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Editor's foreword 

The Russian version of A collection of problems in probability theory 
contains a chapter devoted to statistics. That chapter has been omitted 
in this translation because, in the opinion of the editor, its content deviates 
somewhat from that which is suggested by the title: problems in pro­
bability theory. 

The original Russian version contains some errors; an attempt was 
made to correct all errors found, but perhaps a few stiII remain. 

An index has been added for the convenience of the reader who may 
be searching for a definition, a classical problem, or whatever. The 
index lists pages as well as problems where the indexed words appear. 

The book has been translated and edited with the hope of leaving as 
much "Russian flavor" in the text and problems as possible. Any pecu­
liarities present are most likely a result of this intention. 

August, 1972 Bryan A. Haworth 
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Foreword to the 
Russian edition 

This Collection of problems in probability theory is primarily intended for 
university students in physics and mathematics departments. Its goal is to 
help the student of probability theory to master the theory more pro­
foundly and to acquaint him with the application of probability theory 
methods to the solution of practical problems. This collection is geared 
basically to the third edition of the GNEDENKO textbook Course in proba­
bility theory, Fizmatgiz, Moscow (1961), Probability theory, Chelsea 
(1965). It contains 500 problems, some suggested by monograph and 
journal article material, and some adapted from existing problem books 
and textbooks. The problems are combined in nine chapters which are 
equipped with short introductions and subdivided in turn into individual 
sections. The problems of Chapters 1-4 and part of 5,8 and 9 correspond 
to the semester course Probability theory given in the mechanics and 
mathematics department of MSU. The problems of Chapters 5-8 corre­
spond to the semester course Supplementary topics in probability theory. 
Difficult problems are marked with an asterisk and are provided with 
hints. Several tables are adjoined to the collection. Answers are given only 
to odd numbered problems. 

This is done to train the student to evaluate independently the correct­
ness of a solution, and also so that the material of the collection could be 
used for supervised work. 

To supplement the collection, the teacher can make use of the follow­
ing three problem books which contain well chosen material on statistics 
and the theory of stochastic processes: 

1. VOLODIN, B. G., M. P. GANIN, I. YA. DINER, L. B. KOMAROV, 
A. A. SVESHNIKOV, and K. B. STAROBIN. Textbook on problem solving 
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in probability theory for engineers. Sudpromgiz, Leningrad (1962). 
2. LAJOS TAKAcS. Stochastic processes. Problems and solutions. Wiley 

(1970) (in the series Methuen's monographs on applied probability and 
statistics). 

3. DAVID, F. N. and E. S. PEARSON. Elementary statistical exercises. 
Cambridge University Press (1961). 

My co-workers and degree candidates of the MSU Department of 
Probability Theory were of enormous help in choosing and formulating 
these exercises. I am deeply indebted to them for this. In particular I wish 
to thank M. Arato, B. V. Gnedenko, R. L. Dobrushin and Ya. G. Sinai. 

July 9, 1963 L. D. Meshalkin 
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1 Fundamental concepts 

The problems of this chapter correspond basically to the material of 
sections 1-8 of B. V. GNEDENKO'S textbook The theory of probability, 
Chelsea Publishing Co. (1967). We illustrate here for the sake of con­
venience the interrelations among events used in the sequel. 

Suppose that a point in the plane is selected at random and that the 
events A and B consist of this point lying in the circle A or in the circle 
B respectively. In Figures 1, a)-I, e) the regions are shaded such that a 
point falling into a shaded region corresponds respectively to the 
events: 

A u B, A n B, A D. B, A - B, A. 

In the usual set-theoretic terminology, these events are respectively called: 
in case a), the union of the events A and B; in case b), the intersection of 
the events A and B; in case c) the symmetric difference of events A and B; 
in case d), the difference of the events A and B; in case e), the negation or 
complement of the event A. We note that the event AD. B is realized if 
and only if one and only one of the events A and B is realized. Figure 1, 
f) corresponds to the relation B £ A. Figure 1, g) corresponds to the 
relation AnB=0, where 0 denotes the empty set. If AnB=0, then A 
and B are said to be incompatible or nonintersecting events. 

The problems of the second section are intended for those who are 
primarily interested in applying the theory to statistics. In these problems 
we use the following notation: N is the total number of objects under 
consideration; N{ } is the number of these objects having the property 
appearing in the braces. These problems have been adapted from the 
first chapter of the book An introduction to the theory of statistics by 
G. U. YULE and M. G. KENDALL, C. Griffin and Co., London (1937). 

Starting with problem 23 it is assumed that the reader is familiar 
with the following aspects of probability: 
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Fundamental concepts 

• a) ffi b) 0 c) 

iB ~ f) 

~ ~ g) 

Fig. 1. 

Let Iff be an experiment and let .Pi' be the collection of all possible out­
comes of Iff. Let S be the class of all subsets of .Pi'. S is called the sample 
space associated with Iff. An event is any subset of S. A probability is a 
set function P defined on S having the following properties: 

(1) P{A}):O for all AES. 
(2) If E is the set containing all possible outcomes then prE} = 1. 
(3) If A= U~l Ai' whereA i tlA j =0 (i#j), thenP{A} =L~l P{AJ. 

In many combinatorial problems it is very convenient to use the classical 
definition of probability. Suppose that as the result of a trial only one of 
n pairwise incompatible and equally probable results Ei (i= 1,2, ... , n) 
can be realized. We shall assume that the event A consists of m elementary 
results E k • Then, according to the classical definition of probability, 

m 
P{A} =-. 

n 

The basic difficulty in solving problems by this method consists in a 
suitable choice of the space of elementary events. In this connection, 
particular attention must be given to verifying that the chosen elementary 
events are equally probable and that in the computation of m and n the 
same space of elementary events is used. 

The simplest problems on arrangements acquaint one with certain 
applications of combinatorial methods in statistical physics. The term 
"statistics" just introduced is used in the sense specified for physics. 

2 



Field of events 

Almost all the problems of this section have been adapted from W. 
FELLER, An introduction to probability theory and its applications, Vol. I, 
Third Edition, Copyright © 1968 by John Wiley & Sons, Inc. One should 
recall the following facts. If, from among n objects, r are chosen, then the 

total number of possible combinations which might be obtained is (;) = C~. 
The total number of permutations of n objects is n! and the number of 
permutations (ordered samples without replacement) of size r from n 
objects is 

n (n - 1) ... (n - r + 1) = P; = r!C~. 

Special attention must be given to the problems of l.6, geometric prob­
ability, for the solution of which sketches are particularly helpful. It is 
natural to introduce in these problems the concepts of distribution 
functions and density functions. More difficult problems from geometric 
probability can be found in 2.3, continuous distributions. 

Geometric probability is defined in the following way: if some region 
R (in E2 for example) is given, the probability that a point randomly 
located in R falls in some subregion Ro of R is given by the ratio 

measure of Ro (. 2 area of Ro) 
mE, . 

measure of R area of R 

Problems 60-70 go somewhat outside the framework of the obligatory 
course (in Soviet universities). They indicate the interrelationships 
of the above-introduced concepts with the problem of the metrization 
of a space with measure and linearly ordered sets. The material for these 
problems was adapted from the article by FRANK RESTL, published in 
the journal Psychometrics 24, No. 3 (1959) pp.207-220. One should 
consult [2], [3] and [11] for additional reading. 

1.1 Field of events 

1. From among the students gathered for a lecture on probability theory 
one is chosen at random. Let the event A consist in that the chosen student 
is a young man, the event B in that he does not smoke, and the event C 
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Fundamental concepts 

in that he lives in the dormitory. 
a) Describe the event An B n C. 
b) Under what conditions will the identity An B n C = A hold? 
c) When will the relation C ~ B be valid? 
d) When does the equation A = B hold? Will it necessarily hold if 

all the young men smoke? 

2. A target consists of five discs bounded by concentric circles with radii 
rk (k= 1,2, ... , 10), where r1 <r2 < ... <r10. The event A consists in falling 
into the disc of radius r. What do the following events signify? 

10 

C = n Ak ; 
k=l 

3. Prove that for arbitrary events A and B the relations A c B, A=> B; 
Au B = B, An B = 0 are equivalent. 

4. Prove the following equalities: 

a) An B= Au B 

b) Au B=A n B 

c) Au B = (A n B) u (A 6 B) 

d) A L, B = (A n B) u (A n B) 

e) A L, B = (A n B) L, (A n B) 
n n 

f) U Ai = n Ai 
i= 1 i= 1 

n n 

g) n Ai = U .<4;. 
i=1 i=1 

5. Prove that A L, B= C 6 D implies that A L, C = B 6 D. 

6. Prove that (A uB)n C= (A n C)u (Bn C) holds if and only if An C= 
=BnC. 

7. Prove that A L, B ~ C implies that A ~ (B L, C) if and only if 
AnBnC=0. 

8. A worker made n parts. Let the event Ai (i= 1,2, ... , n) consist in that 
the i-th part made is defective. List the events consisting of the following: 

a) none ofthe parts is defective; 
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Interrelationships among cardinalities of sets 

b) at least one of the parts is defective; 
c) only one of the parts is defective; 
d) not more than two of the parts are defective; 
e) at least two parts are not defective; 
f) exactly two parts are defective. 

9. Let An be the event that, at the n-th iteration of the experiment e, 
the outcome A is realized; let Bn. m be the event that in the first n repeti­
tions of e the outcome A is realized m times. 

a) Express B4 , 2 in terms of the Ai' 
b) Interpret the event Bm= Un{nDnBk,m}' 
c) Are the relations n~lAn~E and n~lAn~B, where 

B= U:=lBm valid? 

10. From the set E of points OJ there are selected n subsets Ai(i= 1, 
2, ... , n). For an arbitrary OJ-set we define Xc(OJ), the characteristic function 
of the set C, by setting Xc (OJ) = 1 if OJEC and XcCOJ) =0 otherwise. Prove 
that, using Ai' one can construct sets Bk (k= 1,2, ... , 2n) such that for an 
arbitrary bounded function 

there exist constants Ck such that 

1.2 Interrelationships among cardinalities of sets 

11. Prove that 
a) N{AnB}+N{AnC}+N{BnC}~N{A}+N{B}+N{C}-N; 
b) N{A nB}+N{A n C}-N{BnC}~N{A}. 

12. In what sense may the inequality N{A nB}/N{B}>N{A nE}/N{E} 
be interpreted as stating that Property B "favors" Property A. Show 
that, if B favors A, then A favors B. 

13. If N{A} =N{B} =!N, prove thatN{A nB}=N{A nE}. 

14. If N{A}=N{B}=N{C}=!N and N(AnBnC)=N(AnEnC), 
showthat2N{A nBn C} =N{A nB}+N{A n C}+N{Bn C} -!N. 
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Fundamental concepts 

15. Show that the following data are incompatible: 
N=lOOO; N{AnB}=42 
N{A}=525; N{AnC}=147 
N{B}=312; N{BnC}=86 
N{C}=470; N{AnBnC}=25 

Hint: CalculateN{AnBnC}. 

16. In a certain calculation the following numbers were given as those 
actually observed: N=1000; N{A}=510; N{B}=490; N{C}=427; 
N{AnB}=189; N{AnC}=140; N{BnC}=85. Show that they must 
contain some error or misprint and that possibly the misprint consists in 
omitting 1 before 85, given as the value of N{Bn C}. 

17. Puzzle problem (Lewis Carroll, A Tangled Tale, 1881). In a fierce 
battle, not less than 70% of the soldiers lost one eye, not less than 75% 
lost one ear, not less than 80% lost one hand and not less than 85% lost 
one leg. What is the minimal possible number of those who simultaneous­
ly lost one eye, one ear, one hand and one leg? 

18. Show that if N{A}=Nx; N{B}=2Nx; N{C}=3Nx, N{AnB}= 
= {A n C}=N{Bn C} = Ny, then the values of x and y cannot exceed t. 
19. The investigator of a market reports the following data. Of 1000 
persons questioned, 811 liked chocolates, 752 liked bonbons and 418 
liked lollipops, 570 chocolates and bonbons, 356 chocolates and lollipops, 
348 bonbons and lollipops, and 297 all three types of sweets. Show that 
this information contains an error. 

20. The following data are the number of boys with certain groups of 
deficiencies per 10,000 boys of school age observed: A - deficiency in 
physical development, B - signs of nervousness, D - mental weakness. 

N=lO,OOO; N{D}=789; 
N{A}=877; N{AnB}=338; 
N{B}=1086; N{BnD}=455. 

Show that there are certain mentally retarded boys who display no 
deficiencies in physical development; determine the minimal number of 
these consistent with the data. 

21. The following numbers are the analogous data for girls (see the 
preceding problem): 

N= 10,000; N{D} =689; 
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Definition of probability 

N{A}=682; N{AnB}=248; 
N{B}=850; N{BnD}=368. 

Show that some physically undeveloped girls are not mentally retarded 
and determine the minimal number of them. 

22. A coin was triply tossed 100 times; after each toss, the result was 
noted - either heads or tails. In 69 of the 100 cases, heads came up in the 
first toss; in 49 cases, heads in the second toss; in 53 cases, heads in the 
third toss. In 33 cases, heads came up in the first and second tosses and 
in 21 cases in the second and third. Show that there can be at least 5 cases 
in which heads occurred in all three tosses and that there cannot be more 
than 15 cases when for all three tosses a tail would occur, although not 
even one such case must necessarily occur. 

1.3 Definition of probability 

23. Given p=P(A), q=P(B), r=P(AuB), find P(Ai':,B), P(AnB), 
P(AnB). 

24. It is known that P(AnB)=P(A)P(B)(i.e., the events A and Bare 
independent), C~AnB and C~(AnB). Prove that P(AnC)~ 
~P(A)P(C). 

25. a) It is known that the simultaneous occurrence of the events A1 and 
A 2 necessarily forces the occurrence of the event A ; prove that 

b) Prove the following inequality for three events: if A1 n A2 n A3 c A, 
then 

26. In an experiment e, three pairwise incompatible outcomes An are 
possible; also in the experiment e, four other pairwise incompatible 
outcomes Bm are possible. The following compatible probabilities are 
known: 

P11 =0.01, 
P12=0.02, 

P21 =0.02, 
P22 =0.04, 

P31 =0.07, 
P32 =0.15, 
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Fundamental concepts 

P13=O.03, P23=O.08, P33=O.20, 
PI4=O.04, P24=O.06, P34=O.28. 

Find P(An) and P(Bm) for all nand m. (Also see exercise 83.) 

27. A coin is tossed until it comes up with the same side twice in succes­
sion. To each possible outcome requiring n tosses, we ascribe the 
probability 2- n• Describe the space of elementary events. Find the 
probability of the following events: 

a) the experiment ends at the sixth toss; 
b) an even number of tosses are required. 

28. Two dice are thrown. Let A be the event that the total number 
of eyes is odd; B the event that at least one of the dice comes up a unit. 

Describe the events A n B, Au B, An B. Find their probabilities under the 
condition that all 36 elementary events are equiprobable. 

1.4 Classical definition of probability. Combinatorics 

29. A child plays with 10 letters of the alphabet: A, A, A, E, H, K, M, M, 
T, T. What is the probability that with a random arrangement of the 
letters in a row he will obtain the word "MATEMATHKA"? 

30. In the elevator of an 8-story building, 5 persons entered on the first 
floor. Assume that each of them can, with equal probability, leave on any 
of the floors, starting with the second. Find the probability that all five 
will leave on different floors. 

31. A cube, all sides of which are painted, is sawn into a thousand small 
cubes of the same dimensions. The small cubes obtained are carefully 
mixed. Determine the probability that a small cube selected at random 
will have two painted sides. 

32. The same part can be made from material A or from material B. In 
order to decide which material endures the bigger load, n parts of each 
material were made and tested. Denote by x;(y) the limiting load which 
the i-th (j-th) part from the material A (B) endures. All the Xi and Yj 
obtained were distinct. It was decided to carry out the processing of the 
results of the experiments, using the Wilcoxon criterion. 1) To this end, Xi' 

1) See B. L. VAN DER WAERDEN. Mathematical statistics. New York, Springer-Verlag 
(1969). 
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Classical definition of probability. Combinatorics 

y j were arranged in a common series in the order of increasing magnitude, 
and for eachj, there was found n j , the number of x's occurring before Yj. 

lt turned out that LPj~m. On the basis of this the deduction was made 
that the parts made of material A were better. If the parts made of both 
materials are of the same quality, i.e., all arrangements of x's and y's in 
a series are equiprobable, find the probability of finding the inequality 
pointed out above for n = 4 and m = 2. 

33. A deck of playing cards contains 52 cards, divided into 4 different suits 
with 13 cards in each suit. Assume that the deck is carefully shuffled so 
that all permutations are equiprobable. Draw 6 cards. Describe the space 
of elementary events. 

a) Find the probability that among these cards there will be a king of 
diamonds. 

b) Find the probability that among these cards there will be repre­
sentatives of all suits. 

c) What is the smallest number of cards one must take from the deck 
so that the probability that among them one encounters at least two cards 
of the same face value will be greater than t? 

34. n friends sit down at random at a round table. Find the probability 
that: 

a) two fixed persons A and B sit together with B to the left of A; 
b) three fixed persons A, Band C sit together with A to the right of 

Band C to the left of B; 
c) find these same probabilities in the case when the friends sit in a 

row on one side of a rectangular table. 

35. Two numbers are chosen at random from the sequence of numbers 
1, 2, ... , n. What is the probability that one of them is less than k and the 
other is greater than k, where 1 < k < n is an arbitrary integer? 

36. From the sequence of numbers 1, 2, ... , N, n numbers are chosen at 
random and arranged in order of increasing magnitude: Xl <X2 < ... <xn• 

What is the probability that xm~M? Find the limit of this probability 
when M,N-+CIJ so that M / N-+CI.>O. 

37. There are n tickets in a lottery, of which m are winners. How large is 
the probability of a win for a person holding k tickets? 

38. In a lottery of forty thousand tickets, valuable winnings fall on three 
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Fundamental concepts 

tickets. Determine: 
a) the probability of obtaining at least one valuable prize if one has 

thousand tickets; 
b) how many tickets is it necessary to acquire so that the probability 

of obtaining a valuable prize will not be less than O.S? 

39. In a sample made up of N parts, there are M defective ones. n parts 
are chosen at random from this sample (n~N). What is the probability 
that among them there are m defective ones (m ~ M)? 

40. Let cp(n) denote the number of positive integers ~n and relatively 
prime to n. Prove that 

where the product is taken over all prime numbers p which divide n. 
Hint. Consider the problem in which one number is chosen at random 
from the numbers 1, 2, ... , n. Evaluate the probability that it will be 
relatively prime to n. 

41. In a box there are n pairs of boots. 2r boots (2r < n) are chosen at 
random from among them. What is the probability that, among the chosen 
boots, 

a) paired boots are absent; 
b) there is exactly one complete pair; 
c) there are exactly two complete pairs? 

42. A group consisting of 2N boys and 2N girls is divided in a random 
manner into two equal parts. Find the probability that the number of 
boys and girls is the same in each part. Calculate this probability using 
Stirling's formula. 1) 

43*. In an urn there are n white and m black balls; m < n. Successively, 
without returning, all the balls are taken out. Let M(k) be the number of 
black balls taken out after k steps, N(k) the number of white balls taken 
out after k steps. Find the probability P that for all k= 1, 2, ... , n+m, 
M(k) <N(k). 

44. * Banach's problem. A certain mathematician carries two boxes of 

1) Stirling's formula: n! ~ V2n nnHe-n. 
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Simplest problems on arrangements 

matches. Each time that he wants to get a match he chooses at random 
one of the boxes. Find the probability that when, for the first time, the 
mathematician finds one box empty, there are r matches in the other box 
(r=O, 1,2, ... , n; n is the number of matches which were originally in each 
of the boxes). 

45. Each of n sticks is broken into two parts, a long and a short one. 
After that, the 2n parts obtained are collected into n pairs; from each 
pair a new "stick" is made. Find the probability that: 

a) the 2n parts are reassembled to form the original n sticks; 
b) each long part is joined to a short part. 

46. Show that it is more probable to get at least one ace with four dice 
than at least one double ace in 24 throws of two dice. (This is known as 
de Mini's paradox. Chevalier de Mere, a gambler, thought that the two 
probabilities ought to be equal and blamed mathematics for his losses.) 

47. Find the probability that in dealing a deck of 52 cards to four players 
the first of them obtains exactly n pairs "ace - king of one suit". 

48. In certain rural communities of Russia there was at one time the 
following puzzle. A girl clutches in her hand six blades of grass so that the 
ends of blades of grass hang above and below; a playmate ties these 
blades of grass pairwise above and below separately. If all six blades of 
grass are tied to form a single ring, then this means that the girl will marry 
during the current year. 

a) Find the probability that the blades of grass, when tied at random, 
form a ring. 

b) Solve this same problem for the case of 2n blades of grass. 

1.5 Simplest problems on arrangements 

49. Let f(x!, ... , x n ) be an analytic function of n variables. How many 
different derivatives of the r-th order of it are there? 

50. In how many different ways can one set out on n plates, r "eclair" 
pastries and s "napoleon" pastries? 

51. Consider a mechanical system consisting of r indistinguishable parts. 

11 



Fundamental concepts 

In statistical mechanics one usually subdivides the phase space into a 
large number n of small regions or cells so that each of the r particles falls 
into one of the cells. Thus, the state of the entire system is described as the 
distribution of r particles in n cells; consequently it is uniquely defined by 
the collection of numbers O"';;mi"';;r (i= 1, 2, ... , n), where m i is the number 
of particles in the i-th cell. Photons, atomic nuclei and atoms, containing 
an even number of elementary particles, are subject to Bose-Einstein 
statistics, in which only distinct distributions are considered and to each 
of these distinct distributions there is assigned an equal probability. Find 
this probability. 

52. Continuation. Electrons, protons, neutrons are subject to Fermi-Dirac 
statistics in which it is assumed that: 

a) not more than one particle can occur in one cell and 
b) all distinct arrangements satisfying the first condition have equal 

probability. Find this probability in the case when there are r particles 
andn cells. 

53. Suppose there are r particles and n cells, and that Bose-Einstein 
statistics hold (see Problem 51). 

a) Prove that the probability of the presence in a fixed cell of exactly 
k particles equals 

b) ShowthatQo>Ql>q2>'" 
c) Prove that if nand r increase indefinitely where the mean number 

of particles, rjn, arriving at one cell, tends to A< 00, then Qk-+(Akj(1 + 
+A)k+l) (the right member is known by the name geometric distribution). 

d) Prove that the probability that exactly m cells remain empty equals 

54. If, in a distribution of r particles in n cells, all nr distributions have 
equal probability, then we speak of Maxwell-Boltzmann statistics (see 
also Problems 51 and 52). Find the probability that: 

a) the first cell contains kl particles, the second k2 particles, and so 
forth, where kl +k2 + ... +kn=r; 

b) for n = r none of the cells is empty; 
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c) for n=r only one cell remains empty. 

55. * A flow of k particles is caught by a system of n counters, registering 
the particles (Maxwell-Boltzmann statistics). Each particle falls into any 
of the counters with the same probability. What is the probability that the 
presence of particles will be noted by exactly r counters? 

1.6 Geometric probability 

56. A net of geographical coordinates is drawn on a sphere. The sphere 
is placed randomly on a plane. What is the probability that: 

a) the point of contact with the plane lies between the O-th and 90-th 
degrees east longitude on the sphere; 

b) the point of contact with the plane lies between the 45-th and 90-th 
degrees north latitude on the sphere; 

c) the minor arc of the great circle joining the point of tangency 
with the North Pole is less than rt.? 

57. A point is chosen at random in the interior of a circle of radius R. 
The probability that the point falls inside a given region situated in the 
interior of the circle is proportional to the area of this region. Find the 
probability that: 

a) the point occurs at a distance less than r(r < R) from the center; 
b) the smaller angle between a given direction and the line joining 

the point to the center does not exceed rt.. 

58. On a circle of unit radius with center at the origin of coordinates, a 
point is selected at random. The probability that the chosen point lies on 
an arbitrarily given arc of the circle depends only on the length of this arc 
and is proportional to it. Find the probability that: 

a) the projection of the chosen point on the diameter (axis of abscis­
sas) occurs at a distance from the center not exceeding r (r < 1); 

b) the distance from the chosen point to the point with coordinates 
(1,0) doe's not exceed r. 

59. A point M is chosen at random inside the square with vertices (0, 0), 
(0, 1), (1,0), (1, 1). Let (¢, '1) be its coordinates. It is assumed that the 
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probability that the point falls inside a region situated entirely in the 
interior of the square depends only on the area of this region and is 
proportional to it. 

a) Prove that for O~x, y~ 1, 

P{~<x;'1<y}=P{«x}P{'1<y}=xy. 

b) ForO<z<l,find 

1) P{I( - '11 < z} 

2)P{('1<z}; 

c) P{min((,'1)<z}; 
d) P{max ((, '1 )<z}; 
e) P{-!((+'1)<z}. 

60. On the plane, parallel lines are drawn at a distance 2a apart. A coin 
of radius r<a is thrown at random on the plane. What is the probability 
that the coin does not intersect any of the (infinitely many) lines? 

61. On an infinite chess board with side of a square equal to a, a coin of 
diameter 2r<a is thrown at random. Find the probability that: 

a) the coin falls entirely in the interior of one of the squares; 
b) the coin intersects no more than one side of the square. 

62. Let (, '1 be defined as in Problem 59. Find the probability that the 
roots of the equation 

x 2 + (X + '1 = 0 

a) are real; 
b) both positive. 

63. A point M is chosen at random inside a triangle ABC in which AB 
has length I, BC has length k and the angle ABC is a right angle. Find the 
joint distribution of the length h of the perpendicular drawn from the 
point M onto AB, and the angle a= LMAB (i.e., for all X and y find the 
probability that the events {h < x} and {a <y} are realized simultaneously). 

64. On a horizontal plane foil there exists a point source of radioactivity 
sending rays uniformly in all directions of space above the foil. If a screen 
is set up parallel to the foil plane at a unit distance from it, then on this 
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screen one can observe point charges registered by the radioactivity. Find 
the probability that a particular charge will occur in the part of the screen 
situated in the interior of the circle of radius R with center located over 
the source of radioactivity. 

65. Let ~ and 1'/ be defined as in Problem 59 and let p2=e+1'/2, and 
cP = arctan1'/g. Find the joint distribution of p and cp, i.e., for all x and y 
find the probability P{ {p <x} n {cp <y}}. 

