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Inconsistencies in a schedule of paired comparisons 
BY PATRICK SLATER 

Institute of Psychiatry, The Maudsley Hospital, University of London 

1. THE METHOD, AND THE HYPOTHESES CONCERNING IT 

The method of paired comparison has had a long and honourable history in psychological 
experiments, beginning with the researches of Witmer and Cohn, published in 1894. 
Titchener (1901) described it in detail in one of the earliest text-books on experimental 
psychology and Guilford (1954) devotes a chapter to it in the latest edition of his popular 
text-book. Theoretical investigations of the method, which has applications outside psy- 
chology, still continue to appear, e.g. by David (1959) in this Journal, in technical reports 
by Gulliksen & Tucker (1959) and in a thesis by the author (1960). The authoritative paper 
on the null hypothesis concerning it is the one by Kendall & Babington Smith which 
appeared here in 1939. With this I find myself in disagreement. 

The experimental procedure is to show a set of m objects to an individual in pairs and 
ask him each time to choose one. It is always understood that the objects differ from one 
another, but there may be doubt whether the difference is discernible by the individual. 
The difference may be confined to one respect, e.g. a set of boxes may be used identical in 
appearance but differing in weight, and the observer's attention may be directed to that 
respect, e.g. by the instruction, 'Choose the heavier each time'. Or they may differ in several 
respects and the criterion of choice may be left to the individual, e.g. in Titchener's standard 
procedure the objects are coloured cards differing in hue and saturation and the individual 
is instructed to choose whichever he prefers. It is normally understood, but not always, 
cf. Myers (1925), that each of the -m(m -1) possible pairs is presented once and once 
only. 

We shall assume that the objects may differ in several respects and that the individual's 
attention has not been directed to any respect for which there is an independent criterion; 
also that he has been shown every possible pair once and is never permitted to evade 
the obligation to choose, e.g. by responding, 'Both alike'. The objects will be denoted 
A,B, ...,M. 

Initially we may hope to show that the individual is aware of one dimension of preference, 
in accordance with which the objects can be arranged in an order from most preferred to 
least. The contrary, Cl, which must be disproved before any such hypothesis, H1, need be 
conceded, is that the individual is unaware of any differences between the objects and that 
all his choices are made at random, independently of one another. It may be disproved if 
an unexpectedly large number of the choices are internally consistent, i.e. cohere with the 
same one out of all the m! possible orders for m objects; for in the absence of any criterion 
all possible orders are equally admissible. The minimum number of inconsistent responses 
will be denoted by i, and an order with which there are only i inconsistent responses will 
be called a nearest adjoining order. 

In some specimen schedules of responses the nearest adjoining order is not unique; 
there may be several orders, say j altogether, with only i inconsistencies. The numbers 
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304 PATRICK SLATER 

i and j are always ascertainable, at least in theory, if the schedule is checked against the m! 
possible orders. Consider, for instance, A > B, A < C, B > C, a specimen schedule for 
3 objects (read > as 'preferred to'). One of the responses is inconsistent with each of the 
three orders A > B > C, B > C > A and C > A > B. The other possible orders, A > C > B, 
B > A > C and C > B > A, can be omitted from consideration for two responses are 
inconsistent with each of them. The nearest adjoining order is not unique so the incon- 
sistent response cannot be identified, but certainly i = 1 and j = 3. 

The sample space or universe for m = 3 contains 8 distinct specimens of possible 
schedules of responses; and all are equiprobable on Cl. It is easy to verify that six have 
i = 0 and two have i = 1. So a schedule with i = 0 is not exceptional when m = 3 and C, 
is tenable for all the specimens in this universe. In general the universe for m objects 
contains 2(2) equiprobable specimens. Let sc be any specimen with a certain number of 
inconsistencies, i.e. with i = c, and let fm(c) be the frequency of occurrence of all such speci- 
mens in the universe for m. The question to be decided is whether C, is tenable concerning a 
particular sc from this universe. If we make it our rule to reject C, when its probability is 
below 0 05 we can reach a decision if we know what is the limiting values of i, say i = u, 
for which 

u 

f m(i)/2(T) < 0.05. 
i=O 

Then we reject C, if c < u but not otherwise. 
Consider next the sc with c < u in different universes, for all of which H1 must be admitted. 

