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In employee selection and academic admission decisions, holistic (clinical) data combination methods

continue to be relied upon and preferred by practitioners in our field. This meta-analysis examined and

compared the relative predictive power of mechanical methods versus holistic methods in predicting

multiple work (advancement, supervisory ratings of performance, and training performance) and aca-

demic (grade point average) criteria. There was consistent and substantial loss of validity when data were

combined holistically—even by experts who are knowledgeable about the jobs and organizations in

question—across multiple criteria in work and academic settings. In predicting job performance, the

difference between the validity of mechanical and holistic data combination methods translated into an

improvement in prediction of more than 50%. Implications for evidence-based practice are discussed.
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Predicting performance in work and academic settings is quite

complex, with a large utility for strong prediction. Since numerous

individual and situational factors have been shown to influence

performance and both jobs and some performance determinants

can change over time, multiple measures are often used to thor-

oughly evaluate applicants. For even moderately complex jobs, a

great deal of information frequently is collected via tests, inter-

views, resumes, and simulations, creating the ultimate issue of how

to best make use of it all.

Two general approaches have been used to combine data col-

lected from applicants. The first are mechanical (actuarial, algo-

rithmic) approaches that involve applying an algorithm or formula

to each applicant’s scores. Examples range from aggregating

scores using simple unit weights, to estimating optimal weights, to

using more complex empirically derived decision trees. Holistic

methods, the second general and more common approach (clinical,

expert judgment, intuitive, subjective), include both individual

judgments of data and group consensus meetings. The defining

characteristic of the holistic methods is that data are combined

using judgment, insight, or intuition, rather than an algorithm or

formula that is applied the same way for each decision.

Although the holistic approach has remained the most common

approach over time (Jeanneret & Silzer, 1998; Ryan & Sackett,

1987), previous research across a range of fields has demonstrated

consistently improved decision accuracy for mechanical methods

over holistic ones (Grove & Meehl, 1996). Several reviews have

been conducted evaluating and comparing different types of me-

chanical and clinical data combination across a mixture of fields

and decision types (e.g., Grove, Zald, Lebow, Snitz, & Nelson,

2000; Sawyer, 1966). There are two consistent findings in these

reviews. The first is that the specific type of mechanical versus

holistic method is largely less important than whether or not the

method uses human judgment versus an equation for data combi-

nation. Second, the central issue appears to be how the data are

combined together to form a judgment or recommendation rather

than how they are gathered in the first place. That is, people are

effective at collecting information but appear to be less effective at

combining multiple sources of information into a final decision.

However, no meta-analysis has been conducted on this issue for

the prediction of human performance in work and academic set-

tings. Such an investigation is important because the actual size of

the difference between mechanical and holistic approaches in

predicting work or academic performance is unknown. Given that

there is generally a strong preference for holistic expert-driven

clinical decision making (Highhouse, 2008b) in Industrial-Work
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and Organizational (IWO) psychology, a relatively small differ-

ence would suggest that the method of data combination is a

marginal issue. Consequently, emphasis should be placed on en-

couraging the consistent use and ongoing development of high-

quality predictors. On the other hand, if the difference is large, then

research is needed to understand its source and find methods that

capture at least some of the strengths of the mechanical methods

while remaining acceptable to end users.

Brunswik Lens Model

To frame the current study, we adopt the Brunswik Lens Model

(Brunswik, 1955, 1956), which provides a theory of decision

making and an elegant analytical framework. Conceptually, the

Lens Model assumes that people perceive information in their

environment and combine one or more pieces of information into

a judgment or prediction. In a selection context, this information

could be anything from characteristics of the setting to subtle

behavior cues from potential job candidates to an understanding of

the foibles of senior management. The human judge can weight

each piece differentially and then combine the information to yield

a prediction or judgment. The Lens Model permits modeling the

human judge’s weighting and combining of information cues with

any combination of methods (additive, configural, power, interac-

tive, conditionally) and comparing it to other methods of data

combination.

Structurally, the Lens Model contains three major components:

the subject response or judgments (Ys), the environmental or

independent variable cues (information cues), and the outcome or

criterion value of interest (Ye). The relations among these compo-

nents is used to evaluate the nature of decision making (see Figure

1). Specifically, the Lens Model specifies that the judgment made

by an individual is based on their perception and mental weighting

of one or more cues (e.g., observed interview behavior, test scores,

resume items). These cues, in turn, have actual associations with

an outcome (e.g., performance, turnover). One can think of the

judge peering into the future through the lens of the environmental

cues influenced by the weights and combinations used by the

judge.

Typically multiple regression is used to quantify how cues are

related to judgments as well as outcomes. Regressing the judgment

on the cues (called the Cognitive Strategy) and the outcome on the

cues (called the Ecological Validity) models how the cues, on

average, are related to judgments and outcomes, respectively.

Correlating the judgments with the outcome is often called the

Achievement Index and estimates how strongly judgments are

predictive of outcomes. This meta-analysis contrasts the magni-

tude of the Ecological Validity with the Achievement Index.

However, much more can be done with the model and previous

research on other aspects of the model can aid in interpreting the

current results. The Lens Model is particularly powerful because it

allows scholars to examine how cues are typically used but also

how variably.

It is well established that judges use cues “inconsistently” in that

they deviate in many cases from the estimated regression weights

based on the judge’s predictions (e.g., Karalaia & Hogarth, 2008).

