, y2) dx1 dy1 dx2 dy2

and for the covariance it follows by a similar calculation that

2 Cov(X (1)
ni , X (2)

ni )=−
∫

[0,1]3
�2(x1, v)�2(x1, w) dx1 dv dw+

(∫
[0,1]2

�2(x1, y1) dx1 dy1

)2

.
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For the remaining variances and covariances, we obtain

Var(X (3)
ni )= 1

4

∫
[0,1]4

(y1 ∧y2 −y1y2)∂2�
2(x1, y1)∂2�

2(x2, y2) dx1 dy1 dx2 dy2,

2 Cov(X (1)
ni , X (3)

ni )=−
∫

[0,1]4
�2(u, y1)�(x1, w)∂2�(x1, y1)I{y1 ≤�}dx1 dy1 du dw

+
(∫

[0,1]2
�2(x1, y1) dx1 dy1

)4

,

4 Cov(X (2)
ni , X (3)

ni )=
∫

[0,1]4
�2(x3, y1)�2(x2, y3) dy1 dx2 dx3 dy3

−
(∫

[0,1]2
�2(x1, y1) dx1 dy1

)4

.

This gives for the variance of XniVar(Xni)=�2, where �2 is defined in (15). The asymptotic
normality in (16) now follows from (24) and Ljapunoff’s Theorem, which yields

√
n(C̃0n + C̃1n + C̃2n) D−→N (0, �2).

Remark 4. Note that it follows from lemma 1 that the random variables X and Y are
independent if and only if r =0. In this case, we have �(u, v)= v and the asymptotic vari-
ance in theorem 3 simplifies, substantially. More precisely, one obtains by a straightforward
calculation that �2 =52/5 and by theorem 3 an asymptotic level � test for the hypothesis of
independence is obtained by rejecting the null hypothesis whenever

|√nr̂n|> u1−�/2

√
52/5,

where u1−�/2 denotes the 1−�/2 quantile of the standard normal distribution.

Remark 5. Theorem 3 can be generalized to dependent data under suitable mixing proper-
ties of the data generating process (Fermanian & Scaillet, 2003, assumptions 3 and 4). The
details are omitted for the sake of brevity.

Remark 6. Theorem 3 remains correct on subsets of the form [	, 1−	]2 ⊂ [0, 1]2. This obser-
vation is of importance, because some of the commonly used copula models do not satisfy
the assumptions of theorem 3 on the full square [0, 1]2. From a practical point of view, the
calculation of the measure �2

n on [	, 1−	]2 for sufficiently small 	> 0 is obviously sufficient.

6. Finite sample properties

6.1. Simulation results

In this section, we present a simulation study of the finite sample properties of the proposed
estimate and illustrate its performance in a data example. We begin with the study of the bias,
variance and mean squared error of the estimate in the case, where the underlying copula is
the Gaussian and the Clayton copula, that is

C(u, v)=�
,2(�−1(u), �−1(u)); 
∈ [−1, 1] (27)

C(u, v)= (u−
 + v−
 −1)−1/
; 
≥0, (28)

where � and �
,2 denote the cdf of a one-dimensional standard normal and a centred two-
dimensional normal distribution function with correlation 
 (and variances equal to 1). In
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Table 1. Simulated mean squared error of the estimate (13), when the
underlying copula is the Clayton copula defined in (28) with parameter 


n\
 0.0 0.5 1.0 2.0

50 6.961×10−3 6.981×10−3 8.327×10−3 1.011×10−2

100 2.926×10−3 3.352×10−3 3.774×10−3 5.331×10−3

200 1.341×10−3 1.605×10−3 1.841×10−3 2.401×10−3

Table 2. Simulated bias of the estimate (13), when the underlying copula
is the Clayton copula defined in (28) with parameter 


n\
 0.0 0.5 1.0 2.0

50 4.071×10−2 4.056×10−2 3.703×10−2 3.805×10−2

100 2.518×10−2 2.497×10−2 2.553×10−2 2.238×10−2

200 1.598×10−2 2.098×10−2 1.439×10−2 1.151×10−2

Table 3. Simulated variances of the estimate (13), when the underlying
copula is the Clayton copula defined in (28) with parameter 


n\
 0.0 0.5 1.0 2.0

50 5.303×10−3 5.344×10−3 6.956×10−3 9.967×10−3

100 2.294×10−3 2.769×10−3 3.123×10−3 4.475×10−3

200 1.093×10−3 1.348×10−3 1.633×10−3 2.269×10−3

order to address the problem of boundary effects in the statistic �̂n, we have adapted the esti-
mate investigated recently in Chen & Huang (2007) and Omelka et al. (2009) to our problem.
To be precise, we have used the statistic