1.7 Metrization and ordering of sets 

66. Show that peA, B)=P{Af':"B} satisfies all the axioms of a metric 
space,i) except the axiom peA, B) =0 if and only if A =B; in other words, 
show that for arbitrary events A, B, C, we always have peA, B) + pCB, C) ~ 
~p(A, C)~O. 

67. We agree to say that the property bijk holds for the events (sets) 
Ai' A j' Ak if the following two conditions are satisfied: 

1) AinAjnAk=0; 
2) Ai nAj rlAk =0. 

Prove that: 
a) if the property bijk holds, then 

P(Ai' AJ + p(Aj' A k ) = P(Ai' A k); 

b) if P {A} = 0 implies A = 0, then the converse assertion is also true. 
68. Show that bijm does not always follow from the properties b ijk and 
bjkm (see the preceding problem). 

69. Let A * = {AI' ... ,An} and B* = {BI' ... ,Bn} be two families of nested 
sets, A j +1 2Aj and Bj+12Bij=1,2, ... ,n-I), where AnnBn=CP. Let 
C be a set such that An rl C = Bn n C = 0. Then the sequence of sets 

where 

Li = Ai U Bn - i + 1 U C 

1) See P. S. ALEKSANDROV. Introduction to the general theory of sets and functions. 
Gostekhizdat, M. (1948) p. 227. 
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will be said to be linearly ordered. Prove that for i::;;.j~k, L i, L j, Lk are 
bijk. From this, by virtue of Problem 67, it follows that in this case 

P(Li n L j ) + p(Lj n Lk) = P(Li n Lk). 

70*. Continuation. Prove that if R* = {Ri' ... ,Rn } is a sequence of sets 
such that for all i, j, k = 1, 2, ... , nand i:r:;;.j ~ k for R i , R j' Rk there holds the 
property bijk, then R * is a linearly ordered sequence of sets. 

Seepage 125 for the answers on problems 1-69. 
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2 Application of the basic 
formulas 

The material of this chapter corresponds basically to §§9, 10 of the text­
book by B. V. GNEDENKO. The central problems here are those involving 
application of the total probability formulas. To solve these problems, 
one needs to know how to break down a complicated problem into a 
series of simpler ones. 

The formulation of the problems presupposes that the reader knows 
the definitions of conditional probability and independence and the formula 
for total probability. 

If P{B} >0, then the conditional probability of the event A under the 
condition B, P{A I B}, is defined by means ofthe formula 

{ I } P{AnB} 
P A B = P{B} . 

In practice, this formula is usually used to calculate peA n B). 
Independence. The events AI' ... , An are called independent if, for an 

arbitrary 1 ~ r ~ n and arbitrary 1 ~ il ~ i2 ~ ... ~ ir ~ n, the relation 

r 

P {Ai! n Ai2 n ... n Ad = TI P {Ad 
k=1 

holds. The random variables l ) (I' (2, ... , (n are called independentif,for 
arbitrary Xl' X2 ... , Xno the equation 

P {6 ((i < x;)} = in P{(i < x;} 

holds. 
Formulafor total probability. If the events B;(i = 1, 2, ... , n) are such 

thatB I nBj =0(i=ft j), U7=1 Bi=E (i.e., the Bi are pairwise disjoint and 

1) See page 35. 
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their union yields the entire space of elementary events) and P {BJ > 0, 
then the formula 

n n 

P{A} = I P{A n BJ = I P{BJ P{A I BJ 
i=1 i=1 

holds. 

Discrete distributions 

1. Binomial law. The number of successes in n independent Bernoulli 
trials, each with probability p of success, has the binomial distribution: 

P {k successes} = (~) pkqn-k where q = 1 - p. 

2. Multinomial law. Suppose that each of n independent trials can result 
in r mutually exclusive and exhaustive outcomes ak (1 ::::; k::::; r), and that 
the probabilities Pk = P {ak } are the same at each trial. Then 

n' 
P {outcome ai occurs ti times, 1 ::::; i ::::; r} = , , . , p11 p~2 ... P:' 

t 1 ·t2 ····tn • 

provided t 1 + t 2 + ... + tr = n. We express this by saying that the joint 
distribution of the numbers of occurrences of the ak is multinomial. 

3. Geometric law. The probability P obeys the geometric law with para­
meter p if P{x} =p(l_pY-l, x= 1,2, ... , and 0 otherwise. 

4. Hypergeometric law. The probability P obeys the hypergeometric law 
with parameters N, n andp, [N = 1,2, ... , n e {I, 2, ... , N}, and p=O, liN, 
21N, ... , 1] if 

x = 0, 1, ... , n, 0 otherwise. 

5. Poisson law. The probability P obeys the Poisson law with parameter 
A>O if 

AX 
P{x}=e- l ." x=0,1,2, ... ,Ootherwise. 

x. 
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Continuous distributions 

1. Uniform law. The uniform law over the interval rx to /3, rx < /3, is speci­
fied by the density function 1) 

rx<x</3 

otherwise. 

2. Normal law. The normal law with parameters f.l and a, - 00 <f.l< 00, 

a> 0, is given by the density function 

f(x) = ~ e- t «x-I')/<T)2, 

aJ2n 
-oo<x<oo. 

3. Exponential law. The exponential law with parameter A>O is given by 
the density function 

x;?:O 
x < O. 

4. The X2 distribution. The X2 distribution with parameters n = 1, 2, ... and 
a> 0 is given by the density function 

x>O 

x ~O. 

x2 (n, 1) is called the X2 distribution with n degrees offreedom. 

00 

[ r ( t) = J xt - 1 e - x dX] . 
o 

By the statement "[ (x) = 0 (g (x)) as x -+ c", we mean that the ratio 
[(x)/g(x) remains bounded as x-+c. By the statement "[ (x)=o(g(x)) 
as x-+c" we mean that the ratio [(x)/g (x) tends to zero as x-+c. More 
formally, we mean that to each 6>0, there corresponds a 15(6»0 such 
that! [(x)! ~6!g (x)! whenever c-15 (6) <x<c+15 (6). 

For additional background one may consult [2], [3] and [11]. 

1) See page 36. 
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2.1 Conditional probability. Independence 

71. A student came to an examination knowing only 20 of 25 questions of 
the program. The examiner gave the student 3 questions. Using the con­
cept of conditional probability, find the probability that the student 
knows all of these questions. Find the same probability using the classical 
definition of probability. 

72. According to information about the consumption of repair parts, it 
was established that, in the repair of automobile engines, part No.1 was 
changed in 36%, and part No.2 in 42%, of the cases examined, and that 
both of these parts were changed simultaneously in 30% of the cases. On 
the basis of these data, is it possible to deduce that replacement of part 
No.1 and replacement of part No.2 are statistically connected with one 
another? Find the probability that in repairing an engine, part No.2 will 
be changed, under the condition that part No.1 has been changed. 

73. Investigate the connection between dark-colored eyes of the father 
(event A) and of the son (event B) on the basis of the following data ob­
tained in a population census in England and Wales in 1891. Dark-eyed 
fathers and dark-eyed sons (A n B) comprised 5% of all those observed, 
dark-eyed fathers and light-eyed sons (A n B), 7.9%, light-eyed fathers and 
dark-eyed sons (A nB), 8.9%, light-eyed fathers and light-eyed sons 
(A n B), 78.2%. 

74. An electric circuit between the points A and B is made up according 
to the scheme shown in Fig. 1. Various elements of the circuit go out of 
commission independently of one another. The probability of elements of 
the circuit going out of commission during the time T are the following: 

Element Kl K2 Ll L2 L3 
Probability 0.1 0.2 0.4 0.7 0.5 

Determine the probability of a current break during the indicated interval 
of time. 

75. In searching for a certain book, a student decided to try three libraries. 
The libraries are stocked independently of one another and, for each 
library, the following statement is true: there is a 50% probability that the 
library possesses the book and, if it does possess it, there is a 50% proba­
bility that the book has been borrowed by another reader. Find the proba­
bility that the student succeeds in obtaining the book. 
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1---+----000000( L l-----t--{ 

~------~L r-------~ 

Fig. 2. 

76. A marksman A hits the target under certain conditions of firing with 
probability PI =0.6, marksman B with probability pz =0.5 and marksman 
C with probability P3 = 0.4. Each man fired one shot at the target and two 
bullets hit the bullseye. What is more probable: C hit the target, or not? 

77. It is known that 5% of all men and 0.25% of all women are color­
blind. A person chosen by chance suffers from colorblindness. What is 
the probability that this is a man? (It is assumed that there is an equal 
number of men and women.) 

78. At a factory where bolts are manufactured, machines A, B, C produce 
respectively 25%,35% and 40% of all bolts. Of the output of these machines, 
defects constitute 5%, 4% and 2% respectively. A bolt selected at random 
from the production turned out to be defective. What is the probability 
that it was produced by machine A? machine B? machine C? 

79. It is known 1) that the probability that two twins are of the same sex 
is~O.64 where in general the probability of the birth of a boy is~0.51. 
Find the probability that the second of the twins is a boy under the con­
dition that the first of them is a boy. 

80. The probability that a letter is in the writing table equals p; with equal 
probability it can be in anyone of eight drawers of the table. We looked 
in 7 drawers and did not find the letter. What is the probability that the 
letter is in the eighth drawer? 

81. Three dice are thrown. What is the probability that at least one of them 
comes up with one eye if different faces came up on all three dice? 

1) See E. BOREL. Probability and confidence. Fizmatgiz, Moscow (1961) p. 39. 
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82. It is known that upon throwing IOdice at least one unit came up. 
What is the probability that two or more ones came up? 

83. For the experiment described in Problem 26, find for all m and n the 
conditional probabilities P (Am I Bn) and P (Bn n Am). Explain whether or 
not the trials A and B are dependent. (The trials ~ and lB are dependent 
if for at least one pair (m, n) the events Am and Bm are dependent.) 

84. There are N children's wooden blocks; on each of them there can be 
glued the letter A or the letter B, or both of these letters together. We shall 
say that event A occurred if a randomly chosen block has the latter A, and 
event B if the block has the letter B. Can pictures be glued on in such a way 
that events A and B are independent? 

85. Suppose the random variables ~, and 11 are independent and identi­
cally distributed, with P{ ~ = I} =p>O, P{ ~ =O} = I-p>O. We introduce 
a new random variable, setting' = 0, if ~ + 11 is an even number and, = 1 
if ~ + 11 is an odd number. For what values of p are the random variables 
~ and, independent? 

86. a) ProvethatifP(A)=0.9,P(B)=0.8, thenP(A I B)~0.875. 
b) Prove thatP(A 2 1 Ad~ 1- P(A2 )fP(Ad. 

87. Let P(A)=p, P(B)= 1-8, where 8 is small; estimate peA I B) from 
above and from below. 

88. Construct an example showing that peA nBn C)= P(A)P(B)P(C) 
and P (C) > 0 do not imply that P (A)P (B). 

89. Show that the pairwise independence of the events A, B, C does not 
imply their simultaneous independence. 

90. It is known that the events A and B are independent and do not inter­
sect. Find min (P(A),P(B)). 

91. Suppose given three pairwise independent events, all three of which 
cannot simultaneously occur. Assuming that they all have the same pro­
bability x, determine the largest possible value of x. 

92. Given peA), PCB), P(C), P(AnB), P(AnC), find P(BnC), 
P(AnBnC),andP(CI AnB). 
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2.2 Discrete distributions: binomial, multinomial, geo­
metric, hyper geometric 

93. Two play at a game, tossing alternately a coin. The winner is counted 
to be the one who first comes up with a tail. Describe the space of ele­
mentaryevents. Find Pk, the probability that the game will terminate with 
the k-th toss. How many times greater is the probability of winning for 
the beginner? 

94. In a sample of cotton, there are about 20% short fibers. What is the 
probability of not finding a single short fiber in a random selection of n 
fibers? 

95. For weaving, white and colored cotton are mixed equally. What is the 
probability that among 5 randomly selected fibers of the mixture one 
finds less than 2 colored fibers? 

96. Two equally skilled marksmen alternately shoot at a target. Each is 
allowed to have at most two shots. The first one who hits the target ob­
tains a prize. 

a) If the probability of hitting the target with a single shot is p=t, 
then, what is the probability that the marksmen obtain a prize? 

b) Compare the chances of winning of the first and second to shoot. 
What if the number of shots is not restricted? 

97. What is more probable, to win with an equally strong opponent: 
a) 3 games of 4 or 5 of 8; 
b) not less than 3 games of 4 or not less than 5 of 8; 
c) not more than n of 2n games or more than n of 2n games; 
d) not more than n of 2n + 1 games or more than n of 2n + 1 games? 

98. The John Smith problem. In 1693 John Smith posed the following 
question: are the chances for success the same for three persons if the 
first one must obtain at least one "six" in throwing a die 6 times, the 
second, not less than two-sixes with 12 throws, and the third, not less 
than three sixes with 18 throws? The problem was solved by Newton and 
ToIlet who showed that the first person has more chance of winning than 
the second and the second more than the third. Obtain this result. 

99. Assume that the die has s faces, s ~ 2; that each of them comes up 
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with equal probability. Denote by g (t, n) the probability that with t 
throws of the die a given face will come up less than n times. Prove the 
following: 

a) g (sn, n) decreases as s increases, with fixed n; 
b) g (sn, n) <!; 
c) g(2n,n)~!asn~oo. 

100. In order to find out how many fish there are in a lake, 1000 fish are 
caught, marked and put back into the lake. For what number offish in the 
lake will the probability be greatest of encountering 10 marked fish among 
150 fish caught a second time? 

101. Among the cocoons of a certain sample, 30% are colored. What is 
the probability that among 10 cocoons randomly selected from the sample, 
3 will be colored? Not more than 3 will be colored? 

102. A mechanical control checks parts, each of which (independently 
of the other parts) can turn out to be defective with pro bability p. 

a) What is the probability that of 10 checked parts only one turned 
out to be defective? 

b) Find the probability that the first defective part turns out to be­
the k-th part checked. 

c) Find the probability that 10 successive parts turn out to be good 
under the condition that the preceding 1=5 parts were also good. Does 
this pro bability depend on I? 

d) Find the distribution of the number of good parts found in 
checking between two successive defective parts. 

103. Two persons play the following game. The first person writes down 
one of two numbers: zero or one, and the second person strives to guess 
which of the two numbers the first player wrote. The second player noticed 
that the first chooses the digits independently of one another and that, 
on each occasion, there is a probability p=0.6 that he chooses zero. What 
must be the strategy of the second player, i.e., with what pro bability must 
he call each of the numbers in order to attain the largest number of cor­
rect guesses? Find the distribution of the number of correct guesses among 
two sequences of failures under the condition that the second player calls 
zero with probability q=! independently of the results of the preceding 
guesses. 
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104. On a segment AB of length L there are located at random, indepen­
dently of one another, five points. The probability of a point falling on 
some part of the segment depends only on the length of this part and is 
proportional to it. Find the probability that: 

a) two points will occur at a distance less than b from the point A, 
and three at a distance greater than b; 

b) two points will occur at a distance less than I from A, one at a 
distance r, with i<r<b, and two points at a distance greater than b. 

105. A square is inscribed in a circle. 
a) What is the probability that a point located at random in the 

interior of the circle turns out to be also interior to the square? 
b) What is the probability that of 10 points located at random inde­

pendently of each other in the interior of the circle, four fall into the 
square, three on one segment and one each on the remaining three seg­
ments? 

106. The probability that a camouflaged opponent is in a shelled area 
equals 0.3; the probability of hitting in this case is equal to 0.2 for each 
individual shot. One hit is sufficient to destroy. What is the probability 
of destruction with 2 shots? What is the probability of destruction with 
10 shots? 

107. For a certain competition, each of the athletic leagues A and B picks 
three teams. A's first team plays B's first and wins with probability 0.8, 
A's second plays B's second and wins with probability 0.4 and A's third 
plays B's third and wins with probability 0.4. Find the probability that 
league A wins at least two games of the three. 

108. Two chess players A and B agreed to playa match under the follow­
ing conditions: for a victory, A must win 12 games before B wins 6; a tie 
is not counted. As A usually wins twice as frequently as B, the probability 
that A wins a particular game can be assumed to be equal to l The game 
had to be terminated after A had won eight games and B four. Victory 
was decided credited to the one for whom the probability of final win 
was greater. Who was the victor? 

109. Let Ak be the event that, in checking the first k parts coming up for 
control, not a single defective one is discovered. It is known that for arbi-
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trary integers k and /';:::0, P{Ak+11 Ak}=P{Ad, where P{Ad=l-q. 
Find P{Ak }. Also find the probability that the number of good parts 
found before the first defective part equals / (compare with Problem 102; 
see also Problem 117). 

110. An urn contains two balls: one white and one black. Successive 
trials are performed with return of the ball taken out of the urn. The num­
ber of trials is infinite. 

a) What is the probability of taking out in the final analysis a white 
ball if, after an unsuccessful attempt, n more black balls are added to the 
urn? 

b) What is the probability of taking out in the final analysis two 
white balls in succession if, after each unsuccessful attempt, one more 
black ball is added to the urn ? 

c) What is the probability of taking out in the final analysis two 
white balls in succession if, after each unsuccessful attempt, two more 
black balls are added to the urn? 

111. Applying probabilistic-theoretical considerations, verify the follow­
ing identities, in which N';::: m ';::: 1 : 

N - m (N - m)'(N - m - 1) 
a) 1+ N-l + (N-l).(N-2) 

(N-m) ... 2·1 N + ... + - =-; 
(N-l) ... (m+l)m m 

N - m m + 1 (N - m)·eN - m - 1) m + 2 
b) 1 + ~.---;;- + N2 .--;;:;- + 

(N-m) ... 2·1 N N 
+ ... + .-=-; 

NN In m m 

N - m m + 1 eN - m)2 m + 2 
c) 1 + N + 1 .---;;- + (N + 1) (N + 2)"---;;- + 

(N - m? m + 3 N + ---'---~ +"'=-. 
(N + 1)'(N + 2)'(N + 3) m m 

Find the corresponding schemes of drawing balls from an urn. 
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Continuous distributions 

2.3 Continuous distributions 

112. Kirchhoff investigated 60 spectral lines of radiation of iron and 
found that each of these lines lies within t mm of some solar Fraun­
hofer line. Determine whether this is "conicidence", given that the mean 
distance between adjacent solar lines is around 2 mm. 
Hint. In solving this problem, assume that 60 "iron lines" have been drawn 
at random independently of one another on a diagram of the solar spec­
trum, and estimate the probability that each of these lines turns out to be 
closer than t mm to some solar line. (Also see Problem 60.) 

113. What is the probability that a triangle can be constructed from three 
segments taken at random? The lengths of the segments are independent 
and each is uniformly distributed over (0, I). 

114. A twig of length I is broken randomly into two parts, after which the 
larger of the parts is broken in two at a point chosen at random. Find the 
probability that a triangle can be constructed from the parts obtained. 

115. Two points are located randomly, independently of one another, on 
the segment [0, 1]. Find the probability that from the segments: from 
zero to the left point; from the left point to the right point; and from the 
right point to 1 it is possible: 

a) to construct a triangle; 
b) to construct an acute triangle. 

116. Two persons agreed to meet in a definite place between 6 and 7 
o'clock; the one arriving earlier is to wait for the other for up to one­
quarter of an hour. Calculate the probability that the meeting will tran­
spire, under the assumption that the times of arrival of the two persons at 
the meeting place are independent and each uniformly distributed be­
tween 6 and 7 o'clock. 

117. Suppose that the event At consists of a molecule experiencing a 
collision at time t ~ ° and not experiencing a collision up to the moment 
of time t. It is known that 

It is also known thatP{Ad =e-". FindP{A t }. 
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118. The Buffon problem. On a horizontal plane there are drawn parallel 
lines at a distance 2a from one another. On the plane there is thrown at 
random a thin needle whose length equals 21, where I ~ a. By "random" 
we understand the following: first, the center of the needle falls at random 
on a line perpendicular to the lines drawn, and, second, the angle ¢ form­
ed by the needle and the lines drawn has a uniform distribution, where the 
position of the center and ¢ are independent. Find the probability that 
the needle will intersect some line. What is the probability that there will 
be 5 intersections in 10 throwings? What is the probability that there will 
be one intersection with 10 throwings? 

119. In Problem 63, let I=k. Find, for all x, 

120. For a ball-bearing assemblage it is necessary that among R - the 
radius of the outer ring, r - the radius of the inner ring, and d - the dia­
meter of the balls (the balls may be assumed to be spherical) there exists 
the following relation: 

O~R-r-d~c5. 

Assume that R, r, d are independent and uniformly distributed on the 
segments [50.0, 5l.0], [40.0, 4l.0], [9.5, 10.0], respectively. Find the proba­
bility of the ball-bearing assemblage in the case c5 = 0.5 mm. 

121. N points are scattered at random independently of one another in a 
sphere of radius R. 

a) What is the probability that the distance from the center to the 
nearest point will not be less than r? 

b) To what does the probability, found in (a) above, tend if 

Remark. This problem is adapted from stellar astronomy: in a neigh­
borhood of the sun, A = 0.0063 if R is measured in parsecs. 
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2.4 Application of the formula for total probability 

122. From among the 64 squares of a chess board, two different squares 
are chosen at random and two equal pieces of the white and black colors 
are placed on them. What is the probability that these pieces conquer one 
another if two rooks were placed? Two bishops? Two knights? Two 
queens? 

123. From an urn containing 3 white and 2 black balls, there were trans­
ferred two balls, taken out at random, into an urn containing 4 white and 
4 black balls. Find the probability of taking out a white ball from the 
second urn. 

124. Three urns contain white and black balls. There are 2 white and 3 
black balls in the first, 2 white and 2 black balls in the second, 3 white and 
I black ball in the third. A ball is transferred from the first urn into the 
second. After this a ball from the second urn is transferred to the third. 
Finally, a ball is transferred from the third urn to the first. 

a) What composition of the balls in the first urn is the most prob­
able? 

b) Determine the probability that the composition of balls in all urns 
remains unmodified. 

125. Someone (a certain Ivan!!) does not know all of the examination 
tickets. In what case will the probability of drawing an unknown ticket 
be the smallest for him: when he draws the ticket first or last? 

126. The probability that the articles of some production process satisfy 
the standard equalsO.96. Assume that the system of inspection is simplified, 
yielding a positive result with probability 0.98 for articles which satisfy 
the standard and with probability of 0.05 for articles which do not satisfy 
the standard. What is the probability that an article that has passed the 
test satisfies the standard? 

127. Assume that the probability of hitting the target with one shot 
equals p, and the probability of destroying the target with k~ 1 strikes is 
l_qk. What is the probability that the target is destroyed if n shots were 
fired? 

128. In a sample of N parts there are M < N defective ones. From the 
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sample there are selected at random n < N parts which are subjected to a 
complete check. Errors are possible in the check; thus, with probability 
p a defective part is adjudged "suitable" and with probability q a good 
one is adjudged "defective". Find the probability that m parts will be 
adjudged "defective". 

129. Let ~ be a nonnegative integer-valued random variable, taking the 
value k=O, 1,2, ... with probability (A k/k! e -;.). An experiment consists of 
choosing ~ points independently of one another on the segment [0.1]. 
Denote by Xi the number of points falling on the interval ((i-1)/n, i/n), 
i = 1, 2, ... , n. Prove that for ..1.= n the Xi are independent. 

130. Assume that a certain insect lays k eggs with probability (Ak/k!) e-;', 
and that the probability of the evolution of an insect from an egg is p. 
Assuming the mutual independence of the evolution of the eggs, find the 
probability that an insect will have exactly I offspring. 

131. In experiment m:, M mutually exclusive outcomes Am are possible, 
and in experiment f!jj, N mutually exclusive outcomes Bn are possible. 
Show that the conditional probability P(Bn I Am) can be expressed in 
terms of the probabilities P{Am I Bn} and P{Bn} in the following way: 

{ I } - P {Am IBn} P {Bn} 
P Bn Am - ---;Ncc--'---'---'------''----

L P{Am I Bk } P{Bd 
k=l 

This relation is known as Bayes' formula. 

132. From an urn in which there were m;::' 3 white balls and n black balls, 
one ball of unknown color was lost. In order to determine the composi­
tion of the balls in the urn, two balls were taken out of it at random. 
Find the probability that a white ball was lost if it is known that the balls 
taken out turned out to be white. 
Hint. Use the formula of Problem 131. 

133. Before certain experiments are performed, the probabilities of the 
mutually exclusive and exhaustive hypotheses AI, A Z, .•• , Ak are considered 
to be OC I , OCz, ... , OCk. According to hypothesis Ai' the probability of occur­
rence of the event B at any particular realization of the experiment is Pi. 
It is known that for n l independent trials, the event B occurred m l times. 
It is also known that in the subsequent series of nz trials, the event B 
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occurred m2 times. Prove the following property of Bayes' formula: the 
a posteriori probabilities of the hypotheses, calculated after the second 
series of trials and taking into account the probabilities of these hypo­
theses after the first series of trials, are equal to the a posteriori probabili­
lities, calculated simply on the basis of the series of n l + n2 trials, in which 
the event B occurred m l + m2 times. 

134. On a communications channel, one of three sequences of letters can 
be transmitted: AAAA, BBBB, CCCC, where the a priori probabilities of 
the sequences are 0.3, 0.4, 0.3, respectively. It is known that the action of 
noise on the receiver decreases the probability of a correct reception of a 
transmitted letter to 0.6. The probability of the [incorrect] reception of a 
transmitted letter as either of the two other letters increases to 0.2. It is 
assumed that the letters are distorted independently of one another. Find 
the probability that the sequence AAAA was transmitted if ABCA is 
received on the receiver. 

2.5 The probability of the sum of events 

135. The events Ai (i= 1,2, ... , n) are independent and P{Ad =Pk. Find 
the probability: 

a) of the occurrence of at least one of these events; 
b) the occurrence of only one of them. 

136. Let AI' A 2 , •.• , An be random events. Prove the formulas: 

a) pt~l Ak} = ktl P{Ad - i"'i~"'n P{Ai rl AJ + 

+ .2;: P{AirlAjrlAk}+ ... +(-lY+lp{nAi}; 
l~l~J<k<n l=l 

b) pt6 Ak} = ktl P{Ak} - :t: j=tI P{Ak U Aj} + 

+ :t: j:~l i~tI P{Ak U Ai U AJ _ ... + (- It-1Pttl Ak}. 

