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A B S T R A C T

A fundamental question in the social sciences is how collectives of individuals form intelligent judgments. This
article tests the hypothesis that genetically-diverse groups make better collective judgments than genetically
more homogenous groups. Two studies were conducted (a total of N = 602 participants) in which sets of twins
(both monozygotic and dizygotic) were required to perform the task of making numerical judgments. The ac-
curacy of the judgments made by pairs of participants—who were either co-twins (i.e., genetically-related) or
were not related—was then compared. The results indicate that the judgments made by unrelated pairs were
more accurate than those of the genetically-related twins. Critically, however, this superior performance was
found only among monozygotic twins, evidencing the role of genetic relatedness in collective judgment. This
research provides the first empirical demonstration of the benefit of genetic diversity for collective judgments,
shedding light on the origins of the ‘wisdom of crowds’ phenomenon.

1. Introduction

A fundamental question in the social sciences concerns the quality of
judgments and decisions made by collectives versus individuals. The
first to document the benefits of collective judgment was Francis Galton
(1907), establishing what subsequently came to be termed the “wisdom
of crowds” (Surowiecki, 2005). Since then, an impressive seam of
research has shown how deliberately combining individual opinions can
improve judgments and decisions (Armstrong, 2001; Clemen, 1989;
Yaniv, 2004a; see Larrick& Soll, 2006, for a historical review). As a rule,
the group becomes more accurate, the more it increases in size, albeit
with diminishing gains. Appreciable gains are observed when combining
the judgments of even a small number of individuals. For example, in
one study, averaging one individual's estimate with the estimates of two
other individuals decreased error by about 30 % (Yaniv & Milyavsky,
2007).

Importantly, collective wisdom is observed when the combined
judgments are arrived-at independently of one another (Frey & Van de
Rijt, 2021; Hogarth, 1978; Yaniv et al., 2009). A standard method for
securing independent opinions is to obtain them from diverse sources,
from individuals who vary in background, education, knowledge, and
demography. In the present study, we examined the proposition that
genetic diversity might also contribute to the accuracy derived from

combining judgments. Using a twin-study design, we tested the hy-
pothesis that genetically-diverse pairs of judges perform better than
genetically-related pairs.

2. Theoretical background

We focused on situations in which quantitative estimates, judgments,
opinions, or forecasts are elicited from a group of judges under condi-
tions of uncertainty. In this kind of study, judgments are elicited indi-
vidually, with no interaction among the judges, thereby avoiding the
possibility of direct social influence (Becker et al., 2017; Klein & Epley,
2015). The collective judgment of the group is then obtained by aver-
aging the individual judgments.

Under such conditions, the collective has been shown to outperform
the average individual in terms of judgment accuracy. That is, the ab-
solute error of the collective judgment is smaller than the average of the
absolute individual errors. Such outperformance has been documented
in diverse domains, including: economic and business forecasting (Kel-
ley & Tetlock, 2013; Wolfers & Zitzewitz, 2004), crowdsourcing (Sun-
stein, 2006), medical diagnoses (Goldberg, 1965; Kurvers et al., 2016;
Kurvers et al., 2021), meteorological forecasting (Staël von Holstein,
1971), hedonic forecasting (Müller-Trede et al., 2017), geopolitical
forecasting (Ferreiro et al., 2023), performance evaluation (Barneron
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et al., 2019), and general knowledge (Yaniv & Choshen-Hillel, 2012).
Theoretical studies have identified the conditions under which

combining individual judgments improves accuracy (Davis-Stober et al.,
2014; Einhorn et al., 1977; Müller-Trede et al., 2017; Wallsten & Die-
derich, 2001). Generally speaking, a judgmental estimate can be
expressed as the sum of three components: the truth (the true value of
the estimated quantity), a common bias (a systematic tendency to un-
derestimate or overestimate the true value), and a random error
(random fluctuations in the judge's estimation; see Yaniv, 2004a).
Combining estimates increases accuracy by reducing both the random
and systematic error components. To the extent that different in-
dividuals make independent errors (Soll, 1999), then these errors cancel
each other out when the judgments are combined, thereby decreasing
the error of the combined judgment compared with the average of the
individual errors (Larrick & Soll, 2006).