In other words, judges will often weight the same set of cues

differently across targets, weighting, for example, historical ac-

complishments more for one candidate than another. Thus, the

model makes a distinction between “man” (the judge’s prediction

for each individual target) and the “model of man” (the estimated

average values from regressing the judge’s prediction on a set of

cues).

X1

X2

X3

Xk

r1s

r2s

r3s

rks

r1e

rke

r3e

r2e

Ecology (e) Subject Judgments (s)

Independent Variable Cues

“The Lens”

Subject 
Response (Ys)

Criterion 
Value (Ye)

Achievement Index
Clinical Validity

ra = rYe rYs

Predicted Subject 

Response Ŷs

Predicted Criterion 

Value Ŷe

...

Mechanical Knowledge (G)
G = Ŷe Ŷs

Unmodeled Knowledge (C)
C = Re Rs

Environmental 
Predictability (Re)
Re = r Ye Ŷe

Cognitive 
Control (Rs)

Rs = r Ys Ŷs

Figure 1. The Lens Model.
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The correspondence between the “man” and the “model of man”

predictions has been referred to as “cognitive control” (Rs; Ham-

mond & Summers, 1972). It quantifies just how consistently

judges combine information. Cognitive control is often fairly low

for judges making complex psychological judgments. This is not

problematic, per se, if the deviations made by the judge improve

judgment accuracy. For example, intuiting that biodata are espe-

cially salient for one applicant based on structured interview

results would lead to lower cognitive control (i.e., biodata are not

consistently weighted) but might yield improved prediction accu-

racy.

This leads to one of the most striking findings from Lens Model

research. Models of the judge consistently outperform the judge’s

actual judgments. Remarkably, adhering to a weighted composite

based on previous judgments will do better than the expert on

whom it was developed (e.g., Goldberg, 1970). Returning to our

example, this evidence suggests that the judge’s intuition to more

heavily emphasize the biodata information for one individual will

typically be in error and that consistent use of the cues tends to

results in better predictions.

Theoretically, judge inconsistency leaves open the possibility

that the judgments do, in fact, contain insights that improve on a

mechanical composite but the concern is that these insights may be

plagued by unreliability. The Lens Model provides two mecha-

nisms for evaluating this question. First, the judge’s predictive

validity above and beyond a linear optimal weighting of cues can

be examined. This is called “C” in Lens Model parlance (or

Unmodeled Knowledge) and is the correlation of the residuals

between the Cognitive Strategy model and the Ecological Validity

model. C is in contrast to G, which is called Mechanical Knowl-

edge. Mechanical knowledge is the correspondence between pre-

dictions made by an optimally weighted mechanical combination

of predictors and predictions made the human judge. These dif-

ferent indexes allow scholars to examine the extent to which

judges employ less than optimal weighting schemes.

Research has indicated that there is little predictive power

unique to clinical judgments (Karalaia & Hogarth, 2008). On the

whole, these findings suggest that, compared to mechanical pre-

diction from a set of cues, clinical judgment is degraded by both

failing to appropriately weight all relevant cues (i.e., Rs � 1) and

unreliably in applying weighting schemes that are developed (i.e.,

G � 1). This degradation does not generally appear to be com-

pensated with unique accuracy of clinical predictions as C values

(insights beyond the linear mechanical model) are typically zero or

very small (Karalaia & Hogarth, 2008). Although previous theory

and research provide a good explanation of the cause of any

differences, the impact of inappropriate weights and unreliability

in applying those weights on decisions varies by topic. Estimating

the size of the difference is a major reason for the present study.

Although this introduction has focused the Lens Model on the

mechanical/clinical question, it has much broader implications for

validation research and we return to the model’s implications in

the discussion. We argue that it should be adopted as an overar-

ching framework for all personnel selection research.

In total, theory and prior research suggest that an over attention

to salient cues and inconsistency in use of weights without a

compensating gain in insights will cause experts to form judg-

ments with less predictive power than mechanical combination of

the same set of cues. The questions remain, “How much of a

difference?” and “For what criteria?” This meta-analysis examines

and compares the relative predictive power of mechanical methods

versus clinical methods in predicting multiple work (advancement,

supervisory ratings of performance, and training performance) and

academic (grade point average) criteria.

Method

The Meta-Analytic Database

We used a modified version of Hunter and Schmidt’s (2004)

psychometric meta-analytic method (see below) to quantitatively

aggregate results across studies that compared criterion-related

validities of clinical data combination methods to criterion-related

validities of mechanical data combination methods. Studies were

gathered from several sources. Using the terms “combination,”

“mechanical,” “actuarial,” “clinical,” “impressionistic,” “holistic,”

“fit,” and “judgmental” (as well as synonyms and different forms of

these terms) to identify relevant research, we searched PsycINFO

(1887–2008), ERIC (Education Research Information Center,

1966–2008), Digital Dissertations (1861–2008), and google

.com (2008). We examined citation lists within all articles, disser-

tations, and technical reports to obtain additional relevant studies.

To be included in the database, a study had to quantitatively

compare use of mechanical combination of data from one or more

independent variables to the use of clinical combination of the

same data from the same independent variables to predict work or

academic criteria (e.g., performance, achievement).1 Thus, each

study included (a) at least one effect size for a mechanical data

combination method correlated with a work or academic criterion

and (b) at least one effect size for a clinical data combination

method correlated with the same exact criterion.

The independent variables used for each data combination

method were selected to maximize their similarity. That is, to the

extent possible we made “apples versus apples” comparisons

where the clinician used and had access to the same information as

was used in the mechanical combination. In no case could the

mechanical combination methods use information that was un-

available to the clinician, as such comparisons would favor the

mechanical method. Some studies compared clinical and mechan-

ical methods for varying numbers of predictors, including scenar-

ios in which one method had more predictors than the other.

