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Sympercents: symmetric percentage di!erences on the 100 loge scale
simplify the presentation of log transformed data
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SUMMARY

The results of analyses on log transformed data are usually back-transformed and interpreted on the original
scale. Yet if natural logs are used this is not necessary } the log scale can be interpreted as it stands.
A di!erence of natural logs corresponds to a fractional di!erence on the original scale. The agreement is
exact if the fractional di!erence is based on the logarithmic mean. The transform y"100 log

%
x leads to

di!erences, standard deviations and regression coe$cients of y that are equivalent to symmetric percentage
di!erences, standard deviations and regression coe$cients of x. Several simple clinical examples show that
the 100 log

%
scale is the natural scale on which to express percentage di!erences. The term sympercent or s%

is proposed for them. Sympercents should improve the presentation of log transformed data and lead to
a wider understanding of the natural log transformation. Copyright ( 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

Despite their widespread use in statistics, logarithms can be a mystery to non-specialists [1, 2].
The justi"cation for a logarithmic transformation is unfamiliar, be it non-linearity, heteroscedas-
ticity or non-Normality, but the unintuitive nature of the log scale is probably the biggest
di$culty.

Statisticians of course think di!erently. They are comfortable with the log transformation as
a statistical tool, and they also know that it is special [3] } the only power transformation where
a di!erence on the transformed scale is interpretable on the original scale as a ratio [4, 5].

To simplify the presentation of data analysed on the log scale, the standard procedure is to
antilog the results [4, 6, 7]. This ensures that the base of logarithms used, common or natural
logs, is irrelevant. Standard statistics texts often imply that natural logs have advantages over
common logs [4, 6, 7], but they do not spell out what the advantages are and use examples with
logs to both bases.

This ambivalence about the relative merits of natural and common logs indicates a widespread
ignorance about the bene"ts of the natural log scale. This paper aims to explain, to the specialist
and non-specialist alike, why the natural log scale is &natural' as well as &special'. Though



developed independently, the work here builds on ideas from the econometric literature of index
numbers, well summarized by the important and sadly under-cited paper of ToK rnqvist et al. [8].
The concept does not seem to have been described in the medical statistics literature.

The natural log scale is a scale on which di!erences can be interpreted directly, without back-
transformation to the original scale. Natural log di!erences correspond to fractional di!erences
on the original scale. Multiplied by 100, natural log di!erences are equivalent to symmetric
percentage di!erences, that is, percentage di!erences calculated with the mean of the two
numbers as the denominator. This equivalence extends to other summary statistics on the 100
natural log scale, such as log standard deviations, equivalent to coe$cients of variation, log
regression coe$cients, related to fractional regression coe$cients, and logs of rate ratios ex-
pressed as symmetric percentage di!erences.

The paper is structured as follows: Section 2 discusses logarithms and describes a symmetric
and additive form of the percentage di!erence. Section 3 develops the algebra relating logarithmic
and fractional di!erences, standard deviations and regression coe$cients by introducing the
logarithmic mean. Section 4 has a series of simple practical examples, and Section 5 provides the
discussion and conclusions. Non-specialists are encouraged to skip Section 3.

2. BACKGROUND

2.1. Logarithms

The log
10

or common log transformation is useful for expressing large and small numbers
compactly, for example, the common logs of one million and one millionth are 6 and -6,
respectively. The integer part of the log gives the approximate size of the original number as
a power of 10, and to within an order of magnitude common logs can be antilogged by inspection.
By contrast, the fractional part of the common log corresponds to a number between 1 and 10,
which cannot be interpreted by inspection. The same applies to the di!erence between two
numbers on the common log scale } their ratio cannot easily be inferred from the log di!erence,
unless of course they di!er by some orders of magnitude.

Natural logs are logs to base e, and are denoted by log
%
or ln. They are the opposite of common

logs in that on their own they are uninterpretable, but as di!erences they are simple to interpret.
The di!erence between the natural logs of two numbers is the fractional di!erence between the
numbers.

This distinction between common and natural logs is relevant for the choice of base when
plotting log transformed data. If the data values themselves are of interest, and extend across
several orders of magnitude, then logs to base 10 are preferable. Obvious examples are inter-
country comparisons of gross national product or bacterial concentrations in microbiology.
Conversely, if di!erences between the data are more relevant then natural logs are better, and
multiplied by 100 they can be viewed as a percentage scale. As an example, logged serial data can
be plotted with the initial point at the origin, and this presents the data in a form analogous to per
cent of the baseline.