�̂(LLS)
n (u, v)= 1

b(u)h1n

n∑
i =1

Ku,h1

(
u − F̂ m1(Xi)

b(u)h1

)
K̄ v,h2

(
v− F̂ n2(Yi)

b(v)h2

)
,

as an estimate of �(u, v)=∂1C(u, v) where b(w)=min{√
w,

√
1−w} and the kernel Ku,h1 is

defined by

Ku,h1 (x)= K (x){a2(u, h1)−a1(u, h1)x}
a0(u, h1)a2(u, h1)−a2

1(u, h1)
I
{

u −1
h1

< x <
u
h1

}
with

a`(u, h1)=
∫ u/h1

(u−1)/h1

t`K (t) dt; `=0, 1, 2.

Note that �̂(LLS)
n is a local linear estimate, where the bandwidth function ‘shrinks’ the value

of the bandwidth close to zero at the corners of the unit square. The estimate �̂2
n is constructed

by (12) replacing �̂n by �̂(LLS)
n , and similar arguments as in Chen & Huang (2007) and Omelka

et al. (2009) show that theorem 5.1(a) remains valid.
In Tables 1, 2 and 3 we present the simulated mean squared error, bias and variances of

the estimate for the sample sizes 50, 100 and 200 for the Clayton copula. These results are
based on 25,000 simulation runs. The bandwidth is chosen as h=n−3/10 and the integral in
the definition of the estimate is calculated over a grid of 49×49 points. The random variables
distributed according to the Clayton copula are generated by the method presented in Cook
& Johnson (1981). We observe that in all cases the measure r is estimated with reasonable
precision. It is worthwhile mentioning that the mean squared error is increasing with the
parameter 
 and that the estimate is less accurate if 
=2.0 (see Table 1). Investigating the
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bias and variance, we observe that the contribution of the variance to the mean squared error
is larger than the contribution of the squared bias and this effect is increasing with 
. For
example, if n=200 the variance contributes 81% to the mean squared error in the case 
=0,
while its contribution is 95% in the case 
=2. It is also notable that the bias is relatively
stable with respect to 
, while the variance is increasing with 
.

The corresponding simulation results for the Gaussian copula in (27) are displayed in
Tables 4, 5 and 6 and show a similar picture. If the correlation coefficient is smaller than
0.9, the main part of the mean squared error can be explained by the variance (between
65% and 90%). On the other hand, if the correlation is given by 
=0.9 the contribution of
the bias is larger (up to 75%). Note also that the estimates are less accurate if 
 is increas-
ing.

In the second part of our numerical study we investigate the approximation by the
normal distribution for moderate sample sizes. In order to obtain a good approximation by
the limit distribution, it is important to have a precise estimate of the limiting variance. For
this purpose, we propose an estimate which is motivated by a careful inspection of the proof
of theorem 3. To be precise, note that by (24) the statistic

√
n(�̂2

n −�2) is asymptotically equiv-
alent to a sum of i.i.d. random variables defined by (25), in particular

Var(
√

n�̂n)≈4 Var(Xni),

where Xni is defined in (26). Therefore, we use the empirical variance of the random variables

Vni = 1
h1

∫
[0,1]2

�

(
u − F̂ n1(Xi)

h1
,

v− F̂ n2(Yi)
h2

)
�̂n(u, v) du dv

+ 1
nh2

1

∑
k /=i

∫
[0,1]2

K ′
(

u − F̂ n1(Xk)
h1

)
K̄

(
v− F̂ n2(Yi)

h2

)
× (I{Xi ≤Xk}− F̂ n1(Xk))�̂n(u, v) du dv

+ 1
nh1h2

∑
k /=i

∫
[0,1]2

K

(
u − F̂ n1(Xk)

h1

)
K

(
v− F̂ n2(Yk)

h2

)
× (I{Xi ≤Xk}− F̂ n2(Yk))�̂n(u, v) du dv (29)

as an estimate for the asymptotic variance of �̂(LSS)
n , that is

�̂2
n = 4

n

n∑
i =1

(Vni −V n·)2. (30)

In Table 7, we show the simulated variances of the statistic
√

n�n and the corresponding
values for the estimate �̂2

n based on 1000 simulation runs. The underlying copula is the
Clayton copula and we observe a reasonable performance of the estimate (30) if the
sample size is larger than 100.