However, for each such study we also chose the closest match in

the number of predictors for each combination method (provided

that the mechanical method did not employ more predictors while

allowing the clinical some leeway). The only exception was when

both methods had technically different measures that effectively

measured the same construct and are very similar in predictive

power (e.g., high school rank vs. high school grade point average;

Neidich, 1968).

1 The one partial exception to this rule is the comparison of the mechan-
ical data combination of meta-analyzed dimension scores reported in
Arthur, Day, McNelly, and Edens (2003; R � .45), which Arthur et al.
compared to the meta-analyzed overall assessment rating (OAR) reported
in Gaugler, Rosenthal, Thornton, and Bentson (1987; corrected r � .37). It
is not fully clear the extent to which the clinicians whose clinical data
combination methods reflected in Gaugler et al.’s correlation of .37 had
access to the same information used in the mechanical data combination
procedures of Arthur et al.
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Furthermore, we did not use effect sizes for the mechanical data

combination method that were the result of exploratory analytic

techniques that would gave it an unfair advantage over the clinical

data combination method. For example, in some studies (e.g.,

Lewis & MacKinney, 1961; Mitchel, 1975), authors selectively

chose a subset of independent variables for the mechanical com-

bination only after screening based on relationships with the cri-

terion. Such selectivity may capitalize on sampling error and

overestimate true predictive power of the mechanical combination.

Coding of all articles was inspected by two or more authors. To

avoid violating assumptions of the independence of samples, effect

sizes were first averaged within a particular study prior to aver-

aging across studies. Two studies (Arthur, Day, McNelly, &

Edens, 2003; Stuit, 1947) had relatively much larger sample sizes

(N). To prevent these studies from overwhelming any analysis,

effect sizes from these studies were weighted by the median of

other studies’ sample sizes rather than their own sample size.

However, it should be noted that inclusion of these studies with the

full Ns does not alter the conclusions of the study.2

Meta-Analytic Procedures

Selection of workers and students on the basis of predictors

often results in range restriction, which in turn attenuates estimates

of predictive validity. Unreliability of predictor and criterion mea-

sures also attenuates these estimates. Unfortunately, there were

inadequate sample specific data to correct studies for either range

restriction or unreliability either individually or through artifact

distributions. Hence, the validity estimates provided here are likely

to be underestimates of the actual relationship between predictors

and criteria. Not correcting for statistical artifacts means that the

magnitudes of differences between mechanical and clinical com-

bination methods may also be underestimated. For example, if the

criterion reliability is ryy � .60, comparing an observed validity of

.25 to another observed validity of .30 underestimates the differ-

ence in their corrected correlations (.32 vs. .39).

For all clinical data combination, effect sizes were obtained

(either directly or through calculation) as zero-order correlations.

In the case of mechanical combination, effect sizes were either

zero-order correlations (rs) or multiple correlations (multiple-Rs).

However, these multiple correlations are upwardly biased because

predictions made with more than one predictor may capitalize on

chance factors specific to a particular sample for which regression

weights are estimated (Nunnally, 1978). This capitalization on

chance results in a multiple correlation value that will typically

overestimate the mechanical formula’s predictive validity in an-

other sample or the population (i.e., shrinkage). The research

purpose here is to ascertain how well the independent variables

predict in future applied settings. The two estimates that can be

created are the estimated cross-validated multiple correlation and

the population multiple correlation.

Given that most selection systems are ongoing and weights can

be refined over time, neither estimator is ideal. The cross-validated

multiple correlation can be considered as the value of the regres-

sion weights for the subsequent set of decisions. (�
c
; Cattin, 1980a;

Fowler, 1986). �
c

(or its estimate �̂c) indicates how predictive

a formula is when the regression weights are created based on data

from one sample and then reused in subsequent samples drawn

from the same population.3 However, with efforts to refine the

weights with more data, the estimated cross-validated multiple

correlation would then be the lower bound with the estimated

population Multiple-R providing as estimate of the upper bound.

Therefore, we provide results based on both sets of estimates. To

estimate �̂c, we used a version of Browne’s (1975) formula (see the

Appendix, Formula 3). Although alternate methods of calculating

�̂c exist (e.g., Claudy, 1978; Rozeboom, 1978), this version of

Browne’s formula has generally performed best in Monte Carlo

simulation studies (Raju, Bilgic, Edwards, & Fleer, 1999; Shieh,

2008; Yin & Fan, 2001).

An adapted version of Hunter and Schmidt’s (2004) “bare-

bones” meta-analytic procedure was used to aggregate results

across studies to estimate the mean predictive validity, the ob-

served variability around that mean predictive validity, and the

variability remaining after accounting for variability due to sam-

pling error. The modification was necessary due to the mixture of

effect sizes included in the mechanical estimates. In estimating the

variability due to sampling error, our combination of zero-order

correlations and multiple-R correlations for mechanical combina-

tions necessitated adapting Hunter and Schmidt’s bare-bones pro-

cedures. Specifically, although sampling error impacts our esti-

mate of a population-level effect size whether the sample-level

effect sizes in our meta-analyzed studies are zero-order correla-

tions or multiple correlations, the formulae for estimating sampling

error of these statistics differ.