A word about notation. From here on, all logarithms are calculated to base e. Phrases such as
&log di!erence' or &log SD' are to be read as meaning the di!erence or SD calculated on the log
scale. This usage is consistent with the term &log Normal distribution', meaning a distribution that
is Normal on the log scale.
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2.2. Percentage diwerences, symmetry and additivity

Conventionally the percentage di!erence between two numbers is the percentage change from
x
1

to x
2
, de"ned as

Percentage change from x
1

to x
2
"100

x
2
!x

1
x
1

If the order is reversed, the percentage change from x
2

to x
1

is 100 [(x
1
!x

2
)/x

2
]. The numerator

changes sign, and the denominator changes from x
1

to x
2
. Thus unless x

1
and x

2
are equal, the

two percentages di!er in absolute magnitude. Compare this with the di!erence between x
1

and
x
2
, which is unchanged apart from the sign if x

1
and x

2
are switched: (x

2
!x

1
) or (x

1
!x

2
). The

percentage di!erence is not symmetric } swapping x
1

and x
2

changes not only its sign but also its
magnitude.

Take for example the mean heights of British adults aged 20 years: 177.3 cm for men and
163.6 cm for women [9]. Women are 100][(177.3!163.6)/177.3]"100](13.7/177.3)"7.7 per
cent shorter than men, while men are 100](13.7/163.6)"8.4 per cent taller than women. The two
percentages are not the same. This is a fundamental problem with the de"nition of percentage
di!erences. If there is an obvious ordering of x

1
and x

2
, for example, time, then the conventional

percentage change calculation is reasonable, but if not, as here, the calculation is #awed. Why
should the result depend on which way round it is calculated?

More importantly, how can the percentage di!erence be made symmetric? The simplest way is
to average the two percentage changes, giving a percentage di!erence that is unchanged in
absolute value if the two numbers are exchanged. Algebraically

Mean percentage di!erence"
1

2A100
x
2
!x

1
x
1

#100
x
2
!x

1
x
2
B

"100(x
2
!x

1
)
1

2A
1

x
1

#

1

x
2
B

"100
(x

2
!x

1
)

HM(x)
(1)

where HM(x) is the harmonic mean of x
1

and x
2
. In the example the harmonic mean height is

170.17 cm, and the mean percentage di!erence between the sexes is 100](13.7/170.17)"8.05 per
cent.

Thus the arithmetic mean of the percentages is related to the harmonic mean of the two
numbers in (1). The converse also holds } the harmonic mean of the percentages involves the
arithmetic mean AM(x) of the numbers. The arithmetic mean height is 170.45 cm and the
harmonic mean di!erence is 8.04 per cent. Another alternative is the geometric mean of the two
percentages, which gives the geometric mean GM(x) in (1), and which at 170.31 cm gives
a di!erence of 8.044 per cent. Thus alternative forms of the mean percentage in (1) lead to di!erent
means in the denominator.

Apart from asymmetry the conventional percentage di!erence has another unsatisfactory
feature } it is not additive. The sum of two or more percentage di!erences di!ers from the
combined percentage di!erence. For example, three successive increases of 8 per cent represent an
increase overall of 26 per cent not 24 per cent, so 8 per cent ]3O24 per cent. We know why this
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is so, but it does not occur on the original scale, where 8]3"24, so why should we accept it on
the percentage scale?

Percentages ought to be both symmetric and additive, in the same way that absolute quantities
are. Logarithms are useful here, as they convert a ratio to a di!erence. A fundamental property of
logarithms to any base is that a di!erence on the log scale is equal to the log of the corresponding
ratio on the original scale: log(x

2
)!log(x

1
)"log(x

2
/x

1
). It can be shown that this leads to the

required properties of symmetry and additivity. In addition, natural logarithms have the added
advantage of giving results in units that are directly interpretable as fractions.

Put brie#y, the percentage di!erence in (1) can be calculated symmetrically and additively as
(100 log

%
x
2
!100 log

%
x
1
). The next section justi"es this statement.

3. METHODS

3.1. Fractional diwerences

Generalizing from (1), consider an unknown fractional function f (x) such that the symmetric
fractional di!erence between x

1
and x

2
is given by:

f (x
2
)!f (x

1
)"

x
2
!x

1
ML(x)

(2)

where ML(x) is a general measure of location based on x
1

and x
2
. ML(x) includes the

conventional harmonic, arithmetic and geometric means }HM(x), AM(x) and GM(x) } but is not
restricted to them.

Assume that x
1
"(x!dx/2) and x

2
"(x#dx/2), where dx"(x

2
!x

1
) and is small. Substitu-

ting into (2) gives the fractional di!erence d f"f (x
2
)!f (x

1
)"dx/x since ML(x)Px as dxP0.

In the limit d f/dx"1/x and f"lnx. Thus if x
1
+x

2

ln x
2
!lnx

1
+

x
2
!x

1
ML(x)

The symmetric fractional di!erence is the same as the di!erence of the logs of the original
numbers. To what extent does this hold in the more general case, when dx is not small? And how
critical is the choice of the measure of location?

