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Born Again Group Testing: Multiaccess 
Communications 

Invited Paper 

JACK K. WOLF, FELLOW, IEEE 

Abstract-A brief summary of the basic notions of group testing is 

presented together with a brief historical account. One of the early papers 

on group testing is shown to include a description of the tree-search polling 

algorithm of Hayes. The classical group testing problem is formulated, 

including a criterion for optimal@ of test plans. A restricted class of tests, 

called nested testing, is described, and a complete description for an 

optimal nested strategy is given for both a finite number and an infinite 

number of Bernoulli distributed random variables. A generalization of 

group testing applicable to the random access communications problem is 

presented. 

I. INTRODUCTION 

T HE USUAL model for multiaccess communications 
incorporate a community of users, some small fraction 

of which have information to be transmitted at any given 

time. We call the set of users with information to be 
transmitted the active set, and a user in this set will be 
called an active user. Two types of protocols for multi- 
access communications have been studied. In the first type, 
called a reservation protocol, some subset of the active users 
is first identified, and only then are these users allowed to 
transmit their information. In the second type, called a 
direct transmission protocol, the information itself is used to 
schedule the transmission, and the protocol effectively 
partitions the community of users into subsets of no more 
than one active user. 

If the total number of users is finite, one straightforward 
but inefficient method of scheduling the transmissions is to 
allow each user to transmit individually in sequential order. 

In a reservation protocol this would be called polling; in a 
direct transmission protocol it would be called time-divi- 
sion multiplexing (TDM). 

Hayes [l], in a seminal paper published in 1978, sug- 
gested that a more efficient method of polling would be to 
query groups of users simultaneously. The basic idea in 
Hayes’ scheme is to quickly eliminate sets of inactive users 
which can be identified by a single query-response. Hayes 
called this technique “probing” and used subtrees of a 
binary tree to create his groups. 

This same idea was utilized to improve the efficiency of 
a direct transmission protocol. Capetanakis [2], [3] also 
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used a tree to create groups of users which were allowed to 
transmit their information simultaneously. When more than 

one active user was found to be in the group, the group was 
broken up into subgroups using subtrees of the tree. For an 

infinite number of users, Capetanakis suggested a random 
coin toss mechanism to determine whether or not a user 
would be contained in a given subtree. Capetanakis’ ideas 

were extended to other than tree-like groupings by 
Gallager [4], Massey [5], Tsybakov et al. [6], and Humblet 
and Mosely [7], where in each case more and more efficient 

protocols were developed for effecting the partition. 

The purpose of this paper is to give additional evidence 
to support the well-known phenomenon that a good new 
idea is often the reincarnation of a good old idea. In this 
case, however, the rebirth of the idea occurred before the 
end of its previous life. The problem which triggered its 
initial birth was the need to administer syphillis tests to 
millions of persons being inducted into the U.S. military 
services during World War II. The test for syphillis was a 
blood test called the Wasserman test. In 1943, Dorfman [8] 
suggested pooling the blood samples from S persons and 
applying the Wasserman test to a sample from the re- 
sultant pool. The Wasserman test had sufficient sensitivity 

that, for values of S of interest, the test would yield a 
negative result if and only if none of the individual samples 
in the pooled sample were diseased. Dorfman further sug- 
gested that if the pooled sample yielded a positive result 
then these S samples should be tested individually. Using a 
Bernoulli model with parameter p for the blood samples 
(where p is the probability that an individual sample is 
diseased), Dorfman calculated the value of S which yielded 
the smallest ratio of the number of tests to persons tested. 
For small p, the best group size S is approximately p - ‘I2 

and the resulting smallest ratio of tests to persons tested is 

approximately 2p ‘I2 Dorfman’s paper was the beginning . 
of a research area which has become known as group 
testing. (Note that the word “group” merely means a set of 
items and does not imply any mathematical structure.) 

In 1957, Sterrett [9] suggested an improvement to 
Dorfman’s procedure. In this improved procedure, once an 
individual diseased sample is identified, the remainder of 

the pool is again tested as a group. The probability that 
this second group test is positive is equal to the probability 
that two or more diseased samples were in the original pool 
of size S. For small p and S chosen as indicated above, 

this probability is very small. 
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The beginning of a general theory for group testing 
occurred in the 1959 paper of Sobel and Groll [lo]. In 
addition to giving new testing strategies, Sobel and Groll 
listed a large number of applications for this theory. The 
multi-access application was not one of these, however. 

