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The quality of decisions depends on the accuracy of estimates 
of relevant quantities. According to the wisdom of crowds 
principle, accurate estimates can be obtained by combin-
ing the judgements of different individuals1,2. This principle 
has been successfully applied to improve, for example, eco-
nomic forecasts3–5, medical judgements6–9 and meteorological 
predictions10–13. Unfortunately, there are many situations in 
which it is infeasible to collect judgements of others. Recent 
research proposes that a similar principle applies to repeated 
judgements from the same person14. This paper tests this 
promising approach on a large scale in a real-world context. 
Using proprietary data comprising 1.2 million observations 
from three incentivized guessing competitions, we find that 
within-person aggregation indeed improves accuracy and that 
the method works better when there is a time delay between 
subsequent judgements. However, the benefit pales against 
that of between-person aggregation: the average of a large 
number of judgements from the same person is barely better 
than the average of two judgements from different people.

Many human decisions, whether in the business, political, medical 
or personal domain, require the decision-maker to estimate unknown 
quantities. One way to improve accuracy is to combine the estimates 
of a group of individuals. Aggregated estimates generally outperform 
most and sometimes all of the underlying estimates, and are often 
close to the true value. This phenomenon has become known as 'the  
wisdom of crowds'1,2. It arises from the statistical principle that aggrega-
tion of imperfect estimates diminishes the role of errors15–18. Generally, 
one has to combine only a few estimates to get most of the effect19.

The phenomenon was first described in Nature by the renowned 
British scientist Sir Francis Galton20. Galton witnessed a weight 
judging competition at the 1906 West of England Fat Stock and 
Poultry Exhibition, where visitors could win a prize by pay-
ing six pence and estimating the weight of an exhibited ox after it 
had been “slaughtered and dressed”. Galton collected all 800 tick-
ets with estimates and found that the aggregate judgement of the 
group closely approximated the true value: the mean judgement 
was 1,197 lb, and the true value was 1,198 lb21,22. Similar results have 
since been observed in a wide range of experiments23–29.

Recent research proposes that the same principle applies to 
repeated judgements from the same person14. Laboratory experi-
ments confirm that estimation accuracy can indeed be improved by 
aggregating estimates from a single individual16,30–35. The benefit of 
within-person aggregation reflects what has been dubbed ‘the wis-
dom of the inner crowd’, and can potentially boost the quality of 
individual decision making36.

This paper analyses within-person aggregation outside the psy-
chological laboratory. We use three large proprietary data sets from 

three incentivized natural (‘naturally occurring’) experiments that 
resemble the one observed by Galton over a century ago. We show 
that within-person aggregation indeed improves accuracy, but not 
as much as between-person aggregation: the average of a large num-
ber of judgements from the same person is barely better than the 
average of two judgements from different people, even if the advan-
tages of time delay between estimations are being exploited.

Our data are from three promotional events organized by the 
Dutch state-owned casino chain Holland Casino. During the last 
7 weeks of 2013, 2014 and 2015, anybody who visited one of the 
casinos received a voucher with a login code. Via a terminal inside 
the casino and via the Internet, this code granted access to a com-
petition in which participants were asked to estimate the number 
of objects in a transparent plastic container located just inside the 
entrance. This container, shaped to represent a champagne glass, 
was filled with small objects that represented pearls in 2013, pearls 
and diamonds in 2014 and casino chips in 2015 (Supplementary 
Fig. 1). Both the container and the exact number of objects were the 
same at every location. There were 12,564 objects in the container 
in 2013, 23,363 in 2014, and 22,186 in 2015. A prize of € 100,000 
was shared equally by those whose estimate was closest to the actual 
value. In 2013, the prize money was awarded to 16 people, and in 
2014 and 2015, the entire amount was won by one person. All win-
ners had submitted exactly the right number.

Our pseudonymized data sets contain all entries for the 
three years: a total of 369,260 estimates from 163,719 different play-
ers in 2013, 388,352 estimates from 154,790 players in 2014, and 
407,622 estimates from 162,275 players in 2015. Many players sub-
mitted multiple estimates (Supplementary Fig. 2). Across the com-
bined data sets, 60% of the participants were male and the average 
age was 39 yr. The Supplementary Information provides further 
details about the data.