Why do people make different kinds of judgment errors? For one
thing, they might draw on different sources of information, knowledge,
and experience. Moreover, individuals could rely on different assump-
tions, models, and inference methods. This diversity of approaches in-
creases independence among the judgments and, as a result, the
accuracy of collective judgment (Aminpour et al., 2020; Clemen et al.,
2000; Makridakis & Winkler, 1983; Winkler & Clemen, 2004).

Diversity of opinion can arise from a wide range of individual dif-
ferences. For example, people vary in their cognitive styles in a manner
that could influence their reasoning about uncertainties (Nisbett et al.,
2001). Differences in personality traits and abilities have also been
related to cognitive systematic differences (Baron & Ritov, 2004; Boyce
et al., 2016; Eickhoff, 2018; Furnham et al., 2012; Levin et al., 2002;
Liberali et al., 2012; Shiloh et al., 2002; Stanovich & West, 1998).

In this study, we focused on a source of diversity that, to the best of
our knowledge, has not been studied in this context: genetic diversity.
Our working assumption was that, because genetic diversity is reflected
in individual cognitive and behavioral differences (Plomin et al., 2016;
Polderman et al., 2015), genetically-diverse individuals would produce
more independent opinions. If this were the case, then the combined
opinions of a group of genetically-diverse individuals would contribute
to judgment accuracy, when accuracy is compared to an appropriately
chosen benchmark.

Genetic variance is reflected in individual differences across a wide
variety of phenotypes (Johnson et al., 2009) and most, if not all, psy-
chological traits show significant and substantial genetic influence
(Plomin et al., 2016). This generalization is so robust that it has been
suggested as the first law of behavioral genetics (Turkheimer, 2000). A
meta-analysis based on 50 years of research findings on the heritability
of human traits estimates that about half of the variance in complex
traits could be attributed to genetic variance (Polderman et al., 2015).
Of special relevance here is the notion that genetic variance accounts for
individual differences in personality traits and cognitive abilities, which
influence judgment and decision-making (Cesarini et al., 2012;
Cronqvist & Siegel, 2014; Ebstein et al., 2010; Polderman et al., 2015;
Simonson & Sela, 2010; Zakharin & Bates, 2023).

Taken as a whole, the foregoing findings from the literature set the
stage for our investigation of whether and how genetic diversity might
contribute to the accuracy of collective judgments. Specifically, we
tested the hypothesis that groups (in fact, pairs) make more accurate
collective judgments if they are genetically-diverse than if they are
genetically-related.

3. Method

3.1. Research transparency statement

We conducted two separate studies. Study 1 and Study 2 employed
identical materials, procedure, design, data analysis, and statistical
inference, and differed only in terms of sample characteristics (see
below). Study 2 was pre-registered at: https://aspredicted.or

g/1RS_DZV. The data, the code, and the materials for the study can be
provided by the corresponding author on request. The two studies
received the ethical approvement of the Faculty of Social Sciences at the
Hebrew University of Jerusalem. We reported all measures, manipula-
tions, and participant exclusions.

3.2. Rationale for the present methodology

We tested the effect of genetic diversity on judgment accuracy using
a sample of twins, controlling for their genetic relatedness. Two twins
are more similar to one another compared to two individuals who are
not twins, due to either their shared genes, shared environment, or both
(Martin et al., 1997). In our studies, we asked a sample of twins to make
(individually and separately) numerical estimates of quantities. From
this pool of estimates, we then created artificial pairs of twins, by pairing
the estimates made by two individual twins. Next, we averaged the es-
timates of the two individuals in the pairs and assessed the accuracy of
the combined estimates. This represents the accuracy of the collective
judgment of a pair.

Importantly, the pairs we created consisted of either (i) natural co-
twins (hereafter: “related” pairs) or (ii) twins who were not co-twins
(hereafter: “unrelated” pairs; see example below). We then compared
the accuracy of collective judgments made by related versus unrelated
pairs.

