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Abstract. Latent Gaussian models are a common construct in statistical applications where

a latent Gaussian field, indirectly observed through data, is used to model, for instance, time

and space dependence or the smooth effect of covariates. Many well-known statistical models,

such as smoothing-spline models, space time models, semiparametric regression, spatial and

spatio-temporal models, log-Gaussian Cox models, and geostatistical models are latent Gaus-

sian models. Integrated Nested Laplace approximation (INLA) is a new approach to implement

Bayesian inference for such models. It provides approximations of the posterior marginals of

the latent variables which are both very accurate and extremely fast to compute. Moreover,

INLA treats latent Gaussian models in a general way, thus allowing for a great deal of automa-

tion in the inferential procedure. The inla programme, bundled in the R library INLA, is a

prototype of such black-box for inference on latent Gaussian models which is both flexible

and user-friendly. It is meant to, hopefully, make latent Gaussian models applicable, useful and

appealing for a larger class of users.

Key words: approximate Bayesian inference, latent Gaussian model, Laplace approximations,

structured additive regression models

1 Introduction

Latent Gaussian models are an apparently simple but very flexible construct in statis-

tical applications which covers a wide range of common statistical models spanning

from (generalised) linear models, (generalised) additive models, smoothing spline

models, state space models, semiparametric regression, spatial and spatiotemporal

models, log-Gaussian Cox processes and geostatistical and geoadditive models. In

these models, the latent Gaussian field serves as a flexible and powerful tool to model

non-linear effects of covariates, group specific heterogeneity, as well as space and

time dependencies among data.

Bayesian inference on latent Gaussian models is not straightforward since, in

general, the posterior distribution is not analytically available. Markov Chain Monte

Carlo (MCMC) techniques are, today, the standard solution to this problem and several

ad hoc algorithms have been developed in recent years. Although in theory always
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possible to implement, MCMC algorithms applied to latent Gaussian models come

with a wide range of problems in terms of convergence and computational time.

Moreover, the implementation itself might often be problematic, especially for end

users who might not be experts in programming.

Integrated Nested Laplace approximation (INLA) is a new tool for Bayesian

inference on latent Gaussian models when the focus is on posterior marginal dis-

tributions [20]. INLA substitutes MCMC simulations with accurate, deterministic

approximations to posterior marginal distributions. The quality of such approxima-

tions is extremely high, such that even very long MCMC runs could not detect any

error in them. A detailed description of the INLA method and a thorough comparison

with MCMC results can be found in [20].

INLA presents two main advantages over MCMC techniques. The first and most

outstanding is computational. Using INLA results are obtained in seconds and minutes

even for models with a huge dimensional latent field, while a well build MCMC

algorithm would take hours or even days. This is also due to the fact that INLA

is naturally parallelised, thus making it possible to exploit the new trend of having

multi-core processors. The second, and not less important advantage, is that INLA

treats latent Gaussian models in a unified way, thus allowing greater automation of

the inference process. The core of the computational machinery, automatically adapts

to any kind of latent field so that, from the computational point of view, it does not

matter if we deal with, for example, spatial or temporal models. In practice INLA can

be used almost as a black box to analyse latent Gaussian models.

A prototype of such programme, INLA, together with a user-friendly R interface

(INLA library) is already available from the web-site www.r-inla.org. Its goal

is to make the INLA approach available for a larger class of users. The hope is that

near instant inference and simplicity of use will make latent Gaussian models more

applicable, useful and appealing for the end user.

The purpose of this paper is to give an overview of models to which INLA is

applicable. We will present a series of case studies ranging from generalised linear

models to spatially varying regression models to survival models, solved using the

INLA methodology through the INLA library. The structure of this article is as fol-

lows. Section 2 describes latent Gaussian models and their main features. Section 3

and Section 4 briefly introduce the INLA approach and the INLA library. In Section 5

three case studies are analysed. They include a GLMM model with over-dispersion,

different models for spatial analysis and a model for survival data. We end with a

brief discussion in Section 6.

2 Latent Gaussian models

Latent Gaussian models are hierarchical models which assume an n-dimensional

Gaussian field x = {xi : i ∈ V} to be point-wise observed through nd conditional

independent data y. Both the covariance matrix of the Gaussian field x and the like-

lihood model for yi |x can be controlled by some unknown hyperparameters θ . In

addition, some linear constraints of the form Ax = e, where the matrix A has rank k,
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may be imposted. The posterior then reads:

π(x, θ | y) ∝ π(θ) π(x | θ)
∏

i∈I

π(yi | xi , θ). (1)

As the likelihood is not often Gaussian, this posterior density is not analytically

tractable.