137. A schoolboy, wishing to playa trick on his friends, gathered all the 
caps in the cloakroom and then he hung them in a random order. What 
is the probability Pn that at least one cap landed in its previous place, if 
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there were altogether n hooks in the cloak-room and n caps on them? 
Find limn ... 00 Pn-

138. In an urn there are n tickets with numbers from 1 to n. The tickets 
are taken out randomly one at a time (without returning). What is the 
probability that: 

a) for at least one drawing, the number of the selected ticket coincides 
with the number of the trial being performed; 

b) If m tickets are drawn (m<n), the numbers of the drawn tickets 
will go in increasing order? 

139. One term of the expansion of a determinant of the n-th order is 
chosen at random. What is the probability Pn that it does not contain 
elements of the principal diagonal? Find limn ... 00 Pn• 

140. For an arbitrary n ~ 3 we set 

In analogy with Problem 136, prove that 

n 

P{A1L~A2L, ... L,An}= I (_2)k-l I P{Av,n ... nAvJ· 
k = 1 VI < V2 < ... < Vk 

Find the probability that in Problem 137 an odd number of caps fell into 
their original places. 

2.6 Setting up equations with the aid of the formula 
for total probability 

141. The probability that a molecule, having experienced at the moment 
t=O a collision with another molecule, and not having other collisions up 
to moment t, experiences a collision in the interval of time from t to 
t+ L,tequals AL,t+O(L,t). Find the probability that the time offree motion 
(i.e., the time between two successive collisions) will be greater than t. 

142. Assuming that, in the multiplication of bacteria, the probability that 
a bacterium divides into two new bacteria in the interval of time L,t 
equals aL,t+o(L,t) and does not depend on the number of bacteria 
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present, nor on the number of preceding divisions, find the probability 
that, there are i bacteria present at time t if there was one bacterium at 
time O. 

143. Continuation. Let us assume in addition that, independently of 
its own preceding history and of the total number of bacteria present, 
a bacterium alive at time t will perish in the time interval (t, 1+ ,6,t) with 
probability a,6,t+o(,6,t). Set up the differential equations which the 
probabilities Pr (I), that there are r bacteria at time t, must satisfy. 

144. n mechanisms are switched in an electric power transmission line. 
The probability that a mechanism requiring energy at time 1 terminates 
its requirement at the moment t+ ,6,/, equals a,6,t+ 0 (,6,t). If, at the 
moment, I, the mechanism does not require energy, then the probability 
that it will require it at the moment t+ DJ equals /3,6,t +o(,6,t), inde­
pendently of the work of the other mechanisms. Set up the differential 
equations which Pr (t), the probabilities that at the moment t, r mecha­
nisms will require energy, satisfy. Find the stationary solution of these 
equations. 

145. Two players A and B, having capital a and b, respectively, play at a 
game of chance consisting of separate plays. At each play, A and B have 
the same probability, !, of winning. After each play, the loser pays I ruble 
to the winner. The game continues until the bankruptcy of one of the 
players. Find the probability that the second player goes bankrupt. 

146. Assume that in the preceding problem the player A wins with pro­
bability p>! and loses with probability q= I-p. In this case what will be 
the probability of bankruptcy of the second player? 

147. * Find an integer f3 such that in throwing dice, the probability of the 
event A, that a series of three successive aces is encountered earlier than 
the first series of f3 consecutive non-aces, is approximately equal to one­
half. 
Hint. Introduce the conditional probabilities u and v of the event A under 
the conditions that the results of the first trial are respectively ace and 
non-ace. Using the formula for total probability, set up the equations 
relating u and v. 

148. * Consider a sequence of independent trials each with three possible 
outcomes A, B, C of corresponding probabilities p, q and r (p + q + r = I). 

33 



Application of the basic formulas 

Find the probability that 
a) a series of ()( consecutive A-outcomes occurs earlier than the first 

series of f3 consecutive B-outcomes; 
b) a series of ()( consecutive A-outcomes occurs before one gets 

either f3 consecutive B-outcomes or y consecutive C-outcomes. 

See page 128 for the answers on problems 71-147. 
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3 Random variables and 
their properties 

The material of this chapter corresponds basically to Chapters 4 and 5 of 
the textbook by B. V. GNEDENKO. Recall that by a random variable we 
understand a (measurable)l) function on the space of elementary events 
Q={w}. 
Example. A die is thrown. The elementary events (outcomes) W1' W2' 
... , W6 are the faces with one, two, ... , six eyes. Let ~ be the random 
variable taking on the value 0 if an even number of eyes come up and 1 
otherwise. 
Then 

~(W1) = ~(W3) = ~(W5) = 1, 

~(W2) = ~(W4) = ~(W6) = O. 

The equation 

where the ~i are random variables, defined on the same space of ele­
mentary events Q = {w}, is understood in the sense that, for every w, 

Example. Given two random variables ~1 and ~2' each of which can take 
on the values 0 and 1, let 11=min(~1' ~2)' In this case, it is convenient to 
introduce four elementary events W1' W2, W3' W4 such that 

~1 (w1) = ~1 (w2) = 0; ~1 (W3) = ~1 (W4) = 1 ; 

~2(W1) = ~2(W3) = 0; ~2(W2) = ~2(W4) = 1. 

It is easy to see that 11(W1)=11(W2)=11(W3)=0, and 11 (W4) = 1. By the 

1) See page 82. 
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pro bability of the event g < x} we mean the probability that at least 
one of the elementary events for which ~ (w ) < x will be realized. More 
generally: for an arbitrary (Borel-measurable) set A of values ~, 

P {~EA} = P {w: ~ (w)EA}. 

Numerical properties of random functions. A distribution function (d.f.) 
F~(x) [or F(x)] ofa random variable ~ is defined by 

F~(x)=P{~<x}. 

It follows from this definition that F(x) is a non-decreasing, left-contin­
uous function, with I-F(x)+F( -x)~O(x~ OCJ). The last property is 
frequently used to find the unknown constants occurring in the definition of 
a d.f. In the case when the derivative p (x) of F(x) exists almost every­
where and 

00 

f p(x) dx = 1, 
-00 

p (x) is called the density of the random variable ~. Clearly, 

x 

f p (x) dx = F (x) . 
-00 

The random variables gn} are identically (equally) distributed if F~i = 

=F~i' ~i' ~jEgn}' 
In order to characterize a multidimensional joint distribution of 

several random variables ~l"'" ~m we sometimes introduce a multi­

dimensional d.f. F~l'"'' ~JXI'"'' xn)=Pgl <Xl' ~2<X2'"'' ~n<Xn}' 
If for all Xl'''', x n , the equation 

n 

F~l' "" ~~ (Xl' ... , xn ) = n F~i (X;) 
i= I 

holds, we say that the random variables ~l' ... , ~n are independent. In ana­
logy with the one-dimensional case, we define the multidimensional 
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density of the distribution,p~l ... ~Jul' ... , un). We have 

x x 

-00 -00 

The mean value or mathematical expectation of a random variable ~ is 
defined to be the integral J~ ",x dF~ (x), ifit exists, i.e., if J~ ",Ixl dF~ (x) < 00. 

The expectation of ~ is usually denoted by M[~] or E[n In calculating 
expectation, it is useful to understand its properties: 

a) the expectation of a constant C equals C; 
b) a constant can be brought out of the expectation sign, i.e., 

M[C~J = CM[~J; 

c) the expectation ofa sum of random variables equals the sum of the 
corresponding expectations, i.e., 

M[(~ + I])J = M[~J + M[I]J; 

d) the expectation of the product of independent random variables 
equals the product of the corresponding expectations, i.e., 

M[(I]J = M[(]-M[I]J; 

M[(k] is called the k-th order moment of (, and M[(-M[~W] is called 
the central moment of the k-th order of (. D[~]=M[~-M[~])2] is also 
called the dispersion. I) The fundamental properties of dispersion are: 

a) D[C]=O; 
b) D[C(]=C2D[(]; 
c) if ( and I] are independent, then D [( +1]] = D [(] + D [1]]. 

The covariance of ~ and I] is defined by Cov[~, I]]=M[((-M[~]) 

(I]-M[I]])]. 
One of the most useful characteristics of the measure of dependence, 

connecting two random variables ( and 1], is the correlation coefficient 

M [(( - M [(J) (I] - M [I]J)J 
p= J D [~J D [I]J . 

1) [Editor's note: dispersion is also commonly called "variance"; we also write D[e] = 

= Var[e] = a 2 (e).] 

37 



Random variables and their properties 

The fundamental properties of pare: 
a) -l~p~l; 
b) if ( and tf are independent, then p = 0; 
c) Ipi = 1 if, and only if, one of the random variables is a linear trans­

formation ofthe other. 
The random variables ( and tf are said to be un correlated if M [( . tf] = 

=M[(]M[tf]· 
If P{A} >0, then we can define F~(x I A)=Pg <x I A}. In this case, 

by M[x I A] we mean J~oo (x dF~(x I A). For the definition of conditional 
mathematical expectation in the case when P {A} = 0, see Chapter 6. But 
we note here that in calculating a d.f. and moments it is convenient to use 
the generating and characteristic functions (see Problem 298, Chapter 5) 1). 

Entropy and information. The entropy H(() of a discrete random variable 
~ with a distribution defined by the sequence {Pi} (i= 1,2, ... ), where 
Pi=P{ ~ =x;}, is defined to be 

- LPi 10gaPi' 
i 

Entropy can be considered to be a measure of indeterminacy [see Problem 
212]. 

Entropy is measured in units corresponding to the logarithm base a. 
In this problem book, we take a=2. Suppose given two random variables 
~ and tf, and let Pij=Pg=Xi; tf=yJ; then we define H(~, tf), the 
entropy of the random variables ( and tf, as 

- L Pu 10gaPu . 
i, j 

For every j, for which 

p.j = LPij > 0, 
i 

we can define the conditional probability 

P {i I j} = P {( = x I tf = y J = Pij 
p.j 

and the conditional entropy 

H (( I tf = yj) = - L P (i I j) loga P {i I j}. 
i 

1) See also page 71. 
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The quantity 

is called the mean conditional entropy of ~ relative to rJ, and the quantity 
I~ (~) = H (~) - H (~ 111) is called the quantity of information, contained 
in rJ relative to ~. It is not difficult to show that I~(O=I~(I1)~O (see 
Problem 217). The quantity of information is also denoted by I(~, 11). 
Problems 216-221 and 259-260 of Chapter 4 point out the suitability of 
using the concepts of entropy and information in the statistical theory of 
communications. In Problems 398-400 of Chapter 7 the concept of en­
tropy is introduced for continuous distributions. 

For additional reading see [3], [8], [10] and [12]. 

3.1 Calculation of mathematical expectations and dis­
perSIOn 

149. Find the d.f. and the mean value of the number of tosses of a coin 
in Problem 93. 

150. The random variables ~ and 11 are independent, where M[~J =2, 
D[~J=I, M[rJJ=I, D[rJJ=4. Find the expectation and dispersion of: 

a) (1 =~-211; 
b) (2=2~-11. 

151. Assume that in a lake there were 15,000 fish, 1000 of them marked 
[with radioactive tracers] (see Problem 100). 150 fish were fished out of 
the lake. Find the expectation of the number of marked fish among the 
fish caught. 

152. Find the expectation and the dispersion of the number of short 
fibers among the randomly selected fibers in Problem 94. 

153. In throwing n dice, determine the expectation, the dispersion, and 
central moment of the 3-rd order of the sum of the eyes on all dice. 

154. Find the expectation and dispersion of the magnitude of the free 
motion of the molecule described in Problem 141. 

155. The owner of a railway season ticket usually departs from home 
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between 7: 30 and 8: 00 a.m.; the journey to the station takes from 20 to 
30 min. It is assumed that the time of departure and duration of the 
journey are independent random variables, uniformly distributed in the 
corresponding intervals. There are two trains which he can ride: the first 
departs at 8: 05 a.m. and takes 35 min.; the second departs at 8: 25 a.m. 
and takes 30 min. Assuming that he departs on one of these trains, deter­
mine the mean time of his arrival at his destination. What is the probabili­
ty that he will miss both trains? 

156. Find the expectation and dispersion of the number of defective parts 
among n parts subjected to control; see Problem 102. Find also the ex­
pected number of good parts occurring between two successive defective 
ones. 

157. In Problem 130, find the expectation of the number of descendants of 
the insect. 

158. Two dice are thrown. Find the expectation of the sum of the scores 
if it is known that different sides came up. 

159. The diameter of a circle is measured approximately. Assuming that 
its magnitude is uniformly distributed in the segment [a, b], find the 
distribution of the area of the circle, its mean value and dispersion. 

160. The density of the distribution of the absolute value of the velocity 
of motion of a molecule has the form 

(the constant a can be determined by the temperature of the gas and the 
mass of the particle observed: a = mj2kT, where k is the Boltzmann con­
stant). 

a) Find the mean value of the path traversed by the molecule in a 
unit of time (expected motion of the molecule). 

b) Find the mean value of the kinetic energy of the molecule (the 
so-called "mean energy" of the molecule). 

161. It is known that the probability of the breakdown of an electronic 
tube in the next D days, having functioned x days, equalsO.003D +O(D) 
independently of the quantity x. After a year of work, the lamp is changed 
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even if it has not gone out of commission. Find the mean time of func­
tioning of the lamp. 

162. A two-dimensional distribution of a pair of integral random variables 
~ and 11 is defined by means of the table 

P{C; = i, 11 = j}. 

l1=j 

o 

2 
3 

Find: 

c; = i 

0 

om 0.05 
0.02 0 
0 0.05 
om 0 

a) pg=2111=3}; 
b) M[~ 111=lJ; 
c) M[~+11J; 
d) M[~2111~lJ; 
e) Pg+11~5111~2}; 
f) M[~'11 111~ 1]. 

2 3 

0.12 0.02 
om 0.05 
0.1 0 
0.02 0.01 

4 5 

0 0.01 
0.02 0.02 
0.3 0.05 
0.03 0.1 

163. Prove that if ~1' ~2"'" ~n are independent, positive and identically 
distributed then 

M [(~ 1 + ... + ~k)J = ~ if k < n . 
~1 + ... + ~n n 

164. The random variable ~ takes on positive integer values. Prove that: 

a) M[~J = I p{~ ~ m}; 
m~l 

b) D[~J = 2 I mP{~ ~ m} - M[~(M[~J + 1)]. 
m~l 

165. DefineD[~ 1 AJ=M[(~-M[(~ 1 A))ZJ 1 AJ.Provethat 

D [~ 1 A J = M [( ~ - M [~J2 1 A] - [M [~ 1 A] - [~MJY . 

166. Assume that the random variable ~ coincides, with probability Pi' 
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with the random variable ~i and let M[~;] =Mi • Prove that 

D [~] = L PkD [~kJ + D [flJ , 
k 

where fl takes on the values Mi with probability Pi. 

167. Find the mean value and dispersion of the product of two indepen­
dent random variables ~ and 1] with uniform distribution laws: ~ in the 
interval [0,1] and 1] in the interval [1,3]. 

168. Prove that if ~ and 1] are independent, then 

i.e. 

169. Let ~1' ~2' ... , ~n+l be a sequence of mutually independent identically 
distributed random variables, taking on the value 1 with probability P and 
the value 0 with probability q=l-p. Set 1]i=O if ~i+~i+1 is an even 
number, and 1]i= 1 if ~i+~i+l = 1. Find the expectation and the disper­
sion of 

n 

(= L 1] 
i=1 

170. A large number N of people are SUbjected to a blood investigation. 
This investigation can be organized in two ways. 1. The blood of each 
person is investigated separately. In this case N analyses are needed. 
2. The blood of k persons is mixed and the mixture obtained is analyzed. 
If the result of the analysis is negative, then this single analysis is sufficient 
for k persons. But if it is positive, then the blood of each one must be 
subsequently investigated separately, and in toto for k persons, k+ 1 ana­
lysis are needed. It is assumed that the probability of a positive result is 
the same for all persons and that the results of the analyses are indepen­
dent in the probabilistic sense. 

a) What is the probability that the analysis :of the mixed blood of 
k persons is positive? 

b) What is the expectation of the number of analyses ~ necessary in 
the second method of investigation? 
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c) For what k is the minimum expected number of necessary ana­
lyses 1) attained? 

171. A city consists of n apartments, where in each of nj of them there 
live Xj inhabitants enl + n2 + ... = n). Let 

n 

I n·x· 
m= ~ 

n 
j=l 

be the mean number of inhabitants per apartment. We also set 

m 

2 I njx5 2 
(J= ---m. 

n 
j= 1 

Random choice, without replacement, is made of r apartments and in each 
of these the number of inhabitants is counted. Let Xl' ... , X, be the 
resulting numbers. Prove that 

(We remark that, for choice with replacement, the dispersion is greater.) 

172. The number of inhabitants of a city is estimated by means of the 
following procedure of double choice. The city is subdivided into n regions. 
The number of apartments in thej-th region is known and is equal to n j , 

so that n= L nj is the total number of apartments in the city. We denote 
by x jk the unknown number of inhabitants in the k-th apartment of the 
j-th region (so that x j = Lk x jk is the number of inhabitants in the j-th 
region, and X= L Xj is the number of inhabitants in the city). 

From the j-th region rj living quarters are chosen and the number of 
people living in each of them is counted. Let X jk be the number of inhab­
itants in the k-th living quarter among those chosen from the j-th region. 
Then X j = L X jk is the total number of inhabitants in the living quarters 
chosen from thej-th region. Set 

1) As W. FELLER, from whose textbook this problem is adapted, points out, the second 
method gave a saving, in practice, in the number of analyses of up to 80 %. 
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Show, using the result of the preceding problem, that 

where 

3.2 Distribution functions 

173. Letp(x) be the density of the random variable~. The constant C 
appears in its definition. Find it in the case when 

{o for x < 0; 
a) p(x)= Ce- x for x~O; 

{o for x < 0; 
b) p (x) = C IX - px " 0 ( 0 f3 0) x e lor x ~ IY. > , > ; 
c) p(x) = C(1 + X 2 )-1. 

174. For a given tramway line from the point 0 to L, the known function 
F(a, b) represents the probability that a passenger riding on this line got 
on at a point x < a and rides to a point y:::::; b. It is required to determine: 

a) the relative density of motion, namely the function <p(z) which 
represents the probability that a passenger riding on the given line, rides 
through the point z; 

b) the probability <P1 (z) that he got on at the pointz; 
c) the probability <P2 (z) that he got off no later than z. Assuming 

that the functions introduced are continuous and differentiable, establish 
the dependence among them and the function p (x, b) which expresses the 
probability density that a passenger who got on at the point x gets off at 
the point b > x. 

175. A certain number of perfectly spherical balls, made from a homo­
geneous material, yield a symmetric distribution when grouped according 
to diameter. Show that if these balls are grouped by weight, the distribu-
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tion will have a positive asymmetry (i.e., the third central moment will be 
positive). 

176. Prove that an arbitrary distribution function possesses the following 
properties: 

00 00 

lim x f ~ dF (z) = 0, 
X-I'oo Z 

lim x f ~ dF (z) = 0 . 
x--+o+ Z 

X x 

177. Prove that if a random variable ~ has a moment of order k, then 
limx--+ooxk(I-F(x)+F( -x))=O. 

178. Show that the sequence of moments of an arbitrary continuous 
distribution F is positive definite, i.e., for an arbitrary m and arbitrary 
real Xl' X2, ... , X m , 

00 

i'~O lXi+kXiXk > 0, where IXI = f Xl dF(x). 
-00 

3.3 Correlation coefficient 

179. Let ~ and 11 be variables having finite moments of the second order. 
Show that D [~+ 11J = D [~J + D [11J if, and only if, these variables are not 
correlated. 

180. Prove that if the correlation coefficient p of two random variables ~ 
and 11 is such that Ipi = I, then there exist constants a and b such that 
~=a11+b. 

181. Construct an example which shows that the correlation coefficient 
equal to zero does not imply that the corresponding random variables are 
independent. 

182. The random variables ~l' ~2' ... , ~n are independent and normally 
distributed, with parameters a, (1. Find the two-dimensional density of the 
distribution 

m n 

11 = L ~k and ,= L ~k (m < n). 
k=l k=l 
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183. The random variables ~ and 11 are independent and normally distrib­
uted, with the same parameters a and (J. 

a) Find the correlation coefficient of the variables IX~ + (311 and 
a~ - /311 ; also find their joint distribution. 

b) ProvethatM[max(~, 11)J=a+(J/)n. 

184. The random vector (~, 11) is normally distributed M[~J=M[11J=O; 
D [~J = D [11J = 1. p is the correlation coefficient between ~ and 11. Prove 
that 

a) p=cosqn, whereq=pg11<O}; 

b) M[max(~, 11)J =J(1- p)/n; 
c) the correlation coefficient of the variables ~2 and 112 equals p2. 

185. Let ~i(i= 1,2, ... , n) be independent and have the same distribution, 
with M[(~-M[~J 3)J =0. Prove that in this case the random variables 

n n 

~ = I ~i and S2 = I (~i - 0 2 

i= 1 i= 1 

are not correlated. 

3.4 Chebyshev's inequality 

186. Let ~ be a random variable having a finite dispersion. Prove Cheby­
shev's inequality, which states that 

D[~J 
P{I~ - M[~JI ~ e} ~ -2-' 

e 

187*. Let ~ be an arbitrary random variable, where M[ ~J = 0, D [~J = (J2, 

and let F(x) be the distribution function of~. Prove that, for 

(J2 

X < 0, F(x) ~ -2--2' 
(J + x 

and for 
X2 

x> 0, F(x) ~ 2 2' 
(J + x 

Show by an example that these inequalities can turn into equalities for 
certain F's. 
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188. If we restrict ourselves to only certain classes of distributions, then 
sometimes one succeeds in sharpening the Chebyshev inequality. Thus, 
in 1821 Gauss showed that for unimodal distributions of continuous type, 
i.e., distributions whose density has a single maximum, and for an arbi­
trary 8>0, we have that 

4 
P{I~ - xol): 8L} ~---z' 

98 

where x 0 is the mode, and L2 = D [~J + (x 0 - M[ ~JY is the second mo­
ment with respect to the mode. Ifwe use 

s = _M_[---=~=J =-=x_o 

JD[~J 

the measure of asymmetry introduced by K. Pearson, then from the given 
inequality we can obtain that for 8 > lsi, 

Prove both of these inequalities. 
Hint: First prove that if g (x) does not increase for x> 0, then for an 
arbitrary 8> 0, 

00 00 

8 2 f g (x) dx ~ ~ f x 2 g (x) dx . 

• 0 

189. Generalization of the Chebyshev inequality. 
a) Prove that if the random variable ~ is such that M[ea~J exists 

(a> ° is a constant), then 

b) Let j (x) > ° be a non-decreasing function. Prove that if 
M[j (I~ - M[~]I)J exists, then, for 8> 0, 

P {I~ - M [~JI ): 8} ~ M [J(I~f(8~ [~JI)] . 
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3.5 Distribution functions of random variables 

190. ~ and 1/ are independent, wherepg =o} =Pg = I} =!andP{1/<x} = 
= x (0 < x < 1). Find the distribution function 

a) (1 =1/+~; 

b) (2 =1/ +!~; 
c) (3=~·1/. 

191. Find the distribution function of the sum of the independent rand­
om variables ~ and 1/, the first of which is uniformly distributed in the 
interval ( - h, h) and the second has distribution function F(x). 

192. Concentration function. The quantity 

Q~(l) = supP{x ~ ~ ~ x + I} 
x 

is called the concentration function of the random variable ~. Prove that 
for an arbitrary 1/ independent of ~, the concentration function of the 
sum ~ + 1/ is such that Q~+'1 (I) ~ Q~ (/). 

193. Prove that if a random variable ~ has density p ~ (x), then for an 
arbitrary independent of~, the sum ~+1J also has density p~+'1(x), where 
P~+'1(x)~suPx p~(x). 

194. Suppose the random variable ~ has distribution density p (x). Find 
the distribution density of the random variable: 

a. 1/ = a~ + b, a and b are real numbers; 
b) 1/=C 1 ; 

c) 1/=cos~; 
d) 1/ = f (1/), where f (x) is a continuous monotone function. 

195. Prove that, for an arbitrary random variable ~ with continuous 
distribution function F(x), for ° ~x~ 1, 

P {F (~) < x} = x . 

196. A discrete random variable ~ has the Poisson distribution: 
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Let M be the mean of N independent realizations of,: 
a) determine the mean and dispersion of M; 
b) find the distribution of M; 
c) construct the graph for the result of b) for A= 1 with N=3 and 

with N= 10. 

197. A random variable, has the Cauchy density 

C 
P(x)=1+x 2 ' 

Let M be the mean of N independent realizations of, : 
a) find C; 
b) find the density M; 
c) find the probability that each of two independent realizations of 

, is in absolute value less than unity. 

198. Let PI; (x), P'I(y), PI;+'1(z) be the densities of the random variables 
" ", '+'1. Prove that if, and" are independent, then 

00 00 

PI;+'1(Z) = f pl;(z-y)p'I(y)dy= f pl;(x)p'I(z-x)dx. 
-00 -00 

199. The densities of the independent random variables, and" are equal 
to: 

a) PI; (x) = P'I(x) = {O -ax X ~ 00' 
a ex> ; 

b) p,(x) ~ p,(x) ~ n x ~ 0, x ~ a, 

O<x<a; 

( ) () 1 -x2 /2 
c) PI; x = P'I X = ..)2 e . 

Find the distribution density of, = 'N. 
200. Find the distribution function of the product of the independent 
variables, and ", given their distribution functions F1 (x) and F2 (x), 
respectively. 

201. The random variables '1' '2' ... , en, ... are independent and uni-
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formly distributed in [0,1]. Let v be a random variable which is equal 
to that k for which the sum 

first exceeds 1. Prove that M[ v] = e. 

202. Let { ~;} be a given sequence of independent random variables which 
take on the values ° and 1 with the probabilities -t. Find the distribution 
of the random variable 

00 

x= I~. 
i=1 

203. * In carrying out calculations by the Monte-Carlo method, frequent­
ly a sequence of independent normally distributed random variables is 
required. In an electronic computer, number-theoretic methods may be 
used to produce a sequence of independent random variables ~1' ... , ~n' ••• 

which are uniformly distributed on [0,1]. It turns out that there exists a 
function tp(x) such that l1i= tp(~;) has a normal distribution. However, 
it is inconvenient to construct a sequence of normally distributed variables 
with the aid of tp since tabulation of tp requires too many memory cells. 
Usually, to construct normal variables, we proceed in the following way. 
We decompose the sequence ~i into pairs. And for each pair ~i' ~i+1> 
with the aid of the transformations 

r = J2z; 

l1i = r cosrjJ; l1i+1 = r sinrjJ 

we obtain a sequence of independent normally distributed quantities. In 
connection with this, the following problems arise: 

a) find the function tp (x); 
b) prove that z has an exponential distribution; 
c) prove that l1i and l1i+1 are independent and have a normal distri­

bution with parameters [0,1]. 