Note that both types of pairs involved the very same participants.
The only difference between related and unrelated resided in the way
the pairs were (re)arranged by us for analytical purposes, once we had
collected their individual estimates. The related pairs comprised two
individuals who were each other's siblings, whereas the unrelated pairs
involved two individuals organized in such a way that they were not co-
twins of the other person in the pairing. As the unrelated pairs consisted
of two individuals who were not co-twins, they were more diverse than
the related pairs. Thus, if it was found that the former made more ac-
curate collective judgments than the latter, this would corroborate the
hypothesis that diversity (genetic, environmental, or both) contributes
to the accuracy of collective judgments.

To test the role of genetic diversity, we made a distinction between
monozygotic and dizygotic twins (so-called identical and non-identical
twins, respectively). One of the basic working assumptions in twin
research is the following: the shared environmental factors that lead to
the recognized greater similarities between genetically-related twins
(compared to pairs of non-twins) exert a marked effect of similar extent
on both (a) monozygotic twins and (b) same-sex dizygotic twins (Martin
et al., 1997; Willoughby et al., 2023). In contrast, genetic influences
make monozygotic twins more similar to one another compared to
dizygotic twins because the former share virtually 100 % of their genetic
variance, whereas dizygotic twins share, on average, 50 % of the genetic
variance. Therefore, we compared the accuracy of pairs of related and
unrelated twins, among monozygotic and same-sex, dizygotic twins. In
statistical terms, we explored the interaction between relatedness and
zygosity. To the extent that genetic diversity contributes to collective
accuracy, we expected the effect of relatedness (unrelated versus related
pairs) to be higher for monozygotic twins than for same-sex dizygotic
twins. Finally, our sample included different-sex dizygotic twins as a
third group, as gender is also a source of diversity.

3.3. Comparing related and unrelated pairs

Let us now explain how we compared the accuracy of related versus
unrelated pairs. Consider a sample comprising a number (T) of twins.
Therefore, the sample involved T/2 pairs of related twins. For example,
consider the following T= 6 twins: 1a,1b,2a,2b,3a,3b. The numbers (1, 2,
… T/2) are indices for the pairs; and the letters (a and b) are indices for
the co-twins within a pair.

From those six twins, we can create a total of 15 different artificial
pairs, three of which involve related individuals (co-twins); and the
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remaining twelve pairs involve unrelated individuals (see Table 1).
Generally speaking, the number of all different pairs that could be
generated from T twins is T*(T − 1)/2. This set of all possible pairs in-
cludes T/2 pairs of related individuals (the actual twins) and T*(T −

1)/2− T/2 pairs of unrelated individuals (i.e., not co-twins). In our
studies, for each pair, having computed the accuracy of the combined
judgment, we then compared the average accuracies of the related (T/2)
and unrelated (T*(T − 1)/2− T/2 ) pairs.

3.4. Participants

Our participants were part of the larger Longitudinal Israeli Study of
Twins (LIST, Vertsberger et al., 2019), a longitudinal research project on
genetic and environmental contributions to social development among
twins. In each study, participants were invited via an electronic link to
take part in what we termed a “guessing contest”, and were promised an
individual prize of $55 for the best performance. As our analyses focused
on pairs, we included only pairs in which both twins completed the
procedure. Zygosity for same-sex twins was assessed in previous waves
of the twin project, via a DNA test or parental questionnaires on twin
similarity (Goldsmith, 1991).

In total, across Studies 1 and 2, we recruited 602 participants. The
sample in Study 1 comprised 316 participants (i.e., 158 pairs of twins):
72 monozygotic twins, 140 same-sex dizygotic twins, and 104 different-
sex dizygotic twins (mean age = 11.65 years, 50.6 % females). The
sample in Study 2 comprised 286 participants (i.e., 143 pairs of twins):
66 monozygotic twins, 112 same-sex dizygotic twins, and 108 different-
sex dizygotic twins (mean age = 16.5 years; 53.1 % females). Twenty-
seven pairs of twins who took part in Study 2 had previously taken
part in Study 1. Results were stable even after excluding those partici-
pants from Study 2.