A slightly different point of view to look at latent Gaussian models is to consider

structured additive regression models; these are a flexible and extensively used class

of models, see for example [8] for a detailed account. Here, the observation (or

response) variable yi is assumed to belong to an exponential family where the mean

μi is linked to a structured additive predictor ηi through a link-function g(·), so that

g(μi) = ηi . The likelihood model can be controlled by some extra hyperparameters

θ1. The structured additive predictor ηi accounts for effects of various covariates in

an additive way:

ηi = β0 +

n f∑

j=1

w j i f ( j)(u j i ) +

nβ∑

k=1

βk zki + ǫi . (2)

Here, the{βk }’s represent the linear effect of covariates z. The { f ( j)(·)}’s are unknown

functions of the covariates u. These can take very many different forms: non-linear

effects of continuous covariates, time trends, seasonal effects, i.i.d. random intercepts

and slopes, group specific random effects and spatial random effects can all be rep-

resented through the { f ( j)}’s functions. The wi j are known weights defined for each

observed data point. Finally, ǫi ’s are unstructured random effects.

A latent Gaussian model is obtained by assigning x = {{ f ( j)(·)}, {βk }, {ηi }}, a

Gaussian prior with precision matrix Q(θ2), with hyperparameters θ2. Note that we

have parametrised the latent Gaussian field so that it includes the ηi ’s instead of the

ǫi ’s, in this way some of the elements of x, namely the ηi ’s, are observed through the

data y. This is mainly due to the fact that the INLA library requires each data point

yi to be dependent on the latent Gaussian field only through one single element of x,

namely ηi . For this reason, a small random noise, ǫi , with high precision is always

automatically added to the model. The definition of the latent model is completed by

assigning the hyperparameters θ = (θ1, θ2) a prior distribution.

In this paper the latent Gaussian models are assumed to satisfy two basic proper-

ties: First, the latent Gaussian model x, often of large dimension, admits conditional

independence properties. In other words it is a latent Gaussian Markov random field

(GMRF) with a sparse precision matrix Q [18]. The second property is that the di-

mension m of the hyperparameter vector θ is small, say ≤ 6. These properties are

satisfied by many latent Gaussian models in the literature. Exceptions exist, geosta-

tistical models being the main one. INLA can still be applied to geostatistical models

using different computational machinery or using a Markov representation of the

Gaussian field (see [7] and the discussion contribution from Finn Lindgren in [20]).
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3 Integrated Nested Laplace Approximation

Integrated Nested Laplace Approximation (INLA) is a new approach to statistical

inference for latent Gaussian models introduced by [19] and [20]. In short, the INLA

approach provides a recipe for fast Bayesian inference using accurate approximations

of the marginal posterior density for the hyperparameters π̃(θ |y) and for the full con-

ditional posterior marginal densities for the latent variables π̃(xi |θ, y), i = 1, . . . , n.

The approximation for π(θ |y) is based on the Laplace approximation [22], while for

π(xi |θ, y) three different approaches are possible: a Gaussian, a full Laplace and a

simplified Laplace approximation. Each of these has different features, computing

times and accuracy. The Gaussian approximation is the fastest to compute but there

can be errors in the location of the posterior mean and/or errors due to the lack of skew-

ness [19]. The Laplace approximation is the most accurate but its computation can be

time consuming. Hence, in [20], the simplified Laplace approximation is introduced.

This is fast to compute and usually accurate enough.