As m and consequently u are allowed to increase, c can increase indefinitely without ex- 
ceeding u. At some point it may begin to seem surprising that so many responses, which can 
be itemized if the nearest adjoining order is unique, are all consistent with one another, 
i.e. with one other ordering of the objects, which may be called the residual order; and we 
may feel tempted to consider the more elaborate hypothesis, H2, that the individual is 
aware of two dimensions of preference. For the objects can be arrayed on a surface definable 
by two axes, falling in the nearest adjoining order along one and in the residual order along 
the other, so that every choice appears consistent with one or other of the two orders. The 
contrary we now encounter, C2, which must be disproved before H2 need be conceded, is 
that the choices inconsistent with the nearest adjoining order do not imply any awareness 
of a second dimension but are all made at random and independently of one another. The 
argument of ? 3 below is that under the conditions of the experiment C2 is always tenable, 
no matter how large m and i are. 

The hypotheses under consideration all relate to the (2) responses the individual is 

required to make. Each is the result of a single act of choice, potentially independent of 
every other such act and liable to bring the laws of probability into operation. So I regard 
the responses as the simple events from which the universe for m originates and conclude 
that the probability distribution for i, the number of inconsistent responses, is what needs 
to be examined when C, is under consideration-not the probability distribution for d, 
the number of circular triads in a schedule, which is the variable considered by Kendall 
& Babington Smith. 

A triad is the set of responses relating to three objects. It may have i = 0 or 1, as already 
mentioned, and it is circular when i = 1. The authors only give reasons of simplicity and 
convenience for treating triads as units for enumeration. After describing them and larger 
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Inconsistencies in a schedule of paired comparisons 305 
polyads within the complete configuration or m-ad which may be used to represent the 
schedule of responses, they remark 'it seems best to confine attention to circular triads, 
which, so to speak, constitute the inconsistent elements in the configuration, and to ignore 
the more ambiguous criteria associated with circular polyads of greater extent'. They do 
not mention the possibility of treating each response as a unit, nor do they offer any explicit 
definition of the null hypothesis to be considered. 

Triads ought not to be treated as elements. They are compound events not conceivably 
independent of one another, for the total number of triads in a schedule exceeds the number 
of responses by a factor of -1(m -2) and each response features in m -2 triads. Moreover, 
there is no 1: 1 relationship between i and d; schedules from the same m with the same i 
may differ in d, and vice versa. For instance, 

when i = 1, d ranges from 1 to m-2, 

when i = 2, d ranges from 2 to 2m-6; 

and further evidence appears in Fig. 1 and Table 2. If the inconsistencies were subclassified 
d might be defined as a weighted summation of the frequencies in specified classes: that is 
to say, d may be viewed as a summation in which some inconsistencies receive more weight 
than others. But on the assumption that the inconsistent responses result from erratic 
acts of choice and occur at random there is no justification for subclassifying them. And 
the conditions of the experiment do not include any region where this assumption can be 
proved to have a negligible probability. 

Inconsistent responses receive equal weights in Kendall's procedure for T (1938, 1948), 
so there is a simple relationship between T and i. A nearest adjoining order might be defined 
as any order which maximizes T for the schedule under consideration, and the maximum 
value of T is obtainable from i, given m, as 1- 4i/m(m - 1). 

2. THE FIRST FORM OF THE NULL HYPOTHESIS, C1 

On C, when two of the objects, I and J, are presented to the individual, since he is unaware 
of any difference between them but obliged to make a choice, he is just as likely to choose 
I or J, and his choice will be not influenced by any choices he may have made on any previous 
occasion when he may have had I or J presented for comparison with any of the other 
objects. 

The universe of different schedules of responses thus obtainable consists of 2(m) specimens, 
all equiprobable. This total needs to be broken down into subtotals for specimens where 
i = 0, 1, 2, .... Then to decide whether C, applies to a particular schedule for m objects we 
need to find the number of inconsistencies in it and see what proportion of the schedules 
in the universe contains no more than the same number of inconsistencies. 

Table 1 shows the breakdowns for m < 8, and the cumulative proportions derived. If 
C, is considered acceptable at the 005 probability level but not below, it is tenable for all 
scheduleswherem < 6,butnotwheni = 0,m > 6,wheni = 1,m > 7,orwheni = 2,m > 8. 

The frequency distribution for any m may be defined as the expansion 

21) = fm(O) +frn(l) +fm(2) + *. 