3.5. Materials and procedure

Each study consisted of nine trials, in which participants responded
to the prescribed task individually and remotely, via computer. The task
consisted of estimating the number of candies in a jar, shown in a
photograph on-screen. To familiarize the participants with the research
materials, they were first shown photographs of two sample jars, along
with the correct number of candies in each (see Yaniv & Choshen-Hillel,
2012, for a similar procedure). All participants were shown the same
two jars, which were not re-shown subsequently during the real task.
The number of candies in the jars ranged between 120 and 607 and the
order of the photographs was randomized for each participant. To
ensure that estimates would be reasonable, participants were told to
keep within a range of 90–750 (for similar practice, see, for example,
Yaniv & Choshen-Hillel, 2012, or Yaniv, 2004b). Anyone providing es-
timates outside this range was asked to estimate afresh. Other than that,
no feedback was given to the participants on their performance or on the
correct number of candies. Once the participants' individual estimates
were collected, the trial was complete.

4. Analyses

4.1. Dependent variables

Ourmain dependent variable was theMean of Standardized Absolute
Error (MSAE), which was computed as follows. First, for each pair
(related or unrelated), we averaged the two estimates of the judges, by
jar. The absolute error of the collective judgment was defined as its
distance from the true number of candies in the jar. Next, the absolute
errors were standardized, by jar. This enabled us to combine the MSAEs
for each pair, by averaging the standardized absolute errors across the
jars. Finally, the MSAEs of the pairs were standardized again, across the
pairs, so that we could interpret the results in a standardized manner.
Note that lower MSAEs reflect higher accuracy.

The Supplementary Materials report the results in terms of (non-
standardized) Mean Absolute Errors (MAE). Although MAEs have an
intuitive meaning (they can be interpreted in terms of numbers of
candies in jars), in this case, they could have been biased by the variance
between the jars as they contained different numbers of candies.
Therefore, all analyses reported here were performed on MSAEs.

Our analyses compared the accuracy of related versus unrelated
pairs. We performed three separate analyses: (i) among the monozygotic
twins; (ii) among the same-sex dizygotic twins; and (iii) among the
different-sex dizygotic twins.

4.2. Statistical inference

Our computation of combined judgment involved pairing each
participant with every other participant, calculating the absolute error
of the average estimate of each pair. This means that our observations
(MSAEs) were not independent from one another. Therefore, we turned
to non-parametric permutation tests to assess the statistical significance
of our results. This was done by creating an empirical reference distri-
bution, simulating what the difference between related and unrelated
pairs would look like under the null hypothesis that they would not
perform differently. We then compared the actual, observed, difference
between related and unrelated pairs to this distribution.

The construction of the distribution involved 1,000,000 cycles of
computation on our data, resulting in a distribution of 1,000,000
random differences. First, all possible pairs of judges were created. Then,
in each cycle, each pair was randomly assigned to one of two types:
assigned-related or assigned-unrelated. This process mimicked the real
data: T/2 pairs were assigned to the assigned-related type, and the other
(T*(T − 1)/2− T/2 ) pairs to the assigned-unrelated type. This ran-
domized assignment process was subject to only one restriction: that,
within a specific simulation, once a pair was assigned to the related type,
the two judges could not be assigned again to the related type. This
reflects the fact that, in the real observed distribution, the related types
involved each judge just once. Next, we computed the MSAE across all
pairs in each type, in the same way as the observed MSAEs were
computed, and obtained the difference between the mean of the MSAE
of the related-assigned and unrelated-assigned pairs. At the end of the
process, we obtained 1,000,000 differences between the MSAE of the
related-assigned and unrelated-assigned pairs.