In subsequent years a large number of papers were 
published on the general subject of group testing; the 
publication of these papers continues today. In the next 
section we survey the results from a few of these papers. 

We concentrate on Sobel and Groll’s 1959 paper, which 
includes a tree search algorithm comparable to the one 
described by Hayes in 1978. In particular, Sobel and Groll 
introduced an interesting subclass of testing strategies and 

gave a procedure for determining the best testing strategy 
within this subclass. They then compared the efficacy of 

this strategy with several poorer strategies-one of these 
being a version of the tree search algorithm of Hayes. 

It should be stated that two different mathematical 
models have been considered in classical group testing. The 
first model corresponds to the assumption of Bernoulli 
random variables, as in the original Dorfman paper. In the 
second model (sometimes called hypergeometric testing), it 
is assumed that the exact number of items in each of the 

two states is known prior to testing. Here we discuss only 
results from the Bernoulli model. 

II. CLASSICALGROUPTESTINGAND PROBING 

Suppose one is given an ordered set of N items to be 
tested where, unless stated to the contrary, N is assumed 
finite. Each item is in one of two states, denoted “0” and 
“l”, respectively. The state of the ith item will be governed 
by a Bernoulli random variable Xi where P[ X, = 0] = 
(1 - p) and P[ Xi = l] = p. The N random variables are 
assumed to be statistically independent. 

Tests are performed on subsets of the N items. The 
outcome of each test is either a 0 or a 1, the output 0 
occurring if and only if all items in the subset tested are in 
the 0 state. Thus if the jth test is performed on the subset 

(jl, j2; * .9 j,), then the outcome of this test is the random 
variable 2; = XjI + Xj, + . . . + Xi, where the plus sign 

denotes the “inclusive or” operation. A test plan is a 
sequence of tests such that, at the completion of the test 

plan, the outcomes of these tests uniquely determine the 
states of all N items. We assume that we know the out- 
comes Y,, Y,; . ., Yj-r prior to specifying the test ‘; 
(j 2 2). The number L of tests in a test plan is itself a 
random variable which is a complicated function of the 

details of the test plan and is determined by the N random 
variables XI, X2; . ., X,. 

We are interested in finding the optimal test plan, that is 
the test plan which minimizes the expected number of tests, 
z. We are also interested in the average number of tests 
required for this optimal test plan, Emin. Unfortunately, no 
general techniques are known for finding the optimal test 
plan or for computing Z,,. 

A specific test plan for four items is shown in Fig. 1. 
Table I shows the correspondence between the states of the 
four items and the outcomes of the tests. For this specific 

Fig. 1. A specific test plan. 

TABLE1 
ENCODINGOF STATESBYTHE TEST PLANOF FIG.~ 

State Outcome of Tests 

1111 11111111 
1110 11111110 
1101 1111110 
1100 111110 
1011 111101 
1010 111100 
1001 11101 
1000 11100 
0111 110111 
0110 110110 
0101 11010 
0100 1100 
0011 101 
0010 100 
0001 01 
oooo 00 

test plan, we can compute the average number of tests z as 

a function of p as 

z = 8p4 + 27p3(l -p) + 31p2(1 -p)” 

+14p(1 - p)’ + 2(1 - p)“. 

No claim is made for the optimality of this test plan. 
It may be quickly recognized that the outcomes of the 

tests for a complete test plan can be considered as a binary 
variable length source code for the N Bernoulli random 
variables Xi, X,, 9 . . , X,. Thus, from Shannon’s source 
coding theorem we know that 

where h*(p) is the binary entropy function. Furthermore 
Emin can be no smaller than the average length of a 
Huffman code [ll] for N Bernoulli random variables. Both 
of these lower bounds for z,, are contained in Sobel and 

Groll’s 1959 paper. Unfortunately, no closed form solution 
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is known for the average length of a Huffman code for N 
Bernoulli random variables with parameter p. 

One might be tempted to conjecture that Emin is equal to 
the average length of a Huffman code-that is, that a 
Huffman code can be utilized to specify the optimal test 
plan. That this is not the case can be seen by considering 
the Huffman code for N = 3 random variables with 
parameter p = 0.2 as shown in Fig. 2. The root node (node 

A) of this tree corresponds to the test of all three items. If 
this first test fails (i.e., if Yi = l), however, then there is no 

group test that corresponds to the next node (node B) of 
the tree, since there is no test that would fail when either 

Xl = 1 or x2 = 1 but not when both xi = 1 and x1 = 1. 