The function

(lnx
2
!ln x

1
)!

x
2
!x

1
ML(x)

(3)

is the discrepancy between the log di!erence and the fractional di!erence in (2). It vanishes when
ML(x) is equal to the logarithmic mean LM(x) [10], which is de"ned as

LM(x)"
x
2
!x

1
lnx

2
!lnx

1

x
2
Ox

1

"x
1

x
2
"x

1
(4)

With this measure of location, the fractional di!erence and the log di!erence are the same by
de"nition, whatever the size of dx.
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The logarithmic mean is an unfamiliar construct, "rst described in 1972 by Carlson, who
showed that GM(x))LM(x))AM(x) [10]. It is instructive to compare it to other measures of
location in more detail. Multiplying (3) by ML(x)/x

1
and substituting d"(x

2
!x

1
)/x

1
(the

conventional fractional change from x
1

to x
2
) leads to the function

ln(1#d)C
ML(x)

x
1
D!d (5)

which given ML(x) can be expanded as a Taylor series in d.
The three conventional means are introduced by de"ning ML(x) as their weighted mean:

ML(x)"aAM(x)#gGM(x)#hHM(x)

"a
x
1
#x

2
2

#gJ(x
1
x
2
)#h

2x
1
x
2

x
1
#x

2

(6)

where (a#g#h)"1.
Substituting (6) into (5), expanding the ln and power terms in powers of d to the "fth term, and

collecting the power coe$cients, leads to

!A
3g#6h!2

24 B (d3!d4)!A
215g#400h!144

1920 B d5#O(d6) (7)

Di!erent forms of ML(x) are compared by substituting the relevant values of g and h in (7). For
example, the geometric mean GM(x) corresponds to [g"1; h"0], and reduces (7) to
!d3/24#O(d4) . Table 1 gives the value of (ML(x)!LM(x)) for three di!erent cases where x

2
is respectively 10 per cent, 100 per cent and 1000 per cent greater than x

1
under the conventional

de"nition.
Table I shows that of the three conventional means GM(x) is the closest to LM(x), followed by

AM(x) then HM(x). The discrepancies are small; for x
1
"1 and x

2
"1.1 (10 per cent di!erence)

HM(x) di!ers from LM(x) by only !0.0016, while for x
1
"1 and x

2
"2 (100 per cent di!erence)

GM(x) is only 0.028 less than LM(x). Thus for modest percentage di!erences, the logarithmic
mean and the other means are essentially the same.

Even so there are better forms of ML(x). The d3 and d4 terms in (7) vanish when (g#2h)"2/3,
and the d5 term vanishes for [g"182/270; h"!1/270]. The simple set [g"2/3; h"0] pro-
vides a remarkably good "t to (7), corresponding to the weighted mean

WM(x)"
2GM(x)#AM(x)

3
(8)

which is up to three orders of magnitude better than GM(x) (Table I). Carlson [10] described the
same mean.

Generalizing further, AM(x), HM(x) and GM(x) are members of the family of algebraic means
de"ned by

BM(x Dp)"C
1

n

n
+
i/1

xpD
1@p

(9)

for sample size n, where BM(x Dp) is the back-transformed arithmetic mean of xp. Thus AM(x),
GM(x) and HM(x) correspond to BM(x D1), BM(x D0) and BM(x D!1), respectively, treating the
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Table I. Comparing the logarithmic mean LM with other measures of location ML in
(5) and (10), where d"(x

2
!x

1
)/x

1
.

(ML!LM) when x
1
"1

Measure of location
(ML)

Formula Leading d term in
(5) or (10)

x
2
"1.1

ML"1.0492
x
2
"2

ML"1.443
x
2
"11

ML"4.17

Harmonic (H(M)
2x

1
x
2

x
1
#x

2

!d3

6
!1.6]10~3 !1.1]10~1 !2.3

Arithmetic (AM)
x
1
#x

2
2

d3

12
7.9]10~4 5.7]10~2 1.8

Geometric (GM) J(x
1
x
2
)

!d3

24
!4.0]10~4 !2.8]10~2 !8.5]10~1

Weighted (WM)
2GM#AM

3

d5

2880
3.0]10~8 !1.1]10~4 4.1]10~2

Cube root (CRM) C
3Jx

1
#3Jx

2
2 D

3 d5

6840
1.3]10~8 5.1]10~5 !1.8]10~2

Logarithmic (LM)
x
2
!x

1
ln x

2
!lnx

1

2 0 0 0

log transform as power 0 [11]. BM(x Dp) is an unbiased estimate of the median of x when xp is
Normally distributed.

To see if BM(x Dp) "ts (3) better than the weighted mean (8) for some p, substitute (9) with n"2
into (5) to give

ln(1#d) C
1#(1#d)p

2 D
1@p

!d (10)

In the light of (8) an obvious p-value is 1/3, the mean of 0 for GM(x) and 1 for AM(x) weighted in
the ratio 2 : 1. This also simpli"es the series expansion of (10) since 1/p"3. Again the terms in d2,
d3 and d4 vanish, and the term in d5 is smaller than for (8) (Table I). Thus the algebraic mean
based on the power 1/3 (call it the cube root mean, CRM(x)) is an even better approximation to
LM(x) than the weighted mean. Diewert [12] also described the cube root mean.