In the final step, we compared the real observed difference between
the mean error of the related and unrelated pairs, on the one hand, and
the distribution of the simulated differences created at random, on the
other. Our p-value was defined as the percentage of the simulated dif-
ferences that were above the observed difference. The interpretation of
the p-value is analogous to that based on a parametric test (e.g., t-test),
except that our p-value was based on an empirical distribution, not a
theoretical one (e.g., t-distribution). This entire procedure was pre-
registered for Study 2.

Note that, by construction, the number of related pairs is lower than
the number of unrelated pairs. In the example shown in Table 1, given
six twins, there are three related pairs and 12 unrelated pairs. This

Table 1
All possible pair combinations of six twins, 1a,1b,2a,2b,3a,3b.

Pairs Type Pairs Type Pairs Type
{1a; 1b} Related {1b; 2a} Unrelated {2a; 3a} Unrelated
{1a; 2a} Unrelated {1b; 2b} Unrelated {2a; 3b} Unrelated
{1a; 2b} Unrelated {1b; 3a} Unrelated {2b; 3a} Unrelated
{1a; 3a} Unrelated {1b; 3b} Unrelated {2b; 3b} Unrelated
{1a; 3b} Unrelated {2a; 2b} Related {3a; 3b} Related

M. Barneron et al.
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difference in the number of pairs is reflected also in the permutation test:
T/2 pairs were assigned to the related type. The remaining pairs
(T*(T − 1)/2− T/2 ) were assigned to the unrelated type.

5. Results

5.1. Comparing the accuracy of related versus unrelated pairs

Since the two studies yielded similar results, we report them
together. Fig. 1 presents the difference between the related and unre-
lated pairs, for each analysis separately. Positive numbers mean that
unrelated pairs performed better than related pairs. (Table 2 of Sup-
plementary Materials reports the results separately for the related and
unrelated pairs, by zygosity, in terms of both MSAE and MAE.)

Overall, Studies 1 and 2 presented a similar pattern whereby unre-
lated pairs performed better than related pairs. However, this difference
was observed only among the monozygotic twins. Consider, first, the
analysis involving such twins. The differences between the MSAEs were
0.11 in Study 1 (p = .049) and 0.11 in Study 2 (p = .021). Therefore, in
both studies, unrelated pairs performed significantly better than related
pairs.

For the dizygotic twins, however, the obtained pattern was different.
Here, there was no significant difference between related and unrelated
pairs. Among same-sex dizygotic twins, the MSAE difference was 0.06 in
Study 1 (p = .092) and − 0.09 in Study 2 (p = .958). As for the dizygotic
different-sex twins, the MSAE difference was−0.02 in Study 1 (p= .676)
and − 0.02 in Study 2 (p = .671).

In the above analyses, the related pairs naturally involved judges of
an identical sex for both the monozygotic twins and the dizygotic same-
sex twins. The unrelated pairs, however, comprised both same-sex and
different-sex judges. This difference could have confounded the previous
results. Therefore, we repeated the above analyses, this time involving
the related and unrelated pairs who were identical in their gender
composition. Among the monozygotic twins and the same-sex dizygotic
twins, we included only pairs of judges who were of the same sex.
Among the different-sex dizygotic twins, we included only pairs of
judges who were of different sexes. Here, too, the statistical inference
was based on the permutation test. Fig. 2 presents the difference be-
tween the related and unrelated pairs for each analysis, separately.
(Table 3 of Supplementary Materials reports the results separately for
the related and unrelated pairs, by zygosity, in terms of both MSAE and
MAE.)

Essentially, the analyses revealed the same pattern as before: it was
only among monozygotic twins that unrelated pairs performed better
than related pairs. Specifically, for the monozygotic twins, the differ-
ences between the MSAE were 0.16 in Study 1 (p = .023) and 0.10 in
Study 2 (p = .024). In the case of the dizygotic twins, among the dizy-
gotic same-sex twins, the MSAE differences were 0.05 in Study 1 (p =

.115) and − 0.10 in Study 2 (p = .971). Among the dizygotic different-
sex pairings, the MSAE differences were − 0.009 in Study 1 (p = .646)
and − 0.01 in Study 2 (p = .705).