204.* n points are located on the segment [0,1]. Assuming that the points 
are located at random (i.e., each of them is situated independently of the 
others and distributed uniformly in [0,1]), find: 
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a) the density of the distribution (l =max((l> (z,···, (n); 
b) the density of the distribution of the k-th point from the left; 
c) the joint density of the distribution of the abscissas of the k-th and 

m-th points from the left (k < m) ; 
d) the density of the distribution (z=maxi (i-mini (i' 

205. * Let (i (i = 1, ... , n) be independent identically distributed random 
variables. It is known that they are uniformly distributed on some segment 
where the segment itself is unknown. It is possible to construct several 
estimates of the center ofthis segment. For example, let 

n 

a l =~ I (i and a z = H max ((i) + mm (0); 
1 ~i~n 1 ~i~n 

i= 1 

prove that these estimates are unbiased, i.e., M[a l ] =M[az] =a, where 
a is the center of the segment. Prove that D [a l ] > D [az], i.e., that the 
estimate az is more effective than the estimate al' 

206. Suppose the random variables (;(i= 1,2, ... , n) are independent and 
identically distributed according to the law 

F(x) = {O _ for x ~ 0, 
1 - e x for x > 0. 

Find the distribution of (n=maxl~i~n((;) and prove that it is possible 
to choose constants an such that the distribution of (n - an tends to a 
limiting distribution law. 

207. * Let (i (i = 1, ... , n) be independent and identically distributed with 
continuous distribution function F(x). Denote the number of (i which 
are less than x by vex). Prove that the distribution DII=suPxlv(x)/n­
-F(x)1 does not depend on F(x). Find the distribution of v (x). 
Remark. The fact that the distribution Dn does not depend on Fplays an 
important role in statistics. The Kolmogorov criterion for the deviation 
of the empirical distribution function from the theoretical distribution 
function is based on it.!) 

1) See B. L. VAN DER WAERDEN. Mathematical statistics. New York. Springer-Verlag 
(1969). 
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3.6 Entropy and information 

208. Let f (x) be a differentiable function defined on the segment [0, I] 
and let f (0)=0 and If' (x)1 <d. How many binary units of information 
are necessary in order to determine, to within e > 0, the value of f (x) at 
every point of the segment [0, /]? 

209. There are n coins. All of them look alike; however, one of them is 
counterfeit. It is known that the counterfeit coin is heavier than the others. 
There are also scales with two pans. There is no set of weights. How many 
weighings are necessary in order to isolate the counterfeit coin? How much 
information about the position of the coin does every weighing furnish in 
this connection? 

210. It is known that in an experiment with three outcomes having pro­
babilities p, q, r, the entropy H is ~ 1. Prove that then max (p, q, r) ~l 

211. Let {Pk) be an arbitrary distribution, where 

00 

L kPk = A > 1. 
k= 1 

Prove that 

00 

H = - L Pk log Pk 
k=l 

is maximal whenPk = (1/.1.) (1-1/A)k-l. 

212. Puzzle problem. Estimate the indeterminacy inherent in the follow­
ing weather forecast: either rain, or snow, will occur, or not occur. It is 
known that at a given time of the year 75% of all days are with precipita­
tion, where rain and snow cannot fall simultaneously. Assume also that 
on a day with precipitation, snow and rain are equally probable. 

213. The probability of the occurrence of event A with one trial equals p. 

The trials are repeated until the first occurrence of event A. Find the 
entropy of the number of trials and explain the nature of the change in 
entropy with the change of p. 

214. Define the entropy of a random variable, which is subject to the 
binomial distribution law: 
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a) in the general case; 
b) forp=t and n=lO. 

215. Let ~l' ~2' ... , ~n be a sequence of mutually independent random 
variables which take on the values zero and unity with probabilities p and 
q= 1-p respectively. Denote by p (x), where X= (Xl' ••. ' X n), Xi = 0, 1, the 
probability that ~ i = Xi for all i. Prove that 

~ I p (x) logp (x) = - H (p) = p logp + q logq, 

x 

where the summation is over all possible vectors x. 

216. Prove that H(O does not surpass logn, where n is the number of 
values taken on by ~ and that the maximum is attained for 

1 
Pk = - (k = 1, 2, ... , n). 

n 

217.* Prove that 
a) H(~, 11)~H(O+H(I1); 
b) I~(1])=I(~)?:O 

and equality is attained if, and only if, ~ and 1] are independent. 
Hint. Use the following inequality. If {pJ and {qi} (i= 1,2, ... , n) are two 
systems of nonnegative integers, with L Pi = L qi = 1, then 

IT Pi ~ 1, 
n ( )q, 

i= 1 qi 

where equality is attained if, and only if, Pi = q i for all i. 

218. The probabilities that a signal is received or not received on the in­
take of a receiver are equal to IX and 1 - IX respectively. As a result of a 
hindrance, a signal received on the intake of a receiver can be apprehen­
ded on outgo with probability /3 and not be apprehended with probability 
1- /3. In the absence of the signal on the intake it can, because of a 
hindrance, be apprehended on outgo with probability y and not be appre­
hended with probability 1 - y. Determine the quantity of information on 
the receipt or non-receipt of the signal on the intake by observation of 
the presence or absence of the signal on the outgo. 

219. A signal X which is either Xl or X 2 is transmitted along each of two 
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duplicating channels. The a priori probabilities of Xl' X2 are respectively 
p, 1-p. Noise acts independently on the two channels, distorting trans­
mission. We use Y1 to signify that signal Xl was received along the first 
channel; the transmitted signal may have been Xl or X 2 . Similarly, Y2 sig­
nifies that X2 was received along the first channel. We use Zl and Z2 ana­
logously in relation to the second channel. The matrices of conditional 
probabilities aik=P{Yk I x;} for the first channel and P{Zk I x;} for the 
second channel are the same and equal 

1 - LI) 
(j . 

Find Iyz(X). Compute Iyz(X) for p=0.5 and LI=(j=0.9. 

220. Under the conditions of the preceding problem, find the quantity 
of acquired information if in decoding the transmission one of the follow­
ing rules is used: 

a) If the signal Xl was received on both channels, then it is assumed 
that the signal Xl has been transmitted; in the remaining cases, it is 
assumed that the signal X 2 has been transmitted. 

b) If the same signal has been transmitted on both channels, then it 
is assumed that this signal was actually transmitted. But if different signals 
were received, then it is assumed that the signal Xl was transmitted. 

221. * Prove that the following conditions define the function H(PI' ... , 
Pn) to within a constant factor, whose value serves only to determine the 
unit of the quantity of information: 

a) H (p, 1-p) is a continuous function of P on the segment 0 ~P ~ I ; 
b) H(PI"'" Pn) is a symmetric function in all of its variables; 
c) ifPn=Ql +Q2>0, then 

H (Pt, ... , Pn-I' ql' q2) = H (PI' ... , Pn) + PnH (ql, ~~); 
Pn Pn 

d) F(n)=H(lln, ... , lin) is a monotonically increasing function ofn. 
Remark. Condition d) is not necessary and is introduced only to facilitate 
the proof. 
Hint. Prove successively the following assertions: 

1) H (1,0) = 0; 

2) H (PI' ... , Pm 0) = H(PI,···, Pn); 
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3) H{Ph "" Pn-h qh .. " qm) = H{P1' .. " Pn) + PnH (q1 , .. " qm), 
Pn Pn 

wherepn=q1 + .. , +qm>O; 

4) H (q11' .. " q1m,; .. ,; qn1' .. " qnmJ = 

H{ ) ~ H(qil qim l ) = P1> .. "Pn + L. Pi -, .. , - , 
i=1 Pi Pi 

wherepi=qn + .. , +qim,; 

5) F{mn)=F{m)+F(n); 

6) F{n)=k logn, where k is an arbitrary constant; 

7) Forp=r/s, 

where r, s are integers H(p, I-p)=k(p logp+ (l-p) log(l-p)), 

See page 131 for the answers on problems 149-221. 
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4 Basic limit theorems 

The problems of this chapter correspond to the material of §§ 12-15, 
31-32, 41-43 of the textbook by B. V. GNEDENKO. 

Normal and Poisson approximations to the binomial distributions. 
Let Sn = 'I7= 1 ~i' where the ~i are independent, identically distributed 
random variables, which take on the values 0 and 1 respectively with the 
probabilities p and q=l-p. In 2.2 the formula P{Sn=m}=C';:pmqn-m 
(O~m~n) was used extensively. It is not difficult to show that asp~O, 
n ~ 00, np ~ A< 00, 

Am 
P{Sn = m} ~-e-)· = n(m). 

m! 

A nonnegative integral random variable which takes on the value m with 
probability n (m) is said to have a Poisson distribution with parameter L 

The formula P{Sn=m}~n(m) is called the Poisson approximation 
to the binomial distribution. It is usually used in the case when p ~ 0.1 and 
npq~9.1) In the case when npq):9, the normal approximation, based on 
the de Moivre-Laplace theorem, which asserts that as npq~ 00, 

b 

{ Sn - np } 1 f {U2} 
P a < J npq < b ~ J 2n exp - 2 du 

a 

holds. 
Estimates of the precision of these approximate formulas are con­

tained in Problems 245, 246, 324. 

Law of Large Numbers (LLN). We say that the LLN is applicable to the 

1) See A. HALD. Mathematical statistics. 
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sequence of random variables ~1' ~2' ••• , ~m ... if, for an arbitrary e > 0, 

The majority of problems on the LLN are easily solved with the aid of 
Chebyshev's inequality. Let us recall it. For an arbitrary random variable 
~ having dispersion, and for an arbitrary e > 0, 

D [~J 
P{I~ - M[~JI ~ e} ~ -2--· 

e 

The Central Limit Theorem (CLT) is a generalization of the de Moivre­
Laplace theorem. If the sequence of mutually independent random 
variables ~ 1, ~ 2, ... , ~ no ••• , for an arbitrary constant T > 0, satisfies the 
Lindeberg condition 

n 

lim -II f 
n--+oo B~ 

k=l iX-aki><Bn 

where 

and where 

n 

B; = L D [~kJ, 
k=l 

then, as n --+ 00, 

uniformly with respect to x. It is important to note that if all the ~i are 
identically distributed and D [~J < 00, then the Lindeberg condition is 
satisfied. 

Numerous problems on the proof of the applicability of the LLN 
and CLT are easily solved with the aid of characteristic functions (see 
the problems of Chapter 5). 
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The reader may wish to consult [2] and [13] for further discussion 
of these topics. 

4.1 The de Moivre-Laplace and Poisson theorems 

222. For an experimental verification of the law of large numbers the 
following experiments were performed at various times: 

i) A coin was tossed 4040 times, heads came up 2048 times (Buffon). 
ii) When a coin was tossed 12,000 times, the relative frequency of 

heads turned out to be 0.5016; in another experiment in tossing a coin 
24,000 times the relative frequency of heads was 0.5005 (Pearson). 

iii) Four coins were tossed 20,160 times and the combinations: four 
heads, three heads and a tail, two heads and two tails, one head and three 
tails, four tails came up the following number of times respectively: 1181, 
4909,7583,5085, 1402 (V. I. Romanovsky). For each of the experiments, 
find the following: 

a) the probability that the relative frequency of heads in an identical 
experiment with a fair coin will differ from -! by at least the amount 
observed; 

b) assuming that an event the probability of whose occurrence equals 
0.9999 is practically certain, find the practical upper bound of the possible 
deviation of the relative frequency of heads from the true probability of 
heads in each of the experiments. 

223. It is known that the probability of the birth of a boy is approximately 
equal to 0.515. What is the probability that from among 10 thousand 
newly-born there will be no more boys than girls? 

224. 200 persons attend a lecture on the theory of probability. Find the 
probability that k persons of those attending were born on May 1 and 
that 1 persons were born on November 7. Assume that the probability 
of birth on a fixed day equals 3 ~ 5' Solve the problem for k= 1 and 1=2. 
Find the probability that the number of those born on either May 1 or 
November 7 is not greater than 2. 

225. 1,359,671 boys and 1,285,086 girls were born in Switzerland from 
1871 to 1900. Are these data compatible with the assumption that the 
probability of the birth of a boy equals 0.5? 0.515? 
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Hint. Let X be a random variable with the normal distribution of mean 
o and dispersion 1. Let p = probability of the birth of a boy, n = 2,644,757 
and m= 1,359,671. Say the data are compatible if 

and incompatible otherwise. Evaluate this probability for p =.5 and 
p=.515. 

226. [See Problem 118]. With the purpose of determining n experimental­
ly, a needle was thrown 5000 times and intersected lines 2532 times (Wolf 
and Tsyurikhe), where 2a=45 mm and 2/=36 mm. With what error was 
n determined? How many throwings of the needle are necessary in order 
that, with a = I, the probability that n will be calculated with an error 
not exceeding 0.001, to be 0.5; 0.95; 0.999? 

227. Among seeds of wheat, 0.6% are weed seeds. What is the probability 
that, in a random selection of 1000 seeds, one finds not less than 3 weed 
seeds? Not more than 16 weed seeds? Exactly 6 weed seeds? 

228. The per cent content of cementite on a metallographical edge was 
determined with the aid of a spike which touched the edge in a random 
way and the number of faIlings of the spike on the structure being studied 
was observed. What should have been the per cent content of cementite 
in order that, with probability greater than 0.95, in 400 observations the 
spike fell on the cementite more than 100 times? 

229. A book of 500 pages contains 50 errors. Estimate the probability 
that there are not less than 3 errors on a randomly selected page. 

230. For persons having survived to their twentieth year, the probability 
of death on the twenty-fifth year of life equals 0.006. A group of 10,000 
persons aged 20 years is insured, and every person insured contributes 
1.2 rubles in premium a year. In the case of the death of an insured 
person, the insurance company pays out to the heirs 100 rubles. What 
is the probability that a) at the end of the year the insurance company 
will be in the red; b) its income will exceed 6000 rubles; 4000 rubles? 
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231. Many botanists performed experiments on the crossing of yellow 
(hybrid) peas. According to a known hypothesis of Mendel, the prob­
ability of the appearance of a yellow pea in such experiments equals t­
In 34,153 crossing experiments, a yellow pea was obtained in 8506 cases. 

a) Assuming that the probability of obtaining a green pea in all 
experiments was constant and equal to i, find the probability of the 
inequality 

0.245 < v < 0.255, 

where v is the frequency of the appearance of a green pea. 
b) Assuming that the probability of obtaining a green pea in all 

experiments is equal to i, find the probability that upon performing 
34,153 similar experiments, the deviation of the relative frequency from i 
will be greater in absolute value than that obtained initially. 

c) Assuming that the probability of obtaining a green pea in all 
experiments was equal to t, find how many analogous experiments it is 
necessary to make in order that with probability 0.99 one could assert 
that the deviation of the relative frequency from t will not exceed 0.01. 

232. In investigating the influence of radiation on the division of yeast 
cells preparations were studied under a microscope after radiation and 
incubation in an incubator. On each of 3 object slides there were counted 
400 microcolonies and those which contained 2-4 cells (inactivation after 
1-2 gemmations) were noted. On the first slide, there were found 220 such 
microcolonies, on the second 190, and on the third 210. Are these data 
compatible with the assumption that, with the applied dosage, each cell 
will, with probability 1, be inactivated after 1-2 gemmations? What would 
be the probability under this same assumption of obtaining in the in­
vestigation of 10 slides at least one with more than 230 inactivations after 
1-2 gemmations? 

233. In performing a telepathic experiment, the inductor, independently 
of the preceding trials, chooses with probability 1 one of 2 objects and 
thinks of it, and the recipient guesses what object the inductor is thinking 
about. Such an experiment was performed 100 times, and 60 correct 
answers were obtained. What is the probability of coincidence in one 
experiment, under the assumption that there is no telepathic connection 
between the inductor and recipient? Can one ascribe to the result ob­
tained a purely random coincidence or not? 
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234. It is known that the probability of issuing a drill of high brittleness 
(a reject) equals 0.02. Drills are packed in boxes of 100 each. What is the 
probability that: 

a) there are no defective drills in a box? 
b) the number of defective drills turns out to be no greater than 2? 

What is the smallest quantity of drills that need to be put in a box in 
order that, with probability not less than 0.9, there are in it not less than 
100 good drills in the box? 

235. Puzzle problem. How many raisins on the average must caloric buns 
contain in order that the probability of having at least one raisin in a 
bun be not less than 0.99? 

236. A Geiger-Muller counter and a source of radioactive particles are 
so situated that the probability that a particle emanating from the radio­
active source is registered by the counter equals 1/10,000. Assume that 
during the time of observation, 30,000 particles emanated from the source. 
What is the probability that the counter: 

a) registered more than 10 particles? 
b) did not register a single particle? 
c) registered exactly 3 particles? 

237. Under the conditions of the preceding problem, what is the smallest 
number of particles that must emanate from the source in order that, 
with probability greater than 0.99, the counter registers more than 3 
particles? 

238. Assume that in the composition of a book there exists a constant 
probability p=O.OOOl that an arbitrary letter will be set incorrectly. After 
the composition, the proofs are read by a proofreader who discovers any 
particular error with a probability of q=0.9. After the proofreader, the 
author discovers the remaining errors with probability r=0.5 for each. 
Find the probability that in a book with 100 thousand printing symbols 
there remain after this not more than 10 unnoticed errors. 

239. Using the de Moivre-Laplace theorem, prove the Bernoulli theorem 
which asserts that for an arbitrary 8>0, the probability that the deviation 
of the relative frequency of success from the probability of success will 
be greater than 8, tends to zero when the number of trials tends to infinity. 

240. A theater, accommodating 1000 persons, has two different entrances. 
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There is a cloakroom at each of the entrances. How many places should 
there be in each of the cloakrooms in order that, on the average in 99 
cases of 100, all the spectators can leave their coats at the cloakroom 
of that entrance through which they entered? It is assumed that the spec­
tators arrive in pairs and each pair independently of the others is equaIly 
likely to choose either entrance. By how many can one decrease the 
number of places in the cloakroom if the spectators arrive singly and, 
independently of one another, with equal probability choose either of 
the entrances? 

241. A certain machine consists of ten thousand parts. Each part, in­
dependently of the other parts, can turn out to be in disrepair with 
probability Pi' where for n i = 1000 parts, P1 = 0.0003, for n2 = 2000 parts, 
P2 = 0.0002, and for n3 = 7000 parts, P3 = 0.0001. A machine does not work 
if at least two of its parts are in disrepair. Find the probability that the 
machine will not work. 

242. To check the effect of a new medicine on blood pressure, the pressure 
of 100 patients was measured before and after administration of the 
medicine. In this connection, it turned out that in 32 cases the pressure 
increased after administration of the medicine and in 68 cases it decreased. 
Can one assume that it has been established that this medicine influences 
blood pressure? What is the probability that purely random variations 
of the pressure cause at least as large a deviation from 50? 

243. In certain countries of Western Europe, from the seventeenth 
century up to the imperialist war of 1914, there existed the following 
government lottery: the lottery contained 90 numbers of which in each 
successive drawing there came out any 5 numbers; the player had the 
right to make in advance a bet on an arbitrary number or on a group of 
numbers; if all the numbers he wrote down turned out to be among the 
five which were drawn, then, in exchange for the bet, he obtained a prize; 
the prize exceeded the bet by 15 times if he wrote down one number; 
by 270 times if he wrote down two numbers; by 5,500 times if he wrote 
down three numbers; by 75,000 times if he wrote down four numbers; 
by 1,000,000 times if he wrote down five numbers. 

Find the mean value of the winnings of a player who writes down 
one number, two numbers, ... , five numbers. 

Assume that 100,000 persons made a wager on three numbers. Find 
the probability that the number of winners among them exceeds 10. 
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244. Using the Stirling formula, show that as A --+ 00, for an arbitrary 
fixed n, 

ri IAn A 1 {1 2}[ n y A· - e - - --== exp - - (n - A) --+ 0 . 
n! J21tA 2A 

245. Using Stirling's formula, show that if np(1-p)~25, then 

0.13 + 0.1811 - 2pI J 
IRI<·· ( ) +exp{-1- np(l-p)} 

np 1- p 

and the summation is over k lying within the bounds 

np + t + aJnp(1- p) ~ k ~ np - t + bJnp(l-~ p). 

246. Let 

Prove that for an arbitrary A = np, the conditions k 2 ~ n8 and A 2 ~ n8, 
where 8<t, imply that L1k~ 1.28. 

4.2 Law of Large Numbers and convergence in 
probability 

247. Prove that if I1n~al) and O<'n~b>O where l'1nl'nl < C, then 
M[ 11/ in] --+a/b. 

248. Prove that if the function f is continuous at the point a and if the 

sequence of random variables ~ n ~ a, then f (~n) ~ f (a). 

1) The expression ~n ~ a means that the sequence ~n converges to a in probability 
i.e., that for an arbitrary e > 0, P{ I ~n - al > e} ->- 0 (n ->- (0). 
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249. Prove that if I~nl:::;;k and ~n~a, then also M[~n] ~ a. Show that the 
requirement I~nl <k is not essential. How can it be weakened? 

250. Let F(x)=Pgn<x} be continuous and let the random variable 

17n~ 1 in probability. Prove that: 

n-+ 00 

b) limp{~n<x}=F(X). 
n-+oo 17n 

251. Let j be a continuous function which is monotonically increasing 
on the segment [0, 00], withj(O)=O and suPo",xf (x) < 00. 

Prove that the condition limn--+ooM[j(l~nl)]=O is necessary and 

sufficient in order that ~n~O(n~ (0) in probability. 

252. Prove the LLN using the Chebyshev inequality. 

253. Prove that for every continuous functionj (x) on the segment [0, 1] 
the Bernstein polynomials 

tend uniformly in x to j (x) as n~ 00. (Weierstrass' theorem) 

254. Letf(m) (m=1,2, ... ) be an arbitrary sequence of real numbers; 
v n { ... } is the frequency of all natural numbers m:::;; n subject to the con­
ditions which are written in the braces, 

n n 

Mn=~ I f(m); Dn=~ I (J(m)-Mn)2. 
m=l m=l 

Let 'P(n) be an arbitrary function which increases indefinitely as n~ 00. 

Prove the following analogue of the law of large numbers: 

(n~oo). 

255. Let Sn=~1+~2+···+~n. Prove that if for all n, ISnl<Cn and 
D (Sn) > rxn2, then the law of large numbers is not applicable to gk}. 

256. Let {~k} be a sequence of random variables such that ~k can depend 
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only on ~k-l and ~k+l but does not depend on all the other ~j. Show 
that the law of large numbers is satisfied if D [~kJ < C < 00. 

257. If the joint distribution of the quantities ~1' ~2' ... ' ~n is defined for 
every n, where D [~jJ < C < 00, and the covariance is negative, then the 
law of large numbers is applicable. Prove that if the condition rik = 
= COV(~i' ~k):::;; 0 (k # i) is replaced by the assumption thatrik -+ o uniformly 
as li-kl-+ 00 then the law of large numbers is also applicable. 

258. Let S i (i = 1, 2, ... ) be independent identically distributed random 
variables with M[~J=a>O and D[~J=0"2. As follows from the central 
limit theorem, in this case 

(tl ~i - na) 

0" -In 
converges weaklyl) to the normal law with parameters [0, 1]. Using the 
law of large numbers, prove that 

also converges to the normal law with parameters [0, 1] as n -+ 00. 

259. Let ~1' ~2' ... be independent identically distributed random vari­
ables which take on the values 0 and 1 with probabilities p and 1-p 

respectively. We denote by Jt n the collection of all possible sequences 
of zeros and ones of length n. Prove that, for arbitrary e > 0 and b > 0, 
there exists an no such that for an arbitrary n > no, Jt n decomposes into 
two classes Jt! and Jt; such that 

1) P{(~l' ~2'···' ~n)EJt!}<e; 

2) p(x)=Pg1 , ••• , ~n=xn}' the probabilities of the sequences 1;= 
= gl' ... , ~n}EJt;, satisfy the inequality 

j-llOgp (x) - HI < c5, where H = - p logp - q log q. 

260. The notations are the same as in the preceding problem. Arrange 

1) See page 83. 
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the sequences {x} belonging to J( n in order of decreasing probabilities 
p(x). Denote by m(r) the number of sequences which we must take from 
J( n' starting with the most probable sequence, in order to accumulate 
the total probability r for the sequences we have taken. Prove that, for 
O<r< 1, 

1. logm(r) 
1m =H. 

n-+ 00 n 

4.3 Central Limit Theorem 

261. A die is thrown 1000 times. Find the limits within which the number 
of eyes coming up will lie with probability greater than 0.99. 

262. In firing at a target, a marksman scores at each shot either 10, 9, 
8, 7 or 6 with respective probabilities 0.5, 0.3, 0.1, 0.05, 0.05. He fires 
100 shots. What is the probability that his aggregate score exceeds 980? 
9S0? 

263. In setting up a statistical counting, it was necessary to add 104 

numbers, each of which was rounded off with accuracy up to the 1O-m 

degree. Assuming that the errors arising from rounding off the numbers 
are mutually independent and uniformly distributed on (-0.5 .1O- m, 

0.5 ·lO-m), find the limits in which the total error will lie with probability 
greater than 0.997. 

264. On the segment [0, 1], a number ~ is chosen at random and ex­
panded in a decimal fraction ~= L~l en(~)/1On. Prove that the distribu­
tion Sn = L~= 1 ek (~), for a suitable normalization, tends to the normal 
law as n~ 00. 

265. From the history of measure. The measure of length "foot", as is 
clear from the nomenclature, has a direct relation to the human foot. 
This is the length of a step. But, as is known, the dimensions of feet are 
various. In the XVI century, the Germans came out of this situation in 
the following way. On a holiday, they lined up the sixteen men who first 
came out of the church. The sum of the lengths of their left feet was 
divided by sixteen. The mean length was then the "correct and legal foot". 
It is known that the dimension of the foot of a mature man is a random 
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variable, having a normal distribution with mean value 262.5 mm and 
standard deviation (J = 12 mm. Find the probability that two "correct and 
legal" values of the foot, defined with respect to two different groups 
of men, differ by more than 5 mm. How many men should have been 
taken in order that with probability greater than 0.99 the mean dimension 
of their feet differ from 262.5 mm by less than 0.5 mm? 

266. Let ei denote the time between two successive mutual collisions, 
the i-th and the (i + 1 )-st, of the molecule described in Problem 141. 
Find the limiting distribution as n ---+ 00 for I7= 1 ei (see also Problem 154). 