Therefore, we estimated sampling error variance individually

for each sample using the appropriate sampling error statistic for

the effect size (r or �̂c). For each of the zero-order correlations, �e
2

(sampling error variance) was calculated using Hunter and

Schmidt’s (2004, pp. 85–92) bare-bones procedure. For each of the

multiple correlations, a measure of variability for each effect size

point estimate, var(�̂c)—which Browne (1975) refers to as

var(�)—was calculated using Browne’s estimation method (see

the Appendix, Formula 4).4

To estimate true variability around the meta-analytic mean, the

individual sample estimates of �e
2 and var(�) were pooled together.

An observed sample-size weighted correlation variance was cal-

culated using the mean observed effect size, zero-order correla-

tions, and the shrunken Rs. Hunter and Schmidt’s (2004, pp.

85–92) bare-bones procedure provides the appropriate formula

with an example. The pooled error variance was subtracted from

the observed correlation variance, and then the square root was

taken to obtain SD�.

The final database included 25 samples across 17 studies. After

replacing extreme sample outliers with the median of the Ns for the

other samples in the same analysis, there were 2,263 workers for

whom predictions were made via mechanical data combination,

2,027 workers for whom predictions were made via clinical data

2 For interested readers, these results are available from the first author.
3

�̂c is preferable to alternate formulas for adjusting for shrinkage, such
as Cattin’s (1980a) �, because the goal of these analyses is to estimate
validities that would be observed in a sample (a new set of applicants).
Cattin’s �, however, is appropriate when the goal is to estimate the
population-level multiple correlation.

4 Although several competing approaches exist for estimating var(�)
(Fowler, 1986; Mendoza & Stafford, 2001), these approaches involve
added complexity without demonstrated improvement over Browne’s
(1975) method. The use of Browne’s formulas was most with a preference
for transparency and parsimony in methodology.
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combination, 889 students for whom predictions were made via

mechanical data combination, and 632 students for whom predic-

tions were made via clinical data combination. Within each anal-

ysis, the samples were independent of each other and the effect

sizes included relationships for three work and two academic

criteria.

Results

Summaries of each study contributing to the meta-analysis are

presented in Table 1. For those estimates that required aggregation

of Multiple Rs, the magnitude of the mechanical estimate varied

depending on the shrinkage formulae applied. When aggregated

separately for each outcome variable, across all outcome variables

for population estimates, a consistent pattern emerged. Larger

correlations were found for mechanical methods over clinical

methods. For many important criteria, validities of mechanical

methods were substantially larger than those found for clinical data

combination approaches (see Table 2). The mechanical advantage

was eliminated but not reversed for two criteria when the most

stringent new-sample shrinkage estimates were employed.

For job performance, the average correlation was .44 for me-

chanical and .28 for clinical. Advancement criteria yielded a

smaller difference of .42 for mechanical versus .36 for clinical.

The least data existed for training outcomes but the results were

consistent with other results with an average of .31 for mechanical

and .16 for clinical. For the educational criterion of grade point

average, the predictive validities were larger with an average value

of .58 for mechanical and .48 for clinical. Finally, in our most

diverse analysis, a collection of three different measures of non-

grade measures of academic achievement (faculty evaluations,

comprehensive exam performance, and degree completion)

yielded the narrowest difference with an average of .47 for me-

chanical and .46 for clinical prediction (although the latter is based

on only 161 students).

Most of these differences in validity are substantial, especially

for job performance. In predicting this criterion, the difference

between the validity of mechanical and clinical data combination

methods translates into a population level improvement in predic-

tion of more than 50%.

Discussion

The results of this meta-analysis demonstrate a sizable predic-

tive validity difference between mechanical and clinical data com-

bination methods in employee selection and admission decision

making. For predicting job performance, mechanical approaches

substantially outperform clinical combination methods. In Lens

Model language, the Achievement Index (clinical validity) is sub-

stantially lower than the Ecological Validity.

This finding is particularly striking because in the studies in-

cluded, experts were familiar with the job and organizations in

question and had access to extensive information about applicants.

Further, in many cases, the expert had access to more information

about the applicant than was included in the mechanical combi-

nation. Yet, the lower predictive validity of clinical combination

can result in a 25% reduction of correct hiring decisions across

base rates for a moderately selective hiring scenario (SR � .30;

Taylor & Russell, 1939). That is, the contribution our selection

systems make to the organization in increasing the rate of accept-

able hires is reduced by a quarter when holistic data combination

methods are used. Yet, this is an underestimate because we were

unable to correct for measurement error in criteria or range restric-

tion. Corrections for these artifacts would only serve to increase

the magnitude of the difference between the methods.

Despite the results obtained here, it might be argued that one

great advantage of the clinical method is that frequent changes in

jobs or circumstances will lead to a situation where the equation is

no longer appropriate while a clinical assessment can accommo-

date the change in circumstances. There are three problems with

this argument. First, there is no empirical evidence supporting this

scenario in the literature. The performance dimensions of jobs

have remained quite stable over time. For example, early evalua-

tions of the dimensional structure of the job of managers yielded

much the same dimensions as contemporary models (e.g., Borman

& Brush, 1993; Campbell, Dunnette, Lawler, & Weick, 1970;

Flanagan, 1951). Second, linear models are quite robust to changes

in weights. That is, unless the weights suddenly change from

positive to negative (another situation that has never been observed

in the literature), the overall predictive power of the composite

remains strong (Dawes, 1979). Finally, if such a situation were to

occur, the use of an expert’s subjective weights, integrated into a

modified equation, would still outperform the clinician.