The optimal value for p in (10) for each of the examples in Table I, found by direct search, is
slightly less than 1/3: 0.333322 for x

2
"1.1, 0.3327 for x

2
"2 and 0.327 for x

2
"11, but 1/3 is

clearly close to optimal. Thus the cube root mean is virtually identical to the logarithmic mean.
The practical conclusion is that the means are all essentially the same, so that the log di!erence

is a form of fractional di!erence. In detail, the mean calculated on the cube root scale is closest to
the logarithmic mean, which suggests some deeper signi"cance of the cube root transformation.

3.2. Fractional standard deviations

The previous section has shown that fractional di!erences are measured on the natural log scale.
How then does one express variability in fractional terms? The standard deviation (SD) of
a sample of n (*2) points is the root mean square of their di!erences relative to the arithmetic
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mean. This suggests that log SDs and fractional SDs, like log di!erences and fractional di!er-
ences, are equivalent. If so, following (3), the function

SD(ln x)!
SD(x)

ML(x)
(11)

ought to be small when ML(x) is suitably de"ned.
As with (3), (11) vanishes when ML(x) is de"ned as the logarithmic mean LM(x), with its

de"nition generalized as follows:

LM(x)"
SD(x)

SD(ln x)
SD(x)'0

"AM(x) SD(x)"0 (12)

This reduces to the previous de"nition (4) when n"2. Thus based on the logarithmic mean the
log SD and the fractional SD are identical by de"nition. The logarithmic mean, a ratio of two
standard deviations, is clearly a remarkably ine$cient measure of location, but as before the
question arises, for n'2 how similar is it to simpler measures of location? The answer is that it
depends on the distributional form of x.

3.2.1. Log Normally distributed data. With the arithmetic mean in (11) the fractional SD is
SD(x)/AM the coe$cient of variation CV(x). (The su$x (x) for each mean is now dropped.) For
log Normally distributed data, that is, where log x is Normally distributed, there is an exact
relationship between CV(x) and SD(ln x) [13] given by

exp(SD2(lnx))"1#CV2 (x)

Expanding the left side as the "rst three terms in a Taylor series and rearranging shows that
LM+AMJM1#SD2(lnx)N/2, so that LM'AM'GM in expectation. This di!ers from the
case when n"2.

3.2.2. Transformed Normally distributed data. Generalizing to data where xp is Normally distrib-
uted (for x'0), the Box}Cox transformation [11]

y"
xp!1

p GMp~1
pO0

"GMln(x) p"0

provides a direct comparison of the logarithmic mean and the geometric mean. The maximum
likelihood estimate of the power p minimizes SD(y Dp), so the SDs of di!erent power transforma-
tions of x can be compared, particularly the cases p"1 and p"0:

SD(y D1)

SD(y D0)
"

SD(x)

GMSD(lnx)
"

LM

GM

In general, LM and GM are di!erent. If x has a log Normal distribution, GMSD(lnx)(SD(x)
and GM(LM, as was shown above, while if x is Normally distributed GMSD(lnx)'SD(x)
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Table II. Expected values of the arithmetic, logarithmic and geometric
mean for gamma distributions with di!erent parameters a.

Arithmetic mean a Logarithmic mean

SA
a

trigamma(a)B
Geometric mean
exp(digamma(a))

1 0.78 0.56
4 3.75 3.51
9 8.75 8.50

16 15.75 15.50
25 24.75 24.50
49 48.75 48.50
64 63.75 63.50

100 99.75 99.50

and GM'LM. By symmetry the two means are likely to be the same when p is midway between
0 and 1, that is, the square root transform. This di!ers slightly from the cube root transform of
Section 3.1.

The comparison of SDs under di!erent Box}Cox power transformations applies to linear
models with general design matrices [11], so that the equivalence of log SDs and fractional SDs
extends naturally to con"dence intervals and analysis of variance.

3.2.3. Gamma distributed data. The gamma distribution is another obvious distribution to
consider, because of its link to the 1/3 power transformation. Wilson and Hilferty [14] showed
that a s2 variate (which is also a gamma variate) raised to the 1/3 power is approximately
Normally distributed. Thus the cube root mean applied to gamma distributed data is an
approximately unbiased estimate of the median.

For a sample x from a gamma distribution with parameter a, the mean of log x is given by the
digamma function t (a)"!@(a)/!(a), and its variance by the trigamma function t@(a) [15]. The
arithmetic mean of x is a, the geometric mean is exp(digamma(a)), and the logarithmic mean is
J(a/trigamma(a)). Table II gives the three means for a range of a values, and shows that to a close
approximation AM" LM#0.25"GM#0.5. Thus LM+(AM#GM)/2 for all a'4.