267. Establish whether the LLNs and the CLT will be satisfied for in­
dependent random variables ek with distributions defined in the follow­
ing way (k~ 1): 

a) p (~k = ± 2k) = t 
b) peek = ± 2k) = r(2k+l); peek = 0) = 1 _ r2k; 

c) peek = ± k) = tk- 1/2 ; P(~k = 0) = 1 - k- 1/2 . 

268. Find the distribution of en=I7=1 C where the ei are independent, 
identically distributed random variables, each of which has a Poisson 
distribution with parameter I. Find the limit distribution for en - nl J it 
as n ---+ 00. 

269. Prove that if f is a function which is continuous and bounded on 
[0, 00], then for h > 0, 

00 ( k) (nhf lim I j x + - -- e- hn = j(x + h) 
n~w k=O n k! 

(see the preceding problem). 

270. Let e denote the resistance to breaking of some metallic column. 
Assume that all columns participating in some production process have 
the same resistance to breaking eo = ao. During the first "stage" of the 
process all columns are subjected, for example, to a thermal treatment, 
the purpose of which is to modify the resistance to breaking of each 
column from ao to a1• In view of the random variations in treatment, 
each of the columns does not acquire the exact desired resistance, but 
the results el oscillate at random about a 1 • After this, the columns are 
subjected to a second stage of treatment, which is intended to modify 
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~1 from a1 to az, in which connection the result ~z will deviate randomly 
from az, and so on. Below, there are given two simple mathematical 
models of such processes. 

a. Assume that the successive deviations Llk=~k-~k-l do not have 
a systematic error (i.e., M[ Ll k ] = ak - ak - 1 ) and are mutually independent 
with ILlk-(ak-ak-l)l~b. For a sufficiently large n find an In=o(-Jn) 
such that, independently of the distribution Llk (k = I, 2, ... , n), 

p {I~n - ani < In} ;?; 0.95. 

b. Now assume that the relative deviations at each stage of the 
treatment, 7:n=~n/~n-l-1 are independent, do not have a systematic 
error and are identically distributed, whereby l7:n l <e. 

Find the limit distribution for the corresponding normalization for 
In ~n as n -HI). Estimate for n= 100 and e= z b 0 the probability that 
0.905 < n/ao < 1.105. 

271. A die is thrown for as long as the total sum of eyes coming up 
does not exceed 700. Estimate the probability that for this more than 
210 tosses are required; less than 180 tosses; from 190 to 210 tosses. 

272. A controller checks one after another the parts of some production. 
At the first step of the check, which lasts 10 sees., he either evaluates 
the part at once, or he makes the decision that the check must be re­
peated. The repeated check lasts 10 sees.; as a result of it, it is obligatory 
to make a decision about the quality of the production. Find the prob­
ability that during a 7-hour work day the controller checks more than 
1800 parts; more than 1600 parts; not less than 1500 parts. It is assumed 
that every part, independently ofthe other parts, is subjected to a repeated 
check with a probability of 0.5. 

273. Let V be a region in an s-dimensional space, having unit volume, 
and let If(x)l<a be a function defined everywhere in the region V. In 
order to calculate 1= HSv f (x) d V by the Monte-Carlo method, we pro­
ceed in the following way: N points Xl' ... , X N are located at random, 
independently one after the other, in the region V and for an approximate 
estimate of the integral we take 

N 

In = ~ I f(xJ. 
i= 1 
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What is M[IN] equal to? Estimate D[lnl Find the limiting distribution 

for IN(IN-I) as N--+ co. 

274. The independent quantities ~1' ~2' ... have the same distribution with 
M [~J = 0 and D [ ~;] = 1. Show that the quantities 

r ~1 + ... + ~n d r ~1 + ... + ~n 
11 = v n an .. = -----r=;;====~ 

~i + ... + ~~ J ~i + ... + ~~ 
are each asymptotically normal with parameters (0, 1). 

275. Let ~;(i = 1,2, ... , n + 1) be independent with each normal distri­
buted with mean 0 and dispersion 1. Set 

and 
~n+l 

"/: =-­
n 1 

- X; 
n 

Find the limiting distribution of X~ and "/: n as n --+ co. 

276. Puzzle problem. On each auto bus ticket there is a six-place number. 
The ticket is called "lucky" if the sum of the first three digits of its 
number coincides with the sum of the last three digits. Assuming that 
all numbers of the tickets from 000000 to 999999 are equally probable, 
find the probability that a randomly chosen ticket turns out to be "lucky". 
Find this probability directly and also with the aid of the local limit 
theorem 1). Compare the results obtained. 

277.* Let SIJ=~l +~2 + ... +~I'(n) be the sum of a random number /len) 
of random variables ~i' where ~i and /l (n) are independent. I~d < c, 
M[ ~ J = a, D [~i] = 0"2; /l (n) is an integral nonnegative random variable 
with M[/l(n)]=n and D[/l(n)]:::;;n1 -., where 8>0. Find the limiting 
distribution of 

Sn - na 
I - as n --+ co . 

0" V n 

278. A series of a very large number n of trials is considered. The trials 
are decomposed into groups of 3. The first two trials of each group are 
independent, the probability of the occurrence of the event A at either 

1) See GNEDENKO. Theory a/probability, § 12, pp. 94-103, Chelsea (1967). 
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being t. The outcome of the third trial in a group is predicted from the 
results of the preceding two trials by the restriction that the number of 
occurrences of A in each group must be even (0 or 2). Show that the 
number m of occurrences of the event A in the entire series n is subject 
to the same Laplace-Gauss limit law as if all the trials (as in the Bernoulli 
scheme) were independent. 

279. A person stands on the street and sells newspapers. Assume that 
each of the people passing by buys a newspaper with probability t. Let 
c; denote the number of people passing past the seller during the time 
until he sells his first 100 copies of the newspaper. Find the distribution 
of C;. 

280. From the numbers 1, 2, ... , N, n are chosen at random. Denote them 
by ml> ... , mn• Set c;;=O if m;=O modulo 3, c;;= 1 if m;= 1 modulo 3, 
and c;;= -1 if m;=2 modulo 3. Find the probability that S= L~=l c;;=k. 

Prove that when nand Ntend to infinity so thatn=o(N), (II/it) Sn 
converges in probability to the normal distribution with parameters (0, 

.JI)· 
See page 134 for the answers on problems 223-279. 
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5 Characteristic and 
generating functions 

The material of this chapter corresponds basically to Chapter 7 of the 
textbook by B. V. GNEDENKO. To solve the problems of the first two 
sections, it is sufficient to know the definitions of a characteristic function 
and of a generating function. 

The characteristic function (c.f.) of a random variable ~ is defined 
by f(t)=M[exp{it~}]. The generating function (g.f.) of a sequence of 
numbers {ar } (r = 0, 1, 2, ... ) is defined with the aid of the formula 

00 

¢(a) = I arar. 
r=O 

In the case when all the ar are the probabilities that the random variable 
~ equals r, ¢ (a) is called the generating function of~. One of the basic 
properties of a c.f. and of a g.f. is that given it, one can uniquely recon­
struct the distribution. In the third section, we systematically use also 
the theorem to the effect that a necessary and sufficient condition for 
a sequence of d.f.'s Fn(x)--->F(x) as n---> 00 at every point of continuity 
of the d.f. F(x) is that for every fixed t the corresponding c.f.'sfn (t) ---> f (t), 
as n---> 00, wheref(t) is the c.f. of F(x). One must pay special attention 
to Problems 282, 284, 289, 302, 303, 317-320. In a number of problems, 
the normal distribution with parameters (0, 1) is denoted for brevity by 
N(O, 1). 

Convolution. If F(x) and G(x) are distribution functions, their convolu­
tion, H(y), is defined by 

00 

H(y)= J F(y-x)dG(x). 
-00 

H(y) is a distribution function and H(y) is denoted by F(x)*G(x). 
For more detail see [9], [11], [12] and [13]. 
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5.1 Calculation of c.f.'s and g.f.'s 

281. Find the laws of distribution to which the following characteristic 
functions correspond: 

00 

cos t; L ak cos kt , where ak ~ 0 and 
k=O 

282. Calculate the c.f. for the following distribution laws: 

and 

a) uniform distribution in the interval ( - a, a); 
b) binomial distribution; 
c) Poisson distribution; 
d) Cauchy distribution: 

1 1 
p(x)=_·_-; 

'It 1 + x 2 

e) exponential distributions with densities 

{o (x < 0) 
Pl(X)= ae-ax (x>O),a>O, 

P2 (x) = t e- 1xl ; 

f) normal distribution: 

( ) 1 -(x-a)2/2a2 

P X = J 2'Itu e . 

283. Find the distribution laws to which the following generating func­
tions correspond: 

a) Hi + Z2)2; 

c) e.t(z-l); 

b) Hi - tZ)-l ; 

d) (t+tz)". 

284. Let ~ be a nonnegative integral variable with generating function 
~ C~). Find the generating functions for 

variables: 

~ + 1 and 2~; 
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sequences: 

Pg~n}; pg<n}; 

P {( ~ n} ; P g > n + 1} ; P g = 2n} . 

285. Consider a Bernoulli sequence of trials. Let Un be the probability 
that the first combination success-failure appears at the (n -1 )-st and 
n-th trials. Find the generating function, mean value and dispersion of 
Un> if the probability of success is p. 

286. Let Un be the probability that the number of successes in a sequence 
of n Bernoulli trials is divisible by 2. Prove the recursion formula Un = 
=qun - 1 +P(1-Un -l)' 

Derive from this the generating function, and from it the exact 
formula for Un' 

287. A sequence of Bernoulli trials to the first failure inclusive will be 
called a cycle. Find the generating function and the distribution of the 
probability of the general number of successes in r cycles. 

288. Let Un be the probability that the number of successes in n Bernoulli 
trials is divisible by three. Find the recursion relation for Un> and from 
it find the generating function. 

5.2 Connection with properties of a distribution 

289. Prove that a necessary and sufficient condition for a law of distribu­
tion of a random variable to be symmetric is that the characteristic 
function be real. 
Remark. A distribution law is symmetric if 

F(x)=l-F(-x+O). 

290. A random variable ~ is called lattice-type if one can represent the 
possible values of (in the form ar=a+k(r)h, where k(r) is an integer. 
The maximal value of h is called the maximal mesh of the distribution. 
Prove that if for some t#O,J(t) is the characteristic function of the 
random variable ( with absolute value equal to 1, then ~ is a lattice­
type random variable. Find the maximal mesh of the distribution if f (t ) 
is known. 
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291.* Suppose the random variable 1';1 ~A has density p(x)<M. 
a) Prove that as t-+ 00, the characteristic function of .; tends to 

zero. 
b) Show that an absolute constant C can be found, not depending 

on A and M, such that 
C 

max If(t)1 < 1 - (-)2· 
Itl>1tIA AM 

292. Let'; be a random variable with generating function 4> (z) and 
suppose IP{.;=n}zn converges for some zo>l. Prove that in this case 
all moments mr=M[.;r] exist and the generating function l/J(z) of the 
sequence mr/r! converges at least for Izl <logzo. Moreover, 

co 

tjf(z) = \ mr zr = 4> (eZ ). 

~ r! 
o 

293.* Prove that if F(x) is a distribution function andf(t) is the cor­
responding characteristic function, then: 

a) for an arbitrary x, 

T 

lim - f(t)e-·txdt=F(x+O)-F(x-O); 1 f . 
T-->oo 2T 

-T 

T 

b) lim ~- f If(t)1 2 dt = I (F {Xv + O} - F {Xv - O}), 
T-->oo 2T v 

-T 

where the Xv are the abscissas of the jumps of the function F(x). 

294. * Prove that if M [.;] = 0, then 
co 

1 f i-Rf(t) M [1';1] =- -- .. - dt, 
11: t 2 

-co 

where f (t) is the c.f. of .; and R4> is the real part of the function 4>. 
If, furthermore, D [.;] exists, then 

co 

M[I';I] = - ~f ~Sl'-~)) dt. 
11: t 

o 
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295. The distribution law F(x) is called stable if, for arbitrary a1 , b1 ; 

a2 , b2 there exist a3 , b3 such that 

F(a 1x + b 1 )*F(a2 x + b2 ) = F(a 3x + b3 )· 

Explain which of the following distribution laws belong to the stable 
type: 

a) improper distribution law (distribution law with one point of 
growth); 

b) binomial distribution law; 
c) Gauss law; 
d) Poisson law; 
e) Cauchy law. 

296. Prove that in adding independent random variables with zero 
means, the third central moments are summed, and the fourth are not. 

297. Let ~ be a random variable, having a Poisson distribution with 
parameter v. If we consider the parameter v as a random variable with 
probability density 

a" ,,-1 -(Xx ( 0) ---- x ex> , 
rCA) 

see page 19 

then the probability that ~ takes on a given value k equals 

00 

f X k a" 
k! e- x rCA) X,,-1 e- ax dx = 

o 

= (~a~)" (- 1 )k . ( - A)( - )~ - 1) ... ( - A - k + 1) . 
1 + a (1 + at k! 

Find the c.f., mean value and dispersion of this distribution, which 
is called the negative-binomial distribution. 

298. A die is tossed n times. Let ~1' ~2, ... , ~6 denote respectively the 
number of occurrences of a one, a two, ... , a six. Using the multidimen­
sional generating functions, find: 

a) COV(~1' ~2); 

b) M [(~1 - M [~1Jt (~2 - M [~2JYJ, where k, 1 are integers;?: 0; 
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c) M[a (~i-~)l 
d) M[(l + ~l)-lJ; 
e) M [(~l - ~2)3J; 

f) M[[(~l - ~2)2 + lrl]; 

g) M [~2~~ ;3~: 11 
5.3 Use of the c.r. and g.f. to prove the limit theorems 

299. Let F(x) and Fn (x) (n = 1,2, ... ) be nonnegative integral distribution 
functions, and let <P (z) and <Pn (z) (n = 1,2, ... ) be the generating functions 
corresponding to them. Prove that <Pn(z)-+<p(z) (n-+<Xl) implies that 
Fn (x) -+ F(x) (n -+ <Xl) uniformly with respect to x. 

300. Use generating functions to show that, as n -+ <Xl and np -+ ;. < <Xl, 

the binomial distribution converges to the Poisson distribution. 

301. Use c.f.s to show that, as ;. -+ <Xl, 

b 

I ;.k 1 f -). -u 2 /2d -e -+-----= e u. 
k! J21T: 

).+aJI<k~)'+bJI a 

302. Formulate in the language of c.f.'s a necessary and sufficient condi­
tion for a sequence of independent random variables ~1' ~2' ... , ~n to be 
subject to the law oflarge numbers. The c.f.'s Ii (t) of ~ i are given. 

303. Let ~1' ~2"" be a sequence of mutually independent and identically 
distributed random variables. Prove that: a necessary and sufficient con­
dition for some constant C, that 

n 

1 \' p 

~ L ~i-+ C 
i= 1 

is that the c.f. of ~ i be differentiable at the point t = O. 
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304. Moment generating function. A moment generating function is the 
function of a real variable 

met) = J exp{tx} dF(x). 
- 00 

Prove that: a) if two moment generating functions are equal, then the 
corresponding distribution functions are also equal; 

b) if the sequence mn(t)= S~CX) exp{tx} dFn(x) converges to met) for 
every value of t, then Fn (x) -+ F(x) at every point of continuity of F(x). 

305. Suppose ~k(k=l, 2, ... ) are independent and that for every k, 

p {~k = k"} = P gk = - k"} = 1- . 

Use the result of Problem 302 to explain for what ex the LLN is applicable 
to the sequence ~i. For what ex is the CLT applicable? 

306. Prove that if for a sequence of independent random variables {~J 
there exist numbers ex> 1 and C such that M[I~I"] ~ C, then the LLN 
is applicable to the sequence (Markov's theorem). 

307. 2n+ I points are located at random on the segment [0, 1], inde­
pendently of one another. We denote by C+ 1 the coordinate of the (n + 1 )-st 
point from the left. Prove that the distribution 2(~:+1-1-)J2n con­
verges to N(O, 1) as n-+ 00. 

Hint: Use the fact that the density of ~:+1 has the form 

308. Suppose the random variable ~n has a fJ-distribution with para­
meters np > ° and nq > 0. This means that its density is 

Ir(nl! + nq) X"p-l (1 _ xyq-l 
fJ(x;np;nq)= ~(np)(nq) , 

Prove that 

J n (p + q)3/2 (~n - -~) 
pq p + q 

converges in distribution to N (0, 1) as n -+ 00. 

for x E [0, 1] , 

for x ¢ [0, 1] . 
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309. We say that the random variable ~ has a T-distribution with para­
meters (X> 0 and .Ie> 0 if its density is 

f(x; 1X,.Ie) = IT~~) x ... - 1 e- ax for x> 0, 

o for x:::;; O. 

Let ~n be a random variable having a T-distribution, and let 

Prove that the distribution J n (lX~nfn - 1) converges for fixed IX as n -+ 00 

to N(O, 1). 

5.4 Properties of c.f.'s and g.f.'s 

310. Prove that if j (t) is a characteristic function and if j (t) g (ht) is 
a characteristic function for each of an infinitely increasing sequence of 
values h, then g (t) is a characteristic function. 

311. Prove that an arbitrary characteristic function j (t) is positive def­
inite, i.e., 

n 

I f(tk - tm) ZkZm ~ 0, 
k,m=l 

for arbitrary complex numbers Zk' real numbers tk and natural number 
n. (This property is not only necessary but for j (0) = 1 also a sufficient 
condition for the continuous functionj (t) to be a c.f.) 

312. Prove that the functionj (t) = I-It If a for It I <a, having period 2a, 
is a c.f. Using the converse of the theorem proved in the preceding 
problem (see the remark in parentheses), one can prove a general theorem. 
If jet) is a c.f., equal to zero for Itl>a and if g(t)=j(t) for Itl<a 
and g(t+2a)=g(t), then get) is also a c.f. 

313. Prove that the following functions cannot be c.f.'s: 

1 

1 - It I i' 
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b) real function not having the property of evenness; 

{ I - t2 

c) J(t) = 0 

d) J(t) = cos (t2 ) 

for It I < 1 
for It I ~ 1 ; 

314. Prove that if J(t) is a c.f. then the functions gl (t)=ef(t)-l and 
g2 (t)= (Ift)J~ f (z) dz are also characteristic functions. 

315. Prove that for a real c.f. the following inequalities are valid: 

a) I-f(nt)~n2(I-f(t)), n=O,I,2,3, ... 

b) l+f(2t)~2{f(t)y. 

316. Prove the following properties of a c.f. : 

a) If (t+h)- f (t)1 ~J2[I-Rf (h)]; 

b) l-Rf(2t)~4(I-Rf(t)), 

where Rf (t) is the real part of the c.f. 

317. Show that cPl;,,, (z)= cPl; (z) cPn(z) does not imply that ~ and 1] are 
independent. 

318. Prove that one can find independent random variables ~1' ~2' ~3 

such that the distribution functions of ~1' ~2' and ~3 are distinct, but 
the c.f. of the distributions ~l + ~2 and ~2 + ~3 coincide (see Problem 312). 

319. Prove that fl;+'1(t)=ft;(t)f'l(t) does not imply that ~ and 1] are 
independent. 
Hint: Look at the probability density p(x,y)=i(I +xY(X2_y2)) for 
Ixi<l, lyi<I andp(x,y)=O in the remaining cases. 

320. * Prove that the c.f. of the random variable ~ is differentiable at 
zero does not imply that M[~] exists. 

5.5 Solution of problems with the aid ofc.f.'sandg.f.'s 

321. Solve Problem 129 using multidimensional characteristic functions. 
Show that if in performing an experiment, anyone of n pairwise incom­
patible results Ak(k= 1,2, ... , n) are possible, (P{Ad =Pk; L.Pk= I) and 
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this experiment is repeated v times, where v does not depend on which 
of the At occurred, then in the case when v has a Poisson distribution, 
17k is the number of realizations, Ak (k = 1,2, ... , n) are independent. 

322. A point M moves along an integral line, passing in one step from 
the point n(A<n<B) to the point n+1 with probability p and to the 
point n -1 with probability 1 - p. The motion begins from zero. Denote 
by'f the first moment the point is at A or B. Find the distributions of 'f 
and M[,]. Also find the probability that the point first is at A.l) 

323. In an urn there were M red balls and N - M white balls. The balls 
were taken out of the urn one after the other. Suppose the first red ball 
taken out appeared at the k 1-th removal, the second at the k 2-th, ... , M-th 
red ball at the kM-th removal. Set ~=Lki. In order to find pg=n}, 
we use the classical definition of probability. The number of all possible 
ways of taking balls out of the urn is C:. Denote by An(M, N) the 
number of them favorable with respect to the event ~ = n. Find 
L~=o Ln An(k, N) xnyk. For M =3 and N=3, findPg=n}. This problem 
is closely related to the nonparametric criterion of Wilcoxson. 2) 

324. Use the c.f., show that, for p<-!;, 

m;x IktO [C~l(1- p)"-k - (~t e-npJ! ~ Cp, 

where C is a constant not depending on n. (Another estimate of the 
closeness of the Poisson distribution to the binomial distribution can be 
found in Problem 246.) 

325. * 2n points at equal distances are marked off on a circle. These points 
are randomly grouped in n pairs and the points of each of the pairs are 
connected by a chord. What is the probability that the n chords con­
structed do not intersect? 
Hint: We use the fact that the number of "favorable" outcomes Mn 
satisfies the relation 

n-1 

Mn = L M r ·Mn - r - 1 • 
r=O 

1) This scheme was used by A. Wald to estimate the effectiveness of sequential ana­
lysis to differentiate two simple hypotheses. 

2) See the footnote to Problem 32. 
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326. Show that if I-F(x)=o(e- CX ) as x~ 00 and F(x)=0(e- c1x1 ) as 
x ~ - 00 (c > 0), then the distribution is uniquely defined by its moments. 

327. A series of independent experiments is performed, for each of which 
the probability of a favorable outcome equals p = 1 - q, until v successive 
favorable outcomes are obtained where v> 0 is given. Let Pnv denote the 
probability that to achieve this goal exactly n experiments are necessary. 
Prove that the generating function is 

00 n pVzv (1 - pz) 
</Y (z) = I PnvZ = 1 + v v+1 

n=l - Z P qz 

and show that M(n)=</Y' (1)= I_pVjpVqv. 

328. n Bernoulli experiments are performed and it is noted that Jl is the 
largest number of successive favorable outcomes occurring for these n 
experiments. Denoting by Pn, v =P {w::;; v}, show that 

Pn,v = 1- P1,v -'''- Pn,v, 

where the Pn, v are defined in the preceding problem, and, consequently, 
that 

I/I(z) = I Pn,vzn = 1 - I/I(z) 
n=l 1 - z 

1 - pVzv 

1_z+pVqzV+1' 

Prove that 

logn 
M[JlJ=-l +0(1), D[JlJ=O(1). 

log--
P 

See page 137 for the answers on problems 281-327. 
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6 Application 
of measure theory 

Let us recall the definitions and theorems which will be needed to solve 
problems of this chapter. 

Measurability. If the family 9J1 of subsets of the set Q = {OJ} satisfies the 
following conditions: 

1. If A E 9J1, then A E 9J1. 
2. If AiE9J1(i=l, 2, ... ), then U~l AiE9J1 and n~l AiE9J1, 

then we say that 9J1 is a a-algebra in the space Q. 

The functionj (OJ) is said to be measurable with respect to the a-algebra 
9J1, or simply9J1-measurable, iffor an arbitrary C, 

{OJ:f(OJ) < C}E9J1. 

Various notions oj convergence. A sequence of random variables ~n(n= 
= 1, 2, ... ) converges in probability to the random variable ~ if, for an 
arbitrary e > 0, 

As was already pointed out in Chapter 4, convergence in probability is 

denoted by ~ n ~ ~ or by p lim ~ n = ~. If 

then we talk of convergence with probability I; such convergence occurs if, 
and only if, for an arbitrary e> 0, 

lim P{sup l~m(OJ) - ~(OJ)I > e} = 0. 
n--+oo m~n 

The sequence ~ n (n = 1, 2, ... ) is said to converge to ~ in the mean if, for all 
n, M[I~nI2J<oo, M[I~12J<OO and M[I~n-~12J~0(n~CX)). This con­
vergence is denoted by the symboll.i.m. ~n =~. Let Fn (x) be a sequence of 
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distribution functions. If for all x which are points of continuity of the 
distribution function F(x), Fn(x)-,>F(x), then we say that the sequence 

Fn converges weakly to F(x). We denote weak convergence by Fn~F. Fn 
converges to F uniformly if sup x/Fn (x) - F(x )1-'> 0 (n -'> (0). In the case 
when J':' 00 Id (Fn - F)I-'> 0 (n -'> (0), convergence in variation holds. If the 
terms of the sequence {Fn} are distribution functions of random variables 
~n and if this sequence converges weakly to F(x), the distribution func­
tion of the random variable ~, then we say that the sequence ~n converges 
to ~ in distribution. The interrelationships among the various notions of 
convergence are clarified in Problems 334-343. 

In order to solve a number of problems the Borel-Cantelli lemmas are 
needed. Let Ai>"" An> ... be an infinite sequence of events and let 
P{Ak } =Pk· 

LEMMA 1. If LPk < 00, then only a finite number of events Ak occur 
with probability 1. 

LEMMA 2. If the events Ak are mutually independent and the series 
LPk diverges, then an infinite number of events Ak occur with probability 1. 