Small N situations are also sometimes raised as a concern. It is

sometimes argued that these settings prevent the use of mechanical

methods. This is not the case. Each predictor can be weighted by

evidence from the literature (e.g., dominance is typically a mod-

erately valid predictor of leadership effectiveness). The advent of

validity generalization and considerable number of meta-analyses

in the literature provides some solid ground for differential weight-

ing. Alternatively, expert judgment (preferably aggregated across

multiple experts) can be used to set weights (e.g., our stock

in-basket should get only nominal attention given the job level and

functional area). These values can then be used to weight and

combine the assessment results.

The field would benefit from additional research that investi-

gates specific, and hopefully controllable, features of the assess-

ment, assessee, and decision process that contribute to reduced

predictive power. It is possible that assessors are overly influenced

by aspects of candidate’s personality or demeanor that are not

associated with subsequent job performance. Such evidence could

be used for assessor training to reduce such systematic errors and

could be combined with methods to increase the use of effective

predictors and data combination methods (Kuncel, 2008). Al-

though the results presented here are wholly consistent with a

broader literature, ongoing research is important for expanding on

the modest number of studies presenting evidence of this compar-

ison. The file drawer problem could also be present although we

expect that, given common practice, results would tend to skew in

favor of mechanical rather than holistic judgment.

Viewing and Reframing Personnel Selection Through

the Lens Model

From our perspective, the Lens Model provides a new way of

thinking about personnel selection that reaches well beyond the issue

of mechanical versus expert judgment. The true focus in validation

work should be on how information is used and what decisions are
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Table 1

Studies Contributing to the Meta-Analysis

Analyses in which
included Authors (Year) Criteria Predictors Typemech rmech Nmech Typeclin rclin Nclin

1. Acad.–GPA Sarbin (1943) Acad. Ach. Achievement1,2; cognitive
ability1,2; vocational
interest1,2;
personality1,2;
records1,2; interviews1,2

MR 0.70 89 Judgment of clinical
counselors

0.69 89

2. Acad.–GPA Sarbin (1943) Acad. Ach. Achievement1,2; cognitive
ability1,2; vocational
interest1,2;
personality1,2;
records1,2; interviews1,2

MR 0.45 73 Judgment of clinical
counselors

0.35 73

3. Acad.–GPA Stuit (Ed.)
(1947)

Acad. Ach. Cognitive ability1,2 and
interviews (with
predictor scores
available to
interviewer)2

C & r 0.50 3,246 (73)3 Interview 0.41 3,246 (89)3

4. Acad.–Non-Grade Truesdell & Bath
(1957)

Acad.
persistence

Achievement1,2;
vocational interests
(inventory)2; vocational
interests (subscales)1;
personality
(inventories)2;
personality (subscales)1

DF 0.50 314 Average of
validities of
academic staff
judgments

0.42 100

5. Acad.–GPA Watley & Vance
(1964)

Acad. Ach. Student’s age2; name of
high school from
which the student
graduated2;
achievement1,2; plans
for academic major2;
cognitive ability1,2

MR 0.61 71 Counselor judgment 0.54 100

6. Acad.–Non-Grade Robertson &
Hall (1964)

Acad. Ach. Cognitive ability1,2;
achievement
(college)1,2;
achievement (grade-
level)2

S-DW 0.54 38 Faculty ratings 0.74 38

(table continues)
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Table 1 (continued)

Analyses in which
included Authors (Year) Criteria Predictors Typemech rmech Nmech Typeclin rclin Nclin

7. Work–Advancement Wollowick &
McNamara
(1969)

Job
advancement

Personality1,2;
leadership1,2; cognitive
ability1,2;
demographics1,2;
assessment center
exercises1,2; and
various personality,
cognitive, and specific
ability
“characteristics”1,2

MR 0.62 94 Assessment staff
ratings

0.37 94

8. Acad.–Non-Grade Dawes (1971) Acad. Ach. Cognitive ability1,2;
achievement1,2; and
quality of
undergraduate
institution1,2

MR 0.40 111 Average rating
made by the
admissions
committee

0.19 23

9. Acad.–GPA Wiggins &
Kohen (1971)

Acad. Ach. Cognitive ability1,2;
achievement1,2;
undergraduate school
selectivity1,2;
personality1,2; and the
sex of the student1,2

MR; C-B; and BW 0.59 90 Average predicted
judgments of
psychology
graduates and
average validity
across judges

0.40 90

10. Acad.–GPA Nystedt &
Magnusson
(1972)

Acad. Ach. Cognitive ability1,2;
intercorrelations
between predictor
tests2; and predictor
tests’ ecological
validity2

MR 0.73 30 Group judgment 0.47 30

11. Work-–Performance Huck (1974)—
White sample

Overall job
performance

Interviews1,2; assessment
center exercises1,2;
cognitive ability1,2;
interests1,2; written
communication1,2; and
biodata1,2

MR 0.625 91 Individual assessors’
overall judgments
adjustable after
group discussion

0.41 91

12. Work–Performance Huck (1974)—
Black sample

Overall job
performance

Interviews1,2; assessment
center exercises1,2;
cognitive ability1,2;
interests1,2; written
communication1,2; and
biodata1,2

MR 0.78 35 Individual assessors’
overall judgments
adjustable after
group discussion

0.35 35
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Table 1 (continued)

Analyses in which
included Authors (Year) Criteria Predictors Typemech rmech Nmech Typeclin rclin Nclin

13. Work–Advancement Huck (1974)—
White sample

Potential for
advancement

Interviews1,2; assessment
center exercises1,2;
cognitive ability1,2;
interests1,2; written
communication1,2; and
biodata1,2