Posterior marginals for the latent variables π̃(xi |y) are then computed via numer-

ical integration such as:

π̃(xi |y) =

∫
π̃(xi |θ, y)π̃ (θ |y) dθ

≈

K∑

k=1

π̃(xi |θk, y)π̃ (θk |y) �k . (3)

Posterior marginals for the hyperparameters π̃(θ j |y), J = 1, . . . , m are computed in

a similar way. The choice of the integration points θk can be done using two strategies:

the first strategy, more accurate but also time consuming, is a to define a grid of points

covering the area where most of the mass of π̃(θ |y) is located (GRID strategy);

the second strategy, named central composit design (CCD strategy), comes from the

design problem literature and consists of laying out a small amount of ‘points’ in an

m-dimensional space in order to estimate the curvature of π̃ (θ |y), see [20] for more

details on both strategies. In [20] it is suggested to use the CCD strategy as a default

choice. Such strategy is usually accurate enough for the computation of π̃(xi |y), while

a GRID strategy might be necessary if one is interested in an accurate estimate of

π̃(θ j |y). The approximate posterior marginals obtained from such procedure can then

be used to compute summary statistics of interest, such as posterior means, variances

or quantiles.

INLA can also compute, as a by-product of the main computations, other quantities

of interest like Deviance Information Criteria (DIC) [21], marginal likelihoods and

predictive measures as logarithmic scores [11] and the PIT histogram [6], useful to

detect outliers and to compare and validate models.

Different strategies to assess the accuracy of the various approximations for the

densities xi|θ, y are described in [20]. The INLA approximations assume the posterior

distribution π(x|θ, y) to be unimodal and fairly regular. This is usually the case for

most real problem and data sets. INLA can, however, deal to some extent with the
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multimodality of π(θ |y), provided that the modes are sufficiently closed. See the

discussion contributions of Ferreira and Hodges and the author’s reply in [20].

Theory and practicalities surrounding INLA are extensively analysed in [20] and

will not be repeated here. Loosely speaking we can say that INLA fully exploits

all the main features of the latent Gaussian models described in Section 2. Firstly,

all computations are based on sparse matrix algorithms which are much faster than

the corresponding algorithms for dense matrix. Secondly, the presence of the latent

Gaussian field and the usual “good behaviour” of the likelihood function justify the

accuracy of the Laplace approximation. Finally, the small number of hyperparameters

θ makes the numerical integration in equation (3) computationally feasible.

4 The INLA package for R

Computational speed is one of the most important components of the INLA approach,

therefore special care has to be put into the implementation of the required algorithms.

All computations required by the INLA methodology are efficiently performed by

the inla programme, written in C based on the GMRFLib-library which includes

efficient algorithms for sparse matrices [18]. Both the inla programme and the

GMRFLib-library, in addition,use the OpenMP (see http://www.openmp.org)

to speed up the computations for shared memory machines, i.e. multicore processors,

which are today standard for new computers.

Moreover, the inla programme is bundled within an R library called INLA in

order to aid its usage. The software is open-source and can be downloaded from the

web site www.r-inla.org. It is run by Linux, MAC and Windows. On the same

website documentation and a large sample of applications are also provided.

5 Case studies

The following examples are meant to give an overview of the range of application

of the INLA methodology. All examples are implemented using the INLA library on

a dual-core 2.5GHz laptop. The R code is reported where it was considered helpful.

The rest of the R code can be downloaded from the www.r-inla.org website in

the Download section.

5.1 A GLMM with over-dispersion

The first example is a generalised linear mixed model with binomial likelihood,where

random effects are used to model within group extra variation. The data concern the

proportion of seeds that germinated on each of m = 21 plates arranged in a 2 × 2

factorial design with respect to seed variety and type of root extract. The data set was

presented by [5] and analysed among others by [3]. This example is also included

in the WinBUGS/OpenBUGS manual [15]. In [9] the authors perform a comparison

between the INLA and the maximum likelihood approach for this particular data set.
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The sampling model is yi |ηi ∼ Binomial (ni , pi) where, for plate i = 1, . . . , m,

yi is the number of germinating seeds (variable name (vn): r) and ni the total number

of seeds ranging from 4 to 81 (vn: n), and pi = logit−1(ηi ) is the unknown probability

of germinating. To account for between plate variability, [3] introduce plate-specific

random effects, and then fit a model with main and interaction effects:

ηi = β0 + β1z1i + β2z2i + β3z1i z2i + f (ui ), (4)

with z1i and z2i representing the seed variety (vn: x1) and type of root extract (vn: x2)

of plate i. We assign βk , k = 0, . . . , 3 vague Gaussian priors with known precision.

Moreover, we assume f (ui )|τu ∼ N (0, τ−1
u ), i = 1, . . . , 21, so that the general

f () function in Equation (2) here takes the simple form of i.i.d. random intercepts.