5.2. The interaction between relatedness and zygosity

The above results revealed a difference between related and unre-
lated pairs but only for the monozygotic twins. Our final analysis
compared the effects between the monozygotic versus the same-sex
dizygotic twins. In other words, this analysis assessed the statistical
significance of the interaction between relatedness and zygosity; and it
was performed while controlling for gender composition.

Here, too, the statistical significance of these results was assessed
using permutation tests. We randomly assigned the pairs of monozygotic
and dizygotic same-sex twins into two sets: “assigned monozygotic” and
“assigned dizygotic same-sex”. For each of these sets, we computed the
difference, in terms of MSAE, between the (real) related and unrelated
pairs. Therefore, the procedure randomly changed the identity of the
pair's zygosity but retained the identity of the type of pairs (related or
unrelated). Next, we computed the difference between the effects ob-
tained in the assigned monozygotic and assigned dizygotic same-sex
sets. We repeated this procedure 1,000,000 times, creating a distribu-
tion of effects obtained under the null hypothesis that the effect of
relatedness would not differ between monozygotic and dizygotic twins.
In the final step, the p-value was obtained by computing the percentage
of random differences that exceeded the observed one.

In Study 1, the difference between related and unrelated pairs was
0.16 for the monozygotic twins and 0.05 for the dizygotic same-sex
twins (see Fig. 2). In Study 2, the difference between related and unre-
lated pairs was 0.10 for the monozygotic twins and − 0.10 for the
dizygotic same-sex twins. Therefore, in both studies, the effect of
relatedness was larger for the monozygotic than for the dizygotic same-
sex twins. The permutations tests revealed a p-value of 0.141 for Study 1,
and 0.009 in the pre-registered Study 2.

What might account for our findings? To answer this question, we

Fig. 1. Differences between related and unrelated pairs, by zygosity.
Key: MZ = monozygotic; DZ-ss = dizygotic same-sex; DZ-ds = dizygotic
different-sex; * indicates that the MSAE difference between related and unre-
lated twins was statistically significant at p < .05.

Fig. 2. Differences between unrelated and related pairs, by zygosity, control-
ling for gender composition.
Key: MZ = monozygotic; DZ-ss = dizygotic same-sex; DZ-ds = dizygotic
different-sex; * indicates that the MSAE difference between related and unre-
lated twins was statistically significant at p < .05.
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devlopped three indices tracking the underlying mechanism at play.1
The first index captured the diversity in the pair estimates. We computed
the absolute distance between the estimates made by the twins in each
pair. We hypothesized that, among the monozygotic twins, where the
unrelated pairs performed better than the related pairs, the former
would also exhibit higher absolute differences between the twins' esti-
mates. The second index captured the dependency between the twins'
estimates. We computed the Pearson's correlation between the estimates
made by the two twins (all estimates first being standardized by jar). We
hypothesized that, among the monozygotic twins, the correlations be-
tween the estimates of the unrelated pairs would be lower than the
correlations between the estimates made by related pairs. Our third
index was based on the idea that one condition for obtaining improved
collective judgments is that the estimates should “bracket” the truth
(Larrick et al., 2012). Following this idea, we computed, for each pair,
the percentage of times that the truth fell between the estimates of the
two twins. We hypothesized that the estimates made by unrelated twins
would bracket the truth more often.

Table 4 of the Supplementary Materials presents the mean of the
absolute distance, the mean of correlations, and the percentage of esti-
mates bracketing the truth, for related versus unrelated pairs, separately
for monozygotic and same-sex dizygotic twins. The results revealed a
coherent pattern: among the monozygotic twins, where unrelated pairs
performed significantly better than the related pairs, the former
exhibited higher mean absolute distances and lower mean correlations,
and bracketed the truth more often.

6. General discussion

The goal of this research was to investigate the influence of genetic
diversity on the accuracy of collective judgments. We tested the hy-
pothesis that pairs of judges who differ from one another genetically
should produce more accurate collective judgments than pairs who
present genetic variation. In our study, diversity was captured by
comparing pairs of judges who were either genetically-related or unre-
lated. Differences in levels of genetic diversity were captured by
comparing related and unrelated pairs separately for monozygotic versus
dizygotic twins.