MR 0.67 91 Individual assessors’
overall judgments
adjustable after
group discussion

0.59 91

14. Work–Advancement Huck (1974)—
Black sample

Potential for
advancement

Interviews1,2; assessment
center exercises1,2;
cognitive ability1,2;
interests1,2; written
communication1,2; and
biodata1,2

MR 0.82 35 Individual assessors’
overall judgments
adjustable after
group discussion

0.54 35

15. Work–Training Borman (1982) Job training
performance

Interviews (structured)1,2

and assessment center
exercises1,2

P-UW 0.39 47 Judgment by
assessors

0.30 47

16. Work–Advancement Tziner & Dolan
(1982)

Job training
performance

Interviews1,2; assessment
center exercises1,2;
supervisor
evaluations1,2;
cognitive ability1,2; and
personality1,2

MR 0.47 193 Group judgment by
assessors

0.38 193

17. Work–Performance Feltham (1988) Job
performance

Assessment center
exercises1,2 and
cognitive ability2

C-UW 0.28 141 Group judgment by
assessors

0.16 141

18. Work–Training Feltham (1988) Job training
performance

Assessment center
exercises2 (committee
member score from
“assigned leader”
group exercise1,2); peer
nominations1,2; and
cognitive ability2

C-UW 0.28 141 Group judgment by
assessors

0.11 141

19. Work–Performance Personal
communication
(1998)

Job
performance

A-UW 0.35 233 Assessor judgments 0.26 112

20. Work–Performance Personal
communication
(1998)

Job
performance

A-UW 0.31 163 Assessor judgments 0.24 48

21. Work–Performance Personnel
communication
(1998)

Job
performance

A-UW 0.38 120 Assessor judgments 0.30 120

(table continues)
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Table 1 (continued)

Analyses in which
included Authors (Year) Criteria Predictors Typemech rmech Nmech Typeclin rclin Nclin

22. Work–Advancement Kuncel (1999) Job
advancement

Various factors
combining cognitive
ability, personality, and
assessment center
exercises1,2

A-UW 0.37 270 Clinical synthesis 0.23 270

23. Work–Performance Kuncel (1999) Job
performance

Various
factors/dimensions
combining constructs
and methods such as
cognitive ability,
personality, leadership
and assessment center
exercises1,2

A-UW 0.31 270 Clinical synthesis 0.20 270

24. Work–Performance Silzer (1984) Job
performance

Various
factors/dimensions
combining constructs
and methods such as
cognitive ability,
personality, leadership
and assessment center
exercises1,2

MR 0.39 208 Clinicians’ ratings
based on assesse
task and test files

0.37 208

25. Work–Performance Arthur et al.
(2003)

Various job-
related
criteria

Various
factors/dimensions
combining constructs
and methods such as
cognitive ability,
personality, leadership
and assessment center
exercises1,2

MR 0.45 3,645 (131)3 Overall assessment
center ratings

0.37 12,235 (Gaugler
et al., 1987)

(131)3

Note. Typemech � type of mechanical data combination; rmech � observed correlation for the mechanical data combination method; Nmech � number of persons for whom a mechanical data
combination method was used to make a prediction; Typeclin � type of clinical data combination; rclin � observed correlation for the clinical data combination method; and Nclin � number of persons
for whom a clinical data combination method was used to make a prediction. For Analyses column, Acad. � academic; GPA � grade point average. For “Criteria” column, Ach. � achievement. For
“Predictors” column, superscript 1 � used in mechanical data combination, and superscript 2 � available to clinician for clinical data combination. For “Typemech” column, MR � multiple regression;
r � correlation; DF � discriminant function; C � compositing; C-B � bootstrapped compositing; P � pooling; S � summation; A � averaging; UW � unit-weighting; DW � differential weighting;
and BW � bootstrapped weighting. For “Nmech” and “Nclin” columns, superscript 3 � N used for meta-analysis appears in parentheses and was the median of the Ns of the other studies in the analysis
for which an N was known. For the studies for which the median was used as the N in the meta-analysis, either (a) the original source materials for the study could not be located, but we knew the
effect size and other pertinent information except for the N, or (b) the actual N was so large that if it were used in the meta-analyses other than for estimating study-specific sampling error, then it
would mathematically overwhelm the results.
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made by organizational members (e.g., what predictors to use, what

predictors to ignore, to whom to extend a job offer) and job applicants

(e.g., the decision to apply, what level of effort to exert during

selection, the decision to accept a job offer). The present study

highlights the importance of this focus because the predictive power

of the selection/admissions systems is affected by human judgment,

and is not the same as a weighted sum of their parts. Yet, the

importance of the judgment and decision making framework extends

beyond the present study and upends traditional validation research in

some critical and radical ways. We discuss three implications of the

Lens Model for selection that are important for understanding the

limitations of the present study and key directions for future research.

Note that this is far from an exhaustive list.

The Lens Model can be extended to include the decision to hire,

decisions to apply/accept, and the effect of hiring on subsequent

performance. Within a decision-to-hire framework, correlations be-

tween predictors and observed performance in a validation study do

not necessarily reflect the utility of a predictor when used in a hiring

decision (even in the simplified case where all job offers are ac-

cepted). The judgment to extend an offer can have no relationship

with predictor scores even though the predictor cues are associated

with subsequent job performance. That is, a predictor can be dis-

counted when hiring employees and have no effect on hiring deci-

sions. Within this framework, a traditionally valid (r � 0) predictor

that does not affect hiring judgments has negative utility due to the

cost of using the predictor. Obtaining a non-zero correlation between

a predictor and subsequent job-performance does not tell us if it

favorably influences hiring decisions. The correlation is only an

unambiguous measure of predictive validity if the predictor is used in

a strict top down selection format. If hiring judgments deviate from

the top down selection decisions, then predictive power and utility

will differ.