The distributions of the estimates have a log-normal, right-
skewed shape (Supplementary Figs. 7 and 8). Such a shape is in line 
with the tendency to estimate large numerical values in a logarith-
mically compressed manner29,32,37. This tendency seems to be the 
result of an innate intuition for numbers, with numbers logarithmi-
cally encoded in the brain38–43.

Immediately after Galton published his classic article, the 
aggregation measure to be used became a topic of debate21,44. The 
arithmetic mean is now the most commonly adopted aggregation 
measure45–49; however, with log-normal distributions, the pre-
ferred metric of central tendency is the geometric mean29,32,33. For 
our data, the geometric mean indeed performs much better than 
the arithmetic mean. The arithmetic mean overestimates the true 
value by ≥ 346% (Table 1), and is more accurate than only 10–14% 
of the underlying individual estimates across the three years. The 
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geometric mean overestimates the true value by 86% in 2015, and is 
19% and 32% below the true value in 2013 and 2014, respectively. In 
2013 and 2014, the geometric mean is better than respectively 90% 
and 84% of the underlying individual estimates, and in 2015, it out-
performs approximately 50%. Restricting the data to participants’ 
first estimate gives a similar picture (Supplementary Table 1).

Given the log-normal distributions of the estimates, our analyses 
follow the convention of using a logarithmic transformation29,32,33. 
After a logarithmic transformation, the arithmetic mean cor-
responds to the logarithm of the geometric mean of the original 
values. To make the distributions comparable across the three com-
petitions, we divide the estimates by the true value before taking the 
logarithm. This two-step transformation yields approximately nor-
mal distributions (Supplementary Fig. 9), where zero represents the 
true value and deviations from zero measure the positive or negative 
estimation error. Our accuracy measure is the mean squared error 
(MSE). The Supplementary Information presents similar results for 
the mean absolute error and for the untransformed data.

For every event, approximately 60,000 participants submitted 
more than one estimate. In 2013, the average of their first two esti-
mates was more accurate than either estimate alone (MSE1 =  3.12, 
MSE2 =  2.73, MSE1&2 =  2.47, with t(60,869) >  21.90 and two-sided 
P <  0.0001 in the two comparisons). This was also true in 2014 

(MSE1 =  3.07, MSE2 =  2.77, MSE1&2 =  2.50, t(59,156) >  23.20, 
P <  0.0001), and in 2015 (MSE1 =  3.45, MSE2 =  3.30, MSE1&2 =  2.96, 
t(61,893) >  31.73, P <  0.0001). However, the effect sizes are relatively 
small: Cohen’s d varies between 0.08 and 0.11 for the three com-
parisons between the average and the first estimate, and between 
0.05 and 0.06 for the three comparisons between the average and 
the second estimate.

If judgements can be improved by aggregating two estimates, 
aggregating a greater number of estimates is likely to lead to further 
improvements. The MSE of aggregations across the first t consecu-
tive estimates for players who provided at least K =  5 or K =  10 esti-
mates in a given year is plotted in Fig. 1 (in black; see Supplementary 
Fig. 10 for alternative values of K). In all cases, the MSE declines 
with t, at a decreasing marginal rate.

Figure 1 also plots the MSE of the average of T different players’ 
first estimates (in dark grey), showing that aggregating across individ-
uals works substantially better than aggregating judgements from the 
same individual. The ‘outer crowd’ MSE declines with the number of 
estimates, but at a much faster rate than the MSE of the inner crowd.

To more formally compare the wisdom of the inner and the 
outer crowd, we define T *

t  as the number of estimates one needs to 
average across individuals to achieve the same squared error as the 
squared error that results from averaging t estimates from a single 
individual (see Methods)33.

Depending on the sample that we use, T *
5  varies between 1.44 

and 1.66, and T *
10 varies between 1.63 and 1.96. This implies that 

averaging five or ten estimates from the same individual is,  in 
expectation, inferior to averaging two estimates from randomly 
selected individuals.

Aggregating even more estimates yields hardly any additional 
benefits. The MSE of the inner crowd can be approximated by the 
hyperbolic function = +a t bMSE ( / ) , where a represents the average 

individual variance and b represents the average individual squared 
error (see Methods)33. Integrating an infinite number of estimates 
from a single individual therefore yields MSE =  b in expectation. 