Simulation was used to establish the sampling properties of the di!erent means; 400 samples of
size 400 were drawn from a gamma distribution with parameter 25, and AM, GM, WM, CRM
and LM were calculated for each sample along with the median. Parameter 25 corresponds to an
arithmetic mean and variance of 25, so the SD is 5, the standard error (SE) for each sample 0.25
and the CV 0.2. Table III gives the arithmetic mean and SD across samples for the di!erent
measures of location, ranked by size. AM and GM are the largest and smallest, respectively, while
WM and CRM are very close to the median, as predicted by Wilson and Hilferty [14]. The SDs
for these four means are close to the expected SE of 0.25, while the median and particularly LM
are less e$cient. LM is, as shown above, midway between AM and GM.

In summary, the logarithmic mean is closely linked to the arithmetic and geometric means in
a way that depends on the underlying frequency distribution. For distributions varying in
skewness between the Normal and log-Normal, where the arithmetic mean always exceeds the
geometric mean, the logarithmic mean shifts from above the arithmetic mean for log Normal data
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Table III. Summary statistics across samples of measures of location for 400 random
samples of size 400 drawn from a gamma distribution with parameter 25.

Measure of location Arithmetic mean Standard deviation

Arithmetic mean 24.99 0.249
Logarithmic mean 24.75 0.390
Median 24.66 0.313
Cube root mean 24.66 0.247
Weighted mean 24.66 0.247
Geometric mean 24.50 0.247

to below the geometric mean for Normal data. It equals the geometric mean for square root
transformed data, and for gamma (or cube root) distributed data is exactly halfway between the
arithmetic and geometric means.

The link between the three means shows that the logarithmic mean is a reasonable measure of
location. This in turn con"rms that the logarithmic SD in (11) is a form of fractional SD.

3.3. Additivity and fractional regression coezcients

The additivity property of percentages referred to in Section 2.2 requires that a sum of fractional
di!erences is equal to the overall fractional di!erence. Log di!erences have this property, but
conventional fractional di!erences do not. To illustrate this take three x values (x

1
, x

2
and x

3
) and

calculate the fractional and log di!erences between pairs of them. Clearly

(ln x
3
!lnx

1
)"(lnx

3
!ln x

2
)#(ln x

2
!lnx

1
)

whatever the values of x, indicating additivity, whereas in general

x
3
!x

1
ML(x

1
, x

3
)
O

x
3
!x

2
ML(x

2
, x

3
)
#

x
2
!x

1
ML(x

1
, x

2
)

unless some of the x values are the same, or ML"LM.
A regression coe$cient is a special sort of di!erence where additivity is assumed. Take the

regression of x on some covariate t. The regression coe$cient B(x Dt) is the expected di!erence in
x associated with a unit di!erence in t. Multiplied by t it gives the expected overall di!erence in
x associated with t, the sum of the unit di!erences. By analogy with (3) and (11) this coe$cient,
expressed as a fraction of some measure of location ML of x, ought to be the same as the
regression coe$cient of ln x on t.

The function

B(ln x Dt)!
B(x Dt)
ML

(13)

measures the disagreement between the two coe$cients, where B(ln x Dt) is the regression coe$c-
ient of ln x on t. If r (x, t) is the correlation between x and t then B(x Dt)"r(x, t) [SD(x)/SD(t)],
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and correspondingly for B(ln x Dt). Substituting for both terms in (13) and substituting LM (12) for
ML gives:

r(ln x, t)
SD(lnx)

SD(t)
!r (x, t)

SD(x)

SD(t)LM

or
SD(ln x)

SD(t)
[r(ln x, t)!r(x, t)]

To the extent that the two correlation coe$cients are equal, the log regression coe$cient is equal
to the fractional regression coe$cient based on the logarithmic mean. More generally, the log
regression coe$cient is seen to be a form of fractional regression coe$cient, but uniquely among
fractional coe$cients it is also additive.

The results of the previous section also show that the log residual SD about the regression line
is a form of fractional SD.

4. EXAMPLES

In this section the link between log di!erences and fractional di!erences is exploited to simplify
the interpretation of results from analyses involving natural logs. There is no need to use
the algebra of Section 3 } it is provided there only to con"rm the link between natural log
di!erences and fractional di!erences. The transform y"100 log

%
x is used to give results

in units of symmetric percentage di!erences, which are here called sympercent or s% for
short.

4.1. Comparison of two numbers

In Section 2.2 the mean adult height of the two sexes was discussed, 177.3 cm for men and
163.6 cm for women. The symmetric percentage di!erence in height between them can now be
derived as (100 log 177.3}100 log 163.6) or 8.044 sympercent. On average, men are 8.044 s% taller
than women and women are 8.044 s% shorter than men.

4.2. Comparison of two group means

A common statistical procedure is the comparison of group means by Student's t-test. When the
data are log transformed, the di!erence between means, the SE and the con"dence interval of the
di!erence are all in log units. This usually complicates the interpretation, but with the approach
described here it becomes very simple.

Consider the con"dence interval for the di!erence between two means. Bland and Altman
[5, 7] compared bicep skinfold thickness in patients with Crohn's disease (n"20) and coeliac
disease (n"9). The means for the two groups were 4.72 mm and 3.53 mm respectively, a mean
di!erence of 1.18 mm with standard error 0.92 and a 95 per cent con"dence interval of
(!0.71,#3.07) mm.