Second, incremental predictive power as measured by multiple

regression analyses will typically reflect a rarely occurring (and often

idealized) setting where decision making is based on strict differential

weighting and top down selection. In contrast, within a judgment

framework, redundant predictors (�R � 0) can improve prediction by

pushing out or reducing a human judge’s emphasis on invalid cues.

Double counting a redundant predictor helps if it makes one ignore

invalid variance in forming a judgment. The model suggests that face

validity for the decision maker (often considered a side issue or

external marketing concern in selection research) becomes a critical

feature as it likely influences use and subjective weighting of decision

aids. Put simply, no matter how valid a predictor is, if it is not liked

by decision makers, it likely will not improve the decision quality.

The same issue applies to experts combining information from many

cues.

Third, a potential applicant’s decision to apply can dramatically

affect the nature of the pool and, therefore, the expected average

performance of new workers after making the hiring decision. For

example, Kuncel and Klieger (2007) reported that when applicants

had information about the likelihood of acceptance they generally

chose to avoid applying to law schools for which they were either

under or over qualified. The resulting applicant pools across law

Table 2

Meta-Analysis of Mechanical and Clinical Combinations of Predictors for Five Criteria

Criterion Nmech Nclin k rmech rclin �obs–mech �obs–clin ��–mech ��–clin

Work: Job Performance 1,392 1,156 9 (5 rs, 4 Rs) No Shrinkage (R): 0.47 0.28 0.14 0.09 0.12 0.03
Population (�): 0.44 0.28 0.11 0.09 0.03
New Sample (�c): 0.40 0.28 0.08 0.09 0.05 0.03

Work: Advancement 683 683 5 (1 r, 4 Rs) No Shrinkage (R): 0.50 0.36 0.13 0.12 0.12 0.10
Population (�): 0.42 0.36 0.10 0.12 0.10
New Sample (�c): 0.36 0.36 0.11 0.12 0.08 0.10

Work: Training 188 188 2 (2 rs) No Shrinkage (R): 0.31 0.16 0.05 0.08 0.00 0.00
Population (�): 0.31 0.16 0.05 0.08 0.00 0.00
New Sample (�c): 0.31 0.16 0.05 0.08 0.00 0.00

Academic: Grade Point
Average

426 471 6 (2 rs, 4 Rs) No Shrinkage (R): 0.59 0.48 0.09 0.12 0.05 0.08
Population (�): 0.58 0.48 0.09 0.12 0.08
New Sample (�c): 0.56 0.48 0.09 0.12 0.06 0.08

Academic: Non-Grade 463 161 3 (1 r, 2 Rs) No Shrinkage (R): 0.48 0.46 0.05 0.17 0.00 0.13
Population (�): 0.47 0.46 0.05 0.17 0.13
New Sample (�c): 0.46 0.46 0.05 0.17 0.03 0.13

Note. Nmech � number of persons for whom a mechanical data combination method was used to make a prediction; Nclin � number of persons for whom
a clinical data combination method was used to make a prediction; k � number of samples that each contained a comparison between mechanical data
combination and clinical data combination (each contained data included in the analysis); r � sample whose included effect size is a zero-order correlation;
R � sample whose included effect size is a multiple correlation; No Shrinkage (R) � sample size weighted mean correlation whose multiple correlation
components are observed values from the samples on which the regression equations were developed; Population (�) � sample size weighted mean
correlation whose multiple correlation components are shrunk to the population level; New Sample (�c) � sample size weighted mean correlation whose
multiple correlation components are cross-validated estimates (shrunk to the level of a new sample from the same population); rmech � sample size weighted
mean correlation for the mechanical data combination methods (composite of multiple and/or zero-order correlations); rclin � sample size weighted mean
observed correlation for the clinical data combination methods; �obs–mech � sample size weighted observed standard deviation of the correlations for
mechanical data combination; �obs–clin � sample size weighted observed standard deviation of the correlations for clinical data combination; ��–mech �
standard deviation of correlations for mechanical data combination after removing sampling error variance; ��–clin � standard deviation of correlations for
clinical data combination after removing sampling error variance.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

1069MECHANICAL VERSUS CLINICAL DATA COMBINATION



schools differed dramatically as a result. As selection system infor-

mation becomes public, applicant pools may shift depending on their

perception of the system.

Practice Suggestions

While recognizing that a strong preference for expert judgment

makes a complete change in practice unlikely, a number of methods

could be adopted that could yield immediate benefits.5 First, in cases

with many applicants, mechanical methods could be used to screen all

but a final pool. Second, experts could use mechanically combined

data as an anchor and make limited (or consensus based) adjustments.

Third, documenting the reason for deviations from mechanically

combined scores makes the decision public and would permit follow

up research and feedback. Fourth, both expert combined and mechan-

ically combined scores could be presented to decision-makers. This

fourth approach also allows for a narrative explaining the difference.

Finally, given the previous literature, the most likely source of the

difference is lower reliability for the clinical approaches (i.e., less

consistent and more fraught with unsystematic errors). Therefore, the

method with the most potential for improved predictive power would

be to average across multiple raters even if secondary (and possibly

less involved) raters were given a lower weight in the final assess-

ment.