Table 4. Simulated mean squared error of the estimate (13), when the
underlying copula is a Gaussian copula defined in (27) with correlation 


n\
 0.0 0.3 0.6 0.9

50 5.406×10−3 5.855×10−3 8.443×10−3 1.089×10−2

100 2.326×10−3 2.603×10−3 3.959×10−3 5.554×10−3

200 1.183×10−3 1.214×10−3 1.692×10−3 2.471×10−3
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Table 5. Simulated bias of the estimate (13), when the underlying copula
is a Gaussian copula defined in (27) with correlation 


n\
 0.0 0.3 0.6 0.9

50 4.296×10−2 4.281×10−2 4.205×10−2 9.318×10−2

100 2.431×10−2 2.477×10−2 2.441×10−2 6.425×10−2

200 1.513×10−2 1.305×10−2 1.389×10−2 4.813×10−2

Table 6. Simulated variance of the estimate (13), when the underlying
copula is a Gaussian copula defined in (27) with correlation 


n\
 0.0 0.3 0.6 0.9

50 3.561×10−3 4.031×10−3 6.675×10−3 2.207×10−3

100 1.735×10−3 1.989×10−3 3.363×10−3 1.298×10−3

200 9.537×10−4 1.044×10−3 1.499×10−3 1.545×10−4

Table 7. Simulated variances of the statistics
√

n�̂n and �̂2
n defined in (12) and (30), where the underlying

copula is the Clayton copula


=0.0 
=0.5 
=1.0 
=2.0

n
√

n�̂n �̂2
n

√
n�̂n �̂2

n
√

n�̂n �̂2
n

√
n�̂n �̂2

n

50 0.616 0.333 0.523 0.361 0.611 0.483 0.847 0.626
100 0.301 0.279 0.351 0.317 0.417 0.424 0.536 0.527
200 0.289 0.243 0.314 0.287 0.349 0.357 0.514 0.525

In Tables 8 and 9, we show the simulated probabilities

P
(√

n(�̂n − �)
6�̂n

≤u1−�

)
≈1−�, (31)

where u1−� denotes the (1 − �)-quantile of the standard normal distribution. The sample is
n=100 and n=200, the bandwidth is again chosen as h=n−3/10 and the underlying copulas
are the Clayton and Gaussian copula defined in (28) and (27). For the Clayton copula, we
observe a reasonable approximation by the limit distribution in all cases under consideration
(see Table 8). For the Gaussian copula the results are similar, but the approximation is less
accurate in the case 
=0.9 of strong correlation (see Table 9).

Table 8. Simulated probabilities of the form (31) for the Clayton copula

1−� n\
 0.0 0.5 1.0 2.0

90% 100 0.843 0.876 0.895 0.904
200 0.881 0.879 0.889 0.905

95% 100 0.932 0.948 0.961 0.959
200 0.931 0.942 0.951 0.960

Table 9. Simulated probabilities of the form (31) for the Gaussian copula

1−� n\
 0.0 0.3 0.6 0.9

90% 100 0.864 0.871 0.881 0.825
200 0.881 0.885 0.889 0.831

95% 100 0.931 0.937 0.947 0.891
200 0.939 0.941 0.955 0.921
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Fig. 3. Kernel density estimates of 1000 simulated replications of the statistic
√

n(�̂n − �)/(6�̂n) for the
Clayton copula with parameter 
=1. The sample size is n=100 (dotted line), n=200 (dashed line) and
n=1000 (solid line).

Fig. 4. Scatterplot of the household data.

Kernel density estimates of 1000 simulated values of the statistic
√

n(�̂n −�)/6�̂n are shown
in Fig. 3 for sample sizes n=100, 200 and 1000 where the underlying copula is the Clayton
copula with parameter 
=1.

6.2. Data example

In the following paragraph, we provide a brief empirical example investigating the relation-
ship between disposable income of households and the expenditure on food. It is widely ac-
cepted that this relation is highly nonlinear and the usual regression model with the usual
coefficient of determination cannot be applied. In particular, we analyze UK data from the
Family Expenditure Survey, 2000–2001provided by the Office for National Statistics and dis-
tributed by the UK Data Archive. The data consists of pairs of weekly disposable house-
hold income and expenditure on food. In order to concentrate on a homogeneous region,
we consider data with a weekly disposable household income between 500 and 1000 British
pounds. After eliminating obviously incorrect or incomplete records, our data base covers a

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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total number of 1438 observations. A scatter plot of the normal weekly disposable house-
hold income and weekly expenditure on food is shown in Fig. 4. The Pearson correlation
coefficient, Kendall’s tau and Spearman’s rho for these data are given by 0.278, 0.179 and
0.267, respectively. The new measure of regression was calculated with a bandwidth h=0.023
(chosen by cross-validation) and was given by r̂ =0.142. There results indicate a rather weak
dependence between the two variables for the data set under consideration.
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