To complete the model we assign the hyperparameter a vague Gamma prior τi ∼

Gamma(a, b) with a = 1 and b = 0.001.

As explained in Section 2, when specifying the model in the INLA library a

tiny random noise ǫi with zero mean and known high precision is always added

to the linear predictor, so the latent Gaussian field for the current example is

x = {η1, . . . , ηm, β0, . . . , β3, u1, . . . , um}, while the vector of hyperparameters has

dimension one, θ = {τu}.
To run the model using INLA two steps have to be taken. Firstly, the linear

predictor of the model has to be specified as a formula object in R. Here the
function f() is used to specify any possible form of the general f () function in (2).
In the current model the i.i.d. random effect is specified using model="iid".

>formula = r ˜ x1*x2 + f(plate, model="iid")

Secondly, the specified model can be run by calling the inla() function:

>mod.seeds = inla(formula, data=Seeds, family="binomial",

+ Ntrials=n)

The a = 1 and b = 0.001 parameters for the Gamma prior for τu are the default

choice, therefore, there is no need to specify them. A different choice of parameters

a and b can be specified as f(plate,model="iid",param=c(a,b)).
A summary() function is available to inspect results:

> summary(mod.seeds)

Fixed effects:

mean sd 0.025quant 0.975quant kld

(Intercept) -0.554623 0.140843 -0.833317 -0.277369 5.27899e-05

x1 0.129510 0.243002 -0.326882 0.600159 3.97357e-07

x2 1.326120 0.199081 0.938824 1.725244 3.98097e-04

x1:x2 -0.789203 0.334384 -1.452430 -0.135351 3.35429e-05

Random effects:

Name Model Max KLD

plate IID model 4e-05

Model hyperparameters:
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mean sd 0.025quant 0.975quant

Precision for plate 1620.89 2175.49 104.63 7682.16

Expected number of effective parameters(std dev): 5.678(2.216)

Number of equivalent replicates : 3.698

Standard summary() output includes posterior mean, standard deviation, 2.5%

and 97.5% quantiles both for the elements in the latent field and for the hyperparam-

eters. Moreover, the expected number of effective parameters, as defined in [21], and

the number of data points per expected number of effective parameter (Number of

equivalent replicates) is also provided. These measures might be useful to

assess the accuracy of the approximation, see [20] for more details. Briefly, a low

number of equivalent replicates might flag a “difficult” case for the INLA approach.
The INLA library includes also a set of functions which post-process the marginal

densities obtained by inla(). These functions allow computation of the quantiles,
percentiles, expectations of function of the original parameter, density of a particular
value and also allow sampling from the marginal. As an example consider the follow-
ing: The output of the inla() function provides us with posterior mean and standard
deviation of the precision parameter τu . Assume that we are instead interested in the
posterior mean and standard deviation of the variance parameter σ 2

u = 1/τu . This can
be easily done by selecting the appropriate posterior marginal from the output of the
inla() function:

prec.marg = mod.seeds$marginals.hyperpar$"Precision for plate"

and then using the function inla.expectation()

> m1 = inla.expectation(function(x) 1/x, prec.marg)

> m2 = inla.expectation(function(x) (1/x)ˆ2, prec.marg)

> sd = sqrt(m2 - m1ˆ2)

> print(c(mean=m1, sd=sd))

mean sd

0.001875261 0.002823392

Sampling from posterior densities can be also be done using inla.rmarginal().
For example, a sample of size 1000 from the posterior π̃(β1|y) is obtained as follows:

> dens = mod.seeds$marginals.fixed$x1

> sample = inla.rmarginal(1000,dens)

More information about functions operating on marginals can be found by typing

?inla.marginal.

5.2 Childhood undernutrition in Zambia: spatial analysis

In the second example we consider three different spatial models to analyse the Zambia

data set presented in [14]. Here the authors study childhood undernutrition in 57

regions of Zambia. A total of nd = 4847 observation are included in the data set.

Undernutrition is measured by stunting, or inefficiency height for age, indicating
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chronic undernutrition. Stunting for child i = 1, . . . , nd is determined using a Z

score defined as

Z i =
AIi − M AI

σ
,

where AI refers to the child’s anthropometric indicator, M AI refers to the median of

the reference population and σ refers to the deviation of the standard population. In

addition, the data set includes a set of covariates such as the age of the child (agei ),

the body mass index of the child’s mother (bmii ), the district the child lives in (si )

and four additional categorical covariates. For more details about the data set see [13]

and [14].