Research on each of these suggestions would be invaluable partic-

ularly if embedded in the broader judgment and decision making

framework outlined in the introduction and discussion. It is possible

that less valid data combination methods (in a correlational sense)

have a larger positive effect on end user decision making due to

greater face validity and acceptability. We believe research on three

general questions are crucial. First, why does expert judgment result

in lower correlations? Second, why do decision makers use or ignore

information in decision making? Third, what alternative methods

improve predictive power while retaining acceptability? Finally, it is

not unreasonable to believe that experts have important insights.

Unfortunately, it appears that this comes at too high a cost. Therefore,

what can be done to capture insights while avoiding validity damag-

ing inconsistency?

For rare and highly complex jobs, future research should consider

adopting a forecasting framework where experts make specific and

verifiable predictions about the future behavior of assessees. This

framework will allow for the accumulation of data in small N settings

and advance the field.

Highhouse (2008a) noted “arguments in favor of holistic assess-

ment, nevertheless, sometimes take on a faith-based quality and fail to

acknowledge the preponderance of the evidence” (p. 375). Consistent

with the preponderance of the evidence, this meta-analysis found and

quantified that a consistent and substantial loss of information occurs

when data are combined clinically—even by experts who are knowl-

edgeable about the jobs and organizations in question—across mul-

tiple criteria and work or academic settings.

On the positive side, it is clear that psychological assessments do

predict subsequent performance across outcomes and domains. We do

useful work. Also clear is that improvements can be made. The results

do not mean that experts are unimportant. Again, the literature dem-

onstrates that data combination is best done mechanically while

information collection can be done quite effectively by experts. Over-

all, the time of experts would be best invested in collecting job

relevant information about candidates or working on subsequent de-

velopment rather than judgment based data combination.

Although the widespread replacement of clinical methods with

mechanical methods is unlikely in the foreseeable future, we see this

study’s findings as a call to find hybrid methods of data combination

that improve on expert judgment while remaining acceptable to end

users. We take a pragmatic view of this issue. Surveys have suggested

that although 2% of people involved in individual assessment make

use of purely mechanical methods, close to half report using methods

that combine statistical and holistic methods (Ryan & Sackett, 1987).

Although the nature and effectiveness of these, likely varied, ap-

proaches is unknown, it appears that there is room to develop methods

that move the mean upward while retaining approaches that are

attractive to professionals and end users. Evidence-based practice can

benefit from keeping the results of this meta-analysis in mind when

developing and utilizing selection and admission systems.

5 With the possible exception of organizations concerned with equal
employment opportunity (EEO) compliance, which will use fixed weights
to avoid charges of disparate treatment.
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Appendix

Cross-Validation Estimation Method

To solve for the point and sampling error estimates, one usually has

to solve first for � and �, because among the values in the equations

they usually are the only unknowns (see Table A1). Calculating � (or

at least an estimate of it) necessitates determining whether the pre-

dictor model in question is fixed or random (see Cattin, 1980). In

fixed predictor models (FPMs), the predictors in the equation are the

only predictors that could have been used to address the research

question. In random predictor models (RPMs), the predictors in the

equation are just a sample of the predictors that could have been used

to address the research question. For FPMs, one should use Wherry’s

(1931) formula, although it may be slightly biased (Cattin, 1980). For

RPMs, one should use a version of Olkin and Pratt’s (1958) formula

(Cattin, 1980; Shieh, 2008; Yin & Fang, 2001). Most questions in

social science use the RPM rather than the FPM (Cattin, 1980), and

the RPM seemed more appropriate for the studies being meta-

analyzed. Shieh (2008) found that a slightly modified version of Olkin

and Pratt’s (1958) formula for estimating � performed best in simu-

lations (see Table A1, Formula 2). To solve for �, one uses Browne’s

(1975) Equation 2.8 recommended by Cattin (1980) and Shieh

(2008).
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Table A1

Key Equations for Cross-Validation Estimates

Formula Source(s)

1. ���2� � �2 �
2�N � p � 2��N � 2p � 6��p � 1��4�1 � �2�2

�N � p � 4���N � 2p � 2��2 � ��3
� o��N � p��1�

Browne’s (1975) Equation 2.10

2. �̂P
2�R2� � 1 �

N � 3

N � p � 1
�1 � R2��1 �

2�1 � R2�

N � p � 2.3�
Shieh (2008) (based on Olkin & Pratt,

1958)

where �̂P
2�R2� � 0 if �̂P

2�R2� � 0

3. �2 �
�N � p � 3��4 � �2

�N � 2p � 2��2 � p

Browne’s (1975) Equation 2.8; Cattin
(1980); Shieh (2008)

4. var��2� �
2�N � p � 2��p � 1��4�1 � �2�2�2�N � p � 5��2 � 1 � �N � 2p � 6��2�

�N � p � 4���N � 2p � 2��2�p�3
� o��N � p��1�

Browne’s (1975) Equation 2.11

Note. � � �
c

� population cross-validated multiple correlation; ε(�2) � �̂c
2 � estimated cross-validated multiple correlation, squared; var(�2) � var(�̂c

2) �
variance of estimated cross-validated squared multiple correlation; � � population multiple correlation; R2 � observed multiple correlation, squared (a.k.a.,
observed coefficient of determination); �̂P

2�R2� � �̂2 � estimated population multiple correlation, squared; N � number of observations; p � number of
predictor variables; o � “little o” � a function describing the limit on error � how far off one’s obtained value can be.
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