We conducted two studies, the second of which was pre-registered, in
which we collected data from a sample of N= 602 twins. We found that,
on average, the collective judgments of the unrelated pairs of twins were
more accurate than those of the related pairs. Critically, however, we
identified the presence of an interaction, whereby the effect of related-
ness was greater among the monozygotic than the dizygotic twins,
which points to the (negative) influence of genetic relatedness on the
accuracy of collective judgment. Further analyses revealed that, among
the monozygotic twins, where the unrelated pairs performed signifi-
cantly better than the related pairs, the former made more diverse and
less dependent estimates, bracketing the truth more often.

It should be emphasized that, although the present research in-
vestigates genetic factors, it is not about the heritability of the wisdom-
of-crowds phenomenon. Rather, it is about the critical role of genetic
diversity in obtaining accurate collective judgments. In studies on this
issue, diversity is typically obtained by focusing on factors such as
background, education, knowledge, or demography. Our findings sug-
gest that genetic diversity is also a valid factor to take into account, with
relatedness negatively affecting the accuracy of combined judgments.

To our knowledge, the present research provides the first empirical
demonstration of the effects of genetic diversity on accuracy gains in
collective judgments. These findings shed light on the origins of the
wisdom-of-crowds phenomenon, as they show how diversity in people's
genetic heritage affects the quality of collective judgments.

6.1. Leveraging diversity in aggregation

Research testing the efficient use of opinions in forming collective
judgments has suggested two main strategies. One strategy involves the
identification of the best judges and combining their judgments
(Budescu& Chen, 2014; Mannes et al., 2014); and the other relies on the
idea that the accuracy gains derived from combining the estimates
decrease as a function of the interdependence among the judges
(Hogarth, 1978). This second strategy, therefore, involves the identifi-
cation of the judges, among those available, who are least correlated.
One thus needs to analyze the inter-correlations among the judges
(based on past performance, for instance), and then combine the esti-
mates of the judges who are less interdependent. Indeed, smaller panels
of less interdependent judges may outperform larger panels of judges
who are more interdependent. The reason for this is that the estimates of
the less interdependent judges provide more information (Larrick& Soll,
2006; Yaniv et al., 2009).

A related method is to use diversity as a proxy for independence. For
example, Shi et al. (2019) found that, compared with homogeneous
groups of editors, ideologically-diverse groups of editors produced
higher-quality collections of articles (see also Page, 2008). The present
study provides further evidence in support of the importance of diversity
in making collective judgments.

To the extent that genetic diversity does contribute to the accuracy of
collective judgments, we might expect unrelated dizygotic pairs of twins
to producemore accurate judgments than related dizygotic pairs, as they
share 50 % of their genes. This, however, was not obtained in our
studies, as relatedness did not decrease accuracy among dizygotic twins.
We suggest that, at least for the type of judgments we analyzed, dizy-
gotic twins are sufficiently diverse for their relatedness not to negatively
impact the quality of their collective judgments. In contrast, when pairs
are identical in terms of their genetics (among monozygotic twins), the
collective judgment is impaired.

6.2. Genetically-diverse crowds from an evolutionary perspective

The idea that genetic variability improves collective judgments may
provide a clue as to the evolution of individual differences in cognitive
processes. One intriguing question is how individual differences in
psychological traits have been preserved through evolution. According
to one classic theory, individual variability in traits should be trans-
mitted to the next generation because different phenotypes present an
evolutionary advantage in different periods, thereby perpetuating the
genetic variability accounting for the differences (Nettle, 2006). A
different approach, supported by the current findings, corroborates the
notion that evolution selects people not only according to how adapted
they are individually but (also) according to how adaptive they are
collectively (Wilson et al., 2008). As genetic diversity plays a role in
making collective judgments, it is possible that genetic diversity was
favored through evolution, since it produces individual differences
adaptive at the group level.