Table 1 | Arithmetic and geometric mean across all estimates

Year N True 
value

Arithmetic mean Geometric mean

2013 369,260 12,564 74,936 (+ 496%) 10,168 (− 19%)

2014 388,352 23,363 104,209 (+ 346%) 15,986 (− 32%)

2015 407,622 22,186 224,278 (+ 911%) 41,278 (+ 86%)

Aggregation measures are calculated across all estimates. N is the number of estimates. 

Percentage deviations relative to the true values are in parentheses.
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Fig. 1 | MSe of the inner crowd and the outer crowd as a function of the number of included estimates. The MSE of the inner crowd is shown in black and 

the outer crowd in dark grey. The graphs also show the MSE of individual consecutive estimates (light grey). The upper graphs use the estimates of players 

who submitted at least K =  5 estimates in a given year, and the bottom graphs use the estimates of players who submitted at least K =  10 estimates in a 

given year. The curve for the inner crowd represents the best-fitting hyperbolic function = +a t bMSE ( / )  (using nonlinear least squares); the dotted line 

represents b. Values for the outer crowd are mathematically determined using the diversity prediction theorem (see Methods); the dashed line represents 

the limit as the number of included estimates goes to infinity. Error bars represent 95% confidence intervals. N is the number of players.
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The number of estimates needed to obtain this MSE by aggregat-
ing across individuals, 

∞
T * , varies between 1.59 and 2.06 across the 

samples. Hence, the expected potential benefit from within-person 
aggregation barely exceeds the expected benefit from aggregating 
the judgements of two randomly selected individuals.

Figure 1 also shows the MSE of the jth individual estimate (in 
light grey). Throughout the competitions, no information was 
revealed about the contents of the container, but players could 
potentially improve their estimates over time by using the power of 
aggregation. Communication was not restricted, and players there-
fore had the opportunity to aggregate not only their own estimates 
but also those of their peers. Earlier research indicates that people 
underestimate the merits of averaging judgements across individu-
als50,51, and that they do not average their own estimates as often 
as they ideally should32,34,52. The patterns of the MSE of individual 
consecutive estimates in our guessing competitions are in line with 
these findings: estimates improve over time, but the improvements 
do not match the improvements that could have been obtained by 
averaging. Of course, the decreasing MSE can also be the conse-
quence of other forms of learning, such as better approaches and 
better comprehension.

In the previous analyses, the benefit of aggregating estimates 
from the same person may partly derive from such learning effects. 
For practical purposes, the exact sources and their contributions 
to the gain from within-person aggregation are unimportant, but 
here we are also interested in the strength of within-person aggre-
gation in the absence of learning. Therefore, we have analogously 
investigated the pattern of the MSE when the first K estimates from 
the same person are aggregated in a random order (Supplementary 
Fig. 11). To ensure an equal base of comparison, we similarly used 
all first K estimates to determine the MSEs of between-person  
aggregation—not just the very first ones as we previously did. 
Depending on the sample, with random ordering, T *

5  varies between 
1.34 and 1.41, T *

10 between 1.43 and 1.49, and 
∞

T *  between 1.46 and 
1.57. Hence, the ‘pure’ within-person aggregation benefit is consid-
erably lower than the benefit of aggregating two judgements from 
different individuals.

When learning effects are absent, the benefit of within-person 
aggregation relative to between-person aggregation is entirely 
driven by the degree to which the variation in estimates is due to 
variation within individuals (random noise) versus variation in 
individual-level systematic error (idiosyncratic bias). Aggregating 
multiple estimates from a single individual eliminates the influence 
of random noise only, whereas aggregating across different indi-
viduals eliminates the influence of both random noise and idiosyn-
cratic bias. If we express the error of the jth estimate of person i, xi,j,  
as an additive function of the overall bias in the population μ,  

idiosyncratic bias ui and random noise vi,j (that is, xi,j =  μ +  ui +  vi,j),  
and assume that τ~u N(0, )i

2  and σ~v N(0, )i j,
2 , then σ τ= +

∞
T 1 /* 2 2 

(see Methods). Hence, the previous estimates of 1.46–1.57 for 
∞

T *  
imply that the variance of idiosyncratic bias (across individuals; τ2) 
is about twice as large as the variance of random noise (within 
individuals; σ2). Direct estimations of those variances for each of 
the various subsamples confirm this ratio and the values of 

∞
T *  

(Supplementary Table 2).
When we estimate the two variances across all entries of all 

participants for each of the three competitions, the implied val-
ues of 

∞
T *  range between 1.36 and 1.45 (Supplementary Table  3). 