We assume the scores Z i (vn: hazstd) to be conditionally independent Gaussian

random variables with unknown mean ηi and unknown precision τz. We consider three

different models for the mean parameter ηi . The first is defined as:

ηi = μ + zT
i β + fs (si ) + fu(si ). (5)

This model will be called MOD1. It assumes all six covariates to have a lin-
ear effect. Moreover, it contains a spatially unstructured component fu (si ) (vn:
distr.unstruct), which is i.i.d normally distributed with zero mean and un-
known precision τu , and a spatially structured component fs (si ) (vn: district)
which is assumed to vary smoothly from region to region. To account for such smooth-
ness fu (si ) is modeled as an intrinsic Gaussian Markov random field with unknown
precision τs , see [18]. This specification is also called a conditionally autoregressive
(CAR) prior [1] and was introduced by [2]. To ensure identifiability of the mean μ, a
sum-to-zero constrain must be imposed on the fs (si )’s. The latent Gaussian field for
this model is x = {μ, {βk }, { fs (·)}, { fu (·)}, {ηi }}, while the hyperparameters vector
is θ = {τz, τu, τs}. Vague independent Gamma priors are assigned to each element
in θ . When specifying the model in (5) using the INLA library, the type of smooth
effect is specified using model="iid" for the unstructured spatial component and
model="besag" for the structured one. Moreover, for the spatially structured term,
a graph file (e.g. "zambia.graph") containing the neighbourhood structure has
to be specified. The structure of such graph file is described in [16]. The resulting
model specification looks like:

>formula = hazstd ˜ edu1 + edu2 + tpr + sex + bmi + agc +

+ f(district, model="besag", graph.file="zambia.graph") +

+ f(distr.unstruct, model="iid")

Note that in the INLA library a sum-to-zero constraint is the default choice for
every intrinsic model. One requirement of the INLA library is that, each effect speci-
fied through an f() function in the formula should correspond to a different column
in the data file, that is why the two column district and distr.unstruct are
needed. Fitting the model is done by calling the inla() function:

> mod = inla(formula, family="gaussian", data=Zambia,

+ control.compute=list(dic=TRUE, cpo=TRUE))

The dic=TRUE flag makes the inla() function compute the model’s deviance

information criterion (DIC). This is a measure of complexity and fit introduced in [21]
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and used to compare complex hierarchical models. It is defined as:

DIC = D + pD,

where D is the posterior mean of the deviance of the model and pD is the effective

number of parameters. Smaller values of the DIC indicate a better trade-off between

complexity and fit of the model.

The cpo=TRUE flag tells the inla() function to compute also some predic-

tive measures for the observed yi given all other observations. In particular the

predictive density π(yi |y−i) (called cpo) and the probability integral transform

PITi = Prob(ynew
i < yi |y−i) (called pit) are computed. These quantities can

be useful to assess the predictive power of the model or to detect surprising obser-

vations. See [20] for details on how such quantities are computed. As noted in [12]

the simplified Laplace approximation might, in some cases, not be accurate enough

when computing predictive measures. The inla() function outputs a vector (which

can be recovered as mod$failure) which contains values from 0 to 1 for each

observation. The value 0 indicates that the computation of cpo and pit for the

corresponding observation was computed without problems. A value greater than 0

instead, indicates that there were some computing problems and the predictive mea-

sures should be recomputed. See the FAQ section on www.r-inla.org for further

interest concerning this topic.
The posterior mean for the β parameters, together with standard deviations and

quantiles are presented in Table 1. The inla() function returns the whole posterior
density for such parameters, therefore, if needed other quantities of interest can also be
computed. The posterior mean of smooth and unstructured spatial effects are displayed
in Figure 1. The output of the inla() function also includes posterior marginals
for the hyperparameters of the model and posterior marginals for the linear predictor,
which are not displayed here. The value of the DIC for MOD1 is displayed in Table 2.
To assess the predictive quality of the model the cross-validated logarithmic score [11]
can be used. It can be computed using the inla() output as:

> log.score = -mean(log(mod1$cpo))