As a rule, the solution of problems on the investigation of the con­
vergence of series of random variables is based on the following three 
series theorem, due to A. N. Kolmogorov. Let ~" be a sequence of inde­
pendent random variables, C a positive constant, and An= {OJ: I~n (OJ)I:::::; c}. 
Then: a necessary and sufficient condition for the series L:'= 1 ~ n (OJ) to 
converge almost everywhere is that the following three series converge: 

1. I:'=l P{An}; 

2. I:'=l M[~XAn(OJ)J; 

3. I:'=l D[~XAJOJ)J, where XAn (OJ) is the characteristic function (indi­
cator) of the set An" 

STRONG LAW of LARGE NUMBERS (SLLN) (see §34 of thetextbook 
by B. V. Gnedenko). Let gn}(n= I, 2, ... ) be a sequence of random 
variables. We say that it is subject to SLLN if, with probability 1, 

n n 

THEOREM of A. N. KOLMOGOROV. To apply SLLN to the sequence of 
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mutually independent variables {~n}' it is sufficient that 

00 

\ D[~n] <<X). 
~ n 

n=1 

The proof of this theorem is based on a remarkable generalization of 
Chebyshev's inequality - the Kolmogorov inequality: for the independent 
~1' ~2' •.. , ~n' having finite dispersion, the probability of the simultaneous 
occurrence of the inequalities 

is not less than 

n 

Conditional probabilities and mathematical expectations. Let (a, m1, P) 
be a given probability space, where a = {w} is a set, ffil is a u-algebra of 
subsets of a, and P is the probability measure on ffil. Let in be au-algebra 
in a, where in:::;;ffil, and let ~(w) be a sum mabie function on a. Any 
in-measurable function satisfying for an arbitrary AEin the relation 

f ~ (w ) P (dw) = J M (~ lin) P (dw ) 
A A 

is called the conditional mathematical expectation M(~ lin) of ~ with 
respect to in. With the aid of the Radon-Nikodym theorems one can 
show that such a function always exists. It is easy to see that the function 
M[ ~ lin] is defined only to within an arbitrary set of the u-algebra in 
having P-measure zero. The function M(XB lin) is called the conditional 
probability of the event B with respect to the u-algebra in. It can also be 
defined as an in-measurable function which satisfies, for an arbitrary 
AE91, the relation 

P (A n B) = J P (B lin) P ( dw ) . 

A 
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The fundamental properties of a conditional mathematical expectation 
are clarified in Problems 364-367. 

For additional reading see [9J, [10J, [12J and [13]. 

6.1 Measurability 

329. Prove that every finite a-algebra W1 in the space Q = {OJ} is connected 
with some decomposition of this space into a finite number of disjoint 
sets AI' A 2 , ••• , An in the following way: W1 consists of all possible finite 
unions of the sets A i. Prove also that the function f (OJ) is measurable 
with resect to the a-algebra 9J1 if, and only if, it takes on constant values 
on each of the Ai' 

330. Consider the Hilbert space L2 of measurable functions which are 
square integrable and let H be a subspace of the space L2 consisting of the 
functions which are measurable with respect to a finite a-algebra W1. 

Find the dimension of H. Prove that f ..L H if, and only if, the inte­
gral off over an arbitrary set CEW1 equals zero. 

331. Example of a non-measurable set. Let us assume that in the unit square 
there is located a point and let 0:( ~, 1/:( 1 be its coordinates. We intro­
duce Q = {OJ}, the space of elementary events. For an arbitrary subset A of 
the interval [0, 1 J we set .1= {OJ: ~ (OJ) E A}. Let W1 be a a-algebra of the 
sets A, corresponding to the sets A which are measurable in the sense of 
Lebesgue. We define on Q a probability measure by setting ,u{A} equal 
to the Lebesgue measure of the set A. The set 

M = {OJ;1/(OJ):( 1.-} 

will not be measurable with respect to the a-algebra W1. 
Show that 

,u* {M} == inf t~1 ,u lAn};An EW1 , n = 1,2, ... , M CyAn} = 1, 

and 

,u*{M} == sup{,u lA}:M::J AEW1} = o. 

332. Let ~k (k = 1, 2, 3, ... ) be a sequence of mutually independent ran­
dom variables with the same distributions. Assume that ~k does not have a 
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finite mathematical expectation and let A be an arbitrary positive con­
stant. Show that the event C, defined by the requirement that for infinitely 
many n the events I~nl >An are realized, is measurable. FindP{ C}. 

333. Let ~1' ~2' ... be a sequence of independent random variables, each 
of which takes on only two values: 0 and 1. Moreover, P {~n = I} = Pn and 

00 

I Pn<r:t:)· 
n=l 

Set (n= I7=1 ~i. Prove that for an arbitrary k?;:.O the sets of elementary 
eventsAk = {OJ: (n(OJ) ~ ken ~ r:t:))} are measurable. Prove that I P{Ak } = 1. 
i.e., that the sequence (n is bounded with probability 1. 

6.2 Various concepts of convergence 

334*. Let ~ i (i = 1, 2, ... , n) be independent, identically distributed random 
variables, where M[ ~J = a and D [~J = (J'2 > O. Find the limit distribution 
asn~ r:t:) for 

(n = l;-(f ~i - na) 
(J' V n i=l 

and prove that there does not exist a random variable such that 

lim P {I'n - " < 8} = 1 . 

Remark. It follows from this problem, in particular, that the convergence 
of the distributions does not imply the convergence in probability of the 
corresponding random variables. 

335. Prove that convergence with probability implies convergence in 
probability. 

336. Prove that ~n~~ if, and only if, every subsequence gn,} of the 
sequence ~n contains another subsequence which converges to ~ with 
probability 1. 

337. Prove that convergence in mean implies convergence in probability. 
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338. Construct an example of a sequence which converges in the mean, 
but does not converge with probability 1. 

339. Construct an example of a sequence which converges with probabil­
ity 1, but does not converge in the mean. 

340. Prove that if F(x) is continuous, then the weak convergence of 
Fn (x) to Fimplies that Fn converges uniformly to F. 

341. Show that the weak convergence of distribution functions does not 
imply convergence in variation. 

342. Show that the convergence in variation of distribution functions 
implies uniform convergence, and that uniform convergence, in turn, 
implies the weak convergence of distribution functions. 

343. Prove that if Fn are distribution functions of integer-valued random 
variables, then the weak convergence of Fn to F implies convergence in 
variation. 

6.3 Series of independent random variables 

344. Let ~n be a sequence of random variables. Prove that the event C, 
which is defined by the convergence of the series 

is measurable. 

345. Suppose given a sequence ~1' ~2'''' of independent random variables 
with arbitrary distribution functions (for simplicity we can assume that 
these functions are the same for all ~;). It is known that u; = M[ ~;J < u2 

and M[~nJ =0. Prove that the series I:'= 1 ~n/2n converges ~ith probabili­
ty 1. 

346. A point ~ is located at random on the segment [0, 1]. Define a 
function ¢n(~) by setting ¢n(~)=+1 or -1 depending on whether the 
positive integer i for which (i -1 )/2n ::::; ~ < i/2n is odd or even. Prove that 
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the series 

converges with probability 1 if, and only if, the series L~ 1 C~ converges. 

347. Show that, independently of the choice of the Ck in the preceding 
problem, the event C that the series 

converges, is, for an arbitrary n, measurable with respect to cPn(O, 
cPn+l(~)"'" Prove that for arbitrary e>O, and n, there exist a number 
N>n and an event A, measurable with respect to cPn(~)' cPn+l(~)"'" 
cPN(~)' such thatP{C6A} <e. 

348. Prove that if the random variables ~1' ~2' ..• are independent and the 
event C is, for arbitrary n, measurable with respect to ~m ~n+l' ... , then 
P {C} = 0 or 1 (A. N. Kolmogorov's Zero-One Law). 
Hint. Use the fact that, for an arbitrary event A, depending only on a 
finite number of ~;'s, 

P {C n A} = P {C} P {A} . 

349. Let {Ak} (k = 1, 2, ... ) be a sequence of mutually independent events; 
then, with probability 1 there is realized a finite or infinite number of Ak 
depending on whether the series 

converges or diverges (Borel-Cantelli lemma). Prove this result using the 
three series theorem. 

350. Let {en} (n= 1,2, ... ) be a sequence of random variables, each having 
a mathematical expectation, and ~ is a random variable, having a disper­
sion, such that for an arbitrary positive integer n, the functions ~1' ... , 

~m ~ - (~1 + ... + ~n) are independent. Prove that in this case all the ~n have 

88 



Strong law of large numbers 

a dispersion, and the series 

00 

L (~k - M [~k]) 
k=l 

converges almost everywhere. 

351. * Let IX = [0, a J, ,8 = [a, f3] and .6. = [0, 6J be given segments, where 
6 < - [a, f3J. On one of the segments IX or ,8 a point Xo is taken which then 
moves according to the following law: if at the moment n the point is at the 
position Xn on the segment IX (respectively ,8), then at the moment n + I it 
goes to the position X n +1 =Xn + 6 on the same segment in the case when 
a-xn~6 (respectively f3-xn~6). But if the opposite inequalities are 
satisfied, then the point X n +1 turns out to be with probability t at a 
distance 6' = 6 - (a-xn) (respectively 6"= 6 - (f3-xn)) right from 
the left end of the segment on which it was earlier, and with probability 
t it will be at the same distance right from the left end of the other seg­
ment. Prove that if a, a - f3 and 6 are incommensurable, then for an 
arbitrary initial position of the point and for an arbitrary interval of 
length y, lying on one of the segments IX or ,8, with probability 1 a number 
n can be found such that at the n-th step the point falls in the interior of 
the interval y. 

352. In a sequence of Bernoulli trials, let An be the event that a series of n 
successive successes occurs between the 2n-th and the 2n + 1_st trials. Prove 
that if p~t, then with probability I infinitely many events An are realized; 
if p<t, then with probability 1 only a finite number of events An are 
realized. 

6.4 Strong law of large numbers and the 
iterated logarithm law 

353. Show that whenever the sequence of nonnegative numbers {(T~} is 
such that 
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there exists a sequence of independent random variables {en} such that 
M[C;n] =0, D[en] =0-; (n= 1,2, ... ) and 

does not converge to zero almost everywhere. 

354. Two sequences of random variables {en} and {17n} are called equi­
valent if 

00 

L P {en ¥= 17n} < 00 . 
n=l 

Prove that if the sequence of independent random variables {C;n} is sub­
ject to the SLLN, then there exists a sequence {17n} equivalent to it such 
that 

00 L D;~n] =00. 

n=l 

In other words, prove that the proposition converse to Kolmogorov's 
theorem on the SLLN does not hold. 

355. Show that there exists the following somewhat weakened converse 
of the theorem on the SLLN. If {en} is a sequence of independent random 
variables such that M[en] =0, 1(I/n)C;nl:OS:;; C, n= 1,2, ... , where C is some 
constant, and with probability 1 the sequence 

n 

converges to zero, then L D[C;n]/n1 +"< 00 for arbitrary 6>0. 
Hint. Use the fact that if the sequence of real numbers {Yn} is such that 
the sequence 

n 
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converges to zero or is at least bounded, then the series 

\' Yn 
L n 1 +e 

n=l 

converges for arbitrary positive e. 

356. Example of an unfavorable fair game. Suppose the possible values 
of winning at each trial will be 0,2,22,23 , ... ; the probability that the 
win equals 2k is 

1 

and that the probability of the zero winning equals Po = 1 - (P1 + P2 + ... ). 
Then the expected amount won per trial is 

11 = I 2kPk = (1 - -!) + (-t - t) + (t - -1-) + ... = 1. 

Assume that the player at every trial, for his right of participation in the 
game, pays a ruble so that after n trials his pure gain (or loss) equals Sn -n, 
where Sn is the sum of n independent random variables with the distri­
bution given above. Show that for every 8>0 the probability that in n 

trials the player loses more than (1-8)njlog2n rubles, tends to 1, where 
10g2 n denotes the logarithm to the base 2. In other words, it must be 
proved that 

{ (1- e) n} 
P Sn - n < - -+ 1 . 

10g2 n 

Hint. Use the "method of truncation" with limit njlog2 n. Show that for 
the "truncated" quantities ~k' 

P{I(l + ... + ~n - nM[~lJI <~}-+1, 
10g2 n 

1 _ 1 + e 
1--- ~ M[(lJ ~ 1---. 

10g2 n 10g2 n 

357. Let gn} be a sequence of mutually independent random variables 
such that (n= ± 1 with probability (1-Tn)j2 and (n= ±2n with proba-
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bility 2- n - 1• Prove that the law of large numbers is applicable to {en}. 
Remark. This means that the condition 

is not necessary. 

358. Prove that if eh e2' ... are pairwise independent, identically distri­
buted and have finite dispersion, then the SLLN is applicable. 

359. Let ek (k = 1, 2, ... ) be independent, 

and 

Prove that in this case, 

with probability 1. 

360. Suppose the random variables eh e2, ... are independent and 
have a normal distribution with mathematical expectation 0 and dis­
persion 1, and suppose the event An represents Sn = e 1 + e2 + ... + en> 
A(2n log logn)1/2, where A is a fixed constant. Prove!) that, for A> 1, only 
a finite number of An's are realized with probability 1. 
Hint. Suppose the event B r consists of the following: that in the interval 
of time from yr to yr+l, where 1 <y<A, An is realized at least once. Use 
the fact that if infinitely many events An are realized, then also infinitely 
many events Br are realized. 

361. Suppose the event An is defined as in the preceding problem. Prove 

1) The propositions proved in Problems 360--361 form a particular case of the so-called 
iterated logarithm law. For the Bernoulli scheme this law was first obtained by 
A. Khinchin (see Fundamenta Mathematicae 6, 9-20, 1924). Later, a more general 
theorem was proved by A. N. Kolmogorov (see "Mathematische Annalen", 101, 
126-135,1929). 
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that, for A< 1, infinitely many events An are realized with probability 1. 
Hint. Let y be so large that 1 - y -1 > A, and let nr be the nearest integer in 
yr. Set Dr= Snr - Snr -1' We shall first prove that for infinitely many r, 

Dr> A (2nr log log nr)1/2 . 

362. Let Sn be the number of successes with n Bernoulli trials with 
probability of success p. Prove that 

1. Sn 1m sup ------------:~ = 1 
n->ro (2np(1- p)loglogn)1/2 

(see Problems 360-361). 

6.5 Conditional probabilities and conditional 
mathematical expectations 

363. Let AI' A 2 , ••• , An be a complete system of events, i.e., AinAj=4> 
(i=/= j) and 

n 

U Ai = Q, 
i=1 

and B l , B2 , .•• , Bm another complete system. Prove the following general­
ized total probability formula for an arbitrary event C, 

364. Show that if m: is an algebra consisting of exactly two elements: 
4> and the entire space Q, then for an arbitrary random variable ~, having 
expectation 

M[~ I m::J = M[~J. 

365. Find M[~ I m::J as a function of ro in the case when the a-algebra 
consists of exactly 4 elements {4>, A, A, Q}, where O<P{A} < 1. Into what 
do the formulas obtained go when ~ (ro) = XB(ro), where XB is the c.f. of the 
set B, introduced in Problem 10? 
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366. Prove that if the random variable ~ is measurable relative to ~ and 
bounded, then 

almost everywhere on Q. 

367. Let (a, 9)l, P) be a given probability space and let m£;9)l be a a-al­
gebra. Prove: 

a) if ~~rJ and M[~] and M[rJ] exist, then almost everywhere on a, 

M[~ I m:] ~ M[rJ I m]; 

b) if M[~] and M[rJ] exist, then 

M[a~ + brJ I m] = aM[~ I~] + bM[rJ 1m:]; 
c) if M[~] exist and O~ ~n H, then 

M [~n I m] i M [~ I m] ; 

d) if M [~] and M [ rJ] exist, and ~ is measurable relative to m, then 

368. A random point occurs with a uniform distribution on the segment 
[ - a, a J. Two pieces of apparatus observe it. The first apparatus registers 
it at the point x with probability p (x) and the second with the probability 
q(x). Find the probability that the point, if observed by both pieces of 
apparatus, occurs to the left of x. 

369. Two points are chosen at random in the interior of the unit circle 
independently one of the other. Considering all positions of the points 
equally possible, construct the function of the distribution of the distances 
between the points. 

370. Let ~;(i= 1,2, ... , n) be independent normally distributed random 
variables with parameters (0, 1). Find the expection and density of the 
distribution of I? + 1 ~ i under the condition that I~ + 1 ~ i = a. 

371. Let ~;(i= 1,2, ... , n) be random variables having joint distribution 
density h(xl' ... 'xn ) and let 0~rJ=f(~1'~2' ... '~n)~C<oo. Find: 
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Conditional probabilities 

a) the expectation of the random variable 1'/ under the condition that 

I, ~f = p2; 

b) the density of the distribution of 1'/ under the same condition. 

372. Let us assume that the random variable ~ has density of distribution 
f (x, a), depending on the unknown parameter a. There were obtained n 
independent realizations of ~:XI' ... , X n• Find the a posteriori density of 
the distribution of the parameter a, ¢ (a I Xl' ... , x n), if the a priori density 
of the distribution a, ¢l (a), is known. 

See page 139 for the answers on problems 329-371. 
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7 

Infinitely divisible 
distributions. Normal law. 
Multidimensional 
distributions 

The only new concept in this chapter is that of the infinitely divisible 
(i.d.) distribution law; in this connection, see Chapter 9 of the textbook by 
B. V. GNEDENKO. The distribution law F(x) is called i.d. if its character­
istic function, for an arbitrary integer n ~ 1, can be written in the form 

J(t) = Lin (t)r, 
wherefn (t) is also a characteristic function. In Problems 375, 381-387, it is 
assumed thatthe general form of the logarithm of the characteristic function 
of the i.d.law 00 

f ( . itu ) 1 + u2 
logj(t) = iyt + e't" - 1 - --2 --2- dG(u), 

l+u u 
(1) 

-00 

is known, where G(u) is a nondecreasing function of bounded variation, 
and the function under the integral sign is defined by the equality 

[{ 
itu itu } 1 + u2

] e -1---2 --2-

1 + u u "=0 2 

for u=O. It is also assumed known that the representation of logf (t) by 
formula (1) is unique. 

We note that the material of the majority of the problems on the i.d. law 
is taken from the 2-nd and 3-rd chapters of the book by B. V. GNEDENKO and 
A. N. KOLMOGOROV. Limiting distributions for sums of independent random 
variables. GITTL, Moscow-Leningrad (1949). Also see [9J and [12J. 

7.1 Infinitely divisible distributions 

373. Prove that if a characteristic function f (t) is such that for two in-

96 



Infinitely divisible distributions 

commensurable values of the argument to and t 1 the equalities I I (to)1 = 
=1 and 11(t1)1=1 hold, then 11(t)I=1. What can be said about the 
corresponding distribution functions? Will they be infinitely divisible? 

374. Prove that a random variable, distributed according to the Cauchy 
law 

F(x) =! (~+ arctan x - b), 
1t 2 a 

is infinitely divisible. 

375. Prove that if the sum of two independent infinitely divisible random 
variables is distributed: a) according to Poisson's law; b) according to the 
normal law, then each term is distributed in the case a) according to the 
Poisson law; in case b) according to the normal law (also see Problem 
396). 

376. Prove that a random variable with density distribution 

p(X)=IOpa a-1 -px 

r(C() x e 

for x ~ 0; 

for x> 0, 

where IX> 0, f3 > ° are constants, is infinitely divisible. 
Remark. From this it follows that Maxwell's distribution and the X2 

distributions are infinitely divisible. 

377. * Prove that the characteristic functions of infinitely divisible laws do 
not vanish for I t I < 00. 

Hint. Use the inequality of Problem 316 b). 

378. Prove that a distribution function which is a limiting function in the 
sense of weak convergence for an infinitely divisible law is infinitely 
divisible. 

379. Leaning on the statement of the preceding problem, prove that if 
I (t) is the characteristic function of an infinitely divisible law of distribu­
tion, then, for an arbitrary c>O, the function [f(t)Y also is the charac­
teristic function of an infinitely divisible law. 

380. Prove that the collection of infinitely divisible laws coincides with 
the collection of laws which are the compositions of a finite number of 
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Poisson laws and limiting laws for them in the sense of weak conver­
gence. 
Hint. Use the following relation for the characteristic function: for an 
arbitrary a;60, as n ---+ 00, 

n (n-Ja - 1) ---+ loga. 

381. Using formula (1) (see page 96), show that the characteristic func­
tion 

1 - f3 1 + IX e - it 

J(t) = 1 + IX 1 _ f3 eit (0 < IX ~ f3 < 1) 

is not infinitely divisible. 

382. Prove that 1 f (t )1, where f (t) is the characteristic function defined 
in the preceding problem, is infinitely divisible,l) 

383. Prove that: a necessary and sufficient condition for F(x) in formula 
(I) (see page 96) to be integral is that the function G (u) grows only at 
integral points -# O. 

The assertion of this problem can be significantly strengthened, 
namely, see the following problem. 

384. * Prove that there exists an absolute constant C such that for an 
arbitrary infinitely divisible law F, for which 

00 

L {F(k+1)-F(k+0)}~e, 
k= - 00 

the inequality 

5(1 + U 2
) ~ dG(u)<C. 

is valid, where the integral is taken over all integer points of the infinite 
line (Yu. V. Prokhorov). 

385.** Prove that a non-degenerate infinitely divisible distribution can­
not be concentrated on a finite interval. 

1) It follows from Problems 381-382 that an infinitely divisible characteristic function 
[f(t)]2 decomposes into two non-infinitely divisible characteristic functionsf(t) and 

f(t). 
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Infinitely divisible distributions 

386. Prove that if there exist k> 2 first semi-invariants of an infinitely 
divisible distribution K 1 , K 2 , ••• ,Kk , then the sequence 0(0 =K2 , 0(1 = K 3 , ••• , 

O(k-2 =Kk is non-negative definite, i.e., for an arbitrary polynomial of 
degree not greater than k - 2, 

k-2 

£)!(x) = I AuxU =t 0, £)!(x) ~ 0, 
u=o 

the functional 

k-2 

Q(£)!) = I AuO(u ~ O. 
u=o 

387. ** We say that the infinitely divisible law has a bounded spectrum 
MifG( - ex) )=G( -M) and G(M)=G( ex). 

Let 9J1 (M) be the collection of infinitely divisible distribution laws 
having a bounded spectrum M and dispersion equal to I, let ~(l) be the 
collection of distribution functions of the random variables , such that 
1'1 ~I and D[n = 1, and let 

ljJ(n, l) = inf inf sup IFn(x) - G(x)l, 
FE m(l) G E 9Jl(M) x 

where 

F"(x) = F * ... * F(x). 

n times 

Prove that for arbitrary M, I < ex), there exists a k < ex) such that for all 
sufficiently large n, 

ljJ(n, /) > n- k • 

388. * Domain of attraction; application of the Poisson law. 
Let 

n 

Sn = I ~k,n' 
k=1 

where ~k,n(k=l, 2,00', n) are mutually independent random variables 
which take the value 1 with probability Pk, nand 0 with probability 
I-Pk,H' O<Pk,n< I, 

n 

an = I Pk,n' bn = max Pk n' 
k=1 1 <:;k<:;n ' 
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Prove that a necessary and sufficient condition for the convergence of the 
distribution of the sums S n to the Poisson law with parameter 0 < a < 00 is 
that the following conditions be satisfied: 

lim b. = 0 ; lim an = a . 
n~oo n~co 

7.2 The normal distribution 

389. * A point ~ = (~1' ... , ~ n) is located at random on the n-dimensional 
sphere. Prove that for large values of n, ~ 1 will be distributed approxim­
ately normally. 

390. Prove that for x> 0, 

l-I])(X)~Jl e- x2 / 2 x 
2n 

x ---+--···+(-1) {
I 1 1·3 k1.3 ..... (2k-l)} 
x x 3 x 5 X 2k + 1 ' 

where 
x 

moreover, for k even the right member exceeds 1- <P (x), and for k odd it 
is less than 1-1]) (x). 

391. Prove that for an arbitrary constant a> 0, 

as x--+ 00. 

392. * Construct an example showing from the conditions: 
a) ~ is normally distributed; 
b) 17 is normally distributed; 
c) cov(~, 1]) = 0 

it does not follow that ~ and 1] are independent. 
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393. Is a linear combination of normally distributed random variables 
always distributed normally? 

394. Prove that if ~ and 1] are independent and normally distributed with 
parameters a1 =a2=O, (11 =(12=(1, then the quantities p2=~2+1]2 and 
~ = ~/Yf are also independent. 

The following problem shows that the converse assertion is also 
valid. 

395. * If ~ and 1] are independent and identically distributed, have density, 

and P = J ~2 + 1]2 and ~ = ~11J are independent, then ~ and 1] are normally 
distributed. 

396.** Let ~1> ~2' ... , ~n be independent and their sum normally distribut­
ed. Prove that each of the ~ i has a normal distribution. 

397. * If ~1' ~2' ... ' ~n are independent, identically distributed and have 
dispersion, and if, moreover, an orthogonal matrix C= Ilcull, different 
from the identity matrix, can be found such that the 

n 

1]j = I Cjk~k 
k=1 

are independent, then the ~k are normally distributed. Consider the special 
case n = 2 and the matrix 

398. Let p (x) be the density of a distribution. Then 

00 

H(p(x) = - f p(x) lnp(x) dx 
-00 

is called the entropy of the continuous distribution. Prove that if 
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J~oo xp(x)dx=O, J~oo x 2p(x) dx= 1, then H(p(x))~ln foe, where 
equality is attained only for a normal distribution.!) 

399. Letp(x)=O for x~O and 

00 

J x p (x) dx = a . 
o 

Prove that the maximum ofthe entropy holds when 

p (x) = l exp { - ~}, 
and it equals 1 n ea. 

400. The entropy of a multidimensional continuous distribution with 
density P(Xl' x 2 , ••• , x n ) is defined by the formula 

Prove that for a multidimensional normal distribution with density 

la .. 11 / 2 

p (Xl' ... , Xn) = (2~t/2 exp (-1 I aijXiXj) ' 

H = In (2ne t/2Iaijl-l/2 , 

where laijl is the determinant whose elements are aij' 

401. Letp(x) be the density of the distribution~. Show that for an arbi­
trary n, 

n 

attains its maximum for 

1) The entropy H(P(x)) was first introduced by C. Shannon. Yu. V. Linnik used it to 
prove the central limit theorem under the Lindeberg conditions (Theory 0/ probability 
and its applications, IV, issue 3 (1959)). 
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Multidimensional distributions 

if, and only if, 

1 {(X - a)2} 
p(x) = J- exp - 2 • 

(1' 2n 2(1' 

402. Let m: be a family of distribution functions F(x), defined by the 
following three conditions: 

1) every distribution FEm: is uniquely defined by its mathematical 
expectation!1 and dispersion (1'; 

2) for arbitrary a>O and b, F(X)Em: implies that F(ax+b )Em:; 
3) FEm: and GEm: imply that F* GEm:. Prove that m: is the family of 

normal distributions. 

7.3 Multidimensional distributions 

403. Let ( be a given random variable which takes on the complex values: 
(= ~ + i1'/, where ~, 1'/ are random variables which take on real values. Let 
(I = (e il be a new random variable. What must the distribution ( satisfy in 
order that all the variables (I have the same distribution? One can assume 
that the random vector (~, 1]) has density. 

404. * Let D be a simply connected region in the plane having a sufficient­
ly smooth boundary and a density p (x, y) > 0 given in it. Prove that 
one can introduce new coordinates which will be independent. 