Xl ‘2 X3 

Fig. 2. Huffman code for N = 3 and p = 0.2. 

The optimal test plan has been found for small values of 
N and for arbitrary p. To the best of our knowledge, the 
largest value of N for which the optimal test plan has been 

specified for all values of p (0 < p < 1) is N = 6 [12]. 

The optimal test plan is known for (6 - 1)/2 I p < 1 
for arbitrary N [13]. The optimal test plan in this case 
consists of testing each item individually, resulting in Emin 
= N. To show that this is the case for N = 2 is a simple 
exercise in algebra. The proof for arbitrary N is given by 

Ungar [13]. 
Sobel and Groll [lo] introduced a restricted set of test 

plans which have become known as nested test plans. They 
also gave a recursive algorithm for obtaining the optimal 
plan within this restricted set. A nested procedure is 
governed by the restriction that, once a test of two or more 

items results in a test outcome equal to 1, then the next test 
must be on a proper subset of the previously tested group. 

A complete nested test plan can be described by the 
following algorithm. Let 2 denote the set of N items to be 
tested, let U (the unknown set) be a set of items whose 

states are Bernoulli distributed, let A (the active set) be a 
set of items known to contain at least one item in state 1, 
and let K (the known set) be the set of items whose states 
have been determined. Furthermore, let 0 denote the 

empty set. 

Nested Test Plan Algorithm 

Step 0) U:= Z; K:= 0; A:= 0 

Step 1) If U = 0, then goto Step 5. 
Step 2) Query a subset X of U of cardinality x (x may 

depend on the cardinality of U), 
if result = 0 

then K:= K + X, 

U: = U - X, got0 Step 1 

if result = 1 
then A:= X, 

u:= u- x 

Step 3) If cardinality of A = 1 
then K:= K + A; 

A: = 0 ; goto Step 1 
Step 4) Query a proper subset W of A of cardinality w (w 

may depend on the cardinality of A), 
if result = 0 

then K:= K + W, 
A:= A - W; goto Step 3 

if result = 1 
then U:=A - W+ U; 

A:= W, goto Step 3 
Step 5) End. 

The explanation for almost all of the steps of this 
algorithm follows directly from the restriction of nested 
testing. The one step which deserves some mention is the 
step which occurs after one queries the proper subset W of 

the set A and the test result is 1. Note that the items in the 
set A - W (that is items in the set A which are not in the 
subset W) are returned to the unknown set U. This is 
permissible since it is easy to verify that the random 
variables describing these items are again Bernoulli ran- 
dom variables so that these items can be treated as un- 

tested items. 
Note that the only unspecified quantities in this al- 

gorithm are the chosen cardinalities of the sets X and W, 
namely x and w. These quantities are determined by the 
following recursion relations which describe the optimal 
algorithm. Let G(a, b) be the expected number of ad- 
ditional queries required to complete the optimal test plan 
when there are a items in set A and b items in the union 

of sets A and U prior to a query. Then 

G(O,O) = 0 G(O,l) = 1; 

G(1, b) = G(0, b - l), bk 1, (1) 

G(O, n) = 1 + ,$2, [(l - P)~G(O, n - x) 

+(l -(l -~)~)G(x,n)], n 2 2, (2) 

G(a,n)=l+ min 0 -PF(l -P)” 
lsw<u 1 -(l -p)” 

.G(a - w,n - w) 

+ 0 41 -P)“)G(w n) 

1-(1-p)” ’ I7 n2ak2, 

(3) 
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where (1) gives the initial conditions and describes Step 3 

of the algorithm, and where (2) and (3) describe Steps 2 
and 4 of the algorithm, respectively. The order in which 
these quantities are determined is: G(O,O), G(1, l), G(0, l), 
G&2), G(2,2), G(O,2), * *. . Note that the minimizing 
values of x and w obtained in (2) and (3) yield the 
optimum size groups to be tested. Furthermore note that, 
in order to find the optimum nested test plan for N items, 
one first finds the optimum nested test plan for 2,3,. . . , 
(N - 1) items. The average number of tests required to test 
N items is given as ZmiMest = G(0, N). 