Bland and Altman repeated the analysis after natural log transformation, giving a di!erence
between means of 0.296 (SE 0.205), with con"dence interval (!0.114, 0.706). Following
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Table IV. Results for the multiple regression analysis of bone mineral content (BMC) in Gambian
and English women [16]. The body size variables } BMC, bone width, weight and height } are

analysed after 100 log transformation.

Term Regression coe$cient Standard error t P

Country: Gambia 2.14 0.95 2.3 (0.05
100 log bone width 0.706 0.041 17.4 (0.001
100 log weight 0.205 0.028 7.5 (0.001
100 log height 0.371 0.111 3.3 (0.001
Age 4.04 0.42 9.5 (0.001
Age2 !0.0875 0.0091 !9.6 (0.001
Age3 5.0]10~4 0.6]10~4 8.3 (0.001
Intercept !353.0 53.6

Dependent variable: 100 log BMC

convention, they recommended antilogging the results to give a ratio of 1.34 with con"dence
interval (0.89, 2.03).

A simpler alternative is to use the 100 log
%

transformation. This gives a mean di!erence
between groups of 29.6 (SE 20.5), with con"dence interval (!11.4, 70.6), that is, the logged results
times 100. However, now they are directly interpretable as sympercent di!erences. Bicep skinfold
is on average 29.6 s% greater in the Crohn's than the coeliac group, with con"dence interval
(!11.4 s%, 70.6 s%). Equally bicep skinfold is 29.6 s% less in the coeliac than the Crohn's group,
with con"dence interval (!70.6 s%,#11.4 s%). This is a simple, direct and entirely valid way of
presenting the results for the log transformed data.

4.3. Group comparison by regression analysis

Another way to compare group means is by regression analysis, which is useful when adjusting
for other covariates at the same time. The two groups are distinguished by a binary variable that
takes the value 0 in one group (the baseline) and 1 in the other.

Prentice et al. [16] compared the bone mineral content (BMC) of the mid-shaft radius in
Gambian and English women, adjusted for body size using multiple regression. Table IV shows
the results of the analysis, with 100 log BMC as the dependent variable. The regression coe$cient
for The Gambia compared to England was 2.14 (SE 0.95) adjusted for bone width, weight, height
and age, where the body size covariates were also 100 log transformed. This immediately shows
that BMC was 2.14 s% greater in the Gambian women, or equivalently 2.14 s% less in the
English women.

Table IV includes the results for the body size covariates in the analysis. They, like BMC, were
100 log transformed, and their coe$cients, like the country coe$cient, can be interpreted in units
of BMC s%. The bone width coe$cient of 0.706 (SE 0.041) for example shows that a 1 s% change
in bone width was associated with a 0.706 s% change in BMC. (The same coe$cient can also be
interpreted as the power of bone width when the regression equation is antilogged, but this is not
discussed further here.)

Another example appears in Table II of Cole et al. [17], where di!erences in height and weight
between data sets estimated by regression analysis are presented in sympercent units.

SYMMETRIC PERCENTAGE DIFFERENCES ON THE 100 LOG
%
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4.4. Rate ratios

Rate ratios such as mortality ratios and odds ratios have hardly featured so far, but they
"t into the same framework when transformed to natural logs. The log of a ratio is the
same as a di!erence on the log scale (see Section 2.2). The regression coe$cient in logistic
regression is a log-odds ratio [18], and conventionally this is antilogged for presentation
purposes, but the odds ratio is asymmetric in that reversing the sense of the comparison
inverts it rather than changing its sign. Although users are familiar with this, there is still
scope to present the odds as a 100 log odds ratio, which is a symmetric percentage di!erence
in odds.

The same argument applies to the rate ratio. In a recent study comparing inequality in di!erent
European countries [19], the mortality rate ratio (RR) for all-cause mortality in England and
Wales for manual as compared to non-manual workers was RR

0
"1.44, indicating a 44 per cent

excess mortality in manual workers. However, if the groups were switched, comparing non-
manual to manual workers, the rate ratio would be 1/1.44"0.69 and the non-manual mortality
less by 31 per cent.

The two percentages 31 per cent and 44 per cent are very di!erent, and there is no particular
reason to prefer one over the other. The simpler symmetric alternative is to focus on 100 times the
di!erence of the logs, or equivalently 100 log RR

0
, in this case 100 log 1.44 or 36 s%. This is 36 s%

more manual mortality and equivalently 36 s% less non-manual mortality.
The same principle can be extended to compare several groups at once. The above study [19]

had data for 11 European countries, and Figure 1 compares the levels of inequality in the di!erent
countries using England and Wales as the baseline. The percentage di!erences are calculated as
100 log RR !100 log RR

0
, equivalent to 100 log (RR/RR

0
), and they show agreement within

10 s% across all the countries except France, where inequality is higher.
Spiegelhalter and Knill-Jones [20] have used the same form for the likelihood ratio (LR) in

medical diagnosis, where they call 100 log
%
LR the &weight of evidence' for a particular symptom

in favour of a particular diagnosis.