−0.16

−0.1
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0.08
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Fig. 1. Posterior mean for the smooth spatial effect (left) and posterior mean for the unstructured

spatial effect (right) in MOD1
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Table 1. Posterior mean (standard deviation) together with 2.5% and 97.5% quantiles for the

linear effect parameters in the three models for the Zambia data

Model Covariate Mean(sd) 2.5% quant 97.5% quant

μ −0.010(0.100) −0.207 0.187

MOD1 βagc −0.015(0.001) −0.017 −0.013

βedu1 −0.061(0.027) −0.114 −0.009

βedu2 0.227(0.047) 0.134 0.320

βt pr 0.113(0.021) 0.072 0.155

βsex −0.059(0.013) −0.086 −0.033

βbmi 0.023(0.004) 0.014 0.031

μ −0.412(0.096) −0.602 −0.223

MOD2 βedu1 −0.060(0.026) −0.111 −0.009

βedu2 0.234(0.046) 0.145 0.324

βt pr 0.105(0.021) 0.064 0.145

βsex −0.058(0.013) −0.084 −0.033

βbmi 0.021(0.004) 0.013 0.029

μ −0.366(0.096) −0.556 −0.178

MOD3 βedu1 −0.061(0.026) −0.112 −0.010

βedu2 0.232(0.046) 0.142 0.321

βt pr 0.107(0.023) 0.062 0.152

βsex −0.059(0.013) −0.084 −0.033

Table 2. DIC value and logarithmic score for the three model in the Zambia example

MOD1 MOD2 MOD3

Mean of the deviance 13030.66 12679.90 12672.22

Deviance of the mean 12991.61 12630.89 12610.68

Effective number of parameters 39.04 49.01 61.53

DIC 13069.71 12728.92 12733.76

log Score 1.357 1.313 1.314

The resulting value is displayed in Table 2. A smaller value of the logarithmic

score indicates a better prediction quality of the model. The mod$failure vector,

in this case, contains only 0’s so predictive quantities can be used without problems.

A tool to assess the calibration of the model is to check the pit histogram. As

suggested in [6], in fact, in a well calibrated model, the pit values should have a

uniform distribution. For MOD1 the pit histogram (not shown here but available on

www.r-inla.org) doesn’t show any sign of wrong calibration.

As discussed in Section 3 the default integration strategy in the inla() func-

tion is the CCD strategy. It is possible to choose a GRID strategy instead using the

following call to inla():

> mod = inla(formula, family="gaussian", data=Zambia,

+ control.inla = list(int.strategy = "grid"))
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The computational time increases from ca 9 seconds needed by the CCD integra-

tion to ca 16 seconds, while a comparison of the results coming from the two fits (not

shown here) does not present any significant difference.

As discussed in [14] there are strong reasons to believe that the effect of the age

of the child is smooth but not linear. To check such an assumption we can modify the

previous model to:

ηi = μ + zT
i β + f1(agei ) + fs (si ) + fu (si ). (6)

This extended model will be called MOD2. Here { f1(·)} follows an intrinsic second-
order random-walk model with unknown precision τ1, see [18]. To ensure identifi-
ability of μ, a sum-to-zero constraint must be imposed on f1(·). The latent field is
then x = {μ, {βk }, { fs (·)}, { fu (·)}, { f1(·)}, {ηi }} while the hyperparameter vector is
θ = {τz, τu , τs, τ1}. The INLA specification of MOD2 differs form the previous one
simply because now an f() function is used also to define the smooth effect of age.

>formula = hazstd ˜ edu1 + edu2 + tpr + sex + bmi +

+ f(agc, model="rw2") +

+ f(district, model="besag", graph.file="zambia.graph") +

+ f(distr.unstruct, model="iid")

The call to the inla() function is not changed. The estimated posterior mean and

quantiles of the non-linear effect of age is plotted in Figure 2(a) and the non-linearity

of the age effect is clear. The improvement obtained by using a more flexible model

for the effect of the age covariate can be seen also from the decreased value of the

DIC in Table 2. This second model results also to be more powerful as a prediction

tool, as indicated by the decreased value of the logarithmic score in Table 2. Also

for this model the predictive quantities are computed without problems and the pit

distribution is close to uniform. The estimates of the other parameters in the model

are reported in Table 1, the estimated spatial effects are similar to that in MOD1 and
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Fig. 2. (a) Estimated effect of age (posterior mean together with 2.5% and 97.5% quantiles)

using MOD2; (b) Posterior mean for the space-varying regression coefficient in MOD3
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are not reported here. Results are similar to those obtained using BayesX, a program

which performs a MCMC study [13].