Sobel and Groll gave tables listing numerical values of 

Zminnest~ x and w for many values of p and N. They noted 

that the optimal nested test plan requires knowledge of x 
and w for all possible values of the cardinality of the sets 

A and U. They suggested that simpler suboptimal tests 
should be considered, and one of these simpler tests which 

they proposed was a version of the binary tree search of 
Hayes. 

The tree search algorithm of Hayes is most easily de- 

scribed when N = 2k. Then one can label the items 

Xl, X2,‘. -2 xN and treat the items as if they were leaves of a 

binary tree. Initially, one queries all 2k items (i.e., those 
items stemming from the root node). If the response to this 
query is a 0, one has identified the states of all N items. If 
the response to the query is a 1, we know that there is at 
least one item in the 1 state. The items in the upper half of 
the tree are then queried. If the response is a 0 we query 
the items in the lower half of the tree. If the response is a 1, 
we again subdivide the previously queried set and first 
query the top half of the set. This process continues until 

the states of all 2k items have been identified. Consider, as 

c 

I 

x15 

X16 

Fig. 3. Hayes tree for N = 16. 

TABLE II 
QUER~ESANDRESPONSESFORHAYESALGORITHMWITH 

x2, XI~,AND XI* INS STATE 

Query Number Items Queried Responses 

1 x1,x2,“‘,x16 1 
2 ’ x1, %,’ ‘, +, 1 
3 .qrX2r-9rX4 1 
4 X13X2 1 
5 Xl 0 
6 x2 1 

7 X3,X4 0 
8 x5, x6, x7, x8 0 
9 x9rX10,“‘rX16 1 

10 x9~x1o~x11~~12 1 
11 x9 3 x10 0 
12 x11, x12 1 
13 x11 1 
14 x12 1 

15 x137 x14, x15 1 x16 0 

an explicit example, N = 16 items with items x2, xii and 

xi2 in the 1 state (as shown in Fig. 3). The items queried 
and the responses for this example are given in Table II. 
Hayes noted that sometimes it is advantageous to treat a 
tree with 2k modes as if it were 2”’ trees each consisting of 
2k-” nodes. Hayes called the scheme adaptive if it chose 
m to minimize the average number of queries. The best 
choice of m depends upon the parameter p of the Bernoulli 
distribution. 

Hayes’ algorithm can be improved further in a manner 
not described in his paper. The improvement is to omit 
queries whose answers can be predicted from previous 
answers (Queries 6 and 12 of Table II are of this type). 

Sobel and Groll used this method in their 1959 tree search 
algorithm, thus giving it an advantage over the Hayes 

algorithm. A comparison of the average number of tests for 
the adaptive Hayes algorithm, the improved adaptive Hayes 
algorithms (with unnecessary question omitted) and the 

optimal nested group testing is given in Table III for 
N = 2,4,8,16 and p = 0.1,0.2,0.3,0.4,0.5. 

The recursive equations of (l), (2) and (3) do not con- 
veniently give information regarding the optimum nested 
algorithm in the limit as the number of items N approaches 

TABLE III 
AVERAGENUMBEROFQUERIESFORTHREETESTINGPROCEDURES 

P 0.1 0.2 0.3 0.4 0.5 
N 

[1.38]” [1.72] PI PI PI 
2 (1.29)b (1.56) (1.81) (2) (2) 

(1.29) (1.56) (1.81) (2) (2) 
[2.49] [3.44] [41 [41 [41 

4 (2.11) (3.07) (3.62) (4) (4) 
(2.05) (3.01) (3.60) (4) (4) 

[4.98] [6.88] PI PI PI 
8 (4.14) (6.14) (7.24) (8) (8) 

(3.76) (5.91) (7.17) (8) 63) 
[9.96] [13.76] [I61 [161 Ml 

16 (8.28) (12.28) (14.48) (16) (16) 
(7.22) (11.73) (14.28) 06) (16) 