Again, aggregating estimates from a single individual clearly fails 
to approach the benefit of aggregating estimates from only two ran-
domly selected individuals.

Previous studies show that the accuracy gain from within-person 
aggregation is higher if people are asked to base their second esti-
mate on different knowledge or assumptions than their first31,34,36. 
Such new perspectives happen naturally when people forget, and it 
has indeed been observed that accuracy gains are larger for individ-
uals with lower working memory spans53 and increase with the delay 
between estimates14. However, the beneficial effect of delay was not 
found in a pre-registered replication study 54.

We exploit the variation in the timing between players’ first and 
second estimates to investigate the effect of delay on the benefit of 
aggregation. Because this variation happened naturally and was 
therefore not exogenously imposed, the results need to be inter-
preted with some caution. To quantify the benefit of aggregation, 
we define a participant’s accuracy gain as the resulting percentage 
decrease of the squared error (squared error of the average of the 
estimates relative to the average squared error of the individual 
estimates). Figure 2a shows that the accuracy gain increases almost 
monotonically with the delay. For two estimates provided at a single 
point in time—a participant could enter up to five estimates simul-
taneously—the average accuracy gain from aggregation is 16–18%. 
For estimates submitted more than 5 weeks apart, the average accu-
racy gain is approximately 30%.

Figure 2b indicates that the increase in accuracy gain is a con-
sequence of the decrease in correlation between the estimates. The 
Pearson correlation coefficient decreases from more than 0.8 when 
people entered the estimates simultaneously to approximately 0.5 
when multiple weeks passed between the attempts.

Two estimates are said to bracket the true value if they fall on oppo-
site sides of it. Bracketing is an important driver of aggregation ben-
efits, and the degree of bracketing is sometimes used as an indicator 
for the wisdom of crowds29,31,50. Figure 2c shows that the bracketing 
rate increases if estimates are made further apart in time: bracket-
ing rates are about 15% for estimates made at a single time-point,  
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Fig. 2 | Delay benefits. a–c, Accuracy gain (a), Pearson correlation coefficient (b) and bracketing rate (c) for participants’ first two estimates as a function 

of the time between the estimates. Error bars represent 95% confidence intervals. Smoothed (LOESS) curves are added to illustrate the time trends. N is 

the number of players.
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and increase to > 25% when multiple weeks passed. Overall, our 
data thus yield evidence of substantial delay benefits. These ben-
efits are similar across the three independent data sets, suggesting 
that the advantageous effect of delay is more robust than previously 
thought14,54.

Figure 3 depicts estimates for T *
t  as a function of the median 

time between the first five estimates for players who provided 
five or more estimates in a given year. Across the three competi-
tions, T *

5  varies between only 1.29 and 1.44 if the median delay is 
no longer than half a day, and increases to values between 1.74 
and 1.93 if the median delay is more than 6 days. Averaging an 
infinite number of estimates with a median delay of more than 6 
days allows an individual to outperform the aggregated estimate 
of two randomly selected individuals, but not by much: 

∞
T *  then 

varies between 1.94 and 2.48. Even though delay can be used to 
increase the relative merit of aggregating estimates from a single 
individual, between-person aggregation remains substantially 
more powerful.

Note that in situations where decision time is limited, there is 
a trade-off between making additional estimates and taking more 
time between estimates. For example, aggregating five estimates 
with a median delay of only half a day or less is roughly equivalent 
to or better than aggregating two estimates that are made more than 
six days apart. Under time pressure, making multiple estimates in 
short succession can therefore be the better option.

As before, the above T *
t  values also reflect the improvements 

from learning that we observed earlier. When we control for 
learning by aggregating estimates in a random order, we still 
observe delay benefits, and as expected, the T *

t  values are lower 
(Supplementary Fig. 12). For the category with the longest median 
delay, 

∞
T *  decreases to values between 1.65 and 1.75. However, these 

values need not reflect the full potential of within-person aggrega-
tion, because a median delay of more than six days does not guaran-
tee that the correlation between estimates has reached its minimum. 
Indeed, Fig. 2b indicates that the correlation decreases with longer 
delays, and only stabilizes when the delay spans multiple weeks (at 
values of about 0.5).