405. Let ~ and 1'/ be two given random variables which take on the values: 

Its joint distribution is given: 

p g = ai' 1] = b J = Pij . 

A new random variable (=¢ (~, 1'/) is defined where ¢ (x, y) is an arbitrary 
function of two variables on the set of pairs (ai' bJ. Clearly, M[(2] < 00, 

i.e. 

If in the space of the functions ¢, where ¢ is defined by the collection 
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of numbers: 

{c(i,j)} (i = 1, ... , n;j = 1, ... , m), 

one introduces a scalar product in the following way: 

«(4>,('h) = M [(4),(4>2] = L Cl (i, j) C2 (i, j) Pij ; 
i, j 

then we obtain an Euclidean space H;:,,,. 
Consider the subspace H as a subspace of H;:,'1' spanning the func­

tions depending only on ~, 

HI; = (C4>:</J(x, y) = </J(x)}. 

Find the orthogonal projection 11 on the subspace HI;. 

406. Let ~=gl' ... ' ~N} be a random variable distributed in N-dimen­
sional space, let t = {t 1> ••• , t N} be a vector of N-dimensional space, let 

N 

(t, 1;) = L: ~ktk 
k=l 

be the scalar product. Xli (t) = M[ ei(t, !i)] is the c.f. of the random vector 1;. 
It is known that the function XI; (t) possesses the following properties: 

a) XI;(O)=I; 
b) XI; (t) is continuous in t; 
c) for an arbitrary collection of vectors tt, ... , t k and an arbitrary 

collection of complex numbers ct l , ... , ctk the relation 

k 

L: XI; (1" - t m) ctiim ~ 0 
n,m=l 

is satisfied. Prove that the function 

X(t) = e-(t,t)/2 

satisfies conditions a), b), c). 

407. Let ~l> ~2' ~3 be random variables with M[~a=O and matrix of 
second moments V= IIvikll and let I-p=P{I~ll <ct l ; 1~21 <ct2; 1~31 <ct3}. 
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Prove that in the case when the ~ i are not correlated, the estimate 

cannot be strengthened. 

408. Let ~1 and p be defined as in the preceding problem. Prove that 
p~tr(VB-l), where B is an arbitrary positive definite matrix with diago­
nal elements ~ IX j. 

Hint. Use the fact that if in a positive definite quadratic form S(x)= 
= I aikxixk the diagonal elements of the inverse matrix are ~ 1, then, for 
X= (Xl' Xz, X 3 ), such that max (Ixd)~ 1, S(x)~ 1. 

409. Let there be given n random variables ~1' ... , ~n and let Pi,j be the 
correlation coefficient between ~ i and ~ j. Prove that the matrix lip i, j II f. j is 
non-negative definite. In the case n = 3, find the possible values for c = 
= PIZ = P13 = PZ3· 

410. Prove that for a normal two-dimensional distribution, an arbitrary 
central moment J.1.i,k of even order i+k=2n equals the coefficient of 
tiuk in the polynomial 

ilk! Z Zn 

2nn! (J.1.z,ot + J.1.1,l tu + J.1.o, zU ) • 

411. Each of the quantities ~, tI and, has mean 0 and dispersion 1. The 
quantities satisfy the relation a~ + btl + c' = o. Find the matrix of second 
moments and show that 

412. Consider two random variables ~ and tI with joint distribution of 
continuous type. Let 

J(t, u) = M [exp {n (t~ + Uti))]. 

Assume also that tI > o. If the integral 

00 

1 ~ (OJ) g(x)=-:J - dt 
2nl OU u= -tx 

-00 
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converges uniformly with respect to x, then it represents the probability 
density ofthe quantity ell1. 

413. Suppose the variables el,"" en have a proper normal distribution 
with means mb ... , mn and matrix of second moments A= IIAikll. Prove 
that the quantity 

n 

11 = I ~~ (ej - mj)(~k - mk), 

j.k= 1 

where Aj,k is the cofactor of the element Aj,k' has X2 distribution with n 
degrees off reed om and density 

k (x) = r n/ 2 __ 1_ X 2 / n - 1 e- x / 2 

n r (nI2) 

for x>O; kn(x)=Ofor x~O. 

See page 141 for the answers on problems 373-413. 
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8 Markov chains 

The problems of this chapter correspond basically to §§ 17-20 of the 
textbook by B. V. GNEDENKO. Consider the sequence of discrete 
random variables ~l' ... ' ~n' ...• We will say that this sequence forms a 
Markov chain if for an arbitrary finite collection of integers n l <n2 < ... 
... <nr<n the joint distribution ~nl' ~n2' ... , ~nr' ~n is such that the condi­
tional probability of the relation ~n=x under the conditions ~nl = 
=X I ,·.·, ~nr=xr coincides with the conditional probability ~n=x under 
the condition ~nr=xr. Here, Xl' ... , X" X are arbitrary numbers for which 
our conditions have a positive probability. In the case when the tran­
sition probabilities 

do not depend on m, the Markov chain is called homogeneous. The matrix 
of the transition probabilities of the Markov chain p= Ilpijll obviously 
possesses the following properties: 

a) Pik>O; 
b) for all i, LkPik= 1. 

Matrices, for which conditions a) and b) are satisfied, are called stochastic 
matrices. 

Sometimes, instead of saying that ~ n = Ek , we say that at the moment 
of time n the system is in the state Ek • If the number of states in which a 
system can occur is finite, then the Markov chain is called finite. We denote 

Ifthe limit Pk = limm .... 00 p~;;') exists for all k, if this limit does not depend 
on i, and if L Pk = 1, then the corresponding Markov chain is said to be 
ergodic. In this connection, the Pi are called limiting, or final, probabilities. 

Let pij) = probability that at time n the Markov chain is in statej. 
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Then 
r 

Pn (j) = L Pi (k) Pk~j 1) • 
k=i 

If a Markov chain is ergodic then the limits limn .... 00 P.U)=Pj are also 
called stationary probabilities. 

If a system can go from the state Ei into the state E j with positive 
probability, in a finite number of steps, then we say that E j is accessible 
from E;. The state Ei is called essential if for every state Ej accessible from 
E/> E; is accessible from E j • But if at least for one j, E j is accessible from 
E; but E j is not accessible from E j , then E; is an inessential state. A state 
is called recurrent if, starting from it, the system returns to it with proba­
bility 1 in a finite number of steps. But if the probability of returning is 
less than 1, then the state is transient. A state is called periodic if return 
to it is possible only after a number of steps which is a multiple of r> 1. 
A Markov chain is called irreducible if every state of the chain is accessible 
from any other state. Sometimes Markov chains of the r-th order are also 
considered. They are defined by the requirement that for an arbitrary 
collection of integers ni < ... < ns < n, 

p{en+r = x I en = Xn; en+i = xn+i ; ... ; en+r-i = X.+ r- i } = 
= p{en+r = xlen, = xn,; ... ; ens = xns; en = Xn; "';~n+r-i = xn+r-d· 

where the x, Xi are arbitrary numbers for which the conditions have a 
positive probability. For r= I, we obtain the definition of the usual 
Markov chain. 

The reader is referred to [5], [6] and [7] for additional discussion of 
Markov chains. 

8.1 Definition and examples. Transition probability 
matrix 

414. Let ~k(k= 1,2, ... ) be independent identically distributed integral 
random variables, where 

p{en=k}=Pk (k=O,±I,±2, ... ), 

108 



Transition probability matrix 

and let '1"=~1 +~,.. Prove that the '1,. form a Markov chain. Find the 
corresponding transition probability matrix. 

415. The probabilities of transition after one step in a Markov chain is 
given by the matrix 

[
t t t 

p= t t 0 
ito 
o t 0 

a) What is the number of states equal to? 
b) How many among them are essential and non-essential? 
c) After how many steps from the second state can one go over to 

the third? 
d) Find the transition probabilities after two steps. 

416. Let ~1> ~2' ••• be a sequence of integer-valued random variables and 
let, for an arbitrary n>O and arbitrary integers k;jo; ... ;j,. 

P{~"+1 = k I ~o =jo; ~1 =j1; ... ;~,. =jn} = 
= p {~,.+ 1 = k I ~,. = jn} . 

Prove that in this case, for arbitrary O::::;;nj::::;;n and arbitrary integers jj 
andk 

P{~n+1 = k I ~nl = j1' ~n2 = j2, ... } = 
= Pgn+1 = k I ~n. =js}, where ns = max{nJ. 

i 

417. Prove that for a homogeneous Markov chain with transition prob­
ability matrix P= I!pijll the following relation holds: 

pf;> = LPijp)~-1> (n = 2, 3, ... ). 
j 

418. LetA be an event depending only on the first (n - I) steps of a Markov 
chain and B an event depending only on the (n+ 1), (n+2), ... , (n+m) 
steps. Prove that for a fixed state at the moment of time n, the events A 
and B are independent. 

419. Unrestricted random walk. A point moves on an integral line, passing 
in one step from the point i to the point i-I with probability p, to the 
point i with probability q, and to the point i+ 1 with probability 
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r (p + q + r= 1). Find the transition probability matrix: after one step; 
after two steps. 

420. Let ~i (i= 1,2, ... ) be independent identically distributed random 
variables which take on the values - 1 and + 1 with probability p and 
I-p respectively. Set (n=~n~n+1. Will the sequence (n be a Markov 
chain? Does the limit of P { (n = I} exist as n -+ w? 

421. Let the ~i be defined as in the preceding problem and let 

k k 

(n = max I ~i - min I ~i· 
l~k$:n i~l l~k~n i=l 

Will the sequence (n be a Markov chain? 

422. There is given a Markov chain with a finite number of states E 1 , ••• , 

Es. Let ~i be the index of the state in which the system is situated after 
the i-th step. 
Will the following sequences be Markov chains: 

) (. = {I if ~i = 1, 
a , 0 if ~i #- 1 

i 

b) '1i = I ~k? 
k=l 

Will the second sequence be a chain of order 2? 

423. A worker, standing at a control point, inspects one article every 
minute. Each article independently of the others can turn out to be 
defective with probability p, 1> p>O. The worker checks the arriving 
articles one after the other, spending one minute checking each one. If the 
article turns out to be defective, then he stops checking the other articles 
and repairs the defective one. For this he spends 5 minutes. Denote by (n 

the number of articles accumulated at the worker during n minutes after 
start of work. Will the sequence (n be a Markov chain? 

424. Let (n be defined as in the preceding problem, and let Vn be the time 
already spent by the worker on checking and repairing the article which at 
the given moment is serviced by the worker. Will the sequence of two­
dimensional random variables (( n> V n) be a Markov chain? 

425. An electron can be situated on one of a countable set of orbits 
depending on the energy present. Transition from the i-th orbit to the 
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j-th occurs in one second with probability Ci e-ali-jl (i,j=l, 2, ... , (0). 
Find: 

a) the transition probability after two seconds; 
b) the constants C i • 

426. Suppose the random variables ~o, ... , ~n form an r-th order Markov 
chain. Prove that the random vectors ~n= (~," ~n+1' ... , ~n+r-1) form a 
Markov chain of the I-st order. 

427. Prove that if the random variables ~o, ~1' ..• , ~N form a Markov 
chain, then the random variables 11k=~N-k also form a Markov chain. 

428. In studying Markov chains it frequently turns out that one must 
count the number of transitions from the state Ei to the state E j • Let 
the matrix of the initial Markov chain be P= Ilpijll:,j=1' We introduce a 
sequence of new random variables (1' ... , (no ... in such a way that (n will 
take on the value Eij if the initial chain has jumped, at the n-th step, from 
the state Ei into the state E j . Prove that the (n also form a Markov chain 
and find the corresponding probability transition matrix. 

429. There are given a sequence ~i (i= 1,2, ... ) of independent random 
variables, each uniformly distributed on the segment [0, 1], a Markov 
chain with a finite number of states E 1, ... , Es and transition probability 
matrix P= Ilpijll:,j=1' A functionf(1J, 0 is constructed by defining it in 
the following way: 1) 1J takes on the values E1, ... , Es; 2) if 1J =Ei and 
Pi,1+"'+Pi,m-1<~~Pi,1+"'+Pi,m thenf(1J,~)=Em' Prove that the 
sequence (.+1 = f((m ~n+l) is a Markov chain with transition probability 
matrixP. 

430. Prove: a necessary and sufficient condition for the state Ei in a 
homogeneous Markov chain to be recurrent is that the series I:'= 1 pi;) 
diverge. 
Hint. Introduce the probabilities f/n) that the first return to the state Ei 
occurs at the n-th step, and use the formula 

n 

P~?) = " j:(m)p~?-m) 
It ~ ~ u • 

m=1 

431. Consider the Markov chain with the two states E1 and E 2 , transition 
probabilities Pll=PZ2=P, P12=P21=q(0<p<l,p+q=l) and initial 
probabilities Pgo =Ed =a, Pgo =E2} = I-a. Find {pi;)}, Pi(n)= 
=P{ ~n=EJ and the corresponding probabilities Pi' 
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432. N black and N white balls are placed in two urns so that each urn 
contains N balls. The number of black balls in the first urn determines the 
state of the system. At each step, one ball is randomly selected from each 
urn, and these selected balls have their places interchanged. Find Pik' 

Show that the limiting probability Uk equals the probability of obtaining 
exactly k black balls if N balls are selected at random from the collection 
containing N black and N white balls. 

433. A Markov chain with states Eo, E1 , •.• has the transition probabilities 

min(j, k) ).k-l 

-l '" Ci (1 )i j-i Pik = e L.. j - q q ---.' 
i=O (k-l) 

Show that, as n -+ 00, 

().)k 1 
PC.n) -+ e-J..fq _ '-. 

Jk k' q . 

Such a chain is encountered in statistical mechanics and can be inter­
preted in the following way. The state of the system is determined by the 
number of particles in a certain region of space. After every interval of 
time of unit length, the particle can abandon this region with probability 
q. Moreover, in this region of space there can appear new particles, and 
the probability of this is given by the Poisson expression e-.l.().r/r!). 
The stationary distribution then turns out to be the Poisson distribution 
with parameter )./q. 

8.2 Classification of states. Ergodicity 

434. Are the Markov chains with the following transition probability 
matrices, after one step, ergodic: 

[~ ~J, [~ ~J, [~ ~J, [1- tJ o 1 ' [t tJ? 1 0 . 

If they are ergodic, find the limiting distribution. 

435. Consider the Markov chain with the states E10 ... , Es and the 
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transition probability matrix 

[I H HI 
436. Consider the Markov chain with the following transition proba­
bilities matrix, after one step: 

f
PO P1 ... pm-1J 

p= P,:.-.1 ... ~~:.::.m.~2 , 
PI P2 ···Po 

where O:C:Pi< 1, LPi= 1. Prove thatP{~n=Ei} ~ 11m as n~ 00. 

437. Prove that if the number of states in a Markov chain is a < 00 and if 
Ek is accessible from E j , then it is accessible in a or fewer steps. 

438. Suppose a chain contains a < 00 states and let Ek be a recurrent state. 
Prove that there exists a number q< 1 for which with n?:;a the probability 
that the time of returning to Ek exceeds n, is less than qn. 

439.* Consider the sequence of random variables gn}, defined with the 
aid of the following recursion formula: 

~ ={~n-l-k+YJn-1 if ~n-l)!:k, 
n ~n-l+YJn-1 if ~n-l<k, 

where k is a fixed integer and the {~n} are independent identically distrib­
uted random variables, with 

P{YJn = I} = c~i(1- p)m-l (k"# mp). 

Prove that the random variables ~n form a Markov chain. Show that for 
k < mp the chain is not ergodic and that for k > mp it is ergodic. 
Hint. It is expedient to write out the equation which the P j = 
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= limn-+ ooP gn = j} must satisfy and introduce the generating functions 

00 

u(z)=LPjzj and 
o 

k-1 

Uk(Z) = L PjZj . 
o 

440. Random walk with reflecting boundary. Consider the symmetric 
walk in a bounded region of the plane. The boundary is reflecting in the 
sense that every time when, in the unrestricted random walk, a particle 
would leave the region it is forced to return to its previous position. Show 
that if every point of the region is accessible from every other point then 
there exists a stationary distribution and that qk = lla, where a is a constant 
in the region. 

441. Show that the state E j of a finite chain is transient if, and only if, 
there exists an Ek such that Ek is accessible from E j and E j is not acces­
sible from Ek • (As the following problem shows, this is not true for an 
infinite chain.) 

442. Assume that in an infinite chain only the transitions E j -+ E j + 1 and 
E j -+ Eo are possible and that their probabilities equal 1 - P j and P j' Show 
that all states are transient or that all states are recurrent depending on 
whether the series L P j converges or diverges. 

443. Show that an irreducible chain for which at least one diagonal 
element P jj is positive cannot be periodic. 

444. Denote by Mij the mathematical expectation z of the number of 
steps necessary for the transition from Ei to E j • Prove that within the 
bounds of one class of essential states either all the Mii are infinite or all 
the Mii are finite. The classes in which all the Mii are finite are called 
positive and the classes in which all Mii = 00 are called null. Prove that in 
null classes some Mij can be finite. 

445. Prove that a finite irreducible Markov chain is non-periodic if, and 
only if, there exists a number n such that pfz) > 0 for all i and k. 
446. Ergodic theorem for means. For an arbitrary chain, we define the 
numbers AiZ) by the equations 

n 

A (n) - ~ I p(n) ik - ik • 
n 

i=1 
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The distribution of random variables 

Prove that if Ei and Ek belong to the same class of essential states, then 
A~Z) tend, as n --+ 00, to a limit which does not depend on i. If Ek is irre­
ducible, then AlZ) --+ 0 for all i. 

447. * Prove that if a characteristic value A of the finite stochastic matrix 
is such that IAI = 1, then A = n)l, where n is a natural number. 

448. * Prove that if the stochastic matrix has two characteristic values, 
each in absolute value equal to unity, then the corresponding Markov 
chain is non-ergodic. 

8.3 The distribution of random variables defined on 
a Markov chain 

449. * Let 1J~k) = 1 if for t = n the chain occurs in Ek and 1J~k) = 0 otherwise. 
Set 

n 

,~k) = L 1J~k). 
i=l 

Prove that 

,~k) p 

---+ Pk' 
n 

Hint. Estimate the dispersion ,~k) and use Chebyshev's inequality. 

450. * Denote by V(k) the moment of the first occurrence in Ek under the 
condition ~o =k. Prove that: 

a) P {V(k) > n} ~ (1 - dy; 
1 

b) M[V(k)] =-. 
Pk 

Hint. Use the relation Vk(Z) = I-I/uk(z), where Vk(Z) is the generating 
function of V(k), and 

00 

uk(z) = 1 + L pi';/zn. 
n=l 

451. Let J1~k) = V~k) + ... + V~k), where V~k) is the time from the n-th occur­
rence in Ek to the (n + 1 )-st occurrence in Ek inclusive. 

115 



Markov chains 

Prove that 

J.l(k) _ _ x 

. "Pk 1 -"2/2 
I

n I 
lim P J < x = J- f e du, 

" .... 00 (1 n 2n 
-00 

where (12 = D [V~k)]. 

452.* We denote by ,~k) the number of realizations of Ek in the first n 
steps. Prove that with a suitable normalization ,~k) converges to the normal 
lawasn~oo. 

Hint. Use the relation 

p {,~k) < r} = P {J.l~ > n} , 

where J-L~k) is defined in the preceding problem. 

453. * Suppose the transition probability matrix has the form 

[1- J.l J.l] 
A. I-A. 

and let ~ n = a1 if at the moment of time t = n, the chain is in the first state 
and e" = a2 =F a1 if in the second state. Let ,,, = eo + ... + e,.. Prove that 

limP 
" .... 00 

See page 142 for the answers on problems 415-453. 
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Table 1 Normal distribution function iP(t)=(1/J2n) Y-oo e- tx2 dx 

t 0 1 2 3 4 

-0.0 0.5000 0.4960 0.4920 0.4880 0.4840 
-0.1 .4602 .4562 .4522 .4483 .4443 
-0.2 .4207 .4168 .4129 .4090 .4052 
-0.3 .3821 .3783 .3745 .3707 .3669 
-0.4 .3446 .3409 .3372 .3336 .3300 
-0.5 .3085 .3050 .3015 .2981 .2946 
-0.6 .2743 .2709 .2676 .2643 .2611 
-0.7 .2420 .2389 .2358 .2327 .2297 
-0.8 .2119 .2090 .2061 .2033 .2005 
-0.9 .1841 .1814 .1788 .1762 .1736 
-1.0 .1587 .1562 .1539 .1515 .1492 
-1.1 .1357 .1335 .1314 .1292 .1271 
-1.2 .1151 .1131 .1112 .1093 .1075 
-1.3 .0968 .0951 .0934 .0918 .0901 
-1.4 .0808 .0793 .0778 .0764 .0749 
-1.5 .0668 .0655 .0643 .0630 .0618 
-1.6 .0548 .0537 .0526 .0516 .0505 
-1.7 .0446 .0436 .0427 .0418 .0409 
-1.8 .0359 .0351 .0344 .0336 .0329 
-1.9 .0288 .0281 .0274 .0268 .0262 
-2.0 .0228 .0222 .0217 .0212 .0207 
-2.1 .0179 .0174 .0170 .0166 .0162 
-2.2 .0139 .0136 .0132 .0129 .0125 
-2.3 .0107 .0104 .0102 .0099 .0096 
-2.4 .0082 .0080 .0078 .0075 .0073 
-2.5 .0062 .0060 .0059 .0057 .0055 
-2.6 .0047 .0045 .0044 .0043 .0041 
-2.7 .0035 .0034 .0033 .0032 .0031 
-2.8 .0026 .0025 .0024 .0023 .0023 
-2.9 .0019 .0018 .0018 .0017 .0016 

t= -3.0 -3.1 -3.2 -3.3 -3.4 

(t) =0.0013 0.0010 0.0007 0.0005 0.0003 
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6 7 8 9 

).4801 0.4761 0.4721 0.4681 0.4641 
.4404 .4364 .4325 .4286 .4247 
.4013 .3974 .3936 .3897 .3859 
.3632 .3594 .3557 .3520 .3483 
.3264 .3228 .3192 .3156 .3121 
.2912 .2877 .2843 .2810 .2776 
.2578 .2546 .2514 .2483 .2451 
.2266 .2236 .2206 .2177 .2148 
.1977 .1949 .1922 .1894 .1867 
.1711 .1685 .1660 .1635 .1611 
.1469 .1446 .1423 .1401 .1379 
.1251 .1230 .1210 .1190 .1170 
.1056 .1038 .1020 .1003 .0985 
.0885 .0869 .0853 .0838 .0823 
.0735 .0721 .0708 .0694 .0681 
.0606 .0594 .0582 .0571 .0559 
.0495 .0485 .0475 .0465 .0455 
.0401 .0392 .0384 .0375 .0367 
.0322 .0314 .0307 .0301 .0294 
.0256 .0250 .0244 .0239 .0233 
.0202 .0197 .0192 .0188 .0183 
.0158 .0154 .0150 .0146 .0143 
.0122 .0119 .0116 .0113 .0110 
.0094 .0091 .0089 .0087 .0084 
.0071 .0069 .0068 .0066 .0064 
.0054 .0052 .0051 .0049 .0048 
.0040 .0039 .0038 .0037 .0036 
.0030 .0029 .0028 .0027 .0026 
.0022 .0021 .0021 .0020 .0019 
.0016 .0015 

-3.5 -3.6 -3.7 -3.8 -3.9 

1.0002 0.0002 0.0001 0.0001 0.0000 
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Table 2 Student's criterion. Confidence boundaries for t with f 
degrees of freedom 

------ --------------

f Two-sided boundaries 
-- ---~----------.---

t 5% 2% 1% 0.1% 

1 12.710 31.820 63.660 636.600 
2 4.303 6.965 9.925 31.600 
3 3.182 4.541 5.841 12.920 
4 2.776 3.747 4.604 8.610 
5 2.571 3.365 4.032 6.869 
6 2.447 3.143 3.707 5.959 
7 2.365 2.998 3.499 5.408 
8 2.306 2.896 3.355 5.041 
9 2.262 2.821 3.250 4.781 

10 2.228 2.764 3.169 4.587 
11 2.201 2.718 3.106 4.437 
12 2.179 2.681 3.055 4.318 
13 2.160 2.650 3.012 4.221 
14 2.145 2.624 2.977 4.140 
15 2.131 2.602 2.947 4.073 
16 2.120 2.583 2.921 4.015 
17 2.110 2.567 2.898 3.965 
18 2.101 2.552 2.878 3.922 
19 2.093 2.539 2.861 3.883 
20 2.086 2.528 2.845 3.850 
21 2.080 2.518 2.831 3.819 
22 2.074 2.508 2.819 3.792 
23 2.069 2.500 2.807 3.767 
24 2.064 2.492 2.797 3.745 
25 2.060 2.485 2.787 3.725 
26 2.056 2.479 2.779 3.707 
27 2.052 2.473 2.771 3.690 
28 2.048 2.467 2.763 3.674 
29 2.045 2.462 2.756 3.659 
30 2.042 2.457 2.750 3.646 

t 2.5% 1% 0.5% 0.05% 

f One-sided boundaries 
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Table 2 (continued) 

f Two-sided boundaries 

t 5% 2% 1% 0.1% 

40 2.021 2.423 2.704 3.551 
50 2.009 2.403 2.678 3.495 
60 2.000 2.390 2.660 3.460 
80 1.990 2.374 2.639 3.415 

100 1.984 2.365 2.626 3.389 
200 1.984 2.365 2.626 3.389 
500 1.965 2.334 2.586 3.310 
00 1.960 2.326 2.576 3.291 

t 2.5% 1% 0.5% 0.05% 

f One-sided boundaries 

Table 3 Poisson distribution. The function I~x (J...kjk!) e-;' 

A-

x 0.1 0.2 0.3 0.4 0.5 
~-~---

0 1.000000 1.000000 1.000000 1.000000 1.000000 
.095163 .181269 .259182 .329680 .393469 

2 .004679 .017523 .036936 .061552 .090204 
3 .000155 .001149 .003600 .007926 .014388 
4 .000057 .000266 .000776 .001752 
5 .000172 

A-

x 0.6 0.7 0.8 0.9 1.0 

0 1.000000 1.000000 1.000000 1.000000 1.000000 
.451188 .503415 .550671 .593430 .632121 

2 .121901 .155805 .191208 .227518 .264241 
3 .023155 .034142 .047423 .062857 .080301 
4 .003358 .005753 .009080 .013459 .018988 
5 .000394 .000786 .001411 .002344 .003660 
6 .000184 .000343 .000594 
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Table 3 (continued) 