A general algebraic definition of fm(i) would thus define the complete frequency 
20 Biom. 48 
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distribution for all m. Such an expression has not yet been found, but the expressions 
for values of i up to 3 can be given. They are 

fm(O) = m!, 

fm(1) = m! (3m2- 13m+ 14)/6, 

fm(2)= m! (9m4- 78m3 + 235m2 - 438m + 680)/72, 

fm(3) = m! (135m6-1,755m5 + 8,685m4- 27,185m3 
+ 77,820m2 - 157,204m + 210,336)/6480. 

The expression for fm(2) only applies when m > 4, and the expression for fm(3) only when 
mn > 6. When m = 5, f5(3) = 24. 

These expressions give 3 

2()= 0*009902 i=0 

for m = 9. So u is certainly not less than 3 when m > 9. It may even exceed 3, and ap- 
pears to be increasing at an accelerating rate. 

Table 1. The frequency distribution of i for given values of m 

i m= 2 m= 3 m= 4 m= 5 m= 6 m= 7 m = 8 
Part 1 

0 2 6 24 120 720 5,040 40,320 
1 2 40 480 5,280 58,800 685,440 
2 - - 400 13,280 278,880 5,120,640 
3 24 11,568 651,504 21,590,016 
4 - 1,920 736,848 55,101,312 
5 - - 323,120 84,325,248 
6 - - 41,040 71,687,040 
7 - 1,920 27,421,440 
8 - - 2,464,000 

Cumulative proportions 

Part 2 
0 1.0 0 750 0 376 0 11719 0 02197 0 002403 0 000150 
1 - 160 10 0'58594 0.18311 0.030441 0 002704 
2 0 97656 0 58838 0.163422 0.021780 
3 1.0 0.94141 0.474083 0 102209 
4 - 1.0 0 825439 0 307477 
5 0.979515 0.621613 
6 - - 0.999084 0 888668 
7 - - 1.0 0.990821 
8 - - - 1.0 

The data for m > 6 have been provided by the National Physical Laboratory using an 
electronic computing programme developed by G. G. Alway as a research project. An 
account of it will be published separately. Considerable expense would be incurred if 
the research were continued to obtain complete expansions of 2(2 ) for larger m or expres- 
sions defining fm(i) for larger i, so that it seems desirable to publish the present results and 
to ascertain the consensus of expert opinion before proceeding. For most practical purposes 
it would be sufficient to know the values of u for m < 15. It is true that experiments have 
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been conducted with considerably more than 15 objects. Titchener (1901) regularly used 
one with m = 27 for his course in experimental psychology and Cattell, Maxwell, Light & 
Unger (1949) have described one with m = 50. Experiments with large m need not be 
difficult to conduct if the objects are suitably chosen and appropriate apparatus is con- 
structed for presenting them in pairs and recording the responses automatically, but it is 
not often that any compelling reasons for conducting such experiments are encountered in 
practice. 

3. THE SECOND FORM, C2; AND AN ARGUMENT THAT EVERY INCONSISTENCY 

SHOULD BE GIVEN AN EQUAL WEIGHT 

The evidence of a single schedule of responses is never sufficient to make C2 untenable. 
Take A > B > ... > M arbitrarily as an order with which some of the individual's responses 
cohere. Then the remainder must all cohere with the opposite order A < B < ... < M. 
If none are consistent with the first all are consistent with the second. So the i responses 
inconsistent with the nearest adjoining order must a fortiori all be consistent with one 
another, and in general may be linked together in many different ways to form possible 
residual orders. In other words evidence in favour of H2 is indistinguishable from 
evidence against it, so C2 cannot be ruled out. If we wish to disprove C2 we must adduce 
supplementary evidence from other sources, modify the conditions of the experiment in 
some way or advance some specific argument. 

Thus the only alternatives to be considered when investigating the internal consistency 
of a single schedule of responses are 

(i) C1: the observer is unable to discriminate between the objects, or 
(ii) H1 +C2: he is aware of a single dimension of preference. Choices not made in accord- 

ance with it are produced by chance causes, i.e. causes operating independently on particular 
judgements, such as distractions or momentary lapses of attention, etc. 

There is never any case for pressing on to consider alternatives such as might be denoted 
H1 + H2 + C3, etc., without additional evidence. 