To capture the maximum delay effect, we decompose the esti-
mation error as before, but we now allow the covariance between 
estimates from the same person to have a delay-dependent part that 
declines exponentially with the duration of the delay (see Methods). 
Estimations of the error components on the full data sets indeed 
confirm that a threshold of six days is not sufficient for convergence 
in the covariance to occur; the delay-dependent part of the covari-
ance halves about every eight days, meaning that it takes multiple 
weeks until most of it has dissipated (Supplementary Table 4). More 
importantly, the estimation results again show the limited efficacy 

of within-person aggregation; even if we fully exploit the advanta-
geous effect of delay by allowing the delay-dependent part of the 
covariance to completely evaporate—which can be seen as allow-
ing a person to take infinitely long delays between consecutive  
estimates—

∞
T *  remains relatively low at values between 1.75 and 

1.99 (Supplementary Table 4).
In conclusion, the present study finds that the effectiveness 

of within-person aggregation is considerably lower than that of 
between-person aggregation: the average of a large number of 
judgements from the same person is barely better than the average 
of two judgements from different people. The efficacy difference is 
a consequence of the existence of individual-level systematic errors 
(idiosyncratic bias). The effect of these errors can be eliminated by 
combining estimates from multiple people, not by combining mul-
tiple estimates from a single person.

In the context of our guessing competitions, all individuals were 
exposed to the same (visual) information about the container and 
the objects in it, and the sources of variation in idiosyncratic bias 
were limited to differences in individuals’ comprehension of the 
task, visual perception, and geometric skills. In many other real-
world contexts, additional sources of idiosyncratic bias exist, which 
can be expected to lower the comparative benefit of within-person 
aggregation even more.

Within-person aggregation is potentially useful in situations 
where only one individual can make sufficiently informed estimates. 
This may be the case, for example, in strictly personal matters and 
under extreme degrees of specialization. Because of the relatively 
limited accuracy gains from within-person aggregation, between-
person aggregation should be preferred whenever practicable.

Methods
The diversity prediction theorem and T *

t . Estimates made by different individuals 
are considered to be realizations of a random variable X. The diversity prediction 
theorem says that the crowd’s error, or population bias, equals the average error 
minus the diversity in estimates. More formally, it states that the collective squared 
error (CSE) relative to the true value θ, CSE(X) =  (E(X)− θ)2, equals the MSE 
of the individual estimates, MSE(X) =  E((X −  θ)2), minus the variance of the 
estimates, VAR(X) =  E(X2) – E(X)2 (refs 2,55):

= −X X XCSE( ) MSE( ) VAR( )

The theorem can be used to mathematically determine the MSE of the average 
of T estimates from different individuals −XT  (ref. 33):

−
= +X

X

T
XMSE( )

VAR( )
CSE( )T

It can also be used to compare between-person and within-person 
aggregation. We define Tt* as the number of estimates one needs to average 
across individuals to achieve the same squared error as the squared error of ICt, 
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which represents the arithmetic mean of t estimates from one individual (the inner 
crowd). From the above framework, it follows that33:

=

−

T
X

X
*

VAR( )

MSE(IC ) CSE( )
t

t

Estimation error decomposition and 
∞

T * . In the absence of learning, the error 
of the jth estimate of individual i, xi,j, can be decomposed into population bias μ, 
idiosyncratic bias ui, and random noise vi,j:

μ= + +x u vi j i i j, ,

We assume that τ~u N(0, )i
2  and σ~v N(0, )i j,

2 . The MSE of the average of T 

estimates from different individuals −XT , is then given by:

μ
τ σ−

= +
+

X
T

MSE( )T
2

2 2

and the MSE of the arithmetic mean of t estimates from one individual, ICt, is 
then given by:

μ τ
σ

= + +

t
MSE(IC )t

2 2
2

∞
T *  is the number of estimates needed to average across individuals to achieve 

the same squared error as the squared error of the average of an infinite number of 
estimates from one individual. Equating −

XMSE( )T  and MSE(ICt), and solving  
for T if t →  ∞ , gives:

σ

τ

= +
∞

T * 1
2

2

Estimation error decomposition with delay-dependent covariance. We modify 
the error decomposition to allow for delay-dependent individual-level noise. 
Estimation errors can be decomposed into population bias μ, individual-level bias 
ui that remains irrespective of the delay, and delay-dependent individual-level  
noise vi,j:

μ= + +x u vi j i i j, ,

We assume that τ~u N(0, )i
2  and … ~ Σv v N( , , ) (0, )i i J,1 , , where Σ  is a variance–

covariance matrix with constant variance σ2 and delay-dependent covariances:

σΣ =j j,
2

Σ = Δ ′
′ f j j( ( , ))j j,

We assume that f(Δ (j,j′ )) decays exponentially with the delay Δ (j,j′ ) between 
estimates xi,j and xi,j′ from the same individual:

σ δΔ ′ = −
′λ− Δf j j e( ( , )) (1 )

j j2 ( , )

where λ determines the speed of decay, and (1− δ) allows for a discontinuous 
jump such that estimates provided simultaneously are not required to be perfectly 
correlated. The half-life of the decay-dependent covariance, t1/2, is:

λ
=∕t

ln(2)
1 2

The (overall) covariance between two estimates xi,j and xi,j′ from the same 
individual is then given by:

τ σ δ+ −
′λ− Δe(1 )

j j2 2 ( , )

which converges to τ2 if Δ (j,j′ ) →  ∞ . 
∞

T *  then converges to 1 +  σ2/τ2, which is the 
highest possible value of 

∞
T *  that can be obtained by exploiting the benefits of delay.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Code availability. The code used to generate the results in this study is available in 
the Supplementary Information.

Data availability. The data used in this study are from Holland Casino. In 
accordance with the Dutch Personal Data Protection Act, the data were provided 
in pseudonymized form, under non-disclosure agreements, and for scientific 

purposes only. Because of the non-disclosure agreements, the data are not publicly 
available. For reproducibility, the authors will archive the data on a secure VU 
Amsterdam server for at least five years after publication (contact: D.v.D.).
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    Experimental design

1.   Sample size

Describe how sample size was determined. The paper uses archival data from three large natural experiments organized by a 

casino company. Sample size was equal to the frequency of participation by casino 

visitors.

2.   Data exclusions

Describe any data exclusions. Our raw data consists of 1,165,279 entries made in the three guessing 

competitions. Of these observations, we remove 27 duplicate entries and 18 

entries made prior to the official starting dates of the competitions (the latter 

entries were clearly contrived and most likely test inputs by employees of the 

Casino to confirm that the system worked as planned). These data cleaning steps 

are described on page 2 of the Supplement. Apart from these few deletions, all 

data is used in the analyses.

3.   Replication

Describe whether the experimental findings were 

reliably reproduced.

We study data from the three guessing competitions, organized by the same 

casino company in different years, separately to see whether findings are reliably 

reproduced across the different competitions. Our results show that the findings 

were indeed reliably reproduced.

4.   Randomization

Describe how samples/organisms/participants were 

allocated into experimental groups.

Participants are not allocated into experimental groups. We use archival data.

5.   Blinding

Describe whether the investigators were blinded to 

group allocation during data collection and/or analysis.

Participants are not allocated into experimental groups. We use archival data.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 

For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 

Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 

sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 

complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software

Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 

study. 

The statistical program R was used to analyze the data.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 

available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 

providing algorithms and software for publication provides further information on this topic.

   Materials and reagents

Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 

unique materials or if these materials are only available 

for distribution by a for-profit company.

The data used in this study were provided by Holland Casino. In accordance with 

the Dutch Personal Data Protection Act, the data were provided in pseudonymized 

form, under non-disclosure agreements, and for scientific purposes only. For 

reproducibility, the authors will archive the data on a secure VU Amsterdam server 

for at least five years after publication. Because of the non-disclosure agreements, 

the data are not publicly available.

9.   Antibodies

Describe the antibodies used and how they were validated 

for use in the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines

a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used.

c.  Report whether the cell lines were tested for 

mycoplasma contamination.
No eukaryotic cell lines were used.

d.  If any of the cell lines used are listed in the database 

of commonly misidentified cell lines maintained by 

ICLAC, provide a scientific rationale for their use.

No eukaryotic cell lines were used.
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    Animals and human research participants

Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals

Provide details on animals and/or animal-derived 

materials used in the study.

No animals were used.

Policy information about studies involving human research participants

12. Description of human research participants

Describe the covariate-relevant population 

characteristics of the human research participants.

Our study does not involve human research participants, in the sense that there 

was no intervention or interaction with individuals and we do not have specific 

information that can be used to identify individuals.  

 

We use archival data on guessing competitions organized by a casino company. 

Across the three years of data combined, 60% of the participants were male and 

the average age was 39 years.
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