4.5. Standard deviations

Presenting summary statistics of logged data is a recurring problem. The log mean can obviously
be antilogged to give the geometric mean, but what about the log SD? Conventionally the options
are limited } either to tabulate the log SD as it stands, which is hard to interpret, or to antilog it
and call it the geometric SD [1], or else to calculate centiles of the distribution assuming
Normality on the log scale, and antilogging.

The approach proposed here o!ers two simpler alternatives. The log SD is equivalent to a CV,
so it can be multiplied by 100 to put it in CV s% form, or alternatively it can be multiplied by the
geometric mean to provide a form of SD in the original units.

Take the bicep skinfold data of Section 4.2 [5], where the log SDs for the two groups were 0.49
and 0.51, respectively. These multiplied by 100 are sympercent CVs of 49 s% and 51 s%,
compared to the original CVs of 51 per cent and 56 per cent. The log-based results are smaller,
which shows that the data are closer to log-Normal than Normal, as Bland and Altman pointed
out [5].

Alternatively, a form of SD can be calculated as the product of GM and log SD. The geometric
means were 4.20 mm for the Crohn's patients and 3.12 mm for the coeliacs, which give SDs of 2.06
and 1.61 mm for the two groups, again smaller than the SDs of 2.42 and 1.96 mm on the original
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Figure 1. Excess manual versus non-manual all-cause mortality for 11 European countries [19] compared
to England and Wales, expressed in sympercent units.

scale. The weakness of this approach is that because the SDs are in the original units of
measurement, they lack the sympercent label to show how they were derived.

4.6. Analysis of variance

Fuller et al. [21] investigated inter- and intra-observer variability of height and weight in 12
subjects, each measured by six observers. The data were analysed by two-way analysis of
variance, and variability for each measurement was expressed in two ways, as the residual
standard deviation of the original measurements and the measurements transformed to 100 logs,
that is, in sympercent units.

For weight, both analyses showed a highly signi"cant observer e!ect (see Table V). The residual
SDs were 0.0321 kg and 0.0451 s%. For comparison the residual CV was 0.0444 per cent , slightly
less than the sympercent value, based on an arithmetic mean weight of 72.3 kg. This shows that
the log transform for weight provided a slightly poorer "t to the data [11].

For height there were no signi"cant di!erences between observers, and the residual SD was
0.705 cm or 0.405 s%. The residual CV was slightly greater than the sympercent value, 0.410 per
cent based on an arithmetic mean height of 172.0 cm. In contrast to weight, the log transform for
height "tted slightly better than untransformed height [11].

By doing the analysis on both scales the relative sizes of the observer e!ects can be compared,
and the residual standard deviations are given directly in original and sympercent units.

SYMMETRIC PERCENTAGE DIFFERENCES ON THE 100 LOG
%
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Table V. Analysis of variance for weight in a study of inter-observer variability [21],
in original and sympercent units.

Item d.f. Weight 100 log weight
SS MS F ratio SS MS F ratio

Subject 5 9.91]103 9.01]102 8.75]105 2.00]104 1.82]103 8.93]105
Observer 11 0.167]10~1 0.333]10~2 3.24 0.334]10~1 0.669]10~2 3.28
Residual 55 0.567]10~1 0.103]10~2 0.112 0.204]10~2
Total 71 9.91]103 2.00]104

Residual SD 0.0321 kg 0.0451 s%

4.7. Regression coezcients

The examples so far have concentrated on the symmetry of sympercents. Regression analysis
exploits their other important property, additivity. For a 100 log transformed dependent variable,
each regression coe$cient is in units of sympercents per unit of the independent variable.
Multiplied by the value of the independent variable the coe$cient gives the predicted total
sympercent e!ect on the dependent variable, that is, the sum of the unit sympercent e!ects.

Neonatologists study fractional growth [22] } they measure the weight gain of premature
babies in units of g/kg/d, that is g/1000g/d or &/d (since the units of weight cancel out). As
a result, growth rate in these units can be estimated from the regression of 1000 log weight on age.
Figure 2 shows daily weights in a premature baby between 10 and 38 days of age (weight gain
takes a week or more to stabilize after birth), with the log regression line superimposed. The
weight gain is given by the regression coe$cient of 13.28 g/kg/d, and the residual standard
deviation (RSD) is 10.8 g/kg. The g/kg units could alternatively be called sympermills, like
sympercents.

For comparison, the regression of 1000 weight/(arithmetic mean weight) on age is also shown
in Figure 2. It has the same regression coe$cient, and a slightly larger RSD of 12.5 g/kg,
indicating a higher correlation on the log than the linear scale.