6.3. Concluding remarks

Improving judgment is fundamental to better decision-making,
which is a core concern in domains such as medicine, economics, poli-
tics, and law. There are theoretical and empirical bases for the conten-
tion that combining diverse sources could improve judgment accuracy.
Generally speaking, today's culture highlights diversity and pays tribute
to its virtues. The present research advances beyond the previous liter-
ature by showing that diversity in people's unique signature—that is,
their genetic heritage—could also enhance the quality of collective
judgments.

1 These analyses were not pre-registered as they were proposed by one of the
reviewers of this article.
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Supplementary Materials

Table 2 presents the Mean of Standardized Absolute Errors (MSAE) and Mean Absolute 

Errors (MAE), separately for related vs. unrelated pairs, by zygosity. Table 3 presents the 

means of MSAEs and MAEs for the related vs. unrelated pairs, by zygosity, controlling for 

gender composition. The MSAE values shown in Figures 1 and 2 (main text) are based on the 

data in Tables 2 and 3. Table 4 presents the means of absolute distance, correlations between 

pair estimates, and percentage of estimates that “bracket” the truth (Larrick et al., 2012).

MSAE  values  were  computed  as  detailed  in  the  main  text.  MAE  values  were 

computed as follows: first, for each pair, we averaged the two estimates of the judges, by jar; 

next, we calculated the absolute error of the collective judgment, defined as its distance from 

the  true  number  of  candies  in  the  jar;  finally,  the  MAE was  obtained  for  each  pair  by 

averaging the absolute errors across the nine jars. This measure reflects the overall accuracy 

of a specific pair of judges and the values can be interpreted in terms of candies. 

Table 2 

Mean Absolute Errors (MAE) and Mean of Standardized Absolute Errors (MSAE) for Related 

and Unrelated Pairs, by Zygosity

Study 1 Study 2

Zygosity Type N of pairs MAE MSAE N of pairs MAE MSAE

Monozygotic

Related 36 48.3 0.11 33 48.8 -0.002

Unrelated 2,520 46.3 -0.002 2,112 46.6 0.11

Dizygotic same-sex Related 70 45.5 0.06 56 40.2 -0.09

Unrelated 9,660 44.4 -0.0004 6,160 41.4 0.0008

Dizygotic different-sex Related 52 43.0 -0.02 54 38.2 -0.02

Unrelated 5,304 43.5 0.0002 5,724 38.4 0.0002

1



Table 3 

Mean Absolute Errors (MAE) and Mean of Standardized Absolute Errors (MSAE) for Related 

vs. Unrelated Pairs, by Zygosity, Controlling for Gender Composition

Study 1 Study 2

Zygosity Type N of pairs MAE MSAE N of pairs MAE MSAE

Monozygotic

Related 36 48.3 0.16 33 48.7 0.10

Unrelated 1,224 46.1 -0.005 1,032 46.4 -0.007

Dizygotic same-sex Related 70 45.4 0.05 56 39.9 -0.10

Unrelated 4,764 44.5 -0.0008 3,168 41.5 0.002

Dizygotic different-sex

Related 52 43.0 -0.009 54 38.2 -0.01

Unrelated 2,652 43.4 0.0002 2,862 38.5 0.0003

Table 4 

Mean of Absolute Distance, % of Estimates Bracketing the Truth, and Mean of Correlations 

between Estimates, for Related vs. Unrelated Pairs, by Zygosity, Controlling for Gender 

Composition

Study 1                                                         Study 2

Zygosity Type N of 

pairs

Distance Bracket Correl. N of 

pairs

Distance Bracket Correl.

Monozygotic

Related 36 70.70 36.42 .14 33 60.44 28.27 .11

Unrelated 1,224 75.52 38.46 -.02 1,032 68.16 35.21 -.03

Dizygotic 

same-sex

Related 70 61.86 35.14 .06 56 67.62 42.20 -.03

Unrelated 4,764 70.21 37.80 -.01 3,168 65.62 39.25 -.01
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