As an alternative hypothesis to explain spatial variability one could imagine that

the effect of one covariate, for example the mother’s bmi, although being linear has

a different slope for different regions. Again we assume this spatial variability to be

smooth. These kinds of models are known as space-varying regression models [10].

Using the notation in equation (2) the model (MOD3) can be written as:

ηi = μ + zT
i β + f1(agei ) + bmii f2(si ). (7)

We assume here that the whole spatial variability is explained by the space varying
regression parameter so that no other spatial effect is needed. Moreover, we assume
the age covariate to have a non-linear effect. The model for f1(·) is as in MOD2 while
for f2(·) we assume a "besag" model, this time the sum-to-zero constraint is not
necessary since there are no identifiability problems. Here the bmi covariate simply
acts as a known weight for the IGMRF f2(·). The INLA specification of the model
is as follows:

>formula = hazstd ˜ edu1 + edu2 + tpr + sex +

+ f(agc, model="rw2") +

+ f(district, bmi, model="besag",

+ graph.file="zambia.graph",

+ constr=FALSE)

The order of district and bmi in the second of the f() functions of the for-

mula above is important since arguments are matched by position: the first argument

is always the latent field and the second is always the weights. Note, moreover, that

the sum-to-zero constraint has to be explicitly removed since, as said before, is de-

fault for all intrinsic models. The resulting estimates for the space varying regression

parameter are displayed in Figure 2(b).

The computing time (using the default CCD strategy) goes from a minimum of 9

seconds for MOD1 to a maximum of 14 seconds for MOD2.

5.3 A simple example of survival data analysis

Our last example comes from survival analysis literature. A typical setting in survival

analysis is that we observe the time point t at which the death of a patient occurs.

Patients may leave the study (for some reason) before they die. In this case the survival

time is said to be right censored, and t refers to the time point when the patient

left the study. The indicator variable δ is used to indicate whether t refers to the

death of the patient (δ = 1) or to a censoring event (δ = 0). The key quantity in

modeling the probability distribution of t is the hazard function h(t), which measures

the instantaneous death rate at time t . We also define the cumulative hazard function

H (t) =
∫ t

0
h(s)ds, implicitly assuming that the study started at time t = 0. A different

starting time can also be considered and it is usually referred to as truncation time.

The log-likelihood contribution from one patient is δ log(h(t)) − H (t). A commonly
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used model for h(t) is Cox’s proportional hazard model [4], in which the hazard rate

for the ith patient is assumed to be in the form

hi (t) = h0(t) exp(ηi ), i = 1, . . . , n.

Here, h0(t) is the “baseline” hazard function (common to all patients) and ηi is a

linear predictor. In this example we shall assume that the baseline hazard belongs to

the Weibull family: h0(t) = αtα−1 for α > 0.

In [17] this model is used to analyse a data set on times to kidney infection for a

set of nd = 38 patients. The data set contains two observations per patient (the time to

first and second recurrence of infection). In addition there are three covariates: “age”

(continuous), “sex” (dichotomous) and “type of disease” (categorical, four levels), and

an individual specific random effect (vn: ID), often named frailty: ui ∼ N(0, τ−1).

Thus, the linear predictor becomes

ηi = β0 + βsex sexi + βageagei + βDxi + ui , (8)

where βD = (β2, β3, β4) and xi is a dummy vector coding for the disease type. Here

we used a corner-point constraint imposing β1 = 0.
Fitting a survival model using INLA is done using the following commands:

>formula = inla.surv(time,event) ˜ age + sex + dis2 + dis3 +

+ dis4 + f(ID, model="iid")

>mod = inla(formula, family="weibull", data=Kidney)

Note that the function inla.surv() is needed to define the response variable

of a survival model. This function is used to define different censoring schemes such

as right, left or interval censoring plus, possibly, truncation times. Including more

complex effects in model (8) such as, for example, smooth effects of covariates or

spatial effects can be done in exactly the same way as for the previous examples.

Posterior means and standard deviations, together with quantiles, for the model pa-

rameters are shown in Table 3 and are similar to those obtained by Gibbs sampling via

WinBUGS and by maximum likelihood. Fitting the model took less than 2 seconds.