“[‘]-Best adaptive Hayes. 
b( .)-Best adaptive modified Hayes. 
‘( )-Optimal nested group testing result. 
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infinity. In this limiting case, however, one can completely 

specify the optimal testing strategy and its performance. 
The following discussion is based upon joint research 

conducted with J. L. Massey. It is closely related to the 
work of Hwang 1141 but was done independently. We 
define the optimal nested strategy for testing an infinite 
number of items as that nested algorithm which results in 
the minimum ratio of the average number of tests to the 

number of items categorized. (This ratio involves a limiting 

operation but we leave the details to the reader.) We 
assume that the items are assigned indices 1,2, . . . and 

that, when we choose a subset of size x, we choose that 
subset corresponding to those x unidentified items with 

the smallest indices. Let us for the moment consider another 
type of testing strategy which attempts to identify the first 
item in state 1; that is, the item with the smallest index 
which is in state 1. Let us again restrict ourselves to a 
nested strategy and let T* be that nested test which identi- 
fies this single item in the smallest average number of tests. 
Our reason for considering such a test becomes clear when 
we note that the optimal nested test for processing all items 
is obtained by the repeated use of test T*. Such is the case 
since any nested procedure will identify the items in state 1 
in the order of their assigned indices and, after identifying 
an item in state 1, all items assigned a greater index will be 

Bernoulli points. Thus we need only to specify test T* and 
evaluate its performance. But using our observation that 

the outcome of a test plan is a source code, we note that 
the optimal nested test plan for identifying the first item in 

state 1 can have an average number of tests no smaller 
than the average length of a binary Huffman code for an 
infinite source alphabet having a geometric distribution. 
Fortunately, in this case the Huffman code corresponds to 
a realizable group testing strategy. Gallager and Van 
Voorhis [15] have specified the Huffman code for a geo- 
metrically distributed alphabet. This Huffman code corre- 
sponds to the following group testing strategy for T*. 

1) Test x = 1 -log (2 - p)/log (1 - p)l items until a 
response of 1 is obtained. Here 1 y 1 is the ceiling 
function. 

2) Define (Y = [log, x] where 1 y] is the floor function. 
Split the group of size x into two groups A and B as 

follows: 
if x I 3 . 2n-1, A = {first 2*-l items}, B = {last 

x - Za-’ items} 
if x > 3 . 2a-1, A = {first x - 2” items}, B = 

{last 2” items}. 

TABLE IV 
PERFORMANCEOFOPTIMALNESTEDALGORITHMS(N = 00) 

Average Number 
Best Group of Tests to Average Number Entropy 

Size Find First of Tests Bound 

P x Defective per Item h(p) 

0.01 69 8.105 0.0811 0.0808 
0.05 14 5.162 0.2881 0.2864 
0.1 I 4.125 0.4725 0.4690 
0.15 4 4.092 0.6138 0.6098 
0.2 3 3.639 0.7278 0.7219 
0.25 2 3.286 0.8215 0.8113 
0.3 2 2961 0.8882 0.8813 
0.4 1 2.500 1.0000 0.9710 
0.45 1 2.222 1.0000 0.9928 
0.5 1 2.000 1.0000 1.0000 

This result serves as another lower bound for the ratio 
z,,JN for any nested test plan for testing N items since 
the latter test, by repetition, is also a test for the infinite 

sample case. Note that x = 1 in Step 1 for p > (6 - 1)/2, 
a result which agrees with the previously discussed result 
by Ungar. Table IV compares the result given in (4) to the 
binary entropy function h 2( p) for various values of p. 

III. EXTENDED GROUP TESTING AND MULTIACCESS 

COMMUNICATIONS 

In classical group testing, the outcome of each test is 
assumed to be a two-valued function of the states of the 
items tested. In multiaccess communications operating in a 
direct transmission mode, a three-valued outcome is usu- 
ally assumed. That is, after a set of users has been given 
permission to transmit, one usually lumps the possible 
consequences of this happening as three events: no user 

transmits (an idle), one user transmits (a success) or two or 
more users transmit (a collision). We are thus led to 

develop a group testing strategy which incorporates such a 

three-valued test outcome. 
As before, consider that N items are to be tested where 

each item is in one of two states, denoted 0 and 1, 
governed by statistically independent Bernoulli random 
variables with parameter p. Tests (or “enablings”) are 
performed on subsets of the N items, the outcome of each 
test being a three-valued function with values 0, 1, and 2+. 
Denoting by y/ the outcome of the jth test, 

all items tested are in the 0 state, 

exactly one item tested is in the 1 state, 

two or more items tested are in the 1 state. 

Test groups A and B using a binary tree search. Group Now, a test plan is defined as a sequence of tests such that, 
A requires ((Y - 1) tests and Group B, (Y tests. The average at the completion of the test plan, each item in the 1 state 
number of tests per item classified for this test plan is given appears in an enabled subset containing no other such item 
as (i.e., each appears in a successful transmission). An optimal 

lillmZ(N)/N=p(n + 1+(1 -pyy(l -(l -p)“)) 
test plan is a test plan which requires the smallest average 

number of tests. 

where 

k = 21%~1 +1 - a. 