We may argue from this that every inconsistency should be given an equal weight when 
C0 is under consideration. If the order A > B > ... > M is the dimension of preference 
characteristic of the individual, a cause operating accidentally is just as likely to produce 
the reversal A < M as A < D, say, and as no causes other than accidental causes need be 
supposed, we ought not to assign more weight to one such reversal than another. A straight 
count, that is to say, an unweighted summation of the inconsistencies is therefore the index 
we should use in deciding whether H1 or C0 is to be preferred. 

The proposition can be sustained, perhaps quite adequately, without reference to C2. 
For per contra we cannot claim that A < M should be given a greater weight than A <D 
without postulating that A is further removed from M than from D on the scale of prefer- 
ence characteristic of the individual. But this is to concede a form of H1, and we should not 
make any such concession before we have succeeded in disproving CO. Moreover, the relative 
weights we assign to A < D and A < M must depend on the particular form of H1 we choose 
to concede; but even after disposing of C, we may be left with j > 1, i.e. with several equally 
acceptable forms of H1. 
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4. COUNTING i IN A SCHEDULE OF PAIRED COMPARISONS OBTAINED EXPERIMENTALLY 

Mr Alway has kindly contributed the following practical notes: 
No simple rule for obtaining i is known to be applicable in all cases, but in all practical 

applications encountered so far the following simple rules have sufficed. 
First re-order the rows and columns of the preference matrix* so that the numbers of 

+ 's in successive rows are in desceniding order. Next, examine each row to the right of the 
diagonal element, and proceeding element by element count separately the positive and 
negative ones. If at any stage the number of negative elements exceeds the number of 
positive ones the matrix may be transformed to decrease to total number of negative 
elements in the upper triangular half. For example, if one of the rows (starting with the 
diagonal element) is 

then by placing this row and the corresponding column nine places further on, the total 
number of negative elements in the upper half is reduced by 1. The resultant matrix can 
be examined again in this way. The columns should also be examined in a corresponding 
fashion; this is the same as examining the rows starting with the diagonal element and 
counting backwards towards the first element. The process should then be repeated, and 
wherever the count of -'s equals the count of +'s the matrix should be transformed in a 
corresponding fashion. This change will not of itself reduce the total number of -'s, but 
it may alter the position of certain elements so that the number of -'s in some row or 
column exceeds the count of + 's, and then the total number may be reduced. This process 
has sufficed in all practical applications (mn < 10) to reduce the number of inconsistencies 
to its lowest value, and also to give all the permutations for which this lowest value is 
attained. 

Even when the first rule, to put the number of +'s in successive rows in descending 
order, is omitted, the simplest case in which the second rule, of counting +'s and -'s by 
row and column, fails by itself to give i is 

- +. +- + - 

+-.+ --.+ + + 

-. -.+ + 

- - + - + 

for which i = 4, given by the permutation (24618357) of the rows and columns. 
The calculation of the data mentioned in ? 2 and the writing of this section have been 

carried out as part of the research programme of the National Physical Laboratory and they 
are published by permission of the Director of the Laboratory. 

* A preference matrix for recording the responses in a schedule is an m x nt table with a row and 
corresr,onding column for each object. The response I > J is recorded as + 1, or simply +, in row I 
column J, and as - 1, or simply -, in row J column I. 
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5. KENDALL's d AND ITS RELATION TO i 

When one of three conjoined choices is inconsistent with the other two the triad formed is 
circular. Kendall & Babington Smith's procedure depends on finding the number, d, 
of such triads in a schedule. The simple computing method for finding d is a great advantage 
of their procedure. Counting the number of +'s in each row of the preference matrix A 
provides a column vector a which is a partition of 1m(m - 1); and d can be obtained from 

2d = m(m-1) (2m-1)/6-a'a. 

A1 a, A2 a2 A3 a3 

.+ - + + 3 .+ + +- 3 .+ - + + 3 
.+ + + 3 -.+ + + 3 -.+ + + 3 

+-. + + 3 --. + + 2 +- .+ - 2 
---.+ 1 ---.+1 ---.+1 

----.o~~ +--. -+-1 

Fig. 1. Three preference matrices, and their partitions. 