Table 3. Posterior mean, standard deviation and quantiles for the parameters in the survival

data example

mean sd 2.5% quant 97.5% quant

β0 −4.809 0.954 −6.77 −3.103

βage 0.003 0.016 −0.028 0.036

βsex −2.071 0.535 −3.180 −1.076

β2 0.155 0.591 −1.007 1.346

β3 0.679 0.595 −0.467 1.900

β4 −1.096 0.863 −2.813 0.611

α 1.243 0.151 0.970 1.560

τ 2.365 1.647 0.586 6.976
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Fig. 3. Estimate of the posterior marginals for θ basic estimation (solid line) and improved one

(dashed line). Left: posterior marginals for α. Right: posterior marginal for τ

The inla() function computes the posterior marginals for the hyperparameters
θ = (α, τ ) using only a few points in the θ space (CCD strategy). As noted in Section 3
this might be not accurate enough. The function inla.hyperpar(), which takes
as input the output of inla(), recomputes the marginals for the hyperparameters in
a more accurate way, using a grid integration:

> hyperpar = inla.hyperpar(mod)

In cases where the dimension m of θ is large, computing posterior marginals

using inla.hyperpar() can be time consuming. In this case, being m = 2,

recomputing marginals for θ took less than 3 seconds. Figure 3 shows the two ap-

proximations for the hyperparameters in model 8. For the current example there is no

particular improvement from using the more accurate approximation computed by

inla.hyperpar().

The INLA library can also deal with exponential models for the baseline function

h0(t). Semiparametric models for h0(t) such as the piecewise log-constant are, at the

moment, under study.

6 Conclusions

As shown in this paper INLA is a powerful inferential tool for latent Gaussian models.

The computational core of the inla programme treats any kind of latent field in the

same way thus behaving as a black-box. The available R interface INLA, can easily be

handled by the user to obtain fast and reliable estimates. The large series of different

options both for the approximations of the posterior marginals of the latent field, and

for the exploration of the hyperparameter space may generate confusion in the novice

user. On the other hand, the default choices in the INLA library, usually offer a good

starting point for the analysis.
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The INLA library computes also quantities useful for model comparison, a feature

that becomes important when the computational speed gives the possibility to fit

several models to the same data set.

The INLA library contains also functions to process the posterior marginals ob-

tained by the inla() function, so that it is possible to compute quantiles, percentiles

or expectations of functions of the original random variable. Sampling from such pos-

terior marginals is also possible.
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A graphical models approach for comparing gene sets

M. Sofia Massa, Monica Chiogna and Chiara Romualdi

Abstract. Recently, a great effort in microarray data analysis has been directed towards the

study of the so-called gene sets. A gene set is defined by genes that are, somehow, function-

ally related. For example, genes appearing in a known biological pathway naturally define a

gene set. Gene sets are usually identified from a priori biological knowledge. Nowadays, many

bioinformatics resources store such kind of knowledge (see, for example, the Kyoto Encyclo-

pedia of Genes and Genomes, among others). In this paper we exploit a multivariate approach,

based on graphical models, to deal with gene sets defined by pathways. Given a sample of

microarray data corresponding to two experimental conditions and a pathway linking some of

the genes, we investigate whether the strength of the relations induced by the functional links

change among the two experimental conditions.

Key words: Gaussian graphical models, gene sets, microarray, pathway

1 Introduction

Microarray technology permits the simultaneous quantification of the expression of

thousands of genes in a single experiment. Since the advent of this technology, the

primary interest has been directed towards the identification ofdifferentially expressed

genes.

Many statistical tests, centred on the null hypothesis of equal expression of a

gene between two (or more) experimental conditions, have been proposed in past

years; see for example [11] for an extensive review. On sets of genes, the so-called

significance analyses typically assess the level of significance for a gene at a time,

producing then a list of differentially expressed genes by using a cutoff threshold on

the levels of significance. This list is then investigated from a biological point of view,

to assess the enrichment of specific biological themes in the list [8]. This is achieved

through biologically defined gene sets derived from Gene Ontology (available at

http://www.geneontology.org) or by means of some pathway databases.

Many authors pointed out a series of drawbacks of this approach. A major drawback is

related to the use of a threshold for the identification of differentially expressed genes,

and, therefore, gene sets. For example, [9] show that different choices of threshold
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