(4) 
As for the case of classical group testing, very little is 

known about the synthesis of optimal test plans or their 
performance. An information-theoretic lower bound to the 

(5) average number of tests for an optimal test plan follows 
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directly from the work of Pippenger [16]. In work with D. 
Towsley reported in another paper [17], we defined a 
restricted class of optimal tests which are a natural gen- 
eralization of the nested tests of Sobel and Groll to this 
situation. This class of optimal test plans is described by an 

algorithm slightly more complicated than the description of 
the nested test plan given in the previous section. Now, 
however, after each query, in addition to the known set K 
of completely classified items (where we note that an item 
in state 1 is not considered to be completely classified until 
it appears in an enabled set with no other such item) and 
the unknown set U of Bernoulli distributed items, there are 
two intermediate sets A(1) and A(2). Set A(1) is the 

smallest subset of the remaining items certain to contain 
one or more items in the 1 state, and A(2) is the smallest 
subset certain to contain two or more items in the 1 state. 
If A(1) and A(2) are both nonempty, then A(1) is a proper 
subset of A(2). The restriction on the tests are such that 

a) If A(1) is nonempty and A(2) is empty, one must test 
either a subset of A(1) or the union of the entire set 
A(1) and a subset of U. 

b) If A(1) and A(2) are both nonempty, one must test 
either a subset of A(1) or the union of the entire set 

A(1) and a subset of A(2) - A(1). 
c) If A(1) is empty but A(2) is not empty, one must test 

a proper subset of A(2). 

A description of the full algorithm follows. Note that the 
tests described in both b) and c) above are included in Step 
2 of the algorithm since A(1) = 0 implies Y c A(2). Note 
also that Step 2 of the algorithm is never entered unless 
A(2) # 0 and that Step 3 of the algorithm is never entered 

unless A(1) # 0 and A(2) = 0. 

Algorithm 

Step 0) U:= Z; K:= 0; A(l):= 0; A(2):= 0; 
Step 1) if U = 0 then goto Step 4 

else enable a subset X c U; 
if test result is 0 or 1 

then K:=K+X; 

u:= u- x, 
got0 Step 1 

if test result is 2+ 
then A(2):= X, 

cT:=u-xx; 
got0 Step 2 

Step 2) enable a subset X c A(1) or X = A(1) + Y where 

Y G (A(2) - A(l)) 
if test result is 0 

then K:= K + X, 
A(2):= A(2) - X, 
A(l):= A(1) - X; 
got0 Step 2 

if test result is 1 
then K:= K + X, 

A(l):= A(2) - X; 
A(2):= 0; 

got0 Step 3 

if test result is 2+ 

then U:= U + (A(2) - X); 
A(2):= X, 
if X c A(1) then A(l):= 0; 
got0 Step 2 

Step 3) enable subset X L A(1) or X = A(1) + Y where 

Yc u 
if test result is 0 

then K:= K + X, 
A(l):= A(1) - X; 

goto Step 3 
if test result is 1 

then K:+ K+ X, 
U:= U-f (A(1) - X); 

A(l):= 0; 

got0 step 1 
if test result is 2+ 

then A(2):= X, 
U:= U + (A(1) - X); 

Step 4) End. 

if X C_ A(1) then A(l):= 0 ; 
got0 Step 2 

The average number of tests for this test plan is a 
function of the size of the enabled sets in Steps l-3 of the 
algorithm. To find the size of the enabled sets that mini- 
mizes this average, recursion relations similar to (l)-(3) are 
written for this algorithm. This has been done and the 

results are reported elsewhere 1171. 
We have also considered other situations where the 

outcomes of the tests are again two.-valued, but where the 
two values differ from what has been described in the 

previous section. The interested reader is referred to Berger 

et al. [18] for details. 

Iv. SUMMARY 

A brief history of group testing has been presented. It 
was found that, in one of the earliest group testing papers 
(published in 1959), reference was made to a testing proce- 
dure based upon a tree search that is very closely related to 
testing procedures used in multiaccess communications (as 
described in papers published in 1978 and 1979). 

The notions of group testing are interesting in their own 
right. However, they are particularly relevant to multiple- 
access communications problems-thus, this paper. 
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