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1. Introduction

Two lines of gunmen face each other, there being initially m on one side, n on the
other. Each person involved is a hopeless shot, but keeps firing at the enemy until
either he himself is killed or there is no one left on the other side. Let µ(m, n) be the
expected number of survivors. Clearly, we have boundary conditions :

µ(m, 0)¯m, µ(0, n)¯ n. (1.1)

We also have the equation

µ(m, n)¯
m

mn
µ(m, n®1)

n

mn
µ(m®1, n) (m, n& 1). (1.2)

This is because the probability that the first successful shot is made by the side with
m gunmen is m}(mn). On using the recurrence relation (1.2) together with the
boundary condition (1.1), the computer produces Table 1 below, in which

m¯ 8192k, n¯ 8192®k, d(m, n)¯o(m#®n#)¯ 128o(2k).

T 1

k µ(m, n) d(m, n)

0 904.382093 0
8 914.922249 512

32 1059.405803 1024
128 2024.198251 2048
512 4093.080505 4096

2048 8191.520732 8192
8192 16384.000000 16384

The ‘deterministic ’ solution d(m, n) is produced by the following standard
reasoning (Lanchester’s combat model). We consider the time-evolution

dx(t)

dt
¯®y(t),

dy(t)

dt
¯®x(t), (1.3)

of an obvious deterministic analogue of our system. We see that x(t)#®y(t)# is
constant : the orbits are hyperbolas. If x(0)" y(0), then the final value x

F
for x (with

y
F
¯ 0) will satisfy

x#
F
®0#¯x(0)#®y(0)#, sox

F
¯ d(x(0), y(0)).
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We would expect this method to give good results if m is significantly bigger than n ;
and Table 1 confirms this.

Some quantification that the approximation is good when the m and n values are
not close is provided by the fact that

3
m+n=N

d(m, n)C
2N #

3
, 3

m+n=N

µ(m, n)¯
(N1) (2N1)

3
(N& 2). (1.4)

The first of these results is obvious. Direct proof of the second is left as an exercise ;
an indirect proof is given at (3.5) below.

However, when the initial values m and n are almost equal, random forces will
play a dominant part in deciding which hyperbola will be followed finally. We
consider the case when m¯ n. The computer produces Table 2, in which

KB 3−"/%π−"/#Γ(3}4)¯ 0.52532558. (1.5)

T 2

m µ(m,m) 2Km$/%

2048 319.556354 319.857107
4096 537.627362 537.933399
8192 904.382093 904.692518

The accuracy is surprising.
That a ‘3}4’ power law looks plausible was first observed in simulation studies

which also produce results of surprising accuracy; and it was these simulations which
prompted the investigation begun here.

It is proposed to give a more rigorous treatment in a later paper which will,
amongst other things, consider questions of accuracy of approximation and of
simulation, and seek to interpolate between the ‘deterministic ’ and ‘stochastic ’
extremes considered here.

For now, we make a heuristic study of things.

2. Heuristic explanation of Table 2

For the discrete situation, let us now count time as being equal to the number of
people killed. We pretend that, throughout the evolution, m®n stays small relative
to mn. We are going to consider replacing the pair (m#®n#,mn) (chosen to reflect
the hyperbola property) by a pair of continuous variables (u, �). We note that mn

decreases deterministically at rate 1, so we assume the same for �. At the first step,

m#®n# is changed by 2n®1 with probability
m

mn
,

by 1®2m with probability
n

mn
.

The variance of the change is therefore

m

mn
(2n®1)#

n

mn
(1®2m)#®

(n®m)#

(mn)#
E 4mnE �#.
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We can therefore think of the random evolution of the pair (u, �) as a diffusion process
in which � decreases deterministically and u has variance parameter �#, so that the
generator ' is given by

'B®
¦

¦�


1

2
�#

¦#

¦u#
.

Now we think of (m, n) as approximated by a pair of continuous variables (x, y), and
of µ(m, n) as approximated by H(x, y)¯ h(u, �), where u¯x#®y# and �¯xy. The
true boundary representing the final situation when either x(t) or y(t) is zero is
u¯³�#, which has a cusp at (0, 0). However, we fix on the idea that the random orbit
(x(t), y(t)) will eventually be essentially hyperbolic, u¯ constant¯x#

F
or y#

F
, and

we trust that we can run the diffusion process further, until �¯ 0, with little
further change in u. We therefore wish to solve 'h¯ 0 with boundary condition
h(r, 0)¯o(rrr) on the axis �¯ 0. The sensible thing to do is to write h(u, �)¯ f(u,w),
where wB �$}3. To clarify the situation, let us summarize notations:

µ(m, n)EH(x, y)¯ h(u, �)¯ f(u,w)¯ g(a, b),

the last one being utilized later.
We obtain the heat equation

¦ f

¦w
¯

1

2

¦ # f

¦u#

in the half-plane ²(u,w) : ®¢! u!¢, w& 0´ with boundary condition
f(r, 0)¯o(rrr) on the axis w¯ 0. Hence, with w¯ �$}3, and with the substitution
s¯ r#}(2w) so that dr¯w"/#(2s)−"/# ds, we have, using the well-known formula for the
solution of the heat equation,

H("
#
�, "

#
�)¯ f(0,w)¯&

¢

−¢

exp (®r#}2w)

o(2πw)
o(rrr) dr

¯ 2&
¢

!

e−s

o(2πw)
(2ws)"/%w"/#(2s)−"/# ds

¯ 2
2−$/%w"/%

oπ &
¢

!

e−s s−"/% ds

¯ 2
("
#
�)$/%

3"/%oπ
Γ(3}4),

so that
µ(m,m)E 2Km$/%. (2.1)

Since we have assumed moderately strongly that m®n remains small relative to
mn throughout the evolution, and since we have in effect replaced a cusped
boundary by a straight line, the accuracy of Table 2 seems astonishing: it is even
reasonable to conjecture a much deeper result, namely, that the difference between the
two sides of (2.1) converges to a constant as m!¢. A similar phenomenon was
observed in connection with the related ‘Mabinogion sheep problem’ in Williams [2] ;
but there, rigorous treatment was far easier. For a fascinating development of that
Mabinogion problem, which shows that diffusion approximation may not quite be
what one expects, see Chan [1].
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We end this part of the paper by checking out one further aspect of the accuracy
of the diffusion approximation for the current problem. Let

a¯ "
#
(x®y), b¯ "

#
(xy), g(a, b)¯H(x, y)Eµ(m, n).

Then

'¯
1

2

a

b

¦

¦a
®

1

2

¦

¦b


1

8

¦#

¦a#
.

By symmetry, ¦g}¦a¯ 0 when a¯ 0. Hence,

µ(m1,m®1)E g(1,m)E g(0,m)
1

2

¦#g

¦a#
(0,m)

¯H(m,m)2
¦

¦m
H(m,m)

E 01
3

2m1µ(m,m),

using the formula (2.1). This argument leads us to conjecture that

r(m)B 2m (µ(m1,m®1)

µ(m,m)
®1*U 3,

and the values

r(2048)¯ 3.0018039, r(4096)¯ 3.0011988, r(8192)¯ 3.0007752,

provide strong support.

3. The method of characteristics

Define, for 0!α! 1 and 0! β! 1,

M(α, β )B 3
¢

m=!

3
¢

n=!

µ(m, n)αmβn. (3.1)

The recurrence relation (1.2) leads to

α
¦M

¦α
β

¦M

¦β
¯S(α)S(β)αβ

¦M

¦α
αβ

¦M

¦β
,

where, from the boundary condition (1.1), we have

S(α)B 3
¢

m=!

m#αm¯
α(1α)

(1®α)$
.

Hence
α

1®α

¦M

¦α


β

1®β

¦M

¦β
¯R(α, β )B

S(α)S(β)

(1®α) (1®β )
. (3.2)

Thus
d

dt
M(α(t), β(t))¯R(α(t), β(t)), (3.3a)

where (α([), β([)) is a ‘characteristic curve’ in the unit square, satisfying

α«(t)¯
α(t)

1®α(t)
, β«(t)¯

β(t)

1®β(t)
. (3.3b)
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For some constants c
"
and c

#
, we shall have, when tc

"
and tc

#
are in (®¢,®1),

ln (α(t))®α(t)¯ tc
"
, ln (β(t))®β(t)¯ tc

#
. (3.4)

The fact that we cannot write α(t) in closed form is a nuisance. A much more
serious difficulty is that all characteristic curves emanate from (0, 0) (when t¯®¢).
(We know the value of M on the bottom and left edges of the unit square. On the top
and right edges, M¯¢.)

This method quickly yields

M(α,α)¯
4

3(1®α)$
®

1

(1®α)#
®

1

3
, (3.5)

which is equivalent to the second result at (1.4) (and, indeed, led us to (1.4)).
However, further explicit calculations by this route become complicated.

The fundamental problem is : how do we see the 3}4-power law in (3.2) and (3.3)?
It would seem that we have to consider #-valued functions α and β to resolve this.

A. For helpful discussions, we thank Richard Goodman of
the Statistics Department at Warwick University, and Chris Budd and Alexander
Movchan of the School of Mathematical Sciences at Bath.
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