A-

x 1.2 1.4 1.6 1.8 2.0 

0 1.000000 1.000000 1.000000 1.000000 1.000000 
.698806 .753403 .798103 .834701 .864665 

2 .337373 .408167 .475069 .537163 .593994 
3 .120513 .166502 .216642 .269379 .323324 
4 .033769 .053725 .078813 .108708 .142877 
5 .007746 .014253 .023682 .036407 .052653 
6 .001500 .003201 .006040 .010378 .016564 
7 .000251 .000622 .001336 .002569 .004534 
8 .000260 .000562 .001097 
9 .000237 

A-
----------------~.-~~-

x 2.2 2.4 2.6 2.8 3.0 4.0 

0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 
.889197 .909282 .925726 .939190 .950213 .981684 

2 .645430 .691559 .732615 .768922 .800852 .908422 
3 .377286 .430291 .481570 .530546 .576810 .761897 
4 .180648 .221227 .263998 .308063 .352768 .566530 
5 .072496 .085869 .122577 .152324 .184737 .371163 
6 .024910 .035673 .049037 .065110 .083918 .214870 
7 .007461 .011594 .017170 .024411 .033590 .110674 
8 .001978 .003339 .005334 .008131 .011905 .051134 
9 .000470 .000862 .001487 .002433 .003803 .021363 

10 0.000376 0.000660 0.001102 0.008132 
11 .000292 .002840 
12 .000915 
----~--

122 



Appendix 

Table 3 (continued) 

A-

x 5.0 6.0 7.0 8.0 9.0 10.0 

0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 
1 .993262 .997521 .999088 .999665 .999877 .999955 
2 .959572 .982649 .922705 .996981 .998766 .999501 
3 .875348 .938031 .970364 .986246 .993768 .997231 
4 .734974 .848796 .918235 .957620 .978774 .989661 
5 .559507 .714943 .827008 .900368 .945036 .970747 
6 .384039 .554320 .299292 .808764 .884309 .932914 
7 .237817 .392697 .550289 .686626 .793219 .869859 
8 .133372 .256020 .401286 .547039 .676103 .779779 
9 .068094 .152763 .270909 .407453 .544347 .667180 

10 .031828 .083924 .169504 .283376 .412592 .542070 
11 .013695 .042621 .098521 .184114 .294012 .416960 
12 .005453 .020092 .053350 .111924 .196662 .303224 
13 .002019 .008827 .027000 .063797 .124227 .208444 
14 .000698 .003628 .012811 .034181 .073851 .135536 
15 .001400 .005717 .017257 .041466 .083459 
16 .000509 .002407 .008231 .022036 .048740 
17 .000958 .003718 .011106 .027042 
18 .001594 .005320 .014278 
19 .000650 .002426 .007187 
20 .001056 .003454 
21 .000439 .001588 
22 .000700 
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Table 4 Confidence boundaries for X2 with f degrees of freedom 

f 5% 1% 0.1% f 5% 1% 0.1% 
-.--.~ 

1 3.84 6.63 10.8 18 28.9 34.8 42.3 
2 5.99 9.21 13.8 19 30.1 36.2 43.8 
3 7.81 11.3 16.3 20 31.4 37.6 45.3 
4 9.49 13.3 18.5 21 32.7 38.9 46.8 
5 11.1 15.1 20.5 22 33.9 40.3 48.3 
6 12.6 16.8 22.5 23 35.2 41.6 49.7 
7 14.1 18.5 24.3 24 36.4 43.0 51.2 
8 15.5 20.1 26.1 25 37.7 44.3 52.6 
9 16.9 21.7 27.9 30 43.8 50.9 59.7 

10 18.3 23.2 29.6 35 49.8 57.3 66.6 
11 19.7 24.7 31.3 40 55.8 63.7 73.4 
12 21.0 26.2 32.9 45 61.7 70.0 80.1 
13 22.4 27.7 34.5 50 67.5 76.2 86.7 
14 23.7 29.1 36.1 55 73.3 82.3 93.2 
15 25.0 30.6 37.7 60 79.1 88.4 99.6 
16 26.3 32.0 39.3 65 84.8 94.4 106.0 
17 27.6 33.4 40.8 70 90.5 100.4 112.3 
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1 Fundamental concepts 

1. a) A young man who does not live in a dormitory and does not 
smoke is chosen. 

b) When all young men live in a dormitory and do not smoke. 
c) When the smokers live only in the dormitory. 
d) When no young lady smokes and all young men smoke. No, 

since young ladies can also smoke. 

9. a) B4,2 = (AI n A2 n A3 n A4) u (AI n A2 n A3 n A4) u 

u (AI n A2 n A3 n A4) u (Al n A2 n A3 n A4) u 

u (AI n A2 n A3 n A4) U (AI n A2 n A3 n A4) ; 

b) if the experiment m: is repeated indefinitely the event A occurs m 
times; 

c) true. 

17. 10%. 

21. 113. 

23. P {A L B} = 2r - p - q; P {A n B} = r - q; 

P{AnB}=1-r. 

27. The space of elementary outcomes consists of the sequence: 
TT, HR, THH, HTT, TRTT, HTHH, ... 

29. 

a) ~~; 

b) ~. 

3!2!2! 

10! 

31. 0.096. 
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33. 

2(k -1)(n - k) 
35. 

n (n - 1) 

37. 

39. 

C~-m 
1- -k-' 

Cn 

c;r22r 
41. a) C2r ' 

2n 

43. Consider random walk on a two-dimensional integral lattice of 
points'; (I) defined in the following way: .; (0)= (0,0), .; (I) = (M(l), N(l)) 
for O<l~m+n. Clearly, all trajectories of the point'; emanating from 
the point (0, 0) to the point (m, n) are equally probable. The total number 
of such trajectories is C:::+ n• Denote by z the number of trajectories going 
from (0, 0) to (m, n) and having at least one point in common with the 
line x = y, different from (0, 0). Then 

z 
P=1--".-. 

Cn+m 

In order to find z, we note that between the set of trajectories going from 
(1,0) to (m, n) and the set of trajectories going from (0,1) to (m, n) 
and having at least one point in common with the line x= y one can 
establish a one-to-one correspondence. To this end, it suffices to assign to 
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each trajectory emanating from (1,0) the trajectory emanating from 
(0, 1), which is obtained from the first by a mirror reflection with respect 
to the line x = y of the segment of the first trajectory from the point (1, 0) 
to the first point in common with the line x = y. Now it is easy to find z: 

n-m 
Answer: P = --. 

n+m 

1 2n. n! 
45. a) = --' 

1·3·5 ... (2n - 1) (2n)!' 

n! n! 2n 

b) = = -n • 
1·3·5 ... (2n-l) (2n-l)!! e2n 

4-n 

en "Ck .2k.c13-k-2n 
4 L, 4-n 44 

47. Pn = __ k_=_O __ ~:--__ _ 

cg 

49., 51. The solution of these problems leans on the following lemma. 
In all, there exist C:+ r - 1 different ways to arrange r non-distinct objects 
in n cells. 
Proof Think of the cells as the intervals between (n+ 1) marks and for 
the objects take the letter A. The symbollAAI IAI IAAAAI will mean that 
there are 6 cells and 7 objects altogether, where there are 2 objects in the 
first cell, 1 object in the third cell, 4 in the sixth cell; cells 2, 4, 5 are 
empty. The distribution of objects in the cells is fixed as soon as the places 
on which the letters occur are indicated. But the letters can occur at 
(n + r - 1) places, and therefore the number of different arrangements 
coincides with 

Answers: 

49. e~+r-l; 

51. 1 : e~+r-l . 
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57. a) (~y; 
20( 

b) -. 
1t 

59. a) 1-(1-z)2; 

b) z(l-lnz); 

c) 1 - (1 - Z)2 ; 

d) Z2; 

e) forz<t, 2Z2; forz>t, 1-2(1-z)2. 

1 
61. a) 2 (a - 2r)2; 

a 

63. 
k k 

for 0 ~ x ~ k and arctan 1 ~ y ~ arctan 1 ; 

x 
P{h < x, 0( < y} = kl (21- xcoty). 

x 
for 0 ~ x ~ k and 0 ~ y < arctan 1 ; 

71. 

ltany 
P{h < x, 0( < y} = -k-' 

2 

.£..Q. .1..2.. .1.J!. 
25 24 23' 

Application of the basic formulas 

73. P{B I A} = 0.39; P{B I A} = 0.10. 

75. 1 - (i)3. 

77. 
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79. 1 1 
17' 

C2 
81. 5 

3 • C6 

83. Dependent. 

85. For p=!. 

p-e p 
87. i--=-;; < P {A I B} < 1 _ e' 

89. Let~, 1], (be defined as in problem 85 and letp=!; then the events 
A= {~=O}, B= {1J =O}, C= {( =O} are pairwise independent. On the 
other hand, A nBcC and hence A, B, C are simultaneously dependent. 

91. X - l 
- 2' 

93. Pk = 2- k • 2 times. 

95. r5 (C~ + cD. 
97. a) P3 ,4 = Cl·(t)3·t = ±; P5 ,s = C~(-!/·(t? = }2; 

P3 ,4 > P5 , s; 

b) P3 ,4 + P4 ,4 = 156; 

P5 , s + P6 , S + P7 , S + Ps, s = (C~ + C~ + C~ + C~) r s = 

= 29536 > /6 ; 

n 

c) I Pk,2n=(1+C~n+,,·+C~n)2-2n> 
k=O 

2n 
= (Cn+ 1 + ... + C2n ) 2- 2n = " p, . 2n 2n L.. k, 2n , 

k=n+l 

d) equally probable. 

3 

101. Cio(O.3)3·(O.7?; I C~O(O.3)k·(O.7lo-k. 
k=O 

103. The second player must call zero with probability 1. The probability 
that k will be guessed between two successive failures equals 2- k - 1 • 
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2 
lOS. a)-; 

1C 

b . - 1 - - .4- 6 10',4 (2)4 ( 2)6 
) 4!3!1!1!1! 1C 1C • 

107. PA = (0.8'0.4'0.4) + (0.8'0.6·0.4) + (0.8'0.4'0.6) + 
+ (0.2'0.4'0.4) = 0.544 > t. 

109. P{A k } = (1- ql; (1- q)'q. 

113. t. 

l1S. a) t; 

117. 

121. 

123. 

12S. 

127. 

13S. 

130 

b) 31n2 - 2 = 0.082 .... 

-At e . 

( r3r a) 1 - R3 ; 
b) e- 41tr3).. 

0.52. 

Immaterial. 

1 - (1 - P (1 _ q))n . 

n 

a) 1 - IT (1 - p;) ; 
i=l 

n 

b) IT (1 - p;) ; 
i= 1 

n 

c) I Pi IT (1 - pJ. 
i= 1 j*i 



137. One must use the formula in Problem 136(a): 

1 1 1 
P=I--+--···+_· 

n 2! 3! -n!' 

1 
limPn=I-~. 

n-+ 00 e 

Answers 

139. The number of terms in the development of a determinant of the 
n-th order is equal in general to n!. The number of terms containing a 
given element equals (n -I)!, The number of terms containing two given 
elements equals (n - 2)!, etc. Hence 

141. 

1 lin 1 
P =1--+---+···+(-1)-

n I! 2! 3! n!' 

-At e . 

143. p;(t)=-brPr(t)+a(r-l)Pr_l(t). 

145. 
a 

a+b 

147. P = 21. 

3 Random variables and their 
properties 

149. Let ~ be the length of the game; then Pg=k} =rk and M[~J =2. 

151. 10. 

153. 3.5n; i·17.5n; o. 

155. ~ 8.50; 1 
2"4. 

157. Ap. 
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159. Let S be the area of the circle and d its diameter. For 

1 
161. ---- (1 - e -1.09S) ~ 222 (days). 

0.003 

167. M[~t/J=l; D[~f/J=%. 

n 

169. M[n = L M[f/J = 2npq; 
i= 1 
n n-l 

D[n = L D[ryJ + 2 L COV(t/i, t/i+1) = n2pq(1- 2pq) + 
i= 1 i= 1 

+ (n -1)2pq(p _ q)2. 

173. a) 1 ; 

p~+1 

b) ----. 
r(o:+ 1)' 
1 

c) -. 
11: 

183. a) Let '1 = o:~ + Pt/; '2 = o:~ - Pry· 

132 

D['lJ = D ['2J = (0:2 + p2) u2 ; P ('1' '2) = 0:2 _ p2; 

1 
P~t.~2(X, y) = 211:U2(0:2 + p2) (1 _ p2) x 

I 
(x - (a + P) a)2 - 2p(x - (0: + P) a) x 1 

x exp _ x (y - (0: - P) a) + (y - (0: - P) a )2 . 
2u2 (0:2 + p2) (1- p2) 
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187. For x<O this follows from the inequalities 

- 00 00 

- x = f (y - x) dF (y) ~ f (y - x) dF (y) 
-00 x 
00 00 00 

x 2 ~ (f (y - x) dF (y) r ~ f dF (y). f (y - X)2 dF (y) ~ 
x x x 

For x>O the proof is analogous. 

h 

191. ~ f F(x - y)dy. 
2h 

-h 

1 
197. a) C = -; 

n 
b) the same as for (; 

c) t. 

1 
199. a) For x> 0, PI; (x) = ( )2; 

l+x 

b) forO<x<l,PI;(x)=!; 

1 
forx>l, PI;(X)=2x2 ; 

1 
c) PI; (x) = n(l + x2)· 

203. a) P (x) is the function inverse to 

207. P {v (x) = k} = C~Fk (x)(l - F (x»)n-k. 

209. k weighings, where k is defined by the condition 3k -1 < n ~ 3k ; 

10g23 double units. 
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p logp + (1- p) 10g(1 - p) 
213. H = - ; as p decreases from 1 to 0 

p 

the entropy increases from 0 to 00. 

219. Iyz(X) = - p logp - (1- p) 10g(1 - p) + 

Ll 2 
Ll 2 1 p 

+ P og pLl2 + (1 _ p) (1 _ b)2 + 

2 (1-p)(1-b)2 
+ (1 - p) (1 - b) log pLl2 + (1 _ p) (1 _ b)2 + 

+ 2pLl (1 _ Ll) log pLl (1 - Ll) + 
pLl (1 - Ll) + (1- p)(l - b)b 

(1- p)(l- b)b 
+2(1-p)(1-b)blog () ()+ 

pLl 1-Ll +(l-p)b 1-b 

2 p(l - Ll)2 
+ P (1 - Ll) log ( )2 ( ) 2 + p1-Ll +l-pb 

2 (1 - p)b2 
+(l-p)b log ( )2 ( ) 2; p1-Ll +l-pb 

Iyz(X) = 0.2234 double units. 

4 Basic limit theorems 

223. Let S be the number of boys among the newborn. It is necessary to 
find the probability that S~5000. Since M[S]=5150 and D[S]~2500, 
the probability sought equals CP( -3)=0.0013. 

225. 
1,359,671 

------- = 0.5141 ; 
1,285,086 + 1,359,671 

Jp(1-P)~J1 =0.0003. 
n 4n 

According to the criterion, 0.5 is incompatible; 0.515 is compatible. 

227. Apply the Poisson approximation. 0.93803; 0.99983; 0.16062. 

229. Apply the Poisson distribution. 0.00016. 
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8,506 JO.249.0.751 
231. a) 34,153 ~ 0.249; 0.249 + a 34,153 = 0.245, a = - 1.71; 

0.249' 0.751 
0.249 + f3 = 0.255, f3 ~ 2.56 ; 

34,153 

P (0.245 < P < 0.255) ~ rp (2.56) - rp (- 1.71) ~ 0.951 ; 

b) 1 - rp (0.401) + rp (- 0.401) ~ 0.688; 

c) rp C~~ ~;;) ~ 0.995. It is sufficient to take n ~ 12,500. 

233. -t; the probability of obtaining a worse (in absolute value) coin­
cidence of the number of guesses with 50 is about 0.05. The result can 
be ascribed a purely random coincidence. 

235. e- x ::( 0.01; x ~ 5. 

237. e -x (1 + x + ~2 + ~3) ::( 0.01; n ~ x ·10,000 ~ 107,000. 

241. Denote by ~Ji= 1,2,3) the number of parts in disrepair in the 
i-th group. From the conditions of the problem it follows that the l;i 
have approximately a Poisson distribution with parameters ..11 = 0.3; 
..12 = 0.4; ..13 = 0.7. The number of parts in disrepair in the machine 
~ = ~1 + ~2 + ~3 also has a Poisson distribution with parameter ..1=1.4, 

P g ~ 2} = 1 - e -). (1 + A) = 0.408 . 

243. If the player wrote down k numbers, then the probability Pk that 
all the numbers he wrote down will occur among the five coming out in 
the drawing equals 

C~;;-~k 
Pk=~CS ; 

90 

1 2 1 1 1 
PI = 18' Pz = 801' P3 = 11 748' P4 = 511 038' Ps = 43 949 268' , , , , 

Denote the mean value of the player's win, who wrote down k numbers 
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by E k ; if the wager equals a rubles, then 

E 1 = 15a' -ts - a . 1 = - 1,a , E 2 = - ~ ~ a ~ - t a , etc. 

Since all the Ek are <0, it is obvious that the lottery is a game which is 
unfavorable upon writing down an arbitrary number of numbers. The 
probability that the number of winners among those who wrote down 
three numbers will be greater than 10 equals ~ 0.24. 

261. 
Ix - 35001 

f < 1.96; Ix - 35001 < 106. 
V 1000'-1;·17.5 

263. ± 0.866·1O- m + 2 

265. ~ 0.24; ~ 3840. 

267. a) No; 

b) LLN yes; CLT no; 

c) LLN no; CLTyes. 

271. 0.08; 0.0013; 0.85. 

4a 2 

273. M [IN] = I; D [IN] ~ -; normal with parameters (0, 0"), 
N 

where 

0"2 = f f f (I(x) - Iy dV. 
v 

275. The quantities XJ; - nand Ln are asymptotically N (0, 1). 
2n 

277. N(O,I). 

279. Let 1]i be the number of people who have passed by the seller 
during the time from the sale of the (i - 1 )-st paper to the time of sale 
of the i-th paper; the 1] i (i = 1, 2, ... , n) are independent and identically 
distributed, ~ = L1]i' Apply the CLT. M[~] =300, D[~] = 100, D[1]] =900. 
The quantity (~ - 300)/30 is asymptotically N (0, 1). 
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Characteristic and generating 
functions 

281. a) cos t = 1- e it( -1) + t eit(1) • 

Consequently, 

x~-1 

-1<x~l; 

x>1 

1
0 x~-2 

F(x)= ! -2<x~0 
4" 0<x~2 

1 2 <x 
c) I ak cos kt = t I ak e - ikt + t I ak eikt • 

Discrete distribution with jumps tak at the points ±k. 

283. a) t(1+z)2=i+tz+iz2. 

Answers 

Discrete distribution, with jumps at the points 0; 1; 2; respectively equal 
to t; t; i; 

Discrete distribution. The value k ~ 0 is taken on with probability 2 - k-1. 

c) Poisson distribution with parameter A; 
d) binomial distribution with probability of success P=4;;. 

p(1- p) Z2 1 
285. ¢(z) = ( ); M[UnJ = ; 

(l-pz) 1-(1-p)z p(l-p) 

1-3p(l-p) 
D [UnJ = 2 ( )2 P 1 - p 

287. ¢(z) = (1- p )r; Pr,k = (1- p)'pkC;+k_1' 
1- pz 

291. a) Let p(x) be the density. For an arbitrary 8>0 one can find a 
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step function ¢ (x), having a finite number of jumps, such that 

f Ip(x) - ¢(x)1 dx < e. 

The integral J eitx ¢ (x) can be written in the form of a finite sum of the 
form 

bu 

au 

Every term of this sum tends to zero as t ~ 00. Consequently, there exists 
a T such that, for It I >T, 

If eitx p(x) dxi < 2e. 
x 

T T 00 

293. a) ~ f J(t) e- itx dt = J_ f dt f eit(y-x) dF(y) = 
2T 2T 

-T -T -00 

00 h h 00 

f Si~ ~ Y dyF (y + x) = f + f + f. 
-00 -h -00 h 

For an arbitrary h, the second and third integrals tend to zero as T~ 00. 

If h is chosen sufficiently small, then as T ~ 00 the limit of the first integral 
will differ by an arbitrarily small amount from the jump of the function 
F at the point x. 

b) For the proof, it suffices to note that the limit of the integral 
on the left equals, according to a), above, the jump at zero of the distribu­
tion function F* (x)=F(x)*[I-F( -x+O)] and to calculate the mag­
nitude of the jump. 

295. Cases a), d), e) will be stable. 

( a )A ( eit
)-A. A. A ( A) 297. -- 1 - -- ,-, - 1 + - . 

l+a l+a a a a 

305. LLN is applicable for a < 1-- CLT is applicable for all values of a. 

323. (1 + yx) (1 + yx 2 ) ••• (1 + yxN ); 
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2n 

325. . 
(n + 1)! 

6 Application of measure theory 

333. Ak=(C\ {W:'"~k})-(C\ {W:'n~k-1}). 
To prove that I P{AM} = 1, apply the Borel-CanteIIi lemma. 

353. The sequence ~n can be constructed so that for er; ~ n2 the fol­
lowing conditions are satisfied: 

er2 

P gn = n} = P gn = - n} = 2:2 ; 

er2 

Pgn = O} = 1 --i, 
n 

and for er~ ~ n2 , the conditions: 

1- = Pgn = ern} = P{~n = - ern}· 

Then apply the Borel-CanteIIi lemma to the w-sets {w:~n(w)~n}. 

355. It follows from the fact that the sequence {I In I7 = 1 ~ i} converges 
to zero with probability 1 that the series I'% 1 ~nlnl +< converges. The 
quantities '~nlnl +<, < C < OCJ and consequently, according to the three 
series theorem, the series I D[~nJ/n1+< also converges. 

P;A) f ~ (w) P(dw) for wEA; 

365. M [~ I ~J = A 

pL4:)f ~(w) P(dw) for wEA; 

A 

M[XB(W) I ~] = P{B I~}; 

I p~{:t} for wEA; 

P{B I~} = { -} 
P BnA 

P {A} for wEA; 
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367. a) For any AEm:, since ~ ~ '1, 

J M[~Im:]P(dw)= f ~P(dw)~ J '1P(dw)= J M['1/m::J P (dw). 
A A A A 

Set 

An = {w: M [~ I m::J < M ['1 I m:] - ~}. 
Clearly, 

An E m: and f M [~ I m::J P (dw) :::;; f M ['1 I m::J P (dw) - ~ P {A,,} . 

An An 

Consequently, P{A,,} =0. But 

A = {M[~ I m:] < M['11 m:]} U An· 
n 

From which it also follows that P{A}=O. 
c) It follows from the relations O:::;;~l:::;;"':::;;~n~"" according to 

a), that O~M[~l I m:]~ ... ~M[~,,1 m:]~ .... For almost all w the limit 
of M[~n I m:] exists as n--+ 00, possibly infinite; denote it by ¢(w). But 
since the limit of the Lebesgue integral of a monotone sequence of func­
tions equals the integral of the limit function, then, for an arbitrary AEm:, 

;~~ J M [~n I m::J P(dw) = J cf> (w) dw. 
A A 

On the other hand, according to the definition of conditional mathe­
matical expectation, 

f~,,(W)dW= fM[~"Im:]dW; 
A A 

passing to the limit, we obtain 

f ¢ (W ) P (dw) = !~~ f ~n (W ) P (dw) = f !~~ ~n (W ) P (dw) = 
A A A 

= J ~(w)P(dw). 
A 

It follows that ¢(w)=M[~ I m:]. 
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369. F (p) = f 1'1(p, 1') dr, where 

o 

f(p,1')= p2-S1+S2 if 1-1'~p~1+r; I p2 if 0 ~ p ~ 1 - 1'; 

1 if l+1'~p; 

Sl = p2 (~_ sin CX) , cx = 2 (180 _ arccos {p2 + 1'2 - 1}); 2 180 11: 21'p 

S2 = ~ C~o -Si: f3). f3 = 2 arccos f + ~1'- p2}. 

371. Set 

Xl = P cos tPl ; 
X 2 = P sintPl COStP2; 
X3 = P sin tPl sin tP2 cos tP3 ; ... ; 
X n - 1 = P sintP1'" sintPn-2 COStPn-1; 
Xn = P sintPl'" sintPn-l 

and let 

- n-1 f . n- 2 -l. d-l. f . n- 3 -l. d-l. Z = P SIn '1-'1 '1-'1 SIll '1-'2 '1-'2 ... 

o 0 
21< 

... f sin tPn-2 dtPn-2 f h dtPn-l ; 
o 0 

then the conditional density is hz- 1 ; the conditional mathematical ex­
pectation is 

21< 

Z-lpn-l f sinn- 2 tPl dtPl ... f sin tPn-2 dtPn-2 J hi dtPn-l' 

7 

o 0 0 

Infinitely divisib1e distributions. 
Normal law. Multidimensional 
distributions 

373. f (t) = eia, where a is an arbitrary constant. Will be. 
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393. No. 

403. The density P (x, y) must depend only on x2 + y2. 

405. This will be the vector with coordinates Ci,j= L~=1 Pi,kbk' 

409. -t::::;;c::::;;1. 
c2 _ a 2 _ b2 

411. p (e, '7) = 2ab 

8 Markov chains 

415. b) All the states are essential. 
c) One can go from the 2nd state into the 3rd in two steps. 

l ~ ~ j ~ t iJ 
P2 = p2 = 1552 /2 i 0 

1 1 1 1 

2* 2+ 1~ t 
419. P1 = IIPull , 
where 

where 

o j<i-l, 
P j=i-l, 

Pij = q j = i, 
r j=i+l, 
o j>i+l, 

P2 = p2 = Ilptll , 

P·(~) = 
lJ 

o 
p2 

2pq 
q2 + 2pr 
2rq 
r2 

o 

j < i - 2, 
j=i-2, 
j=i-l, 
j = i, 
j=i+l, 
j = i + 2, 
j>i+2. 

421. No. 

142 



423. No. 

00 

425. a) L CjCkexp{-c<li-kl-c<lk-jl}; 
k= 1 

1 - e-" 
b) C j = 1-+---'--'" ----::c"i . e -e 

( ) _ (n) (n) _ 1 (c< - 13) (p - qt. 
431. Pi n - C<Pll + f3P2i - 2 + 2 ' 

P ( ) (n) + 13 (n) _ 1 (C< - f3)(p - qt. 
2 n = C<P12 P22 - 2 - . 2 ' 

Pi = P2 = t· 

Answers 
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