As a second example, Lucas et al. [23] present the regression of log transformed insulin at 12
years on weight standard deviation score (SDS) in a group of children born premature. The
combined model in their Table 1 gives the coe$cient for weight SDS at 18 months as 0.12 or
12 s%, showing that a di!erence of 1 SDS unit in weight is associated with a 12 s% di!erence in
insulin concentration.

5. DISCUSSION

The results have shown that a di!erence on the natural log scale is a form of fractional di!erence,
using the logarithmic mean to derive the fractional di!erence. This is neither obvious nor well
known, but it arises from the equivalence of d(ln x) and dx/x in the limit (Section 3.1).

Under modest distributional assumptions, the logarithmic mean is closely related to the
arithmetic and geometric means. The relationship of the three means under a gamma distribu-
tion, with the geometric mean half a unit less than the arithmetic mean and the logarithmic mean
midway between them (Tables II and III), seems not to be well known.

The logarithmic mean is remarkably ine$cient as an estimate of location, just 40 per cent
e$cient compared to the geometric mean (Table III). Even so it does crop up in practical
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Figure 2. Fractional weight gain in a premature baby, in units of g/kg/d, estimated from the regression of
(a) 1000 log weight and (b) 1000 weight divided by its arithmetic mean, on age.

applications. Coward et al. [24] for example showed that under certain assumptions the intake of
water in growing animals over a period of time is equal to LM(Q) ln(C

1
/C

2
), where Q

1
and Q

2
are

body water volumes and C
1

and C
2

are tracer concentrations at the start and end of the period.
The fact that the log di!erence is a fractional di!erence does not automatically make it the best

or most &natural' form of fractional di!erence. A leap of faith is required to see that it is optimal.
The key argument in its favour is simplicity, as shown in three ways. First symmetry: it is directly
analogous to the di!erence between two numbers, giving an answer in percentage rather than
measurement units. Just as for the di!erence, swapping the numbers changes the sign of the
percentage di!erence but not its value.

Secondly, the log di!erence is unique among fractional di!erences in being additive. This
applies particularly in log regression.

Thirdly, there is only one way to calculate the log di!erence, while there are many di!erent
forms of fractional di!erence. The ordinary percentage di!erence has the "rst or second of the two
numbers in the denominator, while the symmetric modi"cation discussed here uses their mean.
Yet there are many di!erent means and they give di!erent answers. Uniquely, the log di!erence
gives the fractional di!erence without involving a denominator at all.

So the case is simple: percentage di!erences ought to be calculated as di!erences on the natural
log scale. To this end, the transformation y"100 log

%
x should be more widely recognized as

SYMMETRIC PERCENTAGE DIFFERENCES ON THE 100 LOG
%
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giving results that are directly interpretable in symmetric percentage units. The same applies to
standard deviations and regression coe$cients.

The one drawback with this philosophy is that it can be confusing. However a clear statement
in the Methods that 100 log di!erences are interpreted as symmetric percentage di!erences
should avoid the problem. Ideally, though, a new nomenclature is needed, and &sympercent' is
proposed as an abbreviation for &symmetric percentage', with the symbol &s%'.

Although natural logs are useful for deriving symmetric percentage di!erences there is a further
issue: should sympercents also replace per cents for expressing change over time } should in#ation
rates, interest rates and other temporal rates be made symmetric and additive by basing them on
log di!erences? ToK rnqvist et al. [8] felt that they should, yet their paper is little cited, which
perhaps re#ects the preparedness of econometricians for such a major change, despite the
potential bene"ts in terms of symmetry and additivity. The proposal here is not so far-reaching
and should be less controversial. The most obvious advantage of a shift to sympercents through-
out would be less confusion, since the units would be consistent universally.

Gaddum [25] did a lot to publicize the log transformation, inventing the term &lognormal'
distribution and recommending the use of common logs. He called the standard deviation of
log

10
transformed data j, and used it to classify di!erent measurements in terms of their

variability. Had he used the natural log transformation instead, his j would have been e!ectively
the coe$cient of variation, rather than something 2.3 times smaller.

When should data be log transformed? The usual criteria are the presence of heteroscedasticity,
skewness or non-linearity, and nothing here is intended to in#uence that decision } the paper is
concerned only with the presentation of results once a log transformation has been chosen.
However there are situations where a log transform may be valid even though the original data
are not obviously skew. Height is an example of Normally distributed data, yet log height is also
acceptably Normal as well } see Section 4.6 for example. Height has a small CV, 4 per cent or so
[17], which means that transformation does not introduce much skewness. In any case, if results
are required in percentage units, this may be su$cient reason for a log transformation even
though the data are not particularly skew. This relates to Keene's argument [3] that the log
transformation is special, and should be given equal status with analysis on the original scale.

In conclusion, a theoretical and practical case has been made for using the natural log scale,
multiplied by 100, to calculate and present percentage di!erences, standard deviations, regression
coe$cients and rate ratios. The hope is that as a result, natural logs will appear less obscure and
more accessible } in a word, natural.
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