For example, the three matrices in Fig. 1 with partitions as shown have 

a'a d i j 
A1 28 1 1 3 
A2 24 3 1 1 
A3 24 3 2 5 

It appears debatable whether the inconsistency in A1 should be given more or less weight 
than the one in A2. For instance, it might be argued from j that the one in A2 is the more 
reasonably attributable to some accidental cause, as it does not evoke any doubt about 
what order represents the individual's characteristic dimension of preference. My view, 
based on the argument in ? 3, is that both inconsistencies should receive the same weight. 
Kendall's procedure weights the inconsistency in A2 three times as heavily as the one in A1. 

Moreover, Fig. 1 shows that no simple relationship exists between i and d: A1 and A2 
have the same i but a different d, A2 and A3 have the same d but a different i. Table 2 shows 
the relationship between i and d in the universes for m < 8. The two quantities are quite 
closely correlated, viz. 

In the universe for r is 
m = 4 0-9317 

5 *9087 
6 *9031 
7 *8969 
8 *8927 

It is not surprising that r diminishes as m increases. Increasing m provides more freedom 
for preference matrices with the same partition to vary in the internal arrangements for 
their +'s and - 's. 

The correlation is not close enough to prevent different results being obtained when d 
and i are used to test C, with reference to a single schedule of responses. When ?n = 7 
d leads to the rejection of some A's at the 5 % significance level where i = 1 and the accept- 
ance of others where i = 2; and when m = 8 to the rejection of some where i = 2 and the 
acceptance of others where i = 3 or even 4. The 5*85 million possible schedules acceptable 
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in accordance with i and the 9-92 million acceptable in accordance with d when m = 8 
include 4*80 million in common. There is disagreement about the remainder. Part of this 
disagreement arises because i and d are discrete variables, so that the tails of their probability 
distributions cannot be cut off exactly at the 0 05 level. In percentages, 2d18 pass the test 
on i, 3*70 pass on d, 1V79 pass on both. 

When several individuals, say n altogether, are asked to compare the same m objects 
in pairs and little evidence of agreement is found between them, the question may arise 
whether the absence of agreement reflects differences in taste or lack of discernment. It 
should be possible to extend the use of i or d to consider problems of this kind, and the 
correlation between them should be sufficient to lead to convergent conclusions when n is 
not too small. For n above a certain limit the advantage of easy computation might tell 
decisively in favour of d. 

I would like to emphasize the importance of distinguishing between problems of discern- 
ment and problems of agreement in this context. Comparison in pairs is specially appro- 
priate for problems of discernment; it provides more evidence of internal consistency, or 
the lack of it, than comparison in sets of more than two at a time. But for investigating 
problems of agreement it does not appear to have any advantages over other methods of 
multiple comparison, of which ranking is administratively the most convenient. 

REFERENCES 

CATTELL, R. B., MAXWELL, E. F., LIGHT, B. H. & UNGER, M. P. (1949). The objective measurement 
of attitudes. Brit. J. Psychol. 40, 81-90. 

COHN, JONAS (1894). Experimentelle Untersuchungen uber die Gefiihlsbetonungen der Farben, 
Helligkeiten und ihrer Combinationen. Philos. Stud. Leipz. 10, 562-603. 

DAVID, H. A. (1959). Tournaments and paired comparisons. Biometrika, 46, 139-49. 
GUILFORD, J. P. (1954). Psychometric Methods. New York: McGraw Hill Book Co. Inc. 
GULLIKSEN, H. & TUCKER, L. R. (1959). A general procedure for obtaining paired comparisons from 

multiple rank orders. Princeton University, NR 150-088. 
KENDALL, M. G. (1938). A new measure of rank correlation. Biometrika, 30, 81-93. 
KENDALL, M. G. (1948). Rank Correlation Methods. London: Charles Griffin and Co. Ltd. 
KENDALL, M. G. & BABINGTON SMITH, B. (1939). On the method of paired comparisons. Biometrika, 

31, 324-45. 
MYERS, C. S. (1925). A Text Book of Experimental Psychology. Cambridge University Press. 
SLATER, P. (1960). The reliability of some methods of multiple comparison in psychological experi- 

ments. London University thesis. 
TITCHENER, E. B. (1901). Experimental Psychology. 1. Qualitative. London: Macmillan and Co. Ltd. 
WITMER, L. (1894). Zur experimentellen Aesthetick einfacher raumliche Formverhaltnisse. Philo8. 

Stud. Leipz. 9, 96-144 and 209-63. 

This content downloaded from 185.2.32.185 on Tue, 17 Jun 2014 